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A B S T R A C T

This paper studies the risk spillovers of the Chinese stock market to major East Asian stock markets
during turbulent and clam periods. We employ the Markov regime-switching model, the extreme
value theory (EVT) and the vine copula function to model their multivariate dependence structures
and compute the corresponding conditional Value-at-risk (CoVaR) in direct and indirect ways. In
the case of the direct CoVaR, we find some interesting results that downside and upside spillovers
are significantly different between the turbulent and calm periods, except for the China-Japan and
the China-South Korea for the turbulent period. The evidence on the indirect results indicates the
differences between the turbulent and calm periods do exist. The other results indicate the spill-
overs measured ignore the special nature of the different periods when the whole sample is used to
model the dependence structure among the stock markets.
1. Introduction

In recent years, stock investors are difficult to optimize their portfolio strategies, due to volatility dynamics and complex dependence
in stock markets. Making an effective decision is also hard, especially in extreme events. Therefore, studying complicated characteristics
in stock portfolios is of vital significance for investors, regulators and risk managers. After the launch of the Shanghai-Hong Kong Stock
Connect program,1 Chinese stock market experienced a massive crisis that the Chinese stock index prices fell abruptly from June 2015 to
early 2016 after the previous bullish impetus. Considering these aspects, we in this paper mainly study whether the Chinese extreme
stock price changes affect Asian stock markets in two ways. One is called direct spillovers that the Chinese stock returns spill over to
Asian stocks, and the other is called indirect spillovers that the Chinese stock returns conditional on the Hong Kong stock market spill
over to Asian stock markets.

With Asian economy and finance development, Asian stock markets are more and more influential in the world. In particular, China
has become the world’s second economy, so its stock market exerts increasing impacts on Asian economy and trade. Although the
Chinese stock market grows fast, it still belongs to an emerging market. Meanwhile, China owns close financial links with a global
financial center, Hong Kong, which tightly connects Asian stock markets with the Chinese stock market. Furthermore, the Shanghai-
Hong Kong Stock Connect program boosts stock trades between the Chinese stock market and the Asian. As a consequence, the
Asian stock markets are susceptible to the Chinese stock market, especially in extreme events. If the extreme risks in the Chinese stock
market arise, they will impair near stock markets through the direct and indirect risk spillovers. The Chinese stock market with the
ss to trade A share stocks (Shanghai Stock Exchange 180 Index and 380 Index) in the Shanghai
hange, and mainland investors access to trade stocks (Hang Seng Composite index LargeCap Index
change.
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above-mentioned features makes this study more interesting and challenging. These characteristics the Chinese stock market show can
be depicted through capturing stylized facts (heteroskedasticity, volatility clustering, asymmetric effects, nonlinear and dynamic
dependence) in its return series. Based on these aspects, spillover effects of the Chinese stock market to Asian stock markets are
computed.

Since Engle (1982) introduced autoregressive conditional heteroskedasticity (ARCH), a seminal contribution was made by Bollerslev
(1986) who generalized ARCH to GARCHwhich is ease to investigate conditional heteroskedasticity and volatility clustering in financial
return series. Nevertheless, the GARCH model just takes into account symmetric price changes. In further studies, more and more re-
searchers considered asymmetric effects on volatility in financial markets and their studies provided new sights for asymmetric volatility
(Bollerslev, Litvinova, & Tauchen, 2006; Campbell & Hentschel, 1992; Chkili, Hammoudeh, & Nguyen, 2014; Ewing & Malik, 2017;
French, Schwert,& Stambaugh, 1987; Kristoufek, 2014; Salisu& Fasanya, 2013). On the other hand, conventional GARCH-type models
belong to single-regimemodels, which are hard to elaborate volatility dynamics in economic cycles. Considering this case, some scholars
came up with regime-switching models and later these models were proven to be more robust than the single-regime GARCH (SGARCH)
models on measuring volatility (Gray, 1996; Marcucci, 2005). Meanwhile, the presence of switching regimes is in accordance with
financial stylized facts (Gray, 1996; Haas, Mittnik, & Paolella, 2004; Marcucci, 2005). An original Markov Regime Switching ARCH
model, introduced by Cai (1994) and Hamilton and Susmel (1994), is used to investigate volatility dynamics in financial markets. Gray
(1996) developed the model introduced by Hamilton and Susmel (1994) to Markov regime-switching GARCH (MSGARCH) by defining
innovations integrated with time-varying mixing weights to circumvent path dependence problems when translating GARCH parts.
Subsequently, Klaassen (2002) made uses of the posterior probability of conditional variance to modify this method of upgrading re-
gimes. Although MSGARCH becomes feasible to account for GARCH effects after the above-mentioned modifications, this approach still
has a drawback of intractable analysis for its dynamic properties. Haas et al. (2004) introduced a new approach to solving the intractable
interpretation by preserving each regime GARCH parameters only depending on its own variance process. Recent substantial literatures
have focused on the fitting and forecasting performances between Markov regime-switching GARCH-type models and single-regime
counterparts (Chang, 2012; Di Sanzo, 2018; Herrera, Hu, & Pastor, 2018; Marcucci, 2005; Zhang, Yao, He, & Ripple, 2019). Almost
all of them confirmed the Markov regime-switching GARCH models outperform the single-regime ones on modeling financial return
series. In this paper, we adopt the specification of Haas et al. (2004) to model stylized facts shared by stock returns.

To characterize financial return series, the distribution selection is very significant to model return series in the financial field.
However, it is still not unanimous for a proposed distribution whose performances can vary with the financial assets. Considerable
researchers turned to a student-t distribution or a skewed student-t distribution to capture features of the fat tail and the skewness
(Azzalini& Capitanio, 2003; Branco and Dey, 2001; Hansen, 1994; Jones& Faddy, 2003). Whereas the distributions can capture nature
of the financial return to some extent, they mistakenly estimate the possibility of the extreme events because of their specification of the
double fat tails. For this reason, some researches that focused on the tail distribution of the financial return series used an Extreme Value
Theory (EVT) method (Bhattacharyya & Ritolia, 2008; Chan & Gray, 2006; Marimoutou, Raggad, & Trabelsi, 2009; McNeil & Frey,
2000; Youssef, Belkacem, &Mokni, 2015). Their empirical results on the distribution tail fits indicate this method is better than most of
the parametric approaches. In the light of its accuracy in tail and flexibility in whole distribution, we in this paper divide the whole
distribution into tail distributions based on the EVT and a middle distribution based on the empirical distribution to describe return
series together.

Another question is how tomodel nonlinear dependence of the multivariate return series. Marginal distributions just capture stylized
facts of the univariate return series, while multivariate distributions can display complex relationships of the financial assets. Thus, the
joint distribution is concerned by investors and risk management sectors so forth. Since Sklar (1959) gave copula functions to model the
joint distribution on the multivariate framework, one strand of literatures (Hu, 2010; Hussain& Li, 2018; Wang, Chen, & Huang, 2011)
studied two-dimensional relationships between major stock markets by copula functions with different features. Although multivariate
copulas can capture complicated multivariate systems among variables, they are hard to be estimatedwhen variables gradually increase.
In considering this issue, Joe (1996) decomposed a multivariate copula into a set of bivariate copulas. Meanwhile, Bedford and Cooke
(2002) presented a graphic decomposition of the multivariate system which is called a “Vine” structure. However, the decomposition
algorithm is too tricky to select suitable vine structures. Aas and Berg (2009) introduced two special forms, texitcanonical (C-) and
drawable (D-) vines, to estimate multivariate systems. In financial markets, Zhang (2014) adopted the two vines to forecast value-at-risk
(VaR) of major stock indexes. Reboredo and Ugolini (2015a) used them to study conditional value-at-risk (CoVaR) between European
sovereign debt and financial systems. Furth studies, Diβmann et al. (2013) proposed R-vine matrix (RVM) to construct more regular
dependence structures. Some scholars began to use the R-Vine copula to measure and forecast portfolio VaR of the financial assets. Koliai
(2016) argued that the EVT combined with the R-Vine copula can test financial stress well as the specifications are flexible and
consistent. Yu, Yang, Wei, and Lei (2018) also consented that the EVT combined with the R-Vine copula can accurately measure and
forecast VaR of the crude oil portfolios. Sahamkhadam, Stephan, and €Ostermark (2018) employed GARCH-EVT-Copula based on three
weight approaches to measure how much of a reduction in portfolios risk. These scholars all confirmed the R-Vine copula can be viewed
as an effective method to capture complicated dependence structures of the portfolios and measure the portfolio risks. In this paper, we
consider scarce literatures on multivariate dependence structures among East Asian stock markets, especially after the launch of the
Shanghai-Hong Kong Stock Connect. In the light of the China’s particularity in this region, we think its extreme stock price changes have
meaningful influences on Asian stock markets. This paper endeavors to fill this gap and contribute to existing literatures in several ways.

First, we employ the MSEGARCH to model return series of the East stock markets. The R-vine copula allows us to model marginal
distributions and multivariate systems of the financial return series separately, so we adopt the EVT and the empirical distributions to
model return series filtered by the MSEGARCH model. The R-vine copula that is a hierarchical structure can characterize dependence
structures among the East Asian stock markets. We use data inversed by the marginal distribution to estimate the R-vine copula.
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Consequently, the relationships with the Chinese stock market can be captured through the estimated multivariate structures. Mean-
while, we consider the Chinese market experienced a massive crisis so we also employ the R-vine copula to capture dependence
structures for different periods. Second, we use the estimated dependence structures to compute spillovers (Chinese stock markets to
other stock markets) based on previous literatures on the CoVaR approach. Adrian and Brunnermeier (2011) measured VaR of one
market conditional on the other market in financial distress, and later Girardi and Ergün (2013) generalized this method by comparing
CoVaR of one market with its VaR. Finally, Reboredo and Ugolini (2015a) extended it to multivariate CoVaR setting. Referring to the
above-mentioned literatures, we compute the upward and downward CoVaR to measure the direct and indirect spillovers of the Chinese
stock market to the East Asian stock markets. At the same time, we implement the bootstrap Kolmogorov-Smirnov test developed by
Abadie (2002) and used by Bernal, Gnabo, and Guilmin (2014) and Reboredo and Ugolini (2015b) to check whether the spillover effects
do exist. Finally, we analyze the differences of the CoVaR.

The reminder of this paper is organized as follows: Section 2 illustrates Econometric methods adopted. Section 3 provides the
description of the characteristics of the East Asian stock indexes. Section 4 shows the empirical results. Section 5 concludes this paper.

2. Econometric methodology

2.1. The EGARCH model2

The EGARCHmodel introduced by Nelson (1991) captures existing asymmetric shocks to volatility. The EGARCH (1, 1) is defined as
follows:

rt ¼ μt þ εt ¼ μt þ htzt (1)

ln
�
h2t
�¼ωþα½jzt�1j �Ejzt�1j� þ γzt�1 þ β ln

�
h2t�1

�
(2)

where μt is conditional mean and ht is conditional variance. zt is an independent random variable. α denotes the magnitude effect which
implies a significant effect on volatility, and γ tests for the sign effect which highlights asymmetric impacts on volatility. Good news
shocks to volatility are represented by the sum αþ γ depending on whether the innovation εt is bigger than zero, the bad news α� γ
otherwise.
2.2. The MSEGARCH model

An EGARCH model belongs to the single-regime model, while a MSEGARCH model is a more effective approach to capturing
structural transmission in financial movements. The switching probability is defined as:

Prðst ¼ ijst�1 ¼ jÞ¼ pij (3)

P¼
�
p11 p12
p21 p22

�
¼
�
p 1� q
1� p q

�
(4)

where st is subjective to a Markov process. pij denotes the switching probability from state j at time t � 1 to state i at time t. Pmeans the
transition matrix which contains the probability of the two states where p and q stand for switching probability under the state 1 and 2,
respectively. MSEGARCH is estimated as follows:

f

 
rtjψ ;It�1Þ¼

XK
i¼1

XK
j¼1

pijϕi;t�1fDðrtjst ¼ j;ψ ; It�1

!
(5)

Lðψ jIt�1Þ¼
YT
t¼1

f ðrtjψ ;It�1Þ (6)

where fDðrt jst ¼ j;ψ ; It�1Þ denotes conditional density function given regime-switching model parameters ψ and information sets
It�1.f ðrt jψ ;It�1Þ integrates discrete conditional ones. ϕi;t�1 is filtered probability of the state i at time t� 1. The likelihood function is
obtained according to Eq. (5). In this respect, this model can adjust the corresponding specifications which depend on the various
regimes. Thus, the MSEGARCH is defined as:

rs;t ¼ μs;t þ hs;t zs;t (7)

ln
�
h2s;t
�
¼ωs þαs½

��zs;t�1

���E
��zs;t�1

��� þ γszs;t�1 þ βs ln
�
h2s;t�1

�
(8)

where conditional variance h2s;t denoted in the above variance equation varies over the different states at time t. This is to say, the
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EGARCH model takes different values depending on when the stock is in a high or a low volatility state. The other parameters and
variables also follow this specification. zt is an independent random variable with the skewed-student-t distribution3 proposed by
Hansen (1994) and Reboredo and Ugolini (2015a, 2015b).

The more regimes will affect fitting performances in the short term because of possible intensive state switches among various
volatility regimes. So we follow the regime selection from previous researches (Abounoori, Elmi, & Nademi, 2016; Crifter, 2013; Di
Sanzo, 2018; Herrera et al., 2018) and adopt two regimes.

2.3. Extreme value theory

In our analysis, the POT (peaks over threshold) method of the EVT is applied to model. Excess distribution over the threshold η is
defined as:

FηðzÞ¼PðZ� η� zjZ> ηÞ¼Fðzþ ηÞ � FðηÞ
1� FðηÞ (9)

Over a high threshold of the sequence innovations is an asymptotical generalized Pareto distribution (GPD). Meanwhile, we use
empirical cumulative distribution function to complement the middle part of the whole distribution.

Fξ;βðzÞ¼

8>>>>>>><>>>>>>>:

kl

n

	
1þ ξl

�zt þ ηl

βl



if zt < ηl

ϕðztÞ if ηl < zt < ηu

1� ku

n

	
1þ ξu

zt � ηu

βu


�1
ξu

if zt > ηu

(10)

where ξ is the shape parameter and β is the local, and ηl and ηu denote lower and upper threshold, respectively. zt is the innovation
filtered by the MSEGARCH and ϕðziÞ is the empirical distribution.

2.4. Copula models

Sklar (1959) proved that, for any d-dimension joint distribution function with marginal distribution function F1;F2; …; Fd, there
exists a d-dimension coupla function.

Fðz1;⋯; zdÞ¼CðF1ðz1Þ;⋯;FdðzdÞÞ¼Cðu1;⋯; udÞ (11)

where F is a multivariate distribution function with a set of marginal distribution functions Fi; i ¼ 1;⋯; d. Then, it can further be
factorized into a pair-copula and a conditional marginal function.

FðzjvÞ¼
∂Cz;vjjv�j

�
F
�
z
��v�j

�
;F
�
vj
��v�j

��
∂F
�
vj
��v�j

� (12)

Bedford and Cooke (2002) used graphic decomposition to elaborate the n-dimensional R-vine copula which consists of n� 1
spanning trees whose Ti�1 has n� iþ 1 nodes and n� i edges. The last edges in the tree Ti�1 will become nodes of the next tree Ti. In
general, the R-Vine copula is different from the two particular R-Vine copulas (C-vine and D-vine) owing to more possible systems, and
therefore it has more flexible structures.

Hierarchical tree structure is present in Fig. 1 which describes C-vine and D-vine copulas. Each tree in the C-vine copula (left panel)
has one key node connected by the other nodes. Each nodes of the D-vine copula are tangled according to variable orders. The order in
the previous tree determines the bivariate relationship in the next tree. On the other hand, the R-vine with more flexible features results
in more complicated construction processes. This situation is improved since Diβmann et al. (2013) came up with the R-vine matrices
(RVM) which construct the decomposition of the R-vine structure well. The RVM has the following properties:�

mi;i;⋯;md;i

�
⊂
�
mj;j;⋯;md;j

�
; 1� j� i � d (13)

mi;i 62
�
miþ1;iþ1;⋯;md;iþ1

�
; i¼ 1;⋯; d � 1 (14)

where for the triangular matrix M ¼ ðmi;jÞd�d, each entry mi;j stems from it, and there are the following three conditions:�
mk;i;

�
mkþ1;i;⋯;md;i

�� 2 BMðjÞ or B MðjÞ (15)
3 We also consider student-distribution, but the evidence on the results indicates no significant effects on the conclusion.
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Fig. 1. An illustrative representation of C-vine and D-vine copulas.
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BMðjÞ ¼ mi;i;D jk¼ iþ 1;⋯; d;D¼ mk;i; mkþ1;i;⋯;md;i (16)

� � � � ��

B MðjÞ ¼�mi;i;D
�jk¼ iþ 1;⋯; d;D¼�mi;i

�[�mkþ1;i;⋯;md;i

��
(17)

According to the definition of the RVM, the d-dimensional density function of the R-Vine copula is decomposed in Eq. (18).

f ðz1;⋯; zdÞ¼
Yd
j¼1

fj
�
zj
� Y1
k¼d�1

Ykþ1

i¼d

cmk;k ;mi;kjmiþ1;k ;⋯;md;k

�
Fmk;kjmiþ1;k ;⋯;md;k

;Fmi;kjmiþ1;k ;⋯;md;k

�
(18)

To estimate the R-Vine, we use the previous method based on maximum spanning tree to maximize the sum of absolute dependences
(Brechmann & Czado, 2013). It can be defined as:

max
X
e¼fi;jg

��δij��; 1� i; j � N (19)

where e denotes an edge. δij is used to measure the bivariate dependence of the nodes connected to the edges. More specifically, we in
this paper use the Kendall’s τ coefficient to measure the dependence among variables. First of all, we use marginal data to estimate the
pair-copula of the first tree, and then use this information to obtain the observations of the second tree through Sklar’s theorem. Suitable
bivariate copulas are selected byminimizing Akaike information criterion (AIC) (pair-copula functions are classified into two categories,
namely elliptical and Archimedean bivariate copula according to their statistical features on capturing dependence structure, tail sit-
uations and asymmetry). In the following procedures, we just repeat the above steps to estimate the rest of trees. Consequently, we
obtain the R-vine structures.
2.5. Quantifying spillover effects

VaR is a common estimate of the maximal loss when the position declines due to market movements in the financial domain. It can be
used by financial regulator to assess the faced risks at a given probability level during a horizon. Based on this framework, the daily log
return is defined as:

rt ¼ μt þ htzt (20)

where the filtered innovations zt . rt is return series, μt is conditional mean and ht is conditional variance. We adopt a POT model of the
EVT to compute upside and downside risk.

VaR1�p
tjt�1 ¼ μt þ


ηþ

bβbξ
�	

1� p
k=n


�bξ
� 1
��

htjt�1 ; Pr
�
rtjt�1 <VaR1�p

tjt�1

�
¼ 1� p (21)

where VaR1�p
tjt�1 represents maximal loss of long position. If we calculate the short position, p substitutes for 1� p.

The VaR concepts are associated with multivariate copula functions to calculate CoVaR. We just give the downside CoVaR equation
that extreme returns of one market are conditional on extreme returns of the other market. Upside CoVaR is similar (upon request
available). The downside CoVaR is given below:
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Pr r4t �CoVaR4j1;2
β;t
��r1t �VaR1j2

α;t ; r
2
t ¼ β (22)
� � �

C4;1j2
�
F4j2
�
CoVaR4j1;2

β;t

�
; α
�

F1j2
�
VaR1j2

α;t

� ¼ β (23)

where α and β represent the corresponding quantile of the estimated GPD. rit denotes return at time t of the stock market i.The value of

F1j2ðVaR1j2
α;t Þ is α probability level under maximal loss. For obtaining CoVaR of the variable 4, corresponding conditional cumulative

distribution functions are computed as:

F4j2
�
u4t
��u2t �¼ ∂C4;2

�
F4

�
u4t
�
;F2

�
u2t
��

∂F2

�
u2t
� (24)

We give relevant steps of calculating CoVaR with copulas through three steps. The specific procedures (Reboredo & Ugolini, 2015a;
2015b) are described as follows:

1. Given quantile α and β for VaR and CoVaR, respectively, they are applied to estimated copula functions to obtain the value of

F4j2ðCoVaR4j1;2
β;t Þ according to eq. (23).

2. Applying the above results to obtain F4ðCoVaR4j1;2
β;t Þ ¼ u1 through Eq. (24).

3. Using the value u1 to obtain F�1
4 ðu1Þ ¼ CoVaR4j1;2

β;t by inversing the estimated GPD function.

Finally, the risk spillover effects of one stock market on the other one are calculated by a relative approach proposed by Adrian and
Brunnermeier (2011).

P
�
r4t �CoVaR4j1

βj0:5;t
��r1t ¼Q1

t ð0:5Þ
�
¼ β (25)

ΔCoVaR4j1
βjα;t ¼

�
CoVaR4j1

βjα;t �CoVaR4j1
βj0:5;t

�.
CoVaR4j1

βj0:5;t (26)

ΔCoVaR4j1;2
βjα;t ¼

�
CoVaR4j1;2

βjα;t �CoVaR4j1;2
βj0:5;t

�.
CoVaR4j1;2

βj0:5;t (27)

where the formula measures relative spillover effects. r1t is equal to its quantile 0.5 when the stock market 1 is a normal state. Δ

CoVaR4j1
βjα;t means the risk spillovers of the stock market 1 to the stock market 4. ΔCoVaR4j1;2

βjα;t represents the risk spillovers of the stock

market 1 conditional on the stock market 2 to the stock market 4.
For checking the spillover effects, we follow a operation adopted by Bernal et al. (2014) and Reboredo and Ugolini (2015b) Who

applied the bootstrap Kolmogorov-Smirnov (KS) test developed by Abadie (2002) to examine whether there are significant spillover
effects. This test is defined as follows:

KSmn ¼
� mn
mþ n

�1
2
supxjFmðxÞ�GnðxÞj (28)

where FmðxÞ and GnðxÞ are the cumulative CoVaR distribution functions in extreme and normal states, respectively. m and n are the
number of the two samples. We just need to test whether the following null hypothesis is rejected:

H1
0 : CoVaR4j1

βjα;t ¼CoVaR4j1
βj0:5;t (29)

H2
0 : CoVaR4j1;2

βjα;t ¼CoVaR4j1;2
βj0:5;t (30)

3. Data descriptions

East Asian stock markets include four major stock markets. We use the SSE Composite index (China), the HS (Hong Kong) index, the
N225 index (Japan) and the KOSPI Composite index (South Korea) to reflect their market movement. After the launch of the Shanghai-
Hong Kong Stock Connect program, the spillovers of the Chinese stock market are more interesting and important, so we choose its
launch time as onset time of the observations. These indexes from Yahoo Finance cover 17 November 2014 to 17 August 2018.4 The
4 We have justified the sample period by changing the finish time according to the anonymous comments.
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Fig. 2. Relative stock index prices.

Fig. 3. Stock indexes return series.

Table 1
Descriptive statistics for index returns.

SSE HS N225 KS

Min �8.873172 �6.018288 �8.252933 �3.226967
Max 5.603560 6.986948 7.426169 2.912435
Mean 0.008214 0.014613 0.029585 0.015802
Std.dev 1.627715 1.125628 1.262113 0.750929
Skewness �1.239772*** �0.201632*** �0.325141*** �0.440743***
Kurtosis 6.318008*** 3.801459*** 5.904265*** 2.114478***
Jarque-Bera 1772.6142*** 563.3197*** 1358.4271*** 202.6448***
ADF �9.2761*** �9.4299*** �10.167*** �10.63***
Q2 (20) 646.25*** 79.787*** 122.06*** 82.906***
ARCH(20) 11.55*** 2.77*** 3.795*** 3.113***

Notes: The standard errors reject null hypothesis of normal distribution according to Jarque-Bera statistics. Q2 (20) is the Ljung-Box Q-statistics of order
20 on the square return series. ARCH (20) is the Lagrange Multiplier test for lags 20 on heteroskedasticity. ***, ** and * is statistically significant at 1%,
5% and 10%, respectively. KS is the KOSPI Composite index.

Y. Xiao International Review of Economics and Finance 65 (2020) 173–186
missing data are complemented by last-observed-carried-forward (LOCF). The stock index returns are calculated by 100ðlnxt �lnxt�1Þ
where xt is the close price at day t. Considering the effect of the Chinese stock crisis, the index data are divided into two periods.5 Due to
special merits of the turbulent and calm periods, we alsomodel the whole sample period to studywhether the dependence structure and the
2 We also consider another asymmetric model, MS-GJR-GARCH, which has less goodness-of-fit compared with MSEGARCH model according to the
AIC, BIC and LL, but we obtain same conclusion through it (available upon request).
5 This division is determined by the filtered probability which checks whether there is a significant change in return series.
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Table 2
The correlation coefficients.

Correlation SSE HS N225 KS

Turbulent period
SSE 1.0000000 – – –

HS 0.5576116 1.0000000 – –

N225 0.2775409 0.5589114 1.0000000 –

KS 0.2332332 0.5631333 0.6149111 1.0000000
Calm period
SSE 1.0000000 – – –

HS 0.5517013 1.0000000 – –

N225 0.2856334 0.5097924 1.0000000 –

KS 0.3516507 0.6123960 0.5326077 1.0000000
Fperiod
SSE 1.0000000 – – –

HS 0.5271412 1.0000000 – –

N225 0.2601950 0.5331460 1.0000000
KS 0.2524820 0.5862832 0.5694722 1.0000000

Notes: correlation stands for the Pearson’s correlation coefficient among the Asian stock markets. The correlation coefficients reflect linear re-
lationships among the markets. Fperiod stands for the full sample period.

Table 3
Estimations of MSEGARCH models.

SSE HS N225 KS

ωs1 �0.0066*** 0.0013*** �0.0212*** �0.0556***
(0.0003) (0.0000) (0.0002) (0.0017)

ωs2 0.3798*** 0.0530*** 0.0141*** �0.0219***
(0.0532) (0.0000) (0.0001) (0.0003)

αs1 0.0636*** 0.0822*** 0.0727*** 0.0127***
(0.0018) (0.0000) (0.0002) (0.0003)

αs2 0.1359*** �0.2797*** �0.1523*** 0.0496***
(0.0506) (0.0000) (0.0003) (0.0012)

βs1 0.9876*** 0.9340*** 0.8149*** 0.9926***
(0.0001) (0.0000) (0.0000) (0.0003)

βs2 0.8216*** 0.8945*** 0.9503*** 0.9514***
(0.0311) (0.0000) (0.0000) (0.0006)

γs1 �0.0905*** �0.1399*** �0.3038*** 0.0448***
(0.0015) (0.0000) (0.0002) (0.0009)

γs2 �0.1735*** �0.1761*** �0.2734*** �0.1131***
(0.0028) (0.0000) (0.0006) (0.0010)

p11 0.9971*** 0.9955*** 0.9919*** 0.0268***
(0.0018) (0.0000) (0.0000) (0.0079)

p12 0.0094*** 0.1584*** 0.0092*** 0.1199***
(0.0009) (0.0000) (0.0000) (0.0003)

Q2 (20) 16.079 8.381 14.284 19.892
[0.7117] [0.989] [0.8158] [0.4647]

ARCH(20) 0.7604 0.404 0.7294 0.9963
[0.763] [0.991] [0.7979] [0.4639]

AIC 2793.6781 2653.0028 2657.644 1904.9182
BIC 2861.1888 2720.5136 2725.1547 1972.429
LL �1382.839 �1312.5014 �1314.822 �938.4591
BDS �0.4466 �0.3345 0.5415 �0.1717

[0.6552] [0.7380] [0.5882] [0.8637]

Notes: Table 3 represents estimated parameters for the above models. Q2 (20) is the Ljung-Box Q-statistics for lags 20 and ARCH (20) is the Lagrange
Multiplier test for lags 20 on heteroskedasticity. Akaike information criterion (AIC), Bayesian information criterion (BIC) and Log likelihood (LL) are
used to evaluate the fitting of models. p12 represents the probability of the state 2 transforming to the state 1, p11 alike. The Null hypothesis of the BDS
test for whether series are i.d.d., and the statistic is calculated at the dimension 2. ***, ** and * is statistically significant at 1%, 5% and 10%,
respectively. The standard errors are reported in round brackets and p values are reported in square brackets.

Y. Xiao International Review of Economics and Finance 65 (2020) 173–186
spillovers may be affected if the sample is divided into the two periods. The turbulent period is on the left side of the dashed line and the
calm period is on the other side. In Fig. 2 and Fig. 3, the four index prices have same upward and downward trends for the turbulent period.
The index returns also detect this co-movement in their tail. From a visional perspective, the Hong Kong index price exhibits strong
correlation with the other indexes. This situation means the Chinese stock market conditional on the Hong Kong market spills over to the
other stock markets. The return plots show volatility clustering and dynamics. Thus, using the regime-switching model is proper.

Table 1 provides descriptive statistics for the index return series. The mean is close to zero and large standard deviation indicates
significant dispersion in statistics. All index returns are significantly left-skewed, which implies possible abrupt drops and underlying
leverage effects. The Chinese stock market and the Japanese display larger Kurtosis than the other stock indexes. Meanwhile, the
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maximum and minimum values reflect the presence of larger extreme returns. All index returns present significant leptokurtic. The
Jarque-Bera tests indicate return series reject normality. On the other hand, the Augmented Dickey-Fuller (ADF) tests reject the null
hypothesis of a unit root for all index returns at significance 1%. Q2 (20) and ARCH (20) at the significance 1% level ensure the presence
of ARCH effects in index return series.

Table 2 reports the correlation among the stock markets. For the correlation coefficients for the different periods, the correlation with
the Chinese stock market indicates strong relationships with the Asian stock markets, especially in the correlation with the Hong Kong. On
the other hand, the correlation coefficients with the Hong Kong stock market indicate close links in magnitude with the Japan and South
Korea stock markets. In this respect, these cases indicate there are possible direct and indirect spillovers of the Chinese stock market.
According to correlation coefficients, the Japan stockmarket and the South Korea always keep strong relationships for different periods, so
there are complicated situations on tail dependence among the Asian stock markets. Therefore, we need to use vine copulas to capture
multivariate dependence among them. However, it should be noted that correlation coefficients have some differences from tail depen-
dence because extreme events are nonlinear. In summary, the extreme price changes of the Chinese stock market, to the great extent,
impact the other stock markets in direct and indirect ways, and furthermore these effects may have some differences for different periods.

4. Empirical results

4.1. MSEGARCH results

The empirical results reported in Table 3 display estimations of the MSEGARCH model for the East Asian stock markets. The
parameter β reflects high volatility persistence of stock markets. For all series, the parameter γ is significant at the 1% level, which
implies significant leverage effects on volatility. This is, shocks of bad news to volatility are higher in magnitude than good news. It also
reflects the price drops have stronger impetus to the East Asian stock markets. With respect to fits, AIC, BIC and LL values evaluate the
goodness-of-fit for model estimations. Meanwhile, Q2 (20) and ARCH (20) tests confirm no ARCH effects in standardized residuals. The
BDS test shows the filtered residuals are i.d.d.. It is strong evidence that the model specification is appropriate. Therefore, the stan-
dardized residuals are applied to model extreme returns by the EVT.
Table 4
Estimations of EVT parameters.

SSE HS N225 KS

Turbulent period
Lower tail
ηl �1.1433 �1.2686 �1.3129 �1.2887

ξl 0.0076 �0.3358 �0.5628 �0.2248

βl 1.0844 0.9706 1.0836 0.8160
Upper tail
ημ 1.2183 1.3164 1.2203 1.2363
ξμ �0.1076 0.2263 0.3537 �0.1552
βu 0.3504 0.4577 0.2744 0.6900
KS 0.0127 0.0178 0.0146 0.0125

[1] [0.9999] [1] [1]
Calm period
Lower tail
ηl �1.0310 �1.1646 �1.0797 �1.0887

ξl 0.1536 0.1622 0.2837 �0.1059

βl 0.6472 0.5442 0.5320 0.9446
Upper tail
ημ 1.0438 1.1380 1.0973 1.1035
ξμ �0.0630 0.1438 0.2837 0.0801
βu 0.4864 0.3777 0.5332 0.4335
KS 0.0069 0.0098 0.0081 0.0096

[1] [1] [1] [1]
Fperiod
Lower tail
ηl �1.0672 �1.2284 �1.1498 �1.1703

ξl 0.1610 0.1234 0.0983 �0.1263

βl 0.7346 0.5697 0.6587 0.8866
Upper tail
ημ 1.1130 1.1480 1.1650 1.1565
ξμ �0.0574 0.1228 0.0977 0.0713
βu 0.4268 0.4729 0.4016 0.4679
KS 0.0063 0.0071 0.0069 0.0078

[1] [1] [1] [1]

Notes: the observations of the turbulent and the calm periods are 315 and 603, respectively. η is the threshold, ξ is the shape and β is the local
parameter, respectively. The null hypothesis of the Kolmogorov Smirnov (KS) tests for whether an empirical distribution is equal to a uniform dis-
tribution. p values are reported in the square brackets. Fperiod represents the full sample period.
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Table 5
Estimation results of the copulas61.

Period Direct Indirect

(SSE,HS) (SSE,N225) (SSE,KS) (SSE,N225|HS) (SSE,KS|HS)

Turbulent period
Copula RGumbel Norm Norm RTawn90 Frank
Para1 1.52 (0.08) 0.27 (0.03) 0.20 (0.03) �20.00 (11.89) �0.75 (0.30)
Para2 – – – 0.01 (0.00) –

Tau 0.34 0.17 0.13 �0.01 �0.08
AIC �107.17 �21.33 �11.2 �198.81 �206.64
Calm period
Copula RBB1 RBB7 RGumbel Independence RClayton90
Para1 0.21 (0.08) 1.16 (0.05) 1.21 (0.04) – �0.06 (0.04)
Para2 1.37 (0.06) 0.12 (0.05) – – –

Tau 0.34 0.13 0.17 0.00 �0.03
AIC �196.56 �35.86 �60.12 �322.64 �452.06
Fperiod
Copula RBB1 RBB7 RGumbel Independence Frank
Para1 0.17 (0.06) 1.15 (0.04) 1.17 (0.03) – �0.50 (0.17)
Para2 1.39 (0.05) 0.14 (0.05) – – –

Tau 0.34 0.14 0.15 0.00 �0.06
AIC �299.63 �54.08 �65.83 �516.72 �649.66

Notes: KS is the KOSPI Composite index. RGumbel, RBB1 and RBB7 are that Gumbel, BB1 and BB7 copulas are rotated by 180�, respectively. RTawn90
and RClayton90 are that Tawn and Clayton copulas rotated by 90�, respectively. Normal and Frank copulas describe symmetric dependence, the other
copulas otherwise. I represents an independence copula. Para represents parameters of the estimated copula. Tau is the Kendal’s coefficient. Fperiod
represents the full sample period.
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The filtered residuals are used to model extreme returns by the POT (Peak-over-threshold) method. Choosing a proper threshold is
significant for an excess distribution, if the threshold is higher, the estimation bias can be reduced. On the other hand, over this threshold
of the observations is too small to reduce the estimation variance when the observations are used to estimate corresponding parameters.
However, there is still no a consensus about choosing this threshold (Marimoutou et al., 2009; Nieto& Ruiz, 2016; Youssef et al., 2015).
Considering the above situation, we choose 10% exceedances suggested by researchers in extant literatures (Koliai, 2016; Liu, Wei,
Chen, Yu, & Hu, 2018; Sahamkhadam et al., 2018; Tsay, 2010). For the estimated parameters in Table 4, we find almost all of the
thresholds in the turbulent period are greater in magnitude than in the calm period. The results indicate there are more extreme returns
for the turbulent period. If the sample were not divided into turbulent and calm periods, the extreme situation would have been
measured mistakenly. From the threshold of the different periods, we find thresholds of the full period are higher than the calm period
and lower than the turbulent period. It means the extreme events may be underestimated in the turbulent period and overestimated in
the calm period. Thus, the period division is necessary.

Patton (2006) asserted that data transformed by the probability integral should be subject to a uniform distribution for avoiding
copula model misspecification. In considering the suitability of estimation results, we apply the estimated distribution to the tail and the
empirical distribution to themiddle part to make the probability integral transformation (PIT) of the filtered residuals. The inversed data
are examined by the KS test, and the results do not reject the uniform hypothesis. We proceed to use the PIT data to capture dependence
structures among the Asian stock markets.

4.2. The R-Vine copula results

The estimated results on corresponding bivariate copulas are reported in Table 5, and the copulas are selected according to the AIC.
Direct structures reflect the direct dependence with the Chinese stock market and indirect structures show the dependence conditional
on the Hong Kong stock market. More specifically, the indirect structures are consistent with the fact that the Chinese stock market can
connect the East Asian stock markets via the Hong Kong stock market.

In the turbulent period, the direct structures describe the dependence structure of the China-Hong Kong, the China-Japan and the
China-South Korea. For the Kendal value, it indicates underlying co-moved returns, especially in the China-Hong Kong (0.34). However,
the China-Japan and the China-South Korea are described by the normal copula which can depict symmetric dependence, and their
Kendal values are weaker in magnitude than the China-Hong Kong. In considering indirect structures, it is of note that the Hong Kong
stock market plays a key role like a bridge in connecting the Chinese stock market with the other markets. This structure accounts for the
relationships that the China-Japan and the China-South Korea dependence are conditional on the Hong Kong stock market. Their
Kendal’s values illustrate some negative conditional correlation.

In the calm period, the dependence structures on the estimated copula are different from the turbulent period. The China-Hong Kong
still keeps strong dependence according to their Kendal value. The dependence of the China-Japan and the China-South Korea are
captured through the rotated BB7 and Gumbel copulas respectively. This period also implies different dependence structures from the
turbulent period. Regarding the indirect structures, even though the China-Japan relationships conditional on the Hong Kong stock
market become independent, the China-South Korea dependence conditional on the Hong Kong market still show existing negative
relationships.
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Fig. 4. Direct CoVaR for the turbulent and calm periods.

Fig. 5. Indirect CoVaR for the turbulent and calm periods.
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In the full sample period, the dependence structures show interesting findings when we use all data to estimate the copulas. These
findings show that the estimated copulas are same with the calm period, except for the Frank copula. If we didn’t separate the turbulent
and calm periods from the full period, we would have ignored unique dependence structures during the different periods. Furthermore,
it is also hard to accurately measure the risk spillovers of the Chinese stock market to the East Asian stock markets.

The vital evidence on the above-mentioned results implies that the Chinese stockmarket conditional on the Hong Kongmarket exerts
strong influences on the other stock markets. The extreme prices of the Chinese stock market spill over to the East stock markets in direct
and indirect ways. In what following, we proceed to measure the spillover effects based on the dependence structures.
4.3. Spillover effect results

Using the estimated bivariate copulas, we calculate the downside and upside CoVaR for the turbulent, calm and full sample periods.
Fig. 4 and Fig. 5 illustrate CoVaR dynamics for the turbulent and calm periods. In a graphical aspect, they reflect existing spillovers of the
Chinese stock market to the other stock markets for the different periods. The corresponding figures for the full sample period are alike
(available upon request).

Specific CoVaR results on the descriptive statistics are reported in Table 6. Regarding the direct effects, the downside CoVaR during
6 For measuring direct spillover effects, we estimate copulas between the Chinese stock market and the other markets. For indirect spillover effects,
we take into account the Hong Kong stock market as the condition. We do not give complete vine structures (available upon request) here but just
corresponding copulas for the different periods.
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Table 6
CoVaR summary statistics.

Period Direct Indirect

(HS|SSE) (N225|SSE) (KS|SSE) (N225|SSE,HS) (KS|SSE,HS)

Turbulent period
CoVaR(down) �4.0114 �3.3344 �1.8550 �3.4384 �1.9408

(0.9123) (1.3669) (0.3282) (1.4095) (0.3434)
ΔCoVaR(down) 1.6092 0.3859 0.3390 0.8643 1.0195

(0.0127) (0.0000) (0.0001) (0.0001) (0.0005)
KS1 0.9841 0.3175 0.5937 0.5841 0.9524

[0.0000] [0.0000] [0.0000] [0.0000] [0.0000]
CoVaR(up) 3.1296 2.5283 1.7286 2.1802 1.7413

(0.7348) (1.0366) (0.3050) (0.8939) (0.3073)
ΔCoVaR(up) 0.7632 0.3889 0.3304 0.3790 0.8622

(0.0052) (0.0000) (0.0001) (0.0000) (0.0004)
KS2 0.8159 0.3206 0.5841 0.3143 0.9302

[0.0000] [0.0000] [0.0000] [0.0000] [0.0000]
Calm period
CoVaR(down) �3.6087 �3.7869 �2.5264 – �1.8755

(0.7896) (1.3006) (0.4526) (0.3370)
ΔCoVaR(down) 2.0981 1.6040 1.6088 – 2.1879

(0.0195) (0.0169) (0.0065) (0.0146)
KS1 0.9934 0.8889 1.0000 – 1.0000

[0.0000] [0.0000] [0.0000] [0.0000]
CoVaR(up) 2.6458 2.3158 1.2942 – 1.4046

(0.5596) (0.7707) (0.2257) (0.2453)
ΔCoVaR(up) 1.0669 0.4071 0.2664 – 0.6060

(0.0090) (0.0037) (0.0010) (0.0027)
KS2 0.9503 0.4544 0.5191 – 0.8624

[0.0000] [0.0000] [0.0000] [0.0000]
Fperiod
CoVaR(down) �3.9114 �3.8292 �2.4447 – �1.9524

(0.9412) (1.4525) (0.4488) (0.3590)
ΔCoVaR(down) 1.9154 1.2487 1.2482 – 1.6935

(0.0048) (0.0082) (0.0033) (0.0068)
KS1 0.9848 0.7800 0.9815 – 0.9978

[0.0000] [0.0000] [0.0000] [0.0000]
CoVaR(up) 3.0278 2.4486 1.3592 – 1.4867

(0.7224) (0.9105) (0.2450) (0.2683)
ΔCoVaR(up) 1.1948 0.4413 0.2260 – 0.6331

(0.0029) (0.0027) (0.0006) (0.0020)
KS2 0.9259 0.4248 0.4150 – 0.8399

[0.0000] [0.0000] [0.0000] [0.0000]

Notes: CoVaR(down/up) stands for downside or upside CoVaR at the 0.05 and 0.95 quantile level. Indirect spillovers are conditional on the Hong Kong
stock market to the other stock markets. Fperiod represents the full sample period. CoVaR and ΔCoVaR are mean value, and their standard deviation is
reported in round bracket. KS1 is the statistic of null hypothesis: CoVaR in the extreme state is equal to it in the normal state, and alternative hypothesis
is that: CoVaR in the extreme state is greater than it in the normal state. KS2 has the alternative hypothesis: CoVaR in the extreme state is less than it in
the normal state. p value is reported in square brackets.
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the three periods is greater in magnitude than the upside. It indicates more downside co-movements and stronger dependence in the
lower tail. The delta downside CoVaR during the three periods is also considerably greater than the upside, except the China-Japan and
the China-South Korea during the turbulent period because their copulas are symmetric in this period. The downside spillovers for the
turbulent period, in contrast to the calm period, are symmetric in this special period. This evidence on direct spillovers shows bearish
and bullish impetus in similar magnitude from the Chinese stock market. KS tests indicate significant direct spillovers. If the sample
period were not split into the turbulent and calm periods, the full sample periods would ignore the effect of bearish and bullish impetus.

On the other hand, indirect structures show the China-Japan and the China-South Korea relationships conditional on the Hong Kong
market. Only in the turbulent period, the CoVaR of the China-South Korea is measured as they are independent for the other periods. In
fact, the indirect downside CoVaR and delta CoVaR also are than the upside during the three periods. Furthermore, KS tests on the
downside and upside spillovers provide strong evidence that the indirect risk spillovers are significant. If we used the whole sample to
measure the spillovers, the indirect effects would not be captured.

To sum up, the evidence on the direct and indirect spillovers provide a new sight that the risk spillovers differ for the three periods. It
is consistent with the dependence structures in Table 5, which display different dependence. The results on the direct spillover effects
indicate that Chinese stock market is more integrated with the Hong Kong, and this relationship also is accordance with the fact that the
Chinese stock market has closer links with the Hong Kong. Meanwhile, whether the direct delta CoVaR results or the indirect prove that
the downside spillovers to the other stock markets are greater than the upside. It reflects more co-movement in the lower tail and less
dependence in the upper tail, except for the direct spillovers to the Japan and South Korea stock markets for the turbulent period. More
interesting, the exception also confirms the dependence structures are special in this period. Modeling the full sample period ignores the
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special nature of the different periods and is hard to measure accurately the dependence structure and the spillovers. Therefore, the
Chinese stock market has special spillover effects on the East Asian stock markets during the turbulent and calm periods.

5. Conclusions

In this paper, we combine the MSEGARCH, the EVT and the vine copula to model multivariate dependence structures of the East
Asian stock markets for the three periods (turbulent, calm and full sample), and use CoVaR approach to calculating the direct and
indirect spillovers of the Chinese stock market to the other stock markets. The results show the interesting findings that the spillovers
during the three periods indicate stronger dependence in the lower tail, except for the China-Japan and the China-South Korea for the
turbulent period. The exception that reflects the special co-movement in this period is line with the estimated dependence structures in
Table 5. Furthermore, we find the Chinese stock market does indirectly spill over to the Japan and South Korea stock markets. More
importantly, the division of the sample period is necessary in that modeling the whole sample period is hard to measure accurately the
extreme risk situation of the stock markets, the dependence structure among the markets and the spillover effects of the Chinese on the
other markets.

With foreign and mainland investors more participation in Asian stock markets after the launch of the Shanghai-Hong Kong stock
connect, they pay more attention to the Chinese stock market movement due to its unique features in this region. However, capital and
information flows may cause more complex situations in this region as the openness of the Chinese stock market increases the degree of
market efficiency (Huo& Ahmed, 2017). Our results also confirm the spillovers of the Chinese stock market may result in extreme price
co-movement among the Asian stock markets. Bai and Chow (2017) studied the Chinese stock market liberalization based on the stock
connect, they found increasing market liquidity and size resulting in risk persistence and exposure to systemic risk. Burdekin and Siklos
(2018) quantified the impact of Northbound and Southbound capital flows after starting of the stock connect. They found A-H Share
premium is significantly influenced by these cash flows while controlling for sentiment and liquidity effects. Thus, investors must take
caution about risk contagion among the Asian stock markets when adjusting hedging strategies, especially in extreme events.

These important findings can give useful references to the investors whose stock portfolios include the Asian stocks for hedging or
safeguarding the extreme co-movements. Meanwhile, they should consider the relationships among the East Asian stock markets,
especially after the launch of the Shanghai-Hong Kong Stock Connect. Confronted with co-moved extreme risks, risk managers and
investors should make prudent decisions and choose suitable portfolios during the different periods according to their dependence
structures.
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