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a b s t r a c t

Gang saw is widely used in the dimension stone industry and stone cutting factories. One of the impor-
tant factors in evaluating the efficiency of a machine is the electrical current consumed by the gang saw.
Therefore, the evaluation of the electrical current consumed by the gang saw and study of the effective
parameters are necessary in the rock cutting process. In the present research, considering the physical
and mechanical properties of rock, including the uniaxial compressive strength (UCS), Mohs hardness
(Mh), Schimazek’s F-abrasiveness factors (SF-a) and Young’s modulus (YM), it was attempted to study
and evaluate the electrical current consumed by the gang saw using soft computing techniques. Thus,
the Differential Evolution (DE) algorithm and Self-Organizing Map (SOM) algorithm were used as two
intelligent techniques in this study. Results obtained from these studies showed that the DE algorithm
could accurately classify 12 carbonate rocks under study into three groups, including travertine rocks
sample with the average electrical current of 83.25 (A), crystal rocks sample with the average electrical
current of 90 (A) and marble rocks sample with the average electrical current of 94 (A). Due to more
details of output and results of the DE algorithm, it can be concluded that this algorithm has superiority
over the SOM technique because it provides higher performance capacity in evaluating and classifying
carbonate dimension stone samples in terms of the electrical current consumed by the machine and
its physical and mechanical properties.
� 2019 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Nowadays, rock cutting tools are significantly used in the
dimension stone quarries and dimension stone processing facto-
ries. The complete knowledge of the cutting process and the per-
formance of gang saw can enhance the efficiency and quality of
the manufactured product. The comprehensive understanding of
the cutting machines’ performance can boost the productivity
and quality of dimension stones. The final cost and product quality
are important factors in this arena. Overall, the cost of a dimension
stone plaque in stone cutting industries is highly influenced by fac-
tors such as tools wear and energy consumption [1,2]. In discus-
sions on the optimization, it is continuously attempted to
increase the ratio of production rate to the two aforementioned
factors. The production rate usually has a direct relationship with
two factors of diamond tools’ wear and energy consumption, so
that along with the increase of production rate, the tools’ wear
and energy consumption will also increase [3,4]. For this reason,
it is necessary to make an ideal balance between the production
rate and tools’ wear and energy consumption. Various factors influ-
ence the amount and performance of cutting machines and the
energy consumption by the cutting machine. The properties of
rock, type and form of tools, force or load imposed and other envi-
ronmental parameters are the most important factors [5–8]. Nowa-
days, with the advance of technology and use of new cutting
machines such as saws a new path has been opened in the cutting
process in stone processing plants, so that it can be predicted that
for the next few years, these facilities (given their obvious superi-
ority over circular diamond saws) have been completely substi-
tuted with circular diamond saws. So far, complete and
comprehensive studies have been conducted on the circular dia-
mond saw cutting equipment and diamond wire sawing. But, stud-
ies on the gang saw equipment are at the preliminary levels
because it has been recently used widely [9]. Lons studied the cut-
ting forces and diamond segments’ abrasion in the saw machine. In
this research, the relationship between diamond abrasion and
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cutting forces was investigated and the results showed a weak
relationship between the aforementioned parameters [10]. Wie-
mann et al. investigated the saw machine. In their studies, it was
shown that the diamond blades’ tension had a significant role in
the saw machine’s cutting process. The results obtained from their
studies showed that tensile stress of tip of blade moved toward its
bottom and its value varied in different measurement situations
(front, middle and end). Finally, in the sawing process, the tension
frequency change in diamond blades and the effect of supply rate
on the blades’ tensile stress were important and effective factors
on the performance of cutting [11]. Jansen studied the deformation
of diamond saw blades. The results showed that deformation of
diamond blades was a function of tension, eccentricity, friction
coefficient and geometric parameters of the blade [12]. In this
regard, Gerlach investigated the sawing tool in a laboratory scale
using a saw machine. The obtained results indicated that the blade
diversion was influenced by geometric parameters, eccentricity
and tension of blade. Also, in practice, the friction between seg-
ment and rock reduces the effective tension of blade, so that in
the sawing process, the effective tension of blade may be a function
of vertical forces in the direction of supply which changes under
different conditions in case of any change in the rocks’ properties
[13]. In researches conducted by Wang and Clausen in 2002, a car-
bonate rock sample was studied using single-point (single-
segment) cutting tools under different cutting conditions. In their
study, the conditions of the contact surfaces between the rock
and the diamond grain and also the cutting mechanism of brittle
failure were analyzed. The cutting test was done by a CNC milling
machine. The cutting force Fc in the direction of cutting and the
cutting force Ff perpendicular to cutting direction were measured
and recorded by a Kislter dynamometer (type 5019). During the
test, two carbonate rocks were studied under the dry and wet cut-
ting conditions. During the research of Wang and Clausen, the cut-
ting surfaces (the groove created by the contact of segment with
the rock surface) were analyzed by a microscope [14]. In 2003, a
computer simulation of the saw cutting process was performed
by Wang and Clausen. The saw cutting simulation can be a practi-
cal alternative for designing, especially computing the number of
diamond grains and their distribution on segments of the saw
blades. Simulation was done by Visual Basic Software and Micro-
soft Access. Accordingly, their simulation, the cutting forces in
the blade, segment and each diamond grain as well as effective cut-
ting edges could be computed under different cutting conditions
[15]. In 2003, a study was conducted by Wang and Rolf on the rock
cutting process theory using the saw machine. Thus, the cutting
motion of the blade and diamond grain was studied. Studies
showed that the effective number of diamond grains and the effec-
tive cutting depth depended on the situation of segment and the
height of the raised part of diamond grain. The cutting depth of
the diamond grain is increased with the increase of supply rate,
reduction of crankshaft rotation per minute and the length of
impact. The maximum cutting depth of the diamond grain depends
on its situation in contact with the rock in one cutting impact. In
the cutting process, the contact surface between the blade and rock
block changes every moment. The segments’ distribution, cutting
length and impact length are the most important factors in the
contact surface versus the cutting time [16]. The effect of marble
textural characteristics on the sawing efficiency of diamond seg-
mented frame saws was investigated by Ozcelik. In this study,
the relationships among the texture coefficients, wear on diamond
segments and average sawing speed were studied and significant
relationships were found between them [17]. A quality classifica-
tion of dimensional stones was developed by Kahraman et al.
based on P-wave velocity to estimate the slab production efficiency
to stone cutting with gang saws [18]. The stone waste percentages
generated from cutting stone blocks into slabs were studied by
Alhaj using gang saw machine. The results showed that there
was an inverse relation between the gang saw thickness and the
volume waste percentages and productivity. Also, the volume
waste percentages change around the ideal values which are 26%
for 2 cm, 19% for 3 cm and 22% for the mixed 2 & 3 cm thicknesses
[19]. Ersoy and Yes�ilkaya carried out optimized investigations for
selecting and ranking the cutting machines among 3 types of the
most preferred machines in the marble quarry industry. The ana-
lytic hierarchy process approach was employed in this work. The
results clearly showed the superiority of the gang saw machine
in comparison with the other types of cutting machines [20].The
slab production of the multiblade gang saw on 7 different carbon-
ate stones was predicted by Neves et al. The results showed that
slab production of carbonate rocks could be successfully predicted
using the multiple linear regression [21]. The sawability of dia-
mond frame saw was studied by Sun et al using Fuzzy Analytic
Hierarchy Process (FAHP) and Technique for Order Preference by
Similarity to Ideal Solution (TOPSIS) techniques in granites cutting
process [22]. The energy consumption of gang saw machine wa
predicted and evaluate by Dormishi et al. The linear and nonlinear
regression analysis were employed in their study, and several
developed models were presented. Based on their results, they
made some recommendations for the investigation and prediction
of the energy consumption of gang saw machines [23].

Despite the important the classical and experimental methods,
the soft computing techniques serve a key role to solve complex
and uncertain problems, which have received attention recently
in the field of rock mechanics. The wear rate of diamond wire
saw wasv evaluated by Mikaeil et al. based upon the some major
dimension stone properties. They obtained a logical relationship
between rock characteristics and wire rate using the harmony
search algorithm [24]. An optimized model for predicting the areal
slab production rate of large diameter circular saw was developed
by Tumac. The Uniaxial compressive strength (UCS), Brazilian ten-
sile strength (BTS), Cerchar abrasivity index (CAI), porosity, and
density were considered as input parameters. The proposed model
was an effective and efficient model [25]. In another study by
Mikaeil et al., the circular saw machine’s performance was investi-
gate using the imperialist competitive algorithm and fuzzy C-mean
based 4 striking characteristics of dimension stone. The classifica-
tion results were validated by hourly production rates. The results
obtained demonstrated the effectiveness of the imperialist com-
petitive algorithm in evaluating the performance of circular saw
machine [26].

As mentioned, in the past research works, researchers often had
been trying to establish reasonable relationships between some
parameters and production rate based on the classical and experi-
mental methods. On the other hand, cutting processes are tradi-
tionally classified as one of the issues dealing with uncertainty in
quarries and laboratory studies, especially in the preparation of
cylindrical specimens from stone samples and determination of
physical and mechanical properties and the cutting phase. The lit-
erature shows that the hard (conventional) computing approaches
are suitable for dealing with systems with a precise and certainty
value, while the soft computing techniques are able to tackle
unpredicted and uncertain conditions in different kinds of indus-
trial, economic and technological problems compared to the math-
ematical and deterministic methods. In fact, the soft computing
approaches have been providing a more widely frame compared
to the conventional computing, contributing to very promising
results. It is worth noting that an additional advantage of the soft
computing approaches is striking results in modeling non-linear
functions in comparison to the hard computing techniques.
Accordingly and given the unreliability of laboratory tests, two
stochastic techniques, namely differential evolution (DE) and
self-organizing map (SOM) algorithms are used for the clustering
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in order to improve the analysis of the laboratory results. Although
in previous research works, there are some studies based on soft
computing techniques, this kind of analysis was not used in previ-
ous studies for gang saws performance evaluation in carbonate
rock cutting process based on conditions of this study such as
the kind of cutting machine and rock properties. In fact, in this
study by contribution of two algorithms as novel approaches and
the some physical and mechanical properties of the rock are con-
sidered to evaluate to study and evaluate the electrical current in
the carbonate rocks’ cutting process.
2. Materials sources and data collection

Field studies were conducted in one of the dimension stone pro-
cessing factories in Mahalat city, Iran. For this reason, the blocks
extracted from 12 quarries were transferred to a factory to be used
Fig. 1. Gang saw machine (a) and a
for conducting studies. Each rock sample under study was cut
using the saw cutting machine with diamond blades under the
same operational conditions. Fig. 1 shows a view of the saw cutting
machine and ammeter under study. The characteristics of the saw
machine are provided in Table 1. The machine is composed of the
main chassis of the saw, bases, blades, water pipes, flywheel, belt,
main generator, two arms, generator for raising and lowering
blades, and variator generator. The machine’s main engine is
55 kW which has 23 A at the time of initial start and 65 A at the
second impact. The machine blades are 4.4 m long and about 27
segments are welded on these blades. The distance between the
first blade and the pincer holding the blade is about 6 cm from
both heads of the blade. The distance between two segments on
the blade is about 12–13 cm. The distance of each blade from the
next is adjusted through 22-mm-diameter mediators and the front
and rear of the blade are installed on the chassis using pincers, and
then are strongly tightened.
mmeter (b) used in this study.



Table 1
Machine operating characteristics during performance studies.

Characteristic Units Value

Blade run mm 750
Cutting width mm 1440
Cutting length mm 3300
Cutting height mm 1950
Blade length mm 4400
Max. no. blades No. 50
Main engine power kW 55
Total weight of machine t 47

Fig. 3. The location of studied quarries.
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According to the fracture theory of brittle materials indentation,
Fig. 2 demonstrates the principal cutting process of diamond grit in
the gang saw machine. The depth of cut plays a key role in the
deformation of stone. It does mean, the main deformation with
small depth of cut is represented as plastic deformation, which
by increasing the depth of the cut, this plastic deformation is
reduced. It is due to the fact that the lateral cracks propagate to
the surface and lead to chipping. Certain small lateral cracks
expanding on the surface emerge scaly at the underneath of the
grooves. The lateral cracks at various locations include a set of
half-circles behind the sliding diamond tool on the surface. The
area of plastic deformation by having the crushed stone powers
is kept at the bottom of the cutting grooves. When the surface
shear cracks extend zone, the crushed area’s deflection turns into
a continuous chip [14].

The locations and names of the studied quarries and electrical
current during cutting process are given in Fig. 3 and Table 2.
3. Laboratory studies

For laboratory tests, sample blocks were collected from the
studied quarries. A sample of blocks prepared for conducting
experimental studies is shown in Fig. 4.

Standard tests were done to measure four major physical and
mechanical properties of rock such as the Schmiazek abrasivity
factor (SF-a), Uniaxial Compressive Strength (UCS), Mohs Hardness
(MH) and Young’s Modulus (YM).

Abrasiveness influences the wear of sawing tools. Abrasiveness
is mainly affected by various factors such as mineral composition,
the hardness of mineral constituents and grain size, grain shape
and grain angularity [27]. Schimazek’s F-abrasiveness factor is
the most common factor for evaluation of rock abrasivity. It
Fig. 2. Cutting mechanism of
depends on textural and mechanical properties. The Schimazek’s
F-abrasiveness factor is defined as Eq. (1) [28].

SFa ¼ EQC � Gs� BTS
100

ð1Þ

where SF-a is the Schimazek’s wear factor (N/mm), EQC is the
equivalent quartz content percentage, Gs is the median grain size
(mm), and BTS is the Brazilian tensile strength (MPa).

Thin microscopic sections were studied to determine the grains’
sizes and amount of quartz in the rock samples under study. A
sample of thin microscopic section for Qorveh crystal (A11) is
shown in Fig. 5.

The results of laboratory studies to determine this index are
given in Table 3.

Uniaxial compressive strength is considered as a significant
mechanical element present in the engineering property of rock.
Rock material strength is a very important parameter used in
numerous systems of rock mass classification [29]. A characteristic
of rock strength, density, weathering, texture, and matrix type is
marble by abrasive [14].



Table 2
The names of the studied rocks and consumed electrical current in cutting process.

Samples No. Commercial name Name of quarry Electrical current
(Ampere)

A1 Hajiabad Travertine Hajiabad 83
A2 Darebokhari Travertine Kohbar 86
A3 Atashkoh Travertine Atashkoh 85
A4 Chocolate Travertine Kashan 84
A5 Abbas Abad Travertine Abbas Abad 88
A6 Takab Travertine Takab 83
A7 Azarshahr Travertine Azarshahr 79
A8 Khalkhal Travertine Khalkhal 78
A9 Harsin Marble Harsin 95
A10 Kerman Marble Mirzaei 93
A11 Ghorveh Crystal Ghorveh 89
A12 Laybid Crystal Laybid 91

Table 3
The result of laboratory studies to determine the SF-a.

Samples No. BTS EQC Gs SF-a
MPa % mm N/mm

A1 Hajiabad Travertine 5.60 2.60 0.25 0.04
A2 Darebokhari Travertine 5.40 2.70 0.57 0.08
A3 Atashkoh Travertine 5.90 2.65 0.26 0.04
A4 Chocolate Travertine 5.70 2.50 0.34 0.05
A5 Abbas Abad Travertine 4.40 2.30 0.36 0.04
A6 Takab Travertine 5.60 2.50 0.14 0.02
A7 Azarshahr Travertine 4.30 2.80 0.32 0.04
A8 Khalkhal Travertine 3.60 1.93 0.48 0.03
A9 Harsin Marble 6.80 3.60 0.25 0.06
A10 Kerman Marble 6.50 3.10 0.27 0.06
A11 Ghorveh Crystal 6.20 3.00 0.90 0.17
A12 Laybid Crystal 6.35 2.87 0.80 0.15

A1

A4
Fig. 4. Block and core samples prepared for conducting experimental studies.

Fig. 5. Microscopic thin-section image of A11.
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the uniaxial compressive strength test. Thus, it is necessary to use
this parameter in the study of sawability. For identifying the uniax-
ial compressive strength of the dimension stones studied, 5 stan-
dard NX core samples with a length to diameter ratio of 2.5:1
were considered through the use of a diamond rotating drill from
the block sample (Fig. 4). For cutting the specimens into their final
lengths, a circular diamond saw blade was utilized. Then, using a
grinding machine, the specimens’ surfaces were grinded to reach
a high quality surface for the axial loading to be imposed.
Researchers carried out mechanical tests using a servo controlled
testing machine designed for rock testing. The pressuring rate of
1 MPa/s was used for the standard uniaxial compressive strength
test of core samples [30]. At the final stage, the average uniaxial
compressive strength was computed for each dimension stones
studied. The results are shown in Table 4.

Hardness means the rock’s resistance to fracture or plastic
deformation because of scratching and cracking from circular dia-
mond saw. The factors influencing the rock hardness include the
cohesion forces, the hardness of the constitutive minerals, homo-
geneity, and the water content of rock. Hardness is a good index
of all the above mentioned elements of the rock material. One of
the most common and useful indices for evaluating the hardness
of a rock is the Mohs hardness scale. This index was chosen as a
hardness index in the clustering system. The mean hardness per
dimension stone is computed on the basis of the contained miner-
als’ hardness using the following Eq. (2) [31]:

Mean Hardness ¼
Xn
i¼1

Mi � Hi ð2Þ

where Mi, Hi and n are the mineral amount (%), Mohs hardness, and
the total number of minerals in the dimension stone, respectively.
Table 4 shows the mean Mohs hardness for each studied dimension
stone.
Table 4
The results of laboratory studies.

Sample No. UCS SF-a YM MH
MPa N/mm GPa n

A1 Hajiabad Travertine 61.5 0.04 21.0 2.90
A2 Darebokhari Travertine 63.0 0.08 23.5 2.95
A3 Atashkoh Travertine 62.8 0.04 22.8 2.80
A4 Chocolate Travertine 54.5 0.05 14.5 2.20
A5 Abbas Abad Travertine 67.0 0.04 27.0 2.70
A6 Takab Travertine 60.0 0.02 20.0 2.60
A7 Azarshahr Travertine 53.0 0.04 15.0 2.90
A8 Khalkhal Travertine 50.5 0.03 16.4 2.60
A9 Harsin Marble 71.5 0.06 26.0 4.30
A10 Kerman Marble 72.0 0.06 32.0 4.00
A11 Ghorveh Crystal 65.0 0.17 25.0 3.80
A12 Laybid Crystal 63.5 0.15 23.5 3.90
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Considering to the rock behavior during the fracture process,
especially in sawing, how rocks reach the failure point has a great
effect on the sawability. Young’s modulus is the best scale for the
rock elasticity is based on ISRM suggested methods [30]. In this
clustering system, the tangent Young’s modulus at a stress level
of 50% of the ultimate uniaxial compressive strength is utilized.
The results are shown in Table 4.
4. Differential evolution (DE) algorithm

One of the most dynamic computing branches is the soft com-
puting. Soft computing includes a wide spectrum of methodologies
based on biological sciences, neural systems structures, motions,
and collective and social behaviors of the biological species. In fact,
soft computing analyzes scientific and complex problems in the
engineering world using natural systems [32–39]. Meta-heuristic
algorithms as a branch of soft computing have a significant role
in optimizing and solving problems under uncertain conditions
[40–43]. Differential Evolution (DE) algorithms are among meta-
heuristic algorithms which show very proper performance in the
optimization of engineering problems. DE algorithms were intro-
duced by Storn and Price in 1995 and obtained the first rank in
the IEEE optimization competitions [44]. This algorithmworks ran-
domly and begins the optimization process by creating an initial
population and a series of suggested responses. DE gives all the
responses an equal initial chance; then by creating the next gener-
ation (the next response), it compares the responses with the ini-
tial ones and selects the best one. In the DE algorithm, there are
four operators which conduct the optimization process, including
initialization, mutation, crossover and selection, respectively
[45,46]. In fact, the optimization process in this algorithm starts
by creating a series of initial generations and then the merits of
the produced responses are evaluated and fitted based on the
objective function. One of the remarkable and interesting points
in this algorithm is that it works like the genetic algorithm in terms
of generating initial responses, but its main difference with the
genetic algorithm and other meta-heuristic ones is the order of
operators, i.e. in this algorithm, first mutation operator and then
the crossover operator work. As mentioned, the main stages are
introduced as follows [47–49]:

1: Initialization of Population
2: Mutation
3: Crossover
4: Selection
5: This loop repeats until the stop conditions are achieved such
as the desired precision level and maximum iteration.

In the first step, DE is started from an initial set of solutions
called the initial population produced by Eq. (3):

Xi0 ¼ XMin þ di XMax � XMin½ �
i ¼ 0;1;2;3; ::::;NP

ð3Þ

where XMin and XMax demonstrate the lower and upper bounds of
the parameter vectors Xi0, respectively. di is a uniformly distributed
random number that ranges between 0 and 1. Also, NP introduces
the number of population.

In the mutation section, the search space is expanded and a
mutant solution vector Vig is obtained at generation g by Eq. (4)
and must also satisfy xr1 ;g; xr2 ;g; xr3 ;g r1–j r2 – r3 – i.

Vig ¼ xr1 ;g þ F xr3 ;g � xr2 ;g
� � ¼ 0;1;2;3; ::::;NP ð4Þ

where F is the scaling factor that ranges between 0 and 1. In addi-
tion, the amplification of the differential variation is controlled by F.
xr1 ;g; xr2 ;g and xr3 ;g are the solution vectors and are randomly chosen.
Also, i is the index of current solution.

In the next step, the creation of the trial vector (Uj,i,g) is carried
out by the crossover operation through combining the mutated
vector (Vj,I,g) and target vector (Xj,I,g) based on Eq. (5).

Uj;i;g ¼
Vj;i;g Rj � CR

Xj;i;g Otherwise

�
ð5Þ

where CR is the crossover constant and Rj indicates a randomly
selected real number at the interval [0,1] and j shows the jth com-
ponent of the corresponding array.

In the selection step, the next generation is selected between
the trail vector and the corresponding target vector. Finally, it con-
tinues to reach the most optimized response.

DE algorithm is used in many engineering and industrial
designs due to its high compatibility and flexibility in different
complex problems. For the optimal design of water distribution
networks, meta-heuristic algorithms were used by Suribabu. He
studied and investigated DE algorithm in comparison with other
algorithms and the obtained results showed higher superiority in
terms of optimal design of water distribution networks [50]. In a
study conducted by Gurarslan and Karahan, a model was provided
for solving problems of groundwater-pollution-source identifica-
tion. First, the numerical simulations were performed for the flow
and pollutant transport in the groundwater. Next, the optimization
was done using DE algorithm. The obtained results in this study
were more precise and effective than those of other researches
[51]. In a case study conducted by Atashnezhad et al, the porosity
prediction was investigated using data from three offset wells in
Alberta, Canada. The obtained results not only had high precision,
but also were creative and included estimation and evaluation
using the collected drilling data in the real time. Finally, the appro-
priate performance results of DE algorithm were shown in this
study [52].
5. Self-Organizing map (SOM) algorithm

Engineers like neurophysiologists have a significant contribu-
tion in developing neural networks. Due to the complex biological
structure of brain in the data and concept analysis and process,
brain is used as a pattern for creating a complete system and differ-
ent neural computing techniques. Artificial neural networks have
been significantly developed in recent years both in theoretical
and practical researches, including image processing, signal pro-
cessing, and pattern recognition in control systems [53–62]. There
is a wide spectrum of artificial neural networks’ users in the
science and other fields. A computing model was developed by
Khandelwal and Singh based on artificial neural networks and
evaluated and provided a prediction model for blast-induced
ground vibration in coal mines in India [63]. In researches con-
ducted by Trivedi et al, Flyrock distances were predicted using
two models of artificial neural network (ANN) and multi-variate
regression analysis (MVRA). The exact results obtained from this
research showed the superiority of artificial neural network over
the multi-variate regression analysis [64]. In a study conducted
by Khandelwal et al, the dump slope stability of a coal mine was
studied and evaluated using artificial neural networks. In this
research, factors affecting the slope stability such as geotechnical
properties and hydrological conditions were considered. Finally, a
comparison was done between the results of ANN and numerical
modeling based on the value of factor of safety, showing the supe-
riority of artificial neural networks [65]. Artificial neural networks
include a wide spectrum of neural computing techniques. A special
class of neural computing methods is Kohonen’s method which
was provided in 1980s from the biological neural network and
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based on the regular maps found in the brain cortex [53,66]. One of
the data analysis principles in this algorithm is the reduction of
computations and complexities in the data analysis. In this algo-
rithm, based on the mutual behavior of some of the neural cells
normally placed together with a flat topology, a self-organizing
network is implemented. Kohonen method or Kohonen model
algorithm or self-organizing map (SOM) is a non-supervised algo-
rithm which is designed in three phases, including competition
phase, cooperation phase and adaptation phase, respectively,
although unlike other neural networks, SOM algorithm is generally
formed by two layers, including input layer and Kohonen layer or
competition layer [53,67]. This algorithm uses a network to predict
the probability density function of the input space. In fact, it keeps
the topological structure of the input space [68]. Fig. 6 shows an
overall structure of SOM algorithm based on which, Kohonen layer
or competition layer has m node which could be organized in a
one-dimensional or two-dimensional layer.

In the algorithm optimization process, the winner neuron is
selected based on the similarity criterion which is usually the
Euclidean distance, then the weight of the winner neuron is
adjusted based on Kohonen rule, i.e. the input data of each node
in the input layer is attached to the competition layer from every
xi = (for i = 1,2,3,. . .,n) with a determined weight equal to wtj =
(for j = 1,2,3,. . .,n). For this reason, a learning rate (g) is defined
and the coefficient of g controls the moderation rate that ranges
between 0 and 1 by the following Eq. (6):
g tð Þ ¼ g0exp � t
s

� �
ð6Þ
where s is exponential decay time constant and g0 is initial value.
Also, t is the number of times of learning.

This process is repeated until it reaches a special criterion. For
example, certain numbers of iterations could be one stop criterion.
The weight vector of the excited neuron is updated. Updating pro-
cess of the algorithm is shown in the Eq. (7) [67,68].
wij t þ 1ð Þ ¼ wij tð Þ þ g xi �wij tð Þ� � ð7Þ
If t as the number of times of learning is equal to the learning

number T, the learning process stops and completes the indepen-
dent survey, otherwise this loop repeats and returns to Eq. (7).
Fig. 6. A typical structure of self-organizing networks.

Table 5
The Control Parameters of Differential Evolution algorithm.

Maximum Number of
Iterations

Population
Size

Crossover
Probability

Minimum
Acceptable Error

500 75 0.2 0.00001
6. Clustering modelling based upon physical and mechanical
characteristics

6.1. Modelling using Differential Evolution

One of the most influential applications of DE algorithm is in the
area of data mining for optimizing the objective function’s perfor-
mance process [69]. In fact, the aim is to create a powerful an accu-
rate optimization and analysis system based on the DE algorithm.
Therefore, in this paper, a dataset for 12 rock blocks based on four
physical and mechanical criteria of rocks are considered for analyz-
ing the electrical current by the rock cutting machine, including
the UCS, YM and SF-a which were fitted and analyzed by the com-
bination of Lloyd’s algorithm (k-means) as an objective function
and DE meta-heuristic algorithm as a system optimizer algorithm.
Furthermore, for implementing this optimization system, the com-
bination of algorithms from MATLAB software is used as one of the
most powerful optimization software in different areas such as
artificial intelligence. Lloyd algorithm (k-means) is introduced
based on Eq. (8), in which mj is the center of cluster and k is the
number of clusters. In addition, xi is data in a set in which the value
of i is i = [1,2,3,. . .,n]. d indicates the Euclidean distance of the cen-
ter of cluster from the center of each member [70]. The purpose of
this clustering is to reduce the Euclidean distance (increase simi-
larity) between members of a cluster and increase the Euclidean
distance (reduce similarity) between members of different
clusters.

Obj:Function ¼
Xn

i¼1

min
1�j�k

d xi;mj
� � ð8Þ

As mentioned, k-means algorithm is considered as an objective
function for DE optimization algorithm. In fact, although the Lloyd
algorithm may be highly used in simple data sets, there are some
drawbacks, including the determining of the precise and accurate
Euclidean distance in large or complex data sets. Hence, DE algo-
rithm as a meta-heuristic algorithm can be a reliable technique
for the training and optimization k-means algorithm. Therefore,
considering the nature of complex problems and big datasets and
also its full compliance with DE algorithm concepts, after the anal-
ysis, a precise and accurate clustering is obtained. The accurate
determination of the algorithm’s control parameters has a signifi-
cant role in the convergence process and increases the precision
level of optimization responses. Thus, control parameters for DE
algorithm were adjusted and considered based on the previous
studies using the certified experts’ opinions, as seen in Table 5
[51,52].

After the adjustment of control parameters, data were evalu-
ated and analyzed in 2, 3, 4 and 5 classes and the most appropriate
and exact optimization process was obtained for the triplet class.
The distance of each criterion from the center of clusters is shown
according to Table 6. Additionally, the distance of each data under
study from each class and clustering of each data are shown in
Table 7.

According to the results obtained from the Euclidean distance of
each criterion under evaluation in this analysis from the center of
clusters in Table 6, it is determined that SF-a has the highest
Table 6
Distance of clusters’ centers from criteria with 3 clusters.

The First Class The Second Class The Third Class

UCS 1 0.84 0.89
Mh 0.95 0.63 0.89
YM 0.97 0.63 0.74
SF-a 0.33 0.23 0.91



Table 7
Optimization results of clustering by Differential Evolution algorithm.

Samples No. Optimum partition Clusters

First Class Second Class Third Class

A1 0.457 0.055 0.727 2
A2 0.41 0.298 0.456 2
A3 0.423 0.095 0.704 2
A4 0.721 0.235 0.79 2
A5 0.368 0.235 0.743 2
A6 0.557 0.111 0.847 2
A7 0.638 0.194 0.774 2
A8 0.659 0.182 0.816 2
A9 0.171 0.462 0.571 1
A10 0.032 0.514 0.643 1
A11 0.71 0.832 0.103 3
A12 0.604 0.712 0.042 3

Table 8
The Control Parameters of SOM algorithm.

Maximum Epoch
(Iterations)

InitNeighbor (initial
neighborhood size)

Cover Steps (number of training
steps for initial covering of
the input space)

100 3 30
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impact on the samples of the first and second classes and the UCS
has least impact the first and second classes, respectively. Further-
more, YM and Mh have an equal impact on the rock samples under
evaluation in the first and second classes, respectively. In contrast
with these classes, in the third class, SF-a has the least significance
and impact, while YM has the highest significance and impact on
the samples of this class. Also, Mh and UCS have an equal impact
on the samples under study in this group. Table 7 shows the opti-
mized Euclidean distance between the centers of each cluster from
each rock sample, according to which, the first 8 research cases are
placed in the second class and samples A9 and A10 as well as A11

and A12 are placed in the first and third classes, respectively. The
process of optimization based on iterations is depicted in Fig. 7.
According to Fig. 7, the process is reached to the desired precision
level from 360th iteration and it is fixed from 360th to 500th
iteration.

It is worth mentioning that the best cost is the fitness value of
objective function and it is a non-dimensional term. Fig. 6 shows
this value in each iteration. Also, the absolute value of the differ-
ence between the two corresponding best costs is defined as the
error. According to Table 5, the convergence condition of algorithm
about the minimum acceptable error was 0.00001 which is
obtained from 360th iteration and is fixed until the latest iteration.
Consequently, it can be concluded that algorithm was converged,
because the convergence condition of algorithm was reached.
6.2. Modelling using Self-organizing map (SOM)

As mentioned before, control parameters have a key role in the
algorithms’ convergence process leading to the determination of
more precise and proper responses. In fact, the selection and
Fig. 7. The best cost per iteration by DE algorithm.
adjustment of these parameters have an experimental process
and depend on some issues i.e. the number of studied samples,
the complexity of the problem and the suggestions of experienced
experts, and previous studies. Considering the opinions of experts
and previous studies [54,67] in this modelling, for determining a
robust and accurate intelligent modelling system using self-
organizing map, some of the networks’ control parameters are
adjusted, as mentioned in Table 8 [67,68].

After adjusting control parameters and inserting data under
study to perform clustering in MATLAB software, data are analyzed
for doublet, triplet and quartet classes which in this optimization
process based on the clustering by the SOM algorithm, the most
appropriate clustering belongs to the triplet class. Fig. 8 shows
the number of neurons (classes) and the number of samples. For
instance, the first neuron could attract 2 samples, and the second
and third have attracted 6 and 4 samples, respectively. For more
transparency, according to the obtained results from this cluster-
ing, Samples A1, A3, A4, A6, A7 and A8 in the second class, and sam-
ples A9 and A10 are placed in the first group, also samples A2, A5, A11

and A12 are placed in the third one. It is worth noting that x and y
axes just indicate the Euclidean distances in Fig. 8.

In Fig. 9, the effect of each physical and mechanical properties
of rocks under study on each class is shown. According to the col-
orbar in Fig. 9, the darkness of colors shows the high influence of
the parameter on that class, i.e. if the colorbar is darker, the Eucli-
dean distance between the center of cluster and the criterion is
lower. Based on the images obtained from data analysis, it is obvi-
ous that four criteria of SF-a, YM, Mh and UCS have the least impact
on the sample attracted by the second neuron (second class)
because the color of the second class shows a dark color, meaning
that these four parameters have the least Euclidean distance with
the center of the second class. In addition, three parameters of YM,
Mh and UCS have the lowest impact on the samples of the first
class. While, SF-a has the lowest impact on the samples of the third
Fig. 8. The clustering with 3 classes.



Fig. 9. The impact of each creation’s weight on 3 classes.
Table 9
The Comparison of results of two modellings and measured electrical current.

Sample
No.

DE
Clustering

SOM
Clustering

Measured
Electrical
Current (A)

Measured Average
Electrical Current (A)

A1 2 2 83 83.5
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class. Hence, there is a considerable point indicating that in this
analysis, the darker the color of classes (neurons) is, the most irri-
tability of that class (neuron) by the desired criteria will be.
A2 2 3 86
A3 2 2 85
A4 2 2 84
A5 2 3 88
A6 2 2 83
A7 2 2 79
A8 2 2 78

A9 1 1 95 94
A10 1 1 93

A11 3 3 89 90
A12 3 3 91
7. Discussion

Two soft computing techniques including the DE and SOM algo-
rithms were used to investigate the performance of the gang saw
and effective parameters on cutting. In addition, the models with
the four physical and mechanical properties of 12 carbonate rocks,
including the UCS, Mh, SF-a and YM were studied. The results
obtained by using two clustering techniques are shown in
Fig. 10. It is found that there is a slight difference between the final
Fig. 10. The structure of clustering proc
obtained results from the two algorithms. Although, the outputs of
the DE algorithm has more details than the SOM algorithm, which
results in a reliable system modeling technique for the better eval-
uation of gang saws.

In this section, for validating the results of modellings, a com-
parison is made among the DE clustering, SOM clustering and the
measured average electrical current of the gang saw. The result
of comparison is shown in Table 9. In fact, the columns of the DE
clustering and SOM clustering show each sample class.

Furthermore, the following remarks can be evaluated and
concluded:

- With respect to Table 9, all samples are classified in three
classes by the two clustering algorithms, and also the first clus-
ter is A9 and A10 as marble types with measured electrical cur-
rent for above 93 (A). The second cluster is from A1 to A8 as
travertine types with the measured electrical current from 78
(A) to 88 (A). In the last class, the samples as crystal types have
measured electrical current equal to 89 and 91. The results of
comparisons show that the DE algorithm was successfully used
to classify 12 carbonate rocks. In fact, travertine rock samples of
A1–A8, crystal rock samples of A11 and A12 and marble rock sam-
ples of A9 and A10 were classified in three groups with the aver-
age electrical current of 83.25 (A), 90 (A) and 94 (A),
respectively. While, there are 2 errors in the SOM algorithm.
A1 and A8 as travertine rock samples with 86 (A) and 88 (A)
are classified in third cluster as crystal rock samples with the
average electrical current of 90 (A).
ess by the DE and SOM algorithms.
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- In Marble and Travertine classes with the average electrical cur-
rent of 94 and 83.25 (A), respectively. SF-a is the most effective
factor, which contributes greatly to the values of electrical cur-
rent in gang saws. Also, YM plays a key role in the values of
electrical current in Crystal class. It’s worth mentioning that
the exact amount of these results demonstrated in Table 6 by
the DE algorithm, however these results obtained from colorbar
and Fig. 10 using the SOM, which indicated a range of values.
For example, in the second class there is no salient difference
between the impact of parameters, and determination of them
is difficult based on colorbar.

- DEalgorithmis a reliable systemmodeling technique for evaluat-
ing electrical current with highly acceptable degrees of accuracy
and robustness (with the accuracy rate of 100%). While, the
results of the SOM algorithm describes its low capability in the
evaluationof electrical current (with theaccuracy rateof83.33%).

- The results of this study can be very useful and effective for
owners of rock industry and designers for a more reliable plan-
ning and design based upon the electrical current. Finally, it can
be concluded that due to the multiplicity of factors affecting the
cutting process and the performance of gang saw, these two soft
computing techniques can be applied for the evaluation of gang
saw performance.

8. Conclusions

The electrical current of gang saws is one of the important costly
factors in the rock cutting industries. One of effective strategies for
reducing costs and increasing the income obtained from sales is to
increase the efficiency and reduce the amount of electrical current
by the rock cuttingmachines. Thefirst step in this arena is to identify
the factors influencing the amount of electrical current by the cut-
tingmachine andmeasure this amount during the process of differ-
ent dimension stones. The studies conducted in this research
attempted to address the clustering of dimensional stones from
the perspective of the amount of electrical current consumed by
the gang saw using the soft computing and considering the physical
and mechanical properties, including the UCS, Mh, SF-a and YM.
Results obtained from studies after adjusting control parameters
and inserting data relating to 12 carbonate rock samples inMATLAB
software showed that samples were accurately classified into three
classes with the low, average and high electrical current amounts.
Consequently, it is concluded that the DE algorithm can accurately
evaluate and classify carbonate rock samples from the electrical cur-
rent perspective due to having physical and mechanical properties.
Considering the full compliance of clustering results with the mea-
sured electrical current, this study demonstrates that the DE and
SOM algorithms are applicable for evaluation of electrical current;
however, DE algorithmcanbe better applied basedonhigher perfor-
mance capacity. Future studiesmust focus on comparing theDE and
SOMclustering processes to othermeta-heuristic algorithmswithin
the framework of this application, including the Genetic algorithm
(GA), Artificial Bee Colony (ABC) algorithm and machine-learning
approaches such as support vector machines (SVM).
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