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In automotive, usage of electronic devices increased visual inattention of drivers while driving and might lead 

to accidents. It is often challenging to detect if a driver experienced a change in cognitive state requiring new 

technology that can best estimate driver’s cognitive load. In this paper, we investigated the efficacy of various 

ocular parameters to estimate cognitive load and detect cognitive state of driver. We derived gaze and pupil- 

based metrics and evaluated their efficacy in classifying different levels of cognitive states while performing 

psychometric tests in varying light conditions. We validated the performance of our metrics in simulation as well 

as in-car environments. We compared the accuracy (from confusion matrix) of detecting cognitive state while 

performing secondary task using our proposed metrics and Machine Learning models. It was found that a Neural 

Network model combining multiple ocular metrics showed better accuracy (75%) than individual ocular metrics. 

Finally, we demonstrated the potential of our system to alert drivers in real-time under critical distractions. 
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. Introduction 

In recent time, a plethora of sophisticated IVIS (In-Vehicle-
nfotainment-System) features increases the amount of non-driving ac-
ivities of drivers. Engaging in these non-driving activities can cause
ignificant distraction to drivers and might lead to the risk of accidents.
HTSA (National Highway Traffic Safety Administration) reported that
7% of car crashes involved distracted drivers and 5% of distraction-
elated crashes involved electronic devices. It recommended that the
peration of any secondary task should not take drivers’ eyes-off-road
ime greater than 2 s [32] . Systems that detect distraction in real-time
ill be of great importance for alerting drivers and ensure their safety.
istraction in automotive can be categorised into three types viz., visual,
anual and cognitive [32] . 

1 Visual distraction is caused due to performing tasks that require
drivers to look away from road. 

2 Manual distraction is caused due to performing tasks that require
drivers to take hands off the steering wheel. 

3 Cognitive distraction is caused due to performing tasks that require
drivers to take his/her mental attention away from driving. 

Detecting cognitive distraction is challenging as it is often not ex-
licitly expressed by drivers and can only be detected through estima-
ion of cognitive load. Cognitive load is referred to user’s mental effort
o solve a given problem [43] . It is the amount of information stored
nd processed in the working memory. Traditionally, driver monitoring
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ystems use driving behaviour, which is often estimated from teleme-
ry and not from drivers’ physiological parameters. There is plethora
f physiological monitoring systems available in consumer market but
o far there are not many commercial systems available in automotive
omain for drivers’ behaviour monitoring through physiological param-
ters. In this paper, we used non-invasive eye gaze trackers to estimate
ognitive load from ocular parameters. While earlier research [37] al-
eady used eye gaze tracker to estimate cognitive load, validating such a
ystem in a real car driven through usual traffic is challenging. Our study
id not interfere with driving task and thus limit the experiment design
n terms of collecting data in different affective states or distractions of
rivers. Our work went beyond the earlier NHTSA study on measuring
lance duration [32] and used Machine Learning (ML) models to esti-
ate and discriminate differences in cognitive load due to undertaking

econdary tasks. We evaluated the accuracy of individual ocular met-
ics in classifying driver’s cognitive state. The proposed cognitive load
stimation system (patent application number: 201941052358) defined
 threshold (baseline value) for all ocular metrics while drivers were
nly engaged in driving without any secondary task or upcoming road
azard. As finding a global threshold from individual metrics for all
rivers was challenging, we developed a ML model for binary classifica-
ion (‘No Task’, ‘Task’) using different ocular metrics that worked for all
rivers. We found that the ML based classifier outperformed individual
etrics-based classification models in terms of accuracy. In summary,

his paper’s main contributions are as follows 
020 
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• We proposed new gaze and pupil-based metrics and evaluated their
efficacy in varying lighting conditions through standard psychome-
tric tests. 

• We evaluated performance of these metrics in real driving environ-
ment with professional drivers. 

• We proposed a Neural Network (NN) model with an accuracy of 75%
to classify driver’s cognitive state into performing driving task and
performing secondary task while driving. 

This paper is organized as follows. We discussed the related work
n Section 2 followed by descriptions of algorithms of proposed metrics
n Section 3 . We discussed psychometric study, driving simulator study
nd in-car study in Sections 4 , 5 , and 6 respectively. We discussed about
L based cognitive load estimation module in Section 7 followed by

iscussion and conclusion in Sections 8 and 9 respectively. 

. Related work 

We can detect if a driver is taking eyes off the road or performing any
econdary task by monitoring his/her eye gaze movement in a car. There
re situations where drivers do not take their eyes off the road, but their
houghts or perceiving road hazard change their cognitive state. Cogni-
ive load can be categorised into three types [44] viz., intrinsic, extrane-
us and germane. Intrinsic load refers to the inherent level of difficulty
n a presented information/task. Extraneous load refers to the load due
o the way the information or task is presented. Germane load refers to
he work done to create permanent knowledge or schemas. When the
ognitive load is estimated as a single entity, there is no distinction be-
ween these three types [24] . Cognitive state is the level of cognitive
rocessing of an individual and refers to binary conditions of engaging
nd disengaging in a single or a set of mental tasks [31] . Secondary tasks
ffect driver’s attention and increase cognitive load, in turn distract-
ng the driver [40] . Though designing a probe for estimating cognitive
oad with high accuracy is challenging, researchers investigated differ-
nt techniques for measuring cognitive load using physiological param-
ters like eye metrics [ 15 , 17 , 19 , 30 , 31 , 39 , 46 , 47 ], heart rate (skin
esponse) [21] , acoustic voice features [9] , affective states [ 2 , 41 ] and
lectroencephalogram (EEG) [23] . These methods have shortcomings
ike the heart rate and skin response systems require intrusive methods
hat causes discomfort to drivers and the acoustic features are effective
nly when the driver is talking. In some cases, detecting facial feature
oints becomes challenging due to different conditions of illuminance
nd field of view of camera inside the car. In addition to that, facial ex-
ressions of each individual fail to correspond to the mapped emotion as
here is considerable differences in facial expression across individuals
nd culture. Despite problems of occlusion, lighting and pose variation,
esearchers gave evidences on affective computing [49] for cognitive
tate detection. Braun [10] reviewed literature corresponding to state-
f-the-art approaches in finding affective state and emotion regulation
f drivers in automotive. He depicted that emotion regulation is highly
ependent on factors like cognitive load and situational context of the
river. Recent work [27] reported high (99%) accuracy of binary classi-
cation for detecting drowsiness of drivers using heart rate from wear-
ble technology like commercially available fitness wristband. Though
he trials were conducted in low and high-fidelity simulated environ-
ents, the performance of the system in a real driving condition is chal-

enging due to the influence of uncontrolled parameters like ambient
ight, road condition and traffic participants. While a detailed literature
urvey on various physiological sensors can be found in other papers [ 3 ,
 , 37 ], the following literature survey only considers measuring cogni-
ive states through ocular parameters. As we focused on eye tracking
echnologies for interacting with IVIS in our early works [ 36 ], we chose
cular metrics to estimate cognitive load such that a single eye tracking
evice can be used for interaction as well as behaviour monitoring. 
.1. Pupil-based metrics 

Redlich [39] and Westphal [47] reported a positive relation between
hysical task demand and pupil dilation. Hess [22] reported that change
n pupil dilation is related to change in the viewing of angles of the pho-
ograph. Psychologists [35] reported strong association between cogni-
ive load and pupil dilation of eyes. Recent researchers used frequency
f pupil dilation to estimate cognitive load. Gavas [19] and Duchowski
15] measured cognitive load from pupil dilation but used chin rest for
heir experiments to restrict head movement which is impractical in
eal driving. Though Prabhakar [37] reported significant performance
f pupil-based metrics in estimating cognitive load in a driving simula-
ion study, he did not report EEG values in terms of band power which
ight have affected the relation between pupil-based metrics and EEG.
arshall [ 30 , 31 ] reported that a hike in pupil dilation corresponds to

ncrease in cognitive load. This hike is identified by processing the pupil
ilation signal for its coefficients of wavelet transform and calculating a
etric called Index of Cognitive Activity (ICA). She [30] evaluated this
ethod using mental tasks (questioning the participant to answer ver-

ally) for estimating cognitive load of the participant in automotive as
ell as aviation [31] . Though she [30] evaluated the robustness of her
etric in two conditions of lighting viz., dark and constantly lit room,

he did not consider varying light conditions. Babu [3] reported a more
etailed literature survey on cognitive load estimation in aviation sec-
or. 

.2. Gaze-based metrics 

As there were limited eye gaze trackers that can detect pupil di-
meter, researchers investigated other ocular metrics like variance in
accadic Intrusion (SI), change in fixation duration and blink count [ 7 ,
8 , 29 , 35 , 48 ] for estimating cognitive load. Abadi [1] fined a set of
haracteristics of Monophasic Square Wave Intrusions (MSWI) which is
 type of SI. Toyota [4] patented a system for detecting if the driver
ooked away from the road by detecting his eyelid movements. Biswas
7] measured SI from low cost eye gaze tracker and reported results
n simulation studies involving secondary tasks and road hazards. Av-
rage velocities of SI found to be higher while drivers undertook sec-
ndary tasks and perceive road hazard. He also reported the limitation
f choice of ocular parameters and suggested to evaluate different com-
inations of eye metrics like SI with eye blinks for better performance.
okuda [46] conducted a dual task study with N-back test and a free
iewing task and reported a strong evidence of increase in velocity of SI
ith respect to difficulty of task. Since the task performance during free
iewing task was not discussed, it is unclear whether performance had
ny impact on experienced cognitive load. Siegenthaler [42] found de-
rease in microsaccade rate with increase in task difficulty. Their study
f arithmetic task involved increasing load on working memory. Gao
18] reported reduction of microsaccade rate with respect to increase
n difficulty of arithmetic task for non-visual cognitive processing. Dal-
aso [13] reported that microsaccade rate drops with high demand task.
rzysztof [26] used pupil diameter and microsaccades as indicators of
ognitive load. He reported a mild evidence of decrease in microsaccade
ate with increase in difficulty of task. He also reported a strong evidence
f increase in magnitude of microsaccade with increase in difficulty of
ask. These researchers used a chin rest to ensure minimal head move-
ent which limits the application of such technology to be used in real
orld systems. 

.3. Summary 

From the literature, saccade-based metrics showed mixed relations
ith difficulty of tasks in different studies whereas pupil-based metrics
redominantly showed positive correlation with difficulty of tasks. Since
upil-based metrics were not evaluated in dynamically varying lighting
onditions and their measurement involves restricting head movement,
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Fig. 1. L1NS algorithm. 

Fig. 2. STDP algorithm. 
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t questions validity of such results in real world conditions. Since we
se thresholding to classify an event as distraction using ocular met-
ics, it is challenging to find a global threshold for all drivers. Our work
ocuses on addressing these limitations by investigating our proposed
cular metrics to estimate cognitive load of driver and classify cogni-
ive states. As previous works restricted the head movement due to the
imitation of eye trackers, they evaluated in a simulation environment
nd it was challenging to set up the tracker to estimate cognitive load
n real cars. In this paper, we evaluated performance of our proposed
etrics in laboratory as well as real driving environments. 

. Methodology 

This section described different algorithms used to estimate cogni-
ive load from ocular parameters. We calculated saccade rate, fixation
ate and median SI velocity from eye gaze points. We also calculated
1 Norm of Spectrum (L1NS), STandard Deviation of Pupil (STDP) and
ow Pass Filter of pupil (LPF) from pupil dilation. We calculated met-
ics corresponding to different tasks (say C1, C2, C3). We designed our
xperiments such that the task performed by each participant demands
igh cognitive load for C3 than C2 and C1. The algorithms to calculate
hese metrics are described in the following sections. 

.1. L1 norm of spectrum (L1NS) 

An FFT (Fast Fourier Transform) was applied over the raw data of
upil dilation in 1 s running gaussian window with an overlap of 70%.
e calculated L1 norm of bins corresponding to 1 Hz to 5 Hz [34] in

he single-sided spectrum as described in Fig. 1 . This algorithm uses
requency domain calculation. 

.2. Standard deviation of pupil dilation (STDP) 

We calculated the standard deviation of pupil dilation data in a run-
ing gaussian window of 1 s with an overlap of 70% as described in the
ig. 2 . This algorithm uses time domain calculation and can be deployed
sing a microcontroller instead of a general-purpose microprocessor. 

.3. Low pass filter of pupil (LPF) 

We divided the pupil dilation data into sections of 100 samples. We
emoved DC offset from the raw data by subtracting its mean. We used a
utterworth lowpass filter with a cut off frequency of 5 Hz and summed
p magnitude of filtered data in a running window of 1 s with 70% over-
ap as described in Fig. 3 . This algorithm uses a conventional filtering
echnique in Digital Signal Processing (DSP) which uses time domain
ifference equations to filter the signal. It may be noted that the L1NS
lgorithm uses only frequency domain processing while the STDP uses
nly time domain processing. The LPF algorithm combines both time
nd frequency domain processing. 

.4. Saccade rate and fixation rate 

We calculated saccade rate ( Fig. 4 ) and fixation rate ( Fig. 5 ) by
etecting saccades/fixations from gaze direction data following the
ethod used in [33] as described in. We detected a saccade when gaze

elocity was greater than threshold and detected a fixation when gaze
elocity was less than threshold. We calculated saccade/fixation rate
s number of saccades/fixations per second. We chose the gaze veloc-
ty threshold as 100°/s. We illustrated the manual calculation of sac-
ade/fixation rate in [sup 2]. 

.5. Median velocity of saccadic intrusions (SI) 

We extracted 2D gaze positions (x, y) and their corresponding times-
amps from the data file. We detected the occurrences of SI and calcu-
ated its velocity [7] . We took the median over the period to get median
I velocity as described in Fig. 6 . We illustrated the manual calculation
f median SI velocity in [sup 1]. 

We tested the performance of these ocular metrics in psychometric
asks, driving tasks and secondary tasks. We investigated the accuracy
f these metrics in classifying cognitive states by thresholding methods
hich are discussed in later sections. As finding an optimal threshold

hat can best classify for all drivers was challenging, we used ML models
o train with these ocular metrics and classify best for all drivers. 

.6. Machine learning models 

We used Support Vector Classifier (SVC) with polynomial and Radial
asis Function (RBF). RBF kernel on two samples x and x’, represented as
eature vectors in input space, is defined as 𝐾( 𝑥, 𝑥 ′) = exp ( − 𝛾||𝑥, 𝑥 ′||2 ) ,
here || x , x ′ || 2 is squared Euclidean distance between two feature vec-

ors. SVC classifier using RBF kernel has two parameters, 𝛾 and C. If
e change value of 𝛾 from low to high, the curve of the decision bound-
ry also changes from low to high. Correspondingly decision region also
hanges from broad area to small islands around data points. C is the
enalty for misclassifying a data point. Polynomial kernel is formulated
s 𝐾( 𝑥, 𝑥 ′) = ( 𝑥 𝑇 𝑥 ′ + 1 ) 𝑑 , where x , x ′ represent feature vector in input
pace with degree of d . 

We also used a feedforward Neural Network (NN) model structured
s: 8 – 160 – 80 – 1 (input layer – hidden layer – hidden layer – output
ayer). We used ReLU [( 𝑓 ( 𝑥 ) = max ( 0 , 𝑥 ) ), x is the input feature ] activa-
ion function in hidden layers. We used Sigmoid [ ( 𝑓 ( 𝑥 ) = 1∕(1 + 𝑒 − 𝑥 )),

 is the input feature ] activation function in output layer as our problem
s binary classification. We used ‘Adam’ optimization algorithm to over-
ome slow convergence and high variance in the parameter updates. We
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Fig. 3. LPF algorithm. 

Fig. 4. Saccade rate algorithm. 

Fig. 5. Fixation rate algorithm. 

Fig. 6. Saccadic Intrusion (SI) velocity algo- 

rithm. 
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the event. 
sed ‘binary cross entropy’ loss function. We discussed our user studies
n the following sections. 

. User study on psychometric tests 

Our first study investigated differences in values of ocular metrics for
tandard psychometric tests in laboratory. In this section, we described a
ser study which was conducted to validate if L1NS, STDP, LPF, saccade
ate, fixation rate and median SI velocity can distinguish between dif-
erent cognitive loads of participants caused by task difficulty. We used
sychometric tests like N-back test and arithmetic questions to assess in-
rease in cognitive load of participants with increase in task difficulty.
e chose these tests as they were associated with working memory load

 31 , 46 ]. Since the pupil dilation is sensitive [5] to ambient light varia-
ion, we evaluated both N-back test and arithmetic test in dark room as
ell as varying light conditions in same room. While we evaluated N-
ack test in both auditory and visual presentations, arithmetic test was
onducted only in auditory presentation. 

We hypothesised that L1NS, STDP, LPF, saccade rate, fixation rate
nd median SI velocity 

1 are robust to ambient light variations 
2 can be used to distinguish different levels of cognitive load with re-

spect to change in task difficulty of visual and auditory tasks. 

.1. Participants 

We collected data from 21 participants (16 Male and 5 female) with
n average age of 26 years from our university. We chose participants
andomly such that the group had a mixture of people wearing and not
earing prescription lenses. The participants wearing lenses had either

pherical or cylindrical or both type of powers. 

.2. Materials 

We collected data using Tobii Pro-Glasses 2 [ 45 ]. We affixed two am-
ient light sensor modules, one sensor on either side of the glass frame
o capture illumination variations on both eyes independently ( Fig. 7 ).
e used a Dell 17 ″ monitor to display numbers for visual N-Back and a
ogitech keyboard to press space bar for responding to N-back test. We
lso used a Bose SoundLink speaker for auditory cue in auditory N-back
est. 

.3. Design 

We undertook the following three tests: 

1 Auditory N-back Test 
2 Visual N-back Test 
3 Auditory Arithmetic Test 

The auditory tests were carried out in dark as well as dynamically
arying light conditions. The room illuminance was varied from 0 to
50 lx by turning ON and OFF the set of lights. The variation of illumi-
ance was randomised. 

.4. N-back test 

The N-back test had three levels of difficulties viz., 1-back, 2-back,
nd 3-back. Participants were shown /spelled one stimulus (sequence of
ne-digit numbers from 1 to 9) in intervals of 2 s and had to press space
ar if current stimulus matches the previous one (1-back), or second pre-
ious (2-back), or third previous (3-back). The N-back test levels were
andomised to avoid the order effect. We developed a software [8] to
pell out/ visually display numbers in N-back and to log the response
rom participants with a local timestamp. 

.5. Arithmetic test 

Arithmetic test had three levels viz., easy, medium, and difficult.
e developed a tool using python to read out questions using Text-

o-Speech engine in arithmetic test. We recorded participants’ response
sing following steps: 

1 Software read out all questions loudly. 
2 Participant answered to questions loudly. 
3 Instructor checked the answer and pressed right/wrong key to log
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Fig. 7. Participant performing visual N-back test. 

Table 1 

Performance of N-back test. 

1-Back/Easy 2-Back/Medium 3-Back/Difficult 

Auditory N-back dark room 0.961 (0.073) 0.962 (0.059) 0.874 (0.122) 

Auditory N-back dynamic light room 0.972 (0.084) 0.948 (0.090) 0.889 (0.121) 

Visual N-back 0.985 (0.041) 0.942 (0.071) 0.891 (0.132) 

Auditory Arithmetic dark room 0.992 (0.036) 0.905 (0.135) 0.770 (0.207) 

Auditory Arithmetic dynamic light room 0.968 (0.067) 0.937 (0.134) 0.730 (0.318) 
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Table 2 

Repeated measure one-way ANOVA for each metric 

with effect size. 

L1NS Right eye F(2,19) = 6.419, p < 0.05, 𝜂2 = 0.403 

L1NS Left eye F(2,19) = 33.964, p < 0.05, 𝜂2 = 0.781 

STDP Right eye F(2,19) = 7.849, p < 0.05, 𝜂2 = 0.452 

STDP Left eye F(2,19) = 29.408, p < 0.05, 𝜂2 = 0.756 

LPF Left eye F(2,19) = 30.718, p < 0.05, 𝜂2 = 0.764 
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The difficulty levels were randomised to avoid the order effect. 

.6. Procedure 

The participants were asked to wear the Tobii glass affixed with light
ensor modules. They were instructed to look at a poster pasted on the
all in front of them and to concentrate on the auditory task given

o them. They were asked neither to close their eyes and nor to look
round during answering the questions such that the tracker always de-
ected eyes. The participants were explained about the N-back task and
rithmetic task and could practice 1-back test before the actual trial to
void learning effect. The timestamps from logged events were used to
ynchronize the pupil/gaze data corresponding to start and stop of N-
ack tests and arithmetic tests. We calculated L1NS, STDP, LPF, saccade
ate, fixation rate and median SI velocity corresponding to events. We
hecked if these metrics were high for 3-back than 2-back and 1-back.
e also checked if these metrics were high for difficult than medium

han easy arithmetic levels. 

.7. Result 

.7.1. Performance of tests 

We measured performance of the tests as accuracy calculated from
onfusion matrix as described in Table 1 . The accuracy of N-Back test is
alculated as 

ccuracy = 

𝑐 𝑜𝑟𝑟𝑒𝑐 𝑡 + 𝑎𝑣𝑜𝑖𝑑 

𝑐 𝑜𝑟𝑟𝑒𝑐 𝑡 + 𝑤𝑟𝑜𝑛𝑔 + 𝑎𝑣𝑜𝑖𝑑 + 𝑚𝑖𝑠𝑠𝑒𝑑 

nd accuracy of Arithmetic test is calculated as 

ccuracy = 

𝑐 𝑜𝑟𝑟𝑒𝑐 𝑡 

𝑐 𝑜𝑟𝑟𝑒𝑐 𝑡 + 𝑤𝑟𝑜𝑛𝑔 
As the groups did not follow normality, we performed signed rank
est for each pair and found accuracy of 3-Back/Difficult was signif-
cantly ( p < 0.05) less than that of 1-Back/Easy for all the tests. The
ccuracy of 3-back/Difficult was significantly ( p < 0.05) less than 2-
ack/Medium for auditory N-back dark room and both arithmetic tests.
ccuracy of 2-back/Medium was significantly ( p < 0.05) less than 1-
ack/Easy for visual N-back and auditory arithmetic dark room. 

.7.2. Visual N-Back 

A repeated measure one-way ANOVA for metrics in Visual N-back is
escribed in Table 2 . 

We found that L1NS and STDP of both eyes were significantly ( t -
est: p < 0.05) higher for 3-back than 1-back. Similarly, 3-back was sig-
ificantly ( t -test: p < 0.05) higher than 2-back. We also found that LPF
f left eye was significantly ( t -test: p < 0.05) higher for 3-back than 1-
ack and higher for 3-back than 2-back. We found LPF right (3-back >
-back) to be tending to significance ( p < 0.1).We did not find any signif-
cance difference for saccade rate, fixation rate and median SI velocity.

e showed comparison graph of L1NS for visual N-back in Fig. 8 a. 
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Fig. 8. L1NS of right eye for (From Top left) (a)visual N-back, (b)auditory N- 

Back dark room, (c)auditory N-back dynamic light room, (d)auditory arithmetic 

dark room, (e)auditory arithmetic dynamic light room. 

Table 3 

Repeated measure one-way ANOVA for each metric 

with effect size. 

L1NS Right eye F(2,19) = 8.155, p < 0.05, 𝜂2 = 0.462 

L1NS Left eye F(2,19) = 7.813, p < 0.05, 𝜂2 = 0.451 

STDP Right eye F(2,19) = 5.91, p < 0.05, 𝜂2 = 0.384 

STDP Left eye F(2,19) = 15.842, p < 0.05, 𝜂2 = 0.625 

LPF Left eye F(2,19) = 18.088, p < 0.05, 𝜂2 = 0.656 
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Table 4 

Repeated measure one-way ANOVA for each metric with effect 

size. 

L1NS Right eye F(2,19) = 24.961, p < 0.05, 𝜂2 = 0.724 

L1NS Left eye F(2,19) = 43.017, p < 0.05, 𝜂2 = 0.819 

STDP Right eye F(2,19) = 29.461, p < 0.05, 𝜂2 = 0.756 

STDP Left eye F(2,19) = 39.767, p < 0.05, 𝜂2 = 0.807 

LPF Left eye F(2,19) = 38.847, p < 0.05, 𝜂2 = 0.804 

LPF Right eye F(2,19) = 28.797, p < 0.05, 𝜂2 = 0.752 

Fixation rate left eye F(2,19) = 5.139, p < 0.05, 𝜂2 = 0.351 

Saccade rate right eye F(2,19) = 5.139, p < 0.05, 𝜂2 = 0.351 

Table 5 

Repeated measure one-way ANOVA for each metric 

with effect size. 

LPF Left eye F(2,19) = 7.657, p < 0.05, 𝜂2 = 0.446 

LPF Right eye F(2,19) = 6.280, p < 0.05, 𝜂2 = 0.398 

Table 6 

Repeated measure one-way ANOVA for each metric 

with effect size. 

L1NS Right eye F(2,18) = 4.928, p < 0.05, 𝜂2 = 0.354 

L1NS Left eye F(2,19) = 5.966, p < 0.05, 𝜂2 = 0.386 

STDP Right eye F(2,18) = 4.790, p < 0.05, 𝜂2 = 0.347 

STDP Left eye F(2,19) = 4.595, p < 0.05, 𝜂2 = 0.326 

LPF Left eye F(2,18) = 7.662, p < 0.05, 𝜂2 = 0.460 

LPF Right eye F(2,18) = 6.648, p < 0.05, 𝜂2 = 0.425 
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.7.3. Auditory N-Back dark room 

A repeated measure one-way ANOVA for metrics in Auditory N-back
ark room is described in Table 3 . 

We found that L1NS and STDP of both eyes as well as LPF of Left
ye were significantly ( t -test: p < 0.05) higher for 3-back than 1-back.
e found L1NS left (2-back > 1-back), LPF left (2-back > 1-back), sac-

ade rate left (3-back > 1-back), fixation rate left (3-back > 1-back) and
edian SI velocity (2-back > 1-back, 3-back > 2-back) to be tending to

ignificance ( p < 0.1). We showed comparison graph of L1NS for auditory
-back in dark room in Fig. 8 b. 

.7.4. Auditory N-Back dynamic light room 

A repeated measure one-way ANOVA for metrics in Auditory N-back
ynamic light room is described in Table 4 . 

We found that L1NS, STDP, and LPF of both eyes were significantly
 t -test: p < 0.05) higher for 3-back than 1-back. Similarly, 3-back was
ignificantly ( t -test: p < 0.05) higher than 2-back. We found that saccade
ate and fixation rate of left eye were significantly higher for 3-back
han 1-back as well as for 2-back than 1-back. We found saccade rate
ight (2-back > 1-back) and fixation rate right (2-back > 1-back) to be
ending to significance ( p < 0.1). We showed comparison graph of L1NS
or auditory N-back in dynamic light room in Fig. 8 c. 
.7.5. Auditory arithmetic dark room 

A repeated measure one-way ANOVA for metrics in Arithmetic dark
oom is described in Table 5 . 

We found no significant differences for L1NS and STDP of both eyes.
PF of both eyes were significantly ( t -test: p < 0.05) higher for 3-back
han 1-back. Similarly, 3-back was significantly ( t -test: p < 0.05) higher
han 2-back. We found L1NS left (3-back > 2-back), L1NS right (3-back
 2-back, 3-back > 1-back), STDP left (3-back > 2-back), STDP right

3-back > 2-back, 3-back > 1-back), LPF left (2-back > 1-back) to be
ending to significance ( p < 0.1). We showed comparison graph of L1NS
or auditory arithmetic test in dark room in Fig. 8 d. 

.7.6. Auditory arithmetic dynamic light room 

A repeated measure one-way ANOVA for metrics in Arithmetic dy-
amic light room is described in Table 6 . 

We found that L1NS and STDP of both eyes were significantly ( t -
est: p < 0.05) higher for 2-back than 1-back. We also found that LPF
f both eyes were significantly ( t -test: p < 0.05) higher for 3-back than
-back. We found L1NS left (3-back > 1-back), L1NS right (3-back > 1-
ack), STDP left (3-back > 1-back), STDP right (3-back > 1-back) to be
ending to significance ( p < 0.1). We showed comparison graph of L1NS
or auditory arithmetic test in dynamic light room in Fig. 8 e. 

.7.7. Interaction effect 

We performed a repeated measure two-way ANOVA on metric val-
es for factors like light, presentation, task type and task difficulty and
eported the metrics which showed significant interaction effect be-
ween respective factors in Table 7a (tests of within-subjects effects)
nd Table 8a (multivariate tests). The factors and their levels are listed
elow. 

1 Dark room versus dynamic light room (factors: light and task diffi-
culty) 
a Dark room (Auditory N-back) versus dynamic light room (Audi-

tory N-back) 
b Dark room (Auditory Arithmetic) versus dynamic light room (Au-

ditory Arithmetic) 
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Table 7a 

List of Interaction Effects. 

Interacting 

factors Levels of factors Metrics 

Tests of Within-Subjects Effects (sphericity 

assumed) 

Light 

versus 

Task- Difficulty 

Dark room (Auditory N-back) 

versus 

dynamic light room (Auditory N-back) 

STDP Left F(2,40) = 19.369, p < 0.05, 𝜂2 = 0.492 

STDP Right F(2,40) = 28.784, p < 0.05, 𝜂2 = 0.309 

L1NS Left F(2,40) = 20.654, p < 0.05, 𝜂2 = 0.508 

L1NS Right F(2,40) = 8.215, p < 0.05, 𝜂2 = 0.291 

LPF Left F(2,40) = 18.881, p < 0.05, 𝜂2 = 0.486 

LPF Right F(2,40) = 8.303, p < 0.05, 𝜂2 = 0.293 

Dark room (Auditory Arithmetic) 

versus 

dynamic light room (Auditory Arithmetic) 

STDP Left F(2,40) = 3.708, p < 0.05, 𝜂2 = 0.156 

L1NS Left F(2,40) = 3.394, p < 0.05, 𝜂2 = 0.145 

Task Type 

Versus 

Task- Difficulty 

Auditory Arithmetic (Dynamic light room) 

versus 

Auditory N-back (Dynamic light room) 

STDP Left F(2,40) = 18.229, p < 0.05, 𝜂2 = 0.477 

STDP Right F(2,38) = 13.501, p < 0.05, 𝜂2 = 0.415 

L1NS Left F(2,40) = 20.832, p < 0.05, 𝜂2 = 0.51 

L1NS Right F(2,38) = 15.238, p < 0.05, 𝜂2 = 0.445 

LPF Left F(2,38) = 17.889, p < 0.05, 𝜂2 = 0.485 

LPF Right F(2,38) = 12.496, p < 0.05, 𝜂2 = 0.397 

Presentation 

versus 

Task- Difficulty 

Auditory N-back (Dark room) 

Versus 

Visual N-back 

STDP Left F(2,40) = 8.348, p < 0.05, 𝜂2 = 0.294 

L1NS Left F(2,40) = 9.381, p < 0.05, 𝜂2 = 0.319 

LPF Left F(2,40) = 8.855, p < 0.05, 𝜂2 = 0.307 

Auditory N-back (Dynamic light room) 

versus 

Visual N-back 

STDP Left F(2,40) = 3.719, p < 0.05, 𝜂2 = 0.157 

STDP Right F(2,40) = 4.979, p < 0.05, 𝜂2 = 0.199 

L1NS Left F(2,40) = 3.444, p < 0.05, 𝜂2 = 0.147 

L1NS Right F(2,40) = 4.807, p < 0.05, 𝜂2 = 0.194 

LPF Left F(2,40) = 4.154, p < 0.05, 𝜂2 = 0.172 

For Auditory N-back (Dynamic light room) versus Visual N-back, LPF Right violated sphericity assumption and we found significant interaction between 

the factors using Greenhouse-Geisser as F(1.453,29.059) = 5.094, p < 0.05, 𝜂2 = 0.203. 

Table 7b 

Friedman test with Kendall’s-W as effect size. 

Alpha Chi square(2) = 11.091, p < 0.05, Kendall’s W = 0.504 

Low Beta Chi square(2) = 14.364, p < 0.05, Kendall’s W = 0.653 

Theta Chi square(2) = 11.091, p < 0.05, Kendall’s W = 0.504 
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2 Auditory Arithmetic versus Auditory N-back (factors: task type and
task difficulty) 
a Auditory Arithmetic (Dark room) versus Auditory N-back (Dark

room) 
b Auditory Arithmetic (Dynamic light room) versus Auditory N-

back (Dynamic light room) 
3 Auditory N-back versus Visual N-back (factors: presentation and task

difficulty) 
a Auditory N-back (Dark room) versus Visual N-back 
b Auditory N-back (Dynamic light room) versus Visual N-back 

We did not find any significant interaction effect between factors for
aze-based metrics. 

.8. Discussion 

We confirmed the decrease in performance with increase in task
ifficulty [ 20 , 46 ]. We observed that L1NS, STDP and LPF increased
ith increase in task difficulty consistent with the study reported by
oulacoglou [11] . In all the cases, we observed that the parameter cor-
esponding to difficult task (3-Back and difficult arithmetic) was signif-
cantly higher than that corresponding to easy task (1-Back and easy
rithmetic). The intermediate task difficulty did not have significant ef-
ect with respect to all parameters. This might be because of the overlap-
ing region of cognitive load present in 2-back test due to the transition
f difficulty levels from 1-back to 3-back tests. Some participants would
ave found 2-back level easy and some would have found it difficult.
imilarly, overlapping region might be present in medium level arith-
etic questions. We found relatively largest effect sizes in L1NS left eye

or Visual N-Back, LPF left eye for Auditory N-Back Dark room, L1NS left
ye for Auditory N-Back Dynamic light room, LPF left eye for Auditory
rithmetic Dark room, LPF left eye for Auditory Arithmetic Dynamic

ight room. This infers that each metric performed significantly in each
est condition. We also observed that the trend of increase in metric val-
es with respect to increase in task difficulty is same for changes in light
onditions for visual and auditory presentations. Though we found in-
eraction effect between task difficulty and lighting conditions for pupil-
ased metrics, the t -test result showed that our pupil-based metrics were
ble to significantly distinguish between task difficulties in different
ighting conditions. Similarly, a set of pupil-based metrics were able to
ignificantly distinguish between task difficulties in different task type
nd presentation conditions despite significant interaction between the
actors. 

. User study on driving simulator 

Our second study investigated differences in values of ocular met-
ics for a standard lane changing task and performing secondary tasks
hile driving in simulated automotive environment in laboratory. In

his section, we discussed the user study which we conducted in a driv-
ng simulator to validate our proposed metrics with respect to EEG. In
his study, our motive was to find whether these metrics can classify
ognitive state of participants while driving and performing secondary
ask. 

.1. Participants 

We recruited 11 participants (10 male and 1 female) with an aver-
ge age of 26 years from our university to engage in this study. We con-
ucted free trials for participants to get used to driving simulator. We
tarted the actual trial after sufficiently training participants to make
ure that increase in cognitive load correspond only to the task and not
o the driving experience of the simulator. 

.2. Materials 

Our driving simulator consist of a Logitech G29 steering wheel with
edals and ISO 26022 lane changing task software. We used an Emotive
nsight 5 channel wireless EEG tracker for recording EEG and Tobii Pro-
lasses 2 for recording eye gaze and pupil dilation of participants. We
sed Lenovo Yoga 500 laptop as IVIS (In-Vehicle Infotainment System)
isplay. 
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Table 8a 

Multivariate tests. 

Interacting factors Levels of factors Metrics Multivariate test (Pillai’s trace) 

Light 

versus 

Task- Difficulty 

Dark room (Auditory N-back) 

versus 

dynamic light room (Auditory N-back) 

STDP Left F(2,19) = 18.634, p < 0.05, 𝜂2 = 0.662 

STDP Right F(2,19) = 8.398, p < 0.05, 𝜂2 = 0.469 

L1NS Left F(2,19) = 20.084, p < 0.05, 𝜂2 = 0.679 

L1NS Right F(2,19) = 7.375, p < 0.05, 𝜂2 = 0.437 

LPF Left F(2,19) = 17.182, p < 0.05, 𝜂2 = 0.644 

LPF Right F(2,19) = 6.747, p < 0.05, 𝜂2 = 0.415 

Dark room (Auditory Arithmetic) 

versus 

dynamic light room (Auditory 

Arithmetic) 

STDP Left F(2,19) = 4.073, p < 0.05, 𝜂2 = 0.3 

L1NS Left 

F(2,19) = 4.813, p < 0.05, 𝜂2 = 0.336 

Task Type 

Versus 

Task- Difficulty 

Auditory Arithmetic (Dynamic light 

room) 

versus 

Auditory N-back (Dynamic light room) 

STDP Left F(2,19) = 21.436, p < 0.05, 𝜂2 = 0.693 

STDP Right F(2,18) = 11.517, p < 0.05, 𝜂2 = 0.561 

L1NS Left F(2,19) = 20.509, p < 0.05, 𝜂2 = 0.683 

L1NS Right F(2,18) = 12.273, p < 0.05, 𝜂2 = 0.577 

LPF Left F(2,18) = 15.759, p < 0.05, 𝜂2 = 0.636 

LPF Right F(2,18) = 10.168, p < 0.05, 𝜂2 = 0.53 

Presentation versus 

Task- Difficulty 

Auditory N-back (Dark room) 

Versus 

Visual N-back 

STDP Left F(2,19) = 10.415, p < 0.05, 𝜂2 = 0.523 

L1NS Left F(2,19) = 11.691, p < 0.05, 𝜂2 = 0.552 

LPF Left F(2,19) = 10.732, p < 0.05, 𝜂2 = 0.53 

Auditory N-back (Dynamic light room) 

versus 

Visual N-back 

STDP Left F(2,19) = 3.717, p < 0.05, 𝜂2 = 0.281 

STDP Right F(2,19) = 4.442, p < 0.05, 𝜂2 = 0.319 

L1NS Left F(2,19) = 3.954, p < 0.05, 𝜂2 = 0.294 

L1NS Right F(2,19) = 3.781, p < 0.05, 𝜂2 = 0.285 

LPF Left F(2,19) = 3.872, p < 0.05, 𝜂2 = 0.29 

LPF Right F(2,19) = 3.295, p < 0.05, 𝜂2 = 0.258 

Fig. 9. Participant performing secondary task while driving. 
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.3. Design 

The participants had to undergo three trials of driving tasks by wear-
ng Tobii glasses and EEG tracker on his/her head. The driving simulator
id not accommodate any on-road traffic events. The experimental setup
s illustrated in Fig. 9 . We recorded baseline data by letting participants
o freely drive without engaging in any secondary task. We recorded this
rial as reference case (C1). In the second case, we instructed participants
o follow the lane changing instructions while driving. We recorded this
rial as case 2 (C2). In the third case, we instructed participants to drive
y following lane changing instructions and perform a secondary task
f selecting a button on the IVIS display on hearing an auditory cue. We
ecorded this trial as case 3 (C3). The dashboard display was designed
ike one of the dashboard systems of Jaguar Land Rover. The IVIS dis-
lay was placed to the left of driving simulator. To summarise the three
onditions: 

• Driving without any secondary tasks (C1) 
• Driving and following Lane changing instructions (C2) 
• Driving with Lane changing instruction and perform a selection task

on IVIS (C3) 

.4. Procedure 

We instructed participants to wear Tobii Pro-glasses and EEG tracker.
e instructed them to drive safely without veering off from the road. We

ollected the eye gaze position, pupil diameter and EEG data from par-
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Fig. 10. (From Top left) (a)Average Theta, 
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different driving conditions. 
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icipants for all three cases. We analysed data to find if our parameters
lassify C1, C2 and C3. 

.5. Results 

A Friedman test was performed on EEG bands as described in
able 7b . 

We performed a Kolmogorov-Smirnov test on alpha ( Fig. 10 c), low
eta ( Fig. 10 e) and theta ( Fig. 10 a) bands of EEG. We found that all three
f them were not normally distributed. We then performed Signed-Rank
est between each pair and found C3 was significantly ( p < 0.05) greater
han C1 and C3 was significantly ( p < 0.05) greater than C2. We did not
nd significant difference in high beta and gamma bands. 
We found the driving performances as described in Table 8b . A
olmogorov-Smirnov test showed the groups were normally distributed.
e found mean deviation from lane for C3 was significantly ( t -test:

 < 0.05) greater than C1 and C2 was significantly ( t -test: p < 0.05) greater
han C1. Average speed for C3 was significantly ( t -test: p < 0.05) less than
1 and C2 was significantly ( t -test: p < 0.05) less than C1. A repeated
easure one-way ANOVA was performed on our metrics as described in
able 9 . 

We performed a Kolmogorov-Smirnov test on L1NS, STDP and LPF
f pupil data for both eyes, saccade rate and fixation rate, and median
I velocity of gaze points of both eyes. We found that all of them were
ormally distributed. We then performed a t -test between each pair and
ound C2 was significantly ( p < 0.05) greater than C1, C3 was signifi-
antly ( p < 0.05) greater than C1 for L1NS ( Fig. 10 b), STDP and LPF of
oth eyes ( Fig. 10 ). Though we found C3 significantly less than C2 for
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Table 8b 

Driving performance for each driving conditions. 

C1 C2 C3 

Mean deviation from lane 0.784 (0.387) 2.349 (0.590) 2.386 (0.722) 

Mean speed 53.281 (10.518) 48.444 (11.195) 46.412 (10.166) 

Table 9 

Repeated measure one-way ANOVA for each metric with effect 

size. 

L1NS Right eye F(2,9) = 21.273, p < 0.05, 𝜂2 = 0.825 

L1NS Left eye F(2,9) = 18.574, p < 0.05, 𝜂2 = 0.805 

STDP Right eye F(2,9) = 22.001, p < 0.05, 𝜂2 = 0.830 

STDP Left eye F(2,9) = 19.265, p < 0.05, 𝜂2 = 0.811 

LPF Left eye F(2,9) = 19.120, p < 0.05, 𝜂2 = 0.809 

LPF Right eye F(2,9) = 22.825, p < 0.05, 𝜂2 = 0.835 

Saccade rate Left eye F(2,9) = 30.812, p < 0.05, 𝜂2 = 0.873 

Saccade rate Right eye F(2,9) = 20.913, p < 0.05, 𝜂2 = 0.823 

Fixation rate Left eye F(2,9) = 31.041, p < 0.05, 𝜂2 = 0.873 

Fixation rate Right eye F(2,9) = 21.066, p < 0.05, 𝜂2 = 0.824 

Median SI velocity F(2,9) = 5.341, p < 0.05, 𝜂2 = 0.543 
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1NS, STDP and LPF of left eye, we did not find significant difference
or those in right eye. We performed paired t -test between each pair and
ound C3 was significantly ( p < 0.05) greater than C1 and C3 was signifi-
antly ( p < 0.05) greater than C2 for fixation rate ( Fig. 10 d), saccade rate
f both eyes and median SI velocity ( Fig. 10 f). 

.6. Discussion 

The EEG band power significantly increased and driving perfor-
ance significantly decreased from driving conditions C1 to C3. This

onfirms the increase in task difficulty of driving conditions from C1 to
3. Since we also found increasing trend in pupil and gaze-based metric
alues from C1 to C3, we infer that our proposed metrics agree with
EG band powers. This establishes the relation between EEG metrics
nd proposed ocular metrics which validates the usage of our proposed
etrics as probes to estimate cognitive load. We found relatively large

ffect sizes in Low Beta (EEG), L1NS, LPF, STDP and largest in Fixa-
ion/saccade rate left eye for driving conditions. This infers that both
upil-based and gaze-based metrics were significantly able to distin-
uish between the cognitive states. The performance of left eye met-
ics was different from that of right eye metrics. This study gives us the
vidence to consider pupil and gaze-based metrics for estimating cogni-
ive load for automotive interfaces. It also shows that our metrics can
e used in real-time as they are calculated using 1 s running window.
his outcome is further confirmed by conducting an in-car study with
rofessional drivers. 

. User study inside moving vehicles 

Our third study investigated differences in values of ocular metrics
or driving in real cars while drivers undertook secondary tasks as they
o in natural driving situation. This user study was conducted to validate
he ability of our proposed parameters to distinguish between different
ognitive states caused by performing secondary tasks in cars. We hy-
othesised that L1NS, STDP, LPF, saccade rate, fixation rate, median SI
elocity can distinguish between ’No Task’ and secondary task condi-
ions. 

.1. Participants 

A set of 13 professional male drivers with an average age of 36 years
std: 8 years) participated in the study. All drivers were hired from a
ravel agency. All drivers had an average driving experience of 7150 km
std: 2700 km). The average number of years the drivers drove holding
 valid license was 11 years (std: 7 years). All participants had a valid
wo-wheeler and four-wheeler Indian driving license. 

We took all necessary permissions and consent from all drivers before
ndertaking trials and the study never interfered with the driving task. 

.2. Material 

We used Tobii Pro-glasses 2 to record the first-person video as well
s ocular parameters. We used Tobii Pro-software to export the data
nto TSV (Tab Separated Values) file. We used video tagging tool to find
nstants where the driver performed secondary tasks and used MATLAB
o analyse data. 

.3. Design 

We designed the study such that each driver had to start driving his
ehicle from a fixed start point to a fixed location inside our university
nd return to the same start point. We recorded data for each driver
uring the trip. We asked them to perform secondary tasks while driv-
ng and calculated various metric values for estimating their cognitive
oad. We designed secondary tasks such that they cause visual, manual,
ognitive or combined distractions. Drivers performed secondary tasks
ll by themselves without our intervention. We recorded the following
econdary tasks and the type of distraction is mentioned within brackets

1 Driver turned on/off Air Conditioner (Visual and Manual) 
2 Driver turned on/off music player or changed radio station (Visual

and Manual) 
3 Driver talking with passengers (Visual and Cognitive) 
4 Driver opening/closing windows (Visual and Manual) 
5 Driver received a call from an unknown number while driving (Vi-

sual, Manual and Cognitive) 

We did not control the time of day for the study and collected data
n both sunny, shadowy, dusk and cloudy conditions. 

.4. Procedure 

We calibrated the eye gaze tracker for each driver before igniting
he engine and after that did not interfere with the driving task. We
nstructed them to drive inside our institute premises from a pre-fixed
ocation and come back to the same place. We tagged the video for
imestamps of each secondary task event as illustrated in Fig. 11 where
he consecutive timestamps correspond to start and end of an event.

e also tagged the timestamps when driver neither performed any sec-
ndary tasks nor observed a road hazard. We calculated L1NS, STDP,
PF, saccade rate, fixation rate and median SI velocity corresponding to
vents. We checked if metric values were high for performing secondary
asks (Task) compared to performing only driving task (No Task). 

.5. Results 

We calculated average metric values corresponding to ‘Task’ and ‘No
ask’ events for each driver. We undertook a paired t -test on ‘Task’ and
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Fig. 11. Process of tagging video and generating timestamp file. 

Table 10 

Cohens D value for each metric. 

1NS Left eye 0.388 

STDP Left eye 0.350 

LPF Left eye 0.378 

Saccade rate Left eye 0.599 

Saccade rate Right eye 0.539 

Fixation rate Left eye 0.560 

Fixation rate Right eye 0.640 

Median SI velocity 0.244 
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No Task’ groups where each data point corresponded to each of 13
rivers. We reported Cohens D values as effect sizes of tests in Table 10 .

We found that L1NS ( Fig. 12 c), STDP, LPF of left eye was signifi-
antly ( t -test: p < 0.05) higher for operating secondary task than driving
ithout any secondary task. We found fixation rate and saccade rate
 Fig. 12 b) for both eyes were significantly ( t -test: p < 0.05) higher for
perating secondary task than driving without any secondary task. We
ound that median SI velocity was significantly ( t -test: p < 0.05) higher
or operating secondary task than driving without any secondary task
 Fig. 12 a). 

.6. Discussion 

Our results showed that L1NS, STDP, LPF, saccade rate, fixation rate
nd median SI velocity were significantly higher for drivers while per-
orming secondary tasks than when they were not doing any task. This
learly indicates that our proposed metrics were able to distinguish be-
ween ‘Task’ and ‘No Task’ performed by drivers. The metrics were sig-
ificantly different only for left eye which might be an effect of right-
anded driving by drivers. We found relatively largest effect size in Fix-
tion rate right eye for ‘Task’ and ‘No Task’. This infers that the gaze-
ased metrics are equally effective as pupil-based metrics in classifying
ognitive states of drivers in real cars. In the previous sections, we vali-
ated our proposed metrics using secondary tasks. 

We computed global thresholds for individual metrics using which
e can classify ‘Task’ and ‘No Task’ for all the users. We used all the

ndividual metrics with this approach and obtained highest accuracy of
8.8% with saccade rate of right eye ( Fig. 15 ). The rest of the metrics
ave lower classification accuracy. Hence, we found that obtaining a
niversal threshold for all drivers using a single metric is challenging.
hese global thresholds based on individual metric values may change
ased on the drivers in the dataset and uncertainty prevails over gen-
ralizability, we built a ML based model to classify the cognitive states
sing all ocular metrics. 

. Machine learning-based classification 

In this section, we explained our ML models for binary classifica-
ion. Our proposed ML-based system used L1NS, LPF, STDP, saccade
ate, fixation rate and median SI velocity metrics as input features. We
sed Support Vector Classifier (SVC) with different kernels and com-
ared their accuracy. We proposed NN model to increase accuracy of
he system. The ML models classify driver’s cognitive states into two
tates viz., ‘No Task’ and ‘Task’. The working of our proposed ML based
ognitive load monitoring system is illustrated in Fig. 13 . We evaluated
he performance of our ML models in terms of their classification accu-
acies. 

.1. Procedure 

Initially we used our proposed metrics as input to ML models to pre-
ict ‘No Task’ and ‘Task’ classes. We started our prediction model by
sing SVC with Polynomial and RBF kernels. We then compared results
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Fig. 14. Process of tagging video and calculating accuracy of classification of distraction. 
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f SVC model and NN model. The procedure to calculate accuracy of
lassifiers (ML models and individual metrics) is described in Fig. 14 . 

We calculated the accuracy of classification of ‘Task’ and ‘No Task’ in
he existing dataset for individual metrics like L1NS, STDP, LPF, saccade
ate, fixation rate and median SI velocity. We classified an event as ‘Task’
f the metric was above threshold and classified as ‘No Task’ if the metric
as below threshold. We used two methods to calculate classification
ccuracy corresponding to two thresholds (global and individual). In
ormer case the threshold (global) was calculated by taking average of
ll “No Task ” metric values and used the single value as threshold for
ll drivers. In latter case we used the respective “No Task ” metric value
s threshold (individual) for each driver. 

We took ‘Task’ region as positive and ‘No Task’ region as negative.
e counted True positive (TP), False Positive (FP), True Negative (TN),

alse Negative (FN) as follows: 

TP: If (metric > threshold) and lies in ‘Task’ region 
FP: If (metric > threshold) and lies in ‘No Task’ region 
FN: If (metric < threshold) and lies in ‘Task’ region 
TN: If (metric < threshold) and lies in ‘No Task’ region 

Accuracy is calculated using the following equation. 

ccuracy = 

𝑇 𝑃 + 𝑇 𝑁 

𝑇 𝑃 + 𝐹 𝑃 + 𝑇 𝑁 + 𝐹 𝑁 

.2. Results 

We did empirical experiments with different combination of values
or 𝛾 and C and obtained highest accuracy of 66.9% with the value of
and C as 0.001 and 1 respectively. Polynomial kernel SVC showed
romising results without scaling the dataset. We obtained 58.6% accu-
acy with value of 𝛾, C, and d as 100, 1, and 6 respectively. To increase
he classification accuracy, we used feed forward NN. We trained and
ested our ML models on drivers’ data described in previous section.

e obtained highest accuracy of 75% using feed forward NN model.
e compared the accuracies of individual metrics against accuracies

btained from ML models as illustrated in Fig. 15 . 

.3. Discussion 

We took average metric values corresponding to ‘No Task’ class of all
rivers as global threshold. We evaluated the accuracy of our pupil and
aze-based metrics to classify the cognitive states and compared it with
hat of ML models for both global and individual threshold methods. We
ound increase in accuracy of classification by using NN model. Though
ur NN model takes both pupil-based and gaze-based metrics as input
eatures and achieves a binary-classification accuracy of 75%, accuracy
f saccade rate of right eye with global threshold is only next to NN
odel with a difference of 7%. Hence, we infer that binary cognitive

tate classification can also be performed using a low-cost eye tracker
ithout pupil diameter-based measurement. 

.4. Machine learning model for multi-class classification 

It may be argued that change in drivers’ attention due to undertak-
ng a few secondary tasks involving the head down display in central
ask can be more accurately detected by tracking head movement in
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olds. In this figure L1NS_left: L1 Norm of spec- 

trum of left Pupil, L1NS_right: L1 Norm of spec- 

trum of right Pupil, STDP_left: Standard Devia- 

tion of left Pupil, STDP_right: Standard Deviation 

of right Pupil, LPF_left: Low Pass Filter of left 

pupil, LPF_right: Low Pass Filter of right pupil, 
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Fig. 16a. Details of different type of developed road 

hazards tagged in 13 videos. 
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Table 11 

Accuracy of neural network in classifying distraction of 

driver for different label of hazard durations. 

± 2 secs ± 3 secs ± 4 secs ± 5 secs 

Training 91.95% 94.62 92.47 84.52% 

Test 71.15% 72.44% 70.50% 70.51% 
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ddition to eye gaze movement. In fact, our cognitive load monitoring
ystem can also detect distraction tracking only eye gaze [38] . However,
o emphasize the utility of the machine learning models in terms of dis-
inguishing amongst fine grain differences in drivers’ cognitive load, we
ttempted to detect change in cognitive load when drivers perceive a
oad hazard. Perception of a road hazard does not involve head or eye
aze movement like operating head down display. 

We followed the guidelines of Driver and Vehicle Standards Agency
DVSA), UK [16] and earlier research work [12] to identify developing
oad hazard in the first-person video of drivers. We tagged timestamps of
ll oncoming road hazard following the DVSA guidelines. Fig. 16a shows
 comparative chart between different type of road hazard (vehicles,
edestrians, speed bumps, animals) for the set of driving samples used
n the proposed system. We calculated L1NS, STDP, LPF, saccade rate,
xation rate and median SI velocity in time window duration of ± 2 s,
 3 s, ± 4 s, and ± 5 s around the instances of each developing hazard
 s  
7] . The working of our proposed multi-class NN based cognitive load
onitoring system is illustrated in Fig. 13 . 

We modified the NN model into multi-class classifier. We have
rained and tested with 4 different datasets where hazard durations were
arked in above-mentioned time windows. Table 11 shows accuracy of
ulti-class classifier in classifying different cognitive state of driver in
ifferent driving situations. Accuracy is calculated as sum of correct clas-
ifications divided by total number of classifications (( 𝑇 + 𝑇 + 𝑇 ) /
𝐴 𝐵 𝐶 
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umber of testing example), where T A : TP of class A, T B : TP of class
, and T C : TP of class C). We found our model was able to classify 28
vents out of 39 test events correctly (accuracy of 72.44 %) with ± 3
ecs of time window corresponding to road hazard. 

. General discussion 

In this paper, we proposed and evaluated the performance of pupil
nd gaze-based metrics from frequency and temporal domains for esti-
ating cognitive load. Our pupil-based metrics from temporal domain
as potential for deployment in real-time as it is robust to ambient light.
1NS algorithm uses frequency domain calculation and can be deployed
n hardware supporting FFT computation. STDP algorithm does not re-
uire a frequency transform as we calculate the metric in time domain
hich allows deployment using a microcontroller. LPF algorithm works
n frequency specific operations in time domain and can also be de-
loyed using a microcontroller. We also demonstrated cognitive load
stimation using our gaze-based metrics, which can be computed from
ny low-cost eye gaze tracker which does not support pupil diameter
easurement. Our metrics are validated for their performance in simu-

ated driving environment as well as real cars. Our gaze-based metrics
id not show significant performance in psychometric tests. This might
e due to the design of experiment which constrained participants to
ook into a region on wall such that the eye tracker did not miss de-
ecting eyes. Though we requested participants to focus on the audi-
ory task and not to focus on the region, it might have restricted the
ye gaze movements which could have influenced the performance of
aze-based metrics in distinguishing cognitive states. We demonstrated
eal-time detection of cognitive state in real cars [sup 4]. Our metrics
1NS and LPF showed relatively high performance in N-back/arithmetic
ests. Similarly, L1NS, STDP, LPF, fixation rate, saccade rate showed rel-
tively high performance in simulator study and fixation rate showed
elatively high performance in real car study. We observed that find-
ng a single threshold value of metrics for all drivers is challenging. In
his direction, we designed and tested with different type of ML based
lassification models which take multiple metrics as inputs to classify
ognitive state and achieved significant increase in the classification ac-
uracy. We were able to classify driver’s cognitive state between driv-
ng task and secondary task with 75% accuracy using feed forward NN
odel. 

.1. Limitations and future work 

We carried out our studies with a thin range of age groups and sam-
le size. Though our studies showed significant increase in performance
f our system, there is still room for improvement in terms of accuracy of
lassification. We are planning to investigate new ML models with and
ithout memory for accommodating the associativity within data. Due

o the influence of culture, gender and geographical location of a driver
n driving behaviour and cognitive load, the sample size can be further
xpanded to increase the boundaries of inclusion. Following the inves-
igation of binary classification of two states (‘Task’ and ‘No Task’), we
re planning to investigate multi-class classification of different tasks
music, talk, phone) and road hazards. We are analysing associativity
etween oncoming road hazards and pupil-based metric for a driver. In
ur future work, we will measure performance of neural network-based
odel for different road hazards with the help of Hazard Perception Test

ollowing the guidelines of Driver and Vehicle Standards Agency (DVSA)
DVLA] and earlier research work [12] . We are planning to use the clas-
ified states to give multimodal alert to drivers. We are also planning to
valuate our techniques with an automotive compliant camera-based
ye tracking system. 
.2. Multimodal alert system 

We are working on a multimodal alert system which can detect eyes-
ff-road distraction and cognitive states of driver to alert with haptic,
uditory and visual feedback. We demonstrated our multimodal alert
ystem in supplementary video [sup3]. When an eyes-off-road event is
etected, it will alert the driver by an auditory sound followed by a
oice note telling “please concentrate on driving ”. An LED (Light Emit-
ing Diode) strip lights up with a blinking pattern to alert the driver vi-
ually. If it detects that the driver is undergoing distraction, it will lock
econdary tasks from being operated by driver. In case a call or message
s received, the system does not pop up any notification to the driver.
he system will display only important IVIS functions on the screen.
he icon size and colours will adapt according to the cognitive state of
river. When driver’s cognitive load decreases, it will retract notifying
river about his missed calls and messages. The driver will then have
ccess to operate locked secondary tasks. The working of alert system is
llustrated in Fig. 16b . 

.3. Application to autonomous vehicle 

Our cognitive load estimation system can also be integrated to au-
onomous vehicle and can enhance safety of the vehicle. Even if the ve-
icle is autonomous, there may be situation requiring the human driver
o intervene either from inside the vehicle or from a remote location.
n both cases, it would be necessary for the driver to stay alert and
ware of the situation. The on-board obstacle detection system can be
ugmented with visual perception and cognitive load of the front seat
assengers and can avoid accident if the human driver responses to a
raffic participant even if the machine vision system fails to do so. Mea-
uring passengers’ cognitive load can be used as a metric of ride quality
nd driving parameters and routes can be adjusted based on that. 

.4. Application in comparing HMI 

We developed an HMI (Human Machine Interface) evaluation tool
 Fig. 17 ) to record and analyse the cognitive load of a user performing
ny task which can be used for comparative studies. This tool calcu-
ates the ocular metrics and streams in the form of live graphs along
ith videos of eyes and scene camera. We can add participants as well
s events and record data corresponding to selected participant and
vent. We can compare the performance of participants in correspond-
ng events by analysing corresponding CSV (Comma Separated Values)
les. We can compare different tasks in a single HMI or same task in
ifferent HMI by comparing cognitive load estimated by our system. 

.5. Value addition 

Though researchers [6] investigated several ML models for classi-
ying cognitive states in controlled environments (laboratory or sim-
lation), they found it challenging to implement their systems in un-
ontrolled environments. We have investigated the performance of our
roposed system in an uncontrolled driving environment (real driv-
ng). Binias [6] used EEG data of participants to classify cognitive
tate of pilots in flight simulator. The implementation of such system
s challenging as EEG is sensitive to body movements. Babu [3] and
avis [14] estimated cognitive load in actual flights from physiolog-

cal parameters but there are not many similar studies in automotive
omain beyond measuring glance duration [32] . Our proposed cogni-
ive load monitoring system takes the advantage of using ocular pa-
ameters to estimate cognitive load and can be deployed in uncon-
rolled environments. Our proposed system is independent of head
ovement, ambient lighting and vibration in the environment. These

dvantages show the potential of our system in applications outside au-
omotive like aviation, biomedical, pedagogy and many other scientific
elds. 
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Fig. 16b. Working of alert system. 

Fig. 17. Snapshot of HMI evaluation dashboard. 
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. Conclusion 

This paper presents a driver behaviour monitoring system based on
hysiological parameters in real driving situation under various ambi-
nt lighting conditions and traffic participants. We found that our pro-
osed ocular metrics were able to distinguish between different cogni-
ive states corresponding to task difficulties irrespective of changes in
mbient lighting conditions in standard psychometric study. To clas-
ify differences in cognitive states due to operating secondary task, we
ompared various gaze and pupil dilation-based metrics and different
achine Learning models. We found that our ocular metrics were able
o distinguish between differences in cognitive states corresponding to
riving with and without undertaking secondary task. We also found
hat a feed forward Neural Network model outperformed individual met-
ics and other Machine Learning models with 75% accuracy (classifying
etween ‘No Task’ and ‘Task’). Our results show that ocular parameters
nd Machine Learning models like Neural Network can be deployed for
onitoring driver’s behaviour in uncontrolled environments. Though
e achieved a significant improvement in performance of binary clas-

ification by Neural Network-based models compared to other Machine
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earning models, we found rooms for improvement in the expansion of
ataset and inclusion of wide range of age groups. We are planning to
nvestigate further levels of ‘Task’ like operating music, maps, calls, Air
onditioner and perceiving a road hazard. This will be an extension of
ur work from binary to multi-level classification using Machine Learn-
ng models. We are also planning to improve the accuracy of classifi-
ation by investigating Neural Networks with memory [25] which can
ccommodate patterns due to associativity within data. We are now in-
estigating on constraints to integrate cognitive load monitoring system
o an alert system which will decide when to enable/disable a secondary
ask and alert the driver based on amount and type of distraction. 

upplementary materials 

Supplementary material associated with this article can be found, in
he online version, at doi: 10.1016/j.treng.2020.100008 . 
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