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The vehicle routing problem (VRP) is one of the problem types that are sought after for a long time by
trying out different techniques and attracting attention in terms of optimization. In most VRP types, route
cost is associated with distance, and a shorter distance solution is considered a more successful solution.
While the shortest distance goal provides significant advantages in terms of cost and time to businesses,
this makes it attractive for further research. When examining the types of problems having different
directions and areas devised from different points of view on vehicle routing, it can be said that the clos-
est approach to practical application is the vehicle routing problem with simultaneous delivery and
pickup (VRPSDP). In this study, a solution proposal is presented for the VRPSDP using the Artificial Bee
Colony (ABC) algorithm and the application is tested with the benchmark problem data sets commonly
used for VRPSDP in the literature. When the results are compared with the least cost route solutions in
the literature, it is observed that despite the few parameters, the proposed method can produce low-cost
solutions very close to the most successful solutions in the literature.
� 2019 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Technological developments in transportation and communica-
tion, has globalized trade worldwide. Therefore, intense competi-
tion in today’s market, short-lived products and increasing
expectations of customers have forced producers to pay more
attention to distribution systems. According to Toth and Vigo
[40], especially in the field of transportation, savings in the range
of 5%–20% can be achieved, with computer-aided methods. In this
context, the solution of the VRP, which is defined as the problem of
determining the best routes of the vehicles that will go out from
one or more depots for the delivery and pickup service of geo-
graphically scattered customers, can provide a significant advan-
tage for reducing costs [6]. The basic approach in the VRP is to
provide all distribution needs by providing that demands of all cus-
tomers with known demand quantities are fulfilled from a single
depot and that each customer is visited with only one transport
vehicle [4]. A study of Dantzig and Ramser in 1959 aiming mini-
mizing the route cost of the truck fleet distributing gasoline can
be considered as the systematic first study on VRP [9]. From
1959 onwards, different solutions have been suggested for VRP
on a large part of the logistics transport and distribution depart-
ments of production and service sectors, from automotive to food-
stuff, textiles to cargo [28,19]. When studies on VRP are examined,
it is possible to come across different types of problems in which
delivery and pickup on the nodes are performed at different times
independently of each other [12]. In VRP types, the VRPSDP type
comes to the forefront in terms of similarity to real life logistics
activities in particular. The most distinctive feature of VRPSDP is
that all the goods to be delivered to the customers are sent from
the warehouse and all the goods to be received from the customers
are sent to the same warehouse [1]. Various kinds of heuristic and
metaheuristic methods are used as well as exact methods for
VRPSDP solutions.

Within the scope of this study, it is aimed to develop an algo-
rithm having acceptable range of solution times, that finds low cost
routes for vehicles of limited capacity that carry out simultaneous
delivery and pickup activities in various types of multi-client net-
work models. The lower cost of the route will also bring advan-
tages such as higher efficiency, lower fuel consumption and
shorter delivery times while reducing the number of vehicles to
be used as well. In the framework of the above-mentioned targets,
ABC algorithm has been preferred as the method. ABC algorithm
can be used for other types of problems for which metaheuristic
methods can be used, and it is observed to yield successful results

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jestch.2019.01.002&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.jestch.2019.01.002
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:fuatsimsir@karabuk.edu.tr
mailto:dekmekci@karabuk.edu.tr
mailto:dekmekci@karabuk.edu.tr
https://doi.org/10.1016/j.jestch.2019.01.002
http://www.sciencedirect.com/science/journal/22150986
http://www.elsevier.com/locate/jestch


728 F. Simsir, D. Ekmekci / Engineering Science and Technology, an International Journal 22 (2019) 727–735
in many applications for especially NP-Hard kinds of combinatorial
optimization problems. The ABC algorithm is a population-based
efficient algorithm that can scan a wide range of solutions, spread-
ing to many different points at the same time, in addition to its
successful performance in the local search. By using the ABC algo-
rithm, we aimed to be able to successfully scan search spaces that
has different levels of fluctuation due to variations in inter-node
distances and load demands of VRPSDP problems.

1.1. Mathematical formulation of VRPSDP

VRPSDP can be defined as: In the closed graph model
G ¼ V ; Eð Þ;V ¼ 0;1; . . . ;nf g is the set of nodes. Node 0 represents
the warehouse center; others represent the customers to visit.
E ¼ i; jð Þ : i; j 2 Vf g is the set of edges and each edge has the cost
cij cost (distance). All vehicles Mð Þ in the vehicle vault in the ware-
house are homogeneous Qð Þ and there is no restriction on the
number of vehicles. The vehicles move from warehouse simultane-
ously and return to the warehouse at the end of the route. Vehicle
capacity should not be exceeded along the route for each vehicle.
Each customer i 2 Vð Þ is only visited by one vehicle and only once.
The amount of di is delivered to each customer and the amount of
pi is picked up from each customer. Mathematical formulation of
the VRPSDP can be defined as follows:

min
Xn

i¼0

Xn

j¼0

cijxij ð1Þ

Xn

j¼0

xij ¼ 1 8i ¼ 1; ::::; n ð2Þ

Xn

j¼0

x0j � m ð3Þ

Xn

j¼0

xij ¼
Xn

j¼0

xji 8i ¼ 1; ::::;n ð4Þ

Xn

j¼0

Pij �
Xn

j¼0

Pji ¼ pi 8i ¼ 1; ::::;n ð5Þ

Xn

j¼0

Dij �
Xn

j¼0

Dji ¼ di 8i ¼ 1; ::::; n ð6Þ

Pij þ Dij � Q 8i ¼ 1; ::::;n 8j ¼ 1; ::::; n ð7Þ

Pij;Dij � 0 8i ¼ 1; ::::;n 8j ¼ 1; ::::; n ð8Þ

xij 2 0;1f g 8i ¼ 1; ::::; n 8j ¼ 1; ::::; n ð9Þ
The objective function (1) gives the sum of the total cost of the

vehicles. Constraints (2) mean that only one arc can be exited for
each customer. The maximum number of vehicles is guaranteed
by constraints (3). Constraints (4) show that number of exited
and entered arcs for each customer are same. Equality Eqs. (5)
and (6) insure that the quantity of pickup and delivery goods of
each customer is fully satisfied in one visit. Constraints (7) state
that the vehicle capacity is never exceeded. Restrictions (8) force
the flow to remain non-negative and finally, constraints (9)
describe that each arc in the network has the value 1 if it is used
and 0 otherwise.

Delivery and pickup activities are carried out simultaneously at
each node designated as a ‘‘stop point” along the route. Since the
solution space exponentially expands with the number of nodes,
such problems are considered to be in the class of NP-hard prob-
lems [42]. Applegata et al. [2] conducted detailed analyzes with
the Bellman-Held-Karp algorithm which contains dynamic solu-
tions for NP-hard problem solutions. They examined the complex-
ity of the problems and the solution time with Bellman-Held-Karp
algorithm. The n22n running time and memory requirement over-
whelms the implementation as we increase the number of cities.
When we reach n = 29, the memory requirement exceeds 12 GBy-
tes and the test was terminated without computing an optimal
tour. Since the vehicle capacity becomes insufficient as the number
of nodes increases in the problem, a two-step solution approach in
which the nodes are grouped and then routed is developed [31].
1.2. Brief literature review of VRPSDP

The first approach to a multi-node VRP solution with simultane-
ous distribution/ aggregation is proposed by Min [31]. In Min’s
study, two transport vehicles were assigned for all books to be dis-
tributed from a single depot and the transport vehicles were rou-
ted to visit 22 libraries. Developed solution consists of three
stages: creating clusters for customer nodes, assigning the appro-
priate transport vehicle for each cluster that is created, and routing
the cluster to which each transport vehicle belongs. Dethloff [11]
developed a heuristic method based on addition and achieved
more successful results than Min. Bianchessi and Righini [5] used
Dethloff’s formula in the Tabu Search (TS) algorithm and obtained
successful results from Dethloff. Another method developed for
VRP with delivery and pick up is presented in the literature by Nagi
and Salhi [32]. The algorithm is useful for VRPSDP as well as a gen-
eral solution for some mixed-case situations where only delivery is
performed for some of the customers and only picking up is per-
formed for some of the customers. Cetin et al. [6] argued that this
new model was more successful than Min’s method. Tang and
Galvão [39] proposed two heuristic solutions for local search using
tour partitioning and sweep algorithms. A number of solutions
have been proposed for the tour partition approach. One of them
is the algorithm developed by Cristofides, Mingozzi and Toth
[15,8,13]. Crispim and Brandao [7] used metaheuristic method
for the first time in the simultaneous delivery/pick-up VRP solu-
tion. Ai and Kachitvichanukul [1] developed a different mathemat-
ical model and tried this model with the Particle Swarm
Optimization (PSO) Algorithm. First, they compared the approach
they offered to meet the current needs of the logistics world to
the test data of Solomon [38] and got successful results, then they
created new comparison problems. When Yousefikhoshbakht et al.
[41] examined the solutions developed for VRPSDP, they realized
that metaheuristic solutions were more successful and formed a
hybrid system by combining the modified TS and the elite ant sys-
tem algorithms for the solution of such problems. Mancini [29]
exemplifies the simultaneous delivery and pickup transportation
system employing a multi-repository, multi-period heterogeneous
capacity transport fleet that can be encountered in real life. Man-
cini proposed a mixed integer programming formulation in such
a network and proposed a metaheuristic-based adaptation of wide
neighborhood search approach. Salhi et al. [36] addressed a similar
problem and worked on a variable neighborhood search applica-
tion with new features in addition to neighborhood and local
search operators. With the algorithm developed for the solution,
more successful results were obtained in 23 of the 26 samples pub-
lished in the literature. In a different study developed for the VRP
solution, Hosseinabadi et al. [17] proposed a new meta-heuristic
optimization algorithm which is based on the law of gravity and
group interactions. Their proposed algorithm uses two of the four
basic parameters of velocity and gravitational force in physics
based on the concepts of random search and searching agents,
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which are a collection of masses that interact with each other
based on Newtonian gravity and the laws of motion. Hosseinabadi
et al. [18] proposed a new combinatorial algorithm named OVRP_-
GELS based on gravitational emulation local search algorithm for
solving OVRP which is a different kind of VRP. Kalayci and Kaya
[21] developed a hybrid metaheuristic method based on ant colony
system (ACS) and variable neighborhood search (VNS). In this
method, the algorithm was tried to be strengthened by reinforcing
the performance of the VNS in the local search with the strong
memory structure of the ACS. Avci and Topaloglu [3] upheld that
the proposed solution approaches for VRPSDP are also applicable
to Vehicle Routing Problem with Mixed Pickup and Delivery
(VRPMPD). They have developed a hybrid approach using the sim-
ulated annealing (SA) algorithm and the Variable Neighborhood
Descent (VND) algorithms together. Rieck et al. [34] developed
two mixed integer linear model formulations which they call ‘‘A
vehicle-flow” and ‘‘A commodity-flow” for VRPSDP. In order to
strengthen the models, Rieck outlined domain-reducing prepro-
cessing techniques, and effective cutting planes. By employing
Multiple Neighborhood Guided Local Search Algorithm (MN_GLS),
Zhu et al. [44] designed a model with 3 stages. First, they used the
nearest neighborhood method to create the initial solution. They
used multiple operators in the initial solution in the second stage
and they tried to find the optimal solution for the local search with
varying values of objective functions and penalty points and in the
third stage they chose the most successful solution from the local
optimal solutions. Sayyah et al. [37] used an effective ant colony
optimization (EACO) algorithm that includes addition, jump and
2-Opt movements instead of classical ant colony optimization
(ACO). The method they propose has proven successful when
tested with literature examples, and it has also been shown that
they can compete with other metaheuristic algorithms such as
TS, large neighborhood search (LNS), PSO and GA.

When the literature summary is examined, it has been deter-
mined that the ABC method which can perform detailed searches
in a short period of time is not used although the metaheuristic
methods are generally preferred in VRPSDP solutions. The ABC
algorithm is a metaheuristic method that can produce successful
solutions with large parameter values even in large volume opti-
mization problems. In this study, the ABC algorithm is chosen con-
sidering its efficiency of combinatorial optimization problems.
With the proposed method, the solution routes obtained by the
ABC algorithm in the optimal solution search process and the
graphical drawings of these routes can be tracked in detail.

The following sections of the article are designed as follows: In
Section 2 the ABC algorithm is described. In Section 3, the method
developed by applying the ABC algorithm to the VRPSDP solution is
introduced in detail. In Section 4, parameter set of the proposed
method are designed and the proposed is tested on benchmark
problems. In Section 5, the results of the proposed method in
VRPSDP test problems are compared with the most successful
results observed in the literature. Finally, in Section 6, the results
of the developed method and literature comparison are interpreted
and discussed for performance improvement.
2. ABC algorithm

ABC was developed in 2005 by Dervish Karaboga [23], which
was developed for real parameter optimization based on the forag-
ing behaviors of honey bee colonies in natural life. Algorithm has
been applied successfully in different fields of different engineering
disciplines [26,27,25,30,22]. According to Karaboga, honey bees are
divided into three groups according to the division of labor in the
colony life [24]:
� Scout Bees: Bees who go out to forage and are randomly dis-
perse and start the search process. When food sources are iden-
tified, these bees now function as service bees.

� Employed Bees: They are responsible for carrying the nectar
from the sources found. They also search for other sources
around food sources because they perform their duties accord-
ing to the neighborhood principle. The other duty of these bees
is to describe the address of the food source to the onlooker
bees in the hive. If the food source that the employed bee has
been carrying food from is exhausted, this bee starts working
as a scout bee and disperses to find new food sources.

� Onlooker Bees: This group of bees which wait in the hive,
observe the vibrations that other bees perform in order to trans-
fer food location information. They head towards the food
source they prefer considering their acquired information about
the food quality and quantity.

The scout bees control the exploration process, while the
employed bees and onlookers’ carryout the exploitation process
in the search space [33]. The percentage of scout bees varies from
5% to 30% according to the information into the nest. The mean
number of scouts averaged over conditions is about 10% in natüre
[20]. A food source in the world of bees correspond to any possible
solution in the ABC algorithm. Therefore, the quality of the food
source relates to the value of the determined solution [24].

The basic steps in the ABC algorithm can be listed according to
the behaviors of the bees in their natural life as below [24]:

� The first set of food sources is determined
� Repeat
� Employed bees are sent to the determined food sources
� The possibility values that will be used for choosing food
sources is calculated according to the quality of the nectar that
was brought by the employed

� Onlooker bees choose their preferred set of food sources using
the possibility values

� Scout bees disperse to find new food sources
� Until requirements are met

The variables used in the mathematical expression of the algorithm
rab
 :
 r denotes food source, a denotes the source number, b
denotes the appropriate parameter number
se
 :
 randomly chosen source

/ab
 :
 randomly chosen weighting number [�1, 1]

ta
 :
 found new source
If we assume the largest area with the hive as the center, that the
bees can disperse for looking for food sources (r) as the search
space, the algorithm starts working with randomly chosen points
in this area. While choosing random points, these points have to
be chosen inside the related area as expressed with the Eq. (10).
In other words, while generating the random locations of the set
of points, low and high bounds of the required parameters must
be considered [25]. In proposed method for VRPSPD solution, the
lower limit is 1, and the upper limit is the number of nodes to be
visited.

rab ¼ rmin b þ rand 0;1ð Þ � rmax b � xmin bð Þ ð10Þ
The bees that are directed towards food sources also visit

nearby food sources. In the ABC algorithm context, this visiting
behavior can be implemented using various methods. If the new
resource produced by this or similar methods is more qualified



Fig. 1. The ABC algorithm developed for VRPSDP.
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Fig. 2. An example solution generated by proposed method.

Fig. 3. Derive new solution with OX crossover method.
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than the existing resource, this new resource is stored. This new
source, which is noticed in the neighborhood of the source, is
expressed by the Eq. (11):

tab ¼ rab þ /ab rab � sebð Þ ð11Þ
In the expression (2), b parameter of source ra, b parameter of

source se, /abparameter are all parameters which are randomly
selected in the range [1..D]. Difference between parameter b of
the ra source, and the randomly selected se source b. parameter
of the se food source is weighted with value of /ab parameter is cal-
culated. Then this difference is used to find a new ta resource. The
difference between the b parameter of the ra source and the b
parameter of the other se source is weighted by /ab parameter to
find a new ta source. If the newly found tab source is more qualified
than the ra source, this source will be used from then on.

All bees on duty, Transfer their information to the onlooker bees
in the hive. The onlooker bees choose a source according to the
information they receive and head towards that source. This prob-
abilistic preference of onlooker bees is made according to the fit-
ness values expressing the nectar quality in the algorithm model.
In the ABC algorithm, the roulette wheel method is generally pre-
ferred for this selection. The expression for the use of the roulette
wheel is shown by Eq. (12).

Pi ¼ fitnesðSiÞPSN
i¼1fitnesðSiÞ

ð12Þ

Honey bees leave a source they visit in the resource search pro-
cess, when the nectar is consumed in that source. Nectar depletion
in one source means that honey bees using that source can no
Fig. 4. Results of the application for the CON3.1 problem.
longer benefit from the source. In the ABC algorithm, the sources
that are exhausted are determined by failure counters. When all
the bees in the source search return the hive (when a cycle is com-
pleted) the new sources that are found are compared against the
current sources to update the values for ‘‘not being able to develop
a solution” counter. When the not being able to develop a solution
counter of a bee exceeds a predetermined limit value, that bee
leaves the source that it has been visiting, assumes scout bee role
and start searching for new sources randomly [24].

3. Proposed method: ABC for VRPSDP

In Section 2, operations in ABC steps are described with original
design developed for numerical optimization problems. In the pro-
posed method, the ABC algorithm is designed to determine the
minimum cost of transport vehicles in different multi-point net-
work structures where collection and distribution activities are
carried out simultaneously. ABC algorithm is constructed as in
Fig. 1 for the VRPSDP which a kind of discrete problem is.

Each solution in which all the nodes are visited to meet the
desired conditions is considered as a ‘‘food source” in the ABC algo-
rithm. In this context, ‘‘nectar quality” is inversely proportional to
‘‘route cost”. Therefore, the algorithm looking for ‘‘top quality nec-
tar” is designed to find the lowest cost route. The number of
employed bees and onlooker bees who are guided to the food
sources in each cycle is equal to the number of food sources ini-
tially determined. In addition, the limit value at which the algo-
rithm will end the cycle and the limit value the feed source is to
be abandoned are other parameters that can be determined by
the user.

3.1. Generating the initial solution

The algorithm starts with the creation of random solutions by
the determined number of food sources. The solutions created
within the scope of the application are the vehicle route clusters
targeted to be created in the minimum number. In VRPSDP, the
first node, denoted by ‘‘0”, is depot; other nodes are customer
nodes. So, the vehicle routes are number sequences that begin with
0 and continue till the next 0. In this context, each solution is a ser-
ies of numbers which contains ‘‘the number of vehicles +1” times 0
and all other node numbers each used exactly once. Therefore, this
situation should not be overlooked while random solutions are
being created or new solutions are derived from existing solutions.
In Fig. 2, an example solution is presented.

3.2. Employed bees phase

In this phase, new solutions are derived by changing the order
of the nodes in the initialize solutions. In the proposed method,
the new solutions are derived with the order crossover (OX) tech-
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nique developed by Davis [10]. Within this scope, each existing
solution is crossed by the OX technique from another solution
selected from the existing solutions by the roulette wheel. OX algo-
rithm initially selects two solution route and two randomly cut-off
points on each of these solution routes, with an equal number of
nodes remaining between them. When deriving new solutions,
the nodes between the breakpoints are mutually displaced and
the remaining nodes are arranged in the order of the current solu-
tions. Fig. 3 presents a dual-point OX crossover method used in
new solution derivation.

If the existing solutions used in the derivation of the new solu-
tion fail to derive more successful solutions, the ‘‘failure counter”
Fig. 5. Solution plot for the CON3.1

Fig. 6. Occupancy rates of transport vehicles on the solution
value of these solutions is increased. Solutions, Failure counter val-
ues of which reached limit values are deleted, new solutions are
created instead of these solutions, and the failure counter value
of these newly generated solutions are set to 0.

3.3. Onlooker bees phase

In onlooker phase, again OX method is used when generating a
new solution. Alternatively, both solutions to be used in crossing
over are randomly selected by the roulette wheel. If the existing
solutions used in the derivation of the new solution fail to derive
more successful solutions, the ‘‘failure counter” value of these
test problem of the application.

route for the CON3-1 test problem of the application.
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solutions is increased. Solutions, Failure counter values of which
reached limit values are deleted, new solutions are created instead
of these solutions, and the failure counter value of these newly
generated solutions are set to 0.

3.4. Scout bees phase

In scout bees phase, solutions which their failure counter values
reached limit values are deleted, new solutions are created instead
of these solutions. Failure counter value of newly generated solu-
tions are set to 0. The creation of a new solution is carried out in
a similar manner to the initial operations.
Table 1
Literature studies for CON and SCA problems.

LNS (Large Neighborhood Search) [35]
ACS (Ant Colony System) [14]
PILS (Parallel Iterative Local Search) (Subramanian et al., 2010)
AMM (Adaptive Memory Methodology) [43]
h_PSO (hybrid Particle Swarm Optimization) [16]
MTSEAS (Modified Tabu Search and Elite Ant System) [41]
ACSEVNS (Ant Colony System Empowered Variable Neighborhood Search)

[21]
ALS (Adaptive Local Search) [3]
MILP (Mixed-Integer Linear Programming) [34]
MN_GLS (Multiple Neighborhood Guided Local Search) [44]
EACO (Effective Ant Colony Optimization) [37]

Table 2
Literature studies and their best solutions for CON and SCA problems.

Test Problems LNS ACS PILS AMM h_PSO

SCA3-0 636.10 635.62 635.62 635.62 635.62
SCA3-1 697.84 697.84 697.84 697.84 697.84
SCA3-2 659.30 659.34 659.34 659.34 659.34
SCA3-3 680.60 680.04 680.04 680.04 680.04
SCA3-4 690.50 690.50 690.50 690.50 690.50
SCA3-5 659.90 659.90 659.90 659.90 659.90
SCA3-6 651.10 651.09 651.09 651.09 651.09
SCA3-7 666.10 659.17 659.17 659.17 659.17
SCA3-8 719.50 719.47 719.48 719.47 719.47
SCA3-9 681.00 681.00 681.00 681.00 681.00
SCA8-0 975.10 961.50 961.50 961.50 961.50
SCA8-1 1052.40 1049.65 1049.65 1049.65 1049.65
SCA8-2 1044.50 1042.69 1039.64 1039.64 1039.64
SCA8-3 999.10 983.34 983.34 983.34 983.34
SCA8-4 1065.50 1065.49 1065.49 1065.49 1065.49
SCA8-5 1027.10 1027.08 1027.08 1027.08 1027.08
SCA8-6 977.00 971.82 971.82 971.82 971.82
SCA8-7 1061.00 1052.17 1051.28 1051.28 1051.28
SCA8-8 1071.20 1071.18 1071.18 1071.18 1071.18
SCA8-9 1060.50 1060.50 1060.50 1060.50 1060.50
CON3-0 616.50 616.52 616.52 616.52 616.52
CON3-1 554.50 554.47 554.47 554.47 554.47
CON3-2 521.40 518.00 518.00 518.00 518.00
CON3-3 591.20 591.19 591.19 591.19 591.19
CON3-4 588.80 588.79 588.79 588.79 588.79
CON3-5 563.70 563.70 563.70 563.70 563.70
CON3-6 500.80 499.05 499.05 499.05 499.05
CON3-7 576.50 576.48 576.48 576.48 576.48
CON3-8 523.10 523.05 523.05 523.05 523.05
CON3-9 586.40 578.25 578.25 578.25 578.25
CON8-0 857.20 857.17 857.17 857.17 857.17
CON8-1 740.90 740.85 740.85 740.85 740.85
CON8-2 716.00 712.89 712.89 712.89 712.89
CON8-3 811.10 811.07 811.07 811.07 811.07
CON8-4 772.30 772.25 772.25 772.25 772.25
CON8-5 755.70 754.88 754.88 754.88 754.88
CON8-6 693.10 678.92 678.92 678.92 678.92
CON8-7 814.80 811.96 811.96 811.96 811.96
CON8-8 774.00 767.53 767.53 767.53 767.53
CON8-9 809.30 809.00 809.00 809.00 809.00
4. Computational study

The proposed algorithm is coded in the .NET platform using the
C # programming language. Application ran on a machine having
8 GB of RAM, i7-4710MQ 2.50 processor and Windows 7 operating
system. When the test problems are examined as a result of exten-
sive literature search for test problems aiming minimization of
distance-based route cost, CON and SCA examples drew attention
especially because of their different variations. Since their first
preparation, it has been observed that algorithms that produce
successful solutions for these examples are successful for other
similar problems as well. For this reason, the developed application
has been tested for these test problems. CON and SCA test prob-
lems were designed and developed by Dethloff for VRPSDP.
Although there were 50 customers in both scenarios, in SCA model,
customers were randomly distributed to the geographical area, and
in the CONmodel, half of the customers were randomly distributed
while the other half was concentrated on a specific area [16]. In
both models two different vehicle types were used in different
capacities.

When the values obtained for the CON3.1 problem are evalu-
ated together with the parameter values of the algorithm, it is
noticed that the algorithm can produce more successful solutions
when the values of the food source and limit parameters are
increased, the limit value is increased, and the number of iterations
is decreased.
MTSEAS ACSEVNS ALS MILP MN_GLS EACO

635.62 635.62 635.62 677.35 635.66 635.93
697.84 697.84 697.84 758.90 697.84 697.84
659.34 659.34 659.34 735.18 659.34 659.34
680.04 680.04 680.04 735.79 680.04 680.04
690.50 690.50 690.50 741.75 690.50 690.50
659.91 659.91 659.90 702.45 659.96 659.90
651.09 651.09 651.09 707.72 651.09 651.09
659.17 659.17 659.17 708.24 659.17 659.17
719.48 719.48 719.47 771.94 719.47 719.47
681.00 681.00 681.00 726.77 681.00 681.00
961.50 961.50 961.50 1026.79 961.50 964.81
1052.04 1049.65 1049.65 1127.41 1049.65 1049.65
1039.64 1039.64 1039.64 1126.12 1039.64 1042.64
983.34 983.34 983.34 1062.99 983.34 983.34
1065.49 1065.49 1065.49 1114.12 1065.49 1065.49
1027.08 1027.08 1027.08 1085.96 1027.08 1027.08
971.82 971.82 971.82 1038.59 971.82 975.19
1061.00 1051.28 1051.28 1114.17 1051.28 1051.28
1071.18 1071.18 1071.18 1165.08 1071.18 1071.18
1060.50 1060.50 1060.50 1145.71 1060.50 1062.34
616.52 616.52 616.52 667.46 616.52 616.52
554.47 554.47 554.47 590.82 554.47 554.47
518.01 518.00 518.00 558.89 518.00 519.89
591.19 591.19 591.19 634.93 591.19 591.19
588.79 588.79 588.79 627.95 588.79 588.79
563.70 563.70 563.70 603.56 563.70 563.70
500.80 499.05 499.05 539.58 499.05 500.21
576.48 576.48 576.48 627.05 576.48 576.48
523.05 523.05 523.05 561.65 523.05 523.05
578.25 578.25 578.25 619.95 578.25 578.25
857.17 857.17 857.17 918.21 857.23 859.93
740.85 740.85 740.85 772.44 740.85 740.85
712.89 712.89 712.89 738.99 712.89 712.89
811.07 811.07 811.07 857.35 811.07 811.07
772.25 772.25 772.25 816.81 772.25 772.25
755.70 754.88 754.88 798.07 754.88 754.88
678.92 678.92 678.92 718.36 678.92 678.92
814.80 811.96 811.96 863.39 811.96 812.55
767.53 767.53 767.53 808.17 767.53 767.79
809.00 809.00 809.00 843.84 809.00 809.00



Table 3
Comparison of ABC results with the most successful solutions in the literature.

Test
Problem

Dethloff Literature
Best

ABC

Best AVG. Standard
Deviation

% GAP (ABC best compared to
Dethloff)

% GAP (ABC best compared to
Literature)

SCA3-0 689.00 635.62 640.55 684.05 27.88 7.03 �0.78
SCA3-1 765.60 697.80 697.84 735.60 22.16 8.85 �0.01
SCA3-2 742.80 659.30 659.30 725.43 38.88 11.24 0.00
SCA3-3 737.20 680.04 683.11 731.93 27.40 7.34 �0.45
SCA3-4 747.10 690.50 692.57 738.13 23.09 7.30 �0.30
SCA3-5 784.40 659.90 659.90 706.73 32.18 15.87 0.00
SCA3-6 720.40 651.09 651.09 678.07 35.17 9.62 0.00
SCA3-7 707.90 659.17 666.54 717.83 35.17 5.84 �1.12
SCA3-8 807.20 719.47 723.44 762.13 19.10 10.38 �0.55
SCA3-9 764.10 681.00 685.16 734.50 31.51 10.33 �0.61
SCA8-0 1132.90 961.50 961.50 1015.65 15.19 15.13 0.00
SCA8-1 1150.90 1049.65 1060.63 1131.80 18.60 7.84 �1.05
SCA8-2 1100.80 1039.64 1045.12 1092.20 16.37 5.06 �0.53
SCA8-3 1115.60 983.34 983.34 1051.93 8.47 11.86 0.00
SCA8-4 1235.40 1065.49 1072.39 1131.13 13.73 13.19 �0.65
SCA8-5 1231.60 1027.08 1027.08 1099.73 15.07 16.61 0.00
SCA8-6 1062.50 971.82 980.71 1049.40 15.43 7.70 �0.91
SCA8-7 1217.40 1051.28 1059.28 1136.24 24.11 12.99 �0.76
SCA8-8 1231.60 1071.18 1080.02 1141.53 12.53 12.31 �0.83
SCA8-9 1185.60 1060.50 1060.50 1132.97 19.59 10.55 0.00
CON3-0 672.40 616.50 616.50 657.93 19.19 8.31 0.00
CON3-1 570.60 554.47 554.47 582.47 8.26 2.83 0.00
CON3-2 534.80 518.00 523.47 538.97 7.35 2.12 �1.06
CON3-3 656.90 591.19 595.46 619.33 14.75 9.35 �0.72
CON3-4 640.20 588.79 591.37 620.73 15.75 7.63 �0.44
CON3-5 604.70 563.70 563.70 608.77 16.42 6.78 0.00
CON3-6 521.30 499.05 502.63 527.43 14.34 3.58 �0.72
CON3-7 602.80 576.48 580.87 621.87 16.70 3.64 �0.76
CON3-8 556.20 523.05 523.94 547.03 17.76 5.80 �0.17
CON3-9 612.80 578.25 578.25 610.90 21.94 5.64 0.00
CON8-0 967.30 857.17 864.52 895.77 10.12 10.63 �0.86
CON8-1 828.70 740.85 745.91 773.03 6.76 9.99 �0.68
CON8-2 770.20 712.89 712.89 749.77 8.89 7.44 0.00
CON8-3 906.70 811.07 816.38 860.58 16.29 9.96 �0.65
CON8-4 876.80 772.25 774.90 801.80 7.66 11.62 �0.34
CON8-5 866.90 754.88 758.33 779.83 5.68 12.52 �0.46
CON8-6 749.10 678.92 683.21 717.87 5.41 8.80 �0.63
CON8-7 929.80 811.96 811.96 844.77 8.78 12.67 0.00
CON8-8 833.10 767.53 771.19 796.90 5.26 7.43 �0.48
CON8-9 877.30 809.00 809.00 834.70 4.88 7.79 0.00

Table 4
Comparison of Literature with ABC on VRPSPD instances of Dethloff [11].

Test Problem Literature ABC
Average best solution Average best solution

SCA3 673.39 675.95
SCA8 1028.15 1033.06
CON3 560.95 563.07
CON8 771.65 774.83

734 F. Simsir, D. Ekmekci / Engineering Science and Technology, an International Journal 22 (2019) 727–735
5. Computational results and comparisons

For the CON3.1 problem solution of the algorithm, the values
obtained at 1500 iterations with parameter values as 1300 for
the food source and 250 for the limit are shown in Fig. 4.

The most successful result was recorded as 554.47 units, the
solution of which is as follows:

0-17-12-47-21-23-18-28-35-50-7-49-43-9-3-20-8-15-32-42-1
-0-33-6-37-48-40-44-41-5-11-36-31-34-38-13-27-29-0-2-16-45-
39-19-4-24-10-25-46-30-0-26-22-14-0

In Fig. 5, a graphical illustration of the resulting solution route is
shown. In the solution route, four transport vehicles are needed for
transportation. Fig. 6 shows the updated quantities of these four
transport vehicles of 926.2573 units capacity, which are updated
after delivery/pickup at each node on the routes.
As the CON31 problem for which detailed analysis of the algo-
rithm outputs are explained, solutions for all other CON and SCA
examples is sought using the ABC algorithm as well as the
CON31 problem. The results obtained were compared with those
of the most successful results of the literature studies that obtained
solutions for these test problems. The different approaches that
produce results for the CON and SCA examples and the hardware
features of the machines on which these approaches are applied
are presented in Table 1.

Table 2 presents the most successful results of the solutions
which are improved by testing different approaches for CON and
SCA.

In Table 3, the most successful results for the CON and SCA
problem solutions for the approaches developed for VRPSDP solu-
tion are compared with the ABC results. Table 3 also shows the
average values obtained by ABC for each problem, the standard
deviation data, the CPU time spent in finding the best result, and
the average CPU time spent solving each problem. Looking at
Table 3, it can be seen that the proposed method can produce much
lower cost routes than Dethloff, and that it lags behind the most
successful results in the literature up to recently with a percentage
of up to 1.12%. Given the time and standard deviation data, ABC
appears to be able to produce solutions at reasonable times and
at low standard deviations.
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When the comparison data (in Table 3) were examined, it is
seen that, the average of the most successful results obtained with
the ABC algorithm (761.73) was only 3.2 points (0.4%) behind the
average of the most successful results in the literature (758.53).
Table 4 presents the average of the most successful results
obtained by the ABC algorithm and the average of the most suc-
cessful results obtained in the literature for each the problem
groups.

6. Conclusion

In this study, a new solution for VRPSDP is suggested using ABC
algorithm. The developed algorithm is run for the publicly known
related benchmark problems, and results are compared with the
most successful results in the literature obtained until today. As
a result, it has been observed that the ABC algorithm is applicable
to combinatorial optimization problems at different fluctuation
levels such as VRPSDP. The ABC algorithm also yields approximate
results to other metaheuristic methods. When the application’s
result values are analyzed, it is observed that without tackling to
local best solutions, the algorithm can direct itself towards other
areas of the search space. In order to increase applicability in real
life in the logistics field, metaheuristic methods can be developed
which can schedule for flexible ARP models with varying number
and capacity of vehicles and can also produce dynamic solutions
to unexpected problems encountered during travel. Also, applica-
bility of the application to real life situations can be improved by
using data obtained from logistic firms, and leaning towards ‘‘first
group, then route” approach.
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