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Images are sometimes affected by improper illumination and are dark. This happens usually in medical
images or the images acquired in low light conditions. This paper focuses on retinal imaging and proposes
two techniques, RIHE-RVE (Radiance indicator based histogram equalization for retinal vessel enhance-
ment) and RIHE-RRVE (Radiance indicator based histogram equalization for recursive retinal vessel
enhancement) to address the problem of low light radiance. The techniques separate the histogram into
sub-histograms at the split value determined by the tuneable parameter, w. RIHE-RVE recursively per-
forms histogram integration after each split followed by equalization whereas in RIHE-RRVE histogram
split can be done to any level (which is decided by the parameter,r) followed by equalization and inte-
gration. It has been observed from a comprehensive literature survey that very few algorithms exist that
enhance the quality of retinal images. The proposed methods efficiently address the low light radiance
problem. Performance evaluation of the techniques is done in terms of Information content (Entropy),
PSNR (Peak signal to noise ratio), SSIM (Structure similarity index measurement), Euclidean distance
and visual quality inspection. To demonstrate the robustness of the proposed methods, the techniques
are not only applied specifically to publicly available retinal databases DRIVE, STARE and CHASE_DB1
but also to some of the MRI images taken from publicly available OASIS database. Results show that
the proposed techniques outperform the state of the art techniques especially in low radiance images.
� 2019 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Retinal diseases are on the rise in the working and aged popu-
lation in all parts of the world. Diabetic retinopathy alone is the
leading cause of blindness and it is estimated that people affected
with diabetic retinopathy will rise from 126.6 million in 2011 to
191 million by 2030 [1,2]. Macular degeneration is another disease
which is going to affect 196 million by 2020 which will further rise
to 288 million by 2040 [3]. Not only the retinal diseases but other
diseases such as diabetes mellitus [4], hypertension (a blood pres-
sure elevation disease that is going to affect approximately 1.6 bil-
lion people around the world by the year 2025) [5] and stroke [6]
can also be diagnosed by carefully examining the retinal image.
The blood vascular structure plays a very important part in the
diagnosis of diabetic retinopathy. Doctors can easily determine
the stage of diabetic retinopathy just by inspecting the structure
of the blood vessels, for example, the presence of tiny bulges and
high tortuosity of the blood vessels indicate the beginning of dia-
betic retinopathy whereas the presence of many tiny blood vessels
branching out of the main vessels indicates the presence of prolif-
erative diabetic retinopathy [7], which is an advanced stage of dia-
betic retinopathy and is the cause of blindness in individuals.

In order to analyze the blood vessels, the vessels need to be
extracted from the retina. Accurate segmentation of the blood ves-
sels from the retina depend on the quality of the image. Unfortu-
nately getting a high quality image is not always possible
because of various factors such as the distance of the imaging
device from the retina, movement of the eye ball and improper
expansion of the eyelids etc. As a consequence, the retinal images
suffer from low and non-uniform radiance. The main goal of this
work is to address the issue of improper illumination in retinal
images that happens during image acquisition. Overall, this paper
focusses on the preprocessing step that deals with the improve-
ment in the quality of the image in terms of illumination. This step
of preprocessing plays a crucial role in the efficient and accurate
segmentation of the blood vessels from the retina. A higher quality
image leads to better vessel segmentation [8]. Various diseases
such as diabetic retinopathy, hypertension etc. can be diagnosed
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by observing the changes in the structure of the retinal vessels [9].
Diabetic retinopathy if detected early can be treated in time and
the patient can be saved from vision threatening irreversible prob-
lems. In this work, two techniques, RIHE-RVE (Radiance indicator
based histogram equalization for retinal vessel enhancement)
and RIHE-RRVE (Radiance indicator based histogram equalization
for recursive retinal vessel enhancement) have been proposed to
enhance the quality of images. In both the techniques, histogram
is split based on the value of the tuneable parameter, w, that con-
trols the level of enhancement. RIHE-RVE separates the histogram
into two sub-histograms, equalizes both the histograms and then
integrates them. This is done repeatedly depending on the differ-
ence between radiance values obtained from successive enhanced
images. RIHE-RRVE recursively divides the histogram into multiple
number of sub-histograms depending on the level decided by the
parameter, r. In addition to the above techniques, a new technique
for clipping the histogram has also been proposed. Histogram clip-
ping is done in both the techniques based on the cumulative med-
ian value to avoid over enhancement. Just by changing the value of
the tuneable parameter, w, level of enhancement can be controlled.
The proposed techniques efficiently enhance the quality of low and
non-uniformly illuminated images without any information loss.
The techniques do not produce any unwanted artefacts, are robust
in nature and can be applied to images of various types.
2. Related work

Accurate segmentation of the blood vessels is needed for diag-
nostic purposes and it can only be done if the image is clear and
has high and uniform radiance. Very few techniques [10–13] have
been developed that works on enhancing the quality of retinal
images and out of them none focuses on low radiance retinal
images as far as our knowledge is concerned. These techniques just
focus on making the radiance uniform without taking into consid-
eration the amount of radiance and the information content
(entropy) already present in the image. It has been observed that
even though the techniques succeed in getting a uniform radiance
image but it comes at a cost of a high level loss of the entropy
which is never desired especially in medical images as even a small
loss of information content may lead to a totally different diagno-
sis. The proposed methods makes a conscious effort to take into
account both the level of radiance and information content while
enhancing the quality of retinal images to make them suitable
for segmentation. Most of the techniques existing in literature that
work on low radiance images focus on equalizing the histogram of
the image in order to improve the visual quality of the image. His-
togram equalization [14] is the most basic technique that equalizes
an image by mapping the narrow range of intensity levels to the
wider range of intensity levels available. This technique highly
improves the radiance of the image but on the contrary it produces
over enhancement in an image as a result of which crucial content
information is lost. Over enhancement is produced because it
always tends to change the mean brightness of the image to the
middle of the intensity range available. The other limitation of his-
togram equalization is, it produces annoying artefacts rendering it
in effective for most of the applications. BBHE (Brightness Preserv-
ing Bi-histogram Equalization) [15] addresses this limitation by
dividing the original histogram into two sub-histograms on the
basis of the mean of the image which are then equalized indepen-
dently. The main advantage of this technique is that it preserves
the mean of the enhanced image approximately equal to that of
the original image besides suppressing annoying artefacts giving
more realistic images. MMBEBHE (Minimum Mean Brightness
Error Bi-histogram Equalization) [16] an extension of BBHE finds
an optimal threshold value to separate the histogram into sub-
histograms to perform image enhancement such that absolute
mean brightness error is minimum. DSIHE (Dualistic Sub-image
Histogram Equalization) [17] is another technique that performs
the histogram division on the basis of median value rather than
mean. High level of entropy is obtained using this technique.
RMSHE (Recursive Mean Separate Histogram Equalization) [18]
preserves mean brightness by recursively dividing the histogram
into sub histograms producing a bright image. RSIHE (Recursive
Sub-Image Histogram Equalization) [19] recursively divides the
histogram into sub-histograms based on the sum of the cumulative
probability density. RSWHE (Recursively Separated and Weighted
Histogram Equalization) [20] modifies the sub histograms by
weighting process based on power law function and then applies
the process of histogram equalization on the sub histograms.
BHEPL (Bi-histogram Equalization with a Plateau Limit for Digital
Image Enhancement) [21] is another technique that divides the
original histogram into two sub-histograms and clips the his-
tograms based on the plateau value. This technique is very effec-
tive in terms of less computational time required to produce an
enhanced image. DOTHE (Dominant Orientation-based Texture
Histogram Equalization) [22] constructs the histogram based on
the patches of the image that have dominant orientation. The main
highlight of this technique is that as the pixels of the non- textured
areas are not included, it helps in supressing the annoying artefacts
that occur is histogram equalization techniques. RWMPHE (Recur-
sive weighted multi-plateau histogram equalization) [23] subdi-
vides the histogram into sub-histograms which are further
clipped using various plateau limits. These sub-histograms are
then equalized individually to get a higher quality image. QDHE
(Quadrants Dynamic Histogram Equalization for Contrast Enhance-
ment) [24] separates the histogram into four sub-histograms based
on the median value of the input image. All the four quadrants are
then clipped according to the input data mean and equalized. The
technique gives good results without any noise amplification or
over enhancement. Singh et al. [25] proposed techniques to
improve the low exposure images. The techniques separate the his-
togram on the basis of the exposure value of the input image. SRHE
(Sub-regions Histogram Equalization) [26] applies the Gaussian fil-
ter on the image to obtain smoothed intensity values which are
then used to partition the image into histograms that are then
equalized individually. Chaudhuri et al. [27] did the pioneer work
that specifically focussed on retinal images. A 5 � 5filter was used
to reduce the effect of spurious noise present in the images but
no attention was given to low and non-uniform radiance. Marin
et al. [28] used 3 � 3mean filter to reduce the noise followed by a
Gaussian filter to further smooth the retinal image. Noise removal
was followed by background homogenization to make the image
radiance uniform. The technique to a certain extent was successful
to get a uniform bright image but not without sacrificing a lot of
information content of the image. Joshi et al. [29] proposed an
enhancement technique for the improvement in the quality of
non-uniformly illuminated dark images. They used the knowledge
of imaging geometry and correction factor for removing the differ-
ence in the variability in the illumination of an image. Visual
results obtained by this method were not very encouraging and
presented a scope for improvement. Wan et al. [30] proposed adap-
tive histogram partition and brightness correction based infrared
image enhancement method to enhance the quality of images.
Grayscale density based metric was used to distinguish between
foreground and background sub histograms. Foreground his-
tograms were equalized using the local contrast based distribution
to ensure a distinguishable difference between foreground and
background pixels. In [31] a particle swarm optimization based
local entropy based technique was proposed for histogram equal-



738 N. Singh et al. / Engineering Science and Technology, an International Journal 22 (2019) 736–745
ization. The histogram was divided into sub histograms and parti-
cle swarm optimization was used to reduce over enhancement.
Each sub histogram was equalized using the local entropy.

It has been observed that most of the equalization algorithms
work on increasing the image contrast and very few focus on
addressing the issue of improper illumination. Also majority of
the existing techniques suffer from over enhancement as a result
of which the information content is badly affected. In this work,
the problem of improper illumination is addressed in such a way
that overall information content is minimally affected. To ensure
that the image is not over enhanced, a new histogram clipping
algorithm is proposed based on which two techniques RIHE-RVE
and RIHE-RRVE have been developed. The present paper is orga-
nized as follows: Section 3 describes the proposed algorithms,
the results are presented in Section 4. The analysis of the proposed
techniques is done in Section 5. Section 6 concludes the paper. The
list of references is provided at the end of this article.
3. Proposed algorithms

The proposed algorithms determine the amount of under radi-
ance that an image has and based on that performs the appropriate
level of enhancement which results in a uniformly illuminated
image with a very high value of entropy close to the original image.
The techniques take care that under exposed regions are enhanced
more than already high radiance regions. In the proposed work, a
simple technique has been devised that can easily control the level
of enhancement. For this purpose, a tuneable parameter w is used
to determine the split value that separates the histogram into sub
histograms.

The split value, Bv is calculated as depicted in Eqs. (1)–(4).

pc ið Þ ¼ hðiÞ=N for 0 � i � L� 1: ð1Þ
C kð Þ ¼
Xk

i¼0

pcðiÞ for 0 � k � L� 1: ð2Þ

h is the histogram of the image, N is the total number of pixels in
the image,L is the total number of intensity levels, pc and C contains
the normalized histogram counts and cummulative normalized his-
togram counts respectively of the input image. The value of the con-
trolling parameter, Cp is needed to be found such that

XCp

j¼0

CðjÞ � w for any 0:1 � w � 0:9: ð3Þ
Bv ¼ L� 1ð Þ � Cp � 1: ð4Þ
The value of tuneable parameter, w decides the level of

enhancement needed for an image. Lesser the value of w, more is
the enhancement. This holds true because lesser value of w will
result in lower value of Cpas can be seen in Eq. (3). From Eq. (4),
it can be induced that low Cp will produce large split value, Bv that
separates the histogram into sub histograms. This process can be
understood from the fact that for a low radiance image, pixel den-
sity of an image is more towards the lower intensity range of the
histogram. Consequently, Eq. (3) can be satisfied with much lesser
value of Cp for a particular value of w resulting in an extended first
sub histogram. The first sub histogram is then equalized separately
from the second sub histogram. Because of the extendedness of the
sub histogram, a smaller intensity range of pixels of an input image
is mapped to a much larger intensity range enhancing the low radi-
ance region effectively. On the contrary, the second sub histogram
has much lesser range and contains pixels that belong to the higher
intensity range in an image. Because of the much smaller range,
high end intensity pixels are therefore equalized in a much smaller
range thus restricting over enhancement. In this work, three tech-
niques have been proposed:

� Histogram Clipping
� RIHE-RVE
� RIHE-RRVE

3.1. Histogram clipping

Enhancing images often leads to the problem of over enhance-
ment. In histogram clipping, a threshold value is used as the limit-
ing value. The bin count greater than the threshold value is
reduced to the threshold value to reduce the effect of over
enhancement and get a more natural image. In this work, a new
histogram clipping algorithm is proposed. Histogram is clipped
based on the averaged median value which better reduces the
effect of over enhancement.

3.1.1. Pseudocode for histogram clipping

(1) Rearrange histogram values in the ascending order.
(2) Find unique values from the sorted list of values.
(3) Calculate median value, M from the set of unique values

where median is the middle value if the number of unique
values are odd or it is the mean value of the middle two val-
ues if the number of unique values are even.

(4) Calculate threshold value,

Tv ¼ M=Cp ð5Þ
where Cp is the controlling parameter found in Eq. (3). The value of
Tv must be rounded off to the nearest integer.

(5) The threshold value, Tv found in Eq. (5) is used for clipping
the histogram. All the values of the histogram, h higher than
Tv are clipped to the value Tv to create a new histogram, hN .
The values lower than the value of the threshold value, Tv
are not modified. This operation is shown in Eq. (6)

Set hN ¼ Tv ifh ið Þ � Tv else hN ¼ h ið Þ: ð6Þ
3.2. Radiance indicator based histogram equalization for retinal vessel
enhancement (RIHE-RVE)

The algorithm calls itself recursively until the absolute differ-
ence between the successive radiance values, v1 and v2 (calculated
using Eq. (7)) for input image and enhanced image respectively is
less than the threshold error, s. In this work, value of s is chosen
to be 0.001. The threshold value,s, should be chosen carefully such
that it should not be too high which might lead to high computa-
tional time and should not be too less to avoid under enhancement.
Fig. 1 shows the flow chart of RIHE-RVE.

3.2.1. Algorithm for RIHE-RVE

(1) Compute the histogram, h for the input image, f , where a
histogram contains the frequency of occurence of each
intensity level.

(2) Compute the radiance value,

v1 ¼
PL�1

i¼0 h ið Þ:i
L
PL�1

i¼0 hðiÞ
: ð7Þ

where i represents the intensity value, hðiÞ is the frequency of
occurence of the intensity value i and L is the total number of inten-



Fig. 1. Flowchart of RIHE-RVE technique.
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sity levels, here L ¼ 256. This equation determines the amount of
exposure present in the image.

(3) Calculate the split value, Bv from Eqs. (3) and (4) to divide
the histogram in to sub histograms.

(4) Calculate the threshold value, Tv from Eq. (5) for clipping the
histogram to avoid over enhancement.

(5) Clip the histogram h at threshold value Tv to obtain clipped
histogramhN from Eq. (6).

(6) Separate the clipped histogram hN into two sub-histograms
hl and hu of intensity ranges 0 to Bv and Bvþ1 to L� 1
respectively based on the split value Bv calculated in step
3 of the algorithm.

(7) Equalize the two histograms hl and hu individually in their
respective range of intensity. The darker regions will be
enhanced more than the brighter regions.

(8) Integrate hl and hu to re-create the histogram, h.
(9) Repeat Step 2 to find the radiance value, v2 of the equalized

image.
(10) Apply steps 1–9 until the absolute difference between two

consecutive radiance levels is less than the threshold error,
s as shown in |v1 � v2j < s:

3.3. Radiance indicator based histogram equalization for recursive
retinal vessel enhancement (RIHE-RRVE)

RIHE-RRVE works by sub dividing the histogram into sub-
histograms up to the chosen level of splitting,r. Forr ¼ 1;21 ¼ 2-
sub-histograms will be obtained at level 1, for r ¼ 2;22 ¼ 4his-
tograms will be obtained at level 2 and for r ¼ n;2n sub-
histograms will be obtained at level n (maximum value of n is cho-
sen to be 7). The split values Bv l and Bvu for each of the sub-
histograms are calculated as shown in Eqs. (8) and (9)

Bvl ¼ Bv � Cp � 1� v1

� �� �� 1: ð8Þ
Bvu ¼ humax � Cp � 1� v2

� �� �� 1: ð9Þ

where humax denotes the maximum intensity value for the sub-
histogram hu. Fig. 2 shows the flow chart of RIHE-RRVE.
3.3.1. Algorithm for RIHE-RRVE

(1) Compute the histogram, h for the input image, f , where a
histogram contains the frequency of occurence of each
intensity level.

(2) Choose the level of splitting, r. Each histogram will be
divided into two sub histograms iteratively upto the chosen
level of decomposition. For the level, r, the number of sub
histograms generated will be 2r . Each histogram will be
divided as shown in steps 3–9 of this algorithm.

(3) Calculate the split value, Bv using Eqs. (3) and (4) to divide
the histogram in to sub histograms.

(4) Calculate the threshold value, Tv using Eq. (5) for clipping
the histogram to avoid over enhancement.

(5) Clip the histogram h at threshold value Tv to obtain clipped
histogramhN from Eq. (6).

(6) Divide the clipped histogram into two sub-histograms hl and
hu based onBv and compute newer split values Bv l and Bvu for
hl and hu respectively from Eqs. (8) and (9). These split val-
ues are used to further divide the histograms hl and hu into
sub histograms.

(7) Set Bv = Bv lto further sub divide hl in to hl1 and hl2. Once hl is
divided into hl1 and hl2 sub histograms, compute Bv l and Bvu
for hl1 and hl2 respectively from Eqs. (8) and (9) which will be
further used to sub divide hl1 and hl2 into their respective
sub histograms.

(8) Set Bv = Bvuto further sub divide hu in to hu1 and hu2. Once hu

is divided into hu1 and hu2 sub histograms, compute Bv l and
Bvu for hu1 and hu2 respectively from Eqs. (8) and (9) which
will be further used to sub divide hu1 and hu2 into their
respective sub histograms.

(9) Repeat the steps 7 and 8 to recursively separate the his-
tograms in to sub-histograms up to the required level of
splitting.

(10) Equalize all the sub-histogram individually in their respec-
tive range of intensities and integrate them to get the final
equalized histogram.

The performance of both the techniques is affected by the
change in the values of the parameters. RIHE-RVE depends on
the tuneable parameter, w whereas RIHE-RRVE depends on both



Fig. 2. Flowchart of RIHE-RRVE technique.

(a) (b) 

Fig. 3. (a) Effect of tuneable parameter 0w0 on the amount of radiance (RIHE-RVE) (b) Effect of split level 0r0 on the amount of radiance (RIHE-RRVE). The mean of radiance
values obtained for different values of 0w0 for each level is used to calculate it.
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the tuneable parameter, w and level of splitting, r. The effect can be
seen in Fig. 3.

4. Experimental results

In this section the results of the proposed methods are com-
pared with the existing techniques i.e BBHE [15], BHEPL [21],
DOTHE [22], RESIHE [25] and Marin et al. [28]. All the methods
are robust in nature in the sense that they can be applied to any
type of image except the last one which works specifically for reti-
nal images.

4.1. Datasets used

To analyse the performance of the proposed methods, images
from publicly available databases DRIVE [32], STARE [33], CHAS-
E_DB1 [34] and OASIS [35,36] have been used. The DRIVE database
contains 40 eye-fundus coloured images. These images are divided
into two sets: training set and test set. Each of these sets contains
20 images each. The test set also contains the masks corresponding
to each image in the test set. The STARE database contains 20
images, out of which 10 are pathological images. CHASE_DB1 data-
base contains 28 retinal images of the children taken using the
NM-200D fundus camera. Images were recorded in low light con-
ditions using an illumination rating of 3. OASIS dataset contains
both cross-sectional as well as longitudinal MRI images of young,
middle aged, demented and non-demented older adults. The
cross-sectional dataset contains images of 416 subjects whereas
longitudinal dataset contains images of 150 subjects. While com-
plete retinal databases have been used to find the overall results,
only two images have been used from the OASIS database just to
check the degree of robustness of the proposed techniques.
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(g) (h) 
Fig. 5. (a) Original image (STARE) (b) BBHE (c) DOTHE (d) RESIHE (e) BHEPL (f)
Marin (g) RIHE-RVE (w ¼ 0:1Þ (h) RIHE-RRVE r ¼ 1;w ¼ 0:2ð Þ:
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4.2. Performance evaluation based on visual inspection

The effectiveness of the methods can been seen in Figs. 4–7.
Visual analysis shows that the images enhanced by the proposed
methods have a high and uniform radiance such that the details
are clearly visible. On the other hand, BBHE, RESIHE, BHEPL, DOTHE
and MARIN ET AL. are able to increase the radiance of the images to
a certain extent but the radiance is not uniform which can be easily
seen in the seen images. There is a high level of radiance at the cen-
ter of the images which gradually decreases towards the image
boundary thus making the identification of pixel content impossi-
ble. Marine et al is able to provide uniform radiance but at the cost
of high degree of information loss which is not acceptable in the
medical domain.

4.3. Performance evaluation based on objective information

The algorithmic performance of the proposed methods has been
measured in terms of Entropy, SSIM, PSNR and Euclidean distance.
Entropy [20] measures the information content of the image.

Mathematical equation for entropy is:

E p½ � ¼ �
XL�1

j¼0

p jð Þlog2p jð Þ: ð10Þ

where E p½ � is the entropy, L is the number of intensity levels and p
contains the normalized histogram counts. Structure similarity
index measurement (SSIM) [19,37] determines the change in the
structural information of the image and is represented as following:

SSIM x; yð Þ ¼ ð2lxly þ c1Þð2rxy þ c2Þ
ðl2

x þ l2
y þ c1Þðr2

x þ r2
y þ c2Þ : ð11Þ

where lx and ly are the average of x and y respectively. r2
x and r2

y

are variance of x and y respectively.rxy is the covariance of x and y.
c1 and c2 are the two variables to stabilize the division with weak
(a) (b) (c) 

(d) (e) (f) 

(g) (h) 
Fig. 4. (a) Original image (CHASE) (b) BBHE (c) DOTHE (d) RESIHE (e) BHEPL (f)
Marin (g) RIHE-RVE (w ¼ 0:1Þ (h) RIHE-RRVEðr ¼ 1;w ¼ 0:2).
denominator where c1 ¼ k1Lð Þ2 and c2 ¼ k2Lð Þ2, k1 ¼ 0:001 and
k2 ¼ 0:003. L is the dynamic range of pixels.

Peak signal to noise ratio (PSNR) [38] is the maximum intensity
that a signal can have and it is denoted as:

PSNR ¼ 10log10
2552

1
MN

P
i;jðgi;j � f i;jÞ2

: ð12Þ

where, g is the enhanced image and f is the original image. M and N
denote the number of pixels row-wise and column-wise
respectively.

Euclidean distance dE x; yð Þ [39] is given by

d2
E x; yð Þ ¼

XMN

k¼1

xk � yk
� �2

: ð13Þ

xk and yk are intensity values at corresponding locations ðk; lÞ of the
two images x and y.

It has been empirically found that RIHE-RVE gives a highly illu-
minated image with uniform radiance at w ¼ 0:1 whereas for RIHE-
RRVE, the optimal values are r ¼ 1 and w ¼ 0:2. Fig. 2 shows the
effect of0w’ and ‘r0 on the level of radiance for different retinal data-
bases:It can be observed from Figs. 4–7 that there is no over
enhancement in images enhanced by the proposed techniques in
contrary to some of the existing techniques. Results of various
methods using two random images from each database are tabu-
lated in Tables 1–4 (where 1st pair of images belongs to the CHASE
dataset, 2nd pair belongs to DRIVE, 3rd to STARE and 4th to OASIS
dataset).

Average results in terms of Entropy, SSIM, PSNR and Euclidean
distance are presented in Tables 5–7. The average results are
obtained only for retinal images using all the test images of various
retinal datasets. A high value of entropy as close as possible to the
original image is desired. Higher value of SSIM and lower value of
Euclidean distance indicates that the image is closer to the original



(a) (b) (c) (d) 

(e) (f) (g) (h) 
Fig. 6. (a) Original image (DRIVE) (b) BBHE (c) DOTHE (d) RESIHE (e) BHEPL (f) Marin (g) RIHE-RVE (w ¼ 0:1Þ (h) RIHE-RRVE r ¼ 1;w ¼ 0:2ð Þ:

(a) (c) (b) (d) 

(e) (f) (g) 
Fig. 7. MRI images have been taken to test the robustness of the proposed techniques. (a) Original image (OASIS) (b) BBHE (c) DOTHE (d) RESIHE (e) BHEPL (f) RIHE-RVE
(w ¼ 0:1Þ (g) RIHE-RRVE ðr ¼ 1;w ¼ 0:2Þ (Marin et al. work only for retinal images).

Table 1
Performance comparison based on Entropy.

Images Original BBHE RESIHE BHEPL DOTHE MARIN RIHE-RVE RIHE-RRVE

Image 1 5.752 5.467 5.654 5.661 5.448 4.006 5.719 5.719
Image 2 5.782 5.575 5.678 5.702 5.564 4.168 5.758 5.758
Image 3 5.302 5.199 5.264 5.277 4.976 3.991 5.302 5.302
Image 4 5.510 5.379 5.453 5.468 5.160 4.259 5.509 5.509
Image 5 6.549 6.453 6.493 6.503 6.268 3.993 6.544 6.546
Image 6 6.530 6.446 6.490 6.495 6.239 4.247 6.523 6.526
Image 7 6.182 5.809 6.077 6.093 5.921 – 6.060 6.060
Image 8 6.416 6.124 6.345 6.343 6.257 – 6.380 6.408
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image. A higher value of PSNR indicates the presence of lesser
noise. The running time comparison of various algorithms has been
made in Table 8. The time has been calculated by executing each
algorithm 10 times and taking the average of the time taken to exe-
cute the algorithm. RIHE_RRVE records the lowest running time of
17 ms whereas RIHE_RVE records high running time of 38 ms.
Large running time of RIHE_RVE is due to the iterative nature of
the algorithm as the algorithm goes on equalizing the image until
the difference between consecutive radiance levels becomes
greater than the threshold error.



Table 2
Performance comparison based on SSIM.

Images BBHE RESIHE BHEPL DOTHE MARIN RIHE-RVE RIHE-RRVE

Image 1 0.492 0.787 0.826 0.742 0.784 0.786 0.787
Image 2 0.536 0.821 0.840 0.792 0.820 0.847 0.848
Image 3 0.381 0.657 0.516 0.443 0.635 0.790 0.801
Image 4 0.392 0.738 0.546 0.461 0.638 0.933 0.934
Image 5 0.755 0.836 0.825 0.759 0.596 0.967 0.983
Image 6 0.756 0.836 0.836 0.754 0.575 0.939 0.963
Image 7 0.514 0.723 0.795 0.567 – 0.606 0.608
Image 8 0.530 0.625 0.789 0.525 – 0.591 0.793

Table 3
Performance comparison based on PSNR.

Images BBHE RESIHE BHEPL DOTHE MARIN RIHE-RVE RIHE-RRVE

Image 1 12.292 16.839 16.642 14.494 13.715 16.444 16.537
Image 2 13.077 21.784 17.521 15.300 14.771 21.477 21.616
Image 3 10.725 16.370 11.407 12.581 23.275 12.724 12.840
Image 4 11.021 19.619 12.705 12.972 20.308 19.510 19.651
Image 5 15.062 17.300 15.439 16.298 12.754 26.953 29.875
Image 6 15.254 18.443 17.238 16.219 12.032 23.138 25.088
Image 7 13.284 14.745 16.298 12.092 – 11.214 11.277
Image 8 12.002 13.381 16.964 10.495 – 12.763 18.073

Table 4
Performance comparison based on Euclidean distance.

Images BBHE RESIHE BHEPL DOTHE MARIN RIHE-RVE RIHE-RRVE

Image 1 0.413 0.411 0.406 0.080 0.191 0.411 0.411
Image 2 0.411 0.407 0.403 0.079 0.166 0.406 0.406
Image 3 0.285 0.281 0.287 0.328 0.394 0.292 0.292
Image 4 0.271 0.262 0.272 0.309 0.374 0.263 0.263
Image 5 0.126 0.132 0.129 0.143 0.363 0.095 0.085
Image 6 0.130 0.125 0.126 0.143 0.351 0.109 0.094
Image 7 0.313 0.309 0.307 0.321 – 0.311 0.311
Image 8 0.154 0.174 0.156 0.168 – 0.177 0.166

Table 5
Average results for DRIVE database.

Statistical Index BBHE RESIHE BHEPL DOTHE MARIN RIHE-RVE RIHE-RRVE

Entropy 5.572 5.648 5.672 5.348 4.316 5.717 5.727
SSIM 0.478 0.775 0.638 0.508 0.627 0.964 0.968
PSNR 12.806 20.263 15.140 14.567 19.491 29.336 30.474
Euclidean 0.256 0.236 0.255 0.294 0.372 0.198 0.194

Table 6
Average results for STARE database.

Statistical Index BBHE RESIHE BHEPL DOTHE MARIN RIHE-RVE RIHE-RRVE

Entropy 6.628 6.672 6.702 6.365 4.370 6.733 6.761
SSIM 0.766 0.893 0.856 0.659 0.633 0.967 0.976
PSNR 15.014 22.304 16.791 15.640 16.256 26.435 27.789
Euclidean 0.119 0.097 0.113 0.147 0.322 0.082 0.071

Table 7
Average results for CHASE database.

Statistical Index BBHE RESIHE BHEPL DOTHE MARIN RIHE-RVE RIHE-RRVE

Entropy 5.479 5.610 5.634 5.459 4.061 5.665 5.665
SSIM 0.516 0.808 0.811 0.761 0.805 0.806 0.814
PSNR 12.548 20.615 16.616 15.256 16.271 17.671 17.783
Euclidean 0.415 0.411 0.410 0.086 0.173 0.412 0.412
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Table 8
Comparison of average running time of various methods.

Method Running time (ms)

BBHE 30
RESIHE 18
BHEPL 29
DOTHE 53
MARIN 29
RIHE-RVE 38
RIHE-RRVE 17
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5. Discussion

The proposed techniques work using divide and conquer algo-
rithm, separating the histogram into sub histograms which are
then equalized locally to avoid over enhancement. The techniques
can effectively enhance the quality of an image and this high qual-
ity image is used in computer aided diagnosis (CAD) of diabetic
retinopathy. In CAD, the vessels are automatically extracted from
the enhanced image. The blood vascular structure is then studied
to ascertain the severity of the disease. If the vascular structure
has bulges in it and has high tortuosity, it gives an early indication
of the beginning of diabetic retinopathy which if not treated
timely can lead to severe diabetic retinopathy which may even
cause permanent blindness. The proposed work focusses on the
enhancement of retinal images and there are certain important
aspects associated with it. Among them, the most important is
choosing the correct split value to separate the histogram into
sub histograms for illuminating the under exposed regions. The
most significant aspect associated with the techniques is that
not all the portions of the image are equally enhanced rather the
darker regions are illuminated more in comparison to the already
illuminated regions. Experimental results demonstrate that a
higher level of radiance can be achieved for lower values of the
parameter w but the amount of illumination attained in the image
comes at the cost of information. A higher level of illumination
results in higher information loss and this loss in information
can be reduced by fine tuning the parameter, w. It has been
observed that a higher value of the tuneable parameter results
in minimum information loss. Further, it has been observed that
the proposed techniques not only provide better uniform illumina-
tion but also retains maximum information than the existing state
of the art methods even at the lowest value of the tuneable param-
eter. The threshold error, s also plays a very important role in con-
trolling the amount of radiance in the image. A higher value of s
results in over enhancement of the image and a lower values
results in under enhancement. Therefore, an optimal value needs
to be chosen to perform the right amount of enhancement in the
image. A sincere effort has been made to ascertain the effect of
the level of decomposition on the amount of illumination and it
has been observed that as the level of decomposition increases
the amount of illumination decreases. Furthermore, the informa-
tion loss also decreases with the increase in the level of decompo-
sition of the histogram. It has been observed that the techniques
are affected by the variation in the amount of intensity levels in
the background of the image. This effect can be seen on the CHAS-
E_DB1 dataset (it contains images of persons belonging to differ-
ent ethnicity with highly varied background images) as shown in
the Table 7. Still the proposed techniques are able to perform bet-
ter in terms of two metrics, Entropy and SSIM. No existing tech-
nique exhibit superior performance on this dataset in terms of
the majority of metrics. We are highly motivated to address this
issue in the future work. The results support the fact that the tech-
niques are robust in nature and are efficient in handling different
types of images.
6. Conclusion

Diabetic retinopathy can be diagnosed by examining the retinal
vascular structure of the fundus image of a patient. In order to
inspect the vascular structure, first of all it needs to be extracted
from the retina through an automatic process as manual segmen-
tation is a very time consuming process. Accurate segmentation or
extraction of the retinal vascular structure can only be done if the
image is of high quality. Generally, retinal images are affected with
improper illumination which occurs during image acquisition and
it leads to improper extraction of the blood vessels from the retina.
Inappropriate extraction sometimes leads to wrong diagnosis of
the disease which can be life threatening. In this paper, two tune-
able enhancement techniques, RIHE-RVE and RIHE-RRVE have
been proposed to address the problem of non uniform illumination
in retinal images to make the images better suited for computer
aided diagnosis (CAD). To avoid over enhancement a new his-
togram clipping algorithm has also been proposed. Performance
metrics show that the proposed techniques outperforms most of
the state of the art techniques. The future work will focus on the
extension of the proposed techniques for 3D retinal and MRI scans.
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