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a b s t r a c t

Path loss prediction is an important process in radio network planning and optimization because it helps
to understand the behaviour of radio waves in a specified propagation environment. Although several
models are currently available for path loss predictions, the adoption of these models requires a trade-
off between simplicity and accuracy. In this paper, a new path loss prediction model is developed based
on an Adaptive Neuro-Fuzzy Inference System (ANFIS) for multi-transmitter radio propagation scenarios
and applicable to the Very High Frequency (VHF) bands. Field measurements are performed along three
driving routes used for testing within the urban environment in Ilorin, Kwara State, Nigeria, to obtain the
strength values of radio signals received from three different transmitters. The transmitters propagate
radio wave signals at 89.3 MHz, 103.5 MHz, and 203.25 MHz, respectively. A simple five-layer optimized
ANFIS network structure is trained based on the back-propagation gradient descent algorithm so that
given values of input variables (distance and frequency) are correctly mapped to corresponding path loss
values. The adoption of the Pi membership function ensures better stability and faster convergence at
minimum epoch. The developed ANFIS-based path loss model produced a low prediction error with
Root Mean Square Error (RMSE), Standard Deviation Error (SDE), and correlation coefficient (R) values
of 4.45 dB, 4.47 dB, and 0.92 respectively. When the ANFIS-based model was deployed for path loss pre-
dictions in a different but similar propagation scenario, it demonstrated a good generalization ability
with RMSE, SDE, and R values of 4.46 dB, 4.49 dB, and 0.91, respectively. In conclusion, the proposed
ANFIS-based path loss model offers desirable advantages in terms of simplicity, high prediction accuracy,
and good generalization ability, all of them critical features for radio coverage estimation and interfer-
ence feasibility studies during multi-transmitter radio network planning in the VHF bands.
� 2018 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction environment are not required in the use of empirical path loss
Propagation models, which can be empirical, semi-empirical or
deterministic, are used in predicting the strength of a radio wave
signal received at a given distance relative to the position of the
base station transmitter. Path loss prediction models are used by
radio network engineers to estimate the coverage area of a given
transmitter. Empirical path loss models are widely used because
they require less computational efforts. Also, detailed information
about the physical and geometrical structures of the propagation
models. However, these models are not as accurate as determinis-
tic models, especially when they are used in another environment
that differs from the one where measurements were originally
taken [1].

In previous works [2–8], the prediction accuracy of various
empirical models have been investigated. These studies covered
both urban and rural propagation environments in Nigeria. The
results of the comparative analyses showed that empirical models
are liable to high prediction errors. Although, research findings
reported in [9–11] showed that some of the models with high per-
formance can be tuned to minimize their prediction error and
improve their prediction accuracy. However, the calibrated path
loss models eventually become site-specific.
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On the other hand, deterministic models are formulated based
on theories and principles of physics, which are complex to
implement and computationally expensive. Also, the prediction
accuracy of deterministic path loss models is usually influenced
by the accuracy and resolution of digital terrain model and
topographical (or land use) database. In addition, it is sometimes
necessary to fine-tune the path loss model even when a full and
accurate database is available. This is done to guarantee model
prediction accuracy [12].

Path loss predictions in rural areas were carried out successfully
by Stocker and Landstorfer in [13], wherein an adaptive learning
was used to develop a planning tool for mobile radio communica-
tion systems. In [14], a theoretical model and a neural network
model were combined in the application of feed-forward Artificial
Neural Network (ANN) for path loss predictions in an outdoor envi-
ronment. The results obtained were compared to the prediction
outputs of COST 231-Walfisch-Ikegami path loss model. In another
related work by Eichie et al. [15], data were collected from selected
rural and suburban areas of Minna, Niger State, Nigeria, and the
measurement data were used in training ANN path loss model.
The developed ANN-based path loss model was found to be better
than Hata, Egli, COST 231, and Ericsson path loss models. Atmo-
spheric parameters were used as inputs in developing two new
models in [16]. It was observed that the developed model had an
acceptable accuracy when compared to the measured values. In
[17], the strengths of IS-95 pilot signal of a commercial Code Divi-
sion Multiple Access (CDMA) mobile network was measured in a
rural part of Western Australia, and the propagation measure-
ments were used to train an ANN for path loss predictions. The
proposed model, when compared to the ITU-R P.1546 and
Okumura-Hata models, was found to be more efficient. In a related
work, Neškovi’c et al. [18] proposed a prediction model based on
feed forward neural networks for the mobile phone environment.
The results obtained showed that the model is fast, accurate and
reliable.

Benmus et al. [19] took measurements in Tripoli, Libya, and
applied an ANN model to predict path loss in the Ultra-High Fre-
quency (UHF) band. The results of the model, after evaluation
and comparison, were found to be more accurate than the Hata
model. In another research effort [20], very similar to the work
done in this paper, an ANFIS-based path loss model was developed
by training the network with field measurement data that were
taken at 900 MHz in Harbiye, Province of Turkey, to predict path
loss values at varying distances. There was a 15% increase in pre-
diction accuracy for the ANFIS-based path loss model when its pre-
diction outputs were compared to those of Bertoni-Walfisch path
loss model. Angeles and Dadios [21] found Neural Network (NN)
model to be the most efficient for path loss predictions in digital
TV macro cells in the UHF band, when a comparative analysis
was done in reference to the Free Space Loss (FSL) and Egli models.
The prediction accuracy and generalization ability of ANN and
Extreme Learning Machine (ELM) algorithms were investigated in
[22,23].

Different Artificial Intelligence (AI) models have also been used
to achieve high accuracy and better computational efficiency in
path loss predictions [24,25]. Gupta and Sharma [26] employed
the Fuzzy Logic (FL) model to predict path loss as a function of
the path loss exponent in the fringe areas of the suburban region
of Clementown and Dehradun. Path loss predictions using heuristic
algorithms in urban macro cellular environments were done in
[27]. To the best of our knowledge, the depth of the work done
with respect to the application of ANFIS to path loss predictions
in the Very High Frequency (VHF) bands is still very limited. The
effectiveness of the NF model needs to be tested in view of the ter-
rain peculiarities of the environment under investigation. Also,
previous works in the literature that employed the ANFIS tech-
nique for path loss modeling only considered single transmitter
propagation scenarios. In short, the capability of the ANFIS tech-
nique to model path loss predictions in urban environments at
VHF bands has not been widely investigated for the multi-
transmitter propagation use case in the context of tropical geo-
graphic terrains such as in Nigeria. Meanwhile, there seems to be
a continuous growth in the deployment of wireless systems which
operate in the VHF band. Hence, the need for this present study.

In this paper, a new path loss prediction model is developed for
multiple transmitter radio propagation scenarios in VHF band
using ANFIS. Field measurements are performed along three drive
test survey routes within an urban environment in Ilorin, Kwara
State, Nigeria, to obtain the strength values of radio signals
received from three base station transmitters. The transmitters
propagate radio wave signals at 89.3 MHz, 103.5 MHz, and
203.25 MHz, respectively. The Received Signal Strength (RSS) data
obtained are calibrated to corresponding path loss values. A simple
five-layer optimized ANFIS network structure is trained based on
the back-propagation gradient descent algorithm such that given
values of input variables (distance and frequency) are correctly
mapped to corresponding path loss values. The complete dataset
that contained all data instances of separation distance between
transmitter and receiver, frequency of transmission, and path loss,
is randomly divided into 75% training data subset, and 25% testing
data subset. Measurement data obtained from propagation scenar-
ios in the training data subset are used for model development and
validation. The developed model is tested with measurement data
that were collected from different but similar propagation scenar-
ios within the urban environment. Model complexity and predic-
tion accuracy are optimized using least square error approach.
The ability of different membership functions (generalized, trian-
gular, trapezoidal, Gaussian, and pi) to ensure good stability and
fast convergence at minimum epoch were experimentally investi-
gated. The prediction accuracy and generalization ability of the
proposed ANFIS-based path loss model are evaluated based on
the Mean Absolute Error (MAE), Mean Square Error (MSE), Root
Mean Square Error (RMSE), Standard Deviation Error (SDE), and
correlation coefficient (R), relative to the path loss values in train-
ing and testing data subsets, respectively. Finally, the prediction
outputs of the developed ANFIS-based path loss model are com-
pared with four popular empirical path loss models (Hata, COST
231, Egli, and ECC-33) to determine the optimal model for radio
coverage estimation and interference feasibility studies during
multi-transmitter radio network planning in the VHF bands.

2. Materials and methods

This section is divided into two parts: the first part describes the
measurement procedure, and the second part explains the adap-
tive NF approach to path loss modelling in the VHF band.

2.1. Measurement campaign procedure

Field measurements were performed along three drive test sur-
vey routes within an urban environment in Ilorin, Kwara State,
Nigeria (Longitude 4�3602500E, Latitude 8�2505500N), to obtain the
strength values of radio signals received from three base station
transmitters. The transmitters of the Nigerian Television Authority
(NTA) Ilorin, UNILORIN FM, and Harmony FM propagate radio
wave signals at 89.3 MHz, 103.5 MHz, and 203.25 MHz, respec-
tively. Radio signals transmitted were received by a dedicated Agi-
lent spectrum analyzer mode N9342C and the measured data were
carefully logged. The receiver was properly positioned in a vehicle
driven at an average speed of 40 km/hr to minimize Doppler Effects
[28–30]. The spectrum analyzer has a Displayed Average Noise
Level (DANL) of �164 dBm/Hz, being able to detect even very weak
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signals. A whip retractable antenna (70 MHz–1 GHz), a Global
Positioning System (GPS) receiver, and a dedicated memory stick
for data storage, were coupled to the analyzer. The external GPS
receiver was attached to the roof of the vehicle, while the spectrum
analyzer was positioned inside the vehicle [31]. The system
configuration parameters of the spectrum analyzer and detailed
system parameters of the transmitters are presented in Table 1
and Table 2 respectively. Three measurement routes (R1, R2 and
R3) were surveyed, with R1 having two to three-storey buildings
densely distributed, characterized with hills, valleys and thick veg-
etation over the area, thereby fitting into an urban area description.
R2 is characterized by a dense distribution of buildings, and so
qualifies for suburban, while R3 spans from suburban to rural area
because it is a very busy road characterized by a mix of hills and
valleys within the area. Unlike the measurement results reported
in [32,33], a multi-transmitter propagation scenario was investi-
gated in this present study; therefore, a channel scanner was used.
This allows the spectrum analyzer to provide a complete multi-
frequency site survey, with logs of the received signal strength of
various transmitters (up to 20 channels) along with the time, date
Table 1
Configuration of N9342C Agilent Spectrum Analyzer.

N9342C Agilent Spectrum Analyzer (100 Hz–7 GHz)

Displayed average noise level (DANL) �164 dBm/Hz
Preamplifier 20 dB
Resolution bandwidth (RBW) 10 kHz
Impedance 50 O
Whip Antenna frequency 70 MHz–1 GHz
Whip antenna gain 2.51 dBi
Receiver height above the ground 1.5 m
GPS antenna frequency L1 band

Table 2
Characteristics of the Broadcast Transmitters.

Transmitter Name Location Latitude Longitude

UNILORIN Ilorin 8� 290 2100 N 4� 400 2800 E
HARMONY Ilorin 8� 210 5600 N 4� 430 1800 E
NTA, ILORIN Ilorin 8� 250 5500 N 4� 360 2500 E

Fig. 1. Data collection for Ilorin, Kwara State, Nigeria (a) Multi-transmitter measurement
part of Ilorin.
and GPS coordinates into memory storage. The measurement com-
menced with the configuration of the spectrum analyzer, where all
the transmitting frequencies of the selected VHF television trans-
mitters were saved. The terrain elevation of a specific measure-
ment route is the same for all the transmitters considered. This is
because the receiver (Rx) travels along the same path for each of
the three antennas. Hence, the Rx height is the same in each case.
However, the clutter types along the wireless communication
paths are different, as the transmitters are not co-located. The clut-
ter types along the wireless communication paths are shown in
Fig. 1(a). The measurements over the three base station transmitter
were conducted simultaneously along each of the three routes (R1,
R2 and R3), and the receiver obtained the signal strength from each
transmitter with varying clutter type along the transmission path.
This multi-transmitter set-up is different from the conventional
method where the measurement is conducted for each transmitter
along predefined routes. This new setup enables us to examine
both the terrain and clutter effects simultaneously across the
bands. This also helps us to isolate the clutter effects. Fig. 1(b)
shows the routes of the complete measurement scenario for the
Ilorin campaign.

Data pre-processing was undertaken where by the local mean
received power was converted to path loss using Eq. (1). MicroCal
origin 8.5 was used and un-weighted sliding average smoothing
algorithm with 10 smooth points to smooth the data set. This
removes small-scale fading while preserving the path loss and
shadowing effects statistics. Also, a pick peaks tool (using a Baye-
sian second derivative) was also utilized to minimize the noise in
the data. A total of 3946 unique data instances were obtained after
proper data preprocessing. The complete data was randomly
divided into 75% training data subset, and 25% testing data subset.
The training data subset was used for ANFIS path loss model train-
Center Frequency (MHz) Height (m) Transmitter Power (KW)

89.30 100 1.0
103.5 125 7.0
203.25 185 2.4

scenario along route 1 showing the clutter types and (b) typical route within ancient



682 N.T. Surajudeen-Bakinde et al. / Engineering Science and Technology, an International Journal 21 (2018) 679–691
ing and development in MATLAB 2016a. The testing data subset,
which were collected from different but similar propagation sce-
narios within the urban environment, and previously excluded
from model training and development, was used to evaluate the
prediction accuracy and generalization ability of the ANFIS path
loss model. Training data and testing data do not contain the same
data instances such that the two datasets represent different prop-
agation scenarios.

Path LossðdBÞ ¼ Powertransmitted � Powerreceived ð1Þ
2.2. Prediction models

2.2.1. Neuro-Fuzzy (NF) model
The Neuro-Fuzzy modelling approach involves the use of expert

knowledge to train a neural network structure to map a given set
of input data correctly to their corresponding path loss values. In
particular, it is a Fuzzy Inference System (FIS) which prepares the
mapping of inputs to the respective outputs. The ANFIS method
is not just a simulation method; the technique can actually be used
for predicting values of a dependent variable based on a given set
of values of independent variable(s). ANFIS techniques have been
widely applied to solve prediction (or regression) problems in dif-
ferent fields of study [34–38]. In this study, the input variables that
determine the output variable (path loss) are the separation dis-
tance between transmitter and receiver, and the frequency of
transmission. The NF model structure consists of both the Fuzzy
Logic (FL) and Artificial Neural Network (ANN), which complement
one another in the development of mapping the supplied inputs to
their corresponding outputs. The most significant reason for this
combination is that the FL system makes use of the learning ability
of the ANN. The most complex part of the FL technique is in decid-
ing on the most suitable membership functions (generalized bell,
Gaussian, triangular, trapezoidal, pi, etc.) to be adopted for the
inputs, as well as generating the fuzzy rules (fuzzification) for
the desired outputs. The membership function defines how each
point in the input space (universe of discourse) is mapped to a
membership value or degree of membership between 0 and 1.
The input (antecedent) parameters are generated initially using a
trial and error method. These parameters are therefore tuned by
the learning ability of the ANN, which makes the errors reduction
easier, as well as optimizing the output (consequent) parameters
[39].

The structure consists of five layers, as shown in Fig. 2. The
nodes in these layers are either fixed or adaptive. The adaptive
nodes are symbolized by the square shapes, while the fixed nodes
are represented by the circular shapes. To describe the structure, a
first order Sugeno model has been used because the output is crisp,
which does not require defuzzification. A Sugeno-based ANFIS has
a rule of the form as given by Eqs. (2)–(4) [39]:

Rule 1: If x is A1, and y is B1, then:

f 1 ¼ p1xþ q1yþ r1 ð2Þ
Fig. 2. ANFIS Structure.
Rule 2: If x is A2, and y is B2, then:

f 2 ¼ p2xþ q2yþ r2 ð3Þ
Layer 1: A node in this layer is adaptable, and is given as:

L1i ¼ lAiðxÞ; i ¼ 1;2 ð4Þ
x is the input to the ith node, Ai is the alterable language related to
this node, and the membership function of Ai is lAi(x), usually taken
as:

lAiðxÞ ¼ 1

1þ x�c
ai

� �2
� �bi ð5Þ

{ai, bi, ci} forms a set called the antecedent parameters set. Eq. (5)
represents the generalized bell membership function. Other mem-
bership functions used in the paper are the triangular, trapezoidal,
Gaussian, and pi functions. Their model equations can be found in
[32,40].

Layer 2: This layer is comprised of fixed nodes, and it
solves the firing power wi of a rule. The multiplication of
the incoming signals is the output of each node, and is given
by Eq. (6):

L2i ¼ wi ¼ lAiðxÞ � lBiðyÞ; i ¼ 1;2 ð6Þ
Layer 3: Each node is constant in this layer, with the output

given by Eq. (7):

L3i ¼ wi ¼ wiX
wi

; i ¼ 1;2 ð7Þ

Layer 4: The adaptable output of this layer is given by Eq. (8):

L4i ¼ wif i ¼ wiðpixþ qiyþ riÞ; i ¼ 1;2 ð8Þ
{pi, qi and ri} also forms a set called the consequent parameters set,
which are established by the least squares method.

Layer 5: The output of this layer is the summation of all incom-
ing signals, and it is given by Eqs. (9) and (10):

L5i ¼
X2
i¼1

wif i ¼
X

wif iX
wi

ð9Þ

L5i ¼ zp ¼
X2
i¼1

wif i

¼ ðw1xÞp1 þ ðw1yÞq1 þ ðw1Þr1 þ ðw2xÞp2 þ ðw2yÞq2 þ ðw2Þr2
ð10Þ

where zp is the network predicted output.
A hybrid optimization method, which combines both the back

propagation algorithm and a least square error method, was used
for model network training. The output (consequent) parameters
pi, qi and ri are adjusted first by using the least squares algorithm,
and those of input (antecedent) parameters ai, bi, and ci by back
propagating the faults from the output to the input until the train-
ing is completed.

The least squares estimate algorithm is obtained by rewriting
Eq. (11) in matrix form [40]:

w1
ð1Þxð1Þ w1

ð1Þyð1Þ w1
ð1Þ w2

ð1Þxð1Þ w2
ð1Þyð1Þ w2

ð1Þ

w1
ð2Þxð2Þ w1

ð2Þyð2Þ w1
ð2Þ w2

ð2Þxð2Þ w2
ð2Þyð2Þ w2

ð2Þ

..

. ..
. ..

. ..
. ..

. ..
.

w1
ðnÞxðnÞ w1

ðnÞyðnÞ w1
ðnÞ w2

ðnÞxðnÞ w2
ðnÞyðnÞ w2

ðnÞ

2
666664

3
777775

p1

q1

r1
p2

q2

r2

2
6666666664

3
7777777775
¼

zð1Þp

zð2Þp

..

.

zðnÞp

2
6666664

3
7777775

ð11Þ
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n is the total number of training data (input/output) pairs, and zðnÞp

are the network predicted outputs, where the consequent parame-

ters ½p1; q1; r1;p2; q2; r2�T are obtained using Eq. (12), and zðnÞd are the
desired/measured outputs.

w1
ð1Þxð1Þ w1

ð1Þyð1Þ w1
ð1Þ w2

ð1Þxð1Þ w2
ð1Þyð1Þ w2

ð1Þ

w1
ð2Þxð2Þ w1

ð2Þyð2Þ w1
ð2Þ w2

ð2Þxð2Þ w2
ð2Þyð2Þ w2

ð2Þ

..

. ..
. ..

. ..
. ..

. ..
.

w1
ðnÞxðnÞ w1

ðnÞyðnÞ w1
ðnÞ w2

ðnÞxðnÞ w2
ðnÞyðnÞ w2

ðnÞ

2
66664

3
77775

�1 zð1Þd

zð2Þd

..

.

zðnÞd

2
666664

3
777775 ¼

p1

q1

r1
p2

q2

r2

2
666666664

3
777777775

ð12Þ
The errors between the desired and predicted outputs are prop-

agated from the output layers to the input layers using the back
propagation algorithm, which starts from Eq. (13) in order to
update the synaptic weights [30]:

wi
ðkÞðM þ 1Þ ¼ wi

ðkÞðMÞ þ ðzðkÞd � zðkÞp Þ ð13Þ

and the weight update for the input layer is given in Eq. (14)

wðkÞ
i ðM þ 1Þ ¼ wðkÞ

i ðMÞxþwi
ðkÞ

wðkÞ
i ðMÞyþwi

ðkÞ

(
ð14Þ

where k is the input/output training pair, and M represents each
layer starting from the output backwards.

2.2.2. Membership function (MF)
In the Membership Function (MF), m refers to the degree or

grade of membership of an element in a fuzzy set, and it must vary
between 0 and 1. The most commonly used membership functions
are the triangular, trapezoidal, generalized bell, Gaussian, and pi
functions [34]. In this paper, we explore the impact of MF on the
training RMSE for the model.

2.2.3. Empirical path loss models
The mathematical expressions for the path loss prediction

models considered in the research work are presented in this
section. In this study, the inclusion of existing path loss models
is limited to popular empirical models because of their simplicity
and lower computational requirements. Deterministic and semi-
deterministic path loss models, such as ITU-R P.1411, ITU-R
P.1546 and ITU-R P.1812 path loss models, require more detailed
information about the propagation environment to guarantee a
high prediction accuracy [41–43]. This paper seeks to identify an
optimal model with desirable advantages of simplicity, high pre-
diction accuracy, and good generalization ability that are required
for radio coverage estimation and interference feasibility studies
during multi-transmitter radio network planning in the VHF bands.
Hence, the developed ANFIS-based path loss model was compared
to only four empirical models (Hata, COST 231, Egli, and ECC-33)
that met the inclusion criteria of simplicity and ease of use.

2.2.3.1. Hata model. Hata model may be used for path loss predic-
tions within the frequency range of 150 MHz to 1500 MHz and dis-
tances up to 20 km. The height of the transmitter and receiver also
varies between 30 and 200 m and 1–10 m, respectively. The math-
ematical expression for urban environments is given by Eq. (15):

PLHataðdBÞ ¼ 69:55þ 26:16� logðf Þ � 13:82� logðhtÞ
� AðhrÞ þ ð44:9� 6:55� loghtÞ � logðdÞ ð15Þ

where PLHata is the path loss (in dB), f is the operating frequency (in
MHz), ht is the height of the transmitter (in meters), hr is the height
of the receiver (in meters), d is the transmitter-receiver separation
distance (in km), and AðhrÞ is the correction factor for the height
of the receiver.

For a small and medium city, we have Eq. (16):

AðhrÞ ¼ ð1:1� logf � 0:7Þhr � ð1:56� logf � 0:8Þ ð16Þ
Whereas for a large city, we have Eq. (17):

AðhrÞ ¼ 8:29� ðlog1:54� hrÞ2 � 1:1f � 200MHz

3:2� ðlog11:75� hrÞ2 � 4:97f � 200MHz

(
ð17Þ

For sub-urban areas, we have Equation (18):

PLHataðsuburbanÞ ¼ PLHataðurbanÞ � 2� ðlogðf=28ÞÞ2 � 5:4 ð18Þ
And for open areas, we have Eq. (19):

PLHataðopenÞ ¼ PLHataðurbanÞ � 4:78� ðlogf Þ2 þ 18:33� logðf Þ � 40:94

ð19Þ

2.2.3.2. Co-operative for scientific and technical research committee
(COST) 231 model. The restriction of the Hata model in terms of fre-
quency range, which has a maximum of 1500 MHz, inspired the
COST 231model. This model was developed as an extended version
of the Hata model for frequencies up to 2 GHz, which accommo-
dates the GSM 1800 MHz band, as well as distances up to 20 km.
The mathematical expression is given by Eq. (20):

PLCOST ¼ 46:3þ 33:9� logðf Þ � 13:82� logðhtÞ � AðhrÞ
þ ð44:9� 6:55� loghtÞ � logðdÞ þ Cm ð20Þ

where Cm ¼ 0 dB for medium-sized cities and suburban areas, and
3 dB for metropolitan centers. ht;hr ;AðhrÞ; anddhave the same
ranges as defined for the Hata model.

2.2.3.3. Egli model. The Egli model is applicable for frequencies
between 90 and 1000 MHz over irregular terrain, and remains
valid for distances of less than 60 km. The path loss equation (in
dB) for the model is given by Eq. (21):

PLEgliðdBÞ ¼

76:3þ 20� logðf Þ þ 40� logðdÞ � 20� logðhtÞ � 10� logðhrÞ
forhr � 10m

85:9þ 20� logðf Þ þ 40� logðdÞ � 20� logðhtÞ � 10� logðhrÞ
forhr � 10m

8>>><
>>>:

ð21Þ

2.2.3.4. European communication committee (ECC-33) model. The
ECC-33 model is an estimate of the measurements made by Oku-
mura in the frequency range from 700 MHz to 3.5 GHz, and for dis-
tances between 1 and 10 km. The parameters of this model were
modified to suit the fixed wireless systems (FWS) for urban and
medium cities. The model was developed majorly for European
cities, but it has found use in other countries as well, being given
by Eq. (22):

PLECC�33ðdBÞ ¼ Afs þMPL � Gt � Gm ð22Þ
where Afs;MPL;GtandGm are the free space attenuation, median path
loss, transmitter height gain factor, and mobile receiver height gain
factor, respectively, and they are given by Eqs. (23)–(26):

Afs ¼ 92:4þ 20logdþ 20logf ð23Þ

MPL ¼ 20:41þ 9:83logdþ 7:894 log f þ 9:56ðlogf Þ2 ð24Þ

Gt ¼ logðht=200Þ � ð13:958þ 5:8ðlogdÞ2Þ ð25Þ
For a medium sized city we have:

Gm ¼ ð42:7þ 13:7� log f Þ � ðloghr � 0:585Þ ð26Þ
where f is in GHz, and d is in km.
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Fig. 4. Comparison of the ANFIS model path loss against the measured path loss,
and other empirical models path loss, along R3 for the UNILORIN Transmitter.

5 6 7 8 9 10
70

80

90

100

110

120

130

140

150

 Measured
 ANFIS
 COST231
 Hata
 Egli
 ECC33

P
at

h 
Lo

ss
 (d

B
)

Radial Distance (km)

Fig. 5. Comparison of the ANFIS model path loss against the measured path loss,
and other empirical models path loss, along R1 for the NTA Transmitter.
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3. Results and discussion

The strengths of the signals received by the dedicated Agilent
spectrum analyzer mode N9342C were measured and recorded at
varying distances as the vehicle moved away from the three trans-
mitters that are considered in this study. The field measurements
were performed along nine different drive test routes. A total of
4500 measurement points (i.e., 500 measurement points per route,
multiplied by 9 drive test routes). The measurements taken along
the nine drive test routes covered distance ranges of 0.044–
10.026 km, 5.491–9.543 km, 7.081–8.353 km, 8.523–13.027 km,
9.525–11.437 km, 11.443–13.910 km, 13.530–22.435 km, 22.223–
22.770 km, and 22.258–24.056 km, respectively.

Figs. 3–6 are the graphs of the measured and predicted path
losses as a function of distance for the UNILORIN, NTA, and HAR-
MONY transmitters, along R1. One route was followed in the data
collection for each of the transmitters. From all the figures, it can
be inferred that the prediction by the ANFIS model in all the three
transmitters have the best performance, because of its similarity to
the measured data, when they were compared to the four widely
used empirical models: ECC-33, Egli, Hata and COST 231.

In R1 of UNILORIN transmitter, as shown in Fig. 3, ECC-33 is
prone to overestimate results, except within a window of 0–1
km, where a good fitness value is achieved regarding the correla-
tion with the measured path loss. Hata, COST 231 and Egli achieve
values similar to the measured ones, except within the 4.5–5.5 km
range, where Hata over-predicted the path loss. Under prediction
of the path loss occurred within the distance range from 0 to 2
km for Hata, COST 231 and Egli. The same under prediction was
observed within the range 9–10 km for the COST 231 and Egli
models. ANFIS, on the other hand, has the same prediction trend
for all measured values throughout the distance range considered.

In Fig. 4, the variation of path loss with distance for Route 3 is
presented. The predictions of the four empirical models were
superimposed on the measured loss. The Egli model underpre-
dicted the path losses throughout the measurement route, except
within the 9.0–9.8 km range, where the model prediction was
good, being quite close to the measured path loss. COST 231 has
a performance similar to Egli. Hata has an improved performance
when compared to Egli and COST 231, because of its closeness to
the actual measured values. Finally, the ANFIS model mimics the
measured path loss throughout the whole range of distance
considered.

In Fig. 5, the ANFIS model path loss is compared to the mea-
sured one and to four empirical path loss models for the NTA trans-
mitter along R1. Notice that the ANFIS model predicts values that
are very close to the measured ones throughout the whole path
under analysis, while ECC 33 is in general prone to over predict
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Fig. 3. Comparison of the ANFIS model path loss against the measured path loss
and, other empirical models path loss along R1 for the UNILORIN Transmitter.
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Fig. 6. Comparison of ANFIS model path loss against the measured path loss, and
other empirical models path loss, along R1 for the Harmony Transmitter.
values, especially in the range from 6.5 to 7.5 km. Egli under pre-
dicted the path loss throughout the whole coverage distance. On
the other hand, Hata and COST 231 present nearly the same path
loss, with evident under predictions within the 5.5–6. 5 km and
9.5–10 km ranges.

Fig. 6 depicts the result for the Harmony transmitter along R1.
Path loss was over predicted by the COST 231 and Egli models
for the distance range 15.1–15.8 km, while under prediction was
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observed for the distance range 21–22.4 km. ECC-33 overpredicted
values throughout the whole distance range considered, while
Hata’s performance was close to the measured prediction, espe-
cially from 16 to 22.5 km, but its path loss prediction was highly
above the measured one from 14.8 to 16 km. As observed for the
UNILORIN transmitters, the ANFIS model path loss values are iden-
tical to the measured path losses throughout the whole distance
considered for the Harmony transmitter.

In Table 3, the statistical analysis of the error in terms of the
RMSE for each model across the three target routes, and for the
UNILORIN, NTA and HARMONY transmitters, are provided. A RMSE
between 0 and 7 dB is considered acceptable for urban areas [26],
although for typical suburban and rural areas, up to 10–15 dB can
still be acceptable. The average RMSE values for the three routes
and the three transmitters considered are the lowest, with values
of 4.82 dB, 4.95 dB and 5.85 dB for UNILORIN, NTA and HARMONY
transmitters, respectively. Notice that they all fall within the
acceptable range for urban areas, where the transmitters are
located. The next model with low average RMSE is Hata, which
achieves 8.15 dB, 8.96 dB and 9.11 dB for the NTA, HARMONY
and UNILORIN transmitters, respectively. ECC-33 has the highest
average RMSE for the UNILORIN and HARMONY transmitters, with
values of 18.63 dB and 21.19 dB, respectively.

In Table 4, the ANFIS model has the least mean error values for
all the three transmitters – UNILORIN, NTA and HARMONY – con-
sidered along the three routes where the data were taken. This
table further shows the accuracy of the ANFIS model in terms of
path loss predictions when compared to the other four empirical
models. The Egli model is next with very low mean error values
Table 3
RMSE Performance Metrics for the different models regarding the UNILORIN, NTA and Ha

Models/Routes UNILORN NTA

R1 R2 R3 Avg. R1 R

ANFIS (dB) 5.71 4.16 4.60 4.82 7.10 3
COST 231 (dB) 13.39 12.54 11.51 12.48 13.14 9
Hata (dB) 12.39 7.07 7.87 9.11 9.79 6
Egli (dB) 19.74 16.22 13.58 16.51 21.21 1
ECC-33 (dB) 22.24 15.45 18.2 18.63 12.53 1

Table 4
Mean Error Performance Metrics for the different models regarding the VHF Transmitters

Models/
Routes

UNILORN NTA

R1 R2 R3 Avg. R1 R2

ANFIS (dB) 1.04E�06 �5.68E�06 �1.78E�06 7.54E�06 �5.9E�05 1.82E�
COST 231 (dB) 5.66 10.65 8.4 9.83 8.56 6.62
Hata (dB) �2.48 �2.5 �0.25 �4.45 �3.17 �1.241
Egli (dB) �12.1 �14.7 �11.2 �19.25 �17.57 �14
ECC-33 (dB) 19.2 14 16.4 8.99 10.3 12.28

Table 5
Maximum Error Performance Metrics for the different models regarding the VHF Transmi

Models/Routes UNILORN NTA

R1 R2 R3 Avg. R1 R2

ANFIS (dB) 18.61 14.786 25.105 20.96 25.2 17
COST 231 (dB) 62.14 30.95 25.69 29.00 29.00 18
Hata (dB) 53.99 22.80 17.54 23.61 23.61 18
Egli (dB) 84.51 35.21 29.04 39.45 39.45 25
ECC-33 (dB) 31.25 6.31 0.914 10.18 10.18 32
throughout the three routes visited, and for the same three
transmitters.

In Table 5, the maximum error performances of the three trans-
mitters, UNILORIN, NTA and HARMONY, along the three routes
(R1–R3) are depicted. Egli produced the highest error values, rela-
tive to the measured data, when used for path loss predictions
along the three routes in this study

Table 6 shows the standard deviation Error (SDE) across all the
ANFIS and the four empirical models, for UNILORIN, NTA and HAR-
MONY transmitters. The SDE for R1 was highest for the UNILORIN
transmitter in comparison to the two other transmitters, for all the
models, which must have been due to high errors for these models
along the concerned route. The HARMONY transmitter had the
lowest SDE along R2 for all empirical models, except for the ANFIS
model, which is quite high when compared to the others. The same
performance trend observed for R2 is also applicable to R3 for the
HARMONY transmitter, which has also the lowest SDE for all the
models, except the ANFIS model.

In Fig. 7, the prediction error of the ANFIS model in terms of the
radial distance is compared to all other empirical models for the
UNILORIN transmitter along R1. It is observed from the graph that
the ECC33 overestimated the path loss for the whole distance
range covered. Egli, COST231 and Hata models underestimated
the path loss within the distance range 0–3 km, having prediction
errors of less than 0 dB, and they all converged to 0 dB at about 3.5
km. The path loss model has the lowest prediction errors of about -
50 dB throughout the distance covered, except at a distance
between 0 and 0.5 km, where the PE error was of 0 dB (the same
as for the ANFIS model). The PE of the ANFIS model was of nearly
rmony Transmitters.

HARMONY

2 R3 Avg. R1 R2 R3 Avg.

.82 3.94 4.95 5.87 5.46 6.21 5.85

.56 7.49 10.06 8.85 9.68 10.19 9.57

.41 8.24 8.15 10.66 8.24 7.99 8.96
6.22 11.24 16.22 9.04 10.17 10.68 9.96
3.01 18.77 14.77 24.02 20.2 19.34 21.19

.

HARMONY

R3 Avg. R1 R2 R3 Avg.

06 6.80E�06 �9.24E�06 �1.52E�05 1.04E�06 �5.68E�06 �1.78E�06
1.52 5.51 6.43 5.66 10.65 8.4
6.13 2.14 1.21 �2.48 �2.5 �0.25
�3.14 �6.31 �7.16 �12.1 �14.7 �11.2
22.44 18.6 17.7 19.2 14 16.4

tters.

HARMONY

R3 Avg. R1 R2 R3 Avg.

.29 21.0 15.82 23.3218 18.61 14.786 25.105

.28 25.2 22.96 23.83 62.14 30.95 25.69

.96 17.55 15.37 16.17 53.99 22.80 17.54

.049 26.71 23.71 24.60 84.51 35.21 29.04

.45 45 39.84 �0.299 31.25 6.31 0.914



Table 6
Standard Deviation Error for the different models regarding the UNILORIN, NTA and HARMONY Transmitters.

Models/Routes UNILORN NTA HARMONY

R1 R2 R3 Avg. R1 R2 R3 Avg. R1 R2 R3 Avg.

ANFIS (dB) 8.27 4.69 7.51 4.71 4.6 6.33 7.76 5.66 4.78 8.27 4.69 7.51
COST 231 (dB) 16.09 0.55 1.73 2.075 1.85 0.76 1.99 0.071 0.27 16.09 0.55 1.73
Hata (dB) 16.09 0.55 1.73 2.075 1.85 0.76 1.99 0.071 0.27 16.09 0.55 1.73
Egli (dB) 20.24 14.8 2.17 2.76 2.47 1.02 2.56 0.092 0.35 20.24 14.8 2.17
ECC-33 (dB) 14.98 14.8 1.81 2.083 1.86 0.77 2.09 0.076 0.29 14.98 14.8 1.81
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Fig. 7. Comparison of the ANFIS model prediction error with other empirical
models prediction error for the UNILORIN Transmitter along Route 1.
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Fig. 9. Effects of the membership functions and the number of epochs on the
training RMSE along R1 for the Harmony Transmitter.
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0 dB throughout the distance covered for R1. The PE of Egli, COST
231 and Hata models show the same fluctuations, and follow the
same behaviour as Egli, having the highest error among the three
models throughout the whole distance covered. The ANFIS model
has a constant PE of 0 dB throughout the 0–10 km range, with
the Egli, COST231 and Hata models converging to 0 dB from 3.5
to10 km.

The impact of membership types and epoch size on RMSE is
shown in Figs. 8–10, which are presented to show how the mem-
bership type provides stability to attain fast convergence with a
minimum of epochs. In Fig. 8, as the number of epochs increases
for the different types of membership functions for R1, UNILORIN
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Fig. 8. Effects of the membership functions and the number of epochs on the
training RMSE along R1 for the UNILORIN Transmitter.
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Fig. 10. Effects of membership functions and the number of epochs on the training
RMSE along R1 for the NTA Transmitter.
transmitter, the RMSE also decreases. It is observed that Pi has
the lowest RMSE for all the membership functions, and for all the
epochs considered, stabilising at 5.70 dB from 300 to 1000 epochs.
Trapezoidal is the next in line, with stable RMSE value of 5.85 dB
from 200 to 1000 epochs. Gaussian and Triangular are both on
the highest side for RMSE for all epochs considered.

In Fig. 9, the impact of the membership types and the epoch size
on the RMSE for the Harmony transmitter along R1 is presented. Pi
has the lowest RMSE, particularly from epoch size 100 to 1000,
while the Generalized and Gaussian are trained in a similar
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manner, with RMSE values falling within the 5.94–6.00 dB range.
Trapezoidal achieves stable RMSE values of 6.05 dB from epochs
of less than 100 up to 1000. Triangular achieves a very high RMSE
(about 6.25 dB) from 0 epoch onwards, gradually decreasing to
6.13 dB where stability is observed, that is, from an epoch size of
about 300 to 1000.
Fig. 11. Kernel distribution of the prediction errors for ANFIS and other empirical
models along R1 for the UNILORIN transmitter.

Fig. 12. Kernel distribution of the prediction errors for the ANFIS and HATA
empirical models, for the NTA, UNILORIN and HARMONY transmitters along R1.

Table 7
Statistical evaluation of model prediction accuracy.

MAE (dB) MSE (dB)

COST 231 7.437 102.818
Hata 6.480 74.814
Egli 11.074 216.467
ECC-33 18.075 380.922
ANFIS 3.386 19.844
In Fig. 10, the impact of membership types and epoch size on
RMSE for the NTA transmitter along Route 1 is presented. The
RMSE for this transmitter, along the same R1 as for the two previ-
ous ones, is slightly different, while the Generalized, Trapezoidal
and Gaussian functions achieve nearly the same values for all
epoch sizes. Pi is observed to have the lowest RMSE, while Triangu-
lar maintained a very stable but high RMSE of 7.4 dB from 0 to
1000 epochs.

In Fig. 11, the response of the empirical models to clutter
changes and radial distances is presented. It is observed that the
clutter cover and radial distances do not affect the ANFIS model.
The other empirical models are of very similar performance in their
response to clutter cover and radial distances, whereas ANFIS is
totally different in its response to the clutter cover.

In Fig. 12, along R1, the terrain elevation is the same, being that
only the clutter along the communication path and the radial dis-
tance vary. It can be observed that both variables did not have sig-
nificant effects on the ANFIS model, as both transmitters show
similar shapes which are superimposed. However, slight amplitude
offset for the NTA transmitter is noticeable. However, for the HATA
model, a significant impact for the clutter and radial distance were
observed. The error distribution for NTA and UNILORIN transmit-
ters follows a similar curve, with slight offsets. A significant diver-
gence for the HARMONY transmitter was also observed.

Large-scale fading represents the average reduction in signal
power over a large distance, while small scale fading (i.e. rapid
fluctuations of RSS within a short distance or period of time) is
not considered in this work. In order to correctly account for
large-scale fading alone, the mean path loss values were calculated
by averaging the measurement data over a measurement track of
100 m. The prediction accuracy of the developed ANFIS-based path
loss model was evaluated by comparing against the mean path loss
data in the training data subset, and the prediction outputs of the
Hata, COST 231, Egli, and ECC-33 path loss models. The perfor-
mance results are presented in Table 7. The developed ANFIS-
based path loss model produced the lowest prediction error, with
MAE, MSE, RMSE, SDE, and R values of 3.386 dB, 19.844 dB,
4.455 dB, 4.470 dB, and 0.921, respectively.

The measured mean path loss values, and the prediction out-
puts of the ANFIS-based model, are plotted against separation dis-
tance, as shown in Figs. 13–15 for the training, testing, and
complete datasets, respectively. The correlation between the mea-
sured average path loss values and the prediction outputs of the
ANFIS-based model is depicted in Fig. 16. When the ANFIS-based
model was deployed for path loss predictions in a different but
similar propagation scenario, it demonstrated a good generaliza-
tion ability, with MAE, MSE, RMSE, SDE, and R values of 3.545 dB,
19.840 dB, 4.454 dB, 4.489 dB, and 0.910, respectively. The general-
ization ability of the developed ANFIS-based path loss model was
compared to the mean path loss data in the testing data subset,
and to the prediction outputs of Hata, COST 231, Egli, and ECC-33
path loss models. The results of the statistical evaluation are pre-
sented in Table 8.

The developed ANFIS-based path loss model has been trained to
map the values of the input variables (i.e. distance and frequency)
RMSE (dB) SDE (dB) R

10.140 8.595 0.779
8.650 8.466 0.776
14.713 10.694 0.768
19.517 8.207 0.776
4.455 4.470 0.921



Fig. 13. Prediction performance of ANFIS-based path loss model.

Fig. 14. Generalization performance of ANFIS-based path loss model.
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to their respective path loss values. The trained model will produce
the corresponding path loss value for any given distance in a differ-
ent scenario, provided the geographic features in the new propaga-
tion environment are similar to those in the area where the
training data were previously collected. Hence, the developed
ANFIS model can be used to predict path loss for any given separa-
tion distance between transmitter and receiver, similar to what
occurs for the Hata and other empirical path loss models. However,
unlike other empirical models, which can be characterized by plain
mathematical expressions, the trained ANFIS model acts as a
‘‘black-box” with the appropriate configurations of the input and
output membership function parameters, rule antecedent, rule
consequent, rule weight, and rule connection. The obtained config-
uration was encoded in the model network (fis) using the MATLAB
programming language to accept the given values of separation
distance and frequency of transmission as inputs, and produce
path loss values as output. Path loss prediction can be performed
using the evalfis function in MATLAB. Therefore, the developed
ANFIS-based path loss model can simply be used to accurately pre-
dict path loss in the VHF band without any need for measurement
data. Thus, measurement data is only needed for the training pro-
cess. Thereafter, the already trained model can be deployed for
path loss predictions in different propagation scenarios, and with-
out the need to perform any field measurement.



Fig. 15. General evaluation of ANFIS-based path loss model.

Fig. 16. R values of predicted path loss versus measured path loss.
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In general, the developed ANFIS-based path loss model demon-
strated the most desirable advantages in terms of simplicity, high
prediction accuracy, and good generalization ability, that are
required for radio coverage estimation and interference feasibility
studies during multi-transmitter radio network planning in the
VHF bands (Figs. 17 and 18).



Fig. 18. Evaluation of generalization ability of Hata, COST 231, Egli, ECC-33, and
ANFIS-based path loss models.

Fig. 17. Evaluation of prediction accuracy of Hata, COST 231, Egli, ECC-33, and
ANFIS-based path loss models.

Table 8
Statistical evaluation of model generalization ability.

MAE (dB) MSE (dB) RMSE (dB) SDE (dB) R

COST 231 7.026 82.814 9.100 7.805 0.763
Hata 5.791 63.858 7.991 7.677 0.760
Egli 10.624 173.658 13.178 9.296 0.751
ECC-33 18.428 388.791 19.718 7.666 0.755
ANFIS 3.545 19.840 4.454 4.489 0.910
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4. Conclusion

In this paper, a new path loss prediction model was developed
for multiple transmitter radio propagation scenarios in the VHF
bands using ANFIS. Extensive measurement campaigns were con-
ducted along three routes within the urban environment of Ilorin,
Kwara State, Nigeria. This was done using drive tests to obtain the
strength values of radio signals received from three different trans-
mitters at 89.3 MHz, 103.5 MHz, and 203.25 MHz, respectively. A
simple five-layer optimized NF network was developed based on
the back propagation gradient descent algorithm and least square
errors to reduce the complexity and improve the accuracy of path
loss predictions in VHF bands. A good stability and faster
convergence was achieved with a minimum of epochs using the
Pi membership function. It was observed that the clutter cover
and radial distances do not significantly affect the performance
of the developed ANFIS model. The developed ANFIS-based path
loss model produced minimum prediction error with Root Mean
Square Error (RMSE), Standard Deviation Error (SDE), and correla-
tion coefficient (R) values of 4.45 dB, 4.47 dB, and 0.92 respectively.
When the ANFIS-based model was deployed for path loss predic-
tions in a different but similar propagation scenario, it demon-
strated a good generalization ability with RMSE, SDE, and R
values of 4.46 dB, 4.49 dB, and 0.91 respectively. In conclusion,
the ANFIS model is able to deliver efficient path loss predictions
required for radio coverage evaluation and interference feasibility
studies in multi-transmitter radio network planning in the VHF
bands.
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