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ABSTRACT 

Improvements to Sound Power Measurements for Large, Distributed Sources in 
Semi-Reverberant Rooms Using Generalized Energy Density 

Travis Nathan Hoyt 
Department of Physics and Astronomy, BYU 

Master of Science 

Sound power measurements of acoustic sources are typically performed in anechoic or 
reverberation chambers using acoustic pressure according to international standards. The 
anechoic chamber creates a free-field environment where the sound power is estimated from the 
squared pressure integrated over some enveloping surface. The reverberation chamber produces 
diffuse-field conditions, where sound power is proportional to the spatially averaged squared 
pressure. In semi-reverberant environments, the direct and reverberant energies each contribute 
to the total measured field. If the kinetic and potential components of acoustic energy density are 
weighted appropriately, the spatial variation of the field can be significantly reduced compared to 
squared pressure. This generalized energy density allows an adaptation of the sound power 
formulation by Hopkins and Stryker to be used to make an efficient and accurate in situ sound 
power estimate of a noise source in a non-ideal acoustical environment. Since generalized energy 
density optimizes the spatial uniformity of the field, fewer measurement positions are needed 
compared to traditional standards. However, this method breaks down for sources that are large 
and extended in nature and considerably underestimates the sound power. This thesis explores 
the practical limits of this method related to the sound power underestimation. It also seeks to 
understand the special considerations necessary to achieve accurate, survey-grade sound power 
data of large, extended noise sources through a laboratory study of custom extended and compact 
sources. A modified method to accurately and efficiently measure the sound power of large, 
extended sources is proposed with results. 

Keywords: sound power, generalized energy density, semi-reverberant enclosure 
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Chapter 1 

Introduction 

Sound is vibration that propagates as an audible pressure wave through a medium. For 

humans, sound is the reception of such waves and their perception by the brain. Noise, in the 

realm of acoustics, is typically defined as unwanted sound. To quantify the performance of 

acoustic noise sources, acousticians often conduct sound power measurements of said sources. 

Sound power is a useful metric for describing the total sound radiated from a source, since unlike 

pressure, it does not depend on distance from the source. Sound power is generally estimated in 

qualified reverberation or anechoic chambers, using microphones to measure pressure and 

calculating the sound power according to specific ISO, ANSI, and other internationally accepted 

standards.  

This thesis proposes a simplified method for sound power estimation in semi-reverberant 

rooms using generalized energy density. It also clarifies the limitations of previous work, and 

introduces improvements based on previous inaccuracies encountered when measuring large, 

extended noise sources. 
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1.1  Previous Work 

The sound power of noise sources has been a long-standing subject of interest of 

acousticians, engineers, and end users. The development of products that radiate high levels of 

sound often includes design to meet noise criteria, or to match or surpass the noise-mitigation 

techniques of competitors. In order to design around specific criteria, it is critical to evaluate the 

sound power of a source. While radiated sound pressure level has historically been a popular data 

point for quantifying noise, the measurements are entirely dependent on distance and direction 

from the source to the microphone, and the acoustical environment where the measurement was 

performed. Today, sound power is often the preferred metric, since it is a global quantity that 

doesn’t depend on distance, direction, or room acoustics, and its measurement methods in a 

laboratory setting are well documented by various international standards. 

Sound power is the time-averaged acoustic energy flux (through some enveloping surface) 

per unit time produced by a noise source. It is difficult to directly measure sound power, since it 

requires knowledge of the entire acoustic field. Instead, acoustic pressure measurements are 

sampled throughout the field in highly specialized acoustical environments to estimate its value. 

These particular acoustical environments are typically extreme cases, with walls that are either 

very rigid and thus acoustically reflective, known as reverberation chambers, or extremely 

absorptive, known as anechoic chambers. 

In a reverberation chamber, sound waves propagate from the source to the walls, where the 

waves are then reflected multiple times before decaying due to atmospheric absorption and 
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losses inherent in the room. This allows for the assumption of a diffuse-field environment. A 

diffuse field is characterized by an equal distribution of energy density throughout the room, 

with the flow of energy density indifferent of direction. This means that at any point, there is an 

equal probability of simultaneous sound arriving from any direction. In such a field, the sound 

power is directly proportional to the spatially averaged energy density, which is proportional to 

the spatially averaged squared pressure, which can be measured with multiple microphone 

measurements. ISO 3741 details the procedure for performing these diffuse-field measurements.1 

The standard dictates that the pressure must be sampled in at least six locations simultaneously, 

with specification for the minimum separation distances between microphones and distances 

between microphones, the source, and chamber surfaces. It is also often required to take 

measurements with the source in different locations. Depending on the size of the chamber, it 

can be difficult to meet all of these requirements. It should be noted that even qualified 

reverberation chambers only approximate a diffuse field, and the spatial pressure response can 

vary considerably. Absorption in the room also affects the spatial variance in pressure. 

In an anechoic chamber, the walls are typically comprised of several feet of absorptive 

wedges that absorb the incident sound waves by dissipating the kinetic energy of the air particles 

in the propagating wave to heat. A qualified anechoic chamber absorbs 99% of all incident 

acoustic energy above its cutoff frequency.2 The virtual absence of reverberant energy allows for 

the assumption of a free-field condition, where only direct sound pressure from the source 

propagates and the intensity decays according to the inverse square law. In a free field, the sound 

power of a source is proportional to the mean-square acoustic pressure integrated over a 
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continuous (hypothetical) surface enveloping the source. This allows for the approximation of 

the acoustic energy flux through the surface, which is proportional to the sound power of the 

source. The ISO 3744 and 3745 standards detail the specific methods and measurement 

procedures for estimating the sound power via sound pressure measurements over measurement 

spheres or hemispheres.2,3 These can be particularly cumbersome, because the standards require 

over 20 measurement positions to sufficiently sample the radiating field along the hypothetical 

surface. In cases where high-accuracy and high-frequency information is critical, thousands of 

measurement points could be needed.4 

In semi-reverberant environments, a source radiates into an acoustic space and its direct 

energy spreads according to the inverse-square law until it meets a boundary. Depending on the 

boundary material involved, a certain amount of energy is then absorbed, and the remainder is 

reflected. This reflected energy contributes to reverberant energy. In rooms that are highly 

absorptive, the direct energy dominates the reverberant energy and has the most profound effect 

on the overall energy in the room. In these environments, the source behaves much as it would in 

a free field, with minimal contributions by reverberant energy at most locations in the total field. 

In rooms that are highly reflective, the opposite is true. The reverberant energy dominates the 

direct energy and has the overwhelming influence on the total energy at most locations. The 

characteristics of the room will thus dictate the overall energy in the room. 

The locally averaged energy density reaches a steady-state condition when the rate of 

absorption in the room meets the running-time rate at which the source is emitting energy into 

the room. In such a condition, the energy density at any point is comprised of the direct energy 
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density, that which would be measured if the source were in a free field, and the reverberant 

energy density, which is assumed to be diffuse. Thus, the total field at any point is the aggregate 

of these direct and reverberant energies. This can make sound power estimation difficult, since 

both energies must be simultaneously considered together, but cannot readily be differentiated 

into their respective parts. 

In the late 1940s, Hopkins and Stryker published an expression that describes the total energy 

density in terms of its direct and reverberant components.5 This formulation, which will be 

referred to as the Hopkins-Stryker equation, is expressed as 

 〈𝑤𝑤𝑇𝑇(𝑟𝑟,𝜃𝜃0,𝜙𝜙0)〉𝑡𝑡,𝑠𝑠 =
〈Π〉𝑡𝑡
𝑐𝑐

�
𝛾𝛾(𝜃𝜃0,𝜙𝜙0)

4𝜋𝜋𝑟𝑟2
+

4
𝑅𝑅
�, (1.1) 

where 〈𝑤𝑤𝑇𝑇〉𝑡𝑡,𝑠𝑠 is the temporal and local spatially averaged total energy density (TED), 〈Π〉𝑡𝑡 is the 

time-averaged sound power of the device under test (DUT), 𝛾𝛾 is the far-field directivity factor of 

the DUT at some angle (𝜃𝜃0,𝜙𝜙0), 𝑟𝑟 is the distance from the acoustic center of the DUT, 𝑐𝑐 is the 

speed of sound, and 𝑅𝑅 is the room constant, which is classically defined as 𝑅𝑅 =  𝑆𝑆𝛼𝛼�/1 − 𝛼𝛼�, 

where 𝑆𝑆 is the total surface area and 𝛼𝛼� is the mean absorption coefficient of the room.  Here 𝜃𝜃0 

represents the polar angle in the vertical plane and 𝜙𝜙0 represents the azimuthal angle defined in 

the horizontal plane.  The TED is the sum of the spatially averaged potential energy density 

(PED) and kinetic energy density (KED).  The first term in the square brackets in Eq. (1.1) is 

proportional to the direct energy density and is referred to in this thesis as the direct sound term. 
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The second term is proportional to the reverberant energy density, and is thus referred to as the 

reverberant sound term.   

There are multiple methods for measuring the sound power of a source by applying the 

principles of direct and reverberant fields as described in the Hopkins-Stryker equation. For 

example, the ISO 3741 standard for sound power measurements in reverberation chambers 

exploits the expression by requiring a dominant reverberant field so that only the reverberant 

term is considered. Instead of local averaging, the standard requires multiple measurement 

positions, throughout the test environments.  

Most rooms are neither sufficiently anechoic to assume a free field nor reverberant enough to 

be considered diffuse. For these nonideal, semi-reverberant acoustic spaces, other means must be 

utilized to achieve the estimated sound power. These methods rely on the Hopkins-Stryker 

equation, employing the established relationships between total energy density, room constant, 

directivity factor, and sound power. Each of the aforementioned means of sound power 

estimation rely on squared pressure measurements, which are proportional to the PED, but the 

Hopkins-Stryker equation relies on a local spatial average of the TED. The TED is considerably 

more spatially uniform than PED which makes it an advantageous quantity, since fewer spatial 

samples are needed to yield an appropriate representation of the field.6 

In 2010, Xu et al. proposed generalized energy density (GED), which is essentially a 

“weighted” total energy density, whose PED and KED components are scaled by a constant. This  

was shown to produce even lower spatial variation than TED.6 
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In 2014, Marquez introduced a related two-point in situ method as a means for estimating the 

sound power of a noise source in a semi-reverberant space. This requires a reference directivity 

source with a known directivity factor and two GED measurements to empirically determine the 

room constant. Once that is known, two GED measurements of the DUT are taken at some angle 

within the semi-reverberant field. Simultaneous solution of two instances of the Hopkins-Stryker 

equation is then used to extract the estimated sound power and directivity factor of the source. 

With this method, the sound power of a loudspeaker was measured to acceptable accuracy in 

various semi-reverberant rooms, but the directivity factor and room constant results consistently 

diverged from predictions.7 

In 2016, Jensen continued work on the two-point in situ method with substantial 

contributions to the methods of room constant measurements. He introduced a near-field 

correction term for the direct term for use with compact source measurements that could be 

approximated by a monopole. He also studied the effect of local averages to assess the spatial 

robustness of generalized energy density in practice and its effect on the method. His 

contributions to the two-point in situ method produced encouraging results. The sound power 

was shown to be successfully estimated for various compact noise sources such as vacuum 

cleaners, belt sanders, fans, and various loudspeakers. However, when the method was applied to 

a large complex industrial source, the method considerably underestimated the sound power of 

said source and yielded estimated directivity factors that were not physically viable.8 
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1.2  Motivation for Research 

  Since sound power measurements are becoming more common, research documenting 

measurement techniques in both ideal and nonideal acoustical environments should be clarified 

and scaled for many types of sources. While the estimation of sound power in ideal enclosures is 

relatively well known and documented in standards, methods for sound power estimation in non-

ideal enclosures are much less understood. Identifying and addressing the limitations of previous 

research in this area could potentially lead to the development of novel measurement standards 

for these nonideal, semi-reverberant environments. These methods could be valuable to 

academia and industry, since the ability to make meaningful sound power measurements in semi-

reverberant rooms reduces the need for costly measurement chambers and cumbersome 

techniques. Not only would they reduce the overall number of required measurement positions, 

but also the overall cost of measurements. 

The developments and experimental validations performed by Marquez and Jensen on the 

two-point in situ method in semi-reverberant environments has demonstrated the capabilities of 

sound power estimation in semi-reverberant rooms using GED. However, they are unfortunately 

limited to compact sources. When applied to larger, extended sources that radiate with a more 

complex sound field, the method consistently underestimates the overall power of the DUT.8 It 

was suspected that this was in part due to the violation of some or all of the underlying 

assumptions in the derivation of the Hopkins-Stryker equation. This is the primary motivation for 

the present research, since careful determination of the practical limits of the method, as well as 
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the development of any modifications that could allow the method to properly apply to large, 

extended sources, are acutely needed for many applications. 

1.3  Objectives 

The primary objective of this research was to address the shortcomings of the results of the 

two-point GED method when applied to large, extended sources and to modify it in such a way 

that allowed it to estimate the in situ sound power of large, extended industrial noise sources for 

survey-grade accuracy. This was accomplished through the following steps: 

1. Carefully explore the assumptions and conditions built into the theory supporting the 

Hopkins-Stryker equation to identify if assumptions were violated when applied to large, 

complex sources. 

2. Recreate a large complex source in a laboratory setting that produces results consistent 

with the underestimation seen in Jensen’s work on large industrial noise sources in semi-

reverberant environments. 

3. Determine the root cause of the underestimation and explore options to enhance or 

otherwise alter the two-point method to allow estimation of large, distributed acoustic 

sources. 

4. Identify the specific measurement conditions that provide acceptable results. 

5. Develop a survey-grade (or better) measurement method that can properly estimate the 

sound power of large industrial noise sources in semi-reverberant enclosures. 

Additional details surrounding these objectives will be presented in the remainder of this thesis. 
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1.4  Plan of Development 

This introductory chapter has detailed the general background of the research problem, 

summarized previous work on related topics, outlined the motivations for and objectives of the 

research performed, and defined the scope of this thesis. The remainder of the thesis will be 

organized as follows. Chapter 2 will present the supporting theory of the two-point in situ 

method with critical clarifications of assumptions and limitations inherent in the theoretical 

development of the Hopkins-Stryker equation. Chapter 3 will detail the approach of experimental 

research to determine the conditions causing underestimation, and the experiments designed to 

further investigate the results. Chapter 4 will discuss the experimental results of the two-point 

method and their relevance to the research problem. Chapter 5 introduces a simplified method 

for making sound power measurements and provides results and limitations when applied to 

large, extended sources. Chapter 6 then summarizes the work performed and makes suggestions 

for future work related to this research. An appendix contains MATLAB codes related to this 

work.



Chapter 2 

Theory 

The theoretical developments involved in the formulation of the expressions relating 

sound power to energy density, such as in the Hopkins-Stryker equation, are acutely relevant to 

this research since it seeks to address any violations to the underlying theory, which may account 

for the sound power underestimation when measuring sources that are large and extended in 

nature. Therefore, the theoretical basis for relevant energy-based acoustics measurements will be 

discussed in detail, from the fundamentals of TED, the developments and advantages of GED, 

the Hopkins-Stryker equation and each of its parts, to the two-point in situ method. 

2.1 Acoustic Energy Density 

The time-averaged, discrete-point TED is the direct sum of PED and KED: 

〈𝑤𝑤𝑇𝑇〉𝑡𝑡 = 〈𝑤𝑤𝑃𝑃〉𝑡𝑡 + 〈𝑤𝑤𝐾𝐾〉𝑡𝑡. (2.1) 

The expression for GED differs slightly from that of TED, namely6

〈𝑤𝑤𝐺𝐺,𝛽𝛽〉𝑡𝑡 = 𝛽𝛽〈𝑤𝑤𝑃𝑃〉𝑡𝑡 + (1 − 𝛽𝛽)〈𝑤𝑤𝐾𝐾〉𝑡𝑡 , (2.2) 
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where 〈𝑤𝑤𝐺𝐺,𝛽𝛽〉𝑡𝑡 is the time-averaged GED and 𝛽𝛽 is the weighting factor.  For a truly diffuse field, 

a weighting factor of 𝛽𝛽 = 0.25 has been shown to minimize spatial variance.6 The PED and 

KED are respectively defined as 

 〈𝑤𝑤𝑃𝑃〉𝑡𝑡 =
〈𝑝𝑝2〉𝑡𝑡
2𝜌𝜌0𝑐𝑐2

 (2.3) 

and 

 〈𝑤𝑤𝐾𝐾〉𝑡𝑡 =
𝜌𝜌0
2
〈|𝒖𝒖|2〉𝑡𝑡, (2.4) 

where 〈𝑝𝑝2〉𝑡𝑡 is the time-averaged squared pressure, 𝜌𝜌0 is the density of air, and |𝒖𝒖| is the vector 

magnitude of the particle velocity. 

 The values of PED, KED, and TED can be achieved with various values of 𝛽𝛽: 

 

 〈𝑤𝑤𝐺𝐺,1〉𝑡𝑡 = 〈𝑤𝑤𝑃𝑃〉𝑡𝑡;   𝛽𝛽 = 1, 

〈𝑤𝑤𝐺𝐺,0〉𝑡𝑡 = 〈𝑤𝑤𝐾𝐾〉𝑡𝑡;   𝛽𝛽 = 0, 

〈𝑤𝑤𝐺𝐺,1/2 〉𝑡𝑡 =
〈𝑤𝑤𝑇𝑇〉𝑡𝑡

2
;  𝛽𝛽 =

1
2

 . 

(2.5a) 

(2.5b) 

(2.5c) 

If the plane-wave assumption is applied, 〈𝑤𝑤𝑃𝑃〉𝑡𝑡,𝑠𝑠 = 〈𝑤𝑤𝐾𝐾〉𝑡𝑡,𝑠𝑠, then for any value of 𝛽𝛽 the 

expression for GED becomes 〈𝑤𝑤𝐺𝐺,𝛽𝛽〉𝑡𝑡,𝑠𝑠 = 〈𝑤𝑤𝑃𝑃〉𝑡𝑡,𝑠𝑠 = 〈𝑤𝑤𝐾𝐾〉𝑡𝑡,𝑠𝑠 = 〈𝑤𝑤𝑇𝑇〉𝑡𝑡,𝑠𝑠/2, which allows Eq. (1.1) 

to be expressed as its GED counterpart 

 〈𝑤𝑤𝐺𝐺,𝛽𝛽〉𝑡𝑡,𝑠𝑠 =
〈Π〉𝑡𝑡
2𝑐𝑐

�
𝛾𝛾(𝜃𝜃0,𝜙𝜙0)

4𝜋𝜋𝑟𝑟2
+

4
𝑅𝑅
�, (2.6) 

which is the Hopkins-Stryker equation in terms of GED. Note that the expressions for TED, 

PED, KED, and GED in Eqs. (2.1) through (2.5) describe the time-averaged but not spatially 
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averaged energy density. However, the Hopkins-Stryker equation is defined in terms of the local 

spatially and temporally averaged energy density. The assumption is made that since GED is 

much more spatially uniform than TED, its value at a point and its local spatial average about 

that point are similar enough to be considered identical in this context. 

2.2  The Hopkins-Stryker Equation 

 The instance of the Hopkins-Stryker equation to be used in this thesis is the GED variant, 

as expressed in Eq. (2.6). It describes the relative contributions to the total GED of the direct 

energy density 

 〈𝑤𝑤𝐺𝐺,𝛽𝛽,𝐷𝐷〉𝑡𝑡,𝑠𝑠 =
〈Π〉𝑡𝑡
2𝑐𝑐

𝛾𝛾(𝜃𝜃0,𝜙𝜙0)
4𝜋𝜋𝑟𝑟2

 (2.7) 

and reverberant energy density 

 〈𝑤𝑤𝐺𝐺,𝛽𝛽,𝑅𝑅〉𝑡𝑡,𝑠𝑠 =
〈Π〉𝑡𝑡
2𝑐𝑐

4
𝑅𝑅

. (2.8) 

The direct term dominates the expression near the source, since it dictates the field before 

reaching the point where spherical spreading is overpowered by the reverberant field. As the 

distance between the source and field point increases, the reverberant term begins to dominate 

the expression since the energy density reaches the aforementioned steady state that is dependent 

on the acoustics of the room. At some distance, the contributions of the direct [Eq. (2.7)] and 

reverberant [Eq. (2.8)] energy density fields will be equal. This is referred to as the critical 

distance, and is defined as  
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 𝑟𝑟𝑐𝑐 = �𝛾𝛾(𝜃𝜃0,𝜙𝜙0)𝑅𝑅
16𝜋𝜋

. (2.9) 

The general relationship between the direct and reverberant energy densities with respect to the 

aggregate energy density as described by the Hopkins-Stryker equation is illustrated graphically 

in Fig. 2.1. Here the composite energy density components for a hypothetical source in a room 

are calculated relative to the reverberant energy density, which is dictated by the room constant. 

 

Fig 2.1.  The total energy density level of a simple source per the Hopkins-Stryker equation is the energetic sum of 
the direct-field and reverberant-field levels.  

 

2.3  The Reverberant Energy Density Term 

The reverberant term [Eq. (2.8)] is characterized by the quantity 4/𝑅𝑅. This follows from 

the assumption of a diffuse reverberant field, which is defined as having uniform local spatially 

averaged energy density throughout the field. Since the reverberant field is dictated by the room 
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absorption, which is constant, it would follow that the steady-state reverberant energy would be 

constant. As the distance from the source increases, it will converge to a single value that is 

independent of position. The diffuse-field assumption can be violated in rooms with complex or 

irregular geometries, nonuniform distribution of absorbing surfaces, excessive absorption, or 

features with abnormal scattering.  The volume and geometry of a room directly affect the 

strength of the diffuse-field assumption. In corridors or other rooms where one dimension is 

significantly larger than the others, the energy density flow is emphasized in the direction away 

from the source, rather than being randomly distributed about the measurement point. Rooms 

with high absorption dissipate the reverberant energy to a point where there is not enough 

reflected energy to be considered diffuse. These types of rooms, in addition to especially 

voluminous rooms, can suffer from a phenomenon of reverberant energy decaying with 

increased distance.9  

The 4 in the numerator of Eq. (2.8) comes from the expression for the mean free path, 

which is the average distance a sound wave travels before encountering a boundary in an 

enclosed field. For a diffuse field in a nominally cubic room, the mean free path is expressed as10 

 𝐿𝐿 =
4𝑉𝑉
𝑆𝑆

, (2.10) 

where 𝑉𝑉 is the room volume and 𝑆𝑆 is the room surface area. 

The room constant 𝑅𝑅 is a frequency-dependent value that is a function of the average 

absorption, 𝛼𝛼�, in the room and its surface area. It is a straightforward means of quantifying the 

sound absorption in a room. There is a considerable amount of discussion about the validity of 
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the traditional expression for the room constant in the literature,10,11,12 but is defined by Hopkins 

and Stryker as5 

 𝑅𝑅 =
𝑆𝑆𝛼𝛼�

1 − 𝛼𝛼�
  .  (2.11) 

 

2.4  The Direct Energy Density Term 

The direct-term expression in Eq. (2.7) describes the direct energy density due to 

radiation at some point a distance 𝑟𝑟 from the source, where the inverse-square law for intensity is 

observed. It assumes that measurements are made in the direct far field, which is characterized 

by spherical spreading. In this case, the PED and KED are equal. In practice, it can be difficult to 

estimate the distance needed to achieve the direct far field, since the reverberant field begins to 

dominate as the distance from the source increases. Beranek suggests that the direct far field 

begins at least 1/3 of a wavelength from a compact source.10 

The directivity factor is included in the numerator of Eq. (2.7) to account for non-uniform 

angular dependence in radiation. Beranek defines the directivity factor as the ratio of radiated 

intensity at some angle to the intensity at the same point due to a monopole radiating the same 

sound power,10 which can be expressed as 

 𝛾𝛾(𝜃𝜃0,𝜙𝜙0) =  
〈𝐼𝐼(𝜃𝜃0,𝜙𝜙0)〉𝑡𝑡

〈𝐼𝐼𝑚𝑚〉𝑡𝑡
. (2.12) 

 Hopkins and Stryker assumed that this directivity factor had constant values of 1, 2, or 4, 

depending on whether the source was in free space, near a reflecting plane, or in a dihedral 
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corner, respectively. Although these assumed values were treated as constants, in practice they  

vary with angle and frequency. The directivity factor will also change over distance, since the 

near-field behavior varies significantly from far-field characteristics. In this work, the far-field 

directivity factor is assumed. 

For limited r, within the dimensions of many rooms, the direct term only describes the 

direct energy density of a compact source spherically radiating in the direct far field. The direct 

energy density of a large, extended noise source, will not be well described by this expression. 

2.5  The Two-Point In Situ Method 

The two-point in situ method, introduced by Marquez, allows for a straightforward 

estimation of the sound power using two sets of two GED measurements.7 This method directly 

measures the room constant using a reference directivity source, rather than estimating it using 

the other methods. The room constant is then used in a variation of the Hopkins-Stryker equation 

to solve for the estimated sound power of the DUT. 

 The reference directivity source, whose directivity factor  𝛾𝛾𝑟𝑟𝑟𝑟𝑟𝑟(𝜃𝜃0,𝜙𝜙0) has been 

previously measured, is measured in the room along a line at some angle from the source at two 

distinct positions 𝑟𝑟1 and 𝑟𝑟2. This allows for two equations, 

 〈𝑤𝑤1,𝐺𝐺,𝛽𝛽〉𝑡𝑡,𝑠𝑠 =
〈𝛱𝛱〉𝑡𝑡,𝑟𝑟𝑟𝑟𝑟𝑟

2𝑐𝑐
�
𝛾𝛾𝑟𝑟𝑟𝑟𝑟𝑟(𝜃𝜃0,𝜙𝜙0)

4𝜋𝜋𝑟𝑟12
+

4
𝑅𝑅
� (2.13a) 

and   
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 〈𝑤𝑤2,𝐺𝐺,𝛽𝛽〉𝑡𝑡,𝑠𝑠 =
〈Π〉𝑡𝑡,𝑟𝑟𝑟𝑟𝑟𝑟

2𝑐𝑐
�
𝛾𝛾𝑟𝑟𝑟𝑟𝑟𝑟(𝜃𝜃0,𝜙𝜙0)

4𝜋𝜋𝑟𝑟22
+

4
𝑅𝑅
�. (2.13b) 

 

Ideally, one of these positions is between the source and critical distance, while the other is 

beyond the critical distance, to sample the field where each term is dominant in the expression.7 

The two expressions [Eq. (2.13a) and Eq. (2.13b)] contain two unknowns: the reference source 

power (although this is often known since directivity measurement data can be used to calculate 

it via ISO 3745) and the room constant. The room constant is then solved for using 

 𝑅𝑅 =
16𝜋𝜋 �

〈𝑤𝑤2,𝐺𝐺,𝛽𝛽〉𝑡𝑡,𝑠𝑠
〈𝑤𝑤1,𝐺𝐺,𝛽𝛽〉𝑡𝑡,𝑠𝑠

− 1�

𝛾𝛾𝑟𝑟𝑟𝑟𝑟𝑟(𝜃𝜃0,𝜙𝜙0)� 1
𝑟𝑟22
−

〈𝑤𝑤2,𝐺𝐺,𝛽𝛽〉𝑡𝑡,𝑠𝑠
〈𝑤𝑤1,𝐺𝐺,𝛽𝛽〉𝑡𝑡,𝑠𝑠𝑟𝑟12

�
. (2.14) 

With the room constant measured, the DUT is then measured in the room with two more GED 

measurements at positions 𝑟𝑟3 and 𝑟𝑟4: 

 〈𝑤𝑤3,𝐺𝐺,𝛽𝛽〉𝑡𝑡,𝑠𝑠 =
〈Π〉𝑡𝑡,𝐷𝐷𝐷𝐷𝑇𝑇

2𝑐𝑐
�
𝛾𝛾𝐷𝐷𝐷𝐷𝑇𝑇(𝜃𝜃0′ ,𝜙𝜙0′ )

4𝜋𝜋𝑟𝑟32
+

4
𝑅𝑅
�, (2.15a) 

and 

 〈𝑤𝑤4,𝐺𝐺,𝛽𝛽〉𝑡𝑡,𝑠𝑠 =
〈Π〉𝑡𝑡,𝐷𝐷𝐷𝐷𝑇𝑇

2𝑐𝑐
�
𝛾𝛾𝐷𝐷𝐷𝐷𝑇𝑇(𝜃𝜃0′ ,𝜙𝜙0′ )

4𝜋𝜋𝑟𝑟42
+

4
𝑅𝑅
�. (2.15b) 

These may be along a line at any angle from the DUT, indicated by (𝜃𝜃0′ ,𝜙𝜙0′ ). The directivity 

factor of the DUT at this angle and its sound power are then solved for using 
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 𝛾𝛾𝐷𝐷𝐷𝐷𝑇𝑇(𝜃𝜃0′ ,𝜙𝜙0′ ) =
16𝜋𝜋 �

〈𝑤𝑤4,𝐺𝐺,𝛽𝛽〉𝑡𝑡,𝑠𝑠
〈𝑤𝑤3,𝐺𝐺,𝛽𝛽〉𝑡𝑡,𝑠𝑠

− 1�

𝑅𝑅 � 1
𝑟𝑟42
−

〈𝑤𝑤4,𝐺𝐺,𝛽𝛽〉𝑡𝑡,𝑠𝑠
〈𝑤𝑤3,𝐺𝐺,𝛽𝛽〉𝑡𝑡,𝑠𝑠𝑟𝑟32

�
 (2.16) 

and 

 〈Π𝐷𝐷𝐷𝐷𝑇𝑇〉𝑡𝑡 =
2〈𝑤𝑤3,𝐺𝐺,𝛽𝛽〉𝑡𝑡,𝑠𝑠𝑐𝑐

�𝛾𝛾𝐷𝐷𝐷𝐷𝑇𝑇
(𝜃𝜃0′ ,𝜙𝜙0′ )

4𝜋𝜋𝑟𝑟32
+ 4
𝑅𝑅�

, (2.17) 

respectively.  

2.6 Discussion 

The assumptions in the Hopkins-Stryker equation require that measurements be taken in 

the direct far field of a source, where the plane wave assumption can be reasonably made. 

Depending on the room, this can be impossible due to room dimensions that are smaller than the 

required far field, 𝑟𝑟, or the critical distance, since two-point method measurements are to be 

made on either side of the critical distance. The size of the source can complicate the application 

of the Hopkins-Stryker equation, since large, extended sources have direct far fields that are 

much farther from the source than those of compact sources. In smaller rooms, it may be 

impossible to reach the direct far field, where the assumptions in the underlying theory for the 

direct term are applicable. Furthermore, the direct term assumes spherical spreading, which may 

not accurately describe the radiation near larger, complex sources. 

The diffuse field assumption for the reverberant term can be compromised by excessive 

absorption in the room, or by a nonuniform distribution of absorbing surfaces. This is known to 
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introduce error into the sound power estimation, since reverberant field theory relies on uniform 

boundaries and well-distributed absorption in order to reasonably assume a diffuse-field 

condition.  

Point generalized energy density measurements are also being considered in place of 

local spatial averages, which rely on the assumption that the field is sufficiently uniform. The 

errors in sound power estimation associated with nonuniform energy density increase with room 

absorption and at field points that are in the near field of a source. 

 



Chapter 3 

Experiment Design 

One of the interesting findings of Jensen was that the two-point method produced sound 

power results consistent with ISO 3741 and ISO 3745 measurements for various compact 

sources, but diverged from ISO standard results for larger, more extended sources.8 The two-

point method allows for the simultaneous estimation of both the sound power and the directivity 

factor of the DUT. While the directivity factor may not be as interesting in some applications as 

the sound power data, results for the directivity factor seemed to be far from expected values for 

some sources.7,8 Since the sound power results seemed to agree with results from standardized 

measurements, no further efforts were dedicated to the discrepancy. When the two-point method 

was applied to a large industrial source in a room, the sound power results estimated a power that 

was consistently 4 to 6 dB lower than that determined from standardized measurements.8 In 

addition, the directivity factors estimated by the two-point method were often not physically 

viable.  
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This work aims to better understand the two-point method by investigating the direct 

term in more detail and carefully determining the practical limits of the method. To do so, 

multiple experiments were designed, constructed, and performed to acquire data that would lend 

additional insight related to the two-point method procedure and calculation. 

First, it was necessary to create a source in a laboratory setting that was large and 

extended enough to cause the two-point method to underestimate the sound power in a manner 

similar to Jensen’s measurements. Second, to remove a degree of freedom from the two-point 

method’s final calculation in Eq. (2.7), two sources were constructed and their directivity factors 

were measured in the azimuthal and polar planes according to a variant of ISO 3745. The first 

source was a single 13 cm loudspeaker in a small box. The second was a line array of 16 of these 

13 cm loudspeakers in a 2.34 meter long array. These measured directivity factors were then 

used instead of calculated ones in two-point measurements of these sources. The sound powers 

of these two sources were also measured according to ISO 3741. 

3.1 Measurement of Energy Density 

The acoustic energy density in this work was measured using a G.R.A.S. 50V-I-1 vector 

intensity probe, consisting of three orthogonal phase-matched pairs of microphones, whose pairs 

were indexed as 1-2, 3-4, and 5-6. These microphones were separated by a 25 mm spacer, whose 

spatial Nyquist frequency allows for a working frequency range of roughly 125 Hz to 5,500 

Hz.13 To measure the GED with a vector intensity probe consisting of microphones measuring 

pressure, the PED and KED are measured using a method offered by Pascal and Li that uses the 
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finite-difference method, the auto-spectrum, and the cross-spectrum of the probe microphone 

signals.14 The PED is given by the expression 

 PED =
1

24𝜌𝜌0𝑐𝑐2
�𝐺𝐺𝑖𝑖𝑖𝑖

6

𝑖𝑖=1

+
1

12𝜌𝜌0𝑐𝑐2
[𝐶𝐶21 + 𝐶𝐶43 + 𝐶𝐶65] (3.1) 

and the KED is given by 

 KED =
1

2𝜌𝜌0𝑐𝑐2𝑘𝑘2𝑑𝑑2
�𝐺𝐺𝑖𝑖𝑖𝑖

6

𝑖𝑖=1

−
1

𝜌𝜌0𝑐𝑐2𝑘𝑘2𝑑𝑑2
[𝐶𝐶21 + 𝐶𝐶43 + 𝐶𝐶65], (3.2) 

where 𝜌𝜌0 is the density of air, 𝑐𝑐 is the speed of sound, 𝑘𝑘 is the wavenumber, 𝑑𝑑 is the microphone 

spacing, 𝐺𝐺𝑖𝑖𝑖𝑖 is the auto-spectrum of the 𝑖𝑖th microphone, and 𝐶𝐶𝑖𝑖𝑖𝑖 is the real part of the cross-

spectrum between the 𝑖𝑖th and 𝑗𝑗th microphones, which are arranged opposite each other.  

3.2 The Reference Directivity Source 

 The reference directivity source used for two-point method measurements (the same used 

by Jensen) was a 7.6 cm full-range loudspeaker driver in a 22.9×15.2×10.2 cm box with a 

passive radiator of the same size above the active driver, as shown in Fig. 3.1.  The acoustic 

center was assumed to be at the center of the dust cap on the active driver.  The directivity factor 

was measured according to a variant of  ISO 3745, but with more measurement points than 

required to increase its accuracy and that of the sound power measurement.2  Marquez 

recommended that the reference directivity source be one with a relatively smooth directivity 

pattern over frequency and angle, which means that for small errors in the reference angle, the 

error in directivity factor is likewise small.7 The angles most used in this work were the principal 
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axis and those within 10 degrees of it, since these corresponded to the axes of highest output, 

resulting in a more favorable signal-to-noise ratio when measuring the room constant.  

 

Fig 3.1.  The reference directivity source in the anechoic chamber. The lower driver is an active loudspeaker, while 
the upper driver is a passive radiator. 

 

3.3 The Reverberation Chamber 

 The venue primarily used for studying the limits of the two-point method when applied to 

large, extended sources is the smaller of two reverberation chambers on the Brigham Young 

University campus, pictured in Fig. 3.2. Its length, width, and height are approximately 5.69, 

4.34, and 2.49 meters, respectively, corresponding to a room volume of 61 cubic meters. The 

floor is a concrete slab with an applied vinyl composition tile. The walls and ceiling are plastered 

and painted concrete and concrete masonry units. This room has an unoccupied reverberation 

time (RT60) of 6 s, calculated between (100 Hz to 10 kHz). Acrylic stationary diffusers are 

suspended from the ceiling to help increase the diffusivity of the field. The volume of this room 
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is similar to those of rooms used by Jensen and the author to conduct experiments on the large 

industrial noise sources. 

 An advantage of using a reverberation chamber for these measurements is that ISO 3741 

sound power measurements (using squared pressure) can be carried out to have a benchmark to 

compare the two-point method against. Furthermore, the strong reverberant field typically yields 

favorable sound power results for most sources. Thus, measurements can be made in a best-case 

scenario in terms of the two-point method, compared to the standard results, then absorption can 

be incrementally added to the room to measure the effects as it approaches the mean absorption 

of the room containing the large industrial source and producing underestimated sound power 

results. 

 

Fig 3.2.  The small reverberation chamber on the BYU campus. 
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3.4 The Large Wooden Enclosure 

In an effort to understand why a large, extended source would consistently cause the two-

point method to underestimate sound power, the author sought to replicate such a source in a 

laboratory setting. It was impractical to obtain and relocate such a cumbersome source into the 

chamber, so instead, a large wooden enclosure was mocked up using 19 mm MDF with similar 

dimensions as the industrial source. Various loudspeakers and shakers were employed in and 

around the enclosure to simulate a distributed source. Its exterior dimensions were roughly 

2.2 × 1.2 × 0.8 m and it had an internal volume of approximately 2.1 m3. Five removable panels 

could be replaced with different materials of varying transmission losses and radiation 

efficiencies. Foam gaskets along the borders of these panels allowed for airtight seals. These 

panels are discussed more in Chapter 4. The enclosure is photographed within the small 

reverberation chamber in Fig. 3.3. 

 

Fig 3.3.  The large wooden enclosure assembled in the small reverberation chamber. 
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3.5 The Compact Source 

A compact source was constructed to confirm the two-point method results of Marquez 

and Jensen, but to also allow for further research into the near-field behavior of compact sources 

and how the energy density eventually converges to far-field behavior. This source, shown in 

Fig. 3.4, was a 13 cm loudspeaker in a plywood box filled with polyester foam to enhance the 

compliance of the enclosed volume. It was powered using a Crown D-45 amplifier.  

 

Fig 3.4.  The compact source under measurement in the anechoic chamber. 
 

3.6 The Line Array Source 

A line array with 16 elements was designed to achieve a source with a non-spherically 

radiating near field, whose far-field directivity could be reasonably modeled and readily 

measured. This was built in order to evaluate the robustness of the direct term in the Hopkins-

Stryker equation when applied to sources that violated the point-source assumption and had 
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dimensions large enough to guarantee that measurements were not in the direct far field. For a 

continuous line source, the radiation is subject to cylindrical spreading. In principle, the discrete 

line array can approximate this behavior at low frequencies. This array was built using 1/2" 

plywood and uses the same model of loudspeaker driver as the compact source, and each of the 

16 drivers has a sealed volume behind it that is equal to that of the single-driver compact source. 

The drivers are connected in a series-parallel fashion so that the nominal impedance of the entire 

array measured approximately 8 Ω and all drivers are excited in phase with equal power. Its 

dimensions were 234 × 16.5 × 13 cm and can be seen pictured in Fig. 3.5. 

 

Fig 3.5.  The 16-element line array pictured in the large reverberation chamber. 
 

3.7 ISO 3741 

The sound power of the aforementioned sources was measured according to the ISO 3741 

standard1 to use as benchmarks for how well the two-point method performs under various test 

conditions. The standard requires at least 6 microphones, separated randomly throughout the 
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room as shown in Fig. 3.6. The microphones must be positioned a minimum of 1 meter from 

reflecting surfaces, 1.5 meters from the source, and 𝜆𝜆/2 away from each other (1.7 meters at 100 

Hz).  The sound power calculation also requires that the total average absorption coefficient of 

the room be known, which is extracted from reverberation time measurements according to ISO 

354, with six microphone positions and two source positions.15 

 

 

Fig 3.6.  A setup in the large reverberation chamber for ISO 3741, including six microphones. The 16-element 
array is pictured in one of its measurement positions. 
 

The compact source and the line array were both measured in the larger 210 m3 

reverberation chamber, whereas the various large wooden enclosure source configurations were 

measured in situ in the small reverberation chamber as pictured in Fig. 3.7. Since the working 

volume of the small reverberation chamber is relatively compact, some of the microphone and 

source position requirements were violated. Multiple measurements of compact sources in the 

large reverberation chamber, where specifications were properly met, were compared to 
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measurements with the violated setup in the small reverberation chamber. These comparisons 

showed that discrepancies between the two chamber setups were negligible for the purposes of 

this research. 

 

 

Fig 3.7.  A setup in the small reverberation chamber for ISO 3741, including six microphones hanging from the 
diffusers. The large wooden enclosure is pictured in one of its measurement configurations. Loudspeakers are 
located on top of and inside the enclosure. The energy density probe is also pictured, since ISO 3741 measurements 
and two-point method measurements were taken simultaneously. 
 

3.8 Directivity Measurements 

At the time that it was determined to measure the directivity factor of the compact and 

line array sources, the high-resolution directivity measurement system had since been 

disassembled, so for simplicity and to maintain a timely progression of the research, it was 

decided to measure the directivity in only two planes. The horizontal (azimuthal) plane, and the 

vertical (polar) plane were measured by placing the source(s) on a remote-controlled turntable in 
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the anechoic chamber, and with a single microphone at 4.1 meters away, measuring the time-

averaged squared pressure at five-degree increments over the 360 degree rotation. This setup is 

pictured in Fig. 3.8. This restricts the two-point method measurements to axes along these two 

planes (when using the measured directivity factor), but such a restriction is acceptable 

considering the scope of this study. 

 

 

Fig 3.8.  A setup in the anechoic chamber for measuring the directivity factor. The source is set up on a remote 
controllable turntable. Measurements are made at five-degree increments 
 

As shown in Eq. (2.12), the directivity factor is defined as the ratio of the measured far-

field intensity at some angle compared to the intensity of a monopole radiating with the same 

sound power. Once the mean square pressure measurements had been made along the 360 

degrees, the numerator in Eq. (2.12) was calculated by applying the definition for time-averaged 

acoustic intensity,   
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 〈𝐼𝐼(𝜃𝜃0)〉𝑡𝑡 =
〈𝑝𝑝2〉𝑡𝑡
𝜌𝜌0𝑐𝑐

. (3.3) 

The denominator was calculated by converting the measured sound power of the same source to 

intensity with the expression 

 〈𝐼𝐼𝑚𝑚〉𝑡𝑡 =
〈Π〉𝑡𝑡
4𝜋𝜋𝑟𝑟2

, (3.4) 

where 〈Π〉𝑡𝑡 is the time-averaged sound power of the source as measured per ISO 3741 and 𝑟𝑟 is 

the distance between the source and the microphone during directivity measurements. 

 



 

 

Chapter 4  

Experimental Results: Two-Point Method 

The results of the two-point method experiments described in Chapter 3 are detailed in 

this chapter. The findings related to the two-point method applied to compact sources, distributed 

sources, and extended sources in a laboratory setting are shown and relevant discussion is 

included. Measurements of an industrial engine in a mechanical test cell are shown and analyzed. 

The behavior of sound power estimate results begins to diverge from expected values as the 

source becomes larger in size and as it radiates with a more complex sound field. 

4.1 Compact Sources 

The two-point method had previously been shown to properly estimate the sound power of 

sources that were relatively compact in nature to within 1 to 3 dB of ISO sound power 

measurements. Preliminary tests of the method conducted as part of this work confirmed these 

findings. One such test was of a Mackie brand studio loudspeaker measured using the two-point 

method. Results comparing the power estimate to the ISO 3741 measurement are shown in Fig. 

4.1. 
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Fig 4.1.  The sound power of a Mackie studio loudspeaker measured by the two-point method and per ISO 3741. 
 

The vertical dashed line at roughly 330 Hz indicates the Schroeder frequency. Below this 

frequency, the diffuse field assumption inherent in the Hopkins-Stryker equation is violated due 

to strong room modes which dominate the behavior of the sound field. Therefore, results from 

frequencies below the Schroeder frequency are shown but not included in the calculation of 

overall sound power level values shown in the plot legend. Depending upon the particular sensor 

placement, results often agree somewhat with standard-measured values, but can diverge in other 

instances due to the strong room modes at low frequencies. While the upper frequency limit is 

dictated by the spatial Nyquist frequency (shown by the dotted line), results shown by Marquez 

and Jensen indicate that agreement between measured and expected values between 5,500 Hz 
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and 10,000 Hz was almost always maintained, so data for these frequencies are shown 

throughout this work.7,8 

4.2 Distributed Compact Sources 

One of the first experiments performed in search of circumstances that cause the two-point 

method to underestimate sound power was to place loudspeakers on and around the large wood 

enclosure to ensure that it was radiating from more than one specific acoustic center. This setup 

included a studio monitor on the ground adjacent to the opposite side of the enclosure from the 

probe, a studio monitor on top of the enclosure facing the probe locations, and a smaller speaker 

on the short edge of the enclosure. Each was powered with an orthogonal broadband excitation, 

so no two sources had the same signal output. Sound power measurements per ISO 3741 in this 

configuration in the small reverberation chamber are shown below in Fig. 4.2. 
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Fig 4.2.  The sound power of three loudspeakers (S1, S2, and S3) adjacent to the enclosure measured per ISO 3741. 
The measured total and calculated total are shown. 

 

To ensure that the sources were not coupling together, creating a total sound power that was 

different from the sum of their respective contributions, each of the sources was measured 

independently, then were measured together. The individual source measurements were then 

logarithmically summed and overlaid on the measured result. The summed and measured total 

power values agree for all frequencies, as shown. The two-point method was then used to 

measure the total sound power of the system. Results are shown below in Fig. 4.3 and compared 

to the ISO 3741 result. 
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Fig 4.3.  The combined sound power of three loudspeakers adjacent to the enclosure measured by the two-point 
method and per ISO 3741. 

 

Although there were multiple acoustic origins present during this measurement, the two-

point method appropriately handled the multiple sources and yielded an overall sound power that 

agrees well with the ISO 3741 result, with less than 1 dB difference in the overall result. Since 

the small reverberation chamber, even with a large wooden enclosure present, is predominantly 

reverberant, it is unsurprising that it works well in this configuration, since the reverberant term 

likely dominates the calculation of sound power. For this reason, acoustically absorptive 

urethane-based foam wedges were added to the small reverberation chamber until the RT60 (100 

Hz to 10 kHz) was approximately 1.6 seconds, which required 30 wedges. The measurement was 

then repeated after measuring the room constant with the added absorption. The experimental 
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setup with the wedges is pictured in Fig. 4.4 and the results of this measurement are shown 

below in Fig. 4.5. The ISO 3741 microphones used for in-situ power measurements can be seen 

suspended from the diffusers. 

 

Fig 4.4.  The combined sound power of three loudspeakers adjacent to the enclosure measured by the two-point 
method and per ISO 3741. 
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Fig 4.5.  The combined sound power of three loudspeakers adjacent to the enclosure measured by the two-point 
method with absorptive wedges present compared to ISO 3741. 

 

Since the two-point method again estimated the sound power to be near expected values, it 

suggests that the two-point method can estimate the sound power of multiple compact sources in 

semi-reverberant environments. While only these two results are shown, dozens of experiments 

in each of these configurations (with and without wedges with the three-source distribution) 

yielded similar results, showing robustness to sensor placement and the assumed acoustic center. 

While this finding is significant, it did not provide any new information about what factors 

could be responsible for the underestimation observed when measuring large industrial engines. 

To continue the efforts to reproduce the underestimation in a laboratory setting, the large 

enclosure needed more complex radiation than the adjacent loudspeakers could provide.  
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4.3 Complex, Extended Sources 

In this work, a distributed source refers to a source that is comprised of distributed compact 

sources about some geometry larger than the dimensions of any of the individual sources. An 

extended source refers to a source with large radiating surfaces, whose acoustic origin is less 

easily determined. The next experiment configuration included an 18” JBL powered subwoofer 

inserted into the MDF enclosure playing a high-amplitude square wave tone at 100 Hz, 

mimicking the piston-firing frequency of an engine. The low-frequency tone and its harmonics 

coupled to the volume of the enclosure and excited various modes and structural resonances of 

the enclosure walls, resulting in much more complex radiation that was still broadband in nature 

due to the structural excitation and square wave harmonics. The results from this experiment are 

shown below in Fig. 4.6. The same 30 absorptive wedges were present for this experiment. In 

order to measure the sound power per ISO 3741 for each experiment, the wedges are removed to 

return the small reverberation chamber to the reverberant conditions needed for that standard 

measurement. The sound power was then measured, then the wedges were returned to the 

chamber, and the two-point method measurement was performed. 
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Fig 4.6.  The sound power of the enclosure with a large subwoofer measured by the two-point method with 
absorptive wedges present compared to the ISO 3741 result. 

 

This result represents the first evidence of underestimation reproduced in a laboratory 

setting. While the overall level falls short by 2.5 dB, the one-third-octave band results show more 

than a 10 dB disparity near 800 Hz. This is the most pronounced difference between the ISO 

3741 and two-point method overall levels seen in laboratory experiments. The spectral shape 

shows that this underestimation is roughly uniform over frequency once above 500 Hz. This 

result was reproduced for various sensor positions, assumed acoustic origins, and measurement 

angles. 

To further investigate the effect of this complex radiation on the two-point method sound 

power estimations, the enclosure was modified to force an even more extended source. Since the 
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large enclosure was repurposed from a previous experiment that tested the insertion loss of 

various panels, these panels were easily removed and replaced with three 1/4-inch Masonite 

panels and one 1/4-inch frosted acrylic panel. These had a much lower stiffness than the original 

3/4-inch MDF and allow for additional structural excitation by the internal subwoofer, thus 

causing more extended radiation. In addition to the enclosed subwoofer, a large studio monitor 

was placed inside the enclosure and excited with white noise at maximum amplitude. 

Furthermore, mechanical shakers were affixed with epoxy to two of the Masonite panels and 

provided broadband excitation at the maximum rated power. This setup is pictured below in Fig. 

4.7. 

   

      (a)                                    (b)                                                    (c) 
Fig 4.7.  (a) The JBL subwoofer in the enclosure. (b) The enclosed studio monitor. (c) The thin Masonite and 
acrylic panels with shakers attached. 

 

This system was then measured with the two-point method using two measurement points. 

The results from these measurements are shown in Fig. 4.8. The results again showed that the 

two-point method did not properly estimate the sound power of the system. However, the 

underestimation was not as pronounced as in the previous experiment, but it still falls several dB 
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below the ISO result across most frequencies, and the behavior is seen regardless of where the 

measurement line was chosen within the room. 

 

Fig 4.8.  The sound power of the enclosure with thin panels, an enclosed subwoofer, and shakers rigidly attached 
to the enclosure walls measured by the two-point method with absorptive wedges present compared to the ISO 
3741 result. 

 

4.4 Engine Test Cell Measurements 

Once laboratory measurements that showed the underestimation of sound power had been 

reproduced for complex, extended sources, additional data were taken on an industrial internal 

combustion engine at the research sponsor’s mechanical test facilities. The conditions were 

similar to those of Jensen’s tests, but with a different model engine and with different torque and 
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RPM configurations. The mechanical test cell measured approximately 5.5 × 7 × 4.5 m and had 

an RT60 (100 Hz to 10 kHz) of approximately 1.5 seconds. A 3D wireframe rendering of a 

typical mechanical test cell is shown in Fig. 4.9 below. 

 

Fig 4.9.  A wireframe rendering from the 3D model of the engine mechanical test cell where two-point method 
measurements were conducted at the sponsor’s facilities. 

 

4.4.1 Two-Point Method: Room Constant Measurements 

To evaluate whether any of the underestimation could be a result of the acoustics of the 

mechanical test cell, the room was studied thoroughly before any engine measurements were 
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conducted. One of the recommendations made by Jensen for future work was to measure the 

room constant at various positions to obtain a better spatial average of the room. The room 

constant was measured using the reference directivity source (RDS) at multiple locations along 3 

distinct axes in the test cell. A rendering of the probe measurement locations relative to the three 

RDS positions is shown in Fig. 4.10. 

 

Fig 4.10.  The measurement positions in relation to each of the three RDS positions. Each green dot corresponds 
to a probe sensor position in front of the RDS to measure the room constant. 

 

The two-point method calculates the room constant using two GED measurements. Multiple 

combinations of measurement pairs were used along each of the three measurement axes to 
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understand the variation in the room constant measurement within the test cell. A total of 17 

sensor positions were measured with the RDS to extract the room constant and to understand 

how the room constant varied depending on sensor position. While not within the scope of this 

work, the variation in the room constant in the test cells was studied. The room constant varies 

significantly depending on where in the room it is measured with the RDS, as shown in Fig. 

4.11. In Jensen’s work, it was found that the room constant often had an inconsistent shape 

across frequency, but this usually did not result in incorrect sound power results. The variation in 

room constant here though can influence the sound power result considerably.  

 

Fig 4.11.  The multiple combinations of two-point method room constant measurement positions all shown on one 
plot on a logarithmic scale. There is significant variation between different measurement pairs. 
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In order to reduce the multiple measurements to a single useful room constant, these were 

averaged together, then smoothed with a moving average across frequency to reduce the result to 

one similar to the estimated room constant derived from the RT60. The mean room constant is 

plotted with the RT60-derived room constant in Fig. 4.12. 

 

Fig 4.12.  The room constant shown on a logarithmic scale after having been averaged and smoothed (blue) 
compared to the estimated room constant (red) derived from the RT60. 

 

4.4.2 Dodecahedron Measurements 

One experiment of interest was to measure the sound power of a compact source within the 

mechanical test cell with the engine present but powered off. This experiment would help 

confirm whether the room acoustics were a factor in the underestimation of engine sound power, 
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because if the sound power of the compact source was successfully measured in the test cell, it 

would suggest that the discrepancies are due to the source, and not the environment. The 

compact source that was selected for this experiment was the dodecahedron VVS, or volume 

velocity source, previously provided by the author to the research sponsor as part of an adjacent 

project. It consists of twelve loudspeakers arranged in a dodecahedron frame with a spherical 

outer diameter. The quasi-omnidirectional nature of this source with its high output and compact 

footprint make it an ideal candidate for this experiment. Additionally, sound power data per ISO 

3741 were readily available for this source. A photograph of the VVS in the test cell is shown 

below in Fig. 4.13. 

 

Fig 4.13.  The VVS mounted on a tripod during measurement of the sound power per the two-point method. The 
tripod-mounted energy density probe is also shown. 
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The two-point method properly estimated the sound power of the VVS within the test cell, 

with the engine present but powered off. This confirms that the anomalies seen in the engine data 

are due to the source, not the acoustics of the room, since a compact source was measured 

correctly by the two-point method in the mechanical test cell. This result is shown in Fig. 4.14. 

 

Fig 4.14.  The sound power of the VVS measured in the test cell with the engine present but powered off. The ISO 
3741 result for the source is also shown. 

 

4.4.3 Engine Measurements: ISO 3747 

In order to make a useful assessment of the two-point method, the sound power of the 

engine was measured according to ISO 3747:2010 which is referred to as the “comparison 

method.”15 This survey-grade standard measurement procedure employs the reference sound 
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power method. A Brüel and Kjær type 4224 sound power reference source was placed around the 

engine at six distinct locations and the sound pressure levels were measured by twelve free-field 

microphones scattered randomly about the room. From these measurements, the in situ room 

constant was obtained in a manner similar to the procedure for the two-point method. This setup 

is pictured in Fig. 4.15. 

 

Fig 4.15.  Several of the ISO 3747 microphones (with windscreens) pictured around the engine. These pressure 
measurements are used to calculate the sound power of the engine by comparing to the pressure of a source with 
known sound power. 

 

The engine was then powered on and several sound power measurements were made at 

various engine speeds and loads using the pressure from the microphones. The sponsor, who 

conducted these tests, has used this measurement standard in tandem with ISO 3741 and ISO 

3745 tests and is familiar with best practices that yield ISO 3747 results that are comparable to 
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the precision standards. Some of these practices include taking multiple pressure averages with 

the reference sound power source in various places around the room, ensuring that microphones 

are in line-of-sight with the engine and the reference source, and removing any outliers in 

reference source pressure measurements due to proximity of the reference source to the 

microphone(s). With these measures in place, the ISO 3747 results are given with confidence 

that the survey-grade standard is properly estimating the power. 

In order to protect sensitive information relating to the products of the sponsor, once results 

had been processed and discussed internally, the sound power data were recomputed with 

various arbitrary references. These are similar to the typical sound power level reference of 1 

picowatt, but vary depending on the engine condition to obfuscate sensitive information. Because 

each comparison is made to the same arbitrary reference power, meaningful direct comparisons 

between the two-point method and ISO 3747 levels are maintained. Different engine conditions 

are given different reference values, however. All engine data contained in this thesis is subject 

to this modification. 

4.4.4 Engine Measurements: Two-Point Method 

The engine was measured at various points along three main axes, shown by the red lines 

and green circles in Fig. 4.16. One axis was chosen to be diagonal off the corner into the most 

open portion of the room but remained at the same height as the engine. This is referred to as 

“Diagonal 1” and is shown in the bottom left corner of the room in Fig. 4.16. Another axis, 

“Diagonal 2,” extends from the opposite corner of the engine and extends out-of-plane up into 

the corner of the room near the ceiling, shown in the top right of the diagram. A final axis was 

chosen to be perpendicular to the edge of the engine between the engine and the wall, referred to 
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as “Perpendicular 1.” The two diagonal axes contain four measurements each, two located near 

the engine, and two located beyond the roughly estimated critical distance of 1.5 meters. The 

perpendicular case only had space for two measurement positions between the engine and the 

wall. Table 4.1 shows each of the distances from the geometric center of the engine to the sensor 

location. 

 

 

Fig 4.16.  Diagram showing the approximate locations of the sensor measurement positions. The left axis is 
“Diagonal 1,” the one in the top right is “Diagonal 2” and the one going toward the bottom right is “Perpendicular 
1.” 
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Table 4.1.  The measurement distances from the geometric center of the engine to the sensor locations. 
 

Diagonal 1 
(m) 

Diagonal 2 
(m) 

Perpendicular 1 
(m) 

1.01 0.937 0.978 
1.59 1.47 2.336 
2.73 2.89  
3.4 3.52  

 

 

The engine sound power results measured by the two-point method (using the mean room 

constant) for one specific engine configuration, referred to as “Engine Condition A” are shown 

in Fig. 4.17. Along each measurement axis, significant underestimation ranging from 

approximately 5 to 8 dB is observed. 
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Fig 4.17.  The sound power of the engine operating under condition A as measured by the two-point method along 
three different axes. 

 

The torque and RPM were then altered and named “Engine Condition B.” The results in this 

configuration show similar underestimation ranging from 3 to 7 dB, as shown in Fig. 4.18. 
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Fig 4.18.  The sound power of the engine operating under condition B as measured by the two-point method along 
three different axes. 
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Since the room constant, GED measurements, and 𝑟𝑟 values had been thoroughly 

investigated, the only remaining variable of interest in the Hopkins-Stryker equation was the 

directivity factor 𝛾𝛾. The directivity factor of the DUT is not typically of interest since the power 

is what is often of importance. However, in the script calculation, the system of equations is 

broken into intermediary calculations that include solving for the directivity factor of the DUT, 

that are then fed into the final calculation that returns the sound power. When the directivity 

factor for these engine measurements was observed, the results were unexpected. Figure 4.19 

shows a sampling of three directivity factors that are indicative of the behavior of each 

measurement that showed significant underestimation. 

 

Fig 4.19.  The derived directivity factor of the engine as calculated by the two-point method. 
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The directivity factor, as detailed in Chapter 2, is expected to be 1 for an omnidirectional 

source. For a simple source radiating in a trihedral corner, a directivity factor of 8 would be 

expected. Highly directional horns can achieve directivity factors of 40 and above in practice.16 

To see adjacent one-third-octave bands jump from 20 to 300 is simply nonphysical. While an 

engine likely has a very complex directivity, it is expected that low frequencies will be near 1, 

with a gradual, albeit uneven, increase as frequency increases. This result prompted the separate 

investigation into the directivity factor itself described in Chapter 3 by building an array and 

measuring the directivity factor to then use in two-point method calculations to gain additional 

insight into the direct (and reverberant) terms in the Hopkins-Stryker equation. 

4.5 Anechoic Chamber Measurements: The Direct Term 

One of the most apparent assumptions in the direct term of the Hopkins-Stryker equation is 

that of spherical spreading. The 1/4𝜋𝜋𝑟𝑟2 term describes the spherical propagation of the acoustic 

intensity between the source and the measurement position. The propagation of a continuous line 

array, however, would be expressed as 1/2𝜋𝜋𝑟𝑟. The discrete line array built for this experiment 

should have some behavior between the two. The GED was measured in front of the line array 

along a 4 meter traverse. It was then repeated at a 45-degree angle. The results on a log scale are 

shown in Fig. 4.20. Superimposed on the plots are the slopes for 1/𝑟𝑟2 behavior and for the 1/𝑟𝑟 

cases. It can be seen that on axis near the array, it behaves more similarly to a cylindrical wave 

with 1/𝑟𝑟 spreading, then converges to a decay slope that is between the two cases. The 45-

degree case follows the 1/𝑟𝑟 slope for about a meter, then falls off quickly and converges to the 
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1/𝑟𝑟2 slope. This confirms that the line array has a radiation that is more complex than can be 

described by simple spherical spreading. 

 

Fig 4.20.  The GED as a function of distance for the line array measured in the anechoic chamber. 
 

To compare to a more conventional source, the measurement was repeated for the single 

array element in a box. The results for this measurement are shown in Fig. 4.21. As expected, the 

compact source radiates according to the 1/𝑟𝑟2 decay slope. The 45-degree case sees reduced 

GED compared to the on-axis case due to the directional nature of a front-facing loudspeaker, 

but both see a similar slope. 



4.5 Anechoic Chamber Measurements: The Direct Term 59 

 
 

 

 

Fig 4.21.  The GED as a function of distance for the compact source measured in the anechoic chamber. 
 

Understanding the limitations of the spherical spreading model is only half the picture of the 

direct term in the Hopkins-Stryker equation. The remainder of the term contains the directivity 

factor. This was measured in the anechoic chamber for both the array and the compact source. 

The directivity index, which is a representation of the directivity factor but normalized to the 

result of maximum response (typically the principal axis) is shown in Figure 4.22 for a few 

frequencies with both the horizontal (the array oriented horizontally) and vertical axes.  
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Fig 4.22.  The directivity index at various frequencies of the line array in the horizontal and vertical directions. 
 

The horizontal directivity factor of the array  is shown on a cartesian plot in Fig. 4.23. 

 

Fig 4.23.  The directivity factor at various angles of the line array in the horizontal direction. 
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Since the primary axis falls between two loudspeaker drivers on the array, the strange 

behavior seen on axis is likely due to angular error during measurement, mutual coupling and 

cross-path cancellation. At other angles, it behaves expectedly, where it radiates very little (nulls) 

except for large peaks (lobes) that vary spatially and in frequency. 

The directivity factor for a single compact source is shown in Fig. 4.24 and shows much 

more expected behavior with low frequencies near 1 and gradually rising to higher values at 

higher frequencies primarily on and around the principal axis. 

 

Fig 4.24.  The directivity index at various frequencies of the compact source in the horizontal and vertical directions 
(symmetry assumed). 
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Since the directivity factors are known, they can be used in the two-point formulation to 

replace one of the degrees of freedom in the sound power calculation with measured data. 

In the anechoic chamber, the two-point method was used to measure the sound power of the 

array on its principal axis. Since the room constant is essentially infinite in a free field, only the 

direct term was used in the calculation. The two measurement positions in this case were roughly 

0.3 m and 1.3 m and the measured directivity factor was used in the calculation. This result is 

shown in Fig. 4.25.  

 

Fig 4.25.  The sound power of the array measured by the two-point method (direct term only) in the anechoic 
chamber. One measurement position was in the near field, and the other was approaching the far field. 

 

This result is especially interesting because even with the measured (far field) directivity 

factor, the two-point method once again underestimates the sound power of this extended source. 
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However, when measurement points are selected in what is considered to be the far field, the 

result is very different, as shown in Fig. 4.26.  

 

Fig 4.26.  The sound power of the array measured by the two-point method (direct term only) in the anechoic 
chamber. One measurement position is in the far field. 

 

In this case, above 500 Hz, the sound power matches the ISO sound power result almost exactly. 

This suggests that the underestimation may be more influenced by the direct term formulation in 

its entirety, rather than just the directivity factor. Considering the findings shown in Fig 4.20, if 

the field is sampled where radiation is more consistent with cylindrical spreading, and then 

sampled in the far field where it is more closely resembling spherical spreading, it is unsurprising 

that this introduces errors. 
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4.6 Reverberation Chamber Measurements: The Reverberant Term 

Although the room constant is relatively well understood and the reverberant term is rather 

simple with only two terms, in the reverberation chamber it is possible to experimentally recreate 

the simulated plot in Fig. 2.1 and determine the critical distance to compare it with the one 

calculated in the measurements according to Eq. (2.9). Figure 4.27 shows this result graphically. 

The direct energy (circle lines) falls off and eventually levels out as it reaches the steady-state 

reverberant energy of the room (black dash line). For the on-axis case, the critical distance is 

approximately 1.8 meters (blue vertical dash line). For the 45 degree case, it shortened somewhat 

out to 1.45 m (red vertical dash line). 

 

Fig 4.27.  The GED as a function of distance for the line array in the reverberation chamber. 
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The critical distance calculated for this case according to Eq. (2.9) was 2.3 m. This 

discrepancy suggests that there is an issue with how the Hopkins-Stryker equation describes the 

energy density when applied to large, extended sources. Even when the directivity factor, room 

constant, and measurement distances are well known, measured and calculated values still do not 

agree for this source. The critical distance, by definition, also depends on the direct and 

reverberant energies being equal and this work has determined that the behavior of the direct 

field for extended sources is very different from that of compact sources, so this discrepancy is 

somewhat expected.  

4.7 Results Discussion  

As has been covered in this chapter, the two-point method is unable to accurately estimate 

the sound power of large, extended sources when measurement positions are included that are in 

the near field of the source. Even with the measured directivity factor, the method fails when 

measured close to the source. This is likely due to the radially dependent directivity factor. It was 

measured in the far field, but when applied to measurements in the near field, the true directivity 

factor could be very different from that which is being used. Furthermore, the direct term, even 

when adjusted to more closely resemble other source behaviors, does not allow for 

straightforward near-field measurements with acceptable results. 

 While the recommendation of Marquez to place one measurement position within the 

critical distance and one beyond the critical distance works well for compact sources, any 

inclusion of near-field measurement points distorts the measurement significantly for large, 

extended sources. In a laboratory environment, the underestimation was reproduced for many 
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near-field measurement positions, only to have it converge to a result much closer to the ISO 

standard results once several meters away from the source. These findings led to the 

development of a more simplified deployment of the two-point method. This is discussed in 

detail in Chapter 5.



 

 

Chapter 5  

The Simplified GED Method 

The results of the two-point method showed that it is difficult to consistently obtain 

meaningful sound power data of large, extended sources. The difficulties surrounding the direct 

term and the violations to the assumptions in the Hopkins-Stryker equation in the measurement 

of engines in mechanical test cells are unable to be resolved to allow the two-point method to be 

a feasible solution for measuring the sound power in these test cells. However, in an attempt to 

still provide an efficient and robust measurement procedure to the sponsor, certain 

simplifications were explored to see if it was possible to obtain meaningful sound power data 

from GED measurements, even if only to survey-grade accuracy. 

5.1 Simplifications to the Two-Point Method  

As discussed in Chapter 4, the underestimation of sound power by the two-point method 

when applied to large industrial engines is caused in part by erratic behavior in the room 

constant, the incorrectly derived directivity factor of the engine, and the overall effect of the 
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direct term in the sound power formulation. In particular, the erratic spectral shape of both the in 

situ room constant and directivity factor heavily influenced the final result. In order to mitigate 

the effect of these, simplifications were introduced to the method. 

The first simplification was to eliminate the need for the two-point method to measure the in 

situ room constant in favor of a more straightforward procedure. Instead of using GED 

measurements of the RDS and backing out the room constant using the Hopkins-Stryker 

equation, one can simply determine the approximate average absorption of the room using the 

procedure outlined in ISO 3746 A.3.2.1.17 This method requires the mean absorption coefficient 

to be referenced from a table of descriptions, with an absorption coefficient of 0.05 for empty 

concrete or tile rooms, up to 0.5 for rooms with large amounts of sound-absorbing materials on 

ceiling and walls. The room constant is then determined using the surface area of the room and 

Eq. 2.11. Most of the research sponsor’s mechanical test cells have an average absorption 

coefficient that ranges from 0.3 to 0.4. It should be noted that previously the room constant was 

calculated as a function of frequency, but by this simplified calculation, the room constant does 

not vary with frequency, eliminating the artifacts that caused the spectral shape to diverge from 

expected values. 

Instead of using the two-point method procedure of using a system of equations with two 

instances of the Hopkins-Stryker equation based on two measurements along a line and solving 

for the unknown engine power and directivity factor, this simplified method uses one or more 

GED measurements that are averaged together, and a single instance of the Hopkins-Stryker 

equation is used to calculate the sound power. This, however, leaves one equation and two 

unknowns, the sound power of the engine, and the directivity factor of the engine. 
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The true directivity factor of the engine is significantly more complex than the theoretical 

models available and experimentally measuring the directivity factor of large engines is not 

logistically feasible. Although modifications to the direct term were investigated using 

expressions for the theoretical directivity factor of a baffled circular piston, a simply-supported 

vibrating plate, and a line source of finite length, none of these yielded results that were 

anywhere near expected values. Instead, the simplifying assumption of 𝛾𝛾 = 1 is applied, which is 

characteristic of an omnidirectional source. It is understood that the engine does not radiate 

omnidirectionally, but this significantly reduced the error introduced by the non-physical results 

in the directivity factor from the two-point method. Thus, the expression for sound power for the 

simplified GED method becomes: 

 〈Π𝐷𝐷𝐷𝐷𝑇𝑇〉𝑡𝑡 =
2〈𝑤𝑤𝐺𝐺,𝛽𝛽〉𝑡𝑡,𝑠𝑠𝑐𝑐

� 1
4𝜋𝜋𝑟𝑟2 + 4

𝑅𝑅�
. (5.1) 

Since the errors introduced by the direct term are likely due to the difficulty in achieving 

direct far field conditions, only measurement points away from the source in the predominantly 

reverberant field should be used. This will allow the reverberant term to dominate, which 

increases the probability of an accurate result. 

5.2 The Simplified GED Method: Procedure 

The procedure for the simplified GED method is as follows: 
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1. Define Predetermined Variables 

Document the length, width, and height of the test cell and multiply to obtain the room’s 

volume. Also calculate the total surface area of the room. Do not subtract the volume or 

surface area of objects in the room from the total.  

Assign an average absorption coefficient to the room. This can be a relatively simple 

estimate, such as the method defined in ISO 3746 A.3.2.1. Most test cells with tile floor 

and perforated walls and ceilings fall in the 0.3 to 0.4 range. Once the mean sound 

absorption has been found, the room constant can be calculated using Eq. (2.11). 

2. Measure GED with Engine Operating at Desired Conditions 

Set up the energy density probe in the room at a distance of at least a quarter wavelength 

(of the lowest frequency of interest) from any walls or large pieces of equipment, but 

maintain at least two effective engine diameters distance from the nominal center of the 

engine under test. The effective engine diameter can be found by averaging the 

approximate length, width, and height of the engine. This measurement method is 

sensitive to sensor placement if located too close to the engine. The probe should also be 

roughly in the same height plane as the engine, so position the probe so that the distance 

to the ground is approximately that of the height of the engine center. Measurement 

positions near the corners of the room typically allow for these constraints to be met. 

Document the nominal distance from the engine center to the sensor. To minimize 

potential error due to sensor placement sensitivity, it is encouraged but not imperative to 
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select an additional measurement position, meeting the aforementioned criteria, 

elsewhere in the test cell and repeat measurements. 

Once the engine has reached its steady state, take a 30 second average of the one-third-

octave band auto spectrum for each of the six channels, as well as the cross spectrum of 

each of the 3 pairs of phase-matched microphones. Repeat for all desired engine 

operating conditions. 

3. Post Process Data 

a. Import the auto and cross spectra from each measurement. 

b. Calculate potential and kinetic energy densities according to Eq. (3.1) and Eq. 

(3.2), respectively. Average multiple measurements (if any) together. 

c. Weight PED by a factor 0.25 and KED by a factor of 0.75 to obtain GED. 

d. Calculate and/or define the various constants such as sound speed, wavenumber, 

measurement distance, room constant, etc. 

e. Calculate the sound power according to Eq. (5.1). 

f. Apply A-weighting to the one-third-octave band sound power data. 

g. Plot one-third-octave band sound power data. 

5.3 The Simplified GED Method: Results 

The simplified GED method was used to estimate the sound power based on the GED data 

previously used in the two-point method experiments, including the wooden enclosure 

simulating an extended source in the small reverberation chamber and the industrial engine in the 

mechanical test cell. 
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5.3.1 Laboratory Experiment Results 

The simplified GED method results for the wooden enclosure with the enclosed subwoofer 

are shown in Fig. 5.1. The two-point method result from Ch. 4 is also shown for comparison. The 

simplified GED method, while slightly underestimating the overall sound power, shows a 

significant improvement to the two-point method estimate, with an overall value within 1.3 dB of 

the ISO 3741 result.  

 

Fig 5.1.  The sound power of the enclosure with a large subwoofer measured by the two-point method and simplified 
GED method with absorptive wedges present compared to the ISO 3741 result. 

 

The simplified GED method was also applied to the laboratory experiment which 

included the shaker-driven panels and internal subwoofer acting as an extended source.  When 

comparing the two-point method to the simplified GED method in this instance, as shown in Fig. 
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5.2, the simplified GED method again shows an improvement over the two-point method in its 

estimate of the sound power, with an overall estimate within 0.7 dB of the ISO 3741 result. 

 

Fig 5.2.  The sound power of the enclosure with thin panels, an enclosed subwoofer, and shakers rigidly attached 
to the enclosure walls measured by the simplified GED method and two-point method with absorptive wedges 
present compared to the ISO 3741 result. 

 

 While these laboratory results using the simplified GED method are not perfect 

estimations of the sound power relative to the ISO 3741 standard, they provide an improved 

result compared to the two-point method. 

5.3.2 Engine Experiment Results 

The sound power results calculated by the simplified GED method are shown below in Fig. 

5.3. The two GED measurements with the greatest separation distance from the engine to the 
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probe were used. Various engine operating conditions are shown which have differing RPM and 

torque loads. Such as in Chapter 4, the sound power level is calculated to arbitrary references to 

protect sensitive information. 

 

Fig 5.3.  The sound power of the engine measured by the simplified GED method (red) and by ISO 3747 (black 
triangles) at a distance of 2.73 m from the engine center for three different operating conditions. 
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The results shown in Fig. 5.3 are from a single GED measurement position at 2.73 meters 

from the approximate engine center. Another GED measurement position at 3.4 meters was used 

in this study and the results are shown in Fig. 5.4 below. 

 

Fig 5.4.  The sound power of the engine measured by the simplified GED method (red) and by ISO 3747 (black 
triangles) at a distance of 3.4 m from the engine center for three different operating conditions. 
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To test this method with a slightly larger data set, the engine measurements taken by Jensen 

in 2015 were included in this study, as shown in Fig. 5.5 and Fig. 5.6. Jensen’s data include 

measurements of a different engine, but the test cell and experimental setup are roughly identical. 

 

Fig 5.5.  The sound power of the Jensen 2015 engine measured by the simplified GED method (red) and by ISO 
3747 (black triangles) at a distance of 2.4 m from the engine center for three different operating conditions. 
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Fig 5.6.  The sound power of the Jensen 2015 engine measured by the simplified GED method (red) and by ISO 
3747 (black triangles) at a distance of 2.07 m from the engine center for three different operating conditions. 

 

When measurements are taken at least two engine diameters away, results seem to converge 

nicely to the ISO 3747 results, often resulting in overall sound power levels within 1 dB of the 
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target ISO 3747 results. This was found to be the case for both data sets, those of Jensen and 

those conducted as a part of this work. These results suggest that the simplified GED method can 

be used to estimate the sound power of large industrial sources within mechanical test cells to 

survey-grade accuracy. 

5.4 The Simplified GED Method: Limitations 

Since it has been shown that the Hopkins-Stryker equation does not sufficiently describe the 

relationship between energy density and sound power when in the near field of an extended 

source, this method underestimates the sound power if the GED field is sampled too close to the 

engine. Examples of this are shown below in Fig. 5.7. 
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Fig 5.7.  The sound power of the engine measured by the simplified GED method (red) and by ISO 3747 (black 
triangles) at a distance of approximately 0.35 m from the engine center for three different operating conditions. 

 

When measurements are taken near the engine, results tend to underestimate the sound 

power by 6 to 11 dB. This exceeds, by a large margin, the expectations of a survey-grade 

measurement that requires +/- 3 dB accuracy. However, when the distance requirements are 
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appropriately met, the reverberant term dominates the effect of the direct term, and the overall 

sound power results converge to the expected result. 

The difficulties encountered in the near field are however easily avoided by satisfying the 

aforementioned criteria of sensor placement no less than two effective engine diameters from the 

source. The challenges related to the two-point method when applied to large, extended sources 

have been appropriately remedied with the implementation of the simplified GED method. 

 

 

 



 

 

Chapter 6  

Conclusions and Recommendations 

6.1 Conclusions 

The two-point method has proven to be an efficient and pragmatic method for measuring the 

room constant and sound power of a compact source in semi-reverberant environments. When 

compared to current ISO standard measurements for sound power, the two-point method sound 

power estimates fall within 1 to 3 dB from the ISO results, depending on the measurement 

environment. However, the method underestimates the sound power when applied to large, 

extended sources whose radiation is not well described by the simple-source assumption. 

This work has explored modifications to the two-point method to provide an efficient and 

accurate measurement method to assess the sound power of extended sources in semi-reverberant 

mechanical test cells. The findings of Marquez and Jensen were studied thoroughly and built 

upon in this work. Ultimately, the method was simplified considerably and improvements to the 

optimal sensor placement were incorporated to propose a new simplified GED method that is 
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more efficient than the two-point method. It has been shown experimentally to accurately 

estimate the sound power of large industrial engines to survey-grade accuracy. 

Several insights were gained from this work and are summarized here: 

1. The two-point method appropriately estimates the sound power of distributed 

compact sources in semi-reverberant environments. Experiments in a small 

reverberation chamber showed that the composite sound power of various sources 

was matched to ISO sound power measurements, so long as each of the sources was 

compact in nature. Only when sources became large and extended did the results 

begin to diverge. 

2. As Jensen explored in detail in his work, the measurement of the room constant is 

critical and can have a profound influence on results. Spatial averaging improves this 

result, but often at the expense of experimental simplicity. It was discovered that a 

simple estimate of the room constant using nominal tabulated values of absorption 

coefficients was sufficient to obtain a meaningful room constant. 

3. The direct term in the Hopkins-Stryker equation relies on the assumption of 

measurement in the direct far field and does not appropriately describe the direct 

energy density in the near field of sources. When sources are large, complex, and 

extended, this artifact becomes apparent since only the near field is accessible when 

in rooms that are only marginally larger than the source. 

4. The directivity factor that the Hopkins-Stryker equation yields during the two-point 

method calculation for large industrial engines is often not physically reasonable. 

This nonphysical result was then used in the final calculation of sound power, 
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contributing to the considerable underestimation seen in the data taken by Jensen and 

as a part of this work. After exploring several modifications to the direct term based 

on theoretical directivity factors with no significant improvement, the simplifying 

assumption of 𝛾𝛾 = 1 was applied. The sound power results improved significantly, 

to the point of matching ISO sound power measurements for sensor positions located 

in the predominantly reverberant field. 

5. The simplified GED method was tested experimentally and has been used to process 

data acquired previously by Jensen data to estimate the sound power of industrial 

engines to within 1.5 dB of ISO sound power measurements. When measurements 

are made at least two effective engine diameters from the center of the source, the 

GED, in combination with the simplifying assumptions discussed previously, allows 

for survey-grade accuracy sound power measurements of engines in mechanical test 

cells. 

6.2 Recommendations for Future Work 

Future work should include the acquisition of additional data on large industrial sources 

in various acoustical environments to further test the robustness of this method. The sponsor is 

currently making arrangements to replicate the experiments on other engines. Since the 

simplified GED method was developed long after measurements had taken place, it is poorly 

understood at what distances from the engine the sensor may be placed. There were essentially 

two “close” measurements and two “far” measurements, and the method works well for the 
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sensor positions far from the engine. Future work may look to better determine the optimal 

sensor placement.  

Theoretical developments surrounding the direct term in near-field conditions could also 

be investigated to see if there are modifications that can be readily implemented to modify the 

Hopkins-Stryker equation to appropriately handle the violated assumptions that result in the 

underestimation of sound power, allowing the unabridged two-point method to achieve 

engineering-grade accuracy on large, extended sources. While Jensen incorporated the near-field 

correction term (based on a monopole) which improved near-field performance in close 

proximity to very compact sources, this did not scale well to larger sources. A possible 

correction term that is derived for large, extended sources could allow for the two-point method 

or simplified GED method to be used with greater versatility. 
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Appendix A 

Relevant Code 

Two Point Method Code: 
%% Four Point Method (2 Sources 2 measurement positions) 
clear; 
close all; 
 
 
%load in the 3745 Sound Power File for reference directivity source 
load('RDS_Directivity.mat') 
 
Spcr = .025; 
bmat = [0.25]; %[1 0 .5 .25] 
fl = 100; fh = 6000; 
 
 
%% Point to Files 
FileName = 
{'PT1_REF_CPB.Autospectrum.txt','PT1_REF_CPB.CrossSpectrum.txt','PT2_R
EF_CPB.Autospectrum.txt','PT2_REF_CPB.CrossSpectrum.txt'}; 
PathName = ''; 
FilterIndex = 1; 
 
DataFlag = 0; 
if FilterIndex == 0 
return 
elseif FilterIndex == 2 
    DataFlag = 1; 
elseif FilterIndex == 1 
    DataFlag = 2; 
end 
 
 ISO3745FileNameref = 'ISO3745_SmallSpeaker_Lw 08-Jul-2015.mat'; 
 ISO3745PathNameref = ''; 
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 ISO3745FilterIndexref = 1; 
 
%% Weather 
if ~exist('WFile') 
     
    WFile = dir([PathName,'Weather.*x*']); 
 
        WD = xlsread([PathName, WFile.name],'B1:B3'); 
        Tc = WD(1); % Celcius 
        Pressure = WD(2); % mbar 
        Hum = WD(3); % Hum (%) 
 
     
    % rho0/c 
    T0 = 293.15; %K 
    RR = 287.058; % J/(kg*K) 
    T = 273.15+Tc; 
     
    rho = Pressure*100/(RR*T); 
    c = 343.2*sqrt(T/T0); % cPierce = 331 + 0.6*Tc; 
     
    %% T60 
    T60File = dir([PathName,'T60.*x*']); 
     
    if isempty(T60File) 
        display('Need a T60 file in here (Name it T60.xlsx)') 
        V = 1; 
        S = 1; 
        absorp = 0; 
        R = 0; 
        fsh = 0; 
    else 
        T60Data = xlsread([PathName, T60File.name]); 
         
        T60f = T60Data(1,:).'; 
        T60  = T60Data(2,:).'; 
         
        Lx = T60Data(4,2); 
        Ly = T60Data(5,2); 
        Lz = T60Data(6,2); 
         
        V = Lx*Ly*Lz; 
        V_disp = 2.04 * 1.22 * 0.82; 
        S = 2*Lx*Ly+2*Ly*Lz+2*Lz*Lx; 
         
        V = V - V_disp; 
         
        absorp = 1-exp(-(55.26*V)./(T60*c*S)); 
        R = S*absorp./(1-absorp); 
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        fsh = 2000*sqrt(mean(T60)./V);       
   
   
    end 
     
    %% Positions 
    PosFile = dir([PathName,'Positions.*x*']); 
     
    if isempty(PosFile) 
        d = 0; 
    else 
         
        Positions = xlsread([PathName,PosFile.name]); 
         
        rtot = (length(Positions)-2)/2; 
        d = Positions(1,2); 
         
    end 
     
 
     
end 
 
%% Load Reference Source Data 
 
LFile = length(FileName); 
 
switch DataFlag 
    case 2 
        cnt1 = 0; 
        cnt2 = 0; 
        for ii = 1:2:3 
            RefPosInd(floor(ii/3)+1) = str2double(FileName{ii}(3)); 
            pl = 0; 
            cnt1 = cnt1 + 1; 
            for yy = 1:6 
                fID = fopen([PathName,FileName{ii}]); 
                Data = textscan(fID,'%f %f %f 
%f','HeaderLines',yy*83+(yy-1)*pl); 
                fc(1,:) = Data{:,2}; 
                G(cnt1,:,yy) = Data{:,3}; 
                pl = length(Data{:,3})+10; 
                fclose(fID); 
            end 
             
            cnt2 = cnt2 + 1; 
            pl = 0; 
            for yy = 1:3 
                fID = fopen([PathName,FileName{ii+1}]); 
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                Data = textscan(fID,'%f %f %f 
%f','HeaderLines',yy*83+(yy-1)*pl); 
                C(cnt2,:,yy) = Data{:,3}; % Real part of cross 
spectrum 
                pl = length(Data{:,3})+10; 
                fclose(fID); 
                 
            end 
        end 
        kG = 2*pi*ones(size(G,1),1)*fc/c; 
        kC = 2*pi*ones(size(C,1),1)*fc/c; 
        PED = squeeze(G(:,:,1))/2/rho/c^2; 
         
        Ep = 1./(24*rho*c^2)*sum(G,3)+1./(12*rho*c^2).*(sum(C,3)); 
        Ek = 1./(2*rho*c^2*kG.^2*Spcr^2).*sum(G,3) - 
1./(rho*c^2*kC.^2*Spcr^2).*sum(C,3); 
end 
 
% PED = Ep; 
KED = Ek; 
 
%% Load in BG measurements 
 
BGFileName = {'BG_CPB.Autospectrum.txt','BG_CPB.CrossSpectrum.txt'}; 
BGPathName = ''; 
BGFilterIndex = 1; 
 
 
BGDataFlag = 0; 
if BGFilterIndex == 0 
    
elseif BGFilterIndex == 2 
    BGDataFlag = 1; 
elseif BGFilterIndex == 1 
    BGDataFlag = 2; 
end 
 
%% Load BG Measurement Data 
BGLFile = length(BGFileName); 
clear Data G C  
switch BGDataFlag 
    case 2 
        cnt1 = 0; 
        cnt2 = 0; 
        for ii = 1 
            pl = 0; 
            cnt1 = cnt1 + 1; 
            for yy = 1:6 
                fID = fopen([BGPathName,BGFileName{ii}]); 
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                Data = textscan(fID,'%f %f %f 
%f','HeaderLines',yy*83+(yy-1)*pl); 
                fc(1,:) = Data{:,2}; 
                G(cnt1,:,yy) = Data{:,3}; 
                pl = length(Data{:,3})+10; 
                fclose(fID); 
            end 
             
            cnt2 = cnt2 + 1; 
            pl = 0; 
            for yy = 1:3 
                fID = fopen([BGPathName,BGFileName{ii+1}]); 
                Data = textscan(fID,'%f %f %f 
%f','HeaderLines',yy*83+(yy-1)*pl); 
                C(cnt2,:,yy) = Data{:,3}; % Real part of cross 
spectrum 
                pl = length(Data{:,3})+10; 
                fclose(fID); 
                 
            end 
        end 
        kG = 2*pi*ones(size(G,1),1)*fc/c; 
        kC = 2*pi*ones(size(C,1),1)*fc/c; 
        PED = squeeze(G(:,:,1))/2/rho/c^2; 
        BGEp = 1./(24*rho*c^2)*sum(G,3)+1./(12*rho*c^2).*(sum(C,3)); 
        BGEk = 1./(2*rho*c^2*kG.^2*Spcr^2).*sum(G,3) - 
1./(rho*c^2*kC.^2*Spcr^2).*sum(C,3); 
end 
 
%% Solve for the room constant 
cnt2 = 0; 
for beta = bmat; 
    cnt2 = cnt2 + 1; 
    TED = 1/2*Ep + 1/2*KED; 
    %     if beta == 1 
    %         GED = PED; 
    %     else 
    GED = beta*Ep + (1-beta)*KED; 
    BGGED = beta*BGEp + (1-beta)*BGEk;     
    %     end 
    ps = Pressure/10; %mbar to kPa 
    ps0 = 101.325; % kPa 
    theta = Tc; % celcius  
    theta0 = 314; % Kelvin 
    theta1 = 296; % Kelvin 
     
    r_ref = [Positions(2+RefPosInd(1),1); 
Positions(2+RefPosInd(2),1)]; 
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     th_ref = Positions(2+RefPosInd(1),2); 
     ph_ref = Positions(2+RefPosInd(1),3); 
     
 
    alpha = absorption(theta,ps,Hum,fc); 
    A0 = r_ref*alpha; 
    delta = 10.^((A0.*(1.0053-0.0012.*A0).^1.6)/10); 
    %delta = ones(size(delta)); %Override near-field correction 
     
        [~,thIND] = min(abs(An.th-th_ref)); 
        [~,phIND] = min(abs(ph_ref-An.ph)); 
        Q = squeeze(An.Q(thIND,phIND,:)).'; 
 
     
    %     [Rinsitu(cnt2,:),W_ref(cnt2,:)] = 
RcalcExp(2*GED(1,:),2*GED(2,:),r_ref(1),r_ref(2),Q,c,delta(1,:),delta(
2,:)); 
    [Rinsitu(cnt2,:),W_ref(cnt2,:)] = 
RcalcExp_Corrected_BETA(2*GED(1,:),... 
        
2*GED(2,:),r_ref(1),r_ref(2),beta,Q,c,fc,delta(1,:),delta(2,:)); 
    [BGRis(cnt2,:),BGW_ref(cnt2,:)] = 
RcalcExp_Corrected_BETA(2*(GED(1,:)-BGGED),... 
        2*(GED(2,:)-
BGGED),r_ref(1),r_ref(2),beta,Q,c,fc,delta(1,:),delta(2,:)); 
 
end 
 
%% 
figure  %Me tinkering 
semilogx(fc,10*log10(BGRis),'-',T60f,10*log10(R')) 
hold on 
title('Room Constant') 
xlabel('Frequency (Hz)') 
ylabel('L_R') 
legend('In-situ R (Two Point)','Est. R (From T60)','Est. R Adjusted') 
hold off 
xlim([10^2 10^4]) 
ylim([0 40]) 
 
%% Load in DUT measurements 
 
FileName = 
{'PT3_DUT_CPB.Autospectrum.txt','PT3_DUT_CPB.CrossSpectrum.txt','PT4_D
UT_CPB.Autospectrum.txt','PT4_DUT_CPB.CrossSpectrum.txt'}; 
PathName = ''; 
FilterIndex = 1; 
 
DataFlag = 0; 
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if FilterIndex == 0 
elseif FilterIndex == 2 
    DataFlag = 1; 
elseif FilterIndex == 1 
    DataFlag = 2; 
end 
 
if ~exist('ISO3745FileName') 
    ISO3745FilterIndex = 0; 
    if ~ISO3745FilterIndex 
        ISO3745Flag = 0; 
    else 
        ISO3745Flag = 1; 
        load([ISO3745PathName,ISO3745FileName]); 
    end 
end 
 
if ~exist('ISO3741FileName') 
 
    ISO3741FileName = 'ISO3741_Lw_Both.mat'; 
    ISO3741PathName = ''; 
    ISO3741FilterIndex = 1; 
     
    if ~ISO3741FilterIndex 
        ISO3741Flag = 0; 
    else 
        ISO3741Flag = 1; 
        load([ISO3741PathName,ISO3741FileName]); 
    end 
     
end 
 
%% Load DUT Measurement Data 
LFile = length(FileName); 
 
switch DataFlag 
    
    case 2 
        cnt1 = 0; 
        cnt2 = 0; 
        for ii = 1:2:3 
            DutPosInd(floor(ii/3)+1) = str2double(FileName{ii}(3)); 
            pl = 0; 
            cnt1 = cnt1 + 1; 
            for yy = 1:6 
                fID = fopen([PathName,FileName{ii}]); 
                Data = textscan(fID,'%f %f %f 
%f','HeaderLines',yy*83+(yy-1)*pl); 
                fc(1,:) = Data{:,2}; 
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                G(cnt1,:,yy) = Data{:,3}; 
                pl = length(Data{:,3})+10; 
                fclose(fID); 
            end 
             
            cnt2 = cnt2 + 1; 
            pl = 0; 
            for yy = 1:3 
                fID = fopen([PathName,FileName{ii+1}]); 
                Data = textscan(fID,'%f %f %f 
%f','HeaderLines',yy*83+(yy-1)*pl); 
                C(cnt2,:,yy) = Data{:,3}; % Real part of cross 
spectrum 
                pl = length(Data{:,3})+10; 
                fclose(fID); 
                 
            end 
        end 
        kG = 2*pi*ones(size(G,1),1)*fc/c; 
        kC = 2*pi*ones(size(C,1),1)*fc/c; 
        PED = squeeze(G(:,:,1))/2/rho/c^2; 
        Ep_dut = 1./(24*rho*c^2)*sum(G,3)+1./(12*rho*c^2).*(sum(C,3)); 
        Ek_dut = 1./(2*rho*c^2*kG.^2*Spcr^2).*sum(G,3) - 
1./(rho*c^2*kC.^2*Spcr^2).*sum(C,3); 
end 
 
% PED = Ep_dut; 
KED = Ek_dut; 
 
%% Solve for the sound power and directivity of the DUT 
cnt2 = 0; 
for beta = bmat; 
    cnt2 = cnt2 + 1; 
    TED = Ep_dut + KED; 
    %     if beta == 1 
    %         GED = PED 
    %     else 
    GED = beta*Ep_dut + (1-beta)*KED; 
    %     end 
     
    ps = Pressure/10; %mbar to kPa 
    ps0 = 101.325; % kPa 
    theta = Tc; % celcius 
    theta0 = 314; % Kelvin 
    theta1 = 296; % Kelvin 
     
    r_dut = [Positions(rtot+2+DutPosInd(1),1); 
Positions(rtot+2+DutPosInd(2),1)]; 
     



Appendix A: Relevant Code 95 

 
 

 

    alpha = absorption(theta,ps,Hum,fc); 
    A0 = r_dut*alpha; 
    delta = 10.^((A0.*(1.0053-0.0012.*A0).^1.6)/10); 
    delta = ones(size(delta)); 
    cnt = 0; 
  
    [Qdut(cnt2,:),Wdut(cnt2,:)] = 
WcalcExp_Corrected_BETA(2*GED(1,:),2*GED(2,:),r_dut(1),r_dut(2),beta,R
insitu(cnt2,:),c,fc,delta(1,:),delta(2,:)); 
     
    [BGQdut(cnt2,:),BGWdut(cnt2,:)] = 
WcalcExp_Corrected_BETA(2*(GED(1,:)-BGGED),2*(GED(2,:)-BGGED),... 
        
r_dut(1),r_dut(2),beta,BGRis(cnt2,:),c,fc,delta(1,:),delta(2,:)); 
     
    [QdutMeasuredR(cnt2,:),WdutMeasuredR(cnt2,:)] = 
WcalcExp_Corrected_BETA(2*GED(1,fc>=min(T60f)&fc<=max(T60f)),... 
        
2*GED(2,fc>=min(T60f)&fc<=max(T60f)),r_dut(1),r_dut(2),beta,R.',c,fc(f
c>=min(T60f)&fc<=max(T60f)),... 
        
delta(1,fc>=min(T60f)&fc<=max(T60f)),delta(2,fc>=min(T60f)&fc<=max(T60
f))); 
     
    [BGQdutMeasuredR(cnt2,:),BGWdutMeasuredR(cnt2,:)] = 
WcalcExp_Corrected_BETA(2*(GED(1,fc>=min(T60f)&fc<=max(T60f))-
BGGED(fc>=min(T60f)&fc<=max(T60f))),... 
        2*(GED(2,fc>=min(T60f)&fc<=max(T60f))-
BGGED(fc>=min(T60f)&fc<=max(T60f))),r_dut(1),r_dut(2),beta,R.',c,fc(fc
>=min(T60f)&fc<=max(T60f)),... 
        
delta(1,fc>=min(T60f)&fc<=max(T60f)),delta(2,fc>=min(T60f)&fc<=max(T60
f))); 
 
end 
 
Lw = 10*log10(abs(Wdut)/1e-12); 
TotLw = 10*log10(sum(10.^(Lw(:,fc>=fl&fc<=fh)*0.1),2)); 
 
LwMeas = 10*log10(WdutMeasuredR/1e-12); 
TotLwMeas = 10*log10(sum(10.^(LwMeas(:,T60f>=fl&T60f<=fh)*0.1),2)); 
 
BGLw = 10*log10(abs(BGWdut)/1e-12); 
BGTotLw = 10*log10(sum(10.^(BGLw(:,fc>=fl&fc<=fh)*0.1),2)); 
 
BGLwMeas = 10*log10(BGWdutMeasuredR/1e-12); 
BGTotLwMeas = 
10*log10(sum(10.^(BGLwMeas(:,T60f>=fl&T60f<=fh)*0.1),2)); 
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% A-weighting 
% From Annex F.3 ISO 3741 (2010) 
fA = [50 63 80 100 125 160 200 250 315 400 500 630 800 1000 1250 1600 
... 
    2000 2500 3150 4000 5000 6300 8000 10000]; 
Ck = [-30.2 -26.2 -22.5 -19.1 -16.1 -13.4 -10.9 -8.6 -6.6 -4.8 -3.2 -
1.9 ... 
    -0.8 0.0 0.6 1.0 1.2 1.3 1.2 1.0 0.5 -0.1 -1.1 -2.5]; 
 
LwA = Lw(:,fc <= max(fA) & fc >= min(fA)) + ones(length(bmat),1)*Ck; 
LwAMeas = LwMeas(:,T60f <= max(fA) & T60f >= min(fA)) + 
ones(length(bmat),1)*Ck(fA <= max(T60f) & min(T60f) <= fA); 
 
TotLwA = 10*log10(sum(10.^(LwA(:,fA>=fl&fA<=fh)*0.1),2)); 
TotLwAMeas = 10*log10(sum(10.^(LwAMeas(:,T60f>=fl&T60f<=fh)*0.1),2)); 
 
BGLwA = BGLw(:,fc <= max(fA) & fc >= min(fA)) + 
ones(length(bmat),1)*Ck; 
BGLwAMeas = BGLwMeas(:,T60f <= max(fA) & T60f >= min(fA)) + 
ones(length(bmat),1)*Ck(fA <= max(T60f) & min(T60f) <= fA); 
 
BGTotLwA = 10*log10(sum(10.^(BGLwA(:,fA>=fl&fA<=fh)*0.1),2)); 
BGTotLwAMeas = 
10*log10(sum(10.^(BGLwAMeas(:,T60f>=fl&T60f<=fh)*0.1),2)); 
 
 
%% 
%%% A-weighted Plots %%% 
figure 
semilogx(fA,LwA,'linewidth',2) 
hold on 
legendStr = ''; 
for kk = 1:length(bmat) 
    legendStr = [legendStr;{['\beta = ' num2str(bmat(kk)) ' | L_w = ' 
num2str(round(TotLwA(kk)*10)/10) ' dBA']}]; 
end 
 
load('ISO3741_Lw_Both.mat') %update this one for comparison in the 
plot 
 
semilogx(Re.T60f,Re.LwA,'k-^') 
 
legend(['\beta = 0.25 | L_w = ' 
num2str(round(10*log10(sum(10.^(LwA(fA>=fsh & fA<=fh)*0.1)))*10)/10) ' 
dBA'],... 
['ISO 3741 SRC (in situ) | L_w = ' 
num2str(round(10*log10(sum(10.^(Re.LwA(Re.T60f>=fsh & 
Re.T60f<=fh)*0.1)))*10)/10) ' dBA'],'AutoUpdate','off') 
line([fsh fsh],[0 200],'color','k','linestyle','--') 
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line([fl fl],[0 200],'color','k','linestyle',':') 
line([fh fh],[0 200],'color','k','linestyle',':') 
xlim([100 10000]) 
ylim([40 100]) 
xlabel('Frequency (Hz)') 
ylabel('L_w (dBA re 1e-12)') 
 
title('Small Reverb Chamber, Shaker-driven Panels') 
 
hold off 
 
%% 
 
rcrit = sqrt((mean(Qdut)*mean(Rinsitu))/(16*pi)); 
 

Two-Point Method Functions 

function [Q,W] = 
WcalcExp_Corrected_BETA(w1,w2,r1,r2,BETA,R,c,f,delta1,delta2) 
 
k = 2*pi*f./c; 
 
A1 = delta1.*(BETA + (1-BETA).*(1+1./((k.*r1).^2))); 
A2 = delta2.*(BETA + (1-BETA).*(1+1./((k.*r2).^2))); 
 
Q = abs(-(16*pi*r1.^2.*r2.^2.*(w1-w2))./(R.*(A2.*r1.^2.*w1-
A1.*r2.^2.*w2))); 
 
W = w1./((Q./(4*pi*r1.^2*c).*A1 + 4./c./R)); 
 
% -((16 \[Pi] r1^2 r2^2 (wG1 - wG2))/(R (A2 r1^2 wG1 - A1 r2^2 wG2))) 
 
function [R,W] = 
RcalcExp_Corrected_BETA(w1,w2,r1,r2,BETA,Q,c,f,delta1,delta2) 
 
k = 2*pi*f./c;  
 
A1 = delta1.*(BETA + (1-BETA).*(1+1./((k.*r1).^2))); 
A2 = delta2.*(BETA + (1-BETA).*(1+1./((k.*r2).^2))); 
 
R = abs(-(16*pi*r1.^2.*r2.^2.*(w1-w2))./(Q.*(A2.*r1.^2.*w1-
A1.*r2.^2.*w2))); 
 
W = w1./((Q./(4*pi*r1.^2*c).*A1 + 4./c./R)); 
 
% -((16 \[Pi] r1^2 r2^2 (wG1 - wG2))/(Q (A2 r1^2 wG1 - A1 r2^2 wG2))) 
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Simplified GED Method Code 

%% Simplified Method for Sound Power Measurements using GED 
%This code is to be used to calculate the A-weighted sound power using 
GED 
%measurements. 
%User input required: 
%Room Dimensions and average absorption coefficient 
%ISO Standard Sound Power Measurements for comparison 
%GED Measurement as a 31 element, one-third-octave band array. (20 Hz 
to 20 
%kHz) 
%Distance from source and ED sensor. 
clear; 
close all; 
 
c = 343; % sound speed, can define in terms of ambient conditions 
fl = 100; fh = 10000; %Define frequencies of interest 
fc = 
[20,25,31.5,40,50,63,80,100,125,160,200,250,315,400,500,630,800,1000,.
.. 
    
1250,1600,2000,2500,3150,4000,5000,6300,8000,10000,12500,16000,20000]; 
 
%ISO Data 
load('ISO3747.mat') 
Re.T60f = ISOLwA.ISO_f; %Load in 3747 Data for comparison 
ISO3747 = ISOLwA.LwA_Full; 
 
%Room Dimensions 
Lx = 5.48; 
Ly = 7.01; 
Lz = 4.575; 
 
V = Lx*Ly*Lz; % Volume 
S = 2*Lx*Ly+2*Ly*Lz+2*Lz*Lx; %Surface Area 
alpha = 0.35; %Based on table lookup and room characteristics 
T60 = 0.161*V/(-S*log(1-alpha)); %Calculate T60 
fsh = 2000*sqrt(mean(T60)./V); %Calculate Schroeder Frequency 
 
%GED Data 
r_dut = 2.63; %distance from engine center to field point 
load('GED.mat') %Load in GED measurement 
 
fA = [50 63 80 100 125 160 200 250 315 400 500 630 800 1000 1250 1600 
... 
    2000 2500 3150 4000 5000 6300 8000 10000]; 
 
Qadm.alpha = alpha; 
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Qadm.R = (-S*log(1-Qadm.alpha))/(1-Qadm.alpha); 
Qadm.Q = 1; 
Qadm.r = r_dut; %approximate offset between edge of engine and center 
Qadm.ISO3747 = ISO3747; 
Qadm.ISO3747tot = ISOLwA.TotLwA.Full; 
Qadm.fA = fA; 
Qadm.fISO = ISOLwA.ISO_f; 
 
 
for n=1:length(GED) 
Qadm.Wdut(n) = (2.*GED(1,n)*c)./((Qadm.Q/(4*pi*Qadm.r^2))+(4/Qadm.R)); 
Qadm.Lw(n) = 10*log10(abs(Qadm.Wdut(n))/1e-12); 
end 
 
%A-Weighting the result 
Ck = [-30.2 -26.2 -22.5 -19.1 -16.1 -13.4 -10.9 -8.6 -6.6 -4.8 -3.2 -
1.9 ... 
    -0.8 0.0 0.6 1.0 1.2 1.3 1.2 1.0 0.5 -0.1 -1.1 -2.5]; 
 
Qadm.LwA = Qadm.Lw(:,fc <= max(fA) & fc >= min(fA)) + ones(1,1)*Ck; 
 
%% Figure 
figure 
semilogx(fA,Qadm.LwA,'r','linewidth', 2) 
hold on 
semilogx(ISOLwA.ISO_f,ISO3747,'k-^') 
hold off 
 
legend(['L_w = ' num2str(round(10*log10(sum(10.^(Qadm.LwA... 
    (fA>=fsh & fA<=fh)*0.1)))*10)/10) ' dBA'],... 
    ['ISO 3747 | L_w = ' num2str(round(Qadm.ISO3747tot,1)) ' dBA']... 
    ,'location','SE') 
 
xlim([100 10000]) 
ylim([70 120]) 
xlabel('Frequency (Hz)') 
ylabel('L_w (dBA re 1e-12)') 
 
title(['Simplified GED Method r = ' num2str(Qadm.r) ' m']) 
 


