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ABSTRACT 

 
 
 

AN IMPROVED MODEL FOR CALCULATING HEATS OF DILUTION  

AND EQUILIBRIUM CONSTANTS FOR HIGH TEMPERATURE 

AQUEOUS ELECTROLYTE SOLUTIONS 
 
 
 

Xiaoyun Lin 

Department of Chemical Engineering 

Master of Science 
 
 
 
       At high temperatures, the properties of aqueous electrolyte systems differ markedly 

from those at 25°C. For mixed-electrolyte dilute solutions at high temperatures, the 

degree of ion-association is sufficiently large that the association equilibrium must be 

incorporated in any model describing the solutions. These association reactions usually 

do not occur to a measurable extent at room temperature. Oscarson and co-workers1, 2, 3 

have designed a correlation model based on the excess Gibbs energy which can correlate 

log K and ∆H values as well as the heats of dilution for aqueous electrolyte systems as a 

function of temperature (T) and ionic strength (I) from 275 to 350°C. Use of calorimetric 

data to develop the model has been shown to be more accurate than using ∆dilH values 

from the variation of log K with temperature because one less differentiation with respect 

to temperature is required.  





       In this study, the computer program developed by Oscarson and co-workers has been 

modified by incorporating the IAPWS-95 water equation of state4 and Archer and 

Wang’s correlation of the dielectric constant of water5 into the excess Gibbs engergy 

model. The difference between the present work and prior work is that it uses a more 

accurate equation of state for water, a more accurate dielectric constant for water and the 

best equilibrium constants currently available. The properties of water play a very 

important role in the calculation of ∆dilH values, and the modified program developed 

here using improved water equations is shown to be superior to the previous one.  

       The results of this modified model were tested by comparing the predicted heats of 

dilution with experimental measurements from Oscarson’s work1, 2, 23. These 

experimental data cover the range from 523.15 K to 623.15 K and 103 bar to 128 bar. 

The nominal concentrations of the solutions used for the ∆dilH experiments1, 2, 23 were 

0.25, 0.5 and 1.0 m. Equilibrium constants K for Na2SO4 (aq), H2SO4 (aq), NaAc (aq), 

and HCl (aq) association were taken from conductivity values measured by Wood and 

co-workers6, 7, 8 using a flow conductance apparatus. These log K values were used to 

compare the predicted log K values from Oscarson’s model and those from this modified 

model. 
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CHAPTER 1 

INTRODUCTION: MODELS FOR ELECTROLYTE SYSTEMS 

 

Development of models for electrolyte systems is an important subject of research in 

applied thermodynamics because it is essential for the design and simulation of a wide 

variety of important chemical processes including separation processes such as extractive 

distillation and seawater desalination, environmental applications such as waste water 

treatment or chemical waste disposal and electrochemical processes like mineral scaling 

in steam systems. A great deal of effort has gone into the investigation of the properties 

of electrolyte systems since the 1970s, and a large amount of experimental data has been 

reported, as many empirical and semi-empirical models that cover a wide range of 

conditions for various aqueous electrolytes have been developed. 

       The available electrolyte models have been classified with respect to the basic 

assumptions of solution chemistry9, i.e. (1) models that consider electrolytes as un-

dissociated species; (2) models that assume all electrolytes dissociate completely into 

their constituent ions; and (3) speciation-based models, which explicitly account for the 

chemical equilibria occurring in solutions. 

       Models that consider electrolytes to be undissociated species are sometimes suitable 

for high temperature systems in which ions exhibit a high degree of association. Models 

that assume fully dissociated ions are the most common for electrolytes at ambient 

temperature and pressure. Speciation-based models are more realistic models because 
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thermodynamic calculations can be used for solutions containing mixed solutes. The 

superiority of speciation-based models becomes apparent when thermodynamic 

properties other than phase equilibria are considered. It has been shown that speciation is 

valuable in modeling electrolysis, corrosion and other natural processes, and in predicting 

accurate pH values. The use of speciation-based models requires a more detailed 

knowledge of the properties of various coexisting species. Speciation-based models have 

been developed by several workers10, 11, 12, 13.  

       Fundamental theories and application of theoretical and empirical results to 

engineering problems for electrolyte systems will now be reviewed. 

 
 
Fundamental Theories for Models of Aqueous Electrolyte Systems   
 
       Theoretical models have been used to correlate or predict the thermo-physical 

properties of electrolyte solutions over the past 70 years. Modern theories can be roughly 

grouped into four broad categories14. (1) The Debye-Hückel (DH) theory is based on the 

solution of the Poisson-Boltzmann equation. In the DH theory, the ions are assumed to be 

charged species with a fixed diameter in a continuous dielectric medium. (2) Perturbation 

theories use theoretical models to calculate the properties of a reference fluid and add a 

perturbation term to account for the difference between the real and reference fluid 

properties. In this method, the reference terms are based only on theory and the 

parameters in the perturbation term are adjusted to fit experimental data.  (3) Integral 

equation theories are based on solution of the Ornstein-Zernicke (OZ) equation by using 

relationships between the direct- and pair-correlation functions. In these theories, the 

mean spherical approximation (MSA) has the practical advantage of relative simplicity 
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and is often used to solve the OZ equation.  (4) Kirkwood-Buff (KB) theories relate 

concentration fluctuations in the statistical mechanical grand canonical ensemble to 

partial derivatives of thermodynamic functions.  

       These four theories have been applied to two basic types of models: continuum-

solvent models and discrete-solvent models. The perturbation and KB theories are more 

often applied to the discrete-solvent models than the DH and integral theories 

approaches. 

 
 
Models for Electrolyte Systems 
 
       Significant advancement in modeling electrolyte systems has been achieved during 

the last three decades. Several excellent reviews of electrolyte solution models are 

available9, 14. According to Anderko9 and Loehe and Donohue14, empirical and semi-

empirical models for electrolyte solutions can be divided into the following categories. 

 
 
Local composition models 

       Local composition models for electrolyte solutions were first developed by Chen15 et 

al. and discussed in detail by Zemaitis16 et al. In this approach, a short-range force is 

considered to be the only contribution for the interactions between the ions and the 

solvent, and then generalized to the entire solution. Improvement to this approach was 

achieved by Haghtalab and Vera17, and Liu, Harvey and Prausnitz18 (LHP model). The 

LHP model included a modified Debye-Hückel term to account for the effect of long-

range electrostatic forces on the local composition, and a short-range term that differs 

significantly from Chen’s short-range interaction.  
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Hydration models 

       Like local composition approaches, hydration models expand the effect of ion-

solvent association over the entire system. In addition, they include specific terms for the 

hydration energy and hydration number. Such a model has been available for many 

years19. In 1990, Ghosh and Patwardhan20 proposed the excess Gibbs energy as a 

combination of Pitzer’s21 long-range ion-ion interaction expression, a hydration term 

consisting of the energy of hydration, and a function of the total moles of water involved 

in ion hydration per kilogram of solution. 

 
 
Models for mixed electrolyte aqueous solutions 

       The properties of mixed electrolytes rapidly become very complicated as the number 

of species in solution increases beyond two. For some cases, many solutions with but a 

single dissolved electrolyte become mixtures of electrolytes as a result of ion pairing, 

hydrolysis, and complexion reactions. To treat mixed-electrolyte systems effectively, a 

careful choice of existing species is required.  

       Patwardhan and Kumar22 have illustrated that a new set of mixing rules, based on the 

assumption that single-electrolyte systems of equal ionic strength mix ideally, reproduce 

exceptionally well experimental activity coefficients, vapor pressures, solution densities, 

heat capacities, enthalpies of  mixing, and compressibilities for many two-salt systems. 

This method requires only the property equations for the single electrolytes. The authors 

have defined a reduced-activity coefficient, from which a number of important 

thermodynamic properties can be derived and the agreement between the predicted 

values and the data is impressive.  
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       Several studies of ion-ion interactions in aqueous solution in the temperature range 

of 250 - 350ºC have been conducted by Oscarson and co-workers1, 2, 3, 23 . Their studies 

cover various aqueous solutions containing chemical species such as Na+, K+, Cs+, Cl-, 

SO4
-2 and C2H3O-.  These species are of interest in geological and industrial processes. 

For these solutions, enthalpies of dilution were measured using isothermal flow 

calorimetry.  Parameters used in the excess Gibbs ion-interaction models were 

determined from the fits of the experimental heat data. Thermodynamic values such as 

equilibrium constants, enthalpy changes, entropy changes and heat capacity changes have 

been estimated based on calorimetric data. The specific details of the construction and 

operation of the calorimetry have been described241together with the mathematical 

procedure used to reduce the raw data. 

       For use in their study, Oscarson and co-workers1, 2, 3, 23 have proposed a correlation 

approach to give equilibrium constants from calorimetric data of aqueous electrolyte 

solutions. In the calculations, the heats of dilution and heats of reaction vs. total mass 

flow of solvent data were analyzed by a computer program to correlate log K and ∆H 

values for each reaction at different temperatures and zero ionic strength. Activity 

coefficients, γi, based on the Lindsay modification of the Meissner model25 were 

calculated in the program and were used to extrapolate log K values at the experimental I 

value to log K values at I → 0 to account for the heats due to changes in ionic strength. 

The OPTDESX.BYU optimization routine was used to find the log K and ∆H values 

which give the best agreement between the predicted and measured heats. For all systems 

studied1, 2, 3, 23, the enthalpy and entropy changes were positive and increased 

dramatically with an increase in temperature T.  
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       One shortcoming of Oscarson’s model is that it uses approximate equations for the 

density of water and the Debye-Hückel law limiting slopes, which lead to deviations of 

predicted log K values from literature data.  

 
 
Models for mixed-solvent electrolyte solutions                   

Development of models dealing with the thermodynamics of mixed-solvent 

electrolyte solutions has been an active area of research. Many of these approaches 

include three contributions to the excess Gibbs energy: (1) a long-range effect that 

accounts for electrostatic interactions between ions; (2) a short-range interaction 

contribution that accounts for water-cosolvent interactions; and (3) the Born model, 

which represents the chemical contribution to ion-solvent interactions. 

A model for aqueous electrolyte systems containing a supercritical component at high 

temperatures and pressures appeared in the work of Harvey and Prausnitz26. The model 

consists of three contributions to the residual Helmholtz energy: a non-electrolyte term to 

represent all interactions except those involving ions, a term that arises from charging the 

ions, and a charge-charge interaction term. Agreement between predicted and measured 

values is poor for CO2 in the NaCl system. The authors suggested that the poor agreement 

may due to the Lennard-Jones term which does not explicitly define species formed in 

equilibria between CO2 and other components. 

       More recently, a comprehensive mixed-solvent model which combines an excess 

Gibbs energy model with detailed speciation calculations has been developed by Wang et 

al. This model has proven to be accurate for mixed-solvent systems over full 

concentration ranges and works well to predict complex solid-liquid equilibrium12.  
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In this thermodynamic framework, the excess Gibbs energy is expressed as: 

 

RT
G

RT
G

RT
G

RT
G ex

SR
ex
MR

ex
LR

ex

++=                                                                                   (1.1) 

 

where Gex
LR designates the contribution of long-range electrostatic interaction calculated 

from the Pitzer-Debye-Hückel formula, Gex
SR is the short range contribution resulting 

from intermolecular interactions by using a UNIQUAC model, and an additional (middle 

range) term Gex
MR is of a second-virial-coefficient type for ion-ion and ion-neutral 

molecule interactions that are not accounted for by the long-range term.  

 
 
Models for supercritical and high temperature electrolyte systems 

       The widely used equations based on excess Gibbs energy, Gex, as a function of 

temperature, T, pressure, P, and concentration (mole fraction, x, or molality, m) are less 

effective near the critical point of water because solution properties change dramatically 

with small changes in T, P, or m in this region. A more stable function for this situation is 

the residual Helmholtz energy, fres, with the independent variables T, solution density, ρ, 

and m or x. When expressed as a function of temperature and density, differentiation of 

the Helmholtz energy expression allows the calculation of all other thermodynamic 

properties. 

       Among various kinds of models, the fres model developed by Anderko and Pizter 

(AP) 27 is considered one of the best models for correlation of the densities and phase 
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equilibrium of the NaCl-H2O system in the near-critical and supercritical region. This 

comprehensive equation of state includes a reference part and a perturbation contribution: 

 

                                                                                                           (1.2) perrefres fff +=

 

       In this equation, the superscript ref denotes the reference contributions, which come 

from an idealized molecular model. While the reference term yields approximate 

properties of the real system, the perturbation contributions compensate for the deviation 

from the real system by fitting empirical data.  This model assumes that NaCl is 

completely associated. Because this equation accurately describes the density and phase 

behavior of the NaCl-H2O system, it provides a useful reference for studying more 

complex high-temperature systems. 

       Models with explicit inclusion of solute speciation for dilute sodium chloride at near 

critical conditions was recently developed and tested by Oscarson and co-workers10, 11. In 

2001, Oscarson and Palmer8 proposed a modified model (RI model) based on a 

Helmholtz expression developed by Anderko and Pitzer27 (AP model) and the 

equilibrium constant equation for NaCl from conductivity measurements of Wood and 

co-workers28, 29. The basic assumption of the AP model is that all NaCl present is 

associated. This may cause a large error in the dilute region where a large fraction of the 

NaCl is dissociated. The RI model takes into account the effects of ionic dissociation, 

hard-sphere interactions, and dipole-dipole interactions, which make it more applicable 

for dilute solutions at lower temperature and higher pressure where ion association is 

least. Another model (RII model) reported by Oscarson and Liu11 as an extension of the 
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RI model shows its usefulness in correlating the thermodynamics of NaCl solutions as a 

function of solution ρ, T and m in the water critical region. The P, T and m ranges were 

18-40 MPa, 350-402°C, and 0-5m respectively. The RII model is superior to the AP and 

RI models since it incorporates terms for both ion dissociation and ion-ion interaction, 

resulting in accurate prediction of ∆dilH values over wide T, P and m ranges. 

  
       
Summary of Objectives   

       Accurate predictions of thermodynamic properties of aqueous electrolyte solutions 

are needed in order to understand various geological and industrial processes. At elevated 

temperatures, the interactions of chemical species with the solvent and with each other 

differ significantly from those at room temperatures. Reactions occurring in high 

temperature aqueous solutions containing ions such as Na+, Ac-, SO4
2- and Cl-, etc. , are 

of great importance in the electric power industry because all of these ions are most likely 

to concentrate with time and cause corrosion problems to the construction materials of 

the power system. While chemical equlibria in aqueous solutions has been thoroughly 

studied near room temperature, investigations about thermodynamic values are scarce for 

temperatures above 250°C.   

       The objective of this research is to improve a correlation approach proposed by 

Oscarson and co-workers1, 2, 3 to give more accurate values of equilibrium constants from 

calorimetric data. The objective of this work was accomplished by (1) finding the 

appropriate correlation for association equilibrium constants K at zero ionic strength in 

aqueous solutions from fits of existing experimental data, (2) using the appropriate 

derivatives and thermodynamic identities to derive enthalpy changes ∆H0  valid at 
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infinite dilution (I → 0), (3) using the value of log K and ∆H0 at zero ionic strength and 

the γ values determined from the modified Meissner’s  activity coefficient model25 to 

calculate the concentrations and heats of dilution at experimental ionic strengths, and (4) 

determining the log K and ∆H values at experimental conditions by minimizing 

differences between the calculated and experimental heats of dilution.   

       This work describes this modified correlation model by first presenting a background 

of Lindsay’s modified Meissner model25, IAPWS-95 water equation of state4 and the 

dielectric constant model5 of Archer and Wang. This is followed by a review of the 

appropriate experimental data and delineation of the approach used in this study to 

incorporate the newer models. Correlation of equilibrium constants for ionization 

reactions is then described. Chapter 4 explains the procedure of calculation. Next, the 

heats of dilution predicted from the modified model are compared to experimental 

measurements and predicted heats of dilution from Oscarson’s work, and, the predicted 

log K values are compared to Wood’s data6, 7, 8. Finally, conclusions are drawn from this 

comparison, and recommendations for future work are provided.  
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CHAPTER 2 
 

BACKGROUND 

 

       This chapter contains a review of the pertinent literature concentrating primarily on 

Lindsay’s modified Meissner model25, the best water equation of state4 and water 

dielectric constant model5 currently available. Following these discussions, a brief 

description of the approach used in this research will be given. 

    
    
Lindsay’s Modified Meissner Model 

       An activity coefficient can show the deviation of a solute from ideality. In fact, it is a 

quantitative measure of the difference between the chemical potential of the real solute in 

the actual solution and the chemical potential that a solute would have if it were in an 

ideal solution at the same temperature, pressure and composition. The excess Gibbs free 

energy Gex of a system containing one kilogram of solvent and mi mole of each solute 

specie is: 

 

       ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−=

∑
∑∑

i i

i ii

i i
ex

m
m

mRTG
γ

ϕ
ln

1                                                                    (2.1) 

 

       In Eq.(2.1), subccript i represents each solute specie in the system, γ are the activity 

coefficients based on the 1 molal standard state, and φ  is the osmotic coefficient. The 
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standard state is a hypothetical one molal solution at infinite dilution. The excess Gibbs 

free energy is useful in that it allows general correlation of thermodynamic data from 

measurements on both solutes and solvent. 

       Pitzer30 has successfully developed equations for activity coefficients and osmotic 

coefficients of electrolyte solutions with superior theoretical foundations. However, these 

equations contain empirically determined parameters, which may introduce large errors 

when extrapolated to higher concentrations and they require a large number of parameters 

when applied to solutions containing many solutes. 

       Meissner31 formulated a set of equations that successfully model the activity 

coefficients of a large variety of electrolytes over a wide range of ionic strength at 25°C. 

The correlation he proposed is shown in Eqs. (2.2) – (2.5), 

 

                ∗
± Γ−++=−+ ])1.01(1[1 BIB qzzγ                                                                      (2.2) 

                                                                                                          (2.3) qB 065.075.0 −=

                 21

21

1
5107.0log

CI
I

+
−=Γ∗                                                                                     (2.4) 

                                                                                                     (2.5) 
3023.0055.01 IqeC −+=

 

where z+ and z- are the charges on the cations and anions, respectively, γ± is the mean 

activity coefficient of the electrolyte studied, I is the ionic strength and q is a fitting 

parameter, which is different for different electrolytes.  When  is plotted against 

ionic strength for many different types of electrolytes at 25˚C, a smooth family of curves 

is formed. Therefore, given a single experimental value of γ

−+
±

zz/1γ

± at a known ionic strength 
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for an electrolyte, its γ± value can be estimated for the whole range of concentrations with 

reasonable accuracy.  

       The Meissner equation has a form similar to the extended Debye-Hückel equation, 

but distinguishes itself in the following items: (1) there is only one adjustable parameter, 

q; (2) the equation extrapolates well to higher concentrations; (3) a reasonable shape is 

preserved up to high ionic strength. Meissner’s model gives reasonably accurate sodium 

chloride activity coefficients from 25°C up to 120°C using a simple form. However, this 

approach is inappropriate over a wider range of temperatures because the constant 0.5107 

in Eq. (2.4) must be replaced by the correct Debye-Hückel limiting slope.

       Lindsay25 modified Meissner’s equation so that it could be used over a wide range of 

temperature, 0°C to 350°C. The numerical constant 0.5107 of Eq. (2.4) was replaced by 

A/2.0303, and the parameter A is the Debye-Hückel limiting law slope, was expressed as 

a fifth-order polynomial in t (º C): 

  

                                    (2.6) 
543

2

)100/(0157603.0)100/(105332.0)100/(256199.0
)100/(214065.0)100/(158173.0484582.0303.2/

ttt
ttA

+−+

−+=

 

       The parameter q as a function of temperature for NaCl solutions is given by the 

following equation: 

 

                                                      (2.7) 2)100/(17233.0)100/(321502.095869.2 ttq −−=
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       In Eq. (2.7), t is the temperature in º C. This equation is applicable at temperatures 

from 100-350˚ C and at saturated pressure of water. 

       This correlation fits the mean activity coefficients of sodium chloride solutions as 

calculated by the accurate Silvester-Pitzer correlation over the full range of 

concentrations at temperatures of 100-300 ºC at pressures near the vapor pressure of 

water.   

        Although Lindsay’s equation was fitted to NaCl data, it works quite well at 

temperatures above 250 ºC for other 1:1 strong electrolytes based on three assumptions. 

(1) Activity coefficients for all 1-1 electrolytes exhibit similar trends and can be assumed 

to be a function only of I, temperature, species charges, and dielectric constant. This is 

because as the temperature increases, the long-range effects become more significant so 

the size of the ions becomes less important. The long-range effect is due to the charge on 

the ions. Therefore the values of the activity coefficients of 1:1 electrolytes approach 

each other at high temperatures. (2) Sodium chloride activity coefficient data are 

acceptable as standards for the behavior of strong electrolytes in high temperature water. 

(3) An approximation for higher charged electrolytes is: 

 

       
2

)(
z

NaClz ±= γγ                                                                                                             (2.8) 

 

in which z is the ion charge (±2, ±3), γ|z| is a single ion activity coefficient for a multiple-

charged ion, and γ±(NaCl)  is the mean molal activity coefficient for NaCl. Lindsay25 

pointed out that this model for multiple-charged ions is inadequate at higher ionic 

strength because pronounced differences with experimental data were observed.   
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       Lindsay’s model shows some uncertainty at higher temperature because of the way 

in which the limiting law slope was fitted: it is fitted only as a function of temperature. 

However, as water becomes more compressible, A is a function of pressure P as well as 

temperature T.  

       For use in this work, the numerical constant 0.5107 in Eq. (2.4) was replaced by the 

exact form of A/ln (10). The limiting law slope A is given by 

 

      ( ) 2
3

02
1

3 )4(2
−

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= TkNeA A εεπρπγ                                                      (2.9)  

                                     

where e = 1.6021773×10-19 C is the charge of an electron, ε0 = 8.8541878×10-12 C2J-1m-1 

is the permittivity of  vacuum, ε is the dielectric constant of water, ρ is the density of 

water with unit g/cm3, and NA, π, k and T have their usual meaning. The values of limiting 

law slope A calculated from Eq. (2.9) and Eq. (2.4) were compared with accurate reported 

data5. For the limiting law slope calculated using Lindsay’s fitting equation, differences 

from reported data5  are as large as 2.5%, 8.5%, and 25% at the pressures of 10MPa, 

20MPa and 30MPa, respectively. Meanwhile, the discrepancy between the limiting law 

slope calculated from Eq. (2.9) and the reported data5 is a maximum of 0.16% at a 

pressure of 30MPa. 

       In Lindsay’s modification of Meissner’s model, the parameter q is only an empirical 

equation that does not have any physical interpretation or obvious dependence on 

pressure/density.  

       In order to investigate if q is dependent on pressure/density, a new function q1 was  
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defined as the sum of the fitting equation of q and a perturbation term ∆ that represents 

the effect of pressure/density: 

 

                                            (2.10) ∆+−−= 2
1 )100/(17233.0)100/(321502.095869.2 ttq

 

       With ∆ falling in a range of values between -0.75 to 0.75, Eq. (2.10) was used to 

calculate the mean activity coefficients γ for NaAc + H2O system. The mean activity 

coefficients γ for NaAc + H2O system vs. different ∆ are plotted in Figure 2.1. for 1m 

NaAc at temperatures of 275 ºC and 300 ºC, 
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Figure 2.1.   Plot of activity coefficients γ of  1m NaAc + H2O system at 275ºC and 300ºC vs. different ∆ 
values.  
 
 
 
       Figure 2.1 shows that when the range of ∆ is between -0.75 to 0.45, γ changes 

relatively little; however, at 275°C, γ increases about 1.6% and 10.9% when ∆ is 0.6 and 

0.75, respectively. In this work, pronounced improvement in the performance of 
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Lindsay’s modified activity coefficient model is achieved by changes of up to 25% in A 

values; on the other hand, a change of about 100% in the values of q is required to make a 

significant change in γ. That means Lindsay’s modified activity coefficient model 

depends more on A than on q. Therefore, in this work, we chose to include all the P or ρ 

dependence in the equation for A and use Eq.(2.7) for parameter q.   

    
    
Equation of State for Water 

Of all pure fluid substances, water, including liquid water and steam, is undoubtedly 

the most important substance. Numerous equations of state that describe the 

thermodynamic properties of water has been developed over decades. The IAPWS–95 

formulation4 proposed by Wagner and Pruß is the best water equation of state currently 

available for general and scientific use. By applying modern strategies for optimizing the 

functional form of the equation of state and for the simultaneous nonlinear fitting to the 

data of all measured properties, the IAPWS-95 formulation covers a validity range for 

temperatures from the melting line (lowest temperature 251.2K at 209.9Mpa) to 1273K 

and pressures up to 1000MPa. The significant advantages of the IAPWS-95 formulation 

are that it correlates accurate updated data within their experimental uncertainty in the 

whole range, and it has improved performance in the critical region and metastable 

regions. Moreover, IAPWS-95 can be extrapolated to high pressures and temperatures. 

       The IAPWS-95 formulation is based on an empirical description of the Helmholtz 

energy A with the independent variables density ρ and temperature T. This model defines 

the function A(ρ,T) as the sum of a part A 0  that represents the properties of the ideal gas 
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at a given T and ρ and a part Ar that takes into account the residual fluid behavior. The 

Helmholtz free energy takes the form of: 

 

                                                                                     (2.11) ),(),(),( 0 TATATA r ρρρ +=

 

By using the dimensionless form Φ = A / (RgT), the reduced Helmoholtz energy, as a 

function of temperature T and density ρ, becomes 

 

                                                                                          (2.12)  ),(),(),( 0 τδφτδφτδφ r+=

 

where δ = ρ/ρc is the reduced density and τ = Tc/T  is the inverse reduced temperature with 

ρc and Tc being the critical density and the critical temperature, respectively.  

The ideal gas part of the equation is: 
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in which n 0i and γ i are the parameters. The residual part of the equation is: 
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in which ni, di, ti, αi, and βi are parameters, ∆ and ψ are auxiliary function applicable to 

the critical region. The complete formulation is presented and discussed in detail in the 

original article2. In order to find the density of water, the equation from DIPPR 801 

Database was used to get a good initial estimate of the liquid water density.  

 
 
The Dielectric Constant of Water 

       In order to quantitatively describe the interaction between charged particles in the 

electrolyte solutions, the electrostatic permittivity of the solvent in which the particles are 

immersed should be expressed accurately. The dielectric constant of water or relative 

permittivity is a key property that strongly impacts the behavior of ions in water and is an 

important parameter in calculating the Debye-Hückel law limiting slope.  In most cases, 

the solvent is considered a dielectric continuum. Previous models of the dielectric 

constant for water have been described either as a function of temperature and pressure or 

as a function of temperature and water density. Both of these two forms have advantages. 

However, differences in Debye-Hückel law limiting slope are found when they are 

calculated using the water dielectric constants from these two forms, which indicates 

these models have limitations for predicting accurate dielectric constants.  Archer and 

Wang5 proposed a more reliable equation for the dielectric constant of water that gives 
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not only a good representation of the experimentally observed dielectric constant, but 

also gives reliable values of the first and second derivatives of the dielectric constant with 

respect to temperature and pressure. This equation can be applied effectively over wider 

regions of independent variables (for temperature from 238.15 to 823.15 K) than the 

previous models mentioned above. 

       Archer and Wang’s model5 is based on the Kirkwood32 equation which relates the 

effect of intermolecular interactions on the dielectric constant of a fluid. The equation 

given by Kirkwood is: 

   

     mA VkTN 3)3(9)12()1( 0εµµαεεε ⋅+=−−                                                   (2.15a) 

 

Where 

 

        [ ]∫ −⋅+=⋅ 0 cos)(12 V kTW
mA VdWdeVN γµµµ                                                    (2.15b) 

 

In Eq. (2.15b), ε is the dielectric constant, α is the molecular polarizability, Vm is the 

molar volume, NA is Avogadro’s constant, µ is the molecular dipole moment of an 

arbitrary molecule in the fluid, µ  is a local dipole moment in a small region of fluid 

about the arbitrary molecule and from which reactive field contributions have been 

moved, and µ is the dipole moment of the molecule in the absence of all electric fields. 

Within the integral, γ is the angle between dipole moments of an arbitrary pair of dipoles, 

and W is the potential of average force acting on the arbitrary pair of molecules. The 

symbols T, k and π have their usual meanings. 
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       The difficulties inherent in the calculation of ε using Eq. (2.15a) arise from the 

integral part of Eq. (2.15b). For simplicity, a suitable function g was employed to replace 

the quantity in the square bracket in Eq. (2.15b). Archer and Wang5 calculated (g-1)/ρ 

from the data of Heger et al. at various T and P and T and ρ values, respectively. Then the 

value of (g-1)/ρ was fitted by means of a nonlinear least-squares fitting procedure to the 

following equation: 
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       In Eq. (2.16), bi are the fitting parameters with b1 = - 0.04044525 KMPa-1, b2 = 

103.6180 K1/2, b3 = 75.32165 K, b4 = -23.23778 K1/2, b5 = -3.548184 K1/4, b6 = -1246.311 

K, b7 = 263307.7 K2, b8 = -0.6928953 KMPa-1, and b9 = -204.4473 K2MPa-1. Using these 

values, one can obtain g as a function of P, T and ρ by rearranging Eq. (2.16) and setting 

the right part of Eq. (2.15a) as a function f: 
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where  

 

            123100221367.6 −×= molN A

           330101458392.18 m−×=α
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                mC ⋅×= −30101375776.6µ

          11212
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       By substituting Eq. (2.17) into Eq. (2.15a), one may expand Eq. (2.15a) into a 

quadratic and solve for ε: 

 

                                                                                     (2.18) ][ 011),,(92 2 =−+− ερε Tpf

 

       In this work, the dielectric constant equation from Archer and Wang5 is used to 

determine the Debye-Hückel limiting law slope for the calculation of activity coefficients.    

       Once the best equation of state and dielectric constant for water were incorporated 

into the modified Meissner activity coefficients model, then model results were compared 

with experimental data for verification. In the next section of this chapter a review of 

some of the experimental work found in the literature is given. The experimental work 

contains measurements of thermodynamic values of various aqueous electrolyte solutions 

at high temperatures. Some of these measurements were selected for comparison in this 

work. 

 

 Experimental Data 

       Various experimental techniques have been used to measure the properties of 

aqueous electrolyte solutions. Frantz and Marshall34 made electrical conductance studies 
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of HCl solutions from 100 to 700 °C and reported log K values for HCl formation from 

400 to 700°C. Simonson35 et al. measured enthalpies of dilution of aqueous CaCl2 using a 

flow microcalorimeter over the temperature range 150 to 400°C. Archer36 has presented 

the thermodynamic properties of the aqueous NaCl system from 250 K to 600 K, and 

pressures ranging from the vapor pressure of the solution up to 100 MPa. Because the 

purpose of this work is to develop a method to better predict heats of dilution as well as 

log K for electrolyte solutions, it was desired to have measurements for these specific 

properties. Wood and co-workers6, 7, 8 determined accurate equilibrium constants for the 

formulation of Na2SO4 (aq), H2SO4 (aq), NaAc (aq), and HCl (aq) from their constituent 

ions using a flow conductance apparatus that demonstrated unprecedented speed, 

precision and sensitivity. These measurements were found to be the most applicable to 

the condition of this work, and therefore were used to compare the results of Oscarson’s 

model1, 2, 23 to the results of the modified model. 
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CHAPTER 3 
 

CORRELATION OF EQUILIBRIUM CONSTANTS FOR 
ASSOCIATION REACTIONS 

 

       At high temperatures, the properties of aqueous electrolyte systems differ markedly 

from those at low temperatures. Above 250°C, the rapid decrease of the dielectric 

constant for water with increasing temperature results in an increase in increased ion 

association. This increase necessitates the use of equilibrium constants in the calculation 

of thermodynamic properties of the solution.  This is in contrast to other cases, such as 

aqueous HCl below 250°C where the amount of association is so small that it can be 

neglected. Models that assume complete solute dissociation fail to represent 

quantitatively the observed thermodynamic properties of strongly associated electrolytes 

at high temperatures. In order to account for association effects, models for aqueous 

electrolytes must include an association equilibrium expression as a function of T and P 

or T and ρ. In this chapter the equilibrium correlation that was used in this work to 

calculate the enthalpy of dilution of aqueous electrolytes is discussed. 

       New flow-through techniques, such as in-situ UV-vis spectroscopy37, electrical 

conductivity38, 39, calorimetry3, 23, and potentionmetry40, 41 have resulted in precise 

measurements of thermodynamic properties of electrolyte aqueous solutions at high 

temperatures. Among them, Wood and co-workers6, 7, 8 were able to provide accurate 

equilibrium constants for the dissociation of Na2SO4 (aq), H2SO4 (aq), NaAc (aq), and 
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HCl (aq) into their constituent ions from conductivity measurements on various aqueous 

solutions. The flow instrument and the associated operating procedure have been 

described in detail39, 42. Equilibrium constants determined from these experiments, 

together with some other values reported in the literature 1, 2, 23, 43, 44for the association of 

electrolytes HCl (aq), H2SO4 (aq), Na2SO4 (aq), HAc (aq), NaAc (aq), and NaOH (aq), 

are listed in Table 3.1. 

 
  
Table 3.1 Equilibrium Constant Data for the Ion Association to Form HCl (aq), H2SO4 (aq), Na2SO4 (aq), 

HAc(aq), NaAc(aq), and NaOH(aq) in Aqueous Solutions. 
 
T  ( K  ) P (MPa) logK Methoda ref density ρ(g/cm^3) 
  H+ + Cl- = HCl    
548.15 10.3 0.37 cal 23 0.7174 
573.15 11 0.62 cal 23 0.7174 
573.15 10.17 0.97 con 43 0.7157 
573.15 10.26 0.68 con 43 0.7159 
598.15 13.2 1.31 cal 23 0.6586 
623.15 17.6 2.12 cal 23 0.5841 
623.15 27.8 1.68 con 43 0.6363 
623.15 26.16 1.83 con 43 0.6302 
      
  H+ +SO4

-2 = HSO4
-1    

523.15 10.3 5.34 cal 1 0.80603 
523.15 12.45 5.543 con 8 0.80835 
573.15 11 6.44 cal 1 0.71745 
573.15 12.62 6.63 con 8 0.72067 
573.15 28.08 6.53 con 8 0.748 
593.15 12.8 6.94 cal 1 0.67209 
623.16 20 7.63 con 8 0.60059 
623.16 28 7.34 con 8 0.63704 
      
  Na+ + SO4

-2 =NaSO4
-1    

523.15 12.45 1.956 con 8 0.80835 
573.15 12.62 2.61 con 8 0.72067 
573.15 28.08 2.52 con 8 0.748 
623.16 20 3.396 con 8 0.60059 
623.16 28 3.11 con 8 0.63704 
      
  H+ + HSO4

-1 = H2SO4    
523.15 12.45 1.04 con 8 0.80835 
573.15 12.62 1.44 con 8 0.72067 
573.15 28.08 1.32 con 8 0.748 
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Table 3.1 (continued)      
      
T  ( K  ) P (MPa) logK Methoda ref density ρ(g/cm^3) 
623.16 20 2.01 con 8 0.60059 
623.16 28 1.82 con 8 0.63704 
      
  Na+ + HSO4

-1 =Na2SO4    
523.15 12.45 1.62 con 8 0.80835 
573.15 12.62 1.98 con 8 0.72067 
573.15 28.08 1.87 con 8 0.748 
623.16 20 2.51 con 8 0.60059 
623.16 28 2.23 con 8 0.63704 
      
   H+ + Ac- = HAc    
548.25 23.4 6.07±0.02 con 44 0.7828 
548.15 10.3 6.18 cal 2 0.7657 
572.95 23.1 6.54±0.01 con 44 0.7423 
573.15 10.3 6.52 cal 2 0.7159 
593.15 12.8 6.86 cal 2 0.6721 
623.35 23.3 7.17±0.08 con 44 0.6173 
      
  Na+ + Ac- = NaAc    
      
548.15 10.3 0.033 cal 2 0.7656 
573.15 10.3 0.29 cal 2 0.7159 
593.15 12.8 0.498 cal 2 0.6721 
      
  Na+ + OH- = NaOH     
573.15 11 0.82 cal 23 0.7174 
573.15 9.69 0.89 con 6 0.7146 
598.15 14.8 1.24 cal 23 0.6642 
623.15 17.6 1.76 cal 23 0.5841 
623.15 23.93 1.65 con 6 0.6208 
      
      
aThe method is designated by cal (calorimetric) or con (conductance method). 
 
 
        
      The data listed in Table 3.1 are reported from calorimetric and conductance 

measurements. These results are not done at the same pressures, but the agreement of 

data from different methods is not bad given the difficulties of making the measurements. 

        
The following simple empirical equations have proved reliable and are widely used to 

give equilibrium constants as a function of T and ρ. 
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       ρlnlnlog dTc
T
baK +++=                                                                                  (3.1) 

       ρln)(log
T
dc

T
baK +++=                                                                                     (3.2) 

 

where ρ is the density of water and T is temperature in K. It has been shown that ρ is a 

better correlation parameter than P. The parameters a, b, c, and d are fitted using 

experimental data. The values of a, b, c and d will be different for each reaction. The 

argument for using these equations is that the water is a reactant as shown by: 

 

       A+· αH2O + B-· βH2O = C (aq)· γH2O + (α + β - γ)· H2O                                        (3.3) 

 

       The term (α + β –γ) in reaction (3.3) can be roughly represented by the (c+d/T) term 

in eq. (3.2) since ρ is the concentration of water. However, when the temperature is 

above 350 ºC, both equations can cause large errors in the value of log K.   

 In this work, the equilibrium constants, K, for the association reactions of electrolytes 

HCl (aq), H2SO4 (aq), Na2SO4 (aq), HAc(aq), NaAc(aq), and NaOH(aq), were correlated 

using Eq. (3.2). When using Eq. (3.2) to fit the experimental data, the density of water 

that in units of gm·cm-3 was calculated from the IAPWS-95 equation. Values of 

parameters a, b, c, and d were found using a least-squares fit and are listed in Table 3.2. 

The fitting parameters in table 3.2 are capable of sufficient accuracy to provide values of 

log K which are in good agreement with experimental results. The minimum R-squared 

value is 0.9886 when regressed with a second-order polynomial.   
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  Table 3.2 Parameters for Eq. ( 3.2)   
   a b(K) c d(K)   
NaOH  0.9222 -1262.11 -4.3136 -75.2634   
NaAc  -0.4558 79.96713 -4.0419 120.0167   
HCl  1.0451 -800.001 -13.695 5818.004   
NaSO4  3.5888 -1267.999 -3.5326 -45.0004   
HSO4  13.4104 -4323.316 -2.5225 219.2622   
H2SO4  7.6962 -3998.989 -14.3785 8898.995   
Na2SO4  1.0333 9.9359 -2.7905 63.0129   
HAc  -0.4558 -79.9671 -4.042 120.0167   

 
 
 

Wood28 et al. have stated in their equilibrium correlation that the density of pure 

water can be used instead of the density of electrolyte solution in a similar correlation 

because the density of the dilute solutions used in their study was so close to that of water 

that using the density of water led only to negligible errors. The same treatment was 

employed in this work. 

       The relationship between the change in Gibbs energy ∆G, the change in the standard 

state Gibbs energy ∆G0, and the association constant K can be expressed as: 

 

                                                                                                     (3.4) KRTGG ln0 +∆=∆

 

When the system reaches equilibrium, the change in Gibbs energy is equal to zero, and 

Eq. (3.4) becomes 

 

                                                                                                           (3.5) mKRTG ln0 −=∆
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       From the thermodynamic identity: 
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the enthalpy change at zero ionic strength ∆H0 can be determined as following: 
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       Substituting Eq. (3.2) into Eq. (3.7), one obtains the enthalpy change for ion 

association: 
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The log K value for the ionization of water was obtained from the equation of 

Marshall and Franck45: 

 

       ρlog)(log 232 ×++++++= TgTfeTdTcTbaK                                     (3.9) 

 

where a = -4.098, b = -3.2452×103 K, c = 2.2362×105 K2, d = -3.984×107 K3, e = 13.957,  

f = -1.12623×103 K, g = 8.5641×105 K2, and ρ is the density of pure water with unit 

g/cm3. 
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       Substitution of Eq. (3.9) to Eq. (3.7) results in the enthalpy change for the formation 

of water from its constituent ions: 
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CHAPTER 4 
 

CALCULATION PROCEDURE 

 

       In the preceeding chapter, the details of the modified Meissner’s activity coefficient 

model25, the equation of state for water4, Archer and Wang’s dielectric constant model5 

and the correlated empirical equation for the equilibrium constants of ion-pairing 

reactions in high temperature aqueous solutions were presented. In this chapter, a 

description of how these equations were combined to calculate heats of dilution of high 

temperature aqueous electrolyte systems is given.  

       In the previous work of Oscarson et al.1, 2, 23, the reactions occurring in the systems 

NaAc (aq) + H2O, HCl (aq)+ H2O, and Na2SO4 (aq) + H2O were studied. For example, in 

the process of dilution of NaAc, , aqueous NaAc solution with molalities mNa
+

,initial,  and  

mAc
-
,initial were mixed with a given amount of pure water to yield a final solution with 

smaller species molalities. During the dilution, all the solutions were at the same 

temperature and pressure.   

       For the process of dilution of NaAc (aq), a flow stream of water is combined with the 

initial solution to change the overall concentrations of the species. The solution 

containing sodium acetate as well as pure water involves seven species, according to the 

following association reactions: 

 

HAcAcH =+ −+                                                                                                   (4.1) 
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                                                                                                   (4.2) NaOHOHNa =+ −+

                                                                                                       (4.3) NaAcAcNa =+ −+

        H + + OH - = H2O                                                                                                   (4.4) 

 

       The association constants for the first three reactions were expressed as: 
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Where γ± is the mean activity coefficient of ions in the solution, and the activity 

coefficients of the neutral aqueous species are assumed to be unity at the conditions of 

the experiment. The association constants for HAc, NaOH, and NaAc can be calculated 

using the empirical equation for log K (Eq. (3.2)).  

For the association reaction H+ + OH- = H2O, 

 

       ))((
2 ±± −+= γγ OHHOH mmK                                                                                       (4.8) 

 

with the activity coefficient of water assumed to be unity.  

       After the solution reaches equilibrium, charge and mass balances for this system may 

be expressed as: 
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                                                                                             (4.9) −−++ +=+
OHAcNaH

mmmm

       NaAcNaOHNafinaltotNa
mmmm ++= ++ ,,

                                                                       (4.10) 

       HAcNaAcAcfinaltotAc
mmmm ++= −− ,,

                                                                          (4.11) 

 

where the final concentrations of species mi are molal-based, and mi,tot, final  is the total 

amount of primary species in the diluted solution. The total amount of primary species in 

solution mi,tot, final , which decreased by dilution, is calculated as: 

 

       
flowbflowa

flowamm initialtotifinaltoti +
⋅= ,,,,                                                                     (4.12) 

 

where mi, tot, initial is the total amount of primary species entering into the reservoir per unit 

mass of water, flowa and flowb are the mass flow rates of specific solution and water, 

respectively. These mass flow rates were determined using volumetric flow rates and 

fluid densities at the reservoir conditions.   

       In Eqs. (4.5) - (4.11), there are seven unknowns, i.e., molalities of the seven species 

Ci in diluted aqueous solution. In order to calculate heats of dilution, the basic approach 

is to solve the set of simultaneous equations that apply to all of the chemical equilibria 

that are being considered, along with mass balance equations for each of the components, 

and the charge balance equation for the system. First, the equations were reformulated in 

terms of the natural logarithm of the concentration. By applying the Newton-Raphson 

procedure, iteration was performed, and then the solution is found. In the procedure 

described above, the quantities of the final concentrations after dilution, the activity 
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coefficients and the ionic strength at the experimental condition can determined. 

Therefore, in terms of known or solvable quantities, the overall heat of dilution can be 

calculated. 

       A solution of Na2SO4
 is usually treated as a mixed electrolyte solution. The correct 

selection of species present in the diluted Na2SO4 solution is critical for the success of the 

calculation procedure. There are seven species present in solution: Na+, SO4
-2, NaSO4

-, 

HSO4-, Na2SO4, H+ and OH-. In this study, we neglected NaHSO4 and H2SO4 because 

they are only important at very low water densities and caused a poor fit when included 

in this calculation.  
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CHAPTER 5 

RESULTS 

 
 
The content of this chapter is a brief introduction of the computer program written 

for this work and the results of this modified model. 

 
 
Computer Program 

       The set of equations discussed in this work were coded into a FORTRAN computer 

program. The program was written to accept two user input files: one is the system file, 

which provides system temperature, pressure, number of experimental runs, number of 

primary species in the solution and their concentrations, flow rates of stream a 

(electrolyte solution) and stream b (pure water), and the measured heats of dilution. The 

other input file is the chemistry file, which contains the species and complexes presenting 

in stream a. The program provides three outputs: (1) the initial and final molalities of 

species and complexes in stream a; (2) the heats of dilution from the prediction of the 

modified model and the experimental measurements; and (3) log K and ∆H values at 

experimental conditions. The program code is constructed such that the IAPWS-95 

equations and dielectric constant are broken out into subroutines and functions, while 

solving for concentrations and heats of dilution in stream a comprises the main body of 

the program. The reader is referred to Appendix A for a complete FORTRAN computer 

code. 
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Results of This Work 

       The computer program was run to generate heats of dilution for the modified model 

at the same experimental conditions as those used by Oscarson et al.1, 2, 23. Tables 5.1-5.3 

contain total mass flow rates of solution and experimental heats obtained by mixing 

NaAc solution with H2O, HCl solution with H2O, and Na2SO4 solution with H2O, 

respectively. Tables 5.1-5.3 also include the heats of dilution calculated by the correlation 

model of this work and Oscarson’s previous work; Figures 5.1-5.4 graphically show the 

comparison of experimental measurements of heats of dilution from Oscarson et al. 1, 2, 23 

with values calculated from this work and from the model of Oscarson et al.1, 2, 23 .  
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             Table5.1 Comparison of Measured and Calculated Heats of Dilution for NaAc + H2Oª
T = 275 ºC P = 10.3 Mpa

1.0661m 0.5175m 0.2574m
 flow rate meas ∆H ∆dilH¹ ∆dilH²  flow rate meas ∆H ∆dilH¹ ∆dilH² flow rate meas ∆H ∆dilH¹ ∆dilH²

0.6465 -1.2674 -1.306 -1.5033 0.6604 -0.4919 -0.5683 -0.6185 0.6656 -0.138 -0.2424 -0.2563
0.7159 -1.68 -1.698 -1.9461 0.7312 -0.6435 -0.7276 -0.8009 0.7363 -0.1971 -0.3134 -0.3312
0.7364 -1.8199 -1.805 -2.0668 0.752 -0.6785 -0.7837 -0.8512 0.7572 -0.1974 -0.3333 -0.3516
0.7809 -2.0765 -2.026 -2.3149 0.7972 -0.7689 -0.8784 -0.9521 0.8024 -0.2266 -0.3732 -0.3933
0.8085 -2.2 -2.156 -2.4601 0.8254 -0.8248 -0.9343 -1.0117 0.8305 -0.2582 -0.3966 -0.4177
0.8501 -2.3984 -2.342 -2.6676 0.8678 -0.9661 -1.014 -1.097 0.873 -0.3234 -0.4301 -0.4526
0.8807 -2.5305 -2.473 -2.8123 0.8988 -1.0316 -1.069 -1.1561 0.9041 -0.336 -0.4533 -0.4767
0.9244 -2.6495 -2.65 -3.0084 0.9434 -1.0306 -1.145 -1.2366 0.9485 -0.3239 -0.4848 -0.5094
0.9538 -2.7502 -2.763 -3.1339 0.9732 -1.061 -1.193 -1.2878 0.9784 -0.3659 -0.5049 -0.5303
0.9968 -2.8688 -2.922 -3.309 1.0171 -1.1024 -1.261 -1.3596 1.0223 -0.3869 -0.533 -0.5594
1.0255 -2.9989 -3.023 -3.4207 1.0462 -1.1916 -1.304 -1.4051 1.0515 -0.3469 -0.5508 -0.5779
1.0681 -3.1036 -3.168 -3.5795 1.0896 -1.2465 -1.365 -1.4699 1.0948 -0.388 -0.5762 -0.6041
1.1402 -3.3573 -3.398 -3.8308 1.1631 -1.3272 -1.462 -1.5725 1.1682 -0.3612 -0.6162 -0.6454

T = 300 ºC P = 10.3MPa
1.0711m 0.4982m 0.2625m

 flow rate meas ∆H ∆dilH¹ ∆dilH² flow rate meas ∆H ∆dilH¹ ∆dilH² flow rate meas ∆H ∆dilH¹ ∆dilH²

0.6496 -1.8392 -2 -2.1181 0.6608 -0.8036 -0.8279 -0.8502 0.6655 -0.3157 -0.3873 -0.4288
0.7203 -2.4865 -2.601 -2.7489 0.7315 -1.0462 -1.076 -1.1025 0.7362 -0.4334 -0.5026 -0.533
0.7412 -2.6931 -2.766 -2.9209 0.7524 -1.16 -1.1144 -1.1712 0.7571 -0.4765 -0.5341 -0.5633
0.7864 -3.0577 -3.104 -3.2744 0.7976 -1.2838 -1.283 -1.3125 0.8023 -0.5745 -0.599 -0.6394
0.8145 -3.251 -3.303 -3.4822 0.8257 -1.4499 -1.365 -1.3954 0.8305 -0.5992 -0.637 -0.6676
0.8569 -3.566 -3.59 -3.7802 0.8682 -1.6314 -1.483 -1.5142 0.8727 -0.7138 -0.6915 -0.7261
0.888 -3.7906 -3.789 -3.9872 0.8993 -1.7651 -1.565 -1.5968 0.9039 -0.7473 -0.7294 -0.7686

0.9326 -4.0194 -4.061 -4.2697 0.9437 -1.7847 -1.676 -1.7088 0.9484 -0.7855 -0.781 -0.8284
0.9624 -4.1753 -4.235 -4.4497 0.9736 -1.8674 -1.748 -1.7806 0.9783 -0.8281 -0.814 -0.8679
1.0063 -4.3999 -4.479 -4.7026 1.0175 -2.03 -1.848 -1.8809 1.0222 -0.8784 -0.8602 -0.9349
1.0353 -4.5929 -4.635 -4.8632 1.067 -2.1377 -1.912 -1.9449 1.0513 -0.822 -0.8895 -0.9621
1.0787 -4.776 -4.857 -5.0925 1.09 -2.2549 -2.003 -2.0357 1.0947 -0.8922 -0.9314 -1.0166
1.1522 -5.2677 -5.211 -5.4567 1.1635 -2.4372 -2.148 -2.1798 1.1682 -0.9424 -0.9979 -1.1109

T = 320ºC P = 12.8 Mpa
flow rate meas ∆H ∆dilH¹ ∆dilH² flow rate meas ∆H ∆dilH¹ ∆dilH²

0.5115m 0.2530m
0.6533 -1.1732 -1.233 -1.3477 0.6584 -0.5412 -0.5425 -0.5375
0.7244 -1.5811 -1.611 -1.7397 0.7295 -0.7688 -0.7093 -0.6981
0.7489 -1.7355 -1.732 -1.8651 0.754 -0.8245 -0.7622 -0.7462
0.7911 -1.9568 -1.929 -2.0824 0.7962 -0.9606 -0.849 -0.825
0.8206 -2.0597 -2.06 -2.2134 0.8257 -1.0176 -0.9065 -0.8671
0.8635 -2.275 -2.241 -2.4087 0.8686 -1.1491 -0.9857 -0.9472
0.8937 -2.4004 -2.362 -2.5402 0.8988 -1.1839 -1.039 -0.9955
0.9371 -2.5594 -2.528 -2.7207 0.9422 -1.2406 -1.112 -1.0437
0.9631 -2.6308 -2.623 -2.824 0.9683 -1.2823 -1.153 -1.0841
1.0068 -2.8399 -2.776 -2.9964 1.0119 -1.3976 -1.22 -1.1391
1.0377 -2.929 -2.88 -3.1001 1.0429 -1.4266 -1.266 -1.1792
1.0809 -3.1204 -3.018 -3.2464 1.0842 -1.5385 -1.324 -1.2083
1.1526 -3.3522 -3.235 -3.4682 1.1576 -1.6552 -1.421 -1.2995

ª Flow rate is the total flow rate of stream a and stream b with units of g H2O-min-1; ∆dilH1 and ∆dilH2 are 
heats of dilution calculated with modified model and model of Oscarson et al.2, respectively, with units of 
J-min-1. 
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           Table 5.2 Comparison of Measured and Calculated Heats of Dilution for HCl + H2Oª
T = 275 ºC P = 10.3 Mpa

1.0164m 0.4999m 0.2502m
flow rate meas ∆H ∆dilH¹ ∆dilH² flow rate meas ∆H ∆dilH¹ ∆dilH² flow rate meas ∆H ∆dilH¹ ∆dilH²

0.6668 -2.1869 -2.275 -2.4313 0.6685 -0.8887 -0.8503 -0.9252 0.6695 -0.3133 -0.3974 -0.4338
0.7362 -2.5973 -2.669 -2.76 0.7387 -1.05 -1.117 -1.1321 0.7399 -0.3504 -0.4688 -0.5008
0.7567 -2.6782 -2.766 -2.8542 0.7594 -1.1178 -1.158 -1.2024 0.7607 -0.3473 -0.4864 -0.5182
0.8012 -2.8479 -2.954 -3.0472 0.8042 -1.1741 -1.236 -1.2867 0.8058 -0.3792 -0.5203 -0.5638
0.8288 -2.996 -3.057 -3.1579 0.8321 -1.2155 -1.28 -1.3192 0.8338 -0.4117 -0.539 -0.5741
0.8704 -3.1459 -3.196 -3.3162 0.8742 -1.2952 -1.339 -1.3693 0.8761 -0.428 -0.5643 -0.6029
0.901 -3.2649 -3.288 -3.4257 0.905 -1.3168 -1.377 -1.4199 0.9071 -0.5113 -0.581 -0.6225

0.9447 -3.3618 -3.407 -3.5613 0.9492 -1.3723 -1.427 -1.4872 0.9514 -0.4383 -0.6024 -0.648
0.9741 -3.4364 -3.48 -3.6618 0.9788 -1.3551 -1.458 -1.5279 0.9812 -0.4327 -0.6155 -0.6635
1.0171 -3.4726 -3.577 -3.7963 1.0223 -1.4062 -1.498 -1.5812 1.0249 -0.4352 -0.6331 -0.6841
1.0458 -3.5382 -3.636 -3.8801 1.0512 -1.4385 -1.523 -1.6123 1.054 -0.4622 -0.6438 -0.6962
1.0884 -3.644 -3.717 -3.9512 1.0942 -1.4341 -1.557 -1.6524 1.0972 -0.4865 -0.6585 -0.712
1.1605 -3.7062 -3.839 -4.1052 1.1671 -1.4868 -1.608 -1.7033 1.1703 -0.5408 -0.6804 -0.7326

T = 300 ºC P = 10.3MPa
1.0210m 0.4677m 0.2715m

flow rate meas ∆H ∆dilH¹ ∆dilH² flow rate meas ∆H ∆dilH¹ ∆dilH² flow rate meas ∆H ∆dilH¹ ∆dilH²

0.6667 -3.339 -3.3591 -3.129 0.6686 -1.4497 -1.386 -1.3173 0.6694 -0.794 -0.7417 -0.7148
0.7362 -3.875 -3.9009 -3.5656 0.7388 -1.6765 -1.611 -1.537 0.7398 -0.9154 -0.8648 -0.821
0.7567 -4.006 -4.0517 -3.6767 0.7595 -1.7557 -1.666 -1.5942 0.7606 -0.9682 -0.8948 -0.8484
0.8011 -4.258 -4.2766 -3.918 0.8044 -1.8597 -1.771 -1.7064 0.8057 -1.0452 -0.9525 -0.9119
0.8287 -4.396 -4.4356 -4.0462 0.8323 -1.9396 -1.828 -1.7679 0.8337 -1.0951 -0.9841 -0.9345
0.8704 -4.582 -4.6505 -4.2453 0.8744 -2.0535 -1.906 -1.8487 0.8759 -1.1594 -1.027 -0.977
0.9009 -4.704 -4.7764 -4.384 0.9053 -2.1206 -1.957 -1.899 0.9069 -1.1948 -1.054 -1.0048
0.9447 -4.862 -4.8918 -4.5729 0.9494 -2.1594 -2.022 -1.9573 0.9512 -1.201 -1.09 -1.032
0.974 -4.958 -5.0427 -4.6926 0.9791 -2.1804 -2.062 -1.9878 0.981 -1.2516 -1.112 -1.0598

1.0171 -5.087 -5.0948 -4.8587 1.0226 -2.2417 -2.115 -2.0305 1.0247 -1.2407 -1.141 -1.0846
1.0457 -5.165 -5.1902 -4.943 1.0516 -2.2766 -2.147 -2.0621 1.0537 -1.2634 -1.159 -1.098
1.0883 -5.272 -5.3161 -5.1077 1.0946 -2.388 -2.192 -2.0983 1.0969 -1.2745 -1.183 -1.1132
1.1605 -5.432 -5.436 -5.362 1.1675 -2.4208 -2.258 -2.121 1.1701 -1.3528 -1.219 -1.127

T = 320ºC P = 12.8 Mpa
0.4824m 0.2370m

flow rate meas ∆H ∆dilH¹ ∆dilH² flow rate meas ∆H ∆dilH¹ ∆dilH²

0.6613 -2.1696 -1.994 -1.921 0.6621 -1.1274 -1.036 -1.0038
0.7318 -2.5374 -2.29 -2.138 0.733 -1.3304 -1.194 -1.1315
0.7561 -2.6627 -2.372 -2.2121 0.7574 -1.4146 -1.238 -1.1705
0.798 -2.795 -2.497 -2.3185 0.7995 -1.5008 -1.304 -1.2341

0.8273 -2.8705 -2.574 -2.4073 0.8289 -1.5397 -1.345 -1.2758
0.8698 -3.0157 -2.672 -2.5162 0.8716 -1.6396 -1.397 -1.3285
0.8998 -3.0567 -2.735 -2.6122 0.9017 -1.6642 -1.43 -1.3596
0.9429 -3.1219 -2.815 -2.717 0.945 -1.6778 -1.472 -1.409
0.9687 -3.1605 -2.858 -2.7644 0.971 -1.7082 -1.496 -1.4363
1.012 -3.2627 -2.925 -2.8209 1.0144 -1.7754 -1.531 -1.4781

1.0427 -3.2831 -2.968 -2.872 1.0453 -1.7701 -1.554 -1.505
1.0855 -3.3697 -3.023 -2.9584 1.0883 -1.8453 -1.583 -1.5282
1.1567 -3.4626 -3.104 -3.042 1.1597 -1.8778 -1.625 -1.5931

ª Flow rate is the total flow rate of stream a and stream b with units of g H2O-min-1; ∆dilH1 and ∆dilH2 are 
heats of dilution calculated with modified model and model of Oscarson et al.2,  23, respectively, with units 
of  J-min-1. 

   40



            Table 5.3 Comparison of Measured and Calculated Heats of Dilution for NA2SO4 + H2Oª
T = 250 ºC P = 10.34 Mpa

1.0711m 0.533m 0.1437m
flow rate meas ∆H ∆dilH¹ ∆dilH² flow rate meas ∆H ∆dilH¹ ∆dilH² flow rate meas ∆H ∆dilH¹ ∆dilH²

0.6626 -1.6952 -1.496 -1.4305 0.6666 -0.6067 -0.6014 -0.5325 0.669 -0.1459 -0.108 -0.0949
0.7311 -2.0001 -1.782 -1.6977 0.7364 -0.7573 -0.7143 -0.6534 0.7398 -0.1742 -0.1284 -0.1161
0.7548 -2.1107 -1.864 -1.7821 0.7605 -0.7745 -0.7469 -0.6915 0.7642 -0.1937 -0.1343 -0.1225
0.7955 -2.2548 -1.991 -1.9174 0.8021 -0.8191 -0.7971 -0.7536 0.8063 -0.1965 -0.1433 -0.1336
0.824 -2.3593 -2.071 -1.9948 0.8311 -0.843 -0.8282 -0.7942 0.8357 -0.1993 -0.1489 -0.139
0.8653 -2.4521 -2.175 -2.111 0.8732 -0.8747 -0.8689 -0.8492 0.8784 -0.1986 -0.1563 -0.1473
0.8944 -2.517 -2.241 -2.1853 0.9029 -0.8857 -0.8948 -0.8851 0.9085 -0.1979 -0.1609 -0.1534
0.9363 -2.6117 -2.327 -2.2813 0.9456 -0.9082 -0.9286 -0.9326 0.9518 -0.2072 -0.167 -0.1588
0.9614 -2.6812 -2.374 -2.3326 0.9712 -0.9283 -0.9472 -0.9587 0.9777 -0.2166 -0.1703 -0.162
1.0034 -2.7483 -2.447 -2.4081 1.014 -0.9557 -0.9557 -0.9985 1.0212 -0.2248 -0.1754 -0.1664
1.0333 -2.8087 -2.495 -2.454 1.0445 -0.9527 -0.9944 -1.0248 1.052 -0.233 -0.1787 -0.1688
1.0749 -2.8809 -2.556 -2.5068 1.0869 -0.9599 -1.018 -1.055 1.0951 -0.23 -0.183 -0.1711
1.1431 -2.997 -2.645 -2.5658 1.1574 -0.9566 -1.054 -1.0961 1.1665 -0.2121 -0.1893 -0.1722

T = 300 ºC P = 10.3MPa
0.5724m 0.2796m

flow rate meas ∆H ∆dilH¹ ∆dilH² flow rate meas ∆H ∆dilH¹ ∆dilH²

0.6663 -1.6071 -1.407 -1.2443 0.6681 -0.7258 -0.5717 -0.5033
0.7361 -1.8629 -1.662 -1.4506 0.7386 -0.8403 -0.6768 -0.6084
0.7602 -1.9573 -1.735 -1.5142 0.763 -0.8907 -0.707 -0.6393
0.8016 -2.1116 -1.847 -1.6183 0.8048 -0.9335 -0.753 -0.6979
0.8306 -2.1454 -1.917 -1.6874 0.8341 -0.9712 -0.7817 -0.7186
0.8726 -2.2719 -2.007 -1.792 0.8766 -0.9657 -0.8189 -0.7583
0.9023 -2.3072 -2.064 -1.8549 0.9066 -1.0162 -0.8425 -0.7929
0.9449 -2.4043 -2.139 -1.9394 0.9497 -1.0048 -0.8732 -0.8131
0.9705 -2.4518 -2.18 -1.9769 0.9755 -1.0416 -0.89 -0.8284
1.0133 -2.4982 -2.242 -2.0509 1.0187 -1.0644 -0.9159 -0.8492
1.0437 -2.5453 -2.283 -2.0992 1.0494 -1.0033 -0.9327 -0.8603
1.0861 -2.543 -2.336 -2.161 1.0923 -1.0081 -0.9543 -0.8709
1.1565 -2.6061 -2.413 -2.2587 1.1634 -1.068 -0.986 -0.8754

T = 320ºC P = 12.8 Mpa
0.3128m 0.1544m

total flow meas ∆H ∆dilH¹ ∆dilH² total flow meas ∆H ∆dilH¹ ∆dilH²

0.661 -1.1471 -1.009 -0.9345 0.662 -0.4745 -0.413 -0.3953
0.7315 -1.3457 -1.191 -1.0881 0.7328 -0.5754 -0.4892 -0.4578
0.7558 -1.4036 -1.243 -1.1311 0.7572 -0.6365 -0.511 -0.4782
0.7976 -1.4834 -1.322 -1.2111 0.7993 -0.679 -0.5444 -0.5114
0.8268 -1.54 -1.371 -1.2472 0.8287 -0.6961 -0.5651 -0.5332
0.8693 -1.6158 -1.435 -1.3101 0.8714 -0.738 -0.592 -0.5627
0.8992 -1.6521 -1.475 -1.3415 0.9015 -0.7558 -0.609 -0.5832
0.9423 -1.6692 -1.528 -1.4067 0.9447 -0.75 -0.6311 -0.6075
0.9681 -1.6896 -1.556 -1.4373 0.9707 -0.7502 -0.6433 -0.6216
1.0112 -1.7309 -1.6 -1.4845 1.0141 -0.7856 -0.6619 -0.6431
1.0419 -1.754 -1.629 -1.5149 1.0449 -0.7723 -0.674 -0.6568
1.0847 -1.7848 -1.666 -1.5531 1.0879 -0.8125 -0.6895 -0.6737
1.1557 -1.85 -1.719 -1.6054 1.1593 -0.8306 -0.7123 -0.6961

ª Flow rate is the total flow rate of stream a and stream b with units of g H2O-min-1; ∆dilH1 and ∆dilH2 are 
heats of dilution calculated with modified model and model of Oscarson et al.1 , respectively, with units of 
J-min-1. 
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Figure 5. 1. Comparison of measured heat rates (symbols) and calculated heat rates from this work (solid 
lines) and the model of Oscarson et al.2 (dotted line) vs. flow rate for NaAc + H2O.  
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Figure 5.2. Comparison of measured heat rates (symbols) and calculated heat rates from this work (solid 
lines) and the model of Oscarson et al.2, 23 (dotted line) vs. flow rate for HCl + H2O.  
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Figure 5. 3. Comparison of measured heat rates (symbols) and calculated heat rates from this work (solid 
lines) and the model of Oscarson et al.1 (dotted line) vs. flow rate for Na2SO4 + H2O.  
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Figure 5.4. Plot of Log K for the ion association as a function of temperature for (a) NaAc (aq), (b) HCl 
(aq), and (c) Na2SO4 respectively. The solid triangles are taken from Oscarson et al.1, 2, 23, the solid 
diamonds are taken from Wood et al.6, 7, 8 , while the solid squares are the results obtained in the present 
study. 
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Figure 5.5. Plot of ∆H for the ion association as a function of temperature of (a) NaAc (aq), (b) HCl(aq), 
and (c) Na2SO4 (aq), respectively. The solid triangles are taken from Oscarson et al.1, 2, 23, while the solid 
squares are the results obtained in the present study. 
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Figure 5.6. Plots of ∆G, ∆H, and –T∆S for the ion association as a function of temperature of (a) NaAc 
(aq), (b) NaOH(aq), and (c) HAc(aq), respectively.  
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Figure 5.6. (continued)  
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Figure 5.6. (continued)  
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       In Figure 5.1-5.3, the heats of dilution relative to the initial concentration of the 

reactant solutions are plotted against the total flow rate. The first observation that may be 

made from Figures 5.1 -5.3 is that the heats of dilution generated from the modified 

model agree well with the measured data from Oscarson et al.1, 2, 23. Heat of dilution 

values determined by the modified model differ from the measured values by 0.1% to 

56% and have an average variance with experimental data below 10%, which is within 

the range of experimental error. Also the figures show that the heats of dilution calculated 

from this work are more consistent with experimental data than those calculated using the 

model of Oscarson et al.1, 2, 23. Of the results examined in this section, the modified model 

is superior on calculating heats of dilution of electrolytes solutions at high temperature 

because the equations used in this work can provide values of the Debye-Hückel limiting 

law slopes which are as accurate as the experimental results allow. The Debye-Hückel 

limiting law slopes are directly related to the density of water ρ and the derivatives of ρ, 

therefore, errors in calculating Debye-Hückel limiting law slopes in Oscarson’s model 
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can be expected to increase because less accurate equations of state for water were 

substituted.  It appears that in the very dilute regions, large percentage errors occurred 

both on this modified model and Oscarson’s model. The first thought of the reason is the 

fitting of parameter q in Eq. (2.4). In Lindsay’s modification of Meissmer’s equations, q 

was determined for each temperature by using only one data point, which is the activity 

coefficient of sodium chloride at its solubility limit. The sodium chloride q values 

decrease monotonically for temperature of 100-350°C, thus, a more complicated equation 

for fitting values of q over more data points of activity coefficient may be needed. 

Therefore, a perturbation term was added to the equation of q, but this did not produce 

any significant difference in the dilute region results. Another possible reason for the 

large error in the very dilute regions is that measured heats were small. At small heats, 

the calorimetric measurements appear to have larger systematic error.  Figure 5.3 shows 

lager discrepancy between the calculated heats and measured heats, this is because 

modified Meissner’s activity coefficients model used in this work introduces significant 

errors when applied to multiple-charged species. For all the systems studied, Figure 5.1-

5.3 show, as expected, that the heats of dilution become more negative as the temperature 

increases. 

       Figure 5.4 is a graph of log K values for association reactions vs. temperature for the 

present results and for the results of Oscarson et al.1, 2, 23 compared with those of Wood et 

al..6, 7, 8 Wood’s equilibrium constants are not at the same experimental condition as those 

of this study and of model of Oscarson et al., but Wood et al.8 have stated that their 

equilibrium constants can be estimated at all the points by using extrapolations as a linear 

function of water density. As is seen in Figure 5.4 (a)- (c), log K values for the ion 
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association of NaAc(aq) obtained from this work and from previous model of Oscarson et 

al.2 are quite different, while the log K data for the association of HCl (aq) are very close. 

However, values from this work are more consistent with Wood et al.6, 7 reported data, 

which are considered to be the most accurate ion-pairing constants currently available. 

Oscarson et al.1 did not derive log K values for Na2SO4, thus Figure 5.4 (d) contains log 

K values for Na2SO4 (aq) only from this work and from Wood et al.8 Good agreement 

was obtained between these two results. The log K values for all the other reactions 

investigated in this work are in good agreement with previous results.  

       As a result of different K values, ∆H for the association of NaAc(aq), HCl(aq), and 

Na2SO4 (aq) are also changed, which is shown in Figure 5.5. The enthalpy changes in the 

systems NaAc(aq) + H2O, HCl (aq)+ H2O, and Na2SO4 (aq) + H2O were plotted as a 

function of temperature, as is shown in Figure 5.6. In aqueous solution, the signs of ∆H 

and ∆S are positive and the magnitudes of both these quantities increase significantly as 

temperature increases. This is because as temperature increases, the extent of hydrogen 

bonding decreases, water has lower density and possibly to lower dipole moment, 

resulting in the decrease of the dielectric constant of water.    
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CHAPTER 6 
 

CONCLUSIONS AND RECOMMENDATIONS 

 

       A correlation approach developed by Oscarson et al.1, 2, 23 is valid for calculating 

heats of dilution as well as log K and ∆H° values for association reactions in aqueous 

solution over the temperature range from 250ºC to 350ºC. In the previous studies, the 

approach of Oscarson et al.1, 2, 23 has been used to investigate various aqueous systems 

containing electrolytes such as NaAc, Na2SO4, NaOH, KOH and HCl. One shortcoming 

of the model used by these workers is that it uses approximately fitted equations for the 

density of water and the Debye-Hückel law limiting slopes, which leads to deviations of 

calculated heats of dilution as well as predicted log K values from reported data.    

       The present study has improved the approach developed by Oscarson et al. by 

incorporating a more accurate water equation of state, a more accurate water dielectric 

constant, and the equilibrium correlation equation. In this work, the IAPWS–95 

formulations were coded and used to calculate the density of water as well as the 

derivatives of density with respect to temperature. This code can also be used to obtain 

the quantities of engineering interest such as enthalpy, entropy, internal energy, and heat 

capacity of water. The dielectric constant equation for water from Archer and Wang5 is 

used to determine the Debye-Hückel limiting law slope for the calculation of activity 

coefficent. 
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       Over the temperature range from 250ºC to 350ºC,  the average difference between 

the measured heats of dilution from Oscarson et al.1, 2, 23 and those calculated from this 

work is below 10%, which is roughly within experimental error of the measurements and 

in better agreement than those calculated from the approach of Oscarson et al.1, 2, 23 This 

work also provided log K and ∆H values for association reactions of NaAc, HCl, and 

Na2SO4 from their constituent ions, which are in good agreement with the most accurate 

data currently available. This modified model is superior to that used in previous work in 

calculating heats of dilution of electrolytes solutions at high temperature because the 

equations used in this work can provide values of the Debye-Hückel limiting law slopes 

which are functions of pressure/density and are as accurate as the experimental results 

allow.  

       The inadequacies of this modified model and Oscarson’s previous one at the lower 

concentrations (0.1-0.25m) may be due to: As observed by Fuangswasdi23 et al., there is a 

systematic error in the data that causes up to 10% error when the heats measured are 

small (at high dilution) but causes only an error of 1-2% when the heats measured are 

large. 

 
 
Recommendations for Future Work 

       The work in this thesis demonstrates that incorporating a more accurate water 

equation of state and a more accurate water dielectric constant improves the performance 

of models for aqueous electrolyte systems at high temperature. 

       The modified model developed in this work correlates thermodynamic values such as 

log K, ∆dilH and ∆S for high temperature electrolyte systems from calorimetric 
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measurements. The modified Meissner’s activity coefficients model used in this work 

introduces significant errors when applied to multiply-charged species. The next step is to 

improve the accuracy of the correlation. This may involve using more accurate activity 

coefficients and/or trying a different equilibrium correlation model. Two kinds of activity 

coefficient models are recommended to replace the modified Meissner’s model: Pitzer’s 

ion-interaction model30 and the mean spherical approximation46 equation. For the 

molality range studied, only two parameters in the Pitzer ion-interactions model need to 

be found.   
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APPENDIX A 

 
MODIFIED CORRELATION FORTRAN COMPUTER CODE 

 

c     this  code is to find the heat of dilution in a electrolyte aqueous solution 
c 
c 
      implicit  real* 8 (a-h,o-z) 
      character * 8 complexa, prispna, pria 
      character * 14 titlem, titles, headila, condila 
      dimension  x(20), flowa(100,50), flowb(100,50), ab(20,21), ca(100), 
     &                q(100,50), conda(100), cda(100), cdas(100,100), ta(50), 
     &                ps(50), nfl(50), totflow(100), alogkcor(15), bbb(20), 
     &                cone(50,50), cona(50), ncom(50) 
      common  /atrixr/ a(20,20), b(20), alogka(15), delha(15), 
     &                          alogw, complexcha(15), sta(15,4), prispcha(10) 
      common  /atrixc/  pria(15,4), complexa(15), npa(15), prispna(10), titlem 
      common  /atrixi/ nprispa, ncompa, na, maxa 
 
      conv = log(10.d0) 
      print *, 'Enter the name of file for heats of dilution of A.' 
      read *,   headila 
      Print *,  'Enter the name of the file for the concentrations ' 
      print*,   ' of stream A and diluted A.' 
      read *,   condila 
      Print *, 'Enter the name of the chemistry file to be read.' 
      read *,  titlem 
      Print *, 'Enter the name of the system file to be read.' 
      read *,  titles 
      open (unit = 10, status = 'old', file = 'titles') 
      read (10, *) nrun       
      do ii = 1, nrun 
           read (10, *) ncom(ii) 
           do jj = 1, ncom(ii) 
                read (10, *) cone(ii, jj)! concentrations of primary species in solution 
           end do 
           read (10,*) ta(ii) ! here ta is the system temperature in centigrade 
           read (10,*) ps(ii)  ! p is the system pressure in KPa 
           read (10,*) nfl(ii)   ! the number of experimental points 
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           do i = 1, nfl(ii) 
                read (10,*) flowa(i,ii),flowb(i,ii),q(i,ii) ! q is the heat of measurement 
           end do 
      end do 
      close (unit = 10) 
c 
c       
      open (file = 'titlem',status = 'old', unit = 11 )       
      open (unit = 12, status = 'unknown', file = headila) 
      open (unit = 14, status = 'unknown', file = condila) 
c       
c       
      do ii = 1, nrun 
           tt = ta(ii)  + 273.15d + 00    ! tt  is in Kelvin 
           p = ps(ii) 
           ncomp2 = ncom(ii) + 2 
           do jj = 3, ncomp2 
                jjm2 = jj - 2 
                cona(jj) = cone(ii, jjm2) 
           end do 
c 
           call water(tt,p,rho,ee,dlnrhodt,drhodt,deedt)    
c           
c     the following equations were used to calcualte activity coefficents from the modified    
c     Meissner's model 
c 
           qm = 2.95869d0 - 0.321502d-02 * ta(ii) - 0 .17233d-04 * ta(ii) ** 2 
           bm = 0.75d + 00 - 6.5d-02 * qm 
           dqmdt = - 0.321502d-02 - 0.34466d-04 * ta(ii) 
           dbmdt = - 6.5d-02 * dqmdt 
c 
c     "ame" is the Debye-Huckel limiting law slope,which is a function 
c      of temperature and pressure.  
c       
           ame = (1.17202 * (rho/1.0d + 03) **0.5d + 00 * (2.33752d+ 
     &            04 / (ee * tt)) **1.5d+00)/conv 
           damdt = (1.17202d+00 * 2.33752d+04 **1.5d+00 * 0.5d+00 * 
     &                 (1.0d+03/rho) ** 0.5d+00 * (1.0d+00/(ee * tt)) ** 2.5d+00 
     &                * (drhodt * ee * tt-3.0d+00 * rho * 1.0d-03 * ee-3.0d+00 * rho * 
     &                1.0d-03 * tt * deedt)) / conv 
c 
c       
c     Calculate the log K for formation of water from Marshall and Frank 
c 
           aw = - 4.098d + 00 
           bw = - 3.2452d + 03 
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           cw = 2.2362d + 05 
           dw = - 3.984d + 07 
           ew = 1.3957d + 01 
           fw = -1.2623d + 03 
           gw = 8.5641d + 05 
           alogw = aw + bw/tt + cw/tt**2 + dw/tt**3 + (ew + fw/tt + gw/tt**2) 
     &                *dlog10(rho*1.0d-03) 
c 
c     Calculate the heat of ionization of waterc 
c 
c          delhw = - bw/tt**2 - 2.0d+00 * cw/tt**3 - 3.0d+00 * dw/tt**4 - (fw/tt**2 + 
     &                   2.0d+00* gw/tt**3)*dlog10(rho*1.0d-03) + (ew + fw/tt + 
     &                  gw/tt**2)/(conv*rho*1.0d-03)*drhodt 
           delhw = - delhw*8.3144d0*tt**2*conv 
           call atmak(tt,p,rho,dlnrhodt,drhodt) 
c 
           complexa(ncompa+1) = 'H2O' 
c 
c     Solve for initial concentrations in stream A  
c         
c     first enter the initial guess for the concentrations of primary species in stream a  
c 
           ca(1) = 1.0d - 06   ! concentration of H 
           ca(2) = 1.0d - 06   ! concentration of OH 
           ca(3) = 0.1d + 00 
           if (nprispa .gt. 3) then 
               do i = 4, nprispa 
                    ca(i) = 0.1d + 00    ! concentration of other primary species 
               end do 
           end if 
c     then enter the initial guess for the concentrations of complexes formed in the stream 
a  
c 
c          do i = 1, ncompa 
                 ca(nprispa + i) = 0.1d + 00   ! concentration of electrolyte 
           end do 
           errsum = 10.d+00 
           ersum = 10.d+00 
           do while (ersum .gt. 1.d-06 .or. errsum .gt. 1.d-06) 
                ais = 0.0d+00   ! ais is the ionic strength 
                do i = 1, na 
                     ais = ais + ca(i)*a(1,i)**2 
                end do 
                ais = ais/2.d0 
                cme = 1.d0 + 5.5d-02*qm*dexp(-2.3d-02*ais**3) 
                alngams = - conv*(ame*ais**.5 /(1.d0 + cme*ais**.5)) 
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                alngam = log(1.d0 + bm*(1.d0 + 0.1d0*ais)**qm - bm) 
                gamma = dexp(alngams + alngam) 
                do i = 1, nprispa-1 
                     do j = 1, na 
                          ab(i,j) = a(i,j)*ca(j) 
                     end do 
                end do 
                do i = nprispa, na 
                     do j = 1, na 
                          ab(i,j) = a(i,j) 
                     end do 
                end do 
                bbb(1) = 0.d0 
                do j = 1, na 
                     bbb(1) = bbb(1) + ab(1,j) 
                end do 
                do i = 2, nprispa-1 
                     f = -cona(i+1) 
                     do j = 3, na 
                          f = f + ab(i,j) 
                     end do 
                     bbb(i) = f 
                end do 
                do i = nprispa, na 
                     alogkcor(i) = b(i) 
                     bbb(i) = -b(i)*conv 
                     do j = 1, na 
                          alogkcor(i) = alogkcor(i)- a(i,j)*a(1,j)**2*log10(gamma)           
                          bbb(i) = bbb(i) + a(i,j)*a(1,j)**2*log(gamma)        
                     end do 
                     do j = 1, na 
                          bbb(i) = bbb(i)+a(i,j)*log(ca(j)) 
                     end do 
                end do 
                errsum = 0.d0 
                do i = 1, na 
                     errsum = errsum + dabs(bbb(i)) 
                end do 
                call simq(na, ab, bbb, x, ersum) 
                do j = 1, na 
                     if (abs(x(j)) .gt. 2.0d0) x(j) = 2.0d0*x(j)/abs(x(j)) 
                          if (dabs(x(j)) .lt. 1.d-10) then 
                               ca(j) = (1.d0 - x(j))*ca(j) 
                          else 
                               ca(j) = ca(j)*dexp(-x(j)) 
                    end if 
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                end do 
           end do 
           do j = 1, na 
                cdas(1,j) = ca(j) 
           end do 
           write (12, '( '' HEATS OF DILUTION FOR STREAM A'')') 
           write (12,*) 
           write (12,*) 
           write (12, ' ('' Totflow      Qwater        Qother '', 
     &             ''  Qpred       Qmea      Qdif      %dif'')') 
           write (12,*) 
           write (12,*) 
           write (12,'(f8.4,3d12.4,3f10.4)') flowa(1,ii),0.d0,0.d0, 
     &         0.0,0.0,0.0,0.0 
           write (14,*) 
           write (14,*) 
           write (14, '(''   gamma      vinta      vintb    dlngamdt   '')') 
           write (14,*) 
           aisa = ais 
c 
c 
c     Calculate heats of dilution 
c 
           do jj = 1, nfl(ii) 
                totflow(jj) = flowa(jj,ii) + flowb(jj,ii) 
                do i = 1, na 
                     cda(i) = flowa(jj,ii)*ca(i)/totflow(jj) 
                end do 
                do i = 3, nprispa 
                     conda(i) = cona(i)*flowa(jj,ii)/totflow(jj) 
                end do 
                errsum = 10.d0 
                ersum = 10.d0 
                do while (ersum .gt. 1.d-06 .or. errsum .gt. 1.d-06) 
                     ais = 0.d0 
                     do i = 1, na 
                          ais = ais + cda(i)*a(1,i)**2 
                     end do 
                     ais = ais/2.d0 
                     cme = 1.d0 + 5.5d-02*qm*dexp(-2.3d-02*ais**3) 
                     alngams = -conv*(ame*ais**0.5d+00/(1.d0 + cme*ais**0.5d+00)) 
                     alngam = log(1.d0 + bm*(1.d0 + 0.1d0*ais)**qm - bm) 
                     gamma = dexp(alngams + alngam) 
                     do i = 1, nprispa-1 
                          do j = 1, na 
                               ab(i,j) = a(i,j)*cda(j) 
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                          end do 
                     end do 
                     do i = nprispa, na 
                          do j = 1, na 
                               ab(i,j) = a(i,j) 
                          end do 
                     end do 
                     bbb(1) = 0.d0 
                     do j = 1, na 
                          bbb(1) = bbb(1) + ab(1,j) 
                     end do 
                     do i = 2, nprispa-1 
                          f = -conda(i+1) 
                          do j = 3, na 
                               f = f + ab(i,j) 
                          end do 
                          bbb(i) = f 
                     end do 
                     do i = nprispa, na 
                          alogkcor(i) = b(i) 
                           bbb(i) = -b(i)*conv 
                  do j = 1, na 
                     alogkcor(i)= alogkcor(i)-a(i,j)*a(1,j)**2* 
     &                            log10(gamma)  
                     bbb(i) = bbb(i) + a(i,j)*a(1,j)**2*log(gamma) 
                  end do 
                  do j = 1, na 
                     bbb(i)=bbb(i)+a(i,j)*log(cda(j)) 
                  end do 
               end do 
                  errsum = 0.d0 
               do i = 1, na 
                  errsum = errsum + dabs(bbb(i)) 
               end do 
               call simq(na,ab,bbb,x,ersum) 
               do j = 1, na 
                  if (dabs(x(j)) .gt. 2.d0) x(j) = 2.d0*x(j)/ 
     &               (dabs(x(j))) 
                  if (dabs(x(j)) .lt. 1.d-10) then 
                     cda(j) = (1.d0 - x(j))*cda(j) 
                  else 
                     cda(j) = cda(j)*dexp(-x(j)) 
                  end if 
               end do 
            end do 
            do j = 1, na 
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               cdas(jj+1,j) = cda(j) 
            end do 
            qreact = 0.d0 
            chnh = 0.d0 
            do i = nprispa+1, na 
               delcom = totflow(jj)*cda(i)-flowa(jj,ii)*ca(i) 
               chnh = chnh + a(i-1,1)*delcom 
               qreact = qreact + delcom*delha(i-nprispa) 
            end do           
            qreact = qreact/1.d+03 
            aisda = ais 
            qwat = (ca(1)*flowa(jj,ii) 
     &             -cda(1)*totflow(jj)+chnh)*delhw 
            qwat = qwat/1.d+03 
            call simp(aisda,aisa,qm,bm,dqmdt,dbmdt,ame,damdt,vinta, 
     &                 dlngamdt) 
            call simp(aisda,0.d0,qm,bm,dqmdt,dbmdt,ame,damdt,vintb, 
     &                 dlngamdt) 
            delhdila = qreact+qwat-(2.0d+00*8.3144d+00*tt**2* 
     &       (flowa(jj,ii)*vinta + flowb(jj,ii)*vintb))/1.0d+03 
            qdif = q(jj,ii) - delhdila 
            pcdif = 1.0d+02*qdif/q(jj,ii) 
            write (12,'(f8.4,3d12.4,3f10.4)') totflow(jj),qwat, 
     &             qreact,delhdila, q(jj,ii), qdif, pcdif 
            write (14, '(f8.4,4d12.4)') gamma,vinta,vintb,dlngamdt 
         end do 
         write (14, ' (''CONCENTRATIONS OF STREAM A INITIALLY AND  
     &DILUTED'')') 
         write (14,*) 
         write (14,'('' Dilution #'',20a11)')(prispna(i),i = 1,nprispa), 
     &   (complexa(i),i = 1, ncompa) 
         write (14,*) 
         write (14,*) 
         do jj = 1, nfl(ii)+1 
            k = jj-1 
            write(14,'(i6,'' '',20d11.4)') k, (cdas(jj,i),i = 1, na) 
         end do 
         write (14, '(d12.4)') (alogka(i), i = 1,ncompa) 
         write (14, '(d12.4)') (delha(i), i = 1,ncompa)  
      end do 
      write (12,*) 
      write (12,*) 
      write (12, ' (''THE SUMMARY OF SQUARED Qdif is'')') 
      write (12, '(d12.4) ') sumqdif  
      close (unit = 11) 
      close (unit = 12)   
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      close (unit =14) 
      print*, 'dilution done' 
      end 
c 
c 
c     this subroutine is to Calculate some properties of the water 
c     the density of water is calcualted from IAPWS Formulation 1995, "ame" is the   
c     Debye- Hückel limiting law slopes (see Table 1. in Archer's paper. In the below     
c     equations, the 'ta' is the temperature in centigrade, 'tt' is the temperature in Kelvin 
c   
      subroutine water(tt,p,rho,ee,dlnrhodt,drhodt,deedt) 
      implicit real*8(a-h,o-z) 
      dimension bn(56),d(56),t(56),c(56),alfa(54),beita(56),gama(56), 
     &          blamta(56),bigc(56),bigd(56),biga(56),bigb(56),a(56), 
     &          b(56) 
c      
      tc = 647.096d+00           !critical temperature of water in K 
      rhoc = 3.22d+02                   !critical density in   Kg/m**3 
      rg = 0.46151805d+00            !gas constant in KJ/Kg*K 
      bMw = 18.0153d+00               !mole mass of water in gm 
c 
c       
c     bn( ),d( ),t( ),c( ),alfa( ),beita( ),gama( ),blamta( ),bigc( ), bigd( ), 
c     biga( ),bigb( ),a( ),and b( ) are all parameters of "fresid" , which  
c     is the residal part of Helmholtz energy 
c 
c     parameters bn,d,t,c:     
      do i = 1,7 
         c(i) = 0.0d+00 
      end do 
      do i = 8,22 
         c(i) = 1.0d+00 
      end do 
      do i = 23,42 
         c(i) = 2.0d+00 
      end do 
      do i = 43,46 
         c(i) = 3.0d+00 
      end do 
         c(47) = 4.0d+00 
      do i = 48,51 
         c(i) = 6.0d+00 
      end do 
      do i = 52,56 
         c(i) = 0.0d+00 
      end do 
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c       
      do i = 1,3 
         d(i) = 1.0d+00 
      end do 
      d(4) = 2.0d+00 
      d(5) = 2.0d+00 
      d(6) = 3.0d+00 
      d(7) = 4.0d+00 
      do i = 8,10 
         d(i) = 1.0d+00 
      end do 
      d(11) = 2.0d+00 
      d(12) = 2.0d+00 
      d(13) = 3.0d+00 
      d(14) = 4.0d+00 
      d(15) = 4.0d+00 
      d(16) = 5.0d+00 
      d(17) = 7.0d+00 
      d(18) = 9.0d+00 
      d(19) = 10.0d+00 
      d(20) = 11.0d+00 
      d(21) = 13.0d+00 
      d(22) = 15.0d+00 
      d(23) = 1.0d+00 
      do i = 24,26 
         d(i) = 2.0d+00 
      end do 
      d(27) = 3.0d+00 
      do i = 28,30 
         d(i) = 4.0d+00 
      end do 
      d(31) = 5.0d+00 
      d(32) = 6.0d+00 
      d(33) = 6.0d+00 
      d(34) = 7.0d+00 
      do i = 35,39 
         d(i) = 9.0d+00 
      end do 
      d(40) = 10.0d+00 
      d(41) = 10.0d+00 
      d(42) = 12.0d+00 
      d(43) = 3.0d+00 
      d(44) = 4.0d+00 
      d(45) = 4.0d+00 
      d(46) = 5.0d+00 
      d(47) = 14.0d+00 
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      d(48) = 3.0d+00 
      do i = 49,51 
         d(i) = 6.0d+00 
      end do 
      do i = 52,54 
         d(i) = 3.0d+00 
      end do 
      d(55) = 0.0d+00 
      d(56) = 0.0d+00 
c 
      t(1) = -0.5d+00 
      t(2) = 0.875d+00 
      t(3) = 1.0d+00 
      t(4) = 0.5d+00 
      t(5) = 0.75d+00 
      t(6) = 0.375d+00 
      t(7) = 1.0d+00 
      t(8) = 4.0d+00 
      t(9) = 6.0d+00 
      t(10) = 12.0d+00 
      t(11) = 1.0d+00 
      t(12) = 5.0d+00 
      t(13) = 4.0d+00 
      t(14) = 2.0d+00 
      t(15) = 13.0d+00 
      t(16) = 9.0d+00 
      t(17) = 3.0d+00 
      t(18) = 4.0d+00 
      t(19) = 11.0d+00 
      t(20) = 4.0d+00 
      t(21) = 13.0d+00 
      t(22) = 1.0d+00 
      t(23) = 7.0d+00 
      t(24) = 1.0d+00 
      t(25) = 9.0d+00 
      t(26) = 10.0d+00 
      t(27) = 10.0d+00 
      t(28) = 3.0d+00 
      t(29) = 7.0d+00 
      t(30) = 10.0d+00 
      t(31) = 10.0d+00 
      t(32) = 6.0d+00 
      t(33) = 10.0d+00 
      t(34) = 10.0d+00 
      t(35) = 1.0d+00 
      t(36) = 2.0d+00 
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      t(37) = 3.0d+00 
      t(38) = 4.0d+00 
      t(39) = 8.0d+00 
      t(40) = 6.0d+00 
      t(41) = 9.0d+00 
      t(42) = 8.0d+00 
      t(43) = 16.0d+00 
      t(44) = 22.0d+00 
      t(45) = 23.0d+00 
      t(46) = 23.0d+00 
      t(47) = 10.0d+00 
      t(48) = 50.0d+00 
      t(49) = 44.0d+00 
      t(50) = 46.0d+00 
      t(51) = 50.0d+00 
      t(52) = 0.0d+00 
      t(53) = 1.0d+00 
      t(54) = 4.0d+00 
      t(55) = 0.0d+00 
      t(56) = 0.0d+00 
c 
      bn(1) = 0.12533547935523d-01 
      bn(2) = 0.78957634722828d+01 
      bn(3) = -0.87803203303561d+01 
      bn(4) = 0.31802509345418d+00 
      bn(5) = -0.26145533859358d+00 
      bn(6) = -0.78199751687981d-02 
      bn(7) = 0.88089493102134d-02 
      bn(8) = -0.66856572307965d+00 
      bn(9) = 0.20433810950965d+00 
      bn(10) = -0.66212605039687d-04 
      bn(11) = -0.19232721156002d+00 
      bn(12) = -0.25709043003438d+00 
      bn(13) = 0.16074868486251d+00 
      bn(14) = -0.40092828925807d-01 
      bn(15) = 0.39343422603254d-06 
      bn(16) = -0.75941377088144d-05 
      bn(17) = 0.56250979351888d-03 
      bn(18) = -0.15608652257135d-04 
      bn(19) = 0.11537996422951d-08 
      bn(20) = 0.36582165144204d-06 
      bn(21) = -0.13251180074668d-11 
      bn(22) = -0.62639586912454d-09 
      bn(23) = -0.10793600908932d+00 
      bn(24) = 0.17611491008752d-01 
      bn(25) = 0.22132295167546d+00 
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      bn(26) = -0.40247669763528d+00 
      bn(27) = 0.58083399985759d+00 
      bn(28) = 0.49969146990806d-02 
      bn(29) = -0.31358700712549d-01 
      bn(30) = -0.74315929710341d+00 
      bn(31) = 0.47807329915480d+00 
      bn(32) = 0.20527940895948d-01 
      bn(33) = -0.13636435110343d+00 
      bn(34) = 0.14180634400617d-01 
      bn(35) = 0.83326504880713d-02 
      bn(36) = -0.29052336009585d-01 
      bn(37) = 0.38615085574206d-01 
      bn(38) = -0.20393486513704d-01 
      bn(39) = -0.16554050063734d-02 
      bn(40) = 0.19955571979541d-02 
      bn(41) = 0.15870308324157d-03 
      bn(42) = -0.16388568342530d-04 
      bn(43) = 0.43613615723811d-01 
      bn(44) = 0.34994005463765d-01 
      bn(45) = -0.76788197844621d-01 
      bn(46) = 0.22446277332006d-01 
      bn(47) = -0.62689710414685d-04 
      bn(48) = -0.55711118565645d-09 
      bn(49) = -0.19905718354408d+00 
      bn(50) = 0.31777497330738d+00 
      bn(51) = -0.11841182425981d+00 
      bn(52) = -0.31306260323435d+02 
      bn(53) = 0.31546140237781d+02 
      bn(54) = -0.25213154341695d+04 
      bn(55) = -0.14874640856724d+00 
      bn(56) = 0.31806110878444d+00 
c 
c     parameters alfa,gama,blamta,beita:       
      do i = 52,54 
           alfa(i) = 20.0d+00 
      end do 
      gama(52) = 1.21d+00 
      gama(53) = 1.21d+00 
      gama(54) = 1.25d+00 
      do i = 52,54 
           blamta(i) = 1.0d+00 
      end do  
      beita(52) = 150.0d+00 
      beita(53) = 150.0d+00 
      beita(54) = 250.0d+00 
      beita(55) = 0.3d+00 
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      beita(56) = 0.3d+00 
c     parameters bigc,bigd,biga,bigb,a,b: 
      bigc(55) = 28.0d+00 
      bigc(56) = 32.0d+00 
      bigd(55) = 7.0d+02 
      bigd(56) = 8.0d+02 
      biga(55) = 0.32d+00 
      biga(56) = 0.32d+00 
      bigb(55) = 0.2d+00 
      bigb(56) = 0.2d+00 
      a(55) = 3.5d+00 
      a(56) = 3.5d+00 
      b(55) = 0.85d+00 
      b(56) = 0.95d+00    
c 
c 
c     Now find the density of liquid water "rho" at temperature tt and pressure P: 
c       
      rho = rholiq(tt,p,bn,d,t,c,alfa,blamta,beita,gama, 
     &       bigc,bigd,biga,bigb,a,b)             ! rho is in kg/m^3 
c 
c     then find "drhodt" and "dln(rho)dt" at constant Pressure P 
c  
      delt = 1.0d-05           ! kelvin 
      tp = tt+delt 
      tm = tt-delt      
      rhop = rholiq(tp,p,bn,d,t,c,alfa,blamta,beita,gama, 
     &              bigc,bigd,biga,bigb,a,b)          ! kg/m^3       
      rhom = rholiq(tm,p,bn,d,t,c,alfa,blamta,beita,gama, 
     &              bigc,bigd,biga,bigb,a,b)          ! kg/m^3 
      drhodt = (rhop-rhom)*1.0d-03/(2.0d+00*delt)     ! g/cm^3 
      dlnrhodt = (1.0d +00/ (rho*1.0d-03))* drhodt    ! g/cm^3 
c      
c     Now find the dielectric constant of water "ee" as a function of  temperature and 
density    c     and pressure and "deedt" at constant P. The dielectric constant "ee" was 
solved by   
c     finding the root of a polynomial equation from "The Dielectric constant of water 
c     and Debye-Huckel limiting law slopes", J.Phys.Chem.Ref.Data, Vol.19,No.2, 1990,      
c     Archer and Wang. 
      fac = ff(p,tt,rho) 
      ee = (9.0d+00*fac+1.0d+00+((9.0d+00*fac+1.0d+00)**2 + 
     &      8.0d+00)**0.5d+00)/4.0d+00 
      deedt = (9.0d+00*dffdt(p,tt,rho,drhodt)+(0.5/((9.0d+00*fac+ 
     &         1.0d+00)**2+8.0d+00)**(0.5d+00))*18.0d+00*(9.0d+00* 
     &         fac+1.0d+00)*dffdt(p,tt,rho,drhodt))/4.0d+00  
      return 
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      end 
c 
c     by now we have found the density of water "rho" and the dielectric constant of water  
c     "ee" 
c 
c     the followings are the functions and subroutines used for calculating the density and       
c     the dielectric constant of water 
c 
c    functions for calculating the dielectric constant of water 
c 
c 
      function gar(p,tt,rho) 
      implicit real*8 (a-h, o-z) 
      b1 = -4.044525d-02 
      b2 = 103.6180d+00 
      b3 = 75.32165d+00 
      b4 = -23.23778d+00 
      b5 = -3.548184d+00 
      b6 = -1246.311d+00 
      b7 = 2.633077d+05 
      b8 = -6.928953d-01 
      b9 = -204.4473d+00 
      gar = rho/1.0d+03*(b1*p*1.0d-03/tt+b2/tt**0.5d+00+b3/(tt-215) 
     &      +b4/(tt-215)**0.5d+00+b5/(tt-215)**0.25d+00+exp(b6/tt 
     &      +b7/tt**2+b8*p*1.0d-03/tt+b9*p*1.0d-03/tt**2))+1.0d+00 
      return 
      end       
c 
c 
      function dgardt(tt,p,rho,drhodt) 
      implicit real*8 (a-h, o-z) 
      b1 = -4.044525d-02 
      b2 = 103.6180d+00 
      b3 = 75.32165d+00 
      b4 = -23.23778d+00 
      b5 = -3.548184d+00 
      b6 = -1246.311d+00 
      b7 = 2.633077d+05 
      b8 = -6.928953d-01 
      b9 = -204.4473d+00 
      dgardt = drhodt*(b1*p*1.0d-03/tt+b2/tt**0.5d+00 
     &       +b3/(tt-215)+b4/(tt-215)**0.5d+00+b5/(tt-215)** 
     &        0.25d+00+exp(b6/tt+b7/tt**2+b8*p*1.0d-03/tt+b9*p*1.0d-03/ 
     &        tt**2))+rho*1.0d-03*(-b1*p*1.0d-03/tt**2-0.5d+00*b2/tt** 
     &       1.5d+00-b3/(tt-215)**2-0.5d+00*b4/(tt-215)**1.5d+00- 
     &        0.25d+00*b5/(tt-215)**1.25d+00+exp(b6/tt+b7/tt**2+b8*p* 
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     &       1.0d-03/tt+b9*p*1.0d-03/tt**2)*(-b6/tt**2-2.0d+00*b7/tt**3 
     &       -b8*p*1.0d-03/ tt**2-2.0d+00*b9*p*1.0d-03/tt**3)) 
      return 
      end 
c 
c 
      function volume(rho) 
      implicit real*8 (a-h, o-z) 
      bMw = 18.0153d+00 
      volume = bMw*1.0d-03/rho 
      return 
      end 
c       
c 
      function ff(p,tt,rho) 
      implicit real*8 (a-h, o-z) 
      bNa = 6.0221367d+23               !mol^-1 
      dalfa = 18.1458392d-30   
      dmiu = 6.1375776d-30 
      dlamta0 = 8.8542d-12 
      dk = 1.380658d-23 
      ff = bNa*(dalfa+gar(p,tt,rho)*dmiu**2/(3.0d+00*dlamta0*dk*tt)) 
     &     /(3.0d+00*volume(rho)) 
      return 
      end 
c 
c 
      function dffdt(p,tt,rho,drhodt) 
      implicit real*8 (a-h, o-z) 
      bNa = 6.0221367d+23               !mol^-1 
      dalfa = 18.1458392d-30   
      dmiu = 6.1375776d-30 
      dlamta0 = 8.8542d-12 
      dk = 1.380658d-23 
      bMw = 0.0180153d+00 
      dffdt = bNa/(3.0d + 00 * bMw) * (dalfa * drhodt * 1.0d +03 + dmiu**2 
     &        /(3.0d + 00*dlamta0*dk)*(rho/tt*dgardt(tt,p,rho, 
     &        drhodt)+gar(p,tt,rho)*drhodt*1.0d+03/tt-gar(p,tt,rho) 
     &        *rho/tt**2)) 
      return 
      end             
c 
c 
c     functions for calculating density of water                  
c    
      function rholiq(tt,p,bn,d,t,c,alfa, 
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     &               blamta,beita,gama,bigc,bigd,biga,bigb,a,b) 
      implicit real*8 (a-h, o-z) 
      dimension bn(56),d(56),t(56),c(56),alfa(54),beita(56),gama(56), 
     &          blamta(56),bigc(56),bigd(56),biga(56),bigb(56),a(56), 
     &          b(56) 
      rg = 0.46151805d+00 
      tc = 647.096d+00 
      bMw = 18.0153d+00 
      rho1 = (17.863d+00+58.606d+00*(1.0d+00-(tt/tc))**0.35d+00-95.396d 
     &     +00*(1.0d+00-(tt/tc))**(2.0d+00/3.0d+00)+2.1389d+02*(1.0d+00 
     &     -(tt/tc))-1.4126d+02*(1.0d+00-(tt/tc))**(4.0d+00/3.0d+00)) 
     &     *bMw       
      delrho = 0.01d+00*rho1 
      p1 = pf(rg,tt,rho1,bn,d,t,c,alfa, 
     &      blamta,beita,gama,bigc,bigd,biga,bigb,a,b)       
      f1 = p-p1 
      rho2 = rho1+delrho       
      p2 = pf(rg,tt,rho2,bn,d,t,c,alfa, 
     &      blamta,beita,gama,bigc,bigd,biga,bigb,a,b)       
      f2 = p-p2 
      prod = f1*f2 
      if (prod .lt. 0.0d+00) then 
         f1 = f1 
         else if (abs(f2) .gt. abs(f1)) then 
         delrho = -delrho 
      end if 
      do while (prod .gt. 0.0d+00) 
         rho2 = rho1+delrho 
         p2 = pf(rg,tt,rho2,bn,d,t,c,alfa, blamta,beita,gama, 
     &         bigc,bigd,biga,bigb,a,b) 
         f2 = p-p2 
         prod = f1*f2         
         If (prod .gt. 00d+00) then 
            f1 = f2 
            p1 = p2 
            rho1 = rho2 
         end if 
      end do      
      error = 1.0d+00 
      do while (error .gt. 1.0d-08) 
         rho2 = (f1*rho2-f2*rho1)/(f1-f2) 
         f2 = p- pf(rg,tt,rho2,bn,d,t,c,alfa,blamta,beita,gama, 
     &       bigc,bigd,biga,bigb,a,b) 
         error = abs(f2) 
      end do       
      rholiq = rho2 
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      return 
      end       
c       
c 
      function pf(rg,x,y,bn,d,t,c,alfa,blamta, 
     &            beita,gama,bigc,bigd,biga,bigb,a,b) 
      implicit real*8 (a-h, o-z) 
      dimension bn(56),d(56),t(56),c(56),alfa(56),blamta(56),beita(56), 
     &         gama(56),bigc(56),bigd(56),biga(56),bigb(56),a(56),b(56) 
      pf = y*rg*x*(1.0d+00+delta(y)*dfresiddelta(x,y,bn,d,t,c,alfa, 
     &     blamta,beita,gama,bigc,bigd,biga,bigb,a,b)) 
      return 
      end      
c   
c 
c     calculate function tao(tt) and delta(rho) 
      function tao(x) 
      implicit real*8 (a-h, o-z) 
      tc = 647.096d+00 
      tao = tc/x 
      return 
      end 
c 
c       
      function delta(y) 
      implicit real*8 (a-h, o-z) 
      rhoc = 3.22d+02 
      delta = y/rhoc 
      return  
      end         
c 
c 
c     calculate auxiallary functions 
      function zeta(tt,rho) 
      implicit real*8 (a-h, o-z) 
      dimension biga(56), beita(56) 
      do i = 1, 56 
         biga(i) = 0.0d+00 
         beita(i) = 0.0d+00 
      end do      
      biga(55)=0.32d+00 
      beita(55)=0.3d+00 
      zeta=(1.0d+00-tao(tt))+biga(55)*((delta(rho)-1.0d+00)**2)**(1.0d 
     &      +00/(2.0d+00*beita(55))) 
      return 
      end 
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c 
c       
      function deta(x,y) 
      implicit real*8 (a-h, o-z) 
      dimension bigb(56),a(56) 
      bigb(55) = 0.2d+00 
      a(55) = 3.5d+00 
      deta = zeta(x,y)**2+bigb(55)*((delta(y)-1.0d+00)**2)**a(55) 
      return 
      end 
c 
c 
      function pesai(x,y,bigc, bigd, i) 
      implicit real*8 (a-h, o-z) 
      dimension bigc(56),bigd(56)     
      pesai = exp(-bigc(i)*(delta(y)-1.0d+00)**2-bigd(i)*(tao(x)- 
     &        1.0d+00)**2) 
      return 
      end   
c 
c 
c     Partial derivative of fresid with respect of delta keep tao  constant. 
c 
       function dfresiddelta(tt,rho,bn,d,t,c,alfa,blamta,beita, 
     &                      gama,bigc,bigd,biga,bigb,a,b) 
      implicit real*8 (a-h, o-z) 
      dimension bn(56),d(56),t(56),c(56),alfa(56),blamta(56),beita(56), 
     &         gama(56),bigc(56),bigd(56),biga(56),bigb(56),a(56),b(56)       
      call dfr(tt,rho,bn,d,t,c,alfa,blamta,beita,gama,bigc, 
     &         bigd,biga,bigb,a,b,sum11,sum21,sum31,sum41) 
      dfresiddelta = sum11+sum21+sum31+sum41 
      return 
      end 
c 
c 
      subroutine dfr(tt,rho,bn,d,t,c,alfa,blamta,beita,gama,bigc, 
     &               bigd,biga,bigb,a,b,sum11,sum21,sum31,sum41) 
      implicit real*8 (a-h, o-z) 
      dimension bn(56),d(56),t(56),c(56),alfa(56),blamta(56),beita(56), 
     &         gama(56),bigc(56),bigd(56),biga(56),bigb(56),a(56),b(56)                 
      sum11 = 0.0d+00 
      sum21 = 0.0d+00 
      sum31 = 0.0d+00 
      sum41 = 0.0d+00             
      do i=1,7  
         sum11 = sum11+bn(i)*d(i)*delta(rho)**(d(i)-1.0d+00)*tao(tt)** 
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     &         t(i) 
      end do 
      do i=8,51 
         sum21 = sum21+bn(i)*tao(tt)**t(i)*exp(-delta(rho)**c(i))* 
     &         delta(rho)**(d(i)-1.0d+00)*(d(i)-c(i)*delta(rho)**c(i)) 
      end do  
      do i = 52,54 
         sum31 = sum31+bn(i)*delta(rho)**d(i)*tao(tt)**t(i)*exp(-alfa(i) 
     &         *(delta(rho)-blamta(i))**2-beita(i)*(tao(tt)-gama(i)) 
     &         **2)*(d(i)/delta(rho)-2.0d+00*alfa(i)*(delta(rho)- 
     &         blamta(i))) 
      end do 
      do i = 55,56 
         sum41 = sum41+bn(i)*(deta(tt,rho)**b(i)*(pesai(tt,rho,bigc, 
     &         bigd,i)+delta(rho)*dpesaiddelta(tt,rho,i))+b(i)* 
     &         deta(tt,rho)**(b(i)-1.0d+00)*ddetaddelta(tt,rho)* 
     &         delta(rho)*pesai(tt,rho,bigc,bigd,i)) 
      end do 
      return  
      end 
c 
c 
c     calculate the derivative of anxiallary functions ddetaddelta 
      function ddetaddelta(x,y) 
      implicit real*8 (a-h, o-z) 
      dimension biga(56),beita(56),a(56),bigb(56) 
      biga(55) = 0.32d+00 
      beita(55) = 0.3d+00 
      a(55) = 3.5d+00 
      bigb(55) = 0.2d+00        
      ddetaddelta = 2.0d+00*(delta(y)-1.0d+00)*(biga(55)*zeta(x,y)/ 
     &            beita(55)*((delta(y)-1.0d+00)**2)**((1.0d+00-2.0d 
     &            +00*beita(55))/(2.0d+00*beita(55)))+a(55)*bigb(55) 
     &            *((delta(y)-1.0d+00)**2)**(a(55)-1.0d+00)) 
      return 
      end 
c 
c 
      function dpesaiddelta(x,y,i) 
      implicit real*8 (a-h, o-z)  
      dimension bigc(56) 
      bigc(55) = 2.8d+01 
      bigc(56) = 3.2d+01       
      dpesaiddelta = -2.0d+00*bigc(i)*(delta(y)-1.0d+00)* 
     &              pesai(x,y,bigc,bigd,i)                
      return 
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      end        
c 
c     
c 
c 
c     This subroutine solves n linear equations using a maximum pivot strategy 
c                          
      subroutine simq(na, ab, bbb, x, ersum) 
      implicit real*8 (a-h,o-z) 
      dimension ab(20,21), bbb(20), x(20) 
c     Forward solution 
      tol = 1.d-12 
      do j = 1, na 
         biga = 0.d0 
c     Search for maximum coefficient in column 
         do  i = j, na 
            if (dabs(biga) .lt. dabs(ab(i,j))) then 
                biga = ab(i,j) 
                 imax = i 
           end if 
         end do 
c     Interchange rows if necessary 
         do k = j, na 
            save = ab(j,k) 
            ab(j,k) = ab(imax,k) 
            ab(imax,k) = save 
c     Divide equations by leading coefficient 
            ab(j,k) = ab(j,k)/biga 
         end do 
      save = bbb(imax) 
      bbb(imax) = bbb(j) 
      bbb(j) = save/biga 
c     Eliminate next variable 
         do ix = j+1, na 
            do  jx = j + 1, na 
               ab(ix,jx) = ab(ix,jx) - ab(ix,j)*ab(j,jx) 
            end do 
            bbb(ix) = bbb(ix) - bbb(j)*ab(ix,j) 
         end do 
      end do 
c     Back solution 
      do i = na, 1, -1 
         x(i) = bbb(i) 
         do j = i + 1, na 
            x(i) = x(i) - ab(i,j)*x(j) 
         end do 
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      end do 
      ersum = 0.d0 
      do i = 1, na 
         ersum = ersum + dabs(x(i)) 
      end do 
      return 
      end 
c 
c 
c     The following subroutine creates the matrices a 
c 
      subroutine atmak(tt,p,rho,dlnrhodt,drhodt) 
      implicit real*8(a-h,o-z) 
      character*8 prispna, complexa, pria 
      character*14 titlem 
      dimension aa(10),bb(10),cc(10),dd(10) 
      common /atrixr/ a(20,20),b(20),alogka(15),delha(15), 
     &              alogw,complexcha(15),sta(15,4),prispcha(10) 
      common /atrixc/ pria(15,4),complexa(15),npa(15),prispna(10),titlem 
      common /atrixi/ nprispa,ncompa,na,maxa 
      prispna(1) = 'H' 
      prispna(2) = 'OH' 
      conv = log(10.d0) 
      rg=8.3144d+00            !gas constant in J/mol*K 
      bMw=18.0153d+00  
      read (11,*) nprispa      ! number of primary species in solution 
      nprispa = nprispa + 2 
      do i = 3, nprispa 
         read (11,*) prispna(i), prispcha(i)      
      end do 
      read (11,*) ncompa      ! number of complexes formed in solution 
      do i = 1, ncompa 
         read (11,*) complexa(i),complexcha(i) 
         read (11,*) aa(i), bb(i),cc(i),dd(i) 
         read (11,*) npa(i) 
         do j = 1, npa(i) 
            read (11,*) pria(i,j), sta(i,j) 
         end do 
      end do 
c 
c 
c      
c 
c     Then make matrix aa to  find  logK and deltaH for each associate reaction 
c 
      do i= 1, ncompa      
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         alogka(i)= aa(i)+bb(i)/tt +( cc(i) + dd(i)/tt)*log(rho*1.0d-03) 
         delha(i)= rg*tt**2*log(10.0d+00)*(-bb(i)/tt**2+(cc(i)+dd(i)/tt) 
     &            *dlnrhodt-(dd(i)/tt**2)*log(rho*1.0d-03))    !J/mol 
      end do       
      na = nprispa + ncompa 
      maxa = na + 1 
      do i = 1, na 
          do j = 1, maxa 
               a(i,j) = 0.d0 
          end do 
      end do 
      a(1,1) = 1.d0 
      a(1,2) = -1.d0 
      do j = 3, nprispa 
           a(1,j) = prispcha(j) 
      end do 
      do j = nprispa + 1, na 
           a(1,j) = complexcha(j-nprispa) 
      end do 
      do i = 2, nprispa - 1 
           do j = 3, nprispa 
                if (i .eq. j - 1) a(i,j) = 1.d0 
           end do 
           do j = nprispa + 1, na 
                kk = j - nprispa 
                do ii = 1, npa(kk) 
                     if (pria(kk,ii) .eq. prispna(i+1)) 
      1                 a(i,j) = dabs(sta(kk,ii)) 
                end do 
           end do 
      end do 
      do kk = 1, ncompa 
           i = kk + nprispa -1 
           a(i,i+1) = 1.d0 
           do j = 1, na 
                do ii = 1, npa(kk) 
                 if (pria(kk,ii) .eq. prispna(j)) 
     1              a(i,j) = sta(kk,ii) 
                end do 
           end do 
      end do 
      a(na,1) = 1.d0 
      a(na,2) = 1.d0 
      do i = nprispa, na -1 
           b(i) = alogka(i-nprispa+1) 
      end do 
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      b(na) = alogw 
      return 
      end 
c 
c 
c 
c 
c     This subrountine integrates the integral (dlngam/dt)dI from  
c     the Meissner equation fitted to nacl using Simpson's rule 
c 
      subroutine simp(fmax,fmin,qm,bm,dqmdt,dbmdt,ame,damdt,vint, 
     &                dlngamdt) 
      implicit real*8 (a-h,o-z) 
      dimension u(81), f(81) 
      conv = log(10.d0) 
      delx = (fmax - fmin)/80.d0 
      ais = fmin 
      do i = 1, 81 
           if (ais .lt. 1.d-12) then 
               f(i) = 0.d0 
           else 
               cme = 1.0d+00 + 5.5d-02*qm*dexp(-2.3d-02*ais**3) 
               dcmedt = 5.5d-02*dqmdt*dexp(-2.3d-02*ais**3) 
               dlngamsdt = (-(1.0d+00 + cme*ais**0.5)*damdt*ais**0.5 
     &                            + ame*ais*dcmedt)/((1.0d+00 + cme*ais**0.5)**2) 
               dlngamsdt = conv*dlngamsdt 
               dlngamdt = (1.d0/(1.d0 + bm*(1.d0 + 0.1d0*ais)**qm - bm)) 
     &                          *(dbmdt*(1.d0 + 0.1d0*ais)**qm + bm*log(1.d0 +  
     &                          0.1*ais)*dqmdt*(1.d0 + 0.1d0*ais)**qm - dbmdt) 
               dlngamdt = dlngamdt + dlngamsdt 
               f(i) = dlngamdt 
           end if 
           ais = ais + delx 
      end do 
      do  i = 2, 80 
            if (i .eq. i/2*2) then 
                u(i) = 4.d0 
          else 
                u(i) = 2.d0 
          end if 
      end do 
      u(1) = 1.d0 
      u(81) = 1.d0 
      vint = 0.d0 
      do i = 1, 81 
      vint = vint + u(i)*f(i) 

   83



      end do 
      vint = vint*delx/3.d0 
      return 
      end 
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