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ABSTRACT

Investigation of a New Method of Estimating Acoustic Intensity

and Its Application to Rocket Noise

Benjamin Young Christensen

Department of Physics and Astronomy, BYU

Master of Science

An alternative pressure-sensor based method for estimating the acoustic intensity, the phase

and amplitude gradient estimation (PAGE) method, is presented. This method is similar to the

finite-difference p-p (FD) method, in which the intensity is estimated from pressure measurements

made using an array of closely spaced microphones. The PAGE method uses the same hardware as

the FD method, but does not suffer from the frequency-dependent bias inherent to the FD method.

Detailed derivations of the new method and the traditional FD method are presented. Both meth-

ods are then compared using two acoustic fields: a plane wave and a three monopole system. The

ability to unwrap the phase component of the PAGE method is discussed, which leads to accurate

intensity estimates above previous frequency limits. The uncertainties associated with both meth-

ods of estimation are presented. It is shown that the PAGE method provides more accurate intensity

estimates over a larger frequency bandwidth. The possibility of using a higher-order least-squares

estimation with both methods is briefly demonstrated. A laboratory experiment designed to vali-

date the PAGE method was conducted. The preliminary results from this experiment are presented

and compared to analytical predictions. Finally, the application of the PAGE method to a static

rocket test firing is presented. The PAGE method is shown to provide accurate intensity estimates

at frequencies that are higher than possible with just the FD method.

Keywords: acoustic intensity, finite-difference, rocket noise
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Chapter 1

Introduction

Almost 100 new satellites are sent into space every year. One concern faced when launching a

satellite into space is the protection of sensitive equipment against harmful rocket noise. The noise

generated by rockets, or launch vehicles, causes large vibrations that have damaging effects on

the launch facilities, the rockets themselves, and their payloads. To be able to protect against and

control these vibrations, a better understanding of the generation and propagation of rocket noise

is needed.

The models used to predict rocket noise fields are currently validated with far-field pressure

measurements.1 We propose that better validation measurements can be obtained by using near-

field, energy-based measurements. These measurements will also provide insight into the phys-

ical processes that govern rocket noise generation and propagation. An acoustic, energy-based

measurement refers to any measurement of acoustic intensity, sound power, and energy densities.

Energy-based quantities are useful in the analysis of rocket noise because they provide more in-

formation about source characteristics than simple pressure measurements. Of the various energy-

based quantities, this work focusses on acoustic intensity, a vector quantity indicating energy flux,

or the sound power per unit area.2 Assuming small amplitudes and no mean flow, the complex

instantaneous intensity in the frequency domain is given by I = pu∗, where p is the complex scalar

1
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measure of pressure and u∗ is the complex conjugate of the particle velocity, a vector. This study

is primarily focused on the real part of the complex intensity, known as the active intensity. Be-

cause it is a vector, acoustic intensity is often used to localize sound sources.19 Furthermore, if

intensity measurements are made over a closed surface around a source, the acoustic power of that

source can be determined.3 Overall, intensity is preferred over pressure because it provides more

information per measurement point.

Researchers at BYU have led the development of new acoustic intensity probes to measure

near-field energy quantities in rocket noise.4–7 Multi-microphone probes are used to estimate pres-

sure gradients, which are then used to calculate acoustic intensity.8 Traditionally, these gradients

have been estimated through a method that involves using the differences of pressures to create a

least-squares estimate of particle velocity, which is then used to calculate intensity. This method

is known as the p-p method of estimating acoustic intensity, which we will refer to as the FD

method.9

A new method has been proposed that separates the pressure gradient into phase and ampli-

tude components.10 The phase gradient is found through a least-squares estimation using pairwise

transfer functions between microphones. The amplitude gradient is found through a least-squares

method using the magnitude of the complex pressures. This method is called the phase and ampli-

tude gradient estimator (PAGE) method. The analysis and implementation of this new method is

the primary focus of this work.

It is found that the new method is superior to the traditional FD method. Where the FD method

has a known issue of underestimating the intensity field as frequency increases, the PAGE method

does not suffer from this same frequency-dependent bias. Additionally, one of the primary advan-

tages of the new method is that the argument of the transfer functions can be unwrapped. In certain

fields, this allows for accurate intensity estimates at frequencies higher than limitations due to the

spatial Nyquist limit.
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This thesis is laid out in the following manner. First, details of the formulations of the FD and

PAGE methods of estimating acoustic intensity are presented in Chapter 2. This chapter comes

from a paper submitted to the Journal of the Acoustical Society of America. Phase unwrapping

and its limitations are also included in this chapter, as well as special considerations for ensemble

averaging. Several comparison cases are included that show how the PAGE method gives superior

results in multiple cases. Finally, the chapter ends with an uncertainty analysis, where the effects of

calibration error on both methods are presented. A paper written as a part of a Utah NASA Space

Grant is included as Chapter 3, which describes recent work to experimentally validate the PAGE

method in a laboratory setting. The final chapter outlines an application of the PAGE method to

rocket noise and demonstrates how this new method can be used to achieve more accurate intensity

measurements of rocket noise.



Chapter 2

A comparison of acoustic intensity

estimation techniques

2.1 Introduction

The method for in-air acoustic intensity measurements using matched microphone sets has been

sufficiently refined so that it is the subject of several standards.11, 12 Additional standards have been

developed for various applications of intensity measurements, including in situ emission pressure

level measurements,13 sound power measurements,14, 15 and determination of sound insulation

properties in building acoustics.16–18 The principles and applications of acoustic intensity are

described in a textbook by Fahy19 and in other handbooks, such as Refs.20–22. These standards

and books deal almost exclusively with a method for estimating acoustic intensity that is commonly

referred to as the finite-difference p-p method. This method uses multiple matched microphones to

estimate the pressure gradient across the microphones, which corresponds to the particle velocity

and thereby the acoustic intensity. This method suffers from a frequency-dependent bias: the

method underestimates the intensity as frequency approaches the spatial Nyquist frequency, where

4



2.1 Introduction 5

half the wavelength of the incoming waves equals the separation distance between microphones

within the probe.23 For the convenience of this work, the finite-difference p-p method is referred

to simply as the FD method.

In addition to the FD or p-p method, there are intensity probes based directly on simultane-

ous pressure and particle velocity measurements, i.e, the p-u method. A commercially available

probe uses a pair of heated wires to measure acoustic velocity directly.24 In environments where

significant non-acoustic temperature and velocity fluctuations occur, use of the p-p method has

been shown to be more robust7, 21 Recent efforts to develop and use p-p based probes in the near

field of rocket and military jet aircraft plumes4, 5, 25, 26 have served as motivation to examine errors

associated with the FD method.

Various studies have investigated how to quantify and reduce errors related to FD processing of

p-p probes. These include low-frequency phase mismatch,27 high-frequency probe performance28

and the effect of scattering bias,29, 30 as well as the design of multidimensional probes.31–34 In re-

cent papers, Wiederhold et al.35, 36 reviewed many probe designs and considered different schemes

for optimal estimation of sound intensity using the FD method. The foundation for all of these stud-

ies is the original FD method, which involves sums and differences of complex pressures or cross

spectra.

In this work, we propose a new approach for the calculation of acoustic intensity from measured

fields, inspired by the work of Mann et al.37 and Mann and Tichy.2, 38 In these works, it is

demonstrated that the active and reactive intensities can be written as

Ia =
1

ωρ0
P2∇φ , (2.1a)

Ir =− 1

ωρ0
P∇P. (2.1b)

These equations are used to investigate the physical meaning of energy-related quantities. When

Mann et al. compared theoretical results to measured intensities, intensity relations given in
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Eqs. (2.1a) and (2.1b) were not used in measurement, but instead the traditional FD method was

used.38 We propose that the expressions given by Mann et al. can be used to create a new method

of estimating acoustic intensity. The expressions Eqs. (2.1a) and (2.1b) were proposed primarily

as theoretical tools, whereas the focus of this work will be the application of these expressions to

estimate intensity from physical measurements.

The FD method uses a gradient of the complex pressure to determine acoustic intensity. Rather

than estimating the pressure gradient from the complex pressures, the gradients of the pressure

phase and amplitude can be estimated separately. Using these gradients, along with a center pres-

sure amplitude, the relations in Eqs. (2.1a) and (2.1b) can be used to estimate the acoustic inten-

sity. We refer to this method as the phase and amplitude gradient estimation method, or the PAGE

method.

This chapter develops the mathematical theory of the PAGE method and demonstrates the ad-

vantages of this method over the standard FD method. The derivation of the estimation techniques

required for both the FD and PAGE methods is given. One primary advantage of the PAGE method

over the FD method is that the measured phase differences can be unwrapped, which allows for

accurate intensity estimates past the spatial Nyquist limit. A consideration for ensemble averaging

is also included, as it differs slightly between the two methods. We then compare the two methods

through estimation error of various fields, using two simple probe configurations. It is shown that

the PAGE method does not suffer from the frequency-dependent bias and provides better estimates

of the intensity. Lastly, the effects of calibration errors on measurements are considered using an

uncertainty analysis.
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2.2 Theory

All the derivations in this chapter are conducted in the frequency domain; that is, all pressures

and particle velocities are assumed to be obtained from the Fourier transform of an appropriate

function. Variables with numeric subscripts correspond to those evaluated at position vectors with

the same index. For example, p1 is equivalent to p(r1), where r1 is a position vector. The methods

presented here assume that the measured field is statistically stationary and ergodic, meaning the

statistical properties can be determined with a sufficiently long sample.29 This assumption allows

the development of concise frequency-dependent expressions for the complex intensity in terms of

active, Ia, and reactive, Ir, components.

Because both the standard FD method and the new PAGE method for estimating the acoustic

intensity can be formulated in terms of least-squares estimates, we first present the formulation

of this least-squares estimate. The formulation given here provides the same expressions for the

estimated pressure gradient as the method of Pascal and Li.39 However, the approach developed

here is better suited to estimation of the gradient of other field quantities required for this work.

2.2.1 Least-squares estimate of the gradient of a scalar function

A probe consisting of N sensors placed at N unique points with position vectors r1, r2, · · · , rN can

be used to estimate the gradient of a scalar function g(r). It should be noted the methods presented

here require at least one more sensor than the number of dimensions in the system that is to be

measured (i.e. two sensors for one-dimensional fields, three sensors for two-dimensional fields,

etc.). The estimate is developed in a geometry-independent form by defining the N(N −1)/2×3

matrix X with unique pairwise separation vectors as rows:

X = [r2 − r1|r3 − r1| · · · |rN − rN−1]
T (2.2)
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and the 1×N(N −1)/2 vector of unique pairwise differences of the values of the function g at the

sensor positions:

ΔΔΔg =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

g(r2)−g(r1)

g(r3)−g(r1)

...

g(rN)−g(rN−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (2.3)

The gradient of g(r) can be estimated from the approximate relationship:

X∇g = ΔΔΔg+O
{

max
[
X∇(∇g)XT ]} , (2.4)

where ∇(∇g) is the matrix of second-order derivatives of the function g (the Hessian matrix).

The order of the error in Eq. (2.4) is approximately proportional to the product of the maximum

second derivative and the square of the maximum separation distance between sensors. Because

the Hessian matrix can be related to the curvature of isosurfaces in the field g, Eq. (2.4) implies

that the local maximum “radius of curvature” of the field g must be large relative to the square of

the maximum separation distance of the sensors in the probe. In other words, the field must be

close to planar in the neighborhood of the probe.

For probe configurations in which the product of the squared maximum separation distance

with the maximum second derivative is sufficiently small compared to the function value, a first-

order estimate is obtained from the least-squares solution for the over-determined system in Eq. (2.4):

∇̂g =
(
XT X

)−1 XT ΔΔΔg. (2.5)

The overhat is used to indicate estimated quantities. The matrix inversion in Eq. (2.5) requires

that det
(
XT X

) �= 0. A necessary and sufficient condition to be able to invert the matrix XT X for

a two-dimensional probe is that the sensors not lie on a line; for a three-dimensional probe, the

sensors cannot lie in a plane.
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2.2.2 Finite-difference p-p (FD) method

The finite-difference p-p (FD) method relies on a least-squares estimate of the gradient of the

complex pressure. The FD estimate of the gradient of a pressure field p is given by Eq. (2.5) as

∇̂p =
(
XT X

)−1 XT ΔΔΔp. (2.6)

The expression for the estimated pressure gradient ∇̂p in Eq. (2.6) is a linear combination of the

pressures measured at the sensor locations. This estimated pressure gradient may then be used to

estimate the acoustic intensity in the frequency domain as

Îc =
j

ρ0ω
p0∇̂p

∗
, (2.7)

where p0 = p(r0) is the pressure at the“center of mass” of the probe, and

r0 =
1

N

N

∑
i=1

ri. (2.8)

The work of Wiederhold et al.35, 36, 40 gives a detailed analysis of optimal methods of finding p0

given different probe configurations. In these works, Wiederhold et al. discuss different finite-sum

and finite-difference processing methods and their associated biases. Unless a microphone exists

at the center of a probe configuration, these methods must be referenced to attain optimal intensity

estimates for a given probe configuration. If a microphone exists at the center of the probe, such as

in the probe used by Miah et al.,41 p0 is the complex pressure measured by the center microphone.

2.2.3 Phase and amplitude gradient estimation (PAGE) method

The new phase and amplitude gradient estimation (PAGE) method uses estimates of the phase

gradient and amplitude gradient of a pressure field to estimate the acoustic intensity. The PAGE

method is most easily developed using the notation of Mann and Tichy. First, the complex pressure

is separated into amplitude and phase components,

p(r) = P(r)e− jφ(r), (2.9)
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where P and φ are real, scalar functions of the position r, representing the amplitude and phase of

the pressure respectively. The gradient of the pressure p can be written in terms of P and φ as

∇p(r) = [∇P(r)− jP(r)∇φ(r)]e− jφ(r). (2.10)

The active and reactive components of the intensity can be rewritten as

Ia =
1

ωρ0
P2∇φ , (2.11a)

Ir =− 1

ωρ0
P∇P. (2.11b)

We now can obtain an estimate of I from estimates of P, ∇φ , and ∇P.

First, using the same least-squares estimate as Eq. (2.6), ∇φ is estimated as

∇̂φ =
(
XT X

)−1 XT ΔΔΔφ . (2.12)

where ΔΔΔφ represents a vector of pairwise phase differences, which must be obtained from the

measurements of pressure. The phase difference between two sensors can be found from the

transfer function

φ(r j)−φ(ri) = arg
{

e j(φ(r j)−φ(ri))
}

(2.13)

=−arg
{

e− j(φ(r j)−φ(ri))
}

(2.14)

=−arg

{
p j

pi

}
(2.15)

=−arg
{

Hji
}
. (2.16)

Thus the vector of pairwise phase differences, ΔΔΔφ , is given by the pairwise transfer functions as

follows:

ΔΔΔφ =−

⎡⎢⎢⎢⎢⎢⎢⎢⎣

arg{H12}
arg{H13}

...

arg
{

HN−1,N
}

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (2.17)
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Because the phase differences can be obtained directly from the transfer functions, it is preferable

to estimate ∇φ using the method presented in Section 2.2.1 rather than using a least-squares esti-

mate of the total phase φ , which would require the application of the arg function directly to the

pressure measurements pi to obtain the value of φ at each sensor location.

Next, the pressure amplitudes are found by taking the magnitudes of the measured complex

pressures,

Pi = |pi|. (2.18)

∇P can be estimated using the same least-squares estimate as the previous gradients,

∇̂P =
(
XT X

)−1 XT ΔΔΔP, (2.19)

where ΔΔΔP represents all the pairwise differences of the estimated pressure amplitudes (Pi),

ΔΔΔP =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

P2 −P1

P3 −P1

...

PN −PN−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (2.20)

The pressure amplitude at the center of the probe must also be found. If there is a microphone at

the center of the probe, P0 is found by taking the magnitude of the complex pressure of the center

microphone. If a configuration without a center microphone is used, an analysis similar to the work

of Wiederhold et al. must be employed.35, 36, 40

Using these estimated quantities, we can now estimate the reactive and active intensities as

Îa =
1

ωρ0
P2

0 ∇̂φ (2.21a)

Îr =− 1

ωρ0
P0∇̂P. (2.21b)
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2.2.4 Phase unwrapping

Multi-microphone intensity probes are generally limited to an upper frequency limit, determined

by the separation distance between microphones. This limit, which we will call the spatial Nyquist

limit, occurs when kd = π , where k is the wavenumber, and d is the separation distance between

microphones. The FD method suffers from a frequency-dependent bias, where the intensity mag-

nitude is underestimated as kd approaches π . Past the spatial Nyquist limit, the direction and

the magnitude of the intensity estimates given by the FD method become completely unreliable.

While the PAGE method does not suffer from the same inherent frequency-dependent bias as the

FD method, it still normally gives incorrect estimates past the spatial Nyquist limit. Given certain

measurement source characteristics, this limit can be surpassed by unwrapping the phase differ-

ences in the argument of the transfer functions.

The phase differences used in the PAGE method are found by taking the argument of the trans-

fer functions between microphones, arg{Hi j}. The argument function is limited between −π and

π , and as such, when the phase function between two microphones is greater than ±π the phase

function will wrap. For example, a phase difference of 1.1π will wrap to −.9π . The phase differ-

ence between microphones will equal ±π when half the acoustic wavelength is equal to the sepa-

ration distance between the microphones, also known as the spatial Nyquist limit. These wrapped

phase differences result in incorrect phase gradients and thus provide meaningless intensity esti-

mates. When measuring a broadband response, the phase differences function in the frequency

domain will be continuous up to the spatial Nyquist limit. At this point, the phase function will

wrap and exhibit a ±2π jump. If we use a simple “unwrap” function, this discontinuity can be cor-

rected by adding ±2π to the phase function in frequencies above the discontinuity. Because this

type of unwrapping requires a continuous phase function, a broadband source is required. This

phase function unwrapping allows for accurate phase gradient components past the spatial Nyquist

limit, which in turn allows for accurate intensity estimates well past the spatial Nyquist limit.
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With a noise free measurement, there is no upper frequency limit to the PAGE method if the

phase function is unwrapped. In practice, noise in the argument of the transfer function will limit

the extent to which the phase function can be unwrapped. A noisy transfer function will cause the

argument of the transfer function to have multiple discontinuities when the function approaches the

±π limit. If just one of the occurring 2π jumps is not correctly accounted for, the entire function

past that frequency will be incorrect. Thus, minimizing the noise in the transfer functions allows

for a larger range of correctly unwrapped phase differences and thus a larger range of accurate

intensity estimates. The primary means of minimizing noise in the transfer function is through

ensemble averaging, which is discussed in the next section.

2.2.5 Averaging

When applying either the FD or the PAGE method to physical data, it can be advantageous to

apply averaging, especially with non-repeatable noise sources. The averaging required for the

FD method is relatively simple: the time waveform is broken into blocks, and then the complete

intensity processing as discussed above is applied to each block. Each block will then have an

associated intensity vector. The average of these vectors is the complete averaged intensity. This

approach will provide the same result as averaging the individual cross-spectra and then computing

the intensity estimates.

Because the PAGE method relies on the phase of the transfer function, the order of operations

with ensemble averaging must be more carefully considered. To obtain the most accurate time-

averaged intensity, the transfer functions, H12, H13, etc., of each block are calculated. These

transfer functions are then averaged, and the averaged transfer functions are used in the PAGE

calculations. For example,

H12,avg =
1

N

N

∑
n=1

H12,n, (2.22)

where N is the total number of blocks, and n represents the index of each block. The argument
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of these averaged transfer functions is then used in the PAGE method calculations and result in

∇̂φ avg. Similarly, the pressure amplitudes Pi,avg can be found by calculating Pi for each block and

taking the mean. The averaged pressure amplitudes are then used to calculate ∇̂Pavg using the

same method outlined earlier. The quantities Pi,avg, ∇̂Pavg and ∇̂φ avg are then combined to create

a single averaged intensity estimate.

As discussed in Section 2.2.4, the upper frequency limit of the unwrapped PAGE method will

depend on the noise in the argument of the transfer functions between microphones. Ensemble

averaging, as discussed here, helps smooth the transfer functions, and helps the phase to be un-

wrapped at higher frequencies. The trade-off with ensemble averaging is that the spectral resolu-

tion decreases as the number of averages increases.

2.3 Comparison of FD and PAGE intensity estimates

We now compare the accuracy of the intensity estimates produced by the finite-difference method

to those produced by the PAGE method. First, we consider a one-dimensional intensity probe with

two ideal microphones separated by a distance, d, in a plane wave of axial incidence. Given the

pressure from a plane wave traveling in the x direction,

p(x) = Ae− jkx, (2.23)

where A is the acoustic pressure amplitude and k is the wavenumber, the intensity of the wave is

I(x) =
k|A|2
ρ0ω

x̂, (2.24)

where ω is the angular frequency, ρ0 is the fluid mass density, and x̂ is a unit vector in the x

direction. Given two microphones at locations

r1 =−d
2
, r2 =

d
2
, (2.25)
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the literature shows that the FD method estimates the intensity as

Î
FD

a =− 1

ωρ0d
Im{S12(ω)}x̂, (2.26)

where Si j represents the cross-spectrum of the two complex pressure measurements.21 This same

result can be obtained using the method given in Section 2.2.2

Î
FD

c =
j

ωρ0
(

p1 + p2

2
)(

p2 − p1

d
)∗x̂ (2.27)

=
j

2ωρ0d
(p1 p∗2 − p1 p∗1 + p2 p∗2 − p2 p∗1)x̂. (2.28)

Taking the real part of this equation and representing the cross spectrum as Si j gives us

Î
FD

a =
1

2ωρ0d
Re{ j(S12 −|p1|+ |p2|−S21)}x̂. (2.29)

This equation simplifies to Eq. (2.26) since |p1|= |p2| for a plane wave. This expression provides

an accurate approximation for intensity at low values of kd, but underestimates the intensity as kd

approaches π .

Using the results of Section 2.2.3, the estimate given by the PAGE method is calculated as

Î
PAGE

=
−arg{H12}

ωρ0d

( |p1|+ |p2|
2

)2

x̂. (2.30)

This equation simplifies to

Î
PAGE

=
−arg{H12}

ωρ0d
|A|2x̂ (2.31)

because |p1| = |p2| = |A| for a plane wave. The phase of a plane wave is given by kx, so the

difference of phases of two microphones, −arg(H12), separated a distance d will simplify to kd,

as long as kd < π , which is the spatial Nyquist limit of the probe. Within this limit, the expression

for the intensity simplifies to

Î
PAGE

=
kd

ωρ0a
|A|2 (2.32)

=
k|A|2
ρ0ω

, (kd < π) (2.33)
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which is the exact expression for the intensity of a plane wave as seen in Eq. (2.24). Simply put, an

intensity probe with two ideal microphones can perfectly estimate intensity in one dimension with

the PAGE method as long as kd < π . Furthermore, if phase unwrapping is applied (Section 2.2.4),

there is no frequency limit for the one-dimensional PAGE method applied to plane waves. Fig-

ure 2.1 shows the magnitude of the error in estimating the plane wave with both the FD and PAGE

methods. It can be seen that the PAGE method significantly outperforms the FD at all but the

lowest values of ka. The PAGE method produces estimates with no error below the spatial Nyquist

limit, and if phase unwrapping is used, the PAGE method would have no error for any value of ka.

Figure 2.1: FD and PAGE estimation error given an ideal two-microphone sound intensity probe

in a plane wave of axial incidence. The x axis is shown in terms of kd, where k is the wavenumber

and d is the separation distance between the microphones. Phase unwrapping is not applied to the

PAGE estimate.

We now consider intensity estimates in multiple dimensions. This is accomplished by com-

paring analytically derived intensities of two-dimensional fields to intensity estimates of the same

fields given a two-dimensional, four-microphone probe. Two fields are considered: a plane wave

and a three source system. Both pressure fields considered have reflection symmetry, and the probe

is confined to the plane of reflection. First, the derivation of the intensity expressions generated by

the FD and PAGE methods for a two-dimensional probe is demonstrated.
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2.3.1 FD and PAGE expressions for a two-dimensional probe

The chosen probe geometry is an equilateral triangle with a sensor at the center. This is similar

to the design evaluated by Suzuki et al.,42 except that the center microphone is lowered so that all

the microphones are in the same plane. Each of the outside microphones is placed 2 inches from

the center microphone. Using this geometry, p0 and P0 can be determined from the center micro-

phone. It must be noted that without a sensor in the center of the probe, the approach developed

by Wiederhold et al.35, 36, 40 must be employed.

If a is the radius of the circle that circumscribes the probe, then the two-dimensional position

vectors of the probe sensors relative to the probe center are

r1 =

⎡⎢⎣0

0

⎤⎥⎦ , r2 = a

⎡⎢⎣0

1

⎤⎥⎦ ,

r3 =
a
2

⎡⎢⎣√3

−1

⎤⎥⎦ , r4 =−a
2

⎡⎢⎣√3

1

⎤⎥⎦ , (2.34)

and the matrix, X, is

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(r2 − r1)
T

(r3 − r1)
T

(r4 − r1)
T

(r3 − r2)
T

(r4 − r2)
T

(r4 − r3)
T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

a
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2
√

3 −1

−√
3 −1

√
3 −3

−√
3 −3

−2
√

3 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.35)

The pressure gradient as estimated by the FD method is

∇̂p =
1

3a

⎡⎢⎣√
3(p3 − p4)

2p2 − p3 − p4

⎤⎥⎦ . (2.36)
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Since p1 is at the center of the probe, p0 is equal to p1, and the estimated complex intensity is

given by Eq. (2.7)

Î
FD

c = pu∗

= p1(
j

ρ0ω
∇̂p)∗

=
− j

3ρ0ωa

⎡⎢⎣ √
3(p1 p∗3 − p1 p∗4)

2p1 p∗2 − p1 p∗3 − p1 p∗4

⎤⎥⎦ , (2.37)

or in terms of the one-sided cross-spectrum Gi j = 2p∗i p j

Î
FD

c =
− j

6ρ0ωa

⎡⎢⎣ √
3(G31 −G41)

2G21 −G31 −G41

⎤⎥⎦ . (2.38)

In the PAGE method, the pairwise pressure differences used in the FD method are replaced

by the argument of pairwise transfer functions. As was shown previously, this is equivalent to the

pairwise phase differences. The estimated phase gradient is

∇̂φ =− 1

3a

⎡⎢⎣ √
3arg{H34}

arg{H23}+ arg{H24}

⎤⎥⎦ . (2.39)

The estimated pressure amplitude gradient is

∇̂P =
1

3a

⎡⎢⎣ √
3(P3 −P4)

2P2 −P3 −P4.

⎤⎥⎦ . (2.40)

The pressure amplitude at the probe center is P0 = P1 = |p1|. The active and reactive components

of acoustic intensity are then estimated by the PAGE method as

Î
PAGE

a =− P2
1

6aωρ0

⎡⎢⎣ √
3arg{H34}

arg{H23}+ arg{H24}

⎤⎥⎦ , (2.41)

Î
PAGE

r =− P1

6aωρ0

⎡⎢⎣√
3(P3 −P4)

2P2 −P3 −P4

⎤⎥⎦ . (2.42)
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We consider the application of the expressions given in Eqs. (2.37), (2.41), and (2.42) to ideal

fields. It should be noted that instead of explicitly calculating the estimated intensity in terms of

cross-spectra and transfer functions, it can be simpler to leave the derivations in terms of compo-

nent matrices and vectors. For example, once P0, ΔΔΔφ , and X are known, Eq. (2.41) can be computed

in one line as

Î
PAGE

a =
1

ωρ0
P2

0

(
XT X

)−1 XT ΔΔΔφ . (2.43)

2.3.2 Plane wave

Using the expressions developed previously, we again investigate estimation error of a plane wave.

Two quantities are used to evaluate the accuracy of the estimation methods: the error in the ampli-

tude

|I|%err = 100
||Î|− |I||

|I| (2.44)

and the angle between the estimated and exact intensity vectors

θ err = arccos
Î · I
|Î||I| . (2.45)

The results are presented in Figs. 2.2 and 2.3. The error is shown using shades of gray to represent

error ranges; all white regions correspond to less than 1% error in amplitude (Fig. 2.2) or less than

0.01◦ in error in the estimated direction (Fig. 2.3). All black regions correspond to amplitude error

greater than 30% or error in the estimated direction greater than 1◦. The various shades of gray

correspond to intermediate ranges.

Figure 2.2 shows the error in the intensity magnitude estimated with the FD (part a) and PAGE

(part b) methods, where no phase unwrapping is applied to the PAGE method. It can be seen that

both methods break down past the spatial Nyquist point, where the wavelength of the impinging

plane wave becomes equal to the largest microphone separation distance parallel to the direction

of wave propagation. This occurs near kd = π , where d is the maximum microphone separation
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Figure 2.2: The intensity amplitude estimation error of the FD (a) and PAGE (b) methods as

functions of probe rotation angle θ (measured in degrees) and kd, where k is the wavenumber, and

d is the maximum microphone separation distance within the probe.

distance. Since the largest sensor separation distance parallel to the impinging wave depends on

rotation, this limit varies, as can be seen in Fig. 2.2(b). If phase unwrapping is used with the PAGE

method, it will no longer break down at the spatial Nyquist limit and will result in negligible

error over all frequencies. The frequency bias inherent to the FD method is apparent, where the

estimation error increases as frequency increases. While this bias is reduced by using the center

microphone for the pressure component of intensity,40 it can still be clearly seen in Fig. 2.2 where

the estimation error of the FD method increases as kd increases. The PAGE method does not suffer

from this same bias as it gives accurate estimates up to the spatial Nyquist limit of the probe. Thus
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Figure 2.3: Error in the estimated angle of the acoustic intensity. The error in the angles estimated

by the FD (a) and PAGE (b) methods as functions of probe rotation angle θ (measured in degrees)

and kd, where k is the wavenumber, and d is the maximum microphone separation distance within

the probe.

we see that for propagating plane wave fields measured by the 2D probe in question, the PAGE

method provides better intensity estimates. Though the results are only shown for a particular

probe configuration, similar results can be seen with other probe types.

2.3.3 Three-source system

A more complicated acoustic intensity field can be created with three evenly spaced monopoles on

a line, with the middle monopole 180◦ out of phase with the other two. The pressure at any field
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Figure 2.4: Active intensity produced by a system of three simple sources spaced evenly on a line,

with the center source 180◦ out of phase with the others. The frequency is 400 Hz, and the sources

are spaced 18 cm apart.

point is

p(r) =
3

∑
i=1

Ai
e− jk|r−ri|

|r− ri| (2.46)

where A1 = 1Pa · m, A2 = −1Pa · m, A3 = 1Pa · m and r1 = [−0.18,0,0]Tm, r2 = [0,0,0]Tm,

r3 = [0.18,0,0]Tm. The particle velocity is

u(r) =
3

∑
i=1

− j
Ai

kρ0c0

r− ri

|r− ri|3 (1+ jk|r− ri|)e− jk|r−ri|. (2.47)

Figure 2.4 shows the active acoustic intensity of this field. The expressions for the estimated active

intensities given in Eqs. (2.37) and (2.41) are used to predict the intensities over the domain shown,

and the error of these estimates (given by Eqs. (2.44) and (2.45)) is presented in Figs. 2.5 and 2.6.

By looking at the estimation errors of this complicated intensity field, we can determine how both
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the methods presented perform in complicated fields. In the near field of these monopoles there

will be significant reactive components of the intensity, but the evaluation of the PAGE and FD

method for reactive intensities is not considered at this time. The probe used to evaluate these

fields has a microphone separation distance (a) of 5.08 cm (2 in.), which results in a maximum

separation distance, d, of 8.8 cm. The frequency being evaluated is 400 Hz, which leads to a kd of

0.645. Shades of gray again represent error ranges. The range of errors for this field is greater than

in the case of the plane wave and so the error ranges are larger.

The black regions near the sources indicate that both the FD and PAGE methods fail to accu-

rately represent the acoustic intensity in these regions. It is clear that away from the complicated

near field of the three monopoles, both methods give reasonable results for the active intensity.

However, the PAGE method gives more accurate results than the FD method across most of the

near field. These figures only show results at a single frequency, but a similar pattern is seen over

all frequencies: the PAGE method consistently outperforms the FD method.

.

2.4 Error analysis

Both the FD and PAGE methods rely on phase-matched microphones. At low frequencies, even

small phase errors between microphones cause large errors in intensity estimates. Phase calibration

of microphones can help minimize the errors caused by phase mismatch. In addition, the impact

of phase mismatch is lessened when the distance between microphones is increased.

At high frequencies, sound scattering off the body of an intensity probe can cause errors in

acoustic intensity. This can be reduced by minimizing the scattering surfaces of the probe and

by increasing the separation distance between microphones. However, the spatial Nyquist limit

is proportional to the inverse of the separation distance, and so increasing microphone separation
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Figure 2.5: Error in the estimated magnitude of the active intensity at 400 Hz of the three-source

system shown in Fig. 2.4 for the FD (a) and PAGE (b) methods. Estimates are calculated using the

two-dimensional probe described in Eq. (2.35)

reduces the spatial Nyquist limit. This has led to most acoustic intensity probes employing closely

spaced microphones, thus sacrificing lower frequencies for a larger frequency range. As discussed

in Section 2.2.4, the phase components of the PAGE method can be unwrapped, and accurate

results can be obtained beyond the spatial Nyquist limit in appropriate fields. Using this phase

unwrapping, larger separation distances can be used without sacrificing higher frequencies. Thus,

the problems of both phase mismatch at low frequencies and scattering at high frequencies can be

mitigated by increasing the microphone separation. The size of an intensity probe using the PAGE
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Figure 2.6: Error in the estimated direction of the active intensity for the three-source system

shown in Fig. 2.4 for the FD (a) and PAGE (b) methods. Estimates are calculated using the two-

dimensional probe described in Eq. (2.35).

method still needs to remain small enough that the field is locally planar.

2.4.1 Uncertainty analyses

As the PAGE method is new, the following section will give a more complete example of how

small phase errors affect acoustic intensity errors. For this section, we will be using overbars to

denote actual values, so for example, if p is the measured pressure, p̄ would be the actual pressure.
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First, we will assume that the measurable pressure amplitude and phase are both random vari-

ables normally distributed about their physical values, so

P ∼ N (P̄,σ2
P) (2.48)

and

φ ∼ N (φ̄ ,σ2
φ ). (2.49)

The complex pressure can then be simulated by combining these two random variables

p = Pe jφ . (2.50)

By assuming the different phase and amplitude random variables are independent, the differ-

ence between these will also be normally distributed. Thus we can write the vectors of phase and

amplitude differences as

ΔΔΔφ ∼ N (ΔΔΔφ ,σ2
ΔΔΔφ ) (2.51)

and

ΔΔΔP ∼ N (ΔΔΔP,σ2
ΔΔΔP), (2.52)

Furthermore, because of the assumed independence, we know that

σ2
ΔΔΔφ = 2σ2

φ (2.53)

and

σ2
ΔΔΔP = 2σ2

P. (2.54)

Following the work of Szuberla et al.,43 we can now find the variance in the gradient of the phase

and amplitude by defining

C = XT X, (2.55)
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D = ET CE =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

λ1 0 · · · 0

0 λ2

...
. . .

...

0 · · · λn.

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (2.56)

where C is the sensor separation covariance matrix, E is a matrix of eigenvectors of C, and D is a

diagonal matrix of eigenvalues. The variances of the gradients can be written as

σ∇φ ,n =

√
σ2

ΔΔΔφ

λn
(2.57)

σ∇P,n =

√
σ2

ΔΔΔP
λn

, (2.58)

where λn represents the eigenvalues in D. The eigenvectors in E define the rotation of the coordi-

nates from the principal axis. Thus we can represent the phase and amplitude gradients in terms of

multivariate Gaussians, centered at the location of the actual values with covariance defined by C.

These can be combined with the Gaussian pressure amplitudes to simulate the intensity as

IPAGE
a =

1

ωρ0
P2∇φ (2.59)

IPAGE
r =− 1

ωρ0
P∇P, (2.60)

where

P ∼ N (P̄,σ2
P), (2.61)

and

∇φ ∼ N (∇φ ,C∇φ ), (2.62)

∇P ∼ N (∇P,C∇P). (2.63)

We can now simulate the uncertainties associated with determined phase and amplitude errors.

For the following figures the same 2D intensity probe from Section 2.3.1 is used, and we assume
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typical calibration errors of σP = 0.05 dB and σφ = 0.05◦. This means that the input pressures

are 95% accurate within ±0.1 dB and ±0.1◦. Frequency independent calibration errors are used

for this analysis, though it should be noted that in practice phase mismatch is likely to be worse at

low-frequencies.

Using these sigma values, a random set of normally distributed pressure amplitudes P and phase

values φ are generated. The FD and PAGE methods are then applied to the generated values to

estimate the intensity. If we assume the resulting PAGE and FD estimates are multivariate normal

distributions, we can estimate the covariance matrix associated with the scattered intensities.44

This covariance matrix, along with the mean of the resulting intensities, is used to find a 95%

ellipse to fit the data. Using more points has negligible effect on the resulting error ellipses, so

it is determined that 10,000 intensity estimates is a sufficient sample size. The resulting 95%

error ellipses can be seen in Fig. 2.7. As we can see in the figure, measurement uncertainties of

the PAGE and FD methods are nearly equivalent at low frequencies. At higher frequencies, the

frequency-dependent bias of the FD method can be see as the error ellipse is no longer centered

around the correct value, but instead the intensity is underestimated.

One insight gained from Fig. 2.7 is how each method responds to calibration. The magnitude

of the uncertainties found through the PAGE method are correlated directly with magnitude cal-

ibration errors. For example, increasing σP results in larger magnitude uncertainties but has no

effect on the angle uncertainties. The uncertainty ellipses from the FD method, on the other hand,

do not seem to have as direct of a correlation; increasing σP affects both the phase and magnitude

errors.
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Figure 2.7: Uncertainty in magnitude and direction of the intensity found from the 95% confi-

dence ellipses for both the FD (dashed lines, no fill) and PAGE (solid lines, gray fill) methods.

Uncertainties are calculated using the the two-dimensional probe described in Eq. (2.35), and us-

ing calibrations errors of σP = 0.05 dB and σφ = 0.05◦. The plot on the top shows three sample

error ellipses at frequencies marked by dotted vertical lines on the bottom two plots. The vector in

the top plot represents the analytic intensity.

2.5 Summary and conclusions

We have presented a least-squares formulation of the gradient estimation technique for arbitrary

probe geometries. This method has been applied to the finite-difference p-p (FD) method for
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estimating the acoustic intensity. We also developed a new technique that we have termed the

phase and amplitude gradient estimation (PAGE) method by combining finite-difference estimates

for the phase and amplitude gradients with the analytical work of Mann and Tichy.2, 37, 38 This

method estimates ∇φ and ∇P separately and uses the result to estimate the acoustic intensity. The

estimated phase gradient ∇̂φ is obtained from the pairwise transfer functions of the microphones

in the probe. The amplitude gradient ∇̂P is estimated using the resulting pairwise differences of

the pressure amplitudes measured at the microphones in the probe. One advantage of the PAGE

method is that the estimated phase gradient can be unwrapped in certain cases, which allows for

accurate intensity estimates past the spatial Nyquist limit. Special consideration was given when

using ensemble averaging with the PAGE method.

The FD and PAGE methods have been compared for three cases: a one-dimensional probe in a

plane-wave field, a two-dimensional probe rotated in a plane-wave field, and the two-dimensional

probe in the field produced by three ideal point sources. These cases have been chosen to illustrate

the advantages of the PAGE method for estimating the acoustic intensity of plane-wave fields and

to show that the advantages persist in more complex systems. It has been shown that for all these

cases, the PAGE method estimates exhibit less error than the FD method estimates. The PAGE

method produces estimates of the active acoustic intensity with negligible error for plane-wave

fields with frequencies below the spatial Nyquist frequency. Furthermore, in the case of the three-

source system presented in Fig. 2.4, the PAGE method has less overall error than the FD method.

Finally, a brief error analysis of the FD and PAGE methods has been presented. It was shown

that calibration errors have equal effects on both methods at low frequencies. However, the FD

method produces significantly biased results at higher frequencies while the PAGE method has no

bias. Furthermore, the robustness of the PAGE method at frequencies above the spatial Nyquist

allows for the microphones to be spaced farther apart which in turn helps to improve the low

frequency estimates.
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The PAGE method developed here provides significant advantages over the standard finite-

difference p-p method for estimating acoustic intensity. Because the PAGE method uses the

same hardware as the FD method, the PAGE method can be implemented on any existing finite-

difference p-p intensity probe. It does not suffer from the same frequency-dependent bias and

appears to be more accurate in general.



Chapter 3

Laboratory validation

3.1 Introduction

In this chapter, we investigate the effectiveness of a new approach for the estimation of acoustic

intensity, inspired by the work of Mann et al.37 and Mann and Tichy.2, 38 Rather than estimate

the pressure gradient directly from the complex pressures, this new method uses estimates of the

gradients of the pressure phase and amplitude separately. We refer to this method as the phase

and amplitude gradient estimation method, or the PAGE method. This new method has been

shown to be analytically superior to the traditional method of estimating acoustic intensity, the

finite-difference p-p method. The traditional finite-difference p-p method of estimating acoustic

intensity will be referred to simply as the FD method for the remainder of the chapter.

A recent experiment was conducted to investigate and compare the PAGE method to the FD

method. For this experiment, complicated acoustic intensity fields were created using two con-

figurations of a loudspeaker array. First, a dipole response was created with two speakers close

together with opposite phases. Second, a three-source system was made with three equally spaced

speakers with the middle speaker having opposite phase of the outside speakers. Both these ar-

32
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rangements create relatively complex acoustic intensity fields. A 2D plane directly in front of the

speaker array was measured using an acoustic intensity probe that was developed specifically for

rocket noise measurement. This is the same 2D probe arrangement discussed in Section 2.3.1.

To effectively evaluate the two intensity methods, we compare the measured intensities to a

theoretical model. Point sources will be used to model the loudspeakers. Though this is an overly

simplistic model, it provides a simple starting point for comparison.

3.2 Experimental setup

Two loudspeaker arrangements were used to create acoustic intensity fields. Both arrangements

were chosen to create relatively complex acoustic intensity fields using a simple array of loud-

speakers. The loudspeakers had a diameter of 2.5 in., and each was separated 7 in. from adjacent

speakers.

First, a dipole-like field was created using two speakers with opposite phases. Second, a more

complex field was generated by using three speakers in a line with the middle speaker 180◦ out of

phase with the outside speakers. This was used to simulate a response like the one discussed in

Section 2.3.3. Both arrangements were measured in an anechoic chamber. Coherent white noise

was played into each speaker with the polarity switched on the 180◦ out of phase speakers. Using

a scanning system, the 2D intensity probe was moved across a grid in front of the speaker array,

and at each point in the grid the pressure at the microphones was measured. The FD and PAGE

methods of estimating acoustic intensity were applied to the pressure data to find the frequency-

dependent intensity at each location in the grid. The result is a 2D intensity map similar to those

found in the article by Mann and Tichy.2

The primary advantage of the PAGE method is that it allows for accurate intensity measure-

ments over a larger frequency band, as explained in Section 2.2. When measuring smoothly varying
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broadband sources, it is possible to unwrap the phase component of the PAGE method, allowing for

accurate intensity estimates well above the limitations of the FD method. This phase unwrapping

is applied to the results.

To provide a comparison for the results, we must determine an expected intensity field given

the source configurations. To determine the expected 2D intensity fields, we model the speakers in

the array as monopoles. Though speakers are hardly point sources, this model should be sufficient

for a qualitative comparison, particularly at lower frequencies where the acoustic wavelength is

large compared to the loudspeaker diameter. The measured intensity fields are compared to the

modeled intensities in the following section.

3.3 Results

Figures 3.1–3.8 seen at the end of this chapter compare the modeled intensities with the estimated

intensities found from the FD and PAGE methods. The scanning system used for this experiment

suffered from calibration errors which caused the x axis to drift. An attempt was made to correct

for this drift in the processing, which is why the locations of the intensity vectors are skewed.

The conclusions presented in this chapter serve primarily as a qualitative analysis. An extensive

quantitative analysis of these results will be the subject of future work.

At low frequencies we can see that the estimates from both methods match the point-source

model. This is demonstrated by comparing Fig. 3.1 with Fig. 3.2 and Fig. 3.5 with Fig. 3.6. We

expect the model to match well at these low frequencies because the acoustic wavelength is large

compared to the diaphragm of the loudspeakers, thus their response is similar to that of a point

source. It appears that the PAGE method fails near the deep nulls of the dipole, possibly because

one of the microphone lies directly in the null.

At higher frequencies we see large discrepancies between the PAGE and FD estimated inten-
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sities. Figures 3.4 and 3.8 show that the measured intensity amplitudes from the FD method are

significantly smaller than those of the PAGE method. Furthermore, the vector directions that result

from the FD method are also clearly incorrect. Both the magnitude and direction errors in the

FD estimates are a result of the frequency being past the spatial Nyquist limit of the probe. The

PAGE method still performs decently at this frequency due to the unwrapped phase gradients. The

magnitudes appear to be accurate, but the angles have errors in many areas of the fields. Com-

paring Fig. 3.3 with Fig. 3.4 and Fig. 3.7 with Fig. 3.8, we can see clearly that the point-source

model no longer matches the estimated intensities. This is due to the acoustic wavelength (2.7 in.)

being comparable to the diameter of the loudspeaker (2.5 in.), thus the monopole approximation

in no longer as valid. Another concern is that at these higher frequencies the radius of curvature

of the field may be comparable to the area of the probe. In other words the measured fields are

no longer locally planar, which would cause errors in the intensity estimates. Using a smaller

probe would be ideal for these spatially complex higher frequencies. It may also be possible to use

the second-order methods discussed in Appendix A to be able to better resolve these complicated

fields.

3.4 Conclusion

Qualitatively, we can clearly see that the PAGE method outperforms the FD method at high fre-

quencies. Both methods appear to work well at low frequencies. With phase unwrapping, the

PAGE method can be used past the spatial Nyquist limit to give intensity estimates well beyond

the limits of the FD method. The systems created here are spatially complex at higher frequencies,

and it is clear that this affects the PAGE method estimates. Even with the difficulties in resolving

higher frequency fields, the PAGE method still clearly outperforms the FD method as it provides

accurate magnitudes as well as somewhat accurate vector angles.
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Future work will include taking a new data set to correct the errors due to the mis-calibrated

scanning system. With this new data set, a rigorous quantitative comparison of the measured inten-

sity fields to the modeled fields can be made, whereas this analysis has been primarily qualitative.

A more accurate loudspeaker model may also be used to improve the high-frequency modeling. To

further improve the model, the loudspeaker cone velocities can be measured as the data is taken,

which can then be used as inputs into the improved model.

Figure 3.1: The modeled acoustic intensity field from two closely spaced, out-of-phase loud-

speakers at 400 Hz. The loudspeakers are modeled as simple point sources.
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Figure 3.2: The measured acoustic intensity field from two closely spaced, out-of-phase speakers

at 400 Hz. Each vector position represents a measurement location. Intensity was processed using

both the FD (left) and PAGE (right) methods.
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Figure 3.3: The modeled acoustic intensity field from two closely spaced, out-of-phase speakers

at 5000 Hz. The loudspeakers are modeled as simple point sources. This is a poor model for

these loudspeakers at this frequency since the acoustic wavelength is close to the same size as the

diameter of the loudspeakers.
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Figure 3.4: The measured acoustic intensity field from two closely spaced, out-of-phase speakers

at 5000 Hz. Each vector position represents a measurement location. Intensity was processed using

both the FD (left) and PAGE (right) methods.
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Figure 3.5: The modeled acoustic intensity field from three closely spaced speakers, with the

middle speaker out of phase with the outside speakers, at 400 Hz. The loudspeakers are modeled

as simple point sources.
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Figure 3.6: The measured acoustic intensity field from three closely spaced speakers, with the

middle speaker out of phase with the outside speakers, at 400 Hz. Each vector position represents a

measurement location. Intensity was processed using both the FD (left) and PAGE (right) methods.
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Figure 3.7: The modeled acoustic intensity field from three closely spaced speakers, with the

middle speaker out of phase with the outside speakers, at 5000 Hz. The loudspeakers are modeled

as simple point sources. This is a poor model for these loudspeakers at this frequency since the

acoustic wavelength is close to the same size as the diameter of the loudspeakers.
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Figure 3.8: The measured acoustic intensity field from three closely spaced speakers, with the

middle speaker out of phase with the outside speakers, at 5000 Hz. Each vector position repre-

sents a measurement location. Intensity was processed using both the FD (left) and PAGE (right)

methods.



Chapter 4

Rocket noise analysis

4.1 GEM-60 measurement setup

The performance of the two acoustic intensity estimation methods was tested in the environment

of a full scale rocket on September 6th, 2012. Made possible by ATK, a team of BYU and Blue

Ridge Research and Consulting participated in a ground test of a GEM 60 solid rocket motor.

This horizontal static test firing occurred in Promontory, Utah at ATK’s test facility. The GEM-60

has a 1.09 m (3.59-ft) diameter nozzle with a burn time of approximately 90.8 seconds. Similar

measurements of a GEM-60 were taken previously by Gee et al.5, 45

Intensity probes and single microphones along with other transducers were set up in the field

near where the rocket would fire. The measurement layout is shown in Fig. 4.1. Sensor location

distances are described in terms of nozzle diameters (D) with 1D equaling 1.09 m. Angles are

measured with respect to the estimated noise source origin, which is 17D downstream of the nozzle

exit. Primarily, the 2D intensity probe discussed in Section 2.3.1 was used along the shear layer

of the rocket plume. A 3D tetrahedral probe developed in conjunction with NASA was also used.

Both probe designs can be seen in Fig. 4.2.

44
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Figure 4.1: GEM-60 measurement layout.

Figure 4.2: 2D intensity probe (left) and NASA spherical 3D intensity probe (right) set for rocket

test firing.



4.2 GEM-60 intensity vectors 46

The shear-layer array, indicated by the red dotted line in Fig. 4.1, was offset by 10D, 10.95

m, from the rocket plume shear-layer boundary, which was estimated to be at a 20◦ angle to the

centerline. Shear-layer measurement location distances were measured from the nozzle exit plane.

Eight 2D probes were deployed at locations 1 through 8, along the shear layer at distances of

10D, 15D, 20D, 25D, 30D, 40D, 50D, 60D from the nozzle exit. These locations were specifically

chosen to capture the peak source region.

The parallel array, indicated by locations 9 and 10 along the gold dotted line in Fig. 4.1, was

offset by 30D (32.85 m), from the centerline. One 2D probe was located 15D from the nozzle exit

indicated by location 9 and one NASA spherical probe was 25D from the nozzle exit at location

10. Two additional arrays were oriented at 100D and 200D circular arcs, indicated in Fig. 4.1

by the teal dotted lines. Along the 100D circular arc, two NASA spherical probes were placed

at locations 12 and 14 at 70◦ and 50◦ from the motor centerline respectively. Additionally, one

individual microphone was placed at location 13 at 60◦. Along the 200D arc, three individual

microphones were deployed at locations 16, 17 and 18 at angles of 65◦, 60◦, and 55◦ respectively.

4.2 GEM-60 intensity vectors

The resulting intensity vectors from the various probes are presented here. Both the finite-difference

(FD) and the new phase and amplitude gradient estimation (PAGE) methods of estimating inten-

sity are used. For this test, nine prototypes of the 2D intensity probes were used, as well as three

spherical probes developed under a previous program (see Fig. 4.2). To examine the performance

of the PAGE and FD methods with the new two-dimensional probes, the intensity magnitudes from

two-dimensional and three-dimensional spherical probes are compared in Fig. 4.3 and Fig. 4.4.

These plots also include the power-spectral-density (PSD) of the center microphone, with an offset

of 10log10(d f ), where d f is the frequency bin-width. For a propagating wave field, the active
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Figure 4.3: Active acoustic intensity magnitude of the GEM-60 using the FD and PAGE methods

for the two-dimensional probe (probe 2), compared to the total sound pressure level (“the offset

PSD”) at the location. For a propagating wave field, the intensity and sound pressure levels should

be nearly equal. The vertical dashed line represents the spatial Nyquist limit of the probe. Due to

phase unwrapping, the PAGE method is shown to give high-frequency performance that is superior

to the FD method.

intensity should have the same magnitude as these offset PSDs, thus they are included for ref-

erence. Figure 4.3 shows these quantities for probe 2, which is the second closest probe to the

rocket (probe 2 in Fig. 4.1), and Fig. 4.4 is from one of the spherical 3D intensity probes (probe

10). These plots demonstrate the inherent frequency-dependent bias of the FD method, and illus-

trate how the PAGE method can be used to greatly increase the upper limit for these probes. The

PAGE method allows for the phase gradient to be unwrapped, which then yields accurate results

beyond the spatial Nyquist frequency. Though in theory, there is no upper frequency limit to the

unwrapped PAGE method, in practice we find that it is limited by the noise in the argument of the
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Figure 4.4: The same quantities as Fig. 4.3 are shown here, but for a 3D spherical NASA probe

(probe 10). A comparison with Fig. 4.3 shows that the 3D NASA probes do not provide as accurate

results at low frequencies due to the smaller spacing of the microphones. As a result of the smaller

microphone spacing, the spatial Nyquist frequency is much higher than it is for the 2D probes.

pair-wise transfer functions.

One method to determine the upper frequency limit of the PAGE method intensity estimates is

to look at the arguments of the transfer functions between microphones. Figure 4.5 shows these

transfer functions for one of the 2D intensity probes, as well as the same functions with unwrapping

applied. In this figure, it is clear that the noise in the argument of the transfer function causes the

unwrapping to fail at higher frequencies. If more averaging is applied to the same data, the phase

function can be accurately unwrapped to higher frequencies, as can be seen in Fig. 4.6. Since

the exact frequency where phase unwrapping fails is measurement dependent, it is important to

use the argument of the transfer functions to determine the upper frequency limit of a particular
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measurement. It is also important to recall that phase unwrapping only works when measuring

broadband sources.
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Figure 4.5: The argument of the transfer functions between the four microphones of one of the

2D intensity probes. The black dashed lines represent ±π . It can be seen how the noise in the

transfer function causes failures in the unwrapping. The averaging here leads to a bin-width of

approximately 11 Hz.

With sufficient averaging, the unwrapped PAGE method for the 2D probes breaks down around

10kHz. The spatial Nyquist frequency is around 1950 Hz for the 2D probes and 5600 Hz for the

spherical 3D probes. It should be noted that by having a microphone in the center of the probe,

finite-sum errors are eliminated in estimating the pressure at the center of the probe. This leads

to improved performance of the FD method; namely, it doesn’t appear to completely break down

until double the Nyquist limit. Overall, large microphone separation distances allows for better

low-frequency estimates, while high-frequency estimates are still possible due to the unwrapped
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Figure 4.6: The same arguments of transfer functions as Fig. 4.5 are show, but processed with

smaller block sizes as to increase the number of averages. This allows the unwrapping to work

at higher frequencies but at the cost of larger frequency bins. The plots here have a bin-width of

approximately 50 Hz, which is unsuited for investigating lower frequencies.

PAGE methods. Although there are nonlinear propagation effects present in the field, nonlinear

acoustic propagation tends to be a cumulative effect. Within the neighborhood of each probe,

these cumulative changes due to acoustic nonlinearities are negligible, thus the PAGE method,

which is based on linear acoustic theory, is still valid. The effects of local nonlinear effects such

as acoustic radiation force have not been considered.

The active intensity magnitudes of all eight probes near the shear-layers are shown in Fig. 4.7.

Probe 3 utilized low-sensitivity 3.175 mm (1/8") microphones and as such had a poorer response

for low frequencies. The resulting acoustic intensity vectors are shown in Figs. 4.8 and 4.9. It can

be seen in these figures that as frequency increases, the apparent source of sound moves closer to
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the nozzle and reduces in size. Both methods give comparable results at low frequencies. Overall

we see that at higher frequencies the PAGE method outperforms the FD method because it provides

accurate intensity vectors beyond the spatial Nyquist limit.

Figure 4.7: The active intensity magnitude estimated from the eight 2D intensity probes parallel

to the shear layer. The probes are numbered from closest to farthest from the GEM-60 nozzle (see

Fig. 4.1). The estimates calculated through the FD method are accurate up to approximately 1500

Hz, whereas the PAGE estimates appear to be accurate up to approximately 10kHz.
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Figure 4.8: The active intensity vectors at select frequencies for all the intensity probes are shown.

The vectors have lengths relative to the intensity levels. The black solid and dashed lines represent

the 20◦ and 18◦ angles from the plume, respectively. At the lowest frequencies, the smaller NASA

probes (farthest from source) fail as a result of phase mismatch errors. The 2D probe with 3.175

mm (1/8") microphones (third in the line parallel to the shear layer) also fails at low frequency

because of phase mismatch errors.
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Figure 4.9: The active intensity for three additional frequencies, all above the spatial Nyquist

limit of 1950Hz for the 2D probes, are shown. The FD estimates break down while the unwrapped

PAGE method allows accurate estimates over this limit. This smaller microphone separation in

the NASA probes allows for accurate intensity estimates up to 4kHz. The PAGE method starts to

break down around 10kHz.



Chapter 5

Conclusions

Two methods of estimating acoustic intensity have been presented and compared in this work:

the traditional finite-difference p-p method and the new phase and amplitude gradient estimator

(PAGE) method. Both methods rely on multi-microphone probes, with phase matched micro-

phones. The traditional FD method relies on an estimate of the gradient of the complex pres-

sure. This finite-difference approximation degrades as the microphones become further apart

with respect to the wave-length. This causes the estimates produced by the FD method to have

a frequency-dependent bias; as frequency increases, the FD method underestimates the intensities.

The PAGE method separates the complex pressure into phase and amplitude components, and the

gradients of the phase and amplitude are evaluated individually. The phase gradient is found using

the argument of pairwise microphone transfer functions. The amplitude gradient is found by sim-

ply taking the magnitude of the complex pressures. Estimating the phase and amplitude in lieu of

the complex pressure gradient provides for some distinct advantages, which have been the focus

of this work. Not only are the resulting intensities more accurate, but the phase component can be

unwrapped, allowing for accurate intensity estimates past the spatial Nyquist limit. Because the

PAGE and FD methods both rely on multi-microphone probes, the PAGE method can be easily

applied to existing p-p intensity probes.
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The original motivation behind this work was to improve intensity estimates of rocket noise.

As such, a section on the measurement of a recent rocket test firing was included. Several intensity

probes were placed in the near field of the rocket, and the intensity from each of these probes

was estimated using both methods presented here. As a result of this test, it was found that an

offset power spectral density of a single microphone provides a useful indicator for the accuracy

of intensity estimates. Using this comparison, it was found that the PAGE method provides for

more accurate estimates over a larger frequency range. Using the traditional methods, the large 2D

probes presented in Section 2.3.1 should break down at frequencies higher than around 2 kHz, but

using the unwrapped PAGE method, accurate estimates were found up to around 10 kHz.

Though this project originally was motivated by rocket noise, the PAGE method can be used in

any applications of multi-microphone intensity probes. The PAGE method uses the same hardware

as the FD method, thus it can be used to improve the accuracy and frequency range of intensity

estimates wherever the FD method is used.

There is still work that can be done to investigate and optimize the PAGE method. For ex-

ample, the works of Wiederhold et al.35, 36, 40 could be repeated with the PAGE method. Also,

little consideration has been given to different probe geometries. It would be of great interest to

investigate the performance of the PAGE method given different probe geometries. It should be

noted, however, that the primary advantages of the PAGE method are independent of probe geom-

etry, thus the findings of this thesis should extend to all probe geometries. Another subject which

requires future investigation is that of the reactive intensity. The works of Mann et al.37 and Mann

and Tichy2, 38 suggest that the reactive component of intensity is needed to fully understand many

intensity fields. This work deals primarily with the active intensity, though the means of finding the

reactive intensity have been included. Preliminary work shows that for the reactive intensity the

advantages of the PAGE method over the FD method are even more distinct, and thus the PAGE

method may provide researchers a more accurate and consistent method of measuring reactive in-
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tensity fields. A higher order finite-difference method of estimating gradients was also presented,

but not elaborated on. The higher order estimates could allow for larger intensity probes given that

the field would no longer need to be locally planar. Larger probes would be advantageous because

errors caused by phase mismatching would be minimized. This higher order method could also

provide more accurate intensity estimates, but further investigation into these methods is left for

future work. Another area of future work could be into optimizing phase unwrapping, which would

lead to accurate intensity estimates at higher frequencies. Finally, many standards on acoustic in-

tensity rely solely on the FD method, and as such, they could be improved and re-evaluated using

the PAGE method.



Appendix A

Higher-order methods

The following section is provided to give an introduction to higher-order estimation methods.

There has been little work investigating the advantages of using higher-order estimations with

acoustic intensity. This section is provided as a starting point for future work.

Higher-order least-squares approximations can be applied to both the FD and PAGE methods,

but require more sensors than the first-order method presented in Section 2.2.1. A brief discus-

sion of the formulation of higher order FD and PAGE methods will be discussed here. To use

these higher-order methods, more microphones in each dimension are required. Eq. (2.4) can be

extended to a higher term by considering

X∇g+X∇(∇g)XT = ΔΔΔg+O
{

max

[∣∣∣∣ ∂ 3g
∂x∂y∂ z

∣∣∣∣ |X|3
]}

. (A.1)

Equation (A.1) can be simplified into a simpler linear algebra problem if we define a matrix M

as

M = [Q|X] , (A.2)

where Q is a matrix of quadratic difference terms, and X is the same matrix of differences from
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Eq. (2.4). In two dimensions,

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(x2 − x1)
2 (y2 − y1)

2 2(x2 − x1)(y2 − y1)

(x3 − x1)
2 (y3 − y1)

2 2(x3 − x1)(y3 − y1)

...
...

...

(xN − xN−1)
2 (yN − yN−1)

2 2(xN − xN−1)(yN − yN−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(A.3)

and

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(x2 − x1)
2 (y2 − y1)

2 2(x2 − x1)(y2 − y1) (x2 − x1) (y2 − y1)

(x3 − x1)
2 (y3 − y1)

2 2(x3 − x1)(y3 − y1) (x3 − x1) (y3 − y1)

...
...

...

(xN − xN−1)
2 (yN − yN−1)

2 2(xN − xN−1)(yN − yN−1) (xN − xN−1) (yN − yN−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

(A.4)

Using this matrix, M, we can rewrite eq Eq. (A.1) as

M [vec(∇(∇g))|∇g] = ΔΔΔg+O
{

max

[∣∣∣∣ ∂ 3g
∂xi∂x j∂xk

∣∣∣∣ |X|3
]}

, (A.5)

where vec(∇(∇g)) is the vectorized Hessian matrix of g. The second order least-squares estimate

of ∇g and ∇(∇g) can now be written as

[vec(∇(∇g))|∇g]≈ (MT M)−1MT ΔΔΔg. (A.6)

This higher order method gives more accurate gradients of the quantity g. For MT M to be invert-

ible, there must be at least 3 sensors in each direction. For the 2D case, at least 5 sensor locations

would be required, which would lead to M being a 10x5 matrix.

If we apply this higher-order method to both the finite-difference p-p method as well as the

new PAGE method, we get more accurate gradients and, as a result, better estimates. This method

is particularly beneficial in fields with large reactive components. It should again be noted that this

method requires more sensors than the traditional finite-difference method.
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