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ABSTRACT

Materials Prediction Using High-Throughput and Machine Learning Techniques

Chandramouli Nyshadham
Department of Physics and Astronomy, BYU

Doctor of Philosophy

Predicting new materials through virtually screening a large number of hypothetical materials 
using supercomputers has enabled materials discovery at an accelerated pace. However, the 
innumerable number of possible hypothetical materials necessitates the development of faster 
computational methods for speedier screening of materials reducing the time of discovery. In 
this thesis, I aim to understand and apply two computational methods for materials prediction. 
The first method deals with a  computational high-throughput study of s uperalloys. Superalloys 
are materials which exhibit high-temperature strength. A combinatorial high-throughput search 
across 2224 ternary alloy systems revealed 102 potential superalloys of which 37 are brand new, 
all of which we patented. The second computational method deals with a machine-learning 
(ML) approach and aims at understanding the consistency among five different state-of-the-art 
machine-learning models in predicting the formation enthalpy of 10 different binary alloys. The 
study revealed that although the five different ML models approach the problem uniquely, their 
predictions are consistent with each other and that they are all capable of predicting multiple 
materials simultaneously.

My contribution to both the projects included conceiving the idea, performing calculations, 
interpreting the results, and writing significant portions of the two journal articles published 
related to each project. A follow-up work of both computational approaches, their impact, and 
future outlook of materials prediction are also presented.

Keywords: materials prediction, superalloys, high-throughput, machine learning, computational 
materials science, density functional theory, formation enthalpy
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CHAPTER 1

A computational approach for materials prediction

1.1 INTRODUCTION

The philosophical inquiry pursued during the
five years of this Ph.D. work has been
about understanding and using computational
methods for materials prediction. From a
computational materials scientist perspective,
the quest for new and better materials with
enhanced properties is a perennial goal for
humanity, which requires searching through the
endless number of possible materials [1] and
is one of the main challenges at present. The
combinatorial nature of materials space makes
it infeasible to explore properties of more than a
small fraction of materials within a reasonable
time [2].

The goal is to reduce the time taken to
invent new materials. We need better method-
ologies to invent the next generation material
for future technology at a faster pace. The
main obstacle to inventing a new material is the
amount of work needed to be done to compute
every property of all possible materials. The
aim of materials science during the last three
decades has been to speed up the work by
inventing new, faster methods in both the
experimental and theoretical domains. In this
silicon age, the surge of computational power
used across a wide variety of domains is used
to solve materials prediction problem. This
dissertation work is a computational effort to
speed up the work of materials invention by
using two computational methods for materials
prediction. The first computational method

is called the high-throughput approach [3, 4],
and the second is a machine-learning approach
[5–7].

1.2 HIGH-THROUGHPUT APPROACH FOR
MATERIALS PREDICTION

Computers and modern electronic structure
codes such as density functional theory1 (DFT)
[8, 9] help us to virtually screen a large number
of materials at an accelerated pace (high-
throughput) compared to performing lab exper-
iments on each material. The high-throughput
approach [3, 4] is a computational method that
takes advantage of robust DFT codes and the
increasing speed of computers. In a high-
throughput approach, the combinatorial space
encompassing a large number of materials is
screened intelligently to discover new materials
with desired properties [1, 10].

The first project [11] in this disser-
tation work involves using a computational
high-throughput approach for predicting new
materials called superalloys [12]. Super-
alloys are materials with tremendous high-
temperature strength, and their strength is a
result of precipitates2 of a secondary phase,
called L12 (γ ′), within a face-centered cubic
(fcc) host matrix (γ) (see fig. 1.1). An inves-
tigation of 2224 ternary metallic systems using
a high-throughput screening method for such
precipitates (L12) within the fcc host matrices
of cobalt, nickel, and iron revealed 37 new
possible superalloy materials [11, 13]. Of these

1DFT is a computational modeling method based on quantum mechanics and used to compute the electronic
structure of many-body systems.

2In the context here, a precipitate is a solid within a solid solution (alloy). Superalloys are materials that contain
precipitates of a crystal structure phase called L12 (a face-centered cubic (fcc) structure with different atoms on faces
and edges) within a solid solution of an fcc crystal structure.

1



1.3 Machine learning for materials prediction 2

a b

Figure 1.1 (on the left) Field emission scanning
electron micrographs of Co-Al-W-Mo superalloy
(taken from [21]). We can notice the precipitates
of a crystal structure phase called L12 denoted as
γ ′ within a solid solution of an fcc crystal structure
host matrix (cobalt) marked as γ . a) and b) show
the crytal structures of fcc and L12 (a face-centered
cubic (fcc) structure with different atoms on faces
and edges) respectively.

37, based on cost, availability, and toxicity,
the six most promising candidates materials
are reported, two of which have already been
experimentally verified [14].

The limitation of the high-throughput
method is that it is only as fast as the speed
of available DFT codes and current supercom-
puters. The run time of a typical robust DFT
code has polynomial time complexity [15]. At
this pace, it is infeasible to predict properties
of all possible materials in a reasonable time.
Material scientists during the last few decades
resorted to finding faster and accurate compu-
tational methods in comparison to DFT. The
machine-learning (ML) approach is found to be
a viable solution to this problem [16].

1.3 MACHINE LEARNING FOR MATERIALS
PREDICTION

Machine-learning, a sub-field of artificial intel-
ligence, uses data to build efficient models
[17]. ML models relying on DFT data

are sufficiently accurate and faster than high-
throughput methods and enable a further
speedup. ML models scale linearly O(N)
with system size and can be as accurate as
DFT. During the last decade, there have been
many material repositories generated using
DFT [4, 18–20]. Computational material scien-
tists use existing data for data mining and
material informatics. DFT data using machine
learning methods help to build faster computa-
tional models for screening a large number of
hypothetical, unexplored materials.

The use of machine learning methods
combined with high-throughput techniques,
i.e., accelerated-high-throughput (AHT), is
the new paradigm for materials invention in
computational materials science. In the accel-
erated high-throughput approach, ML models
built from DFT or first-principles data are used
to compute the properties of a large number
of materials at a faster pace (O(N)). The
materials can then be screened in a high-
throughput fashion for desired properties, and
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Figure 1.2 ML models
built from first-
principles data is used
to compute properties
of a large number of
materials at a faster
pace. The materials
can then filtered in a
high-throughput fashion
for desired properties,
thus saving time and
increasing the speed of
discovery.

the selected materials can be verified using
accurate DFT calculations, thus increasing the
speed of discovery (see fig. 1.2).

In the last few years, several machine
learning models have been proposed in the
literature [5–7, 22–27]. These machine-learned
surrogate models to first-principles calculations
consist of two parts. The first part is creating
a unique representation of crystal structure [6,
24]. The second part is the learning algorithm
used i.e, regression, which is traditionally one
of the algorithms available in computer science
literature.

Every machine-learned model proposed in
the literature approaches the problem with a
different representation. It is important to
know if all ML models are consistent with
each other in predicting the properties of
materials. The second project [28] in this
dissertation work aims to answers this question
explicitly wherein five different state-of-the-art
machine-learned surrogate models to DFT are
used for predicting the formation enthalpy3 of
10 different materials. All five ML models
agree qualitatively of the prediction errors

and, the models are shown to be capable
of predicting formation enthalpies of multiple
materials simultaneously.

1.4 IMPACT AND FOLLOW-UP WORK

1.4.1 High-throughput approach

Of the six promising candidate superalloys
proposed in the high-throughput work, two
of the alloys namely, Co-Ta-V and Co-Nb-V,
were experimentally made by David Dunand’s
group at Northwestern University [14]. The
L12 (derivative of face-centered cubic (fcc)
unit cell) phase precipitate was experimentally
observed in both alloys but was metastable,
decomposing into other phases after two hours.
Further study is necessary to understand how to
stabilize the precipitates. A possible solution is
to understand the effect of adding a fourth or
fifth element to the ternary alloy.

One of the main problems in super-
alloys research is that conventional superalloys
comprise of more than five elements. It
is computationally expensive to probe alloys

3The Formation enthalpy is the difference between the total energy of a compound and the sum of total energies
of the corresponding stable, pure concentration elements constituting the compound.
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beyond ternary combinations due to the sheer
number of combinatoric possibilities. Never-
theless, such an effect of ternary and quaternary
additions needs to be studied. In this regard,
DFT calculations studying the effect of 10
different elements additions to Al-Co-W alloy
at ∼6 at.%, ∼8 at.%, and ∼12 at.% is studied
and discussed in the follow-up work in Chapter
2.

1.4.2 Machine learning approach

Analyzing the prediction errors of five state-
of-the-art machine learning models revealed
that all ML models agree qualitatively on
the prediction errors of 10 different materials.
An interesting result from this second project
is that materials which are hard to learn
(prediction errors are high) are hard for all ML
models and materials which are easy to learn
are easy for all models. It is important to
analyze why some materials are hard to learn
than others.

In this regard, as follow-up work, a study on
45 more binary alloy systems was performed.
The results showed that harder systems tend to
have a wider range of formation enthalpies than
easy-to-learn systems. A possible solution is

to either add more number of parameters to the
model or add more training data which can help
reduce the error for these hard systems. Adding
more parameters when data is not big can lead
to overfitting. This begs the question, how does
one pick the least amount of additional training
data which can help to improve errors and build
efficient models? In this regard, three methods
for intelligent selection of training data are
explored in an active learning framework. This
work is discussed in chapter 3.

1.5 SUMMARY

The following chapters in this dissertation
focus on the understanding and usage of two
computational methods, namely, the high-
throughput approach and machine-learning
approach for materials prediction. The contents
of chapter 2 on HT approach, and chapter
3 on the ML approach are centered around
peer-reviewed articles, typeset in the style of
the journal in which they were published.
Chapters, 2 and 3 also include follow-up work
on these two published projects, answering
further questions Chapter 4 proposes future
work.



CHAPTER 2

A high-throughput search for ternary superalloys

2.1 SUPERALLOYS

The strength of materials is one of the critical
properties determining the ability of a material
to withstand load without permanent defor-
mation or catastrophic failure. We carried
out a computational high-throughput study to
identify new candidate materials with high-
temperature strength called superalloys. Super-
alloys are used in a wide variety of applica-
tions such as jet engines, solar power plants,
chemical industries, and others. An alloy that
is effective at temperatures of 500◦ Celsius and
above can be classified as a high-temperature
alloy [12]. Conventional superalloys consist of
a mixture of at least one base metal (nickel,
cobalt, or iron) and few other metals. Super-
alloys which can withstand even higher temper-
atures than currently known materials would
enable us to increase the efficiency of machines
by raising the operating temperature. For
example, if we operate jet engines even one
degree hotter than current temperature limits,
the engine efficiency increases and can lead to
saving billions of dollars on fuel.

2.2 STRUCTURE-PROPERTY
RELATIONSHIP

Applications of superalloys require the
materials to be tough and exhibit great strengths
at high temperatures [12]. A balance of strength
with ductility gives toughness to a material
[29]. From a computational material scientist’s
perspective, the properties of a material are
related to the crystal structure of the material.

Closely packed crystal structure makes it easy
for planes of atoms to slide by each other
and allow more plastic deformation than non-
closely packed structures, thereby making them
more ductile materials. For this reason, a face-
centered crystal (fcc) structure exhibits more
ductility than a body-centered structure (bcc).
Another factor that contributes to ductility
is the symmetry of structures. Cubic lattice
structures, because of their symmetry provides
closely packed planes in several directions
compared to a hexagonal close-packed (hcp)
structure, which is less symmetric (see fig. 2.1).

Most conventional high-temperature super-
alloys are nickel-based alloys. They usually
contain an L12 (derivative of face-centered
cubic (fcc) unit cell) phase precipitates within
an fcc host matrix (cobalt, nickel, or iron)
(see fig. 1.1). These precipitates inhibit the
dislocation motion in the material resulting
in higher-strength. Dislocation is a beautiful
phenomenon in materials science. When small
in number they cause the material to be weak,
but when their number increases, they increase
the strength of the materials as dislocations
inhibit the propagation of other dislocations
(see fig. 2.2b). The relation between the
structure and strength of a material is one of
the crucial factors enabling the computational
high-throughput study of superalloys in this
dissertation work. The quest for new super-
alloys from a computational perspective carried
out in this work is a search for stable L12
precipitates (ternary, quaternary, or more) that
can form within the base elements—cobalt,
nickel or iron (see fig. 2.2d).

5
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a) b) c)

Figure 2.1 Depiction of major slip system in a) bcc, b) fcc, and c) hcp crystal structures.
Only one major slip plane is shown for each of the crystal structure. {110} (red) for bcc,
{111} (green) for fcc and (0001) (blue) for hcp. Dislocation motion can easily occur
along the slip planes.

2.3 PROJECT BACKGROUND

In 2006, Sato et al., [21], reported a new
cobalt-based superalloy (Co-Al-W) which has
better high-temperature strength than that of
conventional nickel-based superalloys. It was
reported that the Co-Al-W superalloy exhibits
coherent L12 Co3(Al,W) (γ ′) precipitates in an
face-centered cubic Co (γ) matrix. However,
experimental observations suggested that the
precipitate in Co3(Al, W) system is metastable
at 1173 K [31]. A theoretical investigation
of the experimentally observed precipitate was
carried out by Saal and Wolverton [32]. Saal
and Wolverton modeled the precipitate (γ ′)
at high-temperatures using a crystal structure
called a special quasi-random structure
(SQS)1 [34]. Using the SQS approach,
including the finite temperature contributions
and point defect energetics, Saal and Wolverton
found that the experimentally observed precip-
itate composition is consistent with a 32-atom,
L12 like random SQS structure (see fig. 2 in
journal article) with stoichiometry Co3[Al0.5,

W0.5], and that the structure is metastable (66
meV/atom above convex hull).

2.4 PROJECT

Using this 32-atom, L12-like random structure
(γ ′) reported by Saal and Wolverton, we
performed an extensive combinatorial (high-
throughput) search over 2224 ternary systems
using the AFLOW [18, 35–37] framework for
such stable precipitates(γ ′). Our descriptors
for screening potential precipitate in super-
alloys included formation enthalpy, decompo-
sition energy, coherency with the host matrix,
and lattice mismatch with the host matrix.
Screening the 2224 systems with respect to
the descriptors in comparison to the descriptor
values of Co3[Al0.5, W0.5], we found 102
systems better than Al-Co-W system. Of
these 102 systems, 37 are brand new and have
no published phase diagrams. Further, based
on cost and toxicity, we prioritized six most
promising candidates. All the 102 materials
are patented [13]. We also computed the bulk

1For a finite number of atoms (N), a SQS (special periodic quasirandom crystal structure) structure mimics the
correlation functions of an infinite substitutional random alloy far more closely than does the standard approach of
occupying each of the lattice sites randomly [33].
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a

c

b

d

Figure 2.2 (All the figures are inspired by similar figures in reference [30]) a) Single
dislocation in a crystal: The irregularity in the crystal marked in the figure shows a
dislocation. The dislocation in the figure is an edge dislocation where an extra half-
plane of atoms is introduced midway through the crystal. b) Multiple dislocations
in a crystal: Movement of one dislocation is inhibited by the other. More disloca-
tions in a materials increases its strength. c) Solid-solution strengthening: We can
see a different species of atom (red) replacing the host atom (blue) within the crystal
structure. The solute (red) atom helps inhibits the dislocation motion strengthening the
material. d)Precipitate strengthening: The red and blue atom is the precipitate within
the host matrix of blue atoms. The distortion in the lattice created by the precipitate
helps strengthen the material. Superalloys materials contain L12 precipitates within a
fcc structure.

modulus and density for these materials. All
the details of the work are given in the paper
attached in the following pages.

2.4.1 My contribution

In regards to this project, I conceived the
idea, developed a code for computing ternary
convex hull along with Jake Hansen (an under-
graduate student that I mentored). I wrote
scripts for collecting the data, generating all

figures (except figure 1, and A10), generating
the convex hull, and computing the density,
and bulk modulus of all materials. I also
analyzed the results, did an extensive literature
search (ASM phase diagrams), wrote a signif-
icant portion of the paper, and followed up
with the responses to reviewers. Corey Oses
helped refine the text, figures, supplementary
material, and response to reviewers. Ichiro
Takeuchi provided his expertise in interpreting
the results. Stefano Curtarolo performed the
AFLOW calculations, provided his expertise
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in interpreting results, and helped with the
paper. Gus Hart guided the whole project,

contributed many ideas, helped write the paper,
and response to reviewers.
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a b s t r a c t

In 2006, a novel cobalt-based superalloy was discovered [1] with mechanical properties better than some
conventional nickel-based superalloys. As with conventional superalloys, its high performance arises
from the precipitate-hardening effect of a coherent L12 phase, which is in two-phase equilibrium with
the fcc matrix. Inspired by this unexpected discovery of an L12 ternary phase, we performed a first-
principles search through 2224 ternary metallic systems for analogous precipitate-hardening phases of
the form X3[A0.5,B0.5], where X ¼ Ni, Co, or Fe, and [A,B] ¼ Li, Be, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni,
Cu, Zn Ga, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, or Tl. We found
102 systems that have a smaller decomposition energy and a lower formation enthalpy than the Co3(Al,
W) superalloy. They have a stable two-phase equilibrium with the host matrix within the concentration
range 0 < x < 1 (X3[Ax,B1�x]) and have a relative lattice mismatch with the host matrix of less than or
equal to 5%. These new candidates, narrowed from 2224 systems, suggest possible experimental
exploration for identifying new superalloys. Of these 102 systems, 37 are new; they have no reported
phase diagrams in standard databases. Based on cost, experimental difficulty, and toxicity, we limit these
37 to a shorter list of six promising candidates of immediate interest. Our calculations are consistent with
current experimental literature where data exists.

© 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Materials scientists have developed large experimental data-
bases of known materials over the last century [2e5]. Similar
computational databases are being compiled by exploiting the
power of supercomputers and advanced electronic structure
methods [6e11]. The challenge now is to leverage the data to
discover new materials by building computational models [12] and
employing machine learning methods [13e16]. Data mining and
materials informatics approaches can also be used to identify
structure/property relationships, which may suggest atomic com-
binations, stoichiometries, and structures not included in the
database [12].

An emerging area in materials science is the computational
prediction of new materials using high-throughput approaches

[6,12e14,17e20]. Hundreds of thousands of hypothetical candi-
dates can be explored much faster than by experimental means. In
this work, a simple combinatorial search for ternary superalloys is
performed in a high-throughput fashion. The extraordinary me-
chanical properties of superalloys at high temperatures make them
useful for many important applications in the aerospace and power
generation industries. One of the basic traits of superalloys is that
they generally occur in a face-centered-cubic structure [21]. The
most common base elements for superalloys are nickel, cobalt, and
iron, but most are nickel-based. In 2006, a new cobalt-based su-
peralloy, Co3(Al, W), was confirmed to have better mechanical
properties than many nickel-based superalloys [1].

This cobalt-based superalloy has the commonly occurring L12
phase which creates coherent precipitates in the fcc matrix. A
theoretical investigation of Co3(Al, W) was subsequently carried
out by Saal and Wolverton [22]. To model the properties of the L12
solid solution phase observed at high temperature, Saal and Wol-
verton used an L12-based special quasirandom structure (SQS) [23].* Corresponding author.

E-mail address: gus.hart@gmail.com (G.L.W. Hart).
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In order to identify the stoichiometry of the superalloy, they per-
formed first-principles calculations for solid solutions Co3[Alx,
W1�x] with varying concentrations of Al and W. Their study in-
cludes finite temperature effects and point defect energetics. They
showed that an L12-like random structure with stoichiometry
Co3[Al0.5, W0.5] is consistent with experiment. Interestingly, their
solid-solution-like Co3[Al0.5, W0.5] structure is metastable and
predicted to have a decomposition energy of 66 meV/atom (dis-
tance from the T ¼ 0 K convex hull). They show that high-
temperature effects make this phase thermodynamically compet-
itivewith other competing structures at elevated temperatures. The
fact that a metastable structure (Co3[Al0.5, W0.5]) with a decom-
position energy as high as 66 meV/atom at T ¼ 0 K, is competitive
with many commercially available superalloys at higher tempera-
tures motivates our search for similar ternary systems containing
an L12-like solid solution phase.

Ideally, a computational search over potential superalloys would
model actual engineering observables (e.g., hardness) and consider
the influence of small concentrations of impurities, finite temper-
ature effects, influence of vacancies, effects of polycrystallinity, etc.
Unfortunately, such calculations are extremely challenging even for
a single material and impractical for thousands of candidate sys-
tems as in this work.

In known superalloy systems, L12-based phases have large
negative formation enthalpies, a small decomposition energy, and a
relatively small lattice mismatch between the host matrix and the
precipitate phase. Our search is for new ternary systems with these
same metrics. We further screen candidate alloy systems for L12
precipitates either in two-phase equilibrium with the host matrix
or likely to precipitate as metastable phases. Based on the relative
lattice mismatch between the host element and the precipitate
phases any compound with a relative lattice mismatch of >5% is
excluded.

Using the solid-solution-like structure identified by Saal and
Wolverton [22], we performed an extensive combinatorial search
over 2224 ternary systems using the AFLOW framework [7,8]. We
found 102 systems that aremore stable (closer to the T¼ 0 K convex
hull) and have a lower formation enthalpy than the Co3[Al0.5, W0.5]
superalloy. All 102 systems are in two-phase equilibrium with the
host matrix and have a relative lattice mismatch of less than or
equal to 5%. Of these systems, 37 are newdthey have no reported
phase diagrams [4,5,24]. These new candidates, narrowed from
thousands of possibilities, suggest experimental exploration for
identifying new superalloys. Furthermore, by eliminating systems

that are experimentally difficult to make or contain expensive or
toxic elements, we identify six particularly promising systems.

2. Methodology

2.1. First-principles structure calculations

We performed first principles calculations using the software
package AFLOW [7]. To model an L12-based solid solution, we used a
32-atom special quasirandom structure (SQS-32) [22,23,25] of the
form X3[A0.5,B0.5], where X is one of the base elements, nickel (Ni),
cobalt (Co) or iron (Fe) (refer Fig. 1). These combinations lead to 780
different ternary structures for each base element totaling to 2340
SQS structures in 2224 different ternary systems.

All the calculations follow the AFLOW [26] standard, are hosted in
the AFLOW repository [8], and can be easily accessed by using the

Fig. 1. For each base element in X3[A0.5,B0.5], there are 40 elements chosen for A and B, which includes 38 elements (highlighted in blue) chosen from the periodic table and the
remaining two of three base elements X (highlighted in red). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 2. The 32-atom special quasirandom structure (SQS-32) [25] used to model a solid
solution with an L12 structure (smaller cube in the figure). The blue, red, and green
atoms correspond to X, A, and B in X3[A0.5,B0.5], respectively. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this
article.)
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RESTAPI [27]. Each ab-initio calculation is performed using PAW
potentials [28e30] within the generalized gradient approximation
of Perdew, Burke, and Ernzerhof [31,32], as implemented in VASP
[33,34]. The k-point meshes for sampling the Brillouin zone are
constructed using the Monkhorst-Pack scheme [35]. A total num-
ber of at least 10,000 k-points per reciprocal atom are used, and
spin polarization [26] is considered. The cutoff energy is chosen to
be 1.4 times the default maximum value of the three elements in
the respective ternary system. More details are available in

Ref. [26].
The special quasirandom structure (SQS) [23] approach mimics

the statistics of a random alloy in a small supercell [36]. Fig. 2 de-
picts the 32-atom SQS [25] that was used for all calculations in this
work. It is an L12-based structure where X atoms (blue) are on the
face centers of the conventional fcc cell and A (red), B (green) atoms
on the corners.

2.2. Thermodynamic property calculations

The formation enthalpy (DHf) is calculated for any ternary
structure X3[A0.5,B0.5] as

DHf ¼ EðX3½A0:5;B0:5�Þ �
X
m

Em;

where E(X3[A0.5,B0.5]) is the total energy per atom of the SQS-
32eX3[A0.5,B0.5] structure, and

P
mEm is the sum of total energies of

the corresponding stable, pure concentration structures. A negative
formation enthalpy characterizes a system that prefers an ordered
configuration over decomposition into its pure constituents, while
unstable systems have a positive formation enthalpy.

To approximate the phase diagram of a given alloy system, we
consider the low-temperature limit in which the behavior of the
system is dictated by the ground state [37,38]. In compositional
space, the set of ground state configurations defines the mini-

mum energy surface, also referred to as the lower-half convex
hull. Compounds above the minimum energy surface are not
stable, with the decomposition described by the facet directly
below each. The energy gained from this decomposition is
geometrically represented by the distance of the compound from
the hull and quantifies the compound's tendency to decompose.
We refer to this quantity as the decomposition energy.

While the minimum energy surface changes at finite tempera-
ture (favoring disordered structures), we expect the T ¼ 0 K

Fig. 3. The two-phase equilibrium screening criterion discussed in Sec. 2.3 (similar to
Fig. 2 in Ref. [42]). If a tieline between the host matrix and the L12 precipitate phase
(light blue dotted line) is intersected by the tie line for another phase (e.g., green line
between X3.6A1 and X4B1) then the precipitate phase will not be in two-phase equi-
librium with the host matrix for any concentration between X3A1 and X3B1. On the
other hand, even if the line connecting X3A1 and X3B1 is intersected by another tie line
(e.g., black line between X2.6A1 and X4B1), there may still be a concentration of the
precipitate phase that can be in two-phase equilibrium with the host matrix, as show
by the light-blue dotted line. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 4. Formation enthalpy vs. the decomposition energy for all 2224 ternary systems. Each triangle represents one Ni3/Co3/Fe3[A0.5,B0.5] structure, where A and B are any two
different elements in the periodic table from Fig. 1. Co-based and Fe-based systems are displaced on the x-axis by 200 meV and 400 meV, respectively, for clarity. Ni-based, Co-
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Co3[Al0.5, W0.5] structure with respect to these properties. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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decomposition energy to serve as a reasonable descriptor for
relative stability. The ternary convex hulls and relevant calculations
were performed1 using the phase diagram module within AFLOW[7]
(see Appendix for details).

We observe that ternary L12 phases in known superalloys have
large negative formation enthalpies and appear near each other in
Pettifor-like maps of the formation enthalpy and decomposition
energy. Decomposition energy and formation enthalpy maps
comprising all 2224 systems considered in this study are shown in

Figs. 5 and 6. All those systems for which decomposition energy
and formation enthalpy are less than that of Co3[Al0.5,W0.5] are
included in our list of potential candidates.

2.3. Coherency and two-phase equilibrium with the host

Because the strain energy cost is lower, compoundswith smaller
lattice mismatch between the L12 phase and the host matrix are
more likely to form coherent precipitates. Relative lattice mismatch
(Da/ahost) is defined as the ratio of the difference between the lat-
tice parameter of the host matrix and the precipitate compound,
Da, to the lattice parameter of host matrix, ahost. In this work, a
relative lattice mismatch cutoff of nomore than 5% is used to screen
for potential superalloys.

Because precipitate strengthening is the key mechanism for
superalloy performance, we apply another constraint requiring that
the L12 precipitate phase be in two-phase equilibrium with the fcc

Fig. 5. All the elements are arranged as per the chemical scale (c) introduced by Pettifor [44] in increasing order. Each diamond, square, and circle represents a ternary combination
X3[A0.5,B0.5] with X ¼ Ni, Co, or Fe, and A,B specifying the elements indicated along the x and y-axes, respectively. A square indicates that the SQS-32 crystal structure has a positive
formation enthalpy. A diamond indicates that there exists no stable binary or ternary compounds in the respective ternary system. A colored circle indicates that the SQS-32
structure has a negative formation enthalpy. The color contrast from yellow to black indicates decreasing formation enthalpy of the crystal structure in the ternary system. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

1 We found in our calculations that the formation enthalpy of two compounds,
namely Al2Co and Al2Fe with Be2Zn structure (the prototype numbered 549 in
AFLOW[8]), is anomalously low ( < -1.8 eV/atom). Similar results with this Be2Zn
structure for other compounds were discussed previously by Taylor et al. [39]. They
attribute the erroneous results to PAW-pseudopotentials distributed with VASP. The
phase diagrams for systems with binary combinations (Al,Co) or (Al,Fe) are
generated discarding the Be2Zn structure in this work.
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host matrix.2 As shown in Fig. 3, this constraint is satisfied if a tie-
line can be drawn between the host matrix (100% X) and the L12
phase at any concentration (X3[Ax,B1�x], 0 < x < 1) without inter-
secting any other tieline. We allow for this variation in the con-
centration for the minority site (Ax,B1�x) because stable L12 phases
in experiment can vary over a wide concentration range [40,41]. Of
the 179 systems with deeper formation enthalpy and smaller
decomposition energy than Co-Al-W, 66 systems are eliminated
using the two-phase equilibrium criterion.

2.4. Bulk modulus calculations

The bulk modulus is determined from energy-volume data
calculated for strains of �0.02 Å to þ0.02 Å in steps of 0.01 Å
applied to the unit cell, with at least five calculations for each
system. The energy-volume data is fitted using the Murnaghan
equation of state [43].

3. Results and analysis

3.1. Relative stability of SQS-32 and the distance to convex hull

Fig. 4 depicts the formation enthalpy (DHf) vs. decomposition
energy (Ed) for all 2224 SQS-32 ternary systems with composition

Fig. 6. All the elements are arranged as per the chemical scale (c) introduced by Pettifor [44] in increasing order. Each diamond, square, and circle represents a ternary combination
X3[A0.5,B0.5] with X ¼ Ni, Co, or Fe, and A,B are the elements indicated along the x and y-axes, respectively. A square indicates that the SQS-32 crystal structure has a positive
formation enthalpy. A diamond indicates that there exists no stable binary or ternary compounds in the respective ternary system. The color contrast of the circles from yellow to
black indicates increasing decomposition energy of the crystal structure in the ternary system. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

2 In cases where the formation enthalpy of the SQS structure is above the convex
hull, we project it onto the convex hull and draw the tieline between the projected
point and the host matrix to check the two-phase equilibrium criterion.
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distinguished by color. It is found that 2111/2224 ternary systems
are compound-forming. Each point on the plot represents one Ni3/
Co3/Fe3(A,B) system, where A and B are any two different elements
highlighted in Fig. 1. On average, Ni-based superalloys are ther-
modynamically more stable than Co- or Fe-based superalloys.

The SQS-32 structure in 179 ternary systems is found to be
thermodynamically more stable and have lower formation
enthalpy than the Co3(Al, W) system. These systems are enclosed
within dotted lines in Fig. 4. Out of these systems, 152 are Ni-based,
22 are Co-based, and 5 are Fe-based. Furthermore, 102 systems of
these 179 are observed to be in two-phase equilibrium with the
host matrix and have no more than 5% relative lattice mismatch
with respect to the respective host lattice. Of these 102 systems, 37
have no reported phase diagrams in standard databases [4,5,24]. Of
these systems, 33 are Ni-based, 3 are Co-based systems, and 1 is Fe-
based.

The magnitude of DHf is closely associated with the high tem-
perature limit of an alloy. If a compound has a large negative for-
mation enthalpy, it is more likely to withstand decomposition at
higher temperatures. Fig. 4 shows that many Ni-based alloys are

as low as �400 meV compared to �167 meV of the discovered
Co3(Al, W) superalloy [22].

Although the elemental form of Fe is bcc, fcc stabilizers (e.g.,
carbon, tungsten, or nickel) can be added in small amounts to
stabilize the fcc structure. We have modeled Fe-based systemswith
L12 precipitate-forming potential by calculating fcc Fe, without
explicitly including the effects of the stabilizing additions. Had we
found promising Fe systems, this rough approximation would have
needed refinement, but all of our promising candidates but one
turned out to be Co- or Ni-based.

3.2. Formation enthalpy and decomposition energy maps

Recognizing that ternary L12 phases in known superalloys have
large negative formation enthalpies and small decomposition en-
ergies, it is useful to identify chemical trends (via the Pettifor
chemical scale) for these two quantities. We visualize these trends
with Pettifor-like “formation enthalpy maps” and “decomposition
energy maps” (Figs. 5 and 6). In the formation enthalpy maps, the
formation enthalpy of every system computed in this work is dis-
played together, arranged in a grid ordered by the Pettifor scale [44]
of the two minority components, A,B in X3[A0.5,B0.5]. In a similar

Table 1
Systems where the SQS structure computed in this work has a
corresponding L12 phase reported in experiment. The experimental
compounds are all close to the stoichiometry of the SQS structure,
X24[A4,B4].

SQS Exp.

Al0.5 Cr0.5 Ni3 Al0.8 Cr0.2 Ni3[50]
Al0.5 Cu0.5 Ni3 Al1 Cu0.28 Ni2.72[51]
Al0.5 Ga0.5 Ni3 Al0.5 Ga0.5 Ni3[52]
Al0.5 Hf0.5 Ni3 Al0.99 Hf0.01 Ni3[53]
Al0.5 Nb0.5 Ni3 Al0.65 Nb0.35 Ni3[54]
Al0.5 Ni3 Pt0.5 Al1 Ni2.48 Pt0.52[51]
Al0.5 Ni3 Si0.5 Al0.6 Ni3 Si0.4[51]
Al0.5 Ni3 Sn0.5 Al0.8 Ni3 Sn0.2[50]
Al0.5 Ni3 Ta0.5 Al0.76 Ni3 Ta0.24[41]
Al0.5 Ni3 Ti0.5 Al1 Ni2.8 Ti0.2[40]
Al0.5 Ni3 V0.5 Al0.28 Ni3 V0.2[50]
Co3 Ti0.5 V0.5 Co3 Ti0.87 V0.13[55]
Ga0.5 Hf4 Ni3 Ga0.88 Hf0.12 Ni3[51]
Ga0.5 Nb4 Ni3 Ga0.84 Nb0.16 Ni3[51]
Ga0.5 Ni3 Sb0.5 Ga0.92 Ni3 Sb0.08[51]
Ga0.5 Ni3 Si0.5 Ga0.4 Ni3 Si0.6[51]
Ga0.5 Ni3 Sn0.5 Ga0.84 Ni3 Sn0.16[51]
Ga0.5 Ni3 Ta0.5 Ga0.68 Ni3 Ta0.32[51]
Ga0.5 Ni3 Ti0.5 Ga0.84 Ni3 Ti0.16[51]
Ga0.5 Ni3 V0.5 Ga0.76 Ni3 V0.24[51]

Fig. 7. A comparison between the density range for the theoretical calculations per-
formed in this work and modern superalloys. Densities are computed for 102 ternary
systems screened from the 2224 systems computed in this work. The red line shows
the range of density for commercially-available superalloys at present.

Fig. 8. The magnitude of the bulk modulus for Ni-A-x (A ¼ Al, Hf, Nb, Sb, Sc, Si, Ta, Ti,
V, and Zr) systems with the x-axis arranged according to the c scale in Pettifor maps. In
general, the systems display a maximum in the bulk modulus at or before Ni. Only
systems with simultaneously lower Ed and DHf than Co3[Al0.5,W0.5] are plotted. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Fig. 9. The magnitude of the bulk modulus for Co-A-x (A ¼ Hf, Mo, Nb, Si, Ta, Ti, V, and
W) systems with the x-axis arranged according to the c scale in Pettifor maps. In
general, the magnitude of the bulk modulus increases with c up to Re. Only systems
with simultaneously lower Ed and DHf than Co3[Al0.5, W0.5] are plotted. (For inter-
pretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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Pettifor scale grid fashion, the decomposition energy maps show
the decomposition energy of every system computed in this work
(Fig. 5). The “islands” of similarly colored compounds visible in
these plots reveal distinct chemical trends. Many of the promising
superalloy candidates identified in our study with no previously
reported phase diagrams are found within these islands. In general,
early d-block elements and p-block combinations dominate the list
of favorable systems, which have both low formation enthalpies
and low decomposition energies. For Ni-based alloys, favorable
compoundsmostly comprise of transitionmetals Y, Sc, Zr, Hf, Ti, Nb,
Ta, and metalloids, including Ga, Si, and Sb. In the case of Co-based
alloys, combinations of Zr, Hf, Ti, Nb, Ta, and Al define the majority
of favorable compounds. Combinations of Al, Si, Hf, and Ti with Fe
tend to produce some favorable compounds as well. On the other
hand, combinations with Os, Ru, and Cr tend to yield unstable
compounds for combinations with Ni, Co, and Fe.

3.3. Phase diagrams

Ternaryphasediagrams at T¼0K for all 2111 compound-forming
systems have been plotted in this work using the data in the open-
access materials properties database AFLOW[45]. Convex hulls con-
structed from a DFT database are only as reliable as the database is
complete. To be robust, the database must include all possible
structural prototypes. Our prototypes list includes essentially all

known prototypes from the Pauling File [5,24] (a database of
experimentally observed binary metallic phases) and binary and
ternary intermetallic prototypes3 in the ICSD [46,47]. Our pro-
totypes list also includes binary and ternary hypothetical structures
(enumerated as in Refs. [48,49]). Our convex hulls were constructed
from more than 800 DFT calculations per system. In total, 271,000
calculations were used for the 2111 compound-forming systems,
giving us a high degree of the confidence that the phase stability
predictions and potential superalloy candidates listed in this work
are reasonably likely to be stable experimentally. Further evidence
of the robustness of the calculations is given in Table 1.

The ternary phase diagrams of all 2111 compound-forming sys-
temsare included in theSupplementaryMaterial accompanying this
work and are available online via http://aflow.org/superalloys. They
were created with the phase diagram module within AFLOW. In
almost all cases, the AFLOW convex hulls contain more phases than
reported in the experimental databases. In some cases, this may
indicate an opportunity for further experimental study, but it is
likely that some of these DFT ground states are low temperature
phases and are therefore kinetically inaccessible, which explains
why they are not reported in experimental phase diagrams.

There are 66 systems which meet all our criteria discussed in

Table 2
Candidates for precipitate-forming systems that have no previously reported phase diagrams in standard databases [5,24,46,47]. These have a smaller decomposition energy
and a lower formation enthalpy than the Co3(Al, W) superalloy. All are in stable two-phase equilibriumwith the host matrix and have a relative lattice mismatch with the host
matrix of less than or equal to 5%. Promising candidates (see Section 3.6) are boxed. ‘***’ indicates that the quantity is not computed in this work.

System Formation enthalpy [meV] Decomposition energy [meV/atom] Density [gm/cm3] Bulk modulus [GPa] Relative lattice mismatch [%]

Al4 Ni24 Rh4 �189 49 8.71 197 �2
Au4 Ni24 Ta4 �142 46 12.17 198 �5
Be4 Fe4 Ni24 �129 40 8.20 206 1
Be4 Ga4 Ni24 �203 59 8.33 184 0
Be4 Mn4 Ni24 �132 43 8.12 *** 1
Be4 Nb4 Ni24 �237 37 8.38 198 �1
Be4 Ni24 Sb4 �159 59 8.71 177 �2
Be4 Ni24 Si4 �298 48 7.78 201 1
Be4 Ni24 Ta4 �269 33 10.02 204 �1
Be4 Ni24 Ti4 �308 53 7.79 189 0
Be4 Ni24 V4 �225 21 8.07 203 1
Be4 Ni24 W4 �144 44 10.23 219 �1
Co24Nb4V4 �156 19 9.05 238 �2

Co4 Ni24 Sc4 �166 55 8.04 169 �3
Co24 Re4 Ti4 �142 5 10.69 253 �2
Co24Ta4V4 �189 18 10.62 243 �2

Fe24 Ga4 Si4 �200 28 7.59 *** �4
Ga4 Ir4 Ni24 �129 27 11.00 209 �2
Hf4Ni24Si4 �459 42 9.83 192 �3

In4 Ni24 V4 �165 14 8.91 182 �4
Ir4 Ni24 Si4 �184 55 10.54 223 �1
Mn4Ni24Sb4 �151 8 9.06 184 �4

Nb4 Ni24 Pd4 �129 52 9.39 197 �4
Nb4 Ni24 Pt4 �172 48 10.89 208 �4
Nb4 Ni24 Zn4 �241 0 8.95 190 �3
Ni24 Pd4 Ta4 �160 51 10.92 202 �4
Ni24 Pt4 Si4 �228 39 10.46 211 �2
Ni24 Pt4 Ta4 �202 45 12.36 213 �4
Ni24 Pt4 Ti4 �250 58 10.38 199 �3
Ni24Sb4Si4 �310 21 8.82 187 �3

Ni24Sb4Ti4 �335 11 8.72 177 �5

Ni24 Sc4 Zn4 �241 39 7.97 157 �4
Ni24 Si4 Sn4 �303 26 8.76 185 �3
Ni24 Ta4 Zn4 �274 0 10.49 195 �3
Ni24 V4 Zn4 �213 0 8.66 193 �1
Ni24 W4 Zn4 �147 0 10.70 210 �2
Ni24 Zn4 Zr4 �261 48 8.61 168 �4

3 Although entries with incomplete structural information or phases with
partially occupied wyckoff positions obviously cannot be included.
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Secs. 2.2 and 2.3 and for which there are published phase diagrams.
In 20 of those systems, the predicted L12 phase is validated by an
experimentally reported L12 phase at nearby concentrations. In 37
cases, the phase diagrams are incomplete in the region of interest.
In the remaining eight cases, three have fcc solid solutions near our
composition, three report disordered c-like phases or unknown
structures, one has a disordered D024 structure (closely related to
L12 and a precipitate phase in some superalloys), and one reports
the structure prototype Mg6 Cu16 Si7.

3.4. Density of superalloys

Low density and high-temperature strength are two critical
properties of superalloys for any application. For example,
increased density can result in higher stress onmating components
in aircraft gas turbines [21]. A comparison between the density
range for theoretical calculations performed in this work and
modern superalloys is listed in Fig. 7. Of the theoretical ternary
combinations, there are 5 Ni-based alloys 2 Co-based and 4 Fe-
based alloys with density less than the range of commercially-
available superalloys. This certainly warrants further analysis of
mechanical properties of these alloys, which may yield novel
lightweight, high-strength superalloys.

3.5. Bulk modulus

For the aforementioned systems with simultaneously lower Ed
and DHf than the Co3(Al, W) system, the bulk modulus is computed
in this work. All the Co- and Fe-based alloys have a bulk modulus of
at least 200 GPa. This is consistent with the observation that
commercial Co-based alloys have better mechanical properties
than many Ni-based alloys [1].

Figs. 8 and 9 depict the magnitude of the bulk modulus for Ni-A-
x (A ¼ Al, Hf, Nb, Sb, Sc, Si, Ta, Ti, V, and Zr) and Co-A-x (A ¼ Hf, Mo,
Nb, Si, Ta, Ti, V, andW) systems. x is the third element in the ternary
system and arranged along the x-axis of the plot in increasing order
of the Pettifor chemical scale (c). The bulkmodulus of ternary alloys
of the formNi-A-x reaches amaximum at or before Ni. In case of Co-
A-x systems, the bulk modulus increases with increasing c up to Re.

The magnitude of the bulk modulus suggests that Co-based su-
peralloys are particularly resistant to compression compared to Ni-
based superalloys. 68 ternary systemswith simultaneously lower Ed
andDHf than Co3[Al0.5,W0.5] have bulkmoduli greater than 200GPa.

3.6. Promising candidates

Table 2 lists the 37 systems that are predicted to have stable

precipitate-forming L12 phases and for which there are no reported
phase diagrams in standard databases [4,5,24]. Avoiding elements
(i.e. Au, Be, Cd, Ga, Hg, Ir, In, Li, Os, Pd, Pt, Re, Rh, Ru, Sb, Sc, Tc, and
Tl) that are toxic, expensive, or have low melting temperatures
(which can result in difficulty incorporating them in alloy synthe-
sis), we prioritize this list into a smaller set of six candidate su-
peralloy systems. These are denoted by boxes in Table 2.

4. Conclusion

We used DFT calculations to search for new ternary systems
with L12 precipitate-forming potential. We examined a total of
2224 different ternary systems comprising 41 different elements.
The Pettifor-type formation enthalpy and decomposition energy
maps (Figs. 5 and 6) introduced in this work reveal that combina-
tions of early d-block and p-block elements tend to form stable
superalloy systems with base-elements Ni, Co, and Fe. Ni-based
superalloys tend to be thermodynamically more stable than Co-
or Fe-based superalloys.

A total of 102 ternary systems are found to have lower formation
enthalpy and decomposition energy than the recently discovered
Co3[Al0.5,W0.5] superalloy. All the systems are observed to be in
two-phase equilibrium with the host matrix and have a lattice
mismatch of less than or equal to 5% with the host matrix. Further
analysis should be done for these systems with, e.g., cluster
expansion [56e58] in the interest of experimental verification. Of
these, 37 systems have no experimental phase diagram reported in
literature. A comparison between the density range for our theo-
retical systems and modern superalloys reveal many candidate
low-density superalloys. Co-based superalloys are observed to have
a higher bulk modulus than Ni- and Fe-based alloys. Based on cost,
experimental difficulty, and toxicity, we prioritize a shorter list of
six promising superalloy systems (see Table 2).
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Appendix A. Phase diagram (Convex Hull) analysis

Figure A10. Distance to the T ¼ 0 K convex hull algorithm. a) The correct distance (shown in green) for d1 is the minimum distance of structure S1 to all hyperplanes defining the
convex hull. In case of structure S2, the minimum distance is not d2 (green line), an artifact of the hyperplane description for hull facets. b) Projecting the points to the zero energy
line guarantees that all points will lie within the hull, thus enabling the use of minimization algorithm to calculate the correct distance. The distance to the hull d is given as the
difference of the projected distance d2 from the distance to the zero energy line d1. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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We construct the T ¼ 0 K convex hull using the phase diagram
module within AFLOW[7]. Elements of this implementation were
inspired by the QHULL algorithm [59]. For k-nary systems, it com-
putes the distances to the hull with the following considerations.
Let a facet of the convex hull, i.e., a hyperplane, be described by,

a0 þ
Xk
m¼1

amxm ¼ 0: (A.1)

Here a1,…,ak define the normals of the hyperplane while the
constant a0 uniquely defines the hyperplane in space. This is a
simple extension of the familiar 3-D plane equation
Ax þ By þ Cz ¼ D. Let a k-nary structure have the coordinates
denoted in k-dimensional space as c1,c2,…,ck, where c1,…,ck�1, are
the concentrations of the k�1 elements in a k-nary system and ck is
the formation enthalpy. Note that we neglect the concentration of
the kth element because it is implicit given the other k�1 concen-
trations. The distance d of the structure to a given facet of the
convex hull is computed as follows,

d ¼ cn � ð1=anÞ
 

� a0 þ
Xn�1

m¼1

amcm

!
: (A.2)

This equation is different from the nominal (shortest) distance
between a plane and a point, which projects the point onto the
plane along the normal vector. Instead, we want the distance that
projects the point onto the plane along the energy axis.

The distance of the structure to the convex hull is the minimum
of Eq. (A.2) computed for all facets of the convex hull. This mini-
mization avoids a costly analysis of identifying the relevant facet,
including the conversion of all facet vertices to barycentric co-
ordinates. However, it is important to recognize that this minimi-
zation algorithm is only valid for compounds above the convex hull.

The correct (incorrect) distances of each structure to the convex
hull is illustrated by the green (red) lines in Fig. A.10a. For structures
within the convex hull, i.e., S1, the minimum distance correctly
matches the structure to the plane immediately below it. However,
imagine we were interested in determining the importance/sta-
bility of a convex hull member. This property may be quantified by
determining the distance of this structure from the bottom of a new
pseudo-hull which does not contain the structure, such as what is
illustrated by S2. For such cases, we need a generalized distance to
hull algorithm. The minimization algorithm alone would not
identify the correct facet because the algorithm is dependent on the
hyperplane description of the facet. Therefore, it is possible to find
the imaginary extension of a distant facet to be closer to the com-
pound than that of the correct facet. To avoid this problem, we
generalize our algorithm by simply taking the projection of the
point (compound) to the zero energy line, perform the minimiza-
tion, and subtract the projected distance. This is illustrated in
Fig. A.10b.
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2.5 FOLLOWUP WORK: EFFECT OF
QUATERNARY ADDITIONS TO AL-CO-W

Two of the six promising alloys predicted in the
high-throughput work, namely Co-Nb-V and
Co-Ta-V, were made experimentally by David
Dunand’s group at Northwestern [14]. They
reported the existence of L12 precipitates (γ ′)
in these two alloy systems. However, it was
reported that these precipitates are not stable
after 2 hrs of aging. The precipitate is found to
be coarsened, dissolved, and transformed into
lamellar C36-Co3(Ta, V) and needle-shaped
D019-Co3(Nb, V) phases.

The experimental results reported by Prof.
Dunand’s group brings the question of how to
stabilize the γ ′ precipitate in Co-Nb-V and Co-
Ta-V alloys. From a computational perspective,
a possible solution is to search for appro-
priate quaternary elemental additions to these
alloys which can stabilize the precipitates.
However, analyzing the stability of quaternary
alloys by computing the quaternary convex
hulls for each elemental addition is computa-
tionally expensive. A computationally cheaper,
but less rigorous approach to this problem is to
search for elemental additions which lower the
formation enthalpy of the most stable γ ′ precip-
itate in the ternary alloy (e.g., Co-Nb-V or Co-
Ta-V). The searching is done by first finding the
most stable structure in the ternary phase and
adding the quaternary element to that structure
at varying concentrations and verifying if the
new additional element decreases the formation
enthalpy. As a test case for the method,
we performed this faster approach on Co-Al-
W alloy. In this regard, I mentored Hayden
Oliver, an undergraduate student in our group
through this project2 to understand the effect of

quaternary elements on Al-Co-W alloy.

As a first step, we needed to explore
the ternary Co-Al-W system in detail and
compute a robust convex-hull (with ∼ 200000
structures—all possible ternaries up to 12-atom
unit cells) to identify the most stable ternary
crystal structure. In order to compute the
convex hull, we employed a machine learning
model based on Moment Tensor Potentials
(MTP) [6]. The robust convex hull with
formation enthalpy of over 200000 crystal
structures using MTP revealed 8-, 12-, and
a 16-atom L12-like structures, closer to the
convex hull. The 8-atom,12-atom and 16-
atom L12-like structures which Hayden found
are an interesting result as they are lower in
the formation enthalpy in comparison to the
random 32-atom SQS structure we used in the
high-throughput work and are likely candidate
structures of the experimentally observed alloy.
A detailed description of these new crystal
structures near the convex hull of Al-Co-W
system will be discussed elsewhere2.

Using these 12- and 16-atom unit cells
as parent structures, we studied the effect of
the addition of a quaternary element. We
considered 10 possible elements (C, Cr, Fe,
Mo, Nb, Ni, Si, Ta, Ti, and V) and studied
the effect on formation enthalpy of parent struc-
tures at∼6%,∼8%, and∼12% atomic concen-
trations3. Fig. 2.13 shows the effect of all
10 elements on the Al-Co-W system. We
found that C, Si, Ta, Ti, and V help lower
the formation enthalpy of parent structures.
At ∼6%, only Si and C lower the enthalpy,
whereas at ∼8% and ∼12% we see Ta and V
lowering the enthalpy. Also, Si, C, and Ti lower
the formation enthalpy further with increasing
concentration.

2 Hayden Oliver, Chandramouli Nyshadham, Carlos Leon, Brayden Bekker, and Gus. L. W. Hart, Investigating
Co-Al-W using moment tensor potentials (paper in preparation)

3∼6% and ∼8% is achieved by adding one quaternary element to a 16- and 12-atom unit cell parent structures.
∼12% is achieved by adding two quaternary elements to a 16-atom unit cell parent structure.
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In principle, computing a quaternary
convex hull is necessary to know if the
quaternary precipitates are stable. However, the
results from figure 2.13, are a good indication

that C, Si, Ta, Ti, and V are possible quaternary
additions that could stabilize the ternary precip-
itate phase. Such studies should be further
undertaken on Co-Nb-V and Co-Ta-V systems.

C Cr Fe Mo Nb Ni Si Ta Ti V
element added (X)

400

350

300

250

200

150

fo
rm

at
io

n 
en

th
al

py
 (

H
)  

(m
eV

/a
to

m
) ~6% (Al1Co12W2X1)

~8% (Al1Co9W1X1)
~12% (Al1Co12W1X2)

H for Al1Co12W3
H for Al1Co9W2

Figure 2.13 Change in the formation enthalpy by adding a quaternary element to Al-
Co-W alloy. The parent structures are 12 and 16-atom unit cell and are close to (∼
2 meV above) convex hull. We can see C, Si, Ta, Ti, and V lowering the formation
enthalpy. At ∼6%, Si and C lower the enthalpy of Al-Co-W. At ∼8%, and ∼12% we
see Ta and V lowering the enthalpy too. Also, Si, C, and Ti lower the formation enthalpy
further with increasing concentration.



CHAPTER 3

Machine-learned models for materials prediction

3.1 MACHINE-LEARNING: NEW
PARADIGM FOR MATERIALS

PREDICTION

The limitation of DFT-based high-throughput
methods is that the methodology is only as
fast as DFT itself. Computational methods
faster than DFT can allow screening of more
possible materials within a short time. In this
regard, material scientists resorted to replacing
DFT with machine learning (ML) based models
which scale linearly with system size without
compromising the accuracy. ML is the new
paradigm in computational materials science
and can help us leverage the surge of materials
databases in the last decade. The advantage of
ML methods over traditional empirical poten-
tials is that they are accurate, non-parametric,
and are systematically improvable with data.

3.2 ACCELERATED HIGH-THROUGHPUT
USING ML

The idea of an accelerated high-throughput
approach (figure 1 in the journal article) is
to use ML-based surrogate models to replace
electronic structure calculations and screen the
best candidate materials from a pool of possible
hypothetical materials at a faster rate than using
DFT data with high-throughput approach. The
candidate materials screened using ML models
are validated using first-principle calculations.
Many ML-based surrogate models to DFT
calculations have been proposed in the liter-
ature in the past decade [5–7, 22–28]. Many of
the proposed ML models aim to relate structure
with the property of materials. The significant
differences in all these various ML models lie

either in the descriptors they chose to represent
the crystal structure or the machine learning
algorithm used.

In the second project of this Ph.D. work, we
aim to answer the following questions on state-
of-the-art ML models in the literature.

• How applicable are current state-of-the-art
models to predict properties of solids?

• Are different ML models consistent in their
prediction?

• What are the limits of these ML models in
predicting properties?

• Can we model multiple materials simultane-
ously using these models?

3.3 PROJECT

In order to answer these questions, we picked
five ML models in the materials science liter-
ature. These five ML models consist of
three state-of-the-art representations namely
Many-body tensor representation [7] (MBTR),
smooth overlap of atomic positions [5, 26]
(SOAP) and moment tensor potentials [6]
(MTP). We also used cluster expansion [38–
41](CE), and a machine-learned representation
using MBTR along with deep neural networks
[31, 42] (DNN). Our goal was not to compare
the performance of these different surrogate
models, so we did not aim to minimize the
error; instead, aimed to maintain an average
speed/accuracy balance [28].

The dataset consists of 15950 unrelaxed
DFT calculations, containing 10 different
binary alloys comprising of 10 different

21
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elements. We chose formation enthalpy as
the property of interest to predict. Formation
enthalpy is one of the essential theoretical
properties in materials science. It indicates
how likely a compound is to occur in nature.
We compare the formation enthalpy of all
compounds through a convex hull plot to
predict if a phase will be stable in an alloy.
For many metal alloys, the discrepancy in the
formation enthalpy between any two competing
structures may be as small as ∼3 meV/atom
(about the limit of DFT accuracy making this
problem a challenging one). Our goal is to
know how accurately the five ML models can
predict the formation enthalpy of binary alloys.

Our results show that all five ML models
agree qualitatively on their prediction of
formation enthalpy for all 10 materials, which
implies that the prediction of ML models are
independent of the details of the particular
model used. We also show that the ML models
are capable of simultaneously predicting the
formation enthalpy for multiple materials. In
other words, instead of building a separate
model for each binary alloy, we can make one
model of a 10 component alloy that can predict
for each of the 10 binary alloys. We also found
that for six of the ten materials, the prediction
errors are higher than the required accuracy of
∼3 meV/atom. We found that materials with
higher prediction errors correspond to a higher

range of formation enthalpy in data. These
errors indicate the limitation of these models,
and further analysis is necessary to improve the
accuracy of ML models.

The details of various ML models, materials
used in this work, and results are in the journal
article [28] attached in the following pages.

3.3.1 My contribution

My contribution to the publication of this
project was as follows: conceiving the
idea, generating the DFT dataset, performing
the MBTR based calculations (MBTR+DNN,
MBTR+KRR), interpreting results, Figures 1
and 2 in the paper, Figures 2 and 4 in supple-
mentary material, writing a significant portion
of the paper, and responding to the reviewers.
Before starting the project, as a proof of
concept, I generated a computationally cheaper
dataset using LAMMPS package [43, 44] (a
molecular dynamics and materials modeling
program) and the ASE package [45]. Although
in the published article the results for ML
models other than MBTR+DNN is generated
by other contributing authors, I also worked
and have experience with all five ML models
personally (for cluster expansion I used the
UNCLE package [46]). Contribution of
other authors is mentioned in the “AUTHOR
CONTRIBUTIONS" section in the paper.
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Machine-learned multi-system surrogate models for materials
prediction
Chandramouli Nyshadham1, Matthias Rupp 2,7, Brayden Bekker1, Alexander V. Shapeev3, Tim Mueller 4, Conrad W. Rosenbrock1,
Gábor Csányi5, David W. Wingate6 and Gus L. W. Hart1

Surrogate machine-learning models are transforming computational materials science by predicting properties of materials with
the accuracy of ab initio methods at a fraction of the computational cost. We demonstrate surrogate models that simultaneously
interpolate energies of different materials on a dataset of 10 binary alloys (AgCu, AlFe, AlMg, AlNi, AlTi, CoNi, CuFe, CuNi, FeV, and
NbNi) with 10 different species and all possible fcc, bcc, and hcp structures up to eight atoms in the unit cell, 15,950 structures in
total. We find that the deviation of prediction errors when increasing the number of simultaneously modeled alloys is <1 meV/
atom. Several state-of-the-art materials representations and learning algorithms were found to qualitatively agree on the prediction
errors of formation enthalpy with relative errors of <2.5% for all systems.

npj Computational Materials            (2019) 5:51 ; https://doi.org/10.1038/s41524-019-0189-9

INTRODUCTION
Advances in computational power and electronic structure
methods have enabled large materials databases.1–4 Using high-
throughput approaches,5 these databases have proven a useful
tool to predict the properties of materials. However, given the
combinatorial nature of materials space,6,7 it is infeasible to
compute properties for more than a tiny fraction of all possible
materials using electronic structure methods such as density
functional theory (DFT).8,9 A potential answer to this challenge lies
in a new paradigm: surrogate machine-learning models for
accurate materials predictions.10–12

The key idea is to use machine learning to rapidly and
accurately interpolate between reference simulations, effectively
mapping the problem of numerically solving for the electronic
structure of a material onto a statistical regression problem.13

Such fast surrogate models could be used to filter the most
suitable materials from a large pool of possible materials and then
validate the found subset by electronic structure calculations.
Such an “accelerated high-throughput” (AHT) approach (Fig. 1)
could potentially increase the number of investigated materials by
several orders of magnitude.
Traditionally, empirical interatomic potentials were used to

reproduce macroscopic properties of materials faster than DFT.
Well-known empirical interatomic potentials for periodic solids
include Lennard–Jones potentials, the Stillinger–Weber potential
and embedded-atom methods (EAM) for alloys. A problem with
empirical interatomic potentials is that they are designed with a
fixed functional form and cannot be systematically improved. In
contrast, surrogate models which are empirical interatomic
models based on machine learning systematically improve with
additional data. This potential advantage over traditional

potentials has resulted in the proposal of many machine-learned
surrogate models for materials prediction.
We demonstrate the feasibility of machine-learned surrogate

models for predicting enthalpies of formation of materials across
composition, lattice types, and atomic configurations. Our findings
were motivated toward knowing whether different surrogate
models proposed in the literature are consistent in their
predictions of formation enthalpy rather than comparing the
performance of different surrogate models. We find that five
combinations of state-of-the-art representations and regression
methods (Table 1) all yield consistent predictions with errors of
~10meV/atom or less depending on the system. We also find that
when we combined the data from all 10 systems to build a single
model, the combined model is essentially as good as the 10
individual models.
A surrogate machine-learning model replaces ab initio simula-

tions by mapping a crystal structure to properties such as
formation enthalpy, elastic constants, or band gaps, etc. Its utility
lies in the fact that once the model is trained, properties of new
materials can be predicted very quickly. The prediction time is
either constant, or scales linearly with the number of atoms in the
system, with a low pre-factor, typically in milliseconds.
The two major parts of a surrogate machine-learning model are

the numerical representation of the input data11,14 and the
learning algorithm. We use the term “representation” for a set of
features (as opposed to a collection of unrelated or only loosely
related descriptors) that satisfies certain physical require-
ments12,13,15,16 such as invariance to translation, rotation, permu-
tation of atoms, uniqueness (representation is variant against
transformations changing the property, as systems with identical
representation but differing in the property would introduce
errors17), differentiability, and computational efficiency. The role of
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the representation is akin to that of a basis set in that the
predicted property is expanded in terms of a set of reference
structures.
To model materials, it is desirable that a representation enables

accurate predictions and is able to handle multiple elements
simultaneously. The materials community has proposed several
representations10–12,14,15,18–21 for crystal structures. Some do not
fulfill the above properties exactly or are restricted, in practice, to
materials with a single element. Consequently, surrogate models
based on these representations are limited in their accuracy, due
to the violation of any of the physical requirements mentioned
above (e.g., for the sorted and eigenspectrum variants of the
Coulomb matrix, continuity and uniqueness, respectively16,17).
We explore three state-of-the-art representations that fulfill

above properties for construction of general surrogate models:
many-body tensor representation12 (MBTR), smooth overlap of
atomic positions10,15 (SOAP), and moment tensor potentials11

(MTP). Each representation is employed as proposed and
implemented by its authors, including the regression method:
Kernel ridge regression13 (KRR) for MBTR, Gaussian process
regression22 (GPR) for SOAP, and polynomial regression11 for
MTP. Since predictions (but not necessarily other properties) of the
kernel-based KRR and GPR are identical, we will use the two terms
interchangeably here. We also employed cluster expansion23–26

(CE) and deep neural network27,28 (DNN) models. Our purpose is
not to compare the performance of these different surrogate
models. Consequently, the models were not optimized to
minimize the error; rather they were generated to maintain a
typical speed/accuracy balance.
CE models have been used for three decades to efficiently

model ground state energies of metal alloys, but require that the
atomic structure can be mapped to site occupancies on a fixed

lattice. They are therefore less suited to model different materials.
In this work, we use them as a baseline and build a separate CE
model for each alloy. The comparison is not between CE and other
models regarding performance, but our intention is to see how
consistent are these different models in predicting the formation
enthalpy of materials.
DNNs are essentially recursively stacked layers of functions, a

large number of layers being a major difference between DNNs
and conventional neural networks. They have been used to
predict energies29–33 and to learn representations.34,35 While
DNNs can learn representations (“end-to-end learning”, here from
nuclear charges, atom positions and unit cell basis vectors to
enthalpy of formation), this requires substantially more data than
starting with a representation as input.18–20 We, therefore, provide
the DNN with MBTR as input. MBTR is a manually designed
representation and works well with the Gaussian kernel. The idea
of using MBTR along with DNN is to explore whether a
representation-learning technique can improve upon a manually
designed representation in conjunction with the standard
Gaussian kernel (MBTR+ KRR).

RESULTS AND DISCUSSION
Energy predictions for single alloys
Prediction errors for enthalpies of formation of each of the five
surrogate models on each binary alloy subset of the data are
presented in Fig. 2a. Prediction errors of all surrogate models
agree qualitatively on all subsets of the data. We interpret this
consistency to be indicative of the validity of the machine-learning
approach to surrogate models of formation enthalpy of materials,
independently of the parametrization details of the models.
For four binary systems (AgCu, AlMg, CoNi, CuNi) predictions

errors are below 3meV/atom. The prediction errors of all surrogate
models on the remaining six systems (AlFe, AlNi, AlTi, CuFe, FeV,
NbNi) are consistent, and it is not obvious as to why these systems
are harder to learn. When generating the data, the same
methodology and parameters were used for all alloys, and similar
fitting procedures were employed for each surrogate model.
We point out that whenever the elements that constitute a

binary alloy system belong to the same column of the periodic
table or are close to each other in the periodic table in terms of
atomic number, the surrogate models’ predictions are good and
vice versa. Indeed, together these numbers explain 80% of the
variance in prediction errors (see supplementary material).
A complementary observation is that while absolute errors vary

from alloy to alloy, relative errors (δRMSE), expressed as a
percentage of the range of energies of an alloys’ subset of the
data, remains <2.5% for all systems (Fig. 2b).

Table 1. State-of-the-art surrogate machine-learning models investigated in this work

Abbrv. Surrogate model Description

CE Cluster expansion23–26+ Bayesian approach26 One of the early successful surrogate models developed in the materials
community. A material's ground state energy is expanded as an Ising-type model
with constant expansion coefficients.

MBTR +KRR Many-body tensor representation12+ kernel
ridge regression

Materials are expanded in distributions of k-body terms stratified by chemical
element species, using non-linear regression.

MBTR
+DNN

Many-body tensor representation+ deep neural
network (DNN)27,28

MBTR is used as input for DNN to learn a new representation and predict using a
parametric deep regression method.

SOAP +GP Smooth overlap of atomic positions15+Gaussian
process regression22

Atomic environments represented as smoothened Gaussian densities of
neighboring atoms expanded in a spherical harmonics basis, using non-parametric
regression.

MTP Moment tensor potentials (MTP)11+ polynomial
regression

Atomic environments expanded in a tailored polynomial basis, computed via
contractions of moment tensors.
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Fig. 1 The accelerated high-throughput approach. Candidate
structures and properties are generated by surrogate machine-
learning models based on reference electronic structure calculations
in a materials repository. Selected structures are validated by
electronic structure calculations, preventing false positive errors
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General models trained on all alloys
We trained four of the five investigated surrogate models
simultaneously on all 10 alloy systems and compared the mean
absolute error (MAE) of these combined models with the average
MAE when trained on each alloy system separately (Table 2;
note that RMSE would differ from MAE due to its non-linear nature).
The quantitative agreement indicates that the deviation of the
prediction errors is <1meV/atom when trained on multiple systems.

For the cluster expansion, these results suggest that there is a single
set of parameters for generating a prior probability distribution over
effective cluster interaction (ECI) values (provided in the supporting
information) that works well across a variety of chemistries and lattice
types.
For CE, the representation is naturally tied to a particular lattice

(e.g. fcc, bcc), making it difficult to train on multiple alloy systems
with different lattices at the same time. Here we train a cluster
expansion on all alloys by constraining all 30 systems to use a
single set of hyperparameters for regularization (i.e. all use the
same prior probability distribution of ECI values). The machine-
learning surrogate models based on MBTR, SOAP, and MTP do not
suffer from the problem of representation being tied to a
particular lattice. They express energy as a continuous function
of atomic positions and can be trained on multiple materials
simultaneously.
We investigate simultaneous training of alloys in more detail for

the MBTR+ KRR model. Figure 3 presents deviations of the MAE of
a single model trained on k alloy systems from the average MAE
when the model is trained on each alloy system separately. In all

of the possible
P10

k¼1
10
k

� �

¼ 1023 cases, the deviation is below

1meV/atom. These deviations are on the order one would expect
from minor differences in hyperparameter values. We conclude
that prediction errors remain consistently unaffected when
increasing the number of simultaneously modeled alloys.
In the case of MBTR+ DNN model, we observe improvement in

prediction errors on the combined model when compared with
the average of separate models (Table 2 [see also Fig. 2 in
supplementary material]). This suggests that it might be possible
to learn element similarities between chemical element species
using a DNN to improve learning rates further.36

Caveat emptor
Are reported errors reliable estimates of future performance in
applications? It depends. We discuss the role of training and
validation set composition as an example of the intricacies of
statistical validation of machine-learning models.
In the limit of infinite independent and identically distributed

data, one would simply sample a large enough validation set and
measure prediction errors, with the law of large numbers ensuring
the reliability of the estimates. Here, however, data are limited due
to the costs of generating them via ab initio simulations, and are

Table 2. Performance of general models

Mean absolute errors (meV/atom)

Surrogate model Average of separate models Combined model

CE 4.7 4.8

MBTR+ KRR 5.1 5.3

MBTR+DNN 5.1 4.6

SOAP+GP 4.5 –

MTP 3.1 3.4

Shown are mean absolute errors (MAE) of models trained on all 10 alloy
systems simultaneously (right column) versus the average MAE of models
trained on individual alloy systems. The combined fit using SOAP+ GP was
not performed in this work

Fig. 3 Performance of MBTR+ KRR model for multiple alloy systems.
Shown are deviation of mean absolute error (MAE, vertical axis) of
an MBTR+ KRR surrogate model trained on k (horizontal axis) alloy
systems simultaneously from the average MAE of k models trained
on each alloy subsystem separately. Whiskers, boxes, horizontal line
and numbers inside the plot show the range of values, quartiles,
median and sample size, respectively. Difference in error between
individual and combined models is always <1meV/atom

Fig. 2 Consistency in prediction errors of formation enthalpy of five
machine-learning surrogate models on the DFT-10B dataset. a Root
mean squared error (RMSE) of predicted enthalpies of formation of
each surrogate model on each binary alloy subset in meV/atom
(colored bars). RMSE for MTP results is computed using pure atom
total energies obtained from DFT. The consistency of errors across
models indicates the validity of machine-learning surrogate models
to predict formation enthalpy of materials—prediction errors are
similar, independent of the details of model parametrization. b Root
mean squared error (RMSE) of predicted enthalpies of formation of
each surrogate model on each binary alloy subset as a percentage of
energy range. Note that relative errors are below 2.5% for all systems
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neither independent nor identically distributed. In such a setting,
part of the available data is used for validation, either in the form
of a hold-out set (as in this work) or via cross-validation, suited for
even smaller datasets.
Prediction errors in machine-learning models improve with data

(otherwise it would not be machine learning). This implies that if
only few training samples exist for a “subclass” of structures,
prediction errors for similar structures will be high. For example,
consider the number of atoms per unit cell in the 10 alloys dataset
(DFT-10B) used in this work: There are only 11 structures for each
alloy that have 1–2 atoms in the unit cell. Consequently,
prediction errors are high for those structures (see Fig. 3 in
supplementary material).
In addition to being sparse, smaller unit cells also have a

different information content than the larger unit cells. Small unit
cells are typically far away from the large unit cells and from each
other. Each structure is a point in the representation space and
interpolating between structures that are far apart is more prone
to error than in regions where the data is tightly clustered (see
Fig. 4 in supplementary material). Ideally, the data that the model
is trained on would be uniformly distributed in the representation
space. Because small unit cells are few in number and because
they have a different information content, it is best to include
them in the training set.
For combinatorial reasons, the number of possible structures

increases strongly with the number of atoms in the unit cell
(Table 3). This biases error statistics in two ways: As discussed,
prediction errors will be lower for classes with more samples. At
the same time, because these classes have more samples, they will
contribute more to the measured errors, dominating averages
such as the RMSE.
Figure 4 presents MBTR+ KRR prediction errors (RMSE in meV/

atom) for different but same-size splits of the data into training
and validation sets. On the left, all structures with kj j or fewer
atoms in the unit cell are excluded from the training set (and

therefore included in the validation set). This results in many high-
error structures in the validation set, with the effect decreasing for
smaller kj j. For k= 0, size does not influence the split. On the right,
structures with ≤k atoms are always included in the training set,
resulting in fewer high-error structures in the validation set. The
dashed line marks the value of k= 2 recommended in this work
(see supplementary material).
Retrospective errors reported in the literature should, therefore,

be critically assessed. The design of such studies should report on
“representative” validation sets instead of those tweaked to yield
lowest possible errors. For combinatorial datasets, the smallest
structures (those that can be considered to be outliers) should be
included in the training set.37

We showed that it is possible to use machine learning to build a
combined surrogate model that can simultaneously predict the
enthalpy of formation of crystal structures across 10 different
binary alloy systems, for three lattice types (fcc, bcc, hcp) and for
structures not in their ground state. In this, we find that the
concept of using machine learning to predict formation enthalpy
of materials to be independent of the details of the used surrogate
models as predictions of several state-of-the-art materials
representations and learning algorithms were found to be in
qualitative agreement. This observation also seems to be
congruent with recent efforts toward a unifying mathematical
framework for some of the used representations.38

The ability to use a single surrogate model for multiple systems
simultaneously has the potential to simplify the use of surrogate
models for exploration of materials spaces by avoiding the need
to identify “homogeneous” subspaces and then building separate
models for each of them. This also avoids problems such as
discontinuities at the boundaries of separate models.
Is it possible to do better? Recent results suggest that it might

be possible to exploit similarities between chemical element
species to improve learning rates further.36 This requires either to
explicitly account for element similarities in the representations or
to learn element similarities from the data, for example with a
DNN. While such alchemical learning is outside of the scope of this
work, we do observe an improvement in prediction errors for the
general MBTR+ DNN model (Table 2 [see also Fig. 2 in
supplementary material]).

METHODS
Data
We created a dataset (DFT-10B) containing structures of the 10 binary
alloys AgCu, AlFe, AlMg, AlNi, AlTi, CoNi, CuFe, CuNi, FeV, and NbNi. Each
alloy system includes all possible unit cells with 1–8 atoms for face-
centered cubic (fcc) and body-centered cubic (bcc) crystal types, and all
possible unit cells with 2–8 atoms for the hexagonal close-packed (hcp)
crystal type. This results in 631 fcc, 631 bcc, and 333 hcp structures,
yielding 1595 × 10= 15,950 unrelaxed structures in total. We refer to this
dataset as DFT-10B in this work. The cell shape, volume, and atomic
positions were not optimized and the calculations are all unrelaxed, for the
sake of efficiency. The crystal structures were generated using the
enumeration algorithm by Hart and Forcade.39

Lattice parameters for each crystal structure were set according to
Vegard’s law.40,41 Total energies were computed using DFT with projector-
augmented wave (PAW) potentials42–44 within the generalized gradient
approximation (GGA) of Perdew, Burke, and Ernzerhof45 (PBE) as
implemented in the Vienna Ab Initio Simulation Package46,47 (VASP). The
k-point meshes for sampling the Brillouin zone were constructed using
generalized regular grids.48,49 The details of the k-point density for all 10
alloys is mentioned in Table 1 of the supplementary material.

Models
All single-alloy surrogate models were trained using the same set of 1000
randomly selected crystal structures, including optimization of hyperpara-
meters, and the prediction errors are reported on a hold-out test set of 595
different structures, never seen during training. The same set of

Table 3. Size distribution in the DFT-10B dataset

Atoms/unit cell 1 2 3 4 5 6 7 8

No. of structures 4 7 12 48 56 210 208 1 050

Shown are the number of structures with k atoms in the unit cell, k ≤ 10
(per alloy; multiply by 10 for the total dataset)

Fig. 4 Influence of biased training and validation sets. Shown are
the root mean squared errors (meV/atom) as a function of training
and validation set composition obtained using MBTR+ KRR model.
See main text for discussion
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decorations are used as training and test sets for all binaries. Models
trained on multiple alloys use the union of the individual alloy’s splits.
Parametrization details of all surrogate models used in this work can be
found in the supplementary material.

DATA AVAILABILITY
The dataset (DFT-10B) generated and used for the current work is publicly available
as BA10-18 (DFT-10B) at https://qmml.org/datasets.html.
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3.4 FOLLOWUP WORK: 45 ALLOYS MBTR
MODELS, FIBS, AND CUR

We showed (in the previous paper) that the
predictions of formation enthalpy by five
different state-of-the-art models to be qualita-
tively the same and that the predictions are
independent of the details of any particular
model. The prediction errors on some materials
were as low as 2 meV/atom, whereas some
materials have greater than 10 meV/atom
errors. High errors indicate that some material
systems are harder to predict than others using
these surrogate models. The interesting finding
is that systems which are hard to predict are
hard for all surrogate models. The agreement
between all five models validate the application

of machine learning techniques for predicting
formation enthalpy of materials and that the
prediction is independent of the details of the
particular model used.

It is important to understand as to why
these five ML models could not learn or
predict the properties of some materials with
high accuracy. In this follow up work, using
MBTR+KRR (Many-Body Tensor Represen-
tation + Kernel Ridge Regression) model [7,
28], we tried to gain some insights into
answering the following questions:

• Is there any correlation between constituent
elements and prediction errors?

• How to pick additional training data to
improve the prediction errors?

3.4.1 Many-body tensor representation with
kernel ridge regression (MBTR+KRR) on 45
binary alloys

In this regard, as a preliminary step to
answer the first question, we created a dataset
(DFT-45B) of 45 binary alloys (all possible
binary combinations of the 10 elements used
in the previous work) constituting of 71775
unrelaxed DFT calculations. The dataset
contains 10 different elements (Ag, Al, Co, Cu,
Fe, Mg, Nb, Ni, Ti, and V) and all possible
binary combinations (

(10
2

)
= 45 in number)

namely, AgAl, AgCo, AgCu, AgFe, AgMg,
AgNb, AgNi, AgTi, AgV, AlCo, AlCu, AlFe,
AlMg, AlNb, AlNi, AlTi, AlV, CoCu, CoFe,
CoMg, CoNb, CoNi, CoTi, CoV, CuFe, CuMg,
CuNb, CuNi,CuTi, CuV, FeMg, FeNb, FeNi,
FeTi, FeV, MgNb, MgNi, MgTi, MgV, NbNi,
NbTi, NbV, NiTi, NiV, and TiV.

We modeled all alloys using the
MBTR+KRR model and found that several
systems have high prediction errors (above ∼5
meV/atom) as shown in Fig. 3.5. The results

indicate the importance of understanding and
reducing prediction errors. From Fig. 3.5, we
notice that low difference in column number
(≤ 2) between constituent elements in the
binary alloy (NbTi, CuNi, TiV, AgCu, CoNi,
NbV AgNi, FeNi) are low in prediction errors.
If the difference in the column number is
significant (> 3) (CuNb, NbNi, AgNb, CuTi,
AlNb, CuV, AgTi, MgNb), prediction errors
are high (with some exceptions, e.g., CoFe). In
systems with high prediction errors, the range
of formation enthalpy is also observed to be
higher than that of a system with low errors.

3.4.2 On improving the accuracy of a model

It is crucial to understand how to improve the
prediction errors for systems with high errors.
A general and simple solution is to add more
training data. However, this begs the question
of what is the least amount of training data we
need to achieve a target accuracy. This smart
selection of data directs us to an active learning
[47] approach for building efficient models.
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The active learning here refers to an intelligent
selection of the least amount of new training
data based on existing training data. From an
information theory perspective, high prediction
errors are a result of lack of information in the
training set. Using active learning, we aim to
add information not present in the training set,
which can thus help us to improve ML models
by eliminating training on redundant data.

Active learning is not a new concept and
has been used in statistics to design optimal
experiments [48]. There are many algorithms to
implement active learning framework [47], but
many of these algorithms are computationally
expensive. In this follow-up work (using the
kernel-based model, MBTR+KRR applied on
NbNi system), we focused on implementing an
active learning approach [49,50] to analyze the
best way to select new training samples.

ML models are efficient when test data
is predicted using interpolation only. When
predictions require extrapolation, the model
often fails (has high prediction errors). An
active learning framework aims to add new
training samples that reduce the extrapolation
or in other words, reduce the limitations of the
model. If the ML model fails to predict on a test
sample, that implies extrapolation. It is possible
to estimate or quantify this extrapolation from
the training data.

3.4.3 Active learning based ML models

From a mathematical perspective, in kernel-
based ML models, data points in the input space
are first mapped on to a higher-dimensional
kernel space wherein a linear algorithm is
applied to map to the target space [51] (see Fig.
3.6). In order to learn in an active manner or
iterative supervised learning, we need to add
new training data such that the total information
content of the kernel matrix increases with the
new addition of data.

Within the scope of kernel-based models
such as MBTR+KRR, we analyzed the effect
of three active learning algorithms on NbNi
system. The first two algorithms are based
on a matrix decomposition technique called
CUR [49, 50], and the third algorithm called
frequency importance based sampling (FIBS)
was developed by me.

CUR based active learning algorithms:
LTCUR and LSCUR

CUR [49,50] decomposition is a matrix decom-
position technique, wherein the input matrix,
A ∈ ℜn×d is decomposed as a set of three
matrices C ∈ ℜn×c, U ∈ ℜc×d , R ∈ ℜd×n,
which when multiplied together approximate
matrix A. The advantage of CUR over other
decomposition methods such as SVD is that the
rows of the matrix R and columns of the matrix
C are expressed in terms of a small number
of actual columns and actual rows of the data
matrix and are thus more interpretable (see Fig.
3.7). The algorithms used to choose columns or
rows can give us insight into what data points
are more valuable than others from a given
dataset.

We used two CUR algorithms,
namely Linear-Time-CUR (LTCUR) [50]
and Leverage-Score-CUR (LSCUR) [49]
algorithms. The description of both the
algorithms is mentioned elsewhere [49, 50].
LTCUR scales linearly and LSCUR scales on
the order of O(n3), where n is the number of
points in the dataset.

Frequency importance based sampling

Apart from CUR based algorithms for choosing
training data, we also developed and imple-
mented another algorithm called frequency
importance based sampling (FIBS). The
algorithm for FIBS is as follows.
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Algorithm 1:FIBS

Input: Matrix, K ∈ℜn×d with n samples and d features.
Output: FIBS score for each sample, {si}i=n

i=1
for i = 1 to n do

P = PDF({ki, j} j=d
j=1), where P is probability distribution, function

mi = ki, j|P(ki, j) = max(Pi)
end
return si =

qi

∑
i=n
i=1 qi
∀i = 1,2, . . . ,n, where q = 1−PDF({mi}i=n

i=1)

FIBS algorithm, when applied on a kernel
matrix, captures the most important similarity
of a sample with respect to all other samples.
The frequency of the similarity occurrence
determines the most important similarity;
hence, the name Frequency Importance Based
Sampling (FIBS). We note (from Algorithm 1)
that the algorithmic complexity of FIBS is of
the order of O(n), where n is the system size.

The goal of CUR algorithms (LTCUR,
LSCUR) and FIBS are to rank each sample
in the dataset according to the information
content. We can see the usefulness of
these algorithms through learning curves as an
example. Given a data set and ML model,
the different algorithms (LTCUR, LSCUR, and
FIBS) show the best way to split the dataset into
training and test sets with increasing training
set sizes. If we pick the training data to be

redundant, it causes the learning curve to be flat
with high prediction errors. If we pick in a non-
redundant fashion within a given dataset, the
learning curve should monotonically decrease
in error.

Figure 3.8 shows learning curves using
LTCUR, LSCUR, and FIBS applied to NbNi
dataset. We see that the error improves
with all three algorithms. These algorithms
identify whether a new training data point adds
more information to the existing training data.
Adding new information at each iterative active
learning process improves ML models at a
faster rate. Picking the best training data from
a pool of many hypothetical materials reduces
the DFT costs to train the ML model. We can
see from Fig. 3.9 that FIBS is faster and as
accurate as LSCUR algorithm and FIBS has the
advantage of being parallelizable.
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Figure 3.5 Root mean squared error (RMSE) of predicted enthalpies of formation of
MBTR + KRR surrogate model on each of 45 binary alloys in meV/atom. The relative
errors (δRMSE), express formation enthalpy as a percentage of the range of energies of
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Figure 3.6 Mapping a set of data points (blue and red) from input space to kernel space
using the kernel function φ . Mapping onto the higher dimensional space allows us to
classify the blue and red data points, classified using non-linear function (brown line) in
input space with a linear hyper plane (brown colored plane) in the kernel space.
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CHAPTER 4

Conclusion and future work

In this thesis work, two projects related
to two computational approaches have been
studied and used for materials prediction. The
first approach is the high-throughput approach,
a powerful technique to explore the combina-
torial space of materials in a rational fashion for
discovering new materials. The use of the high-
throughput method in this work successfully
led to the prediction of new superalloys. The
second project deals with studying the consis-
tency of various surrogate machine learning
models to DFT for materials prediction. Five
different ML models, including three state-of-
the-art models, have been studied and used
to predict formation enthalpy of 10 different
binary alloy materials. We showed that all
five ML models, despite their differences,
are consistent and qualitatively agree in their
prediction errors. We also showed that
ML models are capable of simultaneously
predicting the formation enthalpy of multiple
materials.

The potential superalloy candidates
reported in our high-throughput project led to
further experimental studies by Prof. Dunand’s
group at Northwestern University. Their study
of two Co-based superalloy candidates namely
Co-Ta-V and Co-Nb-V showed the existence
of γ ′ precipitates in these systems. However,
the precipitates are found to be metastable. A
further investigation of quaternary elemental
additions to these ternary systems can help us
to stabilize these metastable materials. In this
regard as a proof of methodology, we inves-
tigated the effect of 10 different elements as
quaternary additions in stabilizing the γ ′ phase
in Al-Co-W system. We found that C, Si, Ta,
Ti, and V help lower the formation enthalpy
of the precipitate. Similar to the Al-Co-W

system, the effect of quaternary additions to
Co-Ta-V and Co-Nb-V systems should be
carried out in the future. A more rigorous and
faster way to understand the stability of super-
alloys is through the calculation of compo-
sitional phase diagrams based on machine-
learned interatomic potentials [52].

The conclusions of the second project
carried out in this dissertation work show
the importance of active learning framework
in materials prediction. Active learning
framework can help us to select important
training data for building efficient ML models.
We studied three active learning algorithms,
namely, LTCUR, LSCUR, and FIBS, for
selecting the training data for building efficient
ML model for NbNi system. Further investi-
gation should be carried out to understand the
efficiency of ML models in modeling various
other properties, including finite temperature
properties, and point defect energetics.

The properties of materials we have limit
our technology. The main goal of materials
scientists is to discover materials with enhanced
properties. With the advancement of modern
electronic structure calculations such as density
functional theory (DFT) [8, 9] and supercom-
puters, it has become feasible to compute
properties of materials with the accuracy of
quantum mechanics in a reasonable time.
Nevertheless, the possible number of materials
to search for is innumerable, which leads to
the challenging problem at present: to come up
with ever-faster computational methods to scan
all possible materials.

What will the future of materials science
be? In my opinion, the surge of first-principles
materials data in the last few years led to a
new paradigm in the field of computational
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materials science. Materials prediction has
become more data-driven, and there are two
main ML-based approaches actively used for
discovering new materials. The first approach
is materials informatics approach wherein ML
techniques are used to extract new knowledge
or for building predictive models out of existing
materials data [16, 53–55]. However, materials
data is not big data (too large or complex
unstructured data, hard to be dealt with a tradi-
tional data-processing software) and one of the
main challenges at present is to leverage the
existing data using ML-based surrogate models
to make materials data, into big data. The
second approach aims to solve this problem by
building quantum-accurate interatomic poten-
tials and enriching the materials database in a
computationally cheaper and faster way [6, 7,
26].

Many of these computational methods
such as high-throughput and machine learning,
initially started in the chemistry or molecular
community and were later adapted by material

scientists for materials problems. Currently, the
chemistry community is progressing towards
more data-driven tools, inverse design approach
(given a desired property, finding the structure),
and automated labs for molecular designs [56,
57]. Although it is quite challenging to
implement such methods for solids, we are
heading in that direction.

Materials prediction through inverse design
is a hard problem as the material with desired
properties might not be stable. However,
over the next few decades, materials data
may become big, and it will be possible to
tap the full potential of powerful tools such
as deep learning for potentially solving the
problem of inverse design. Such an inverse-
design approach using deep neural networks is
currently pursued to designing new molecules
and drugs in the chemical and pharmaceutical
industries. There is an excellent opportunity in
the future to use deep learning tools [58] for
inverse design of future materials.



CHAPTER 5

Appendix

5.1 PAPER COPYRIGHT LICENSES

As the author of the Elsevier article (A compu-
tational high-throughput search for new ternary
superalloys), I have the rights to redistribute the
article (for a non-commercial purpose) in this
thesis work. A copy from the journal’s website
regarding the permission for redistribution is
shown in the following page.

The journal “npj computational materials"
is open access and the article published in
npj computational materials (Machine-learned
multi-system surrogate models for materials
prediction), included in this thesis work do not
require any licenses or permissions for redistri-
bution.
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SUPPLEMENTARY MATERIAL

A. Method details

1. Cluster expansion

To determine the cutoff distances for the cluster expan-
sions and determine the initial parameters for the prior
probability distributions, we used a length scale in which
the edge of a bcc unit cell is 1 unit of length and assumed
the hcp, bcc, and fcc crystal structures all had the same
nearest-neighbor distance. The cutoff distances used to
determine the set of clusters included in the expansion
are as follows:

Number of sites in cluster Maximum distance between sites
2 8
3 4
4 2
5 1.5
6 1.5

This resulted in a total of 791, 941, and 2870 distinct
orbits of clusters in the bcc, fcc, and hcp expansions, re-
spectively, including the empty cluster. These numbers
were reduced after fitting by “trimming” the cluster ex-
pansions, in which cluster functions with very small ECI
were removed from the expansion. To determine which
clusters to remove, we used the fact that when the clus-
ter functions are orthonormal, the expected squared error
due to truncation, E(error2) , is given by

E(error2) =
∑

b

V 2
b , (1)

where Vb is the ECI for the b-th cluster function, the
expectation of the squared error on the left is over all
possible lattice decorations, and the sum on the right
is over cluster functions excluded from the expansion.
Thus removing an orbit of clusters with multiplicity mb

increases the expected squared error by mbV
2
b . To

trim clusters from the expansion with little loss of accu-
racy, we removed all orbits of cluster functions for which√
mbV 2

b < 10−5 eV. The trimming procedure changed
the final average root-mean-squared prediction errors on

k geometry weighting discretization σ

2 1/distance identity^2 (0, 0.005, 90) 2−17

2 1/distance identity^2 (0, 0.005, 90) 2−4.5

3 angle 1/dotdotdot (−0.15, π/100, 100) 2−14

the training sets by less than 10−5 eV / atom and re-
moved on average more than 70% of the ECIs in the
expansions.

The ECIs for the cluster expansions were fit to the
training data using the Bayesian approach with a multi-
variate Gaussian prior distribution1. The inverse of the
covariance matrix for the prior, Λ, was diagonal, with
elements given by

λαα =





0 for nα = 0
e−λ1 for nα = 1
e−λ2e−λ3rαnλ4

α for nα > 1



 , (2)

where nα is the number of sites in cluster function α and
rα is the maximum distance between sites in Angstroms.
The parameters λ1, λ2, λ3, and λ4 were initially set to
10, 10, 5, and 5 respectively then optimized by using a
conjugate gradient algorithm to minimize the root mean
square leave-one-out cross-validation error, an estimate
of prediction error2. For the combined fit, in which a
single set of regularization parameters were used for all
30 cluster expansions, the optimized values of λ1, λ2, λ3,
and λ4 were 10.0, 20.8, 4.2, and 15.3 respectively.

2. MBTR+KRR

The Many-Body Tensor Representation (MBTR) nu-
merically represents atomistic systems as distributions
of many-body terms, such as atom counts, distances,
and angles, stratified (separated) by chemical elements.
For details please consult Ref.3. Kernel ridge regression4

with a Gaussian kernel was employed throughout. In this
work, we use the following parametrization:

We did not use 1-body terms as enthalpies of formation
are the result of a linear operation in atom counts already.
Values for the σ hyperparameter above refer to Fig. 3 in
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k geometry weighting discretization σ

1 atom count 1/identity (0.5, 1, 25) 10−4

2 1/distance identity^2 (0.1, 0.005, 70) 2−17

3 angle 1/dotdotdot (0.1, 0.05, 140) 2−8.

manuscript, where we used fixed hyperparameter values
(Gaussian kernel σ = 27, KRR regularization strength
λ = 2−20). For individual models, hyperparameters were
optimized on a base-2 logarithmic grid.

3. MBTR+DNN

The mathematical details of the many-body tensor rep-
resentation for the crystal structures are mentioned in
ref.3. Each crystal structure is expanded in terms of dis-
tributions (k-body terms) of atom counts, (inverse) dis-
tances and angles. The Gaussian kernel with a variance
(σ) of 11.3 was used for fitting. Each MBTR vector is
1450 long and was optimized using a grid search. The
details of the weighting functions, smearing parameters
for each k-body term are as follows,

MBTR+DNN model uses the same parameters as
MBTR+KRR model for generating the representation.
The only difference between the representations is that
the k-body terms in MBTR+DNN model are stratified
by all 10 elements instead of just two. This results in a
representation vector which is 147100 long. The architec-
ture of the convolution neural network used in this work
is listed in the table below.

Layer type Specifications

Fully connected layer (Size: 2048)
Fully connected layer (Size: 1024)
Reshaping data (Size: 4 x 4 x 64)
Convolution transposed layer (Kernel: 5 x 5, 64 filters)
Convolution layer (Kernel: 3 x 3, 64 filters)
Max pooling layer (Pool size: 2 x 2; stride: 2 x 2)
Convolution layer (Kernel: 3 x 3, 32 filters)
Reshaping data (Size: 1 x 1024)
Fully connected layer (Size: 128)
Fully connected layer (Size: 64)
Fully connected layer (Size: 4)
Fully connected layer (Output; size: 1)

The DNN code is implemented using the
Tensorflow framework (software available from
www.tensorflow.org). The models were trained
with a mini-batch size of 50 and the RMSE error is used
as the cost function for optimizing the weights of the
network.

4. SOAP+GP

GAP fits were generated for each alloy system using a
2-body + SOAP approach. The standard deviation (SD,
parameter δ) of the Gaussian process for the 2-body GAP
is set to match the SD in energies of the training set. Af-
ter fitting the 2-body potential, another SOAP GAP is
fit with its SD set to match the remaining RMSE of the
2-body GAP relative to the DFT energies in the training
set. The fits were performed using teach_sparse (soft-
ware available from www.libatoms.org) with the follow-
ing parameters for the 2-body GAP:

Parameter Value

Cutoff 6.0 Å
Sparse points 10

and for SOAP, parameters were set to:

Parameter Value

Cutoff 4.5 Å
Sparse points 500
lmax 8
nmax 8
ζ 2
σatom 5

As described above, δ is set using the standard devi-
ation of the Gaussian Process based on the training set
for the 2-body and SOAP fits respectively. The following
table lists these values for each of the alloy systems.

Parameter δ (2-body) δ (SOAP)

AgCu 0.43 0.0126
AlFe 0.84 0.044
AlMg 0.43 0.0126
AlNi 0.396 0.0193
AlTi 0.78 0.03
CoNi 0.27 0.0337
CuFe 0.84 0.0446
CuNi 0.315 0.0207
FeV 0.184 0.0407
NbNi 0.9 0.05

For all alloy fits, the error hyperparameter σ was set
to 1 meV for energies. Force and virial were not used
in the fits. Because pure energies have a large effect on
the predicted formation enthalpies, we increased the error
hyperparameter to 10−4 for those training configurations
that represented pure elements. This ensured accurate
reproduction of the pure energies so that enthalpy errors
closely match errors in total energy for configurations.

The parameter ε0 was calculated for each isolated atom
by including a padding of 10 Å around a single atom and
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using the same pseudopotential as the bulk calculations
discussed above. These energies were converged with re-
spect to basis set size and used only the γ k-point.

5. MTP

MTP was introduced in Ref.5 for single-component
system and in Refs.6,7 was extended to multicomponent
systems. MTP partitions the predicted energy into con-
tributions of environments of each atom. Around the
central atom of an environment, the neighboring atoms
form shells. In these shells, atoms are assigned fictitious
weights depending on the distance to the central atom,
their types, and the type of the central atom. These
weights are free parameters fitted from data. An en-
vironment is described by moments of inertia of these
shells. All possible contractions of one or more moment
tensor to a scalar comprise an infinite sequence of basis
functions. This sequence is truncated to yield a finite set
of basis functions used in a particular MTP model. The
contribution of an environment to the energy is, thus,
a linear combination of basis function with coefficients
which are also found from data. Refer to Ref.7 for more
details.

In this work for binary systems, we used an MTP with
about 300 basis functions. The cutoff for atomic environ-
ments was 7 Å. The environments were described by five
shells, and the dependence of the weight of a neighbor on
the distance to the central atom of the environment was
described by eight basis functions. Thus, the total num-
ber of parameters in a binary MTP is 5×8×22+300 ≈ 450
(the factor 22 follows from the fact that there can be
two types of the central atom and two types of each
neighboring atoms). For the 10-component MTP, we
used six shells and 850 basis functions, totaling about
6 × 8 × 30 + 864 ≈ 2300 parameters, where the factor 30
is the number of interacting pairs of atoms.

B. Dataset details

Table I. k-point density Shown are the minimum and maxi-
mum values of k -point density across all structures for each
of the alloys for computing the DFT total energies.

Number of k -points /Å
3

System Maximum Minimum

AgCu 550 516
AlFe 596 468
AlMg 635 478
AlNi 589 464
AlTi 535 399
CoNi 554 433
CuFe 568 444
CuNi 561 440
FeV 480 401

NbNi 516 472

C. Analysis of dataset and models
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r + log(c + 1)logz
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Figure 1. Alchemical similarity explains prediction er-
rors.Shown are the logarithmized root mean squared error
(RMSE; compare Fig. 2 as a function of an analytic expres-
sion in the difference in row r and column c of the periodic
table as well as atomic number z of the two chemical element
species of a binary alloy. R2 = 0.81.
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Figure 2. Improvement of MBTR+DNN model on all alloys. Shown are the root mean squared error (RMSE) when trained on
each alloy separately (blue bars) and on all alloys simultaneously (grey bars).
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Figure 3. Influence of unit cell size on errors. Shown are the absolute errors (meV/atom) as a function of the number of atoms
in the unit cell for a validation set of 595 randomly chosen structures using the MBTR+KRR model. The number in brackets
and the dashed line indicate the root mean squared error (RMSE, meV/atom) and the median absolute error (meV/atom) on
the same set. If small structures (one or two atoms in the unit cell) are not contained in the training data (that is, are shown in
the plot) they tend to have larger errors, increasing overall RMSE as well. If all small structures are contained in the training
data, the overall RMSE is low (AlMg, CoNi). Retraining models with small structures included in the training set improved
RMSE in all cases, by an amount depending on how many structures were added.
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Figure 4. Visualizing all 15950 structures (DFT-10B) using a t-SNE plot. Each structure in the higher-dimensional space
(MBTR) is graphically represented on a 2D plane using t-SNE8 method. We can observe that 1 or 2 atom unit cells are not
representative of larger unit cells in the dataset and are away from other higher atom unit cells. This is a possible reason for
high prediction errors when 1 or 2 atom cells are not included in the training set.
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5.3 Methodology for generating DFT-45B dataset 48

5.3 METHODOLOGY FOR GENERATING
DFT-45B DATASET

We created a dataset (DFT-45B) containing
structures of the 45 binary alloys AgAl, AgCo,
AgCu, AgFe, AgMg, AgNb, AgNi, AgTi, AgV,
AlCo, AlCu, AlFe, AlMg, AlNb, AlNi, AlTi,
AlV, CoCu, CoFe, CoMg, CoNb, CoNi, CoTi,
CoV, CuFe, CuMg, CuNb, CuNi,CuTi, CuV,
FeMg, FeNb, FeNi, FeTi, FeV, MgNb, MgNi,
MgTi, MgV, NbNi, NbTi, NbV, NiTi, NiV, and
TiV.

Each alloy system includes all possible unit
cells with 1–8 atoms for face-centered cubic
(fcc) and body-centered cubic (bcc) crystal
types, and all possible unit cells with 2–8
atoms for the hexagonal close-packed (hcp)
crystal type. This results in 631 fcc, 631 bcc
and 333 hcp structures, yielding 1595 · 45

= 71 775 unrelaxed structures in total. We
refer to this dataset as DFT-45B in this work.
The cell shape, volume, and atomic positions
were not optimized and the calculations are
all unrelaxed, for the sake of efficiency. The
crystal structures were generated using the
enumeration algorithm by Hart and Forcade
[59].

Lattice parameters for each crystal structure
were set according to Vegard’s law. [60,
61] Total energies were computed using
density functional theory (DFT) with projector-
augmented wave (PAW) potentials [62–64]
within the generalized gradient approximation
(GGA) of Perdew, Burke, and Ernzerhof [65]
(PBE) as implemented in the Vienna Ab Initio
Simulation Package [66, 67] (VASP). The k-
point meshes for sampling the Brillouin zone
were constructed using generalized regular
grids. [68, 69]
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