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Numerous practical applications like robot balancing, segway and hover board riding and operation of a
rocket propeller are inherently based on Inverted Pendulum (IP). The control of an IP is a sophisticated
problem due to various real world phenomena that make it unstable, non-linear and under-actuated sys-
tem. This paper presents a comparative analysis of linear and non-linear feedback control techniques
based on investigation of time, control energy and tracking error to obtain best control performance
for the IP system. The implemented control techniques are Linear Quadratic controller (LQR), Sliding
Mode Control (SMC) through feedback linearization, Integral Sliding Mode Control (ISMC) and
Terminal Sliding Mode Control (TSMC). Considering cart position and pendulum angle, the designed con-
trol laws have been subjected to various test signals so as to characterize their tracking performance.
Comparative results indicate that ISMC gives a rise time of 0.6 s with 0% overshoot and over-performs
compared to other control techniques in terms of reduced chattering, less settling time and small steady
state error.
� 2018 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Recent advancements in the domain of control systems are
completely reshaping mechatronics [1] and robotic systems [2].
Inverted Pendulum (IP) is a challenging problem studied in the
field of control systems theory. It is a highly non-linear, unstable
and under-actuated Multiple Input and Multiple Outputs (MIMO)
mechanical system [3]. Consequently, such a system, requiring a
sophisticated control law [4], is considered as a benchmark to
develop the ideas relevant to the robust systems to characterize
and compare the performance of the classical and modern control
strategies on a large scale. It has wide range of industrial applica-
tions e.g. two wheeled self-balancing vehicles (seg-way), rockets,
guided missiles, intelligent robots, and other systems exhibiting
crane model. Various control strategies have been implemented
on IP. Trivial control algorithms like Proportional Integral Deriva-
tives (PID) [5] are not well suited and incapable of handling for
such a complex and non-linear system because they cannot handle
inherent uncertainties and disturbances [6]. The robustness of the
system decreases with parametric and structural uncertainties
consequently making tuning of gains in PID control law a very
itchy task [7]. Thus, robust control laws [8] are needed to achieve
a high level of precision and accuracy resulting in a more reliable
and flexible system to converge the state trajectories into the sys-
tem in finite time. These challenges highlight the role of more
advanced and sophisticated control strategies like Linear Quadratic
Regulator (LQR) and Sliding Mode Control (SMC) or its variants,
which can provide a systematic way to accurately track the desired
trajectories [9].

LQR is a purely linear control technique used for the linear sys-
tems while SMC is a robust control technique which deals with the
complex systems where uncertainties and disturbances are pre-
sent. SMC, Integral SMC (ISMC) [10] and Terminal SMC (TSMC)
are robust control techniques so, there is always an inconsistency
between mathematical and actual model for designing a controller
[11]. Unknown external disturbances like matched and unmatched
uncertainties are the source of discrepancies between the actual
and mathematical model of the system [12,13].

When a pendulum moves in the upright position, stability
requirements necessitate the use of robust control technique
which should be capable of dealing with the fast dynamics of the
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system. The chattering phenomena present in first order SMC, law
can be handled by higher order sliding mode control technique
which also improves the system performance [14].

In this paper a comparative analysis of control strategies i.e.
LQR, SMC, ISMC, TSMC have been presented. All these algorithms
have been implemented on IP. The comparison is carried out based
on various parameters like time, control energy and chattering
phenomena. The results depict efficacy of ISMC over LQR, SMC
and TSMC. The remaining paper is organized as follows: Section 2
derives linear and non-linear model of IP. Section 3 details the con-
trol techniques under study while, Section 4 presents the results
and discussion of the implemented control strategies. Finally, Sec-
tion 5 presents the conclusion of this paper.

2. Methodology � Mathematical modelling

Mathematical model is required to design the control law.
Therefore, Newton law based model of the IP has been derived.
The IP consists of a moveable cart rail system and a swing-able
pole connected to the cart as shown in Fig. 1. Cart position is con-
trolled with DC motor.

The non-linear mathematical model of the IP is derived using
the Newton law approach. Vertical force does not affect the cart
position and the horizontal movement is controlled by the forces
applied through DC motors [15,16]. The obtained non-linear math-
ematical model of system is given by (1) and (2). The nomenclature
is explained in Table 1, and system specifications are provided in
Table 2.

ðM þmÞ€xþmL€h cos h��ml _h2 sin hþ B _x ¼ F ð1Þ

ðI þml2Þ€hþmglsinh ¼ �ml€xcosh ð2Þ
Fig. 1. Physical model of IP.

Table 1
System states and parameters.

Symbol Description

B _x Cart friction
F External force for horizontal movement
x; _x; €x Cart position, velocity, acceleration respectively
M External pole moment
m Pole friction moment

h; €h Angular velocity and angular acceleration

l Length of the pendulum

Table 2
Assigned values to system.

Symbol Quantity/Meaning Value Unit

m Pendulum mass 2.4 kg
M Cart mass 0.23 kg
I Inertia 0.38 kg/m2

g Gravity 9.8 m/s2

B _x Friction of cart 0.005 N
l Length of pendulum 45 cm
L Cart length 91 cm
To implement LQR [17] on this set of equations, we need to lin-
earize the non-linear terms _h2 When pendulum is stable at h

ffi 0; _h2 ffi 0 and cosð0Þ ¼ 1, the mathematical model is reduced to
(3) and (4).

ðM þmÞ€xþ B _x�ml€h ¼ F ð3Þ

ðI þml2Þ€h�mglh ¼ ml€x ð4Þ
The transfer functions of the cart position and angle of pendulum is
given as,

XðsÞ
UðsÞ ¼

ðIþml2Þs2�mgl
q

s4 þ bðIþml2Þ
q s3 � ðMþmÞmgl

q s2 � bmgl
q s

ð5Þ

hðsÞ
UðsÞ ¼

ml
q s

s3 þ bðIþml2Þ
q s2 � ðMþmÞmgl

q s� bmgl
q

ð6Þ

where, q is defined as follow:

q ¼ ½ðM þmÞðI þMl2Þ � ðml2Þ� ð7Þ
Converting (5) and (6) to the equivalent state space form given as,

_x
€x
_h
€h

2
6664
3
7775 ¼

0 1 0 0
0 �0:0194 0:2188 0
0 0 0 1
0 �0:0128 6:5848 0

2
6664

3
7775

x
_x
h
_h

2
6664
3
7775þ

0
0:3887

0
0:2552

2
6664

3
7775uðtÞ ð8Þ

The output matrix can be written as,

yðtÞ ¼ 1 0 0 0
0 0 1 0

� � x
_x

h
_h

2
6664
3
7775þ 0

0

� �
uðtÞ ð9Þ

The system has four poles with two in the right half plane which
makes the system unstable. Therefore, a linear controller needs to
be designed to force the poles in the left half plane. The calculated
open loop poles are located at: S = 0–5.6041 5.5651–0.1428.
3. Methodology � Control techniques

In this section, LQR based control technique, feedback lineariza-
tion based on SMC, ISMC and TSMC are described in details. On the
basis of system performance, parameters like setting time, rise
time, steady state error and overshoot are calculated.

3.1. Linear Quadratic Regulator (LQR)

LQR is a linearized and optimal control technique which pro-
vides optimum gains for the systems. It is more suitable for the lin-
ear systems having no uncertainties or disturbances. The major
benefit of this technique is that it gives the gains to minimize
the cost function [18,19] represented by (10). For an nth order sys-
tem the general cost function of LQR is given as,

J ¼
Z 1

0
½xTðtÞQðtÞxðtÞ þ UTðtÞRðtÞUðtÞ�dt ð10Þ

where, Q 2 Rn�n is positive definite or positive semi definite Hermi-
tian matrix (or real symmetric matrix), R 2 Rr�r is a positive definite
Hermitian matrix (or real constant number), S 2 Rn�n is a positive
definite Hermitian matrix (or real symmetric matrix).

The LQR gain is computed as,

K ¼ R�1BTP ð11Þ
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The Riccati equation is given in (12) whereas the generic repre-
sentation of the linear system is given in (13).

ATP þ PA� PBR�1BTRþ Q ¼ 0 ð12Þ

_xðtÞ ¼ AxðtÞ þ BUðtÞ ð13Þ
The control law for the linear system is given as,

UðtÞ ¼ �KxðtÞ ð14Þ
For computing the gains open loop response of the system can

be written as,

_xðtÞ ¼ AxðtÞ � BKxðtÞ ð15Þ

_xðtÞ ¼ ðA� BKÞxðtÞ ð16Þ
3.2. Feedback linearization

Feedback linearization is a common approach to control the
behavior of the non-linear systems. A system is said to be feedback
linearizable if, non-linear dynamics of the system can be trans-
formed into an equivalent fully or partially controllable linear sys-
tem dynamics cancelling the nonlinearities [20]. In our system
relative degree is two and order of the system is four which is
greater than the relative degree of the system so, we use input out-
put linearization control technique to make relative degree equal
to the order of the system. Transform (3) and (4) to get the canon-
ical form given as,

_x1 ¼ x2

_x2 ¼ o1 þ i1F

_x3 ¼ x4

_x4 ¼ o2 þ i2F

where x is the state space vector, F is the force need to move cart
and o1, o2; i1 and i2 are nominal non-linear functions is defined as
follows:

o1 ¼ mlx24sinx3 �mgsinx3 � cosx3 _r3 ¼ r4
M þmsin2x3

ð17Þ

o2 ¼ ðM þmÞgsinx3 �mlx24cosx3
lðM þmsin2x3Þ

ð18Þ

i1 ¼ 1

M þmsin2x3
ð19Þ

i2 ¼ �cosx3
lðM þmsin2x3Þ

ð20Þ

Let,

F ¼ M þmsin2x3u� ðmlx24sinx3 �mgsinx3cosx3Þ ð21Þ
and

_X ¼ f ðxÞ þ gðxÞu ð22Þ
After mapping new coordinates for stabilization of the non-

linear system, are given below as,

_r1 ¼ r2

_r2 ¼ r3

_r3 ¼ r4
_r4 ¼ L4f ðT�1ðrÞÞ þ LgL
3
f hðT�1ðrÞÞu

Lf hðxÞ is the Lie derivative of hðxÞ along vector f ðxÞ. The output of the
system is defined as,

y ¼ hðxÞ ¼ x1 þ l ln
1þ sinx3
cosx3

� �
ð23Þ

The transformed states thus obtained through feedback lin-
earization are given in the following equations

r1 ¼ hðxÞ ¼ x1 þ l ln
1þ sinx3
cosx3

� �
ð24Þ

r2 ¼ LxhðxÞ ¼ x2 þ lx4
cosx3

ð25Þ

r3 ¼ Lf 2hðxÞ ¼ tanx3 g þ lx24
cosx3

 !
ð26Þ

r4 ¼ Lf 3hðxÞ ¼
2

cos2x3
� 1
cosx3

� �
lx43 þ

3g
cos2x3

� 2g
� �

x4 ð27Þ

where,

f ðxÞ ¼ 6sinx3
cos4x3

� sinx3
cos2x3

� �
l4x4 þ 6gsinx3

cos3x3
x24

� �

þ 2gsinx3
cos3x3

� gsinx3
cosx3

� �
3x24 þ

3g
cos2x3

� 2g
� �

gsinx3
l

ð28Þ

gðxÞ ¼ �6w2
4

cos2w3
� 3g
lcosw3

þ 3w2
4 þ

2gcosw3

l
ð29Þ

Feedback linearizable non-linear equation in the ‘r’ system is
shown as,

_r1 ¼ r2

_r2 ¼ r3

_r3 ¼ r4

_r4 ¼ f ðrÞ þ gðrÞu

y ¼ r1
3.3. Sliding mode control (SMC)

SMC is a robust control technique used for the higher order
non-linear dynamic systems having uncertainties and distur-
bances. It has fast dynamic response and is insensitive to variety
of external disturbances [21]. Due to inconsistency between an
actual plant and its mathematical model, matched and unmatched
uncertainties, parametric uncertainties and external disturbances
need to be taken into account while designing the control law
[22]. SMC can better handle such discrepancies due to its robust
nature and ability to handle fast dynamic response while ensuring
global stability. Tracking the reference can be achieved with the
first order SMC which rejects the external disturbances and
improves system stability [23]. SMC has two phases; (i) Reaching
phase (ii) Sliding phase. In the reaching phase, system reaches
the desired sliding surface, defined as,

_x ¼ f ðxÞ þ gðxÞuþ Dðx; tÞ ð30Þ
f ðxÞ and gðxÞ are vector fields representing matched uncertainties.
The sliding surface is chosen as,
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S ¼ d
dt

þ k

� �3

e ð31Þ

where k is a positive constant and e is the tracking error signal and
is the difference between actual and desired output i.e. e ¼ e1 � ed

s ¼ ev þ k3eþ 3k2 _eþ 3k€e ð32Þ
Sliding surface defined in (32) is based on the tracking function,

when sliding surface converges to zero the tracking error automat-
ically converges to zero. SMC based control law consist of two
parts; Equivalent control (ueqÞ and discontinuous control ðudisÞ.
The control input ueq is obtained by putting the sliding surface at
_S ¼ 0. Afterwards, derivative of the sliding surface is taken by put-
ting the value of different states and forcing the time derivative to
zero, the equivalent controller for the system is obtained as,

ueq ¼ f ðxÞ þ ð3ke4Þ þ ð3k2e3Þ þ ðk3e2Þ
gðxÞ

þ evd þ ð3k2€edÞ þ ð3kevdÞ þ ðk3 _edÞ
gðxÞ ð33Þ

The second part of the controller udis ensures that that the sys-
tem stays on the sliding surface and usually designed by the Sign
function given as,

udis ¼ �kSignðsÞ ð34Þ
Finally, we get

u ¼ ueq þ udis

First order SMC suffers from the chattering phenomena, which
is an oscillatory motion occurring around the sliding manifold. To
ensure the stability of the system, the Lyapunov function is defined
as,

V ¼ 1
2
S2 ð35Þ

_V ¼ S _S ð36Þ
Taking the time derivative of (32) and putting them in above

expression, (37) is obtained

_V ¼ Sð�ksignðsÞÞ ð37Þ

_V 6 �kjsj ð38Þ
3.4. Integral sliding mode control (ISMC)

High frequency turbulences in SMC damage the system and
reduce the life of actuators while the settling time also gets
enhanced. ISMC minimize the cost function and chattering in
which system dynamic are weak against the uncertainties [24].
System trajectories start from the sliding surface while, the reach-
ing phase is eliminated in the integral mode sliding control. The
ISMC improves the results by generalizing the higher order system
derivatives and by involving system trajectories into the sliding
surface. The performance of the error is also improved in ISMC.
By using the reaching phase, it handles the matched uncertainties
and stabilizes system asymptotically. States are directed towards
sliding manifolds and stabilization depends on sliding constraints.
ISMC are most suitable for complex and MIMO system. In ISMC,
sliding surface is chosen as (39)

S ¼ d
dt

þ k

� �3

eþ z ð39Þ
where,

e ¼ e1 � ed ð40Þ

s ¼ ev þ k3eþ 3k2 _eþ 3k€eþ z ð41Þ

s ¼ ev þ k3ðx1 � xdÞ þ 3k2ðx2 � _xdÞ þ 3kðx3 � €xdÞ þ z ð42Þ
After sliding mode is established, it must satisfy the condition at

_s ¼ 0. The sliding mode involves n� 1 states, thus reducing the
system uncertainties and achieving robustness. Taking the deriva-
tive of sliding surface and force the surface at _s ¼ 0, equivalent con-
trol part of the system is thus obtained as

_s ¼ ev þ k3ðx2 � _xdÞ þ 3k2ðx3 � €xdÞ þ 3kðx4 � evdÞ þ _z ð43Þ

ueq ¼ f ðxÞ þ k3ðx2 � _xdÞ þ 3k2ðx3 � €xdÞ þ 3kðx4 � evdÞ þ _z
gðxÞ ð44Þ

udis ¼ �ksignðsÞ � fs ð45Þ
Lyapunov stability based analysis ensures the stability for the

system. The Lyapunov energy function is defined as

V ¼ 1
2
S2 ð46Þ

_V ¼ S _S ð47Þ

_V ¼ Sðf ðxÞ þ gðxÞðueq þ udisÞ þ k3ðx2 � _xdÞ þ 3k2ðx3 � €xdÞ
þ 3kðx4 � evdÞ þ _zÞ ð48Þ

_V ¼ Sð�ksignðsÞ � fsÞ ð49Þ

_V 6 �kjsj � fs2 ð50Þ
where kandf are positive constants and their value is greater

than zero. As _V is negative definite, hence the system dynamics
will converge to the sliding surface in finite time.

3.5. Terminal sliding mode control (TSMC)

The convergence of state in SMC is infinite time while in TSMC
the state convergence is in finite time. The precise sliding surface is
designed in terminal sliding mode control and the purpose of con-
trol law is to retain the system on the defined surface. When the
illustrative point of the system move on the sliding surface, TSMC
is established and infinite convergence is guaranteed [25]. Sliding
surface for terminal sliding mode control is chosen as

S ¼ d
dt

þ k

� �3

eþ be
q
p
1 ð51Þ

S ¼ ev þ k3ðx1 � xdÞ þ 3k2ðx2 � _xdÞ þ 3kðx3 � €xdÞ þ b
q
p
e
q
p�1e1 ð52Þ

The time derivative of sliding surface is given in (53).

_S ¼ ev þ k3ðx2 � _xdÞ þ 3k2ðx3 � €xdÞ þ 3kðx4 � evdÞ þ b
q
p
e
q
p�1 _e1 ð53Þ

Putting the sliding surface at _s ¼ 0, the equivalent control part
for TSMC is given in (54).

ueq ¼
f ðxÞ þ k3ðx2 � _xdÞ þ 3k2ðx3 � €xdÞ þ 3kðx4 � evdÞ þ b q

p e
q
p�1e2

gðxÞ
ð54Þ



Fig. 3. Step response of pendulum angle based on LQR, SMC, ISMC and TSMC laws.
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udis ¼ �ksignðsÞ � fs ð55Þ
where, u ¼ ueq þ udis. For Lyapunov stability using energy function
(56).

V ¼ 1
2
S2 ð56Þ

_V ¼ S _S ð57Þ
Putting (53) in the above expression, (58) is obtained.

_V ¼ Sð�ksignðsÞ � fsÞ ð58Þ

_V 6 �kjsj � fs2 ð59Þ
where kandf is positive constant and greater than zero. The deriva-
tive of Lyapunov function _V becomes negative definite and system
dynamics converges to origin in finite time.
4. Results and discussions

The simulations involved in the proposed work were performed
on MATLAB/Simulink, with simulation time of 50 s. The perfor-
mance of LQ, SMC, ISMC and TSMC is compared to stabilize cart
position of an IP along with pendulum angle for upright position.

The parameters for the aforementioned control techniques are
given in Table 3. To validate the control performance, two types
of signals are used i.e. a unit step position and a sinusoidal position
signals for cart position to stabilize the pendulum.

Figs. 2 and 3 show the comparison of different control tech-
niques for a step input. The stability of the cart at desired reference
position and the pendulum angle at its upright position is achieved
after 2 s. for ISMC, which is far superior than the linear technique
LQR. The stabilization time for SMC and TSMC is 3 s. and 2.5 s.
Table 3
Tuning parameters of control strategies.

Parameters LQR SMC ISMC TSMC

r 1 – – –
k �70, 37,
-105,20 5 3 –
K – 20 1 –
P – – – 10
q – – – 20
a – – – 30
b – – – 40

Fig. 2. Step response of cart position based on LQR, SMC, ISMC and TSMC laws.
respectively. Fig. 3 shows that the IP attains its upright position
after initial dynamics, for all the applied control techniques.

Fig. 4 shows the simulation results of the input torque applied
to the pendulum cart to achieve the desired control task. It is evi-
dent from the figure that SMC exhibits undesirable chattering phe-
nomenon occurred in control input which is effectively reduced by
control laws based on TSMC and ISMC.

Fig. 5 gives the time response for the sliding surfaces defined for
SMC, ISMC and TSMC. Here s denotes the sliding surface.
Fig. 4. Control input using LQR, SMC, ISMC and TSMC laws.

Fig. 5. Sliding surface based on SMC, ISMC and TSMC laws.



Fig. 8. Control input by using SMC, ISMC and TSMC laws.
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Second validation test was performed using a sinusoidal refer-
ence input signal of the form given in (60). Where, a ¼ 0, b ¼ 1,
f ¼ 0:157 and h ¼ 0.

yd ¼ aþ bsinðf ðtÞ þ hÞ ð60Þ
Figs. 6 and 7 respectively show the simulation results of SMC,

ISMC and TSMC against the reference sinusoidal signal for cart
position and pendulum angle. As is evident from Fig. 6 that the cart
reaches the desired sinusoidal trajectory for all the control tech-
niques, keeping the inverted pendulum stable to its upright posi-
tion. The tracking performance of ISMC is better as compared to
the other techniques. All the controllers exhibit good steady state
performance with ISMC having relatively least settling time, rise
time and steady state errors.

Figs. 8 and 9 show the corresponding control input and the slid-
ing surface for sinusoidal reference trajectory respectively. Results
obtained using LQR technique was not included, as linearization is
no more valid for a time varying input signal.

Table 4 summarizes the performance based comparative analy-
sis of linear control technique (LQR) and non-linear control tech-
niques (SMC, ISMC and TSMC) for cart position while keeping the
pendulum stable to its upright position. The performance parame-
ters show that ISMC provides the best steady state and transient
behavior while LQR technique, being the linear technique, fails to
provide satisfactory results especially in the case of sinusoidal ref-
erence input signal.
Fig. 6. Sinusoidal response of cart position based on SMC, ISMC and TSMC laws.

Fig. 7. Sinusoidal response of pendulum angle based on SMC, ISMC and TSMC laws.

Fig. 9. Sliding surface based on SMC, ISMC and TSMC laws.

Table 4
Performance analysis of control strategies.

Response Specification LQR SMC ISMC TSMC

Settling Time (sec) 6.2 3 2 2.5
Rise Time (sec) 3.2 0.9 0.6 0.65
Steady state error (ess) 0.02 0.0012 0.0001 0.001
ð%Þ Overshoot 0.01 0.001 0 0
The performance of the implemented control techniques i.e.
LQR, SMC, TSMC and ISMC are also tested in the presence of distur-
bances, the amplitude of the disturbance is set to 0.1 rad/sec2

which is then, introduced in the plant to unbalance the upright
position of the pendulum. Figs. 10 and 11 show the simulation
results for cart position and pendulum angle. The step signal of
amplitude 0.1 rad/sec2 is introduced after 25 s. Simulations results
show that all the three techniques based on sliding mode control
show robust performance, however, LQR technique fails to stabilize
the cart at 1 m.

All the control techniques presented in this paper are model
based assuming that all the states are observable. Possible direc-
tions in future include observer design, consideration of faults in
sensors/actuators, adaptation of SMC-based law and hybridizing
SMC with other robust techniques like H1. Observer design finds
its potential in numerous real-world applications since practically
it may not be possible to measure all states of a system at all times
due to cost and viability issues [26]. Another pertinent issue of



Fig. 10. Cart position with disturbance based on SMC, ISMC and TSMC laws.

Fig. 11. Pendulum angle with disturbance based on SMC, ISMC and TSMC laws.
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utmost importance is a mechanism to deal with consequences of
components failures. Reliable control ensures that the desired
specifications of a system are met even in case of breakdown in
one or more components [27]. Reliability function may be based
on Riccati equation, linear matrix identity method, coprime factor-
ization and Lyapunov function. An adaptive SMC based law finds
its potential in cases where complete information about external
disturbance, limits on actuator faults and nonlinearity bounds is
not available [28]. To simultaneously handle several of the afore-
mentioned issues, research works in [29–31] highlights the bene-
fits of robust H1 SMC.

5. Conclusion

In this research paper linear and non-linear control strategies
has been successfully designed and simulated. Robust control tech-
niques have been discussed for IP to ensure the stability to achieve
better response of system. Robust control techniques for this study
include SMC, ISMC and TSMC. Based on analysis and design struc-
ture, all the laws are capable of controlling the IP. Result of each
controller has been plotted and compared. Overall performance
comparison concludes that ISMC gives the best performance over
the other control techniques.
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