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ABSTRACT

Active Control of Cylindrical Shells Using the
Weighted Sum of Spatial Gradients
(WSSG) Control Metric

Pegah Aslani
Department of Physics and Astronomy, BYU
Doctor of Philosophy

Cylindrical shells are common structures that are often used in industry, such as pipes, ducts,
aircraft fuselages, rockets, submarine pressure hulls, electric motors and generators. In many
applications it is desired to attenuate the sound radiated from the vibrating structure. There are both
active and passive methods to achieve this purpose. However, at low frequencies passive methods
are less effective and often an excessive amount of material is needed to achieve acceptable results.
There have been a number of works regarding active control methods for this type of structure. In
most cases a considerable number of error sensors and secondary sources are needed. However, in
practice it is much preferred to have the fewest number of error sensors and control forces possible.
Most methods presented have shown considerable dependence on the error sensor location. The
goal of this dissertation is to develop an active noise control method that is able to attenuate the
radiated sound effectively at low frequencies using only a small number of error sensors and
secondary sources, and with minimal dependence on error sensor location. The Weighted Sum
of Spatial Gradients control metric has been developed both theoretically and experimentally for
simply supported cylindrical shells. The method has proven to be robust with respect to error sensor
location. In order to quantify the performance of the control method, the radiated sound power has
been chosen. In order to calculate the radiated sound power theoretically, the radiation modes have
been developed for cylindrical shells. Experimentally, the radiated sound power without and with
control has been measured using the ISO 3741 standard. The results show comparable, or in some
cases better, performance in comparison with other known methods. Some agreement has been
observed between model and experimental results. However, there are some discrepancies due to
the fact that the actual cylinder does not appear to behave as an ideal simply supported cylindrical
shell.

Keywords: cylindrical shells, active structural acoustic control, active noise control, radiation
modes
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Chapter 1

Introduction

1.1 Background

In recent decades, with the further advancement of industry and the growth of population, noise
has become a more common part of everyday life. However, in many cases this can degrade the
quality of life, and therefore, for safety and health reasons, the reduction of noise is often desired.
Noise control methods can be divided into two main classes of passive and active methods. Passive
methods, which go back longer in time, are known to reduce radiated sound by utilizing techniques
that absorb or insulate the sound field [1]. Examples of passive techniques are sound barriers,
damping materials, insulation, stiffened structures, etc. Passive methods are generally effective at
high frequencies, while they often fail to be an effective control solution at low frequencies. This
can be further explained by considering the longer wavelength at low frequencies in comparison
with the shorter wavelength at higher frequencies. Furthermore, applying passive methods usually
requires provisions for both additional mass and the space required [2]. At lower frequencies, in
the case of transmission problems, the transmission loss obeys the mass law. In order to achieve

the needed attenuation, often a considerable amount of mass is needed. In the case of problems
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where attenuation through the use of absorbent materials is desired, due to the longer wavelength
at low frequencies, bulkier materials are generally required in order to achieve the same amount
of attenuation that can be obtained at higher frequencies. On the other hand, the performance of
active control methods rely on the phase error between the ideal control signal and the control
signal actually applied. At low frequencies, this phase error (which corresponds to a small timing
error) is much smaller than at high frequencies, where this timing error corresponds to a much
larger phase error.

As an alternative method to address these shortcomings, about eighty years ago a new control
method was introduced as “Active Noise Control” (ANC) which referred to the generation of “anti
noise” or “cancelling noise” [3]. This idea relied on the basic concept of destructive interference;
that is, one could insert acoustical waves through a secondary source into the system, in such
a way that the amplitude and phase of the secondary source results in destructive interference
with the primary disturbance. This method has proven to be an effective control method at low
frequencies [4]. However, unwanted noise is often created due to vibrating structures. Active noise
control methods that are based on modifying the sound field are not always effective for this type
of problem. About two decades ago, a form of active noise control known as “Active Structural
Acoustic Control” (ASAC) was developed, with the aim of reducing radiated sound from vibrating
structures more effectively. This method is based on directly controlling the vibration field of the
structure rather than the sound field [5]. In this method, the control input is directly applied to the
vibrating structure.

Cylindrical shells are often used in industry, such as pipes, ducts, aircraft fuselages, rockets,
submarine pressure hulls, electric motors and generators [6, 7]. There are many applications in
which it is desired to reduce the sound radiated from the vibrating structure. In recent years,
there has been considerable research related to active control of radiated sound from cylindrical

shells. Some of the early efforts for active noise control of cylindrical shells were initiated
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in the 1980s by NASA, since the traditional methods dictated a mass law for low-frequency
control, while for aerospace vehicles maximum noise reduction is desired with minimum additional
weight [8—10]. Further work was done modeling and taking experimental data for active control of
aircraft fuselages by Bullmore and others [11-17]. In the following years, some advancements
were achieved in better understanding the relation between the vibration of the structure and
the radiated sound. This created a breakthrough for ASAC, since understanding the interaction
between the vibrating structure and the radiated pressure in the surrounding medium provides
deeper understanding and direction for the development of active control metrics. This was done
by decomposing the sound field into a set of orthogonal basis functions by discretizing the vibrating
structure as a set of elementary radiators, and incorporating this discretization into the radiation
resistance matrix, also known as the radiation resistance operator [18-20]. The solution to the
eigenvalue problem of the radiation operator yields the so-called radiation modes, which present
velocity patterns that radiate acoustically into the surrounding medium. The efficiency of each
mode is determined by its corresponding eigenvalue [21,22]. In other words, the radiation mode
shapes are the visualization of the orthogonal basis functions used to decompose the sound field.
This progress proved to be an important tool in active structural acoustic control, since it can
provide a means of identifying the most efficient modes and targeting them in the ASAC approach,
or of forcing the structure to couple with the weak (less efficient) modes [23-26].

In 1993, Thomas and Nelson, implemented active control of sound transmission in cylindrical
shells by minimizing the vibrational energy and the acoustic potential energy. However, these
methods did not prove to be very robust and effective [27,28]. In 1993, Naghshineh and Koopmann
showed that the radiated power can be represented as a truncated series of the orthogonal
eigenvectors of the radiation resistance matrix. They utilized this concept in order to numerically
apply active control to a clamped-clamped beam, by direct minimization of the radiated power [24].

Later in 1998, they applied the same concept to find the acoustic basis functions or radiation modes
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for active control of cylindrical shells, by assuming interior source points as well as source points
on the surface of the structure [29]. By expressing the total radiated sound power as a quadratic
function in terms of primary and secondary forces, they minimized the radiated sound power to
obtain the optimal control force. The results showed reasonable amounts of attenuation, although
a considerable number of error sensors was required to reproduce the results in the model.

In 1997, Pan and Hansen presented a theoretical analysis of active control of harmonic power
transmission in a semi-infinite cylindrical shell using a circumferential array of error sensors and
control forces. They were able to obtain good control results using several control forces [30]. In
1998, in a work by Wang and Vaicaitis, active control of sound transmission through cylindrical
shells was done using velocity and sound pressure rate feedback control [31]. They observed good
results with respect to the amount of attenuation achieved. However, the practicality of the method
remained in question.

There are a number of studies where active vibration control has been investigated as an
approach for active noise control of the cylinders [32-37,39—41]. For instance, in 2000, with
further progress in the design of actuators and sensors, Goddu and McDowell used active fiber
composite actuators and the adaptive least-mean-square (LMS) algorithm to minimize the error
signal from an accelerometer mounted on the cylindrical structure [42]. Even though these
methods are often easy to implement, the resulting performance can be limited, since error sensors
could mistakenly be located along nodal lines and limit the control performance. In another
work by Song in 2002, external piezoelectric panels were used on the outer surface of thick-
walled cylindrical shells in order to decrease the dependence of the control performance on the
dynamic characteristics of the shell. However, some of the panel dynamics, including both the
low-frequency feedthrough due to electromechanical coupling and the high-frequency resonance
due to sensor dynamics, limited the performance [43].

In 2011, Jin and Liu implemented active control on a cylindrical shell through minimization of
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the structural kinetic energy, as well as the radiated sound power, which resulted in global control
at resonance frequencies as well as controlling spillover at off-resonance frequencies [44]. Even
though this method could be modeled efficiently, the practicality of the method is almost out of the
question, since a considerable number of sensors are needed to estimate the global kinetic energy,
as well as the radiated sound power. In 2012, Cao and Sun used piezoelectric stack force actuators
to control the sound radiated from a cylindrical shell [45]. The control forces were obtained by
minimizing the axial displacement and the radiated pressure as different cost functions.

In 2013, Kim and Sohn applied active vibration control to a finite cylindrical shell in water,
by designing an optimal control algorithm using micro-fiber composites as actuators and sensors
[46]. In other work by Shen and Wen, active control of a cylindrical shell was implemented
by applying different control methods, such as inverted displacement, velocity and acceleration-
feedback control strategies [47]. At the same time, another active control approach was presented
by Cao and Shi, using actuator patches and negative feedback control for a piezoelectric laminated
cylindrical shell [48]. In 2014, Ma and Jin applied active structural control to a cylindrical shell,
combined with a passive vibration isolation system [49]. They were able to obtain the control
forces by minimization of different cost functions such as vibratory power transmitted, structural

kinetic energy and acoustic radiated power.

1.2 Motivation

Different active control approaches have been developed for reducing the radiated sound power
from cylindrical shells. However, there are different issues that need to be considered in comparing
them. Often, the control is implemented by minimizing a choice of a quadratic objective function.
In many cases, the radiated sound power or the kinetic energy of the structure (or in other words

the squared velocity field of the structure) has been chosen as a cost function to be minimized and
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to provide the optimal control force for the system. However, measuring and therefore minimizing
the sound power or velocity field is not practical in general, since an accurate estimate of the
radiated power or the velocity field requires a large number of sensors. In many cases, when it
comes to an industrial scale, utilizing a large number of sensors and control forces is not practical.
In some other methods in which a smaller number of sensors is required, such as some active
vibration control approaches, the sensitivity to the error sensor location remains as a potential
problem, since locating the error sensors on the nodal lines could degrade the control performance
significantly. In addition, it is possible that simply suppressing the vibration will not effectively
attenuate the radiated sound.

Therefore, it is desired to develop an active control metric that is very effective, while also
requiring only a small number of error sensors and control forces. Importantly, it should have
minimal sensitivity to the error sensor location. If the chosen control metric is correlated with
the radiated sound power, the control results will be closer to the best possible performance for
attenuating the radiated sound for any current configuration.

In a 1994 paper by Sommerfeldt and Nashif, the authors used an “Energy Density (ED)”
objective function for active noise control purposes that showed better performance in comparison
with other methods available [S0]. It is interesting to note the properties of this function, which
make it a suitable objective function. First, its spatial variance is low, meaning there was little error
sensor location dependence. Second, global results are possible using localized measurements.
Third, the energy density field is correlated with the global sound field. Last but not least, this is a
quadratic function that allowed for the identification of a unique optimal state.

So the question arises as to whether it is possible to find an objective function with similar
features for ASAC purposes. As a starting point, the velocity field and velocity gradients were
observed for a simply supported plate, which included the transverse velocity field as well as the

rocking motion due to the gradients in the x and y directions, along with a twisting term. Figure
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1.1 presents each of the velocity fields mentioned above for a (1,1) mode of a simply supported
plate. It was observed that there are some similarities between each of these velocity fields and the

first four most efficient radiation modes of a simply supported plate, presented in Fig. 1.2.
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Figure 1.1 The velocity gradients for the (1,1) mode of a simply supported plate.

These similarities suggested that minimizing the velocity gradients might minimize the radiated
sound power. In order to incorporate the desired features mentioned before, it was decided to add
the squared velocity gradients while multiplying each term by proper weights so that it returns
a function that is more uniform and less spatially variant. This has been demonstrated in Fig.

1.3 for a single mode. This uniformity should result in little sensitivity to error sensor locations.
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Mode 3 Mode 4

Figure 1.2 The four most efficient radiation modes for a simply supported plate.

Furthermore, since the individual terms were related to radiation modes, it was hoped it would
result in effective global control. The resulting control metric was referred to as Vcomp and is

given by [51]
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The implementation of this method requires only four closely-spaced sensors to detect the
gradient terms through the finite-difference method. Since a harmonic excitation is considered, the

velocity gradients are actually spatial gradients that are scaled and therefore Eq. (1.1) could also

be written as

’w
dxdy
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which was then referred to as the weighted sum of spatial gradients (WSSG) [52]. This control
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Figure 1.3 Uniformity of the Vcomp function when utilizing proper weights for a (1,1)
mode of a simply supported plate. Note the very small range on the color axis.

metric was then developed for the case of flat panels or plates [S3-55].

1.3 Objective of this dissertation

The focus of this dissertation is to develop and investigate an ASAC approach for thin-walled
cylindrical shells, both theoretically and experimentally, which contains the desired features
mentioned previously and is able to effectively attenuate the radiated sound power. A weighted sum
of spatial gradients (WSSG) control metric will be developed for this type of geometry. This ASAC
method is designed to achieve control approximating the minimization of the radiated power. Its
main objective is to obtain global control of the radiated sound power, using a minimal number
of sensors and control forces, while having minimal sensitivity to error sensor location. It is also
desired to improve on some of the issues discussed above, such as convenience and accuracy, as
well as to avoid control spill-over effects.

In order to quantify the performance of the control method, a suitable assessment metric is
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needed. The radiated sound power has been chosen as this quantifying metric. In order to calculate
the radiated sound power numerically, it is useful to develop the radiation modes for this type
of geometry, something that has not been fully developed in the literature. Experimentally, the

radiated sound power is measured using the methods of the ISO 3741 standard [56].

1.4 Outline of the dissertation

In the following chapter of this dissertation, the methodology and the procedures necessary to
develop and investigate the WSSG control metric is reviewed. In Chapter 3, the concept of
radiation modes is introduced. In addition, the development of radiation modes, as well as the
results for the radiation mode shapes for cylindrical shells, are presented. Subsequently, the
numerical model of the cylindrical shell, as well as the control metric used and the control results
obtained, are presented in Chapter 4. Chapter 5 contains the details of the experimental setup, as
well as the experimental results. Finally, Chapter 6 presents the conclusions of this dissertation

and some recommendations for future work.



Chapter 2

Methodology and procedures

2.1 Theoretical background

2.1.1 Structural behavior

In order to control the sound radiated from a vibrating structure, it is important to first
understand its governing dynamics and structural response. This also provides useful information
for analyzing the interaction between the structure and the surrounding medium. There have been
extensive studies related to shell theory; for a comprehensive review, the reader is referred to the
work of Leissa [57], or more recently, Amabili and Paidoussis [58]. However, this work focuses on
simply supported cylindrical shells and only a brief history of the related work is mentioned here.

In 1888, Love used the Kirchhoff assumptions for plates and established a theory called the
classic theory of thin shells, which is in fact, an extension to Euler-Bernoulli beam theory [59].
Love considered a middle surface plane with a thin elastic layer of material on either side of
the plane. This theory is now known as Love’s first approximation theory and has been used as
a foundation for many other theories, which were developed later. In the 1930s, Donnell and

Mushtari developed a theory in which both membrane and bending actions and their interactions

11
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were considered. This is one of the simplest forms of shell theory, and includes simplifications
such as neglecting the tangential displacements and their derivatives in the bending component of
the strain. This theory provides a good approximation for shallow shells. However, it does not
provide sufficient accuracy for circular cylindrical or deep shells [60]. The term deep shells refers
to shells that are thin with respect to their radii of curvature and whose deflections are reasonably
small. In 1959, Timoshenko presented a theory based on Love’s theory presented in 1944, which
then became known as Love-Timoshenko shell theory. One of the simplifications made in this
theory was to neglect the ratio of the radial coordinate to the radius of the curvature in the strain
equations [61].

In 1962, Flugge developed Love’s theory further using higher orders. Using his theory, one
could obtain the strain-displacement relations and changes of curvature of the middle surface of a
cylindrical shell [62]. For the interested reader, there are additional works regarding the vibration
of a simply supported cylindrical shell [63—75]. In 1981, Soedel was able to apply normal solutions
to Love’s theory and obtained three closed-form solutions for the natural frequencies and mode
shape coefficients for a simply supported circular cylindrical shell [76]. In a work by Farshidianfar
and Oliazadeh, different shell theories such as Donnell-Mushtari, Love-Timoshenko and Soedel
were compared. They reported that some theories such as Love-Timoshenko, Arnold-Warburton,
Flugge Byrne-Lur’ye, Reissner-Naghdi-Berry, Sanders, Vlasov, and Soedel produce the same
results with respect to predicting the natural frequencies and mode shapes of the shell. Based
on experimental data, they also stated that Soedel’s model was one of the theories that provided
more accurate results than some of the other theories and suggested that the Donnell-Mushtari
theory is not as precise as other theories [77].

For the purpose of this dissertation, Soedel’s model of a simply supported shell has been
chosen. The reason for this choice has been the simplicity of the closed-form solutions which

facilitates the numerical modeling of the shell, as well as having sufficient accuracy. In the
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following section, Soedel’s model of a simply supported shell will be briefly discussed.

2.1.2 Soedel’s model of a simply supported circular cylindrical shell
2.1.2.1 Love’s equations of motion for a cylindrical shell

The coordinate system used in Soedel’s shell theory consists of the curvilinear coordinates defined
on the neutral surface. As defined by Euler-Bernoulli beam theory, the neutral surface is within
the thickness of the cylinder and is the surface between the areas of compression and tension
where no stress or strain exists. The curvilinear coordinates describe the longitudinal displacement
of the shell in the tangential direction along the axis, é;, the tangential displacement along the
circumference, ég, as well as the transverse displacement along the normal direction of the shell,
¢, [78]. In order to assign notations to the displacement along each of these directions, the
displacement along the axis will be referred to as u,, the displacement along the circumference
as ug, and the normal displacement will be referred to as w.

Having defined a suitable coordinate system, Soedel developed the strain-displacement as
well as the strain-stress relations [79]. In developing these relations, some simplifications and
approximations were considered, such as neglecting the shear deflections and assuming that the
displacement along the tangential directions varied linearly through the shell thickness [80].

Membrane forces and the bending moments are obtained by integrating all stresses acting
on the shell along the normal direction. Assuming a thin-walled shell, an additional Love
simplification can be applied by neglecting the term containing the ratio of radial curvilinear
coordinate to the radius of curvature [81].

In order to better understand the effect of moments and forces, Soedel divided the strains into
groups of membrane strains (€;, where i = 1, 2,3) that were independent of normal curvilinear
coordinates, as well as the bending strains i.e., change-in-curvature (k;;, where i, j = 1, 2, 3),

which are proportional to the normal curvilinear coordinate. Using Hamilton’s principle and
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applying all these simplifications while taking into account all the membrane forces and bending
moments, Soedel derives Love’s equation of motion for a thin-walled cylindrical shell due to any

pressure load [82].

2.1.2.2 Soedel’s model for a simply supported cylindrical shell

Figure 2.1 shows a schematic of a simply supported shell with length L and radius a.

i

Figure 2.1 A simply supported circular cylindrical shell.

The simply supported boundary condition requires that
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as well as
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w(iz=1L 0,1 =
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where N,; is the membrane force due to the stress along the axis and M, is the bending moment
in the axial direction. Applying the simply supported boundary condition, the equations of motion

for the cylindrical shell can be written as

IN,

NS}
2
5

0%u,

- I _
oz ta o6 —ph5r =0
IN,g 1 ON Qo; Pug  _
2 tae T —ph = 0 2-3)
9Q;r 1 Qo N 9? _

o Taas — 4 —PhG =0

where Ngg is a function of the membrane force along the circumferential direction and N,g is a
function of the membrane forces along the axis and circumference. In addition, Qy, is a function
of bending moments along the normal and the circumferential directions, and Q. is a function of
bending moments along the normal and the axial directions. Finally, p is the density of the shell
and £ is the shell thickness.

Soedel assumed the following time harmonic solution

u(z, 0,1) = Uz, 0)e/
up(z, 0,1) = Up(z, 6)e/® (2.4)
W(Z7 67 t) - W()(Z, O)ijt,

where
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U(z,0) = A cos (”T”Z> cos(m(6 —9))
Ug(z, #) = B sin (”T”Z> sin(m(6 — ¢))
Wo(z, ) = C sin ("T”Z> cos(m(6 —9)).

(2.5)

Here, n is the axial mode number, m is the circumferential mode number and ¢ is an arbitrary

phase. Substituting this solution into Eq. (2.3) yields

pho? — ki k12 ki3 A
ko pho? —k ko3 B =0,
k3 k3o p/’LCO2 — k33 C

where the bending strains are defined as

o= () )]

ki = kzlzKlzup%%
K
kiz = k31=“p7%
B 2 2
o = (e B) ()

ks = kyp = —

by = 0| () + (2)] + &

(2.6)

2.7)

where K is the membrane stiffness and is defined as K = Eh/(1 — ) and D is the bending

stiffness defined as D = Eh®/12(1 — /.Lg). Here, E is Young’s modulus and p,, is Poisson’s ratio.
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In order to solve for the natural frequencies, one can reach the following eigen-equation by

setting the determinant of Eq. (2.6) equal to zero, i.e.,

0° + 10" + ¢0° + g3 = 0, (2.8)
where
q = —# (kir + koo + k33)
@ = w (kitkss + kookss + kitkon — k33 — k3, — k33) 2.9)
g = w (kitkay + kook?y + kaski, + 2kinkaskis — kitkaokss).

Solving the eigen-equation, the solution for the natural frequencies will be

wlznm = —%\/HCOS%—%
Oy = 3 \/‘m cos Bt _ 4 .10
o = 3 \Ja} 3 cos B
where
o = cos ! 2lqs + 2q? — 90]1Q2' @.11)

2,/(q} — 3¢q2)°

Therefore, for every set of mode numbers n,m there are three natural frequencies, where the
lowest is associated with the transverse displacement component, whereas the other two are usually

an order of magnitude higher and correspond to the displacements in the tangential directions. For
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every set of mode numbers n,m, there are different amplitude coefficients, given by A,B and C

determined by the subscript (i = 1,2,3) corresponding to each of the natural frequencies. One can

solve for these coefficients in terms of C, i.e,

ki3 k12
A kz pho3,, —k»n
[ K ’
(2.12)
phw?,, —kii ki3
B k1 ka3
¢ = - : ,
where
hw?, — ki kia
oz | P10 | (2.13)
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Therefore, the three natural modes associated with the three solutions of the natural frequencies

obtained from the eigen-equation are

U, ‘%ﬁ cos (”T”Z> cos(m(0 —9))
Upp =Ciq & sin(”T”Z) sin(m(6 — ¢)) ¢ - (2.14)
Wo i sin (’%’”) cos(m(6 —9))

2.1.3 Forced vibration of circular cylindrical shell by modal expansion

Finding the natural frequencies, and subsequently the natural modes, sets the framework for a
complete orthogonal set of basis functions that can span a vector space. Hence, one of the main

purposes for finding the natural frequencies and their corresponding mode shapes is to be able to
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describe any general behavior of the structure, for instance in the presence of a force load. This can
be done through modal expansion, with the forces presumably independent of the motion of the
shell. When a force excitation is applied to the structure, all the modes are excited but with different
modal amplitudes. A cylindrical shell is a continuous system with infinite degrees of freedom.
Therefore, one can describe the general solution for the structural response as a superposition of
all the natural modes. Using the technique of superposition of orthogonal modes, Soedel gives the

general steady-state, transverse displacement of a simply supported shell as

sin(nz* /L) sin(nmz/L) cosm(0 — 6*)
m=1n=1 emwr%m\/[l o (O)/(!)nm>2]2 + 4 nzm(w/wnm)

5 sin(@t — Pypm),

(2.15)

where P; is the normal point load, (z*,0*) are the coordinates where the point load is applied and

@ is the driving frequency of the force load [83]. The Neumann factor &, is defined as

I, m#0
&n = 4 (2.16)

2, m=0

and {,,, is called the modal damping coefficient defined as

n
nm — s 2.1
G 2phan, (2.17)

where 1 is the viscous damping ratio. Treating the shell as a simple harmonic oscillator, the
solutions can result in a subcritical, critical and supercritical damping case, depending on whether
Com < 1, Gun = 1 or &y > 1, respectively.

In Eq. (2.15), the phase lag ¢y, is defined as

-1 zcnm(w/mnm)

Y. (2.18)

Opm = tan
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Equation (2.15) is the expression that will be used in this dissertation to represent the vibrational

response of the cylindrical shell.

2.1.4 The weighted sum of spatial gradients

Within the last few decades, there has been great interest in attenuating the radiating sound from
structures and being able to control the structural vibration in such a way that it will decrease the
sound radiation. This has led to the development of Active Structural Acoustic Control (ASAC).
In many applications regarding the reduction of sound from vibrating structures, it is often more
efficient to control the structure directly, in order to modify the vibration field that radiates sound,
rather than directly attenuating the sound field itself. ASAC was first introduced in 1987 by Fuller,
and additional research has been done since then [84—115] . The central aspect of an active control
process is optimization with respect to a cost function (objective function), and hence, the cost
function plays a principle role in an active control system.

For active control of sound fields, the radiated pressure is generally the primary metric for
sensing and optimization. Specific applications may require either a single microphone or an array
of microphones. In many applications, where the radiated or the transmitted sound is due to a
vibrating structure, such as an engine in a confined space, there are limitations on the compactness
of the sensing and the control system. In many cases, it is much easier to use structural sensors than
acoustical sensors, in terms of designing a compact control system. In addition, it is often more
efficient to control the vibrating structure to reduce the sound radiated than trying to attenuate
the sound field after the sound radiation. These factors have motivated the desire to develop cost
functions that utilize structural error signals that will result in efficient attenuation of the sound
radiation.

There have been numerous studies focused on controlling the vibration of structures, using an

array of structural sensors and controlling the vibration at discrete points [89,116—-118]. However,
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it is important to note that controlling the vibration alone does not guarantee optimal, or even
significant, sound power attenuation. Therefore, it is important to understand the mechanism by
which the vibrating structure couples with the surrounding medium to create acoustic radiation.
Hence, for an effective ASAC approach, the cost function should not only utilize structural metrics,
but also result in efficient attenuation of the acoustic radiation.

One of the early methods developed to achieve this was the volume velocity control metric,
in which the square of the integrated volume velocity is minimized [117, 119]. The radiated
sound power is dependent on the structural volume velocity, so this method has demonstrated
some effectiveness. However, sensing and obtaining a reasonable estimate of the volume velocity
requires a global measurement, which is not practical. An array of sensors is typically used to
approximate this, but the number of sensors required can grow very quickly. Similar approaches
have been taken in controlling the global kinetic energy, the global potential energy and the
radiated sound power of the vibrating structure [27,28, 120]. However, they all share a common
shortcoming in the sense that they all need global sensing techniques. Because of this, a valuable
cost function would be one that results in global attenuation using only local measurements. But,
even when using local measurements, there can be limitations on sensor locations, due to the
presence of nodal lines and sensing issues, just as is the case for sound field control.

As noted by Sommerfeldt and Nashif, the optimal placement of sensors is a function of the
cost function [50]. They developed an active control metric that proved to perform better than
other commonly used methods. In fact, it is very instructive to take a closer look at their work
which was designed for controlling an enclosed sound field. While a cost function with a simple
acoustic metric, such as the squared pressure, can create control in the vicinity of the microphones,
one may typically encounter sound power enhancement at other locations, resulting in localized
control. In addition, the sensors must be located away from nodal regions for effective control.

To address these challenges, Sommerfeldt and Nashif developed a cost function consisting of the
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acoustic energy density [121, 122]. This was a very effective choice, since the dependence of the
cost function on more than one acoustic variable made it robust with respect to sensing capabilities.
The energy density of the enclosed field is a more uniform field that greatly reduces the location
dependence of the error sensors and provided global results by performing local measurements.
The cost function also had a quadratic form which is a desirable characteristic of the control system,
since it ensures the presence of a global minimum. While this proved to be very effective for the
sound field control, it is not directly applicable for ASAC, since it does not utilize structural control
and sensing. That being the case, it is desirable to acquire a cost function that is not only robust
and effective in giving the best possible attenuation of the radiated sound power, but would also
rely on a compact and local sensing technique, with minimal dependence on the sensor location.
Furthermore, it would encompass a quadratic form to ensure a global optimal solution and most
importantly, the cost function would be correlated with the radiated sound power.

A key aspect in making a cost function robust with respect to sensor location is multi-
parameterizations. In 2010, Fisher developed a preliminary cost function for active structural
acoustic control of plates that would incorporate all the key factors mentioned above. In spite
of its rather easy implementation, it has shown promising correlations with the radiated sound
power [26]. The development of this metric involved studying the squared velocity gradients for
the first mode of a simply supported plate. These velocity gradients contained the “breathing
motion,” two “rocking” motions in the perpendicular directions of the plate, and a twisting term
which incorporates the mixed gradients in both directions. Figure 2.2 demonstrates each of the
velocity gradient fields for the (1,1) mode of a simply supported plate.

Intuitively, the next step was to find any links between the structure’s vibration field and how it
is able to couple with the acoustic medium to radiate sound. This leads to the concept of radiation
modes, which are a set of orthogonal basis functions that can be used to decompose the radiated

sound field. Using the space spanned by the radiation modes, one can expand the radiated power
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Figure 2.2 The squared velocity gradient fields for the (1,1) mode of a simply supported
plate.

in terms of radiation modes, and therefore use modal expansion in order to calculate the radiated
sound power, where the modal coefficients are determined by the structural vibration. These
are referred to as independent velocity distributions that are attributed to the eigenvectors of the
radiation resistance matrix. Each of these modes is able to radiate sound in accordance with its
corresponding efficiency that is determined by its corresponding eigenvalue. This concept will be
discussed in further detail in Chapter 3. Searching for connecting links between the vibration field
and the sound radiation led to a comparison of the four velocity gradient fields to the first four
most efficient radiation modes for a plate. Figure 2.3 presents the first four most efficient radiation

modes for a plate.
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Mode 3 Mode 4

Mode 5 Mode 6

Figure 2.3 The four most efficient radiation modes of a plate.

A quick comparison between Figs. 2.3 and 2.2 reveals a noticeable similarity between the
radiation modes and the velocity gradients. This suggested that controlling and minimizing the
gradient terms could lead to attenuating the radiated sound power. Fisher incorporated these
velocity gradients into a cost function with proper weighting so that when added together, it would
create a uniform field, thereby reducing spatial variance. One can see this by looking at Fig. 2.2
and observing that by utilizing proper weights, the anti-nodal regions of one term can fill in the
nodal regions of another term when the terms are added together. It was shown that the proper
weights are proportional to the inverse of the structural wavenumber squared, for the case of a
single mode. The addition of the velocity gradients in a squared form gives the cost function the
desired quadratic form. The cost function obtained by this addition was named V., standing
for the composite velocity field [S1]. This cost function is shown in Fig. 2.4. One can note its

uniformity by looking at the range of the colorbar shown in the figure.
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Figure 2.4 The cost function, Veomp.

The spatial uniformity of the V., cost function contributes to this metric being robust with
respect to the error sensor location. In 2014, this method was experimentally validated for a
simply supported plate by Hendricks [52]. It was also renamed as the “Weighted Sum of Spatial
Gradients” (WSSG) in order to more accurately describe the quantity, since the velocity gradients
were in fact based on the spatial derivatives of the vibration field. This method has also been
investigated for the case of a clamped plate, as well as for a ribbed plate [55]. The experimental
results suggest reasonable agreement between the modeled control and the experimental results.
In 2015, Cao showed that the weights used for the WSSG control metric can be optimized in
order to enhance the control performance. The results showed that there is a wide range for
nearly optimized weights and also that they can be parameterized in terms of flexural rigidity and
the mass per unit area. They presented both theoretical and experimental results, implementing
the optimized weights for control of simply supported and clamped plates, which showed more

effective control performance overall [53, 54].
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It was the objective of this dissertation to develop and model the weighted sum of spatial
gradients (WSSG) control metric for a simply supported cylindrical shell and to validate it
experimentally. Viewing an unwrapped cylinder as a plate, one can envision modeling the WSSG
control metric for a simply supported cylindrical shell by taking the spatial gradients along the
primary axes of the cylinder, i.e., z and 6, where Eq. (2.15) will be utilized in describing the
overall vibration field of the shell using a point-force excitation.

The spatial gradient terms will contain a breathing term, which consists of only the normal
displacement w, two “rocking” terms with derivatives along the z and 0 directions, i.e., dw/dz and
dw/d6, and a twisting term consisting of derivatives in both directions, d?w/dzd0 . These terms

are described analytically in the following equations:

2P & & sin(nmz*/L)sin(nmz/L) cosm(6 — 6)

0,t) = — Opm) (219
@O0 hatn 2 B ey T (070 + 4Gn(@fan 0 1
dw(z,0,t) 2P & o onmsin(amz"/L)cos(nmz/L)cosm(6 — 6%) B

T phE B L et T @fam T + 4G wfan )

(2.20)
ow(z,0,1) O e sin(nmz* /L) sin(nmwz/L)sinm(0 — 0*) ) B
0 = ohat 5 B o T + 4Ea O
(2.21)
9’w(z,0,1) i i —nmn  sin(nnwz"/L)cos(nmz/L)sinm(6 — 0%) Sin(@f — g,

9200 phaLﬂlen:l L £,02,\/[1 — (0)@um)]? + 482, (0] Onm)?
(2.22)

where (z, ) are the coordinates of the sensor location. One can see that the spatial derivative terms

are weighted through the summation by the flexural wave numbers along each direction where the
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derivative has been taken. In general, the weights are proportional to the inverse of the flexural
wavenumber squared. At a given resonance frequency, the weight will be dominantly determined
by the flexural wavenumber of the corresponding mode shape as the denominator in Eqgs. (2.19) -
(2.22) approaches zero for that resonance mode. In order to analytically construct the WSSG cost
function and to preserve the quadratic form desired, one can square the spatial gradient terms and

add them with the proper choice of weights to construct WSSG:

1 ow 02w

aw 1
— on? =)+ 85(52) + r5(5=55)
WSSG = aw” + ﬁ(az) + 5a2(99) * Ya2(azae) ’

(2.23)

where the first weight, o, can be chosen to be 1, and the other weights are chosen in such a way that
they would normalize each term with respect to the first term to make the cost function as spatially
uniform as possible. This ensures the insensitivity and robustness of the method with respect to

sensor location and makes point measurements possible in order to achieve global control results.

2.1.4.1 Modeling the WSSG control metric

2.14.1.1 Optimization. In order to numerically model active control using the WSSG control
metric, an early requirement is to acquire the transfer function of the secondary path, g, i.e., the
cancellation path between the secondary (control) source and the error sensors. Analytically, this
is achieved using Eq. (2.15) and applying the coordinates of the secondary source in (z**,0**) so

that the transfer function of the secondary path and its spatial gradients can be written as

2 & & sin(nwz™/L)sin(nmz/L)cosm(0 — 60*F)
pl’lCan' m=1n=1 gmwr%m\/[l o (w/wnm)2]2 + 4 r%m(w/wnm)

> sin(wt — @) (2.24)

dg(z,0,t) 2 o N sin(nnz"* /L) cos(nmz/L) cosm(6 — 6*7)
m=1n=1 L gmw}%m\/[l o (w/wnm)Z]Z + 4 nzm(w/a)nm)

> sin(@t — Py

(2.25)
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where (z, 0) are the coordinates of the sensor location as mentioned for Egs. (2.19) - (2.22).
Suppose d is a vector that contains the spatial gradient terms due to the primary force in Eqgs.

(2.19) - (2.22), with weighting applied. Similarly, the notation G will be used for the vector that

includes the spatial derivatives of the transfer function between the secondary source and the error

sensors, as indicated in Eqgs. (2.24) - (2.27) with weighting applied. Thus,

ow ow 1 9%w
= [Vaw, VB flae ST —3g) (2.28)

P) 19 1 9%
= [Vag, \/_ g \/_ g \/__azae] (2.29)

where the superscript T denotes the matrix transpose.
One can view each of the weighted gradient terms as one of the error components in an error

vector. In general, one can establish the error signal vector as

e = d + Guc (2.30)
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where u. is the vector of complex control forces with dimensions of N x 1, where N is the number
of control forces applied and contains both amplitude and phase information of the control forces.
If there are M error signals, d will have dimensions of M x 1, and G will have dimensions of
M x N. In this case, since four spatial gradients are utilized, M = 4.

In order to create the quadratic form, the cost function will be formed as the inner product of

e, given by

J = efle = dd + d“Gu, + v’GHd + v/GGu.. (2.31)

This can be minimized with respect to both the real and imaginary parts of the vector of control

forces, u,, to yield [123]

aJ aJ

+j = 2GAGu, + 2G"d. (2.32)
aucR aucl

In order to find the optimal value for the vector of control forces, uc—opt, this equation is set equal

to zero, which results in

u_.n = —|G"G]7'G"d. (2.33)

As long as GG is not singular, Eq. (2.33) provides the optimal value for u, that will provide the

optimal attenuation of J, i.e, the WSSG control metric. Simplifying the notation as

A = GIG
b = GHd (2.34)

c = dfd,
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the optimum value obtained in Eq. (2.33) can be expressed as

U oy = —A"'b (2.35)

and the minimized cost function will have the form of

Join = ¢ — bPA" D, (2.36)

Since a quadratic form of the error vector has been minimized, by substituting Eq. (2.33) in

Eq. (2.30), one can find the residual error signal as

eresia = (1—GG)d, (2.37)

where G' is the pseudo-inverse of G.

2.1.5 The radiated sound power

While measuring and monitoring the WSSG control metric provides a means of evaluating the
performance of the control metric within the vibration field, it does not provide any sense of
the acoustical performance. In order to evaluate the acoustical performance of this metric, it is
important to find a suitable acoustical metric. In this case, the radiated sound power has been
chosen. In order to model and compute the radiated sound power numerically, the coupling
between the structural vibration and the surrounding medium, and consequently the resultant

acoustic radiation, is used to develop an effective means of calculating the sound power. Due to
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the lengthy details, the method developed to compute the radiated sound power will be discussed

in Chapter 3.

2.2 Experimental background

2.2.1 Active noise control

Active noise control is a technique designed to reduce unwanted noise by introducing an additional
sound field. An active control system is an integration of electronics, transducers and acoustics that
is designed to reduce the unwanted noise by introducing acoustic waves into the system that makes
an additional sound field. In principle, this additional sound field is of equal amplitude and opposite
phase at the point(s) of interest. One can say that Lord Rayleigh may be the first to do experiments
on acoustic wave superposition in 1878 [124], in which he observed “Points of Silence” by moving
around and observing minima and maxima of loudness. However, more developed ideas of noise
cancellation began with H. Coanda in 1930, followed by German physicist P. Lueg in 1933, who
patented the idea of noise cancellation in ducts [125]. However, due to the limitations of data
processing, and analog hardware, the implementation was difficult and the results achieved were
limited. Although there was some additional work by Olsen to develop feedback control for rooms
and ducts in the 1950s, there was not much significant development in active noise control until
the 1980s [126]. With advancements in hardware and data processing, researchers began extending
past ideas into many different control techniques and applications [127].

While simple wave superposition is the basic idea for active control, it often is only capable of
producing local control results. Generally, for any class of active noise control involving acoustical
or structural systems, there are a few mechanisms that can lead to global sound attenuation. One
can classify these as 1) achieving control by unloading the radiation impedance of the primary

source, due to the secondary source being located in close proximity to the primary source, with
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respect to the acoustic wavelength, 2) enforcing control by utilizing modal rearrangement between
the modes of an enclosed space or a structure, in such a way that the amplitudes and phases of
the modes are altered to achieve attenuation of the sound power, or 3) in the case of active control
of a structure, increasing the impedance of the structural modes and consequently decreasing their

amplitudes [89]. In general, a control approach can be a combination of these mechanisms.

2.2.2 Signal processing for active noise control
2.2.2.1 Filtered-x LMS algorithm

In order to implement the active control, digital filters are used to process the signals in real time.
Here in this work, finite impulse response (FIR) filters are used due to their stability. The optimal
solution for the filter coefficients is obtained from a mean-square or a cost function and is usually
obtained by minimizing the cost function, which will provide a system of linear equations. In order
to ensure that the solution of this system of equations is the optimal solution, the cost function is
required to have a quadratic form. The hyperparabolic surface characteristic of a quadratic function
ensures the presence of a global minimum rather than having many local minima.

Having no delays between the reference and the error signal corresponds to a minimum phase
system (meaning that all the poles of the system transfer function in the Z domain lie within the
unit circle, which ensures that the system is causal and stable). This system can correspond to a
simple case of electronic noise cancellation. However, for an actual physical system, a delay will
always exist between the reference signal and the error signal as the reference signal is propagated
through the plant transfer function. The transfer function of a system such as a vibrating structure
is often not minimum phase, due to the delays that appear in the system response. If this delay is
not taken into account, it can create instabilities in the algorithm, since the inverse of the transfer
function can be unstable due to causality issues and phase differences. Therefore, the adaptive

algorithm needs to be able to account for delays in the plant response, as well as in the secondary
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path response.

The secondary path includes everything between the control output and the error sensors, which
can include the physical system being controlled, data converters, analog anti-aliasing filters and
reconstruction filters. For a moderately to highly damped system, the model of the secondary
path can be described using an FIR filter. Therefore, most adaptive feedforward algorithms require
some means of identifying the secondary path transfer function, which is often done by introducing
an identification noise to the secondary (control) source, and then adaptively minimizing the
difference between the actual sensor response and the output of the estimate of the secondary
path transfer function. This procedure is usually called system identification [132].

Figure 2.5 demonstrates the block diagram for the control implementation. In Fig. 2.5, H and
H represent the response of the secondary path and the estimate of the response of the secondary

path, which can be represented in terms of filter coefficients.

z(n) e(n)

P > Plant > @ >
A

¥ \

u.(n
| N W )
Y .
~ r(n
— H ( ‘:) Update < o

Figure 2.5 Block diagram of the filtered-x LMS algorithm.
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As demonstrated in Fig. 2.5, x(n) is the reference signal and for a single channel filter, the
error signal, e(n), at a specific error sensor location can be written in terms of the secondary path
response h(n) [H(f) in the frequency domain], the disturbance signal d(n) (which is the reference

signal filtered by the plant response) and the control output u,(n):

n)+ Zh n)uc(n—j), (2.38)

where the second term describes the convolutlon of the secondary path response and the control
output in the time domain, and J is the number of samples considered for this convolution [50].

The control output can be written as

-1
= Z wix(n—1i), (2.39)

where w; are the coefficients of the control filter. Substituting this into Eq. (2.38) yields

J—11-1

n+y Z hj( —j—i). (2.40)

j=0i=

One can change the order of convolutions in Eq. (2.40) such that

I-1 J—1
n)+Zw,~[Zhj(n)x(n—i—j) . (2.41)
i=0 j=0
This can be written as
-1
n)+ Y wi(n)r(n—i), (2.42)
i=0

where r(n) is the reference signal filtered by the secondary path response. One can perform the
convolution by representing the filtered reference signal and the filter coefficients in a vector form,

such that
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e(n)=d(n)+w'r, (2.43)

where
w = [wowy ... w_1]” (2.44)
r = [r(n)r(n—1) ... rin—I+1)]". (2.45)

In order to find the optimum value for the filter coefficients, one needs to construct the quadratic
form of the error signal as the cost function, which is really the mean-square error or the power of
the error signal, i.e., J = E[e*(n)], where E is the expectation value operator. It can be shown that
the optimal solution for minimizing this cost function with respect to the control filter coefficients

can be written as

Wopt =A™ 'b, (2.46)

where A is a symmetric matrix, which is equal to the auto-correlation of the filtered reference
signal, and b is the cross correlation between the filtered reference signal and the disturbance
signal. This means that a time history of the signals is required, which produces delays as well as
a computational load proportional to 2. To avoid these problems, one can make the filter adaptive,
such that the filter coefficients are updated in an iterative manner in time, rather than waiting to
calculate one single set of optimal coefficients. In order to adaptively update the control filter
coefficients in real time, one can adapt a least-mean-square algorithm, which relies on the steepest
(gradient) descent technique. The steepest descent technique is an optimization approach in which
the filter coefficients are updated using the negative gradient of the mean-square error surface.
Hence, one can write the equation for updating the filter coefficients in terms of the gradient of the

cost function with respect to the filter coefficients, i.e.,
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aJ

w(new) = w(old)

where U is the step size that governs the speed of convergence. It can be shown that g—;’v can be

written as

aJ

T —2E[e(n)r(n)]. (2.48)

In order for the filter coefficients to be updated frequently, it is preferred to use an instantaneous
estimate of the gradient (stochastic gradient) that is calculated at each sample time, rather than an
averaged value over time or in other words trying to calculate the expectation value E[r(n)e(n)].

Therefore, the adaptation algorithm can be written as

wn+1) = w(n) — oce(n)r(n), (2.49)

where o, = 2u is the convergence coefficient.

This algorithm is known as the filtered-reference-LMS or filtered-x LMS algorithm. Since in
practice, an estimate of the secondary path transfer function, H(z), is obtained through system
identification rather than the true transfer function H(z), a more accurate expression for the

adaptive update is

wn+1) = w(n) — oce(n)t(n) (2.50)

Filtering the reference signal properly time aligns the cross-correlation between the control
signal and the desired signal, which plays an important role in the stability and convergence of
the algorithm. Adding another filter to model the secondary path transfer function adds to the

signal processing load. Therefore, it is desirable to represent the secondary path transfer function
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efficiently with the least number of coefficients. However, if too few coefficients are incorporated
into the system, that can also potentially degrade the performance and the stability. It has generally
been reported that reducing the coefficients to as few as 20 nonzero coefficien