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This paper presents a comparative study of Multilayer Feedforward Perceptron Neural Network which is
trained with Back Propagation (MLP-BP) and also using hybrid training using Genetic Algorithm (GA)
(MLP-GABP), and Support Vector Machine (SVM) classifiers to classify the fault conditions of a centrifugal
pump. Continuous Wavelet Transform (CWT) with three different wavelet functions (Morlet, db8 and
rbio1.5) is used to extract the features. GA is also used to optimize the number of hidden layers and neu-
rons of MLP. From the results obtained, MLP-BP has shown better performance than MLP-GABP and SVM
using a lower number of features. SVM has performed better using polynomial kernel function using a
smaller number of features and parameters. A centrifugal pump test rig has been specifically designed
and built for this work in order to create the desired faults.
� 2019 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Centrifugal pumps at industries are widely used for different
and numerous applications and the continuous of production relies
on the good condition of the machines. However, faults can still
occur and can affect the performance of the machines, and such
faults have to be detected at their early stages to avoid any catas-
trophic failures. The condition monitoring of such machines can be
implemented using the traditional methods like the overall vibra-
tion analysis and up to the automatic ones, where artificial intelli-
gence get involved for the goal of classifying the different machine
faults precisely. In this present work, artificial intelligence is pro-
posed to be integrated along with a feature extraction method
based on Continuous Wavelet Transform (CWT) and Genetic Algo-
rithm (GA) based optimization and training.

There have been many previous works on fault diagnosis of
rotating machines including centrifugal pumps. By emphasizing
on the major works on the fault diagnosis of centrifugal pumps
based artificial intelligence, there have been many methods
applied for the centrifugal pump based fault diagnosis such as a
work by Sakthivel et al. [1] performed an experiment to classify
faults of a mono-block centrifugal pump. Five faults were consid-
ered in this work (bearing, seal, impeller, bearing and impeller
together, and cavitation faults). Feature extraction was applied
using statistical analysis and classification was implemented using
four methods, viz. decision tree, Naïve Bayes, Bayes net, and K-
Nearest-Neighbor (KNN). The number of features was reduced
using a dimensionality reduction technique to reduce data process-
ing load and optimize speed of classification. Results showed that
the decision tree classifier outperformed other classifiers, with suc-
cess rate of 100%. Automatic fault classification has been accepted
and investigated by many machinery fault diagnostic methods in
order to improve precision and minimize mistakes that were
caused by human interpretation [2]. Selection of the error function
and optimization method is essential that during training of pat-
terns, the error function is minimized and weights are updated.
There are many learning algorithms which can be used for MLP;
the most popular ones are Delta and Back Propagation [2].
Muralidharan and Sugumaran [3] presented the application of
the decision tree (J48 algorithm) in fault diagnosis of centrifugal
pumps. This algorithm was applied as a fault classifier along with
the features that were extracted using discrete wavelet transform
families (DWT). Different families of DWT have been applied for
the classification and it was observed that reverse bio-orthogonal
wavelet (rbio1.5) is an appropriate choice for fault diagnosis of
centrifugal pumps. In this study, DWT has been tested and applied
successfully as a technique for feature extraction. It was concluded
that using DWT in feature extraction and using J48 algorithm for
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classification was a successful approach, with success rate of
99.84%. However, it should be noted that this study included only
a limited number of faults. Muralidharan et al. [4] proposed sup-
port vector machine (SVM) for the classification of healthy and
faulty conditions (bearing defect, impeller damage, bearing and
impeller damage together and cavitation) of a mono-block cen-
trifugal pump. Different statistical parameters and histogram fea-
tures were extracted from vibration signals using CWT and
different wavelet functions or families were applied at different
levels and calculated to identify the best wavelet that would be
applied for the fault diagnosis and feature extraction. Farokhzad
et al. [5] proposed an AI system for fault classification of centrifugal
pumps using a decision tree method for training and linear regres-
sion model for classification. Vibration signals of four conditions
were extracted, viz. healthy, bearing fault, seal fault, and impeller
fault. Using FFT for feature extraction, 10 features were extracted:
average, maximum, minimum, range, standard deviation, energy,
moment1, moment2, moment3, and moment4. The total classifica-
tion success rate was 94.16%. Farokhzad [2] presented the applica-
tion of Adaptive Network Fuzzy System (ANFS) for fault
classification of centrifugal pumps. Features were extracted using
FFT and the following statistical parameters were obtained: mean,
standard deviation, sample variance, kurtosis, skewness and root
mean square. A classification success rate of 90.67% was achieved,
which is not particularly high compared to other AI systems.

Farokhzad et al. [6] presented application of ANN for the fault
diagnosis of a centrifugal water pump. The proposed model was
multilayer perceptron neural network (MLP) and back propagation
(BP) learning algorithm. Four different conditions were tested
which are normal condition, impeller fault, seal fault, and cavita-
tion conditions. Features were extracted from the vibration signals
using FFT and eleven statistical features were extracted which are:
mean, standard deviation, variance, skewness, kourtosis, crest fac-
tor, slippage, root mean square (RMS), and the fourth, fifth and
sixth central moments. The BP has already been effectively used
by numerous researchers to solve some challenging and various
problems by training ANN in a supervised method and this study
mentioned that BP has been widely applied as a learning algorithm
along with MLP. Chen [7] demonstrated the application of
partially-linearized neural network (PNN) for the centrifugal pump
conditions classification, wavelet transform using a Reverse Bior
wavelet function (rbio2.8) for the feature extraction, and rough
set for feature selection. Four conditions were considered in this
study: healthy, misalignment, unbalance, and cavitation. Classifi-
cation success rates ranged from 83.7% for impeller problem to
99.9% for misalignment, depending on the condition and frequency
of vibration. Wang and Chen (2007c) [8] presented a study for fault
diagnosis of centrifugal pumps, in which a fuzzy neural network
known as a partially-linearized neural network (PNN) was pro-
posed for fault classification, wavelet transform was used for fea-
ture extraction. Classification success rates of 99%, 99%, more
than 98%, and 98% were achieved for the healthy, misalignment,
cavitation and impeller conditions using recomposed signals. This
study proposed different methods for feature extraction, selection
and then classification. Muralidharan and Sugumaran [9] pre-
sented a study for a mono-block centrifugal pump fault diagnosis
using two classifiers, namely, SVM and Extreme Learning Machine
(ELM) to diagnose five different conditions (normal, faulty bearing,
faulty impeller, faulty bearing and impeller together, and cavita-
tion). DWT is used to extract the features using different wavelet
mother functions. The best performance is achieved using ELM
with 99.84%, and SVM with 98.84%.

As per as the previous works, this present work is aiming to
contribute with a novel method by integrating genetic algorithm
along with AI, as there has been no previous work that has intro-
duced GA with AI based centrifugal pumps fault diagnosis. In addi-
tion, the number and type of faults have considered carefully
according to the common faults in industries.

The performance is determined in terms of the number of hid-
den layers and neurons in the neural network, number of features,
and the training and kernel methods. This paper is divided into
four parts including this introduction. Section 2 presents materials
and methods including MLP-BP, SVM classifiers, GA, the experi-
mental setup, and the method applied, procedures for feature
extraction, and the classification methods. Then, Section 3 presents
the results and discussion. Finally, a conclusion with remarks and
recommendations is given in Section 6.

2. Proposed method

This paper investigates the classification performance of two
artificial intelligence methods: MLP-BP along with GA based train-
ing and selection and SVM, as they have illustrated good perfor-
mance with rotating machine fault diagnosis and classification
[3,10,11,12] and this present work intends to compare their perfor-
mance using a greater range of faults with seven centrifugal pump
conditions, namely, healthy (non-faulty); five mechanical faults:
misalignment, imbalance, faulty bearing, faulty impeller and
mechanical looseness; and a hydraulic fault: cavitation. The proce-
dure consists of three main stages, namely, data collection, pre-
processing and extraction, and fault classification. Classification
and diagnosis of the centrifugal pump condition is implemented
using two artificial intelligence classifiers: MLP and SVM. MLP is
implemented along with its traditional learning algorithm (Back-
Propagation) and is also compared with a hybrid training algo-
rithm (MLP-GABP). The network hidden layers and neurons are
selected manually and also optimized using GA with comparable
results. The flow chart of the diagnosis methods and training algo-
rithm is shown in Fig. 1.

3. Artificial intelligence

3.1. Multilayer Perceptron with Back Propagation

Multilayer Perceptron (MLP) is inspired initially from the sim-
ple artificial neuron network which represents a linear mapping
(without a hidden layer) between the input and output [13] as
illustrated in Fig. 2.

From Fig. 2, Inputs are denoted by Xi = [x0,x1,x2,x3,xn], w0 is a
new input which known as bias = +1, weights are indicated as
Wi = [w0, w1, w2, w3, wn], and Yi is the output. S is the sum of pro-
duct which is given by:

S ¼
Xn
1

XiWiþ bias ð1Þ

where bias is another input (x0), and added to the sum of product
(S) to provide more freedom and flexibility with the decision
boundary. Hence, S can be presented by:

S ¼ ½x0w0 þ x1w1 þ x2w2 þ x3w3 þ xnwn� ð2Þ
The training process of BP can be started by multiplying the

input vectors with the weights, as the biases and weights are
summed in order to calculate the actual outputs. The desired out-
puts have to be determined and then compared with the actual
outputs, continuing evaluation and weight modification until the
process approaches the desired MSE value.

MSE is also known as training or network error and represented
mathematically as:

E ¼ 1=n
Xn

i¼1

ðti � yiÞ2 ð3Þ



Fig. 1. Flow chart of diagnosis methods and training algorithms.

Fig. 2. The artificial neural network.
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where n is the total number of inputs, i known as the index of sum-
mation, ti is the desired (target) output from the output layer, and yi
is the actual output in the output layer.

3.2. Support vector machine

SVM is a curve square optimization problem which makes it
able to provide a globally optimal solution. The linear classifier
(hyperplane) is expressed as:

WTX þ b ¼ 0 ð4Þ
If class A is assumed to be above the hyperplane, then A greater

than 0 and indicated as +1 and given by:

WTX þ b ¼ þ1 ð5Þ
And if class B < 0, it is denoted by �1:

WTX þ b ¼ �1 ð6Þ

where WT is the weight vector, X is the input and b is the bias.
A decision function can be used to separate two different classes
(i.e. A and B) and given by [14]:

f xð Þ ¼ signð W:Xð Þ þ bÞ ð7Þ
Using Eq. (4) and Eq. (7), the decision function can be given by:

f ðxÞ ¼ sign
�PL

i¼1
v i ðX:XiÞ þ b

�
ð8Þ

where L is the number of training data and v i is applied as weight-
ing factor to identify the suitable support vectors from the given
inputs.

SVM can separate and classify different classes linearly. How-
ever, it is not always guaranteed that a linear boundary is able to
classify the two different classes. Therefore, in order to classify
the two classes with better margin, SVM can map the non-linear
training data into a higher dimension level which is known as
the feature space s using a transformation U (XÞ and s is given
by [15]:

s ¼ U Xð Þ ð9Þ
where X 2 RN ands 2 RQ . Then by substituting Eq. (9) in Eq. (8), the
decision function can be defined as:

f xð Þ ¼ sign
�XL

i�1

v i U Xð Þ:U Xið Þð Þ þ b
�

ð10Þ

Moreover, to provide such transformation into non-linear clas-
sification, a kernel function is used k X:Yð Þ which is given by [14]:

k X:Yð Þ ¼ U Xð Þ:U Yð Þ ð11Þ
where k indicates the kernel.

By substituting Eq. (10) in Eq. (11), the decision function for the
non-linear classification can be given by [14]:

f ðxÞ ¼ sign
�PL

i¼1
v i k ðX:XiÞ þ b

�
ð12Þ

There are different kernel functions that can be used with SVM
for the purpose of non-linear classification, and such kernel func-
tions such as;
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Polynomial kernel function and given by [14]:

k X:Yð Þ ¼ k X:Yð Þd ð13Þ
where d indicates to the dimension.

RBF and given by [10]:

k X:Yð Þ ¼ expð�kX � Yk2=2r2Þ ð14Þ
where r is the width parameter of RBF kernel function.

Sigmoid and given by [10]:

k X:Yð Þ ¼ tanhðj X:Yð Þ þHÞ ð15Þ
where j is known as gain parameter and H is offset parameter of
sigmoid kernel function.
Fig. 3. The Training steps using GA.

Table 1
Values and parameters of GA based optimization and training.

GA based training

No. of
generations

Size of
population

TolFun Mutation & crossover options

1000 1000 1E-60 Mutation-Gaussian Crossover-
scattered

GA based optimization

No. of
generations

Size of
population

TolFun Mutation & crossover options

40 10 1E-60 Mutation-Gaussian Crossover-
scattered

Fig. 4. Experime
3.3. Genetic Algorithm based training and optimization

GA and BP algorithms are tested and investigated for the train-
ing of MLP where its weights have to be modified and updated. It is
remarked that this hybrid training method is applied with ANN for
the first time as it has not been done before with any fault diagno-
sis research on centrifugal pump.

Firstly, MLP is trained using GA with 1000 generations and 1000
population size, where GA works to minimize the error, and the
training can be then terminated after reaching the minimum error
(i.e. the best fitness). Training steps using GA can be illustrated in
Fig. 3. Secondly, BP completes the training by minimizing the error
as well.

GA is also applied to optimize the architecture of the neural net-
work to select the optimal number of hidden layers and neurons
using MATLAB. The GA based selection and optimization has been
developed where the range of constraints and parameters are
searching within the range from 1 to 4 layers with up to 30 neu-
rons per layer, 20 generations, and population size is 10 individuals
to avoid long computational time. Table 1 shows the selected val-
ues and parameters for the GA based optimization and training.

4. Experimental setup and data collection

The centrifugal pump experiment has been designed and
assembled where it consists of several parts including: centrifugal
pump which is coupled with a motor (Saer company, Italy, model:
NCBZ-2P-50-125C, 2.2 kW, 3-phase, 420 V, head 8–17 m and flow
rate 500–1000 L/min), control panel with speed controller (Schnei-
der model Variable Frequency Drive (VFD) with speed controller
and display screen, switch (OFF/ON) and emergency shutdown),
digital turbine flow meter (USA-TM model, 2 in. diameter), pres-
sure gauges, vacuum pump and clear PVC pipes; and spare parts:
a rolling element bearing, mechanical seal, gasket and impeller. A
data acquisition system (DAQ) and accelerometers from National
Instruments (NI) are used. The DAQ system includes SCXI-1000
and SCXI-1530 models with 4 input channels. The accelerometer
model is IMI 621B40 with sensitivity of 10 mV/g and frequency
range from 3.4 to 18 kHz for (±10%) and 1.6 to 30 kHz for (±3
dB). Fig. 4 shows the centrifugal pump experimental setup. CPU
with 2.20 GHz, RAM 8 GB and MATLAB (version 2012 a).

The vibration signals are measured under healthy and faulty
conditions. Firstly, the signal of normal condition is acquired when
the pump is healthy, without any faults. The faulty conditions are
ntal test rig.
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divided into two main categories: five mechanical faults (bearing,
misalignment, unbalance, impeller, and looseness), and a hydraulic
fault (cavitation). These faults are created and simulated one by
one. Signals are acquired from the pump using an accelerometer
which is mounted on its bearing housing. A DAQ is used to read
the signals, where the signals are amplified and noise filtered out
before digitization and filtering is used with a bandwidth of
2.5 kHz; and then transmitted to a computer which is equipped
with a digital/analogue converter card (D/A) in order to convert
the analogue signals to digital. Data are acquired for a period of
2.4 s at a sampling rate of 16 kHz, resulting in acquisition of
38,400 samples. Averaging is applied with 10 as number of aver-
ages. Finally, these signals are captured via LabVIEW software
where raw signals are saved in order to use them in the second
stage for further processing. All data of the pump conditions are
acquired at a speed of 20 Hz (1200 RPM) [16,17,18,19].

5. Feature extraction

CWT is similar in concept to the Fourier Transform, but uses
families of wavelets as its basis functions instead of sine and cosine
functions; a family of wavelets consists of two parameters (scale
and translation); hence the signal will be represented as a two
dimensional time-scale plane, instead of only one dimensional
plane, thus addressing an important limitation of the Fourier
Transform [20], and CWT is given by:

Wx aþ b;uð Þ ¼ a
�1
2

Z
x tð Þu� t � b

a

� �
dt ð16Þ
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Fig. 5. The effectiveness of each pa
where Wx is the wavelet transform that is linked with the two
parameters; a which is the scale parameter, and b is the time
parameter, u is wavelet function, and x tð Þ is the original signal.

In this work, CWT is applied with Morlet wavelet function, as
Morlet is well known for its shape similarity with the rotating
machine fault signals [11,12,21]. The vibration data are captured
from the pump for seven cases: the healthy pump, and six different
fault conditions. In each case, a signal of length 34,800 samples is
recorded. These signals are each divided into 8 segments, of length
4800 samples.

From each of the 8 segments, the wavelet transform produced
30 features (the wavelet scale). From these 240 features, 6 param-
eters (Kurtosis, RMS, Peak, Crest Factor, Shape Factor and Impulse
Factor) are computed for the signal from each case. All of these fea-
tures are used to train the MLP-BP. For the SVM, a smaller number
of features and parameters are selected; first using 2 parameters
and 240 features; and then with the number of features reduced
to just 60 and also 30.

The effectiveness (sensitivity) of each parameter against all con-
ditions are plotted in Fig. 5. Normally, when healthy (blue+) is the
lowest, it indicates good effectiveness of the parameter. Peak and
RMS illustrate better distribution compared to the other parame-
ters, and they can be selected as inputs for SVM.
6. Classification methods

The extracted features are used as input vectors that were for-
warded to the neural network classifier and SVM.
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Different hidden layers and neurons are tested; single layers
contain 10, 15, 20 and 30 hidden neurons, and three hidden layers
contain 10, 20 and 10 neurons respectively. Subsequently, the
number of hidden layers and neurons were optimized using GA.

Three cases are considered based on number of features, (240
normalized and non-normalized features) per condition with a
total of 1680 input features for all conditions per parameter were
forwarded to the MLP-ANN which results in a matrix of size
[6 � 1680], the second case has 60 features (normalized and non-
normalized) which results in a matrix of size [6 � 420], and the
third one with 30 (normalized and non-normalized) which results
in a matrix of size [6 � 210]. The target for training was a Boolean
matrix of size [7 � 1680] (240 features) or [7 � 420] (60 features)
and [7 � 210] (30 features).

The network is first trained using Levenberg-Marquardt (LM)
function which is a back propagation algorithm to update weights
and biases. The input vectors are divided into three datasets (train-
ing has 70%, test has 15% and validation has 15%). The target con-
sists of rows corresponding to the 7 conditions (cases) in which
seven digits-coding and each digit represents a block of size
(1xnumber of features) and is given as follows (sources): Healthy
[1 0 0 0 0 0 0], Bearing fault [0 1 0 0 0 0 0], Cavitation [0 0 1 0 0
0 0], Impeller fault [0 0 0 1 0 0 0], Misalignment [0 0 0 0 1 0 0],
Looseness [0 0 0 0 0 1 0], Imbalance [0 0 0 0 0 0 1].

SVM classification has been applied using three cases which
are 240 features (normalized and non-normalized), 60 non-
normalized features, and 30 non-normalized features which
were extracted using CWT. For the three cases, all seven cases
classification conditions are tested (i.e. all seven cases against
each other).

For the first case with 240 features (normalized and non-
normalized), SVM classification method has been applied for the
different centrifugal pump conditions using MATLAB. The SVM
has been investigated using three kernels, namely, linear, polyno-
mial and radial basis function (RBF) separately.

The second and third cases of using 60 and 30 features are
implemented using a polynomial kernel and penalty parameter C
(width) set to 3 since the polynomial kernel was shown from the
first case to be the best.
Fig. 6. (a) Matrix confusion of classification rates of 60 non-normalized features, (b)
the mean square error diagram for MLP network of 60 non-normalized features.
7. Results and discussion

7.1. MLP-BP

Classification rates using the first case (240 features) of 89.6%,
91.1%, 93.3% and 95.3% are obtained using manually selected single
layers of 10, 15, 20 and 30 neurons respectively, and an overall suc-
cess rate of 98% is scored using the three hidden layers containing
[20 10 20] neurons. However, the best overall success rate of 99.3%
and 98.2% using non-normalized and normalized features respec-
tively is achieved using GA based selection which suggested four
hidden layers containing [24 21 24 23] neurons.

Classification rates using the second case (60 features) of 98.3%
are obtained using manually selected three hidden layers contain-
ing [20 10 20] neurons, and with GA based selection as four hidden
layers containing [24 21 24 23] neurons, the best overall rate are
99.5% using non-normalized features as illustrated in Figure 7,
and 99.3% with normalized ones.

As shown in Fig. 6(a), the lower right blue square shows the
overall classification rates, where overall, 99.5% (in green) of the
classifications are correct and 0.5% are incorrect classifications.
Taking each classes’ accuracy rate (pump conditions) individually;
healthy (case 1) has an accuracy rate of 98.4%, bearing fault (case 2)
has an accuracy rate of 100%, cavitation (case 3) scored 100%,
impeller fault (case 4) has an accuracy rate of 100%, misalignment
(case 5) has 100%, mechanical looseness (case 6) has 100% and
imbalance (case 6) has shown an accuracy rate of 98.4%.

Classification rates using the second case (30 normalized fea-
tures) of 99% are obtained using three manually selected hidden
layers containing [20 10 20] neurons, and with GA based selection
as four hidden layers containing [24 21 24 23] neurons, the best
overall rate are 99.5% using normalized features and 99.5% with
non-normalized ones.
7.2. MLP-GABP

MLP-GABP illustrated lower performance comparing MLP-BP in
terms of computational time and classification accuracy rate which
is 88.5%, where as an overall, 88.5% of the classifications are correct
and 11.5% are incorrect classifications. Taking each classes’ accu-
racy rate (pump conditions) individually; healthy (case 1) has the
accuracy rate of 95.2%, bearing fault (case 2) has an accuracy rate
of 74.9%, cavitation (case 3) scored 81.9%, impeller fault (case 4)
has an accuracy rate of 91.3%, misalignment (case 5) has 91.4%,
mechanical looseness (case 6) has 94.3% and imbalance (case 6)
has shown an accuracy rate of 92.1%.



Fig. 7. Best score value and mean score versus generation.

Table 4
SVM overall performance based CWT.

Method Features Overall classification rate (%)

SVM (polynomial) 60 (non-normalized) 96.77
SVM (polynomial) 240 (non-normalized) 95.88
SVM (polynomial) 240 (normalized) 95.48
SVM (RBF) 240 (non-normalized) 94.93
SVM (RBF) 240 (normalized) 94.54
SVM (linear) 240 (non-normalized) 87.45
SVM (linear) 240 (normalized) 77.38
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Four hidden layers containing [24 21 24 23] neurons are used in
MLP as per as selection of GA and weights of neural network have
been adjusted and selected using GA and optimization is termi-
nated after 515 generations with best fitness function of
0.115476 as shown in Fig. 7. Table 2 shows a comprehensive per-
formance of all MLP-BP/GABP cases.

7.3. SVM

The classification accuracy rates using the three kernels showed
that polynomial kernel is the best in terms of hyper plane with
wider margin and better classification accuracy rates. From the
results obtained from the first case (240 non-normalized and nor-
malized features), it is shown that non-normalized features out-
performed the normalized features in terms of overall accuracy
rate, and polynomial kernel function shows better performance
than linear and RBF kernel functions as shown in Table 3. There-
fore, it was decided to use non-normalized features for the second
and third cases (60 and 30 features).
Table 2
MLP overall performance based CWT.

Method Features Hidden layers &
neurons

Training time
(hh:mm:ss)

MLP-BP & GA selection 30 (normalized) [24 21 24 23] 00:00:28
MLP-BP & GA selection 30 (non-normalized) [24 21 24 23] 00:00:18
MLP-BP & GA selection 60 (non-normalized) [24 21 24 23] 00:01:11
MLP-BP & GA selection 60 (normalized) [24 21 24 23] 00:01:04
MLP-BP & GA selection 240 (non-normalized) [24 21 24 23] 00:02:12
MLP-BP & GA selection 30 (normalized) [10 20 10] 00:00:03
MLP-BP 60 (normalized) [10 20 10] 00:00:06
SVM (polynomial) 30 (normalized) ____ ____
MLP-BP & GA selection 240 (normalized) [24 21 24 23] 00:02:06
MLP-BP 240 (normalized) [10 20 10] 00:00:20
MLP-GABP & GA selection 240 [24 21 24 23] MLP: 00:02:17

Table 3
The overall SVM classification accuracy rates for case-1.

Overall Classification Kernel function

Linear (%) Polynomia

% 240 normalized 240 non-normalized 240 norm
77.38 87.45 95.48
In the second (60 non-normalized features) and third (30 non-
normalized features) cases, The classification performance has
been improved using lower number of features with an overall
classification rate of 96.77% and 98.8% respectively. Table 4
illustrate a comprehensive classification rates of all SVM applied
methods and cases.
8. Conclusion

The feature extraction and classification of the pump conditions
using MLP-BP, MLP-GABP and SVM were conducted successfully
where 99.5% of the best overall classification rate is scored with
MLP-BP and 98.8% with SVM, where MLP-BP slightly outperformed
SVM in terms of overall classification accuracy rate. It has been
remarked that MLP-BP and SVM performed better using non-
normalized fewer parameters and features. Polynomial kernel
function outperformed the other two kernel functions (linear and
Radial Basis Function (RBF)) as it gives better accuracy rates.
Therefore, polynomial has been selected and used for the other
SVM classifications.

GA has shown a good ability in optimizing and selecting the
number of hidden layers and neurons, as the best performance is
scored using 4 hidden layers containing 24, 21, 24 and 23 neurons
respectively. However, GA needs longer computational time and
the risk of getting stuck in a local minimum. On the other hand,
GA along with BP based MLP training, presented lower perfor-
mance comparing MLP-BP of 88.5% an overall rate. Finally, this
work showed that MLP-BP classification accuracy can be improved
Test rate
(%)

Validation rate
(%)

Training rate
(%)

Overall classification
rate (%)

96.9 100 100 99.5
96.9 100 100 99.5
96.8 100 100 99.5
95 100 100 99.3
98.4 99.9 97.2 99.3
93.8 100 100 99
93.7 98.4 100 98.8

98.8
93.3 100 94.4 98.2
94.4 95.6 98.6 97.5

, GA: 20:00:00 88.5

l (%) RBF (%)

alized 240 non-normalized 240 normalized 240 non-normalized
95.88 94.54 94.93
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if the neural network architecture is optimized using GA and with
the suitable selection of features.

References

[1] N.R. Sakthivel, B.B. Nair, M. Elangovan, V. Sugumaran, S. Saravanmurugan,
Comparison of dimensionality reduction techniques for the fault diagnosis of
mono block centrifugal pump using vibration signals, Eng. Sci. Technol. Int. J.
17 (2014) 30–38.

[2] S. Farokhzad, Vibration based fault detection of centrifugal pump by fast
fourier transform and adaptive neuro-fuzzy inference system, J. Mech. Eng.
Technol. 1 (2013) 82–87.

[3] V. Muralidharan, V. Sugumaran, Feature extraction using wavelets and
classification through decision tree algorithm for fault diagnosis of mono-
block centrifugal pump, Measurement 46 (2013) 353–359.

[4] V. Muralidharan, V. Sugumaran, V. Indira, Fault diagnosis of mono block
centrifugal pump using SVM, Eng. Sci. Technol. Int. J. 17 (2014) 152–157.

[5] S. Farokhzad, H. Ahmadi, A. Jafary, Fault classification of centrifugal water
pump based on decision tree and regression model, J. Sci. Today’s World 2
(2013) 170–176.

[6] S. Farokhzad, H. Ahmadi, A. Jafary, Artificial neural network based classification
of faults in centrifugal water pump, J. Vibroeng. (2012) 14.

[7] H.W.P. Chen, Intelligent diagnosis method for a centrifugal pump using
features of vibration signals, Neural Comput. Applic. 18 (2009) 397–405.

[8] H.Q. Wang, P. Chen, Intelligent method for condition diagnosis of pump system
using discrete wavelet transform, rough sets and neural network, in: 2nd
International Conference on Bio-Inspired Computing, Theories and
Applications, Zhengzhou, IEEE, 2007.

[9] V. Muralidharan, V. Sugumaran, A Comparative study between Support Vector
Machine (SVM) and Extreme Learning Machine (ELM) for fault detection in
pumps. Indian, J. Sci. Technol. 9 (2017) 48.
[10] K.F. Al-Raheem, W. Abdul-Karem, Rolling bearing fault diagnostics using
artificial neural networks based on laplace wavelet analysis, Int. J. Eng. Sci.
Technol. 2 (6) (2010) 278–290.

[11] H. Zheng, Z. Li, X. Chen, Gear fault diagnosis based on continuous wavelet
transform, Mech. Syst. Sig. Process. 16 (2–3) (2002) 447–457.

[12] J. Lin, L. Qu, Feature extraction based on Morlet wavelet and its application for
mechanical fault diagnosis, J. Sound Vib. 234 (1) (2000) 135–148.

[13] A.J.F.V. Rooij, L.C. Jain, R.P. Johnson, Neural network training using genetic
algorithm, World Scientific Publishing Co., Pte. Ltd, 1996.

[14] B. Scholkopf, SVMs—a practical consequence of learning theory, IEEE Intell.
Syst. 13 (1998) 18–19.

[15] B. Samanta, Gear fault detection using artificial neural networks and support
vector machines with genetic algorithms, Mech. Syst. Sig. Process. 18 (2004)
625–644.

[16] M.A.S. Al Tobi et al., Experimental set-up for investigation of fault diagnosis of
a centrifugal pump, Int. J. Mech. Aerospace Ind. Mechatronic Manuf. Eng. 11 (3)
(2017) 481–485.

[17] M.A.S. Al Tobi, G. Bevan, P. Wallace, D. Harrison, K.P. Ramachandran, Faults
diagnosis of a centrifugal pump using MLP-GABP and SVM with WPT based
feature extraction (2017).

[18] M.A.S. Al Tobi, G. Bevan, P. Wallace, D. Harrison, K.P. Ramachandran, Faults
diagnosis of a centrifugal pump using MLP-GABP and SVM with, DWT based
Feature Extraction (2017).

[19] M.A.S. Al Tobi, G. Bevan, P. Wallace, D. Harrison, K.P. Ramachandran,
Centrifugal pump condition monitoring and diagnosis using frequency
domain analysis (2018).

[20] K.F. Al-Raheem, W. Abdul-Karem, Rolling bearing fault diagnostics using
artificial neural networks based on laplace wavelet analysis, Int. J. Eng. Sci.
Technol. 2 (6) (2010) 278–290.

[21] N. Saravanan, K.I. Ramachandran, Incipient gear box fault diagnosis using
discrete wavelet transform (DWT) for feature extraction and classification
using artificial neural network (ANN), Expert Syst. Appl. 37 (2010) 4168–4181.

http://refhub.elsevier.com/S2215-0986(18)30259-3/h0005
http://refhub.elsevier.com/S2215-0986(18)30259-3/h0005
http://refhub.elsevier.com/S2215-0986(18)30259-3/h0005
http://refhub.elsevier.com/S2215-0986(18)30259-3/h0005
http://refhub.elsevier.com/S2215-0986(18)30259-3/h0010
http://refhub.elsevier.com/S2215-0986(18)30259-3/h0010
http://refhub.elsevier.com/S2215-0986(18)30259-3/h0010
http://refhub.elsevier.com/S2215-0986(18)30259-3/h0015
http://refhub.elsevier.com/S2215-0986(18)30259-3/h0015
http://refhub.elsevier.com/S2215-0986(18)30259-3/h0015
http://refhub.elsevier.com/S2215-0986(18)30259-3/h0020
http://refhub.elsevier.com/S2215-0986(18)30259-3/h0020
http://refhub.elsevier.com/S2215-0986(18)30259-3/h0025
http://refhub.elsevier.com/S2215-0986(18)30259-3/h0025
http://refhub.elsevier.com/S2215-0986(18)30259-3/h0025
http://refhub.elsevier.com/S2215-0986(18)30259-3/h0030
http://refhub.elsevier.com/S2215-0986(18)30259-3/h0030
http://refhub.elsevier.com/S2215-0986(18)30259-3/h0035
http://refhub.elsevier.com/S2215-0986(18)30259-3/h0035
http://refhub.elsevier.com/S2215-0986(18)30259-3/h0045
http://refhub.elsevier.com/S2215-0986(18)30259-3/h0045
http://refhub.elsevier.com/S2215-0986(18)30259-3/h0045
http://refhub.elsevier.com/S2215-0986(18)30259-3/h0050
http://refhub.elsevier.com/S2215-0986(18)30259-3/h0050
http://refhub.elsevier.com/S2215-0986(18)30259-3/h0050
http://refhub.elsevier.com/S2215-0986(18)30259-3/h0055
http://refhub.elsevier.com/S2215-0986(18)30259-3/h0055
http://refhub.elsevier.com/S2215-0986(18)30259-3/h0060
http://refhub.elsevier.com/S2215-0986(18)30259-3/h0060
http://refhub.elsevier.com/S2215-0986(18)30259-3/h0065
http://refhub.elsevier.com/S2215-0986(18)30259-3/h0065
http://refhub.elsevier.com/S2215-0986(18)30259-3/h0065
http://refhub.elsevier.com/S2215-0986(18)30259-3/h0070
http://refhub.elsevier.com/S2215-0986(18)30259-3/h0070
http://refhub.elsevier.com/S2215-0986(18)30259-3/h0075
http://refhub.elsevier.com/S2215-0986(18)30259-3/h0075
http://refhub.elsevier.com/S2215-0986(18)30259-3/h0075
http://refhub.elsevier.com/S2215-0986(18)30259-3/h0085
http://refhub.elsevier.com/S2215-0986(18)30259-3/h0085
http://refhub.elsevier.com/S2215-0986(18)30259-3/h0085
http://refhub.elsevier.com/S2215-0986(18)30259-3/h0090
http://refhub.elsevier.com/S2215-0986(18)30259-3/h0090
http://refhub.elsevier.com/S2215-0986(18)30259-3/h0090
http://refhub.elsevier.com/S2215-0986(18)30259-3/h0095
http://refhub.elsevier.com/S2215-0986(18)30259-3/h0095
http://refhub.elsevier.com/S2215-0986(18)30259-3/h0095
http://refhub.elsevier.com/S2215-0986(18)30259-3/h0100
http://refhub.elsevier.com/S2215-0986(18)30259-3/h0100
http://refhub.elsevier.com/S2215-0986(18)30259-3/h0100
http://refhub.elsevier.com/S2215-0986(18)30259-3/h0105
http://refhub.elsevier.com/S2215-0986(18)30259-3/h0105
http://refhub.elsevier.com/S2215-0986(18)30259-3/h0105
http://refhub.elsevier.com/S2215-0986(18)30259-3/h0110
http://refhub.elsevier.com/S2215-0986(18)30259-3/h0110
http://refhub.elsevier.com/S2215-0986(18)30259-3/h0110

	Fault diagnosis of a centrifugal pump using MLP-GABP and SVM �with CWT
	1 Introduction
	2 Proposed method
	3 Artificial intelligence
	3.1 Multilayer Perceptron with Back Propagation
	3.2 Support vector machine
	3.3 Genetic Algorithm based training and optimization

	4 Experimental setup and data collection
	5 Feature extraction
	6 Classification methods
	7 Results and discussion
	7.1 MLP-BP
	7.2 MLP-GABP
	7.3 SVM

	8 Conclusion
	References


