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ABSTRACT 
 

Penetration Depth Variation in Atomic Layer Deposition 
on Multiwalled Carbon Nanotube Forests 

 
David Alan Kane 

Department of Physics and Astronomy, BYU 
Master of Science 

 
Atomic Layer Deposition (ALD) of Al2O3 on tall multiwalled carbon nanotube forests 

shows concentration variation with the depth in the form of discrete steps. While ALD is capable 
of extremely conformal deposition in high aspect ratio structures, decreasing penetration depth 
has been observed over multiple thermal ALD cycles on 1.3 mm tall multiwalled carbon 
nanotube forests. SEM imaging with Energy Dispersive X-ray Spectroscopy elemental analysis 
shows steps of decreasing intensity corresponding to decreasing concentrations of Al2O3. A study 
of these steps suggests that they are produced by a combination of diffusion limited delivery of 
precursors with increasing precursor adsorption site density as discrete nuclei grow during the 
ALD process. This conceptual model has been applied to modify literature models for ALD 
penetration on high aspect ratio structures, allowing several parameters to be extracted from the 
experimental data. The Knudsen diffusion constant for trimethylaluminum (TMA) in these 
carbon nanotube forests has been found to be 0.3 cm2s-1. From the profile of the Al2O3 
concentration at the steps, the sticking coefficient of TMA on Al2O3 was found to be 0.003. 
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1 INTRODUCTION 

Numerous applications including capacitors1–3, catalysts4–6, and batteries7–9 can benefit from the 

deposition of thin films on high aspect ratio or nanostructured substrates. Atomic layer deposition 

(ALD) 10 allows a wide variety of materials to be deposited on high aspect ratio structures at 

relatively low temperatures with excellent control over film thickness.11 Significant work has been 

done on modelling transport in ALD and related processes on nanostructured materials12 but 

experimentally based understanding is a work in progress. 

ALD has been used to manufacture high aspect ratio capacitors for DRAM applications. Seidi et 

al.13 demonstrated the feasibility of using ALD to deposit the dielectric of a capacitor in a trench 

to make silicon-insulator-silicon capacitors. The trench aspect ratio was approximately 30. Similar 

techniques appear in various patents14–16. ALD has also been used to deposit diffusion barriers for 

interconnects10. Elam et al.17, based on both simulations and experiments, reported that the 

required dose to coat a high aspect ratio structure is proportional to the aspect ratio squared. 

However, in practice, it appears that many ALD processes on high aspect ratio structures are 

optimized by past experience or trial and error. 

Deposition on high aspect ratio structures can be challenging. Depositing material on the outside 

surface of the structure is much easier than depositing it conformally throughout the material. In 

most deposition techniques, diffusion of the precursor and its deposition reaction occur 

simultaneously. Because the precursor reacts within some amount of time, it can only diffuse a 

certain distance before reacting, limiting the depth into a structure the material can be deposited. 

Line of sight deposition techniques, including most PVD techniques coat only the outside of 

nanostructured materials. Chemical vapor deposition (CVD) is not typically line of sight because 

the gaseous precursors used can diffuse into nanostructured materials before reacting.18 The 
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reaction rate in CVD can be controlled by adjusting the temperature. Decreasing the reaction rate 

improves conformality on high aspect ratio structures because it allows the precursor gasses more 

time to diffuse before reacting.19 Yanguas-Gil et. al. showed that very high aspect ratio structures 

can be coated by CVD by decreasing the reaction rate, at the cost of a dependence on some specific 

requirements on the precursor vapor pressure.20 This strategy may work well in many situations 

but as aspect ratios increase, it forces a compromise between step coverage (top-bottom thickness 

difference) and deposition rate. 

Atomic layer deposition was independently discovered by Prof. Aleskovskii’s group in the Soviet 

Union and by Dr. Tuomo Suntola in Finland.21 Suntola’s commercially motivated group needed 

to prepare high quality films of ZnS with good thickness control for use in electroluminescent 

displays. ALD (previously known as ALE or Atomic Layer Epitaxy) became much more popular 

after Microchemistry offered the F-120 ALD reactor for sale in 1987: 

 

Figure 1 Number of Atomic Layer Deposition or Atomic Layer Epitaxy papers published per year (Data 

from Web of Science) 
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Several authors have discussed the ALD precursor dose needed to coat high aspect ratio 

structures22–29 and mathematical models have been used to calculate these dose requirements. Roy 

Gordon developed a model for cylindrical pores which assumes that precursor molecules enter the 

pore and immediately react with the first unreacted site encountered and that the pressure is low 

enough that transport occurs by Knudsen diffusion (that is, that the molecules primarily collide 

with solid objects rather than other gas molecules).30 Angel Yanguas-Gil et al. calculated the 

required precursor dose using a model that incorporated Knudsen diffusion and a finite sticking 

coefficient.31 The sticking coefficient is the probability that an impinging precursor will react with 

a reactive site on the surface and has been reported for a few ALD processes.32–36 

Vertically aligned multiwalled carbon nanotube (MWCNT) forests offer an extreme high aspect 

ratio test structure for ALD. The ratio of forest height to the spacing between nanotubes can exceed 

10,000. Additionally MWCNT forests with various coatings are materials systems incorporated 

into devices and systems for many applications including capacitors2, MEMS37, brain computer 

interfaces38, and mechanically compliant thermal conductors39. 

Numerous ALD processes on carbon nanotubes have been reported, although, in many cases not 

using forests. Conformal coatings, islands, or nodular films are observed depending on the ALD 

process, the nanotube growth, and the choice of nanotube surface pretreatment 40 A few of these 

studies address the problem of diffusion in carbon nanotube forests. Stano et al. uniformly coated 

1.5 mm tall carbon nanotube forests by ALD after removing the forests from the substrate to allow 

a flow through geometry for precursor gasses. Conversely, a number of authors report deposition 

on carbon nanotube forests without removing them from the substrate. The forests are typically 

under 100 µm tall, and well beyond 20 ALD cycles were performed, making it unlikely that the 

authors would have seen the intensity step behavior we report.41–44 Typically, no details on how 



4 

 

the dose used was chosen are given. It is possible that in many of these cases, comparison to a 

model could have saved experimental time or costly precursors. 

Important features of an ALD process include the nucleation delay which is a function of the 

underlying surface and how it interacts with the precursors and the steady state growth per cycle, 

a property of the process. While the nucleation delay and subsequent growth can be quite 

complicated, a basic model incorporating chemically reactive sites at which the precursors can 

chemisorb10 is often helpful. Often, increasing the number of reactive sites on a surface by a 

pretreatment enables more conformal films to be grown.45 Such pretreatments are frequently used 

prior to ALD on carbon nanotubes.10,45–47 Several methods to functionalize carbon nanotubes to 

improve or produce these sites have been reported45,48,49. Kanyal et al. reported that ozone 

treatment on patterned MWCNT forests produces C-O, C=O, and O-C=O carbon moieties, causing 

increased adsorption site density for a TMA/tris(tert-butoxyl)silanol SiO2 ALD process.50 An 

increase in ALD adsorption site density for the TMA/water process on ozone treated carbons has 

also been reported for highly oriented pyrolytic graphite51 and doped MWCNTs52. 

The Knudsen diffusion constant is needed to make use of the Yanguas-Gil model. Theoretical 

calculations of the Knudsen diffusion constant based on geometry, surface diffusion, adsorption 

and desorption, and other thermodynamic surface considerations have been carried out.12 For the 

case of MWCNT forests, Szmyt et al. derived the Knudsen diffusion constant for gasses in arrays 

of cylinders, finding:53  

𝐷𝐷 =
𝜋𝜋𝑣𝑣𝑡𝑡ℎ
4𝜎𝜎𝜎𝜎

 . 

Equation 1-1 
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where vth is the thermal velocity, σ is the areal density of carbon nanotubes, and d is the carbon 

nanotube diameter. 

We have investigated the infiltration of these tall CNT forests using the TMA/water thermal Al2O3 

ALD process. We observed depth dependent concentration variations in the deposited alumina that 

occurred in discrete steps. Experiments suggest that each step is produced by a single ALD cycle. 

We find that step depth and spacing is controlled by the dose of the limiting reactant and is thus 

transport (or diffusion) controlled. We extended prior published diffusion limited deposition 

models by assuming that the number of adsorption sites grows in proportion to the surface area of 

the Al2O3 nuclei. Analysis using these adsorption site models allows extraction of the Knudsen 

diffusion coefficient for TMA in these CNT forests as well as the sticking coefficient for TMA in 

the TMA/water process. The diffusion constant found in these CNT forests was 0.3 cm2s-1and the 

extracted sticking coefficient for TMA in the TMA/water ALD process was 0.003. 

 

2 EXPERIMENTAL 

MWCNT forests were grown on silicon wafers. The MWCNT forests were treated with ozone, 

processed using TMA/water ALD, and the resultant samples were analyzed by cross sectional 

scanning electron microscopy (SEM). 

2.1 Carbon nanotube growth 

Carbon nanotube growth used previously described methods.54,55 To prepare the substrate for 

MWCNT growth, 50 nm of Al2O3 were deposited on a (100) silicon wafer by e-beam evaporation 

(Denton Vacuum). Depositing the Al2O3 by other methods is a possibility. Amama et. al. reported 

that the nanotube growth rate on sputtered Al2O3 was slightly greater than the growth rate on e-
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beam deposited Al2O3, but ALD deposited Al2O3 had a much lower CNT growth rate.56 Oxygen 

plasma treatment on the Al2O3 has been reported to improve carbon nanotube growth rates.57 

Photolithography was used to pattern AZ3330, a positive photoresist (Integrated Micro Materials) 

on the wafer after Al2O3 deposition with 1 cm2 circular holes. 4 nm of iron were then deposited by 

resistive thermal evaporation (cryopumped system). To lift off the iron, the wafer was sonicated 

in N-Methyl-2-Pyrrolidone (Sigma-Aldrich) for 15 minutes. The wafer was then rinsed by placing 

it in water from a Millipore Academic water purifier (MilliporeSigma) for 100 minutes. 

Carbon nanotube growth was performed at atmospheric pressure in a tube furnace. The wafers 

were first heated to 750 °C in a hydrogen atmosphere. After the furnace temperature reached 750 

°C, ethylene and hydrogen with a volumetric flow rate ratio of 1.08:1 with a nominal total flow of 

649 sccm were flowed for 50 minutes in a quartz tube with an inside diameter of 24.5 mm. The 

MWCNT forests were cooled to 200 °C in a hydrogen atmosphere. 

The carbon nanotube diameter was measured from SEM images (FEI Verios G4 UC). At least 

three images were taken at each depth in the forest with the column in immersion mode at a beam 

energy of 10kV, beam current of 50pA, horizontal field width of 829 nanometers and a resolution 

of 3072x2048. A typical image is shown in Figure 2. 
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Figure 2 A SEM of a multiwalled carbon nanotube forest 

The ImageJ software was used to measure the nanotube diameters manually. At least 50 nanotubes 

were measured at each depth in the forest to find the average diameter. The diameter as a function 

of depth in the forest is in Figure 3. 
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Figure 3 The average nanotube diameter as a function of depth in the forest. 

 

2.2 Ozone 

The wafers with MWCNT forests were placed in a tube through which 4.4 g/h of ozone from a 

commercial ozone generator (Absolute Ozone) was flowed at room temperature and atmospheric 

pressure for 30 minutes. These parameters were chosen based on Kanyal et. al.’s characterization 

of the ozone treatment process.50  

2.3 Atomic Layer Deposition (ALD) 
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Dynamic thermal ALD of Al2O3 was performed in a commercial ALD-150LX system (Kurt J. 

Lesker Company). This ALD system has a process chamber containing a substrate heater for a 6” 

circular substrate which can be heated to 500 °C. During an ALD process, the process chamber is 

constantly purged with inert gas (nitrogen was used for this study although the system can use 

argon with a software change to adjust the MFCs). The purge flow prevents deposition on the 

analytical viewports and the door. Additionally, inert gas purges flow past two precursor sources. 

All precursor delivery lines are heated. The chamber is pumped continuously during ALD 

processes. Optionally, the throttle valve installed after the roughing valve can be used to adjust the 

chamber pressure. Because the capacitance manometer in the process chamber reads pressures up 

to 10 torr only, it is not possible to control the pressure above this point. For this study, the throttle 

valve was in the fully open position. 

The system has two 'sources' where a precursor can be installed, SRC3 and SRC1. SRC3 is an 

oven which can be heated if needed. This functionality was not used in this study. SRC3 has two 

¼” VCR connections which can either be used for a bubbler, or each one can be connected to a 

simple, single connection precursor cylinder as was done in this study. In this study, the TMA was 

installed on SRC3. SRC1 has a single ¼” VCR connection for a precursor cylinder. In this study, 

water was installed on SRC1.  

 After the substrate heater of the ALD system was brought to 332º C , the MWCNT forests were 

placed in the system. From this point until the samples were removed, the chamber was 

continuously pumped and purged. A 10 minute delay before the ALD process began allowed the 

forests to reach the temperature of the substrate heater. An ALD cycle consisted of a 

trimethylaluminum (TMA) (Strem Chemicals) dose of a fixed duration between 64 and 512 ms, a 

120 s ultrahigh purity nitrogen purge, a 1 s water dose, and another 120 s ultrahigh purity nitrogen 
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purge. Each TMA precursor dose produced a pressure spike of around 270 millitorr. Water doses 

produced around 200 millitorr pressure spikes. Both precursors were at room temperature (~25º 

C). Two series of samples were prepared: one varying the number of cycles and one varying the 

TMA dose time. 

2.4 SEM Imaging 

To view the samples in an SEM (FEI Verios G4 UC), the silicon substrates were cleaved through 

the MWCNT forest to expose a cross section. An acceleration voltage of 500 V was chosen to 

obtain sufficient contrast to view the steps. Typical cross section images can be seen in Figure 4. 

   

Figure 4 Carbon nanotube forests with different numbers of ALD cycles. 256 ms TMA doses were used in 

all cases. Left: 4 cycles Middle: 7 cycles Right: 10 cycles. Red dots indicate edges of steps. 

Acquiring satisfactory SEM images is often problematic. Frequently, cleaving the wafer to break 

a nanotube forest produces surfaces that are rough or covered with incorrectly aligned nanotubes, 

rendering them useless for imaging. See Figure 5 as an example. 
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Figure 5 An unsatisfactory image of a MWCNT forest which should have ALD steps. 

It appears that forests of a height less than 500 μm never cleave cleanly and that taller forests are 

more likely to cleave cleanly than short ones. However, height is not the only important factor in 

whether forests cleave well. Of the six MWCNT samples used for the data in this study each one 

cleaved well, but of another set grown under the same parameters a few weeks later none cleaved 

cleanly. Figure 5 is an example of this set. 

2.5 Determination of nucleation site density 

To find the nucleation site density for ALD Al2O3 on MWCNTs, a 100 μm tall MWCNT forest 

was prepared using the same technique except that a shorter growth time was used and 10 ALD 
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cycles and the TMA doses were 2 s long. Some of the nanotubes were then scraped off the substrate 

and into isopropyl alcohol which was then sonicated until the suspension appeared homogenous. 

A lacey carbon TEM grid was then dipped in the suspension and air dried. The nanotubes were 

imaged with a TEM (FEI Tecnai TF20) in STEM mode. Discrete Al2O3 nuclei were visible on the 

MWCNTs. The nucleation site density was found by counting the nuclei and calculating the 

surface area of the nanotube from the diameter and visible length. At least 100 nanotubes were 

measured. Figure 6 shows a typical STEM image used for these measurements. 

 

Figure 6 A typical STEM of a MWCNT used for nucleation site density calculations 

The ImageJ software58 was used to find the ALD nucleation site density from STEM images. The 

diameter of each clearly visible nanotube portion was measured in three places, and the length was 

measured to calculate the surface area. The nuclei were counted, and an average value was taken 

between high and low counts of the nuclei for each nanotube. This was done on over 100 nanotubes 



13 

 

and the final result is the average. The average nucleation site density was found to be 104𝜇𝜇𝜇𝜇−2. 

It’s inverse is the surface area per nucleation site which is about 100 nm2 per site. 

3 MODELLING 

3.1 Penetration depth model 

We incorporate the conceptual idea of growing nuclei changing the absorption site density into 

Yanguas-Gil et al.’s model for penetration depth in ALD31. This model provides the needed 

precursor dose to coat a structure and is based on diffusion of a precursor into a structure with self 

limiting surface reactions consuming the precursor. It assumes Knudsen diffusion and takes into 

account the sticking probability in precursor-active site interactions. We modify this model by 

allowing the adsorption site density to change as the nucleus grows by a simple geometric 

approach. We model carbon nanotubes after ozone treatment as having some sparsely distributed 

quantity of active sites, where TMA can adsorb, per unit surface area, Γ𝐶𝐶𝐶𝐶𝐶𝐶. In the first ALD cycle, 

a nucleus of Al2O3 is deposited at each of those sites. We assume that no new active sites appear 

on the carbon nanotube surface in subsequent cycles. In each subsequent cycle, we model the 

nucleus as growing as a hemisphere of Al2O3 with the radius increasing by the growth per cycle 

(GPC), as illustrated in Figure 7. Each nucleus increases in surface area with each subsequent 

cycle, and the number of TMA molecules it can absorb in each new cycle is proportional to its 

surface area.  

As the TMA adsorption site density increases with each cycle, the penetration depth of ALD doses 

decreases dramatically during the first few cycles of the ALD process. We do not account for 

coalescence of the nuclei in our model. When this occurs, our model no longer applies. 
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Figure 7 Graphical description of model: Each ALD cycle makes the nuclei grow, causing them to absorb 

more TMA on subsequent cycles. 

Based on these assumptions, we expect the total nucleation site density to be the product of the 

initial nanotube adsorption site density Γ𝐶𝐶𝐶𝐶𝐶𝐶  �sites
cm2� and the current number of adsorption sites per 

nucleus. The number of adsorption sites per nucleus is assumed to be the product of the adsorption 

sites per unit surface area on a flat hydroxyl terminated Al2O3 surface (Γ𝐴𝐴𝐴𝐴2𝑂𝑂3) and the nucleus 

surface area: 

Γ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝐴𝐴 = Γ𝐶𝐶𝐶𝐶𝐶𝐶Γ𝐴𝐴𝐴𝐴2𝑂𝑂3𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛  

Equation 3-1 

The nucleus is a hemisphere of radius given by the product of the growth per cycle and the number 

of elapsed cycles with surface area of : 
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𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛 =
4𝜋𝜋𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛2

2
= 2𝜋𝜋 �𝐺𝐺𝐺𝐺𝐺𝐺�𝑛𝑛𝑛𝑛𝑐𝑐𝑛𝑛𝐴𝐴𝑛𝑛 − 1��

2
 

Equation 3-2 

This is a continuum model which does not predict an integer number of atoms will be deposited. 

It is best applied after enough cycles have elapsed that the decimal (non-integer) part of the number 

of atoms deposited is small in comparison to the number of atoms deposited. Thus, it is modified 

to consider a starting size of the nucleus: 

𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛 = 2𝜋𝜋�𝐺𝐺𝐺𝐺𝐺𝐺�𝑛𝑛𝑛𝑛𝑐𝑐𝑛𝑛𝐴𝐴𝑛𝑛 − 𝑛𝑛𝑖𝑖� + 𝑟𝑟𝑖𝑖�
2 = 2𝜋𝜋𝐺𝐺𝐺𝐺𝐺𝐺2 �𝑛𝑛𝑛𝑛𝑐𝑐𝑛𝑛𝐴𝐴𝑛𝑛 − 𝑛𝑛𝑖𝑖 +

𝑟𝑟𝑖𝑖
𝐺𝐺𝐺𝐺𝐺𝐺

�
2
 

Equation 3-3 

where ri is the radius of the nuclei at the starting cycle, ni. Each nucleus begins as a single binding 

site and grows with each cycle, the starting cycle, ni is the cycle when the model is applied.  

 The total adsorption site density or its inverse, the surface area per adsorption site is: 

1
𝑠𝑠0

= Γ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝐴𝐴 = Γ𝐶𝐶𝐶𝐶𝐶𝐶Γ𝐴𝐴𝐴𝐴2𝑂𝑂32𝜋𝜋𝐺𝐺𝐺𝐺𝐺𝐺2 �𝑛𝑛𝑛𝑛𝑐𝑐𝑛𝑛𝐴𝐴𝑛𝑛 − 𝑛𝑛𝑖𝑖 +
𝑟𝑟𝑖𝑖
𝐺𝐺𝐺𝐺𝐺𝐺

�
2
 

Equation 3-4 

C Step coverage of deposited material (ratio of 
thickness at bottom to thickness at top) 

D Knudsen diffusion constant 

D Nanotube diameter 

GPC Growth Per Cycle 

L Penetration distance 

M Precursor molecular mass 

ni Number of cycles before model applied 

𝑛𝑛0 Number density of precursor molecules 
injected (per volume) 
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P Precursor partial pressure 

ri Radius of nucleus after ni cycles elapsed 

S Pore surface area 

�̅�𝑠 Pore surface area per unit pore volume 

𝑠𝑠0 Surface area of an adsorption site 

T Exposure time 

T Temperature 

V Pore volume 

𝑣𝑣𝑡𝑡ℎ Thermal velocity 

α 𝛼𝛼 = 1
4
𝐿𝐿2�̅�𝑠 𝑣𝑣𝑡𝑡ℎ

𝐷𝐷
𝛽𝛽0 which is the ratio between the 

reaction rate and the diffusion rate, defined by 
Yanguas-Gil et al.31 

𝛽𝛽0 Precursor sticking probability (assuming the 
precursor molecule hits an unoccupied site) 

Γ𝐴𝐴𝐴𝐴2𝑂𝑂3 TMA adsorption sites per unit Al2O3 surface 
area 

Γ𝐶𝐶𝐶𝐶𝐶𝐶 Nucleation sites per unit carbon nanotube 
surface area 

Γ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝐴𝐴 TMA adsorption sites per unit nanotube 
surface area, counting multiple adsorption 
sites on each nucleus 

γ 𝛾𝛾 = 𝑉𝑉𝑛𝑛0𝑛𝑛0
𝑆𝑆

 which is the maximum possible 
number of precursor molecules in the 
structure divided by the number of adsorption 
sites, defined by Yanguas-Gil et al.31 

𝜎𝜎 Areal density of carbon nanotubes 
Table 1 List of variables used 

Yanguas-Gil and Elam found a relationship between Knudsen diffusion penetration distance and 

exposure time, which is applicable to any nanostructured material, as a function of the diffusion 

constant for a given geometry. 31 

𝑡𝑡 =
𝐿𝐿2

𝐷𝐷
1
𝛾𝛾 �

1 −
log (1 − 𝑐𝑐)

𝛼𝛼 � 

Equation 3-5 
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where t is the dose time, L is the height of the nanostructure, γ and α are dimensionless parameters 

given in Table 1, and c is the step coverage (the ratio of the thickness deposited at the top of the 

structure to the thickness deposited at the depth L). If α is large, that is, if the reaction rate is much 

larger than the diffusion rate as is typically the case in ALD on a high aspect ratio structure 

Equation 3-5 can be simplified to: 

𝑡𝑡 =
𝐿𝐿2

𝐷𝐷
1
𝛾𝛾

 

Equation 3-6 

Or 

𝐿𝐿 = �𝛾𝛾𝐷𝐷𝑡𝑡 

Equation 3-7 

Several values are needed to find γ and make use of Equation 3-7. The approximate ratio of the 

pore surface area to the pore volume is �̅�𝑠 = 𝑆𝑆
𝑉𝑉

= 𝜎𝜎𝜋𝜋𝜎𝜎. In calculating �̅�𝑠 it is assumed that the volume 

of the carbon nanotubes is small in relation to the total volume, as in our forests they occupy less 

than 1% of the total volume. Using an ideal gas approximation, we can replace the number density 

of precursor molecules with 𝑛𝑛0 = 𝑃𝑃
𝑘𝑘𝐵𝐵𝐶𝐶

 . Upon substituting these values into the dimensionless 

parameter γ in Equation 3-7, we find: 

𝐿𝐿 = �
𝐺𝐺𝑡𝑡𝑠𝑠0𝐷𝐷
𝜋𝜋𝜎𝜎𝜎𝜎𝑘𝑘𝐵𝐵𝑇𝑇

 . 

Equation 3-8 
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Using the surface area per adsorption site from Equation 3-4 the penetration depth as a function of 

cycle number becomes: 

𝐿𝐿 = �
𝐺𝐺𝑡𝑡𝐷𝐷

2𝜎𝜎𝜎𝜎𝑘𝑘𝐵𝐵𝑇𝑇Γ𝐶𝐶𝐶𝐶𝐶𝐶Γ𝐴𝐴𝐴𝐴2𝑂𝑂3
1

𝜋𝜋𝐺𝐺𝐺𝐺𝐺𝐺 �𝑛𝑛𝑛𝑛𝑐𝑐𝑛𝑛𝐴𝐴𝑛𝑛 − 𝑛𝑛𝑖𝑖 + 𝑟𝑟𝑖𝑖
𝐺𝐺𝐺𝐺𝐺𝐺�

  

Equation 3-9 

The diffusion coefficient can be found by fitting the experimentally measured penetration depth to 

Equation 3-9. 

3.2 Step edge profile and sticking coefficient 

Using the step coverage c as a function of depth (i.e. the shape of the step edge), the Yanguas-Gil 

model allows us to estimate the sticking coefficient β0. A simple rearrangement of Equation 3-5 

yields: 

𝑐𝑐 = 1 − 𝑒𝑒�
1
4𝑛𝑛̅𝑣𝑣𝑡𝑡ℎ𝛽𝛽0�

𝐿𝐿2
𝐷𝐷−𝛾𝛾𝑡𝑡�� 

Equation 3-10 

𝐿𝐿2

𝐷𝐷
 is proportional to the characteristic diffusion time (that is, the time needed for precursor 

molecules to diffuse a distance L); 𝛾𝛾𝑡𝑡 is a time modified by a factor determined by the ratio of the 

number of precursor molecules in the dose to the number of adsorption sites. When time is 

sufficiently long and L is short the exponential term will be insignificant, c will be approximately 

1, and the coverage will be uniform to depth L. As 𝐿𝐿
2

𝐷𝐷
 approaches  𝛾𝛾𝑡𝑡  the exponential term will 

become significant and the coverage will drop. When 𝐿𝐿
2

𝐷𝐷
 equals 𝛾𝛾𝑡𝑡  the coverage reaches zero. Note 

that this is the same point where Equation 3-6 is satisfied. How rapidly c drops from 1 to 0 depends 
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upon �̅�𝑠, (a geometric factor), the thermal velocity vth, and the sticking coefficient β0. As c cannot 

be less than zero, the coverage should be piecewise defined as: 

𝑐𝑐 =

⎩
⎨

⎧1 − 𝑒𝑒�
1
4𝑛𝑛̅𝑣𝑣𝑡𝑡ℎ𝛽𝛽0�

𝐿𝐿2
𝐷𝐷−𝛾𝛾𝑡𝑡��,

𝐿𝐿2

𝐷𝐷
≤ 𝛾𝛾𝑡𝑡

0,
𝐿𝐿2

𝐷𝐷
> 𝛾𝛾𝑡𝑡

 

Equation 3-11 

The thermal velocity is given by 𝑣𝑣𝑡𝑡ℎ = �8𝑘𝑘𝐵𝐵𝐶𝐶
𝜋𝜋𝜋𝜋

 . 

4 RESULTS AND DISCUSSION 

4.1 Imaging results and analysis 

Two sets of carbon nanotube forest samples were prepared according to the above process. We 

note that dose times were picked for these samples, based on previous depositions, to study the 

observed steps. Much shorter doses would have led to insufficient variation in penetration depth 

to produce multiple steps. Much longer doses would have coated the forest entirely, without 

producing steps. In the first set, shown in Figure 4, the TMA dose time was fixed at 256 ms and 

the number of ALD cycles was 4, 7, and 10. In the second set, shown in Figure 8, the number of 

cycles was fixed at 10 but the TMA dose times were 64, 128, 256, and 512 ms. 1 s water doses 
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were used on all samples. The longer water dose was selected to ensure complete water exposure. 

The limiting reactant is TMA. In each SEM image a red dot on the right indicates a step transition. 

We note that while there was some sample to sample variation, the following features are seen:  

the number of steps is one less than the number of ALD cycles used in that sample, when increasing 

the number of ALD cycles, more steps appear at the top of the forest without affecting the ones 

below, the relative spacing of steps decreases with step number, and increasing the TMA dose time 

increases the depth and spacing of the step edges. Based on the first two observations, we attribute 

each step to an ALD cycle with the deepest observed step being attributed to the second cycle and 

the shallowest to the last cycle. The dose variation observations are shown in Figure 11 where the 

depth (measured from the forest top) of the step edges have been extracted from Figure 2. 

 

 

 

Figure 8 Carbon nanotube forests with 10 ALD cycles and different TMA doses A: 64 ms. B: 128 ms. C: 

256 ms. D: 512 ms. Red dots denote edges between steps. 
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4.2 Extraction of diffusion constant 

All terms in Equation 3-9 are known or can be measured. By keeping the sample characteristics 

and ALD process parameters the same, we can write Equation 3-9 as: 

𝐿𝐿 =
𝐺𝐺

𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒 − 𝑛𝑛𝑖𝑖 +
𝑟𝑟𝑖𝑖
𝐺𝐺𝐺𝐺𝐺𝐺

 

Equation 4-1 

If the first cycle were the starting point (ni is 1 and ri is 0) we see the first cycle should penetrate 

an infinite depth. This is of course non-physical and outside of the model constraints but does 

indicate that the first cycle penetration should be much larger than subsequent cycles. A first cycle 

penetration that reached the bottom of the forest would not produce an observable step and result 

in observed steps being one less than the number of cycles. 

The proportionality constant C includes constants that are fixed in the experimental conditions (T 

(332 °C), P (36 Pa, the partial pressure of TMA), and t (as selected)), a measureable function of 

the nanotube forest (σ (120 µm-2), d (11 nm), and ΓCNT (600 µm-2)), or available in the literature or 

derived from literature values (GPC (0.8 nm/cycle) and ΓAl2O3 (3.7 nm-2)). The diffusion constant 

D of gas diffusion in CNT forests is not an experimentally known quantity but can be extracted 

from a model fit to the step edge depths. Theoretical work by Szmyt et al.53 predicts a diffusion 

constant of 5 𝑛𝑛𝜋𝜋2

𝑛𝑛
. 

The constant C was measured by fitting to the step depth data from SEM images. To fit Equation 

4-1 to the data, ni was set to 3 and the first two cycles were not used in the fit. The arbitrary choice 

of the number of cycles not used in the fit was intended to produce a good fit. The parameter 𝑟𝑟𝑖𝑖
𝐺𝐺𝑃𝑃𝐶𝐶

 

was then determined to be 4.3 by fitting. Examples of this fit are shown in figure 3B and figure 
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3C. The model is not fit to data below the third cycle. However, the interpolation of the model 

below the third cycle predicts a much greater penetration than observed. This is due to the model 

allowing fractional atomic coverage, smaller resulting surface area, and corresponding greater 

penetration than discrete atomic deposition would allow. We recognize that the choice of fitting 

from cycle 3 and above is somewhat arbitrary. 

 Once the proportionality constant is obtained from the experimental data the diffusion constant 

can be calculated. 

𝐷𝐷 =
2𝜋𝜋2𝐺𝐺2𝐺𝐺𝐺𝐺𝐺𝐺2𝜎𝜎𝜎𝜎𝑘𝑘𝐵𝐵𝑇𝑇𝛤𝛤𝐶𝐶𝐶𝐶𝐶𝐶𝛤𝛤𝐴𝐴𝐴𝐴2𝑂𝑂3

𝐺𝐺𝑡𝑡
 

Equation 4-2 

   

Figure 9 A: Cycle penetration depths from four MWCNT forests, each with 10 ALD cycles with 64, 128, 

256, and 512 ms TMA doses. B: Data from the 64ms dose sample, along with the model fit. C:  Data from 

the 512ms dose sample, along with the model fit. 

The average diffusion constant (from the four time varied samples) was  0.3 𝑛𝑛𝜋𝜋2

𝑛𝑛
± 75%. The 

uncertainty is propagated from error in measurements of parameters, and is heavily increased by 
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the uncertainty in the measurements of the areal CNT density and CNT diameter in MWCNT 

forests. 

There are simplifications made in our model. We do not consider the variation in areal carbon 

nanotube density59 or average nanotube diameter between the top and bottom of a forest, or any 

variation in other parameters which might depend on the depth in the forest. We assume no 

desorption or surface diffusion of TMA and that new nucleation sites do not appear after the first 

cycle. 

4.3 Sticking coefficient calculation 

The sticking coefficient β0 , a number between 0 and 1, is the probability that a precursor molecule 

will attach to the surface when it impinges on it. Equation 3-11 predicts a relation between step 

coverage as a function of position (shape of the step edge) and the sticking coefficient β0. β0 affects 

the abruptness of the intensity steps. A line profile extracted from a SEM image is used as a relative 

measurement of the surface coverage as a function of penetration depth.  

To determine the sticking coefficient β0, a modification of Equation 3-11 is used: 

Intensity =

⎩
⎨

⎧𝑎𝑎 − 𝑏𝑏𝑒𝑒�
1
4𝑛𝑛̅𝑣𝑣𝑡𝑡ℎ𝛽𝛽0�

𝐿𝐿2
𝐷𝐷−𝛾𝛾𝑡𝑡��,

𝐿𝐿2

𝐷𝐷
≤ 𝛾𝛾𝑡𝑡

𝑎𝑎 − 𝑏𝑏,
𝐿𝐿2

𝐷𝐷
> 𝛾𝛾𝑡𝑡

 

Equation 4-3 

where a is the intensity in the high intensity region before the intensity drop and b is the difference 

between a and the intensity after the intensity drop. Note that β0 affects how steep the intensity 

drop is, as shown in Figure 10. 
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Figure 10 Effect of sticking coefficient on step coverage profile. Parameters chosen for demonstration. 

The sticking coefficient was measured from a 1500 pixel wide line profile which was manually 

aligned to the steps using the Gwyddion software.60 The line profile used to find the reported values 

is shown in Figure 11. In the line profile, steps corresponding to the steps are visible. The line 

profile was manually split into segments corresponding to each dose consisting of the intensity 

drop from a single cycle and the adjacent flat regions.  

For each of those segments, Equation 4-3 was fit by varying γ and β0 by the nonlinear least squares 

method. The maximum and minimum intensity variables a and b were found by averaging the 

intensity values in the appropriate region.. 
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Figure 11 A: SEM intensity profile from MWNCT  forest with 10 aluminum oxide ALD cycles and 256 ms 

TMA doses. B and C are segments of the intensity profile in A with the intensity fit used to find β0.. 

Fitting Equation 3-11 to a segment of the intensity profile by varying β gives the probability that 

a TMA molecule will stick to the decorated carbon nanotube surface. This quantity is not β0 

because only a small fraction of the carbon nanotube surface is covered with reactive, hydroxyl 

terminated Al2O3. The most likely result of a collision with this CNT surface is that the TMA 

molecule will simply bounce off without impinging on a reactive site. β0 is the probability that the 

TMA molecule will stick if it hits a hydroxylated alumina surface. To obtain β0, a correction for 

the fraction of surface area covered with Al2O3 must be applied. The surface area correction is 

calculated from the radius of the nuclei, 𝐺𝐺𝐺𝐺𝐺𝐺 �𝑛𝑛𝑛𝑛𝑐𝑐𝑛𝑛𝐴𝐴𝑛𝑛 − 𝑛𝑛𝑖𝑖 + 𝑟𝑟𝑖𝑖
𝐺𝐺𝑃𝑃𝐶𝐶

�, the  cycle number at that step,  

and the density of active sites (which is also the density of nuclei) on the carbon nanotubes ΓCNT. 

The same offset values ni = 3 and  𝑟𝑟𝑖𝑖
𝐺𝐺𝑃𝑃𝐶𝐶

 = 4.3 used above are used to calculate the radius. The 

corrected value of β0 is given by: 
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𝛽𝛽0 =
𝛽𝛽measured

𝜋𝜋(𝐺𝐺𝐺𝐺𝐺𝐺)2(𝑛𝑛 + 1.3)2Γ𝐶𝐶𝐶𝐶𝐶𝐶
 

Equation 4-4 

The calculated values of β0 can be seen in Figure 12. 

 

Figure 12 Sticking coefficient values for different ALD cycles. Note that systematic error is much greater 

than statistical fluctuation. 
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Some of the intensity steps were not used due to the effects of image defects, as visible in Figure 

11. Cycles 9 and 10 have very short available profiles. Because of defects in the MWCNT forest, 

the intensity steps are not completely parallel, possibly distorting the shape of these narrow 

intensity steps and adversely affecting the fit for β0. Cycle 3 does not have a flat region on the low 

intensity side of the decrease in intensity. This is needed to accurately determine γ. Without a 

reliable estimate for γ, the estimate of β0 is unreliable. 

Based on an average of the β0 values with the propagated experimental error, we expect β0 to lie 

between 2 × 10−4 and 5 × 10−2 with the most likely value being 3 × 10−3. Values reported in 

the literature are somewhat higher, 0.02 from 200°C to 300 ⁰C32 and 5.7 × 10−3 at 300 °C61. 

 

5 SUMMARY AND CONCLUSIONS 

We have observed concentration steps in ALD on MWCNT forests where each subsequent cycle 

penetrated less distance into the forest. We explain this behavior by Knudsen diffusion combined 

with increased consumption of precursor due to the increasing surface area of each deposited 

nucleus. Based on cycle number experiments on multiple samples, we claim that each step was 

formed by a single ALD cycle. Existing models allow us to determine the diffusion constant in the 

MWCNT forest from our penetration depth data and the sticking coefficient from the shape of the 

steps. The diffusion coefficient for TMA in MWCNT forests was 0.3 cm2/s and the sticking 

probability for TMA in the TMA/water ALD process was 0.003. This sticking coefficient value is 

slightly lower than those available in the literature. 
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