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ABSTRACT

HIGH-FREQUENCY ULTRASOUND DRUG DELIVERY

AND CAVITATION

Mario Alfonso Dı́az de la Rosa

Department Chemical Engineering

Master of Science

The viability of a drug delivery system which encapsulates chemotherapeutic

drugs (Doxorubicin) in the hydrophobic core of polymeric micelles and triggers release

by ultrasound application was investigated at an applied frequency of 500 kHz. The

investigation also included elucidating the mechanism of drug release at 70 kHz, a

frequency which had previously been shown to induce drug release.

A fluorescence detection chamber was used to measure in vitro drug release

from both PluronicTM and stabilized micelles and a hydrophone was used to monitor

bubble activity during the experiments. A threshold for release between 0.35 and

0.40 in mechanical index was found at 70 kHz and shown to correspond with the

appearance of the subharmonic signal in the acoustic spectrum. Additionally, drug

release was found to correlate with increase in subharmonic emission. No evidence of

drug release or of the subharmonic signal was detected at 500 kHz. These findings

confirmed the role of cavitation in ultrasonic drug release from micelles.





A mathematical model of a bubble oscillator was solved to explore the differ-

ences in the behavior of a single 10 µm bubble under 70 and 500 kHz ultrasound.

The dynamics were found to be fundamentally different; the bubble follows a period-

doubling route to chaos at 500 kHz and an intermittent route to chaos at 70 kHz. It

was concluded that this type of “intermittent subharmonic” oscillation is associated

with the apparent drug release.

This research confirmed the central role of cavitation in ultrasonically-triggered

drug delivery from micelles, established the importance of subharmonic bubble oscil-

lations as an indicator, and expounded the key dynamic differences between 70 and

500 kHz ultrasonic cavitation.
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Chapter 1

Introduction

The therapeutic treatment of localized ailments (such as cancer) requiring a

potent and harmful drug that can only be administered systemically is best served

by the development of a system that is able to control the delivery of the drug in

both space (the afflicted area) and time (activation/deactivation of treatment). One

such modality that shows promise both of these areas employs sequestering vesicles to

encapsulate the drug and prevent its interaction with healthy tissue; these capsules are

eventually induced to release their contents at the site of interest via the application of

an external trigger. Hence, the optimization of the drug delivery problem necessitates

the development of both an effective, stable, biodegradable carrier and an external

system that is able to activate the carrier in a safe and controllable manner.

Research by Husseini and others [26, 27, 28, 29] has shown that the com-

bination of polymeric micelles and ultrasound (US) constitutes a promising drug

delivery system. In particular, they showed that micelles of the triblock copolymer

Pluronic P105 (PEO-PPO-PEO) are able to release anthracycline agents within their

hydrophobic core upon application of low-frequency ultrasound. Furthermore, in vivo

studies with a rat tumor model [61] showed that the activity of the chemotherapy

agent Doxorubicin (Dox) is enhanced by US application: the size of the targeted tu-

mor in a leg was significantly reduced in comparison with the non-targeted tumor in

the opposite leg. Finally, in the same lab, Pruitt et al. [77] showed that the Pluronic

carriers can be further stabilized in order to increase their circulation time in the

body.

At this point the attention turns to the best possible use of US in the system

described above. Ultrasonic waves (pressure waves with frequencies greater than 20
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kHz) can be focused, reflected and refracted, and propagated through a medium,

hence their appeal as a targeting modality for drug delivery. That US is such an at-

tractive tool is evident considering its non-invasive nature, its ubiquity as a diagnostic

tool which in turn has generated an advanced field of US instrumentation, and the

ability to focus and control insonation in practice. The latter, however, is generally

achieved at frequencies higher than those studied in the research discussed above for

at least two important rules of thumb of US instrumentation: US cannot be focused

to a volume of less than half a wavelength in diameter and a focused transducer

must be at least about ten wavelengths in diameter. Hence, as frequency decreases

and wavelength increases, focusing becomes more problematic and impractical. It is

therefore imperative to investigate the system’s efficacy at higher frequencies. This

is a critical question, for it is speculated that the underlying physical mechanism of

release is partly due to a phenomenon known as cavitation, which is defined as the

formation and/or activity of gas or vapor-filled cavities in a medium exposed to an

acoustic field [9]. Furthermore, it may be the case that the high forces associated

with eventual bubble collapse (known as inertial or collapse cavitation) are needed

to achieve release. Such cavitation activity, however, has been shown to exhibit a

threshold which increases with increasing US frequency.

Confirmation of the system’s ability to release drug in a controlled manner at

frequencies near the diagnostic level will eventually allow for the implementation of

a clinical US device that releases drug in the desired location of treatment through

focused insonation. This research sought to establish, from both an experimental and

theoretical point of view, whether the polymeric carrier system developed by Pitt et

al. is able to release drug at frequencies (such as 500 kHz) which are close to the

levels used in the well-established field of US diagnostics.
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Chapter 2

Literature Review

The literature background for this research can be divided into three separate

categories: the study of polymeric drug delivery carriers, the use of ultrasound as

a drug delivery tool, and the physics of bubble dynamics (in particular, cavitation

phenomena). The synthesis of these categories allows one to understand the physics

of interaction between micellar carriers and ultrasound, which was integral to the

goals of this project.

2.1 Polymeric Carriers for Drug Delivery

Research in drug delivery carriers has mainly focused on the study of lipo-

somes. Liposomes are much larger than micelles (∼ 1µm vs. ∼ 0.05µm), are more

difficult to prepare, and are used, for the most part, to encase the drug in order to

prevent any release [18]. Nevertheless, several investigators have used ultrasound to

disrupt drug-loaded liposomes and release their contents [63, 91, 94]; yet it is im-

portant to mention that this release is irreversible: once released, the liposomes are

unable to re-encapsulate their contents.

The study of polymeric micelles as drug delivery vehicles has revealed a number

of advantages over other types [97], including 1) structural stability, or slow dissolution

levels below their critical micelle concentration (CMC), which is the concentration

at which micelles form at a given temperature [35]; 2) prolonged shelf life; 3) long

circulation time in blood and stability in biological fluids; 4) an appropriately large

size to prevent renal excretion and yet 5) small enough to allow extravasation at the

tumor site; 6) simplicity in drug incorporation (no need for covalent bonding to the

carrier); and 7) drug delivery independent of drug character [79].
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The micelles formed by PluronicTM, which is a triblock copolymer of poly(ethylene

oxide) (PEO) and poly(propylene oxide) (PPO) and denoted as PEO-PPO-PEO, have

been studied as potential vehicles for drug delivery. These micelles are especially at-

tractive for cancer drug delivery since their polyethylene glycol shell chains prevent

clearance by cells of the reticuloendothelial system (thus ensuring appropriate cir-

culation times) and they have been shown to sensitize multi-drug resistant (MDR)

cancer cells [8] and to have low toxicity [7] .

Rapoport et al. found that PluronicTM P105 was an ideal carrier among the

family of PluronicsTM as it 1) quickly forms micelles upon simple dissolution in water;

2) its PPO core is sufficiently hydrophobic to stabilize the micelle and sequester

hydrophobic drugs [60]; 3) the micelles can be perturbed by low frequency ultrasound

to release the drug [27]; 4) the drug is quickly re-encapsulated in the carrier when

insonation is stopped [28]; and 5) PluronicTM at low concentrations is non-toxic and

can be cleared by the kidneys [93]. Other types of PluronicsTM (P85, L61, and F108)

were discarded as candidates since those with longer PEO blocks had too high of a

CMC and those with longer PPO blocks could not dissolve easily in water [76].

Pruitt et al. developed a stable form of the P105 carrier that would not dissolve

upon I.V. injection and instantly release their contents into the blood [76]. This

premature release invariably occurred when P105 was used in vivo as the micelles

were diluted below their CMC. Work by Pruitt created a stabilized micelle called

PlurogelTM by polymerizing an interpenetrating network of thermally sensitive N,N-

diethyl acrylamide (pNNDEA) in the hydrophobic core of P105 using bis-acryloyl

cystamine (BAC) as the crosslinker [77]. The carriers were shown to sequester and

release Dox upon insonation (albeit less than PluronicTM micelles released) [26] and

to be biodegradable as shown by using diphenyl hexatriene as a fluorescent probe to

track the temporal stability of its hydrophobic environment [76].

Recently, Zeng et al. developed a stabilized micelle carrier called PNHL [98].

The micelle-forming polymer in PNHL consists of a block of PEO adjacent to a

random copolymer of N-isopropyl acrylamide (NIPAAm) and polylactate esters of

hydroxy-ethyl methacrylate (HEMA-lactate). By means of the PEO shell, PNHL re-
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tains the stealth characteristics of the carriers already described, while the hydropho-

bic core provides the stable hydrophobic environment of PlurogelTM. The advantage

lies in the biodegradability of the NIPAAm-HEMA-lactate block: the relative com-

position of these three compounds controls the lifetime of the polymer, giving PNHL

a greater flexibility of design as a drug carrier over PlurogelTM.

2.2 Ultrasound and Drug Delivery

Generally speaking, research into US-mediated biological phenomena has fo-

cused on two categories: thermal and non-thermal effects. The former refers to the

absorption of acoustic energy by fluids and tissues while the latter is normally associ-

ated with bubble oscillations (cavitation) [64]. Prior research has mostly emphasized

these non-thermal phenomena since cavitation bio-effects lead to significant stresses

on cells, facilitating transport of drugs and other molecules into the cytoplasm. While

combinatorial and synergistic effects have not been ruled out, mechanistic questions

have mostly centered on the role of cavitation in observed bio-effects, specifically as to

the question of sonoporation (the production of transient holes in the cell membrane).

In the literature, when evidence points to membrane perturbation by US,

the question turns to the kind of cavitation responsible for the effect. Cavitation

can be divided into two types: stable and inertial (or collapse). Stable cavitation

refers simply to the repeated oscillation of bubble diameter without collapse which

is common at lower acoustic intensities. Inertial cavitation occurs when the acoustic

pressure increases to a level where the oscillations become nonlinear and are violent

enough that the inertia of the inward moving water overcomes the internal pressure

of the bubble, causing the bubble to collapse. Inertial cavitation occurs readily as

the bubble approaches its resonance size). This collapse is strong enough to produce

shock waves, high temperatures and pressures, and free radicals [64]. Detection of

these phenomena is accomplished by several methods, including measurement of the

acoustic spectra generated by the bubble oscillations, trapping of free radicals, sono-

luminescence, and effect inhibition as ambient pressure is increased [4, 13, 16, 59]. Of

particular interest are the acoustic signals generated by the cavitating bubbles: for
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a given driving frequency f , stable cavitation has been linked to the generation of

harmonic (nf, n ∈ N) and subharmonic (f/2) frequencies [9, 48, 51], while collapse

cavitation has been associated with an increase in the non-harmonic background

noise (shock wave-produced broadband emission) and with the subharmonic signal

as well [20, 21, 31, 62]. Curiously, the subharmonic signal has been found indicative

of both types of cavitation and the literature is conflicting in its conclusions; to this

day, the subharmonic remains an enigma. Regardless, these are the phenomena that

accompany any discussion of the mechanisms behind ultrasonic bio-effects.

One important application that has been studied is transdermal drug delivery;

early research showed limited drug transport with treatment at the higher, diagnostic

frequencies [34, 54]. Later studies by Mitragotri at 20 kHz revealed that US can

deliver large and polar biomolecules such as insulin, interferon, and erythropoeitin

across the stratum corneum [53]. More importantly, these studies presented evidence

that collapse cavitation was responsible for skin permeability, including an inverse

dependence on frequency and a threshold for the observed effect [41, 53, 55, 56, 57, 90].

The existence of a threshold for the onset of collapse cavitation is well established in

literature [9, 12, 17, 21, 40, 92]. A classic study by Hill revealed thresholds for inertial

cavitation to be near 1 W/cm2 from 0.25 to 4 MHz by correlation with iodine release

and the subharmonic signal [21]. Collapse cavitation thresholds between 0.036 and

0.141 W/cm2 for 750 kHz US were reported by Daniels et al. Other studies have

reported the dependence of the threshold for inertial cavitation on frequency and

bubble size [17, 3]. Thresholds for bio-effects have also been found, but these vary

with the type of cell or tissue being studied [5, 21, 25, 30, 52, 56, 58, 64, 82, 88, 90].

Cell membrane permeabilization by US has been observed in bovine corneal

endothelial cells (20 kHz) [83], human leukemia (HL-60) cells (255 kHz) [89], and in

embryonic chick 3T3 fibroblasts (1 MHz) [87]. Increased permeability of angiogenic

blood vessels in the presence of stable liposomes has also been observed under the

action of high frequency US [39]. In addition, Rapoport et al. demonstrated that 80

kHz US is able to permeabilize the cell wall of Pseudomonas aeruginosa [80], and,

furthermore, reported that such phenomenon is accompanied by a threshold [95].
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Husseini et al. have reported similar observations pertaining to the system

in question in this thesis. Using a laser fluorescence detection system they quanti-

tated the amount and kinetics of Dox release from P105 micelles [27] exposed to 20

and 70 kHz US. Since Dox molecules absorb light at 488 nm and isotropically emit

fluorescence light between 530 and 630 nm, a fiber optic probe was used to collect

the emission from the sample. Dox fluorescence is quenched when its surrounding

environment changes from hydrophobic to hydrophilic, and hence a decrease in flu-

orescence was attributed to the release of Dox from the micelle core to the aqueous

phase. The percent release of Dox from the micelles was then calculated after cali-

bration with free (no micelles) Dox. It was found that P105 micelles released up to

10 % of their Dox load upon application of US, followed by complete re-encapsulation

when US was turned off [27, 28].

Husseini et al. have also reported that the amount of Dox release from

PluronicTM micelles increases with increasing ultrasonic intensity and decreases with

the driving frequency [26, 28]. This is significant since it is consistent with a cavi-

tation mechanism (bubble amplitude and cavitation activity increases as frequency

decreases). In the same study, they also showed that release decreased in a nearly lin-

ear manner with decreasing intensity, suggesting a low threshold for release (although

no data were presented for intensities very near 0 W/cm2).

The same group performed in vitro work with HL-60 cancer cells by exposing

them to 70 kHz US in the presence of Dox and Dox encapsulated in either PluronicTM

or PlurogelTM micelles [29, 78]. They reported that the carriers prevented interactions

with leukemia cells, increasing cell survival compared to free Dox. More surprisingly,

they also discovered a synergistic lethal effect between US, DOX and the micellar

carriers.

A rat model of colon cancer was used by Nelson et al. to test the system in

vivo by inoculating BDIX rats in each hind leg with a suspension of DHD/K12/TRb

colorectal cancer cells and subsequently exposing them to either 20 or 70 kHz US after

systemic administration of free or encapsulated Dox [61]. Measurement of normalized
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tumor volume after six weeks of treatment revealed that US-treated tumors generally

slowed in growth compared to non-insonated tumors and in some cases even regressed.

2.3 Bubble Dynamics

Any discussion on bubble dynamics must invariably begin with the classic

Rayleigh-Plesset equation [9, 64], which is a basic form of the momentum conser-

vation equation. It assumes a spherical, isolated, internally homogeneous bubble in

an infinite liquid medium in the absence of thermal and mass transfer effects. The

medium is assumed to be unchanging as well. Due to these limitations, a num-

ber of modifications were made to the original model in order to account for the

thermodynamic and transport-related complexities ignored in the first formulation.

Modifications have included (but are not limited to): (1) the assumption of poly-

tropic gas behavior by Noltingk, Neppiras, and Poritsky, (2) the addition of liquid

compressibility effects by Keller and Kolodner [9], and (3) the myriad formulations of

Prosperetti [32, 73, 74, 75] which aimed to include heat and mass transfer effects (see

also Church [10, 11]). Brennen [9] provides a detailed overview of these developments.

The available literature is not limited to the study of single oscillating bubbles.

A number of models for bubble clouds or clusters have been developed [1, 50, 65] that

show that the energy generated by the oscillations of the cluster tends to concentrate

in the center bubble. The phenomenon known as sonoluminescence (light emission

by collapsing bubbles in water associated with cavitation activity) has been modeled

by incorporating the momentum equation with a kinetic model of the radical reaction

involved [33, 38]. The behavior of bubbles under the action of lithotripter shock waves

has also been modeled, integrating the effects of bubble coatings and surrounding

tissues or vessels [15].

In general, the results derived from the models described above tend to re-

produce experimental findings reasonably well, with model-experiment agreement

improving with increasing model complexity, as expected [9]. In particular, several

well-known signatures of bubble behavior under the influence of an acoustic field have

been reproduced with some measure of success, including: (1) thresholds and windows
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for shape instability and growth by rectified diffusion [10, 96], (2) radial oscillation

paths to sonoluminescence [19], and, of course, (3) subharmonic emission thresholds

[32, 38, 42, 46, 47, 50, 67, 68, 70, 71, 72, 84].

Despite its relative lack of sophistication, however, the Rayleigh-Plesset equa-

tion (more precisely, the Noltingk/Neppiras/Poritsky modification of the original

equation) contains enough nonlinearities to make its analysis a complicated task.

In fact, the Rayleigh-Plesset equation is an example of what is called a chaotic dy-

namical system [46]. Among all who have studied the dynamics of these models

from a dynamical systems perspective, Lauterborn has produced the definitive work

[42, 43, 44, 45], including two comprehensive reviews [46, 67]. Prosperetti, while con-

tributing mostly to the development of more mathematically rigorous and physically

accurate models and numerical analysis techniques [74, 75], has also approached the

study of bubble dynamics from this point of view [32, 70].

Lauterborn was the first [43] to report that the acoustic spectrum of cavitat-

ing bubbles approached an increased background noise (which he defined as chaos)

through successive appearances of half-harmonics of the driving frequency (22.56

kHz). This was the first experiment to physically show the famous period-doubling

route to chaos predicted by dynamical systems theory [14], and which is character-

istic of driven nonlinear oscillators. Lauterborn proceeded to cement his findings by

numerically repeating the phenomenon using a modification of the Gilmore model

(which introduces an enthalpic term into the equation) for a frequency of 23.56 kHz

[47]. For this study, Lauterborn created orbit diagrams clearly showing the period-

doubling cascade at a fixed equilibrium bubble size of 230 µm across a range of 0

to 10 bar. Lauterborn gave further evidence that the acoustic signals of cavitating

bubbles trace a deterministically chaotic system by calculating the largest Liapunov

exponent from a time series of experimental values taken at a frequency of 22.9 kHz.

It was found that the exponent converged to a value of 1.9, thus showing that the

system exhibits sensitive dependence on initial conditions [24]. In an introductory

review of the basic tools of chaos theory [46], Lauterborn shows the development of a

period-doubling route to chaos for a bubble of radius 10 µm with a fixed pressure of
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90 kPa and the driving frequency as a parameter (the appearance of the subharmonic

occurring at 197 kHz).

In Lauterborn’s most comprehensive exposition on bubble dynamics [67], he

takes on the task of describing the bifurcation structure of bubble oscillators in a large

section of parameter space. The model used was a modification of Properetti’s own

modification of the Keller and Miksis model and was not integrated directly in order

to reduce the numerical load. A topologically equivalent system was solved instead

and then transformed back to the space of interest by means of a diffeomorphism.

All calculations were made for an equilibrium radius of 10 µm while the frequency

varied anywhere from 30 kHz to 1 MHz. Lauterborn’s approach was exhaustive,

producing bifurcation diagrams, orbit diagrams, Poincaré maps, and plots of the

basins of attraction for a number of parameters. His results showed the immensely

rich dynamics inherent in the nonlinearities of the bubble oscillators, producing quite

different results for different parameter values (thereby implying that all one can

see is but a small section of a vast, truly complicated space). His analysis, however,

lacked any useful results on the bifurcation structure as it relates to changes in driving

pressure amplitude since he limited his calculations to changes in driving frequency.

This is unfortunate since most experimental protocols call for a variation in applied

pressure rather than driving frequency.

Lauterborn has also captured visual images of bubble collapse and jet forma-

tion [45] by means of high-speed photography. More significantly, he has provided

holographic evidence of period-doubling in a bubble undergoing cavitation and even-

tual collapse [44].

Kim et al. reported that the pressure dependent (from about 1 to 1.4 atm

pressure amplitude) bifurcation behavior for a 5 µm bubble at 28.84 kHz is not

period-doubling but rather a “selective”‘ one [38], further demonstrating the need for

a clear investigation of the dynamics induced by pressure variations. Finally, Phelps

and Leighton [68] showed that there exists a repeatable onset of subharmonic emission

for bubbles of various resonant frequencies and considered three possible mechanisms

for the appearance of the subharmonic: (1) a period-doubling bifurcation, (2) the

10



presence of bubbles with an equilibrium radius twice the size of the one resonant with

the driving field, and (3) surface waves. Surprisingly, theoretical examination of cases

(1) and (2) yielded thresholds four to three orders of magnitude higher than exper-

imental results, leading them to conclude that (3) was responsible (out of harmony

with Leighton’s own theory [48] that the subharmonic is the result of a prolonged

expansion phase by the bubble preceding its collapse).
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Chapter 3

Objectives

The individual objectives of this thesis were to:

1. Investigate drug release from micelles under the action of a 500 kHz, focused

ultrasonic transducer. This was done by modifying the fluorescence detection

system used previously [27] in order to capture fluorescence emission from a

small volume by means of a bifurcated fiber optic bundle containing fibers used

for both Dox excitation and fluorescence collection.

2. Search for evidence of cavitation during drug release from micelles at 70 kHz

and 500 kHz. This was done in two ways: by carrying out in vitro drug release

experiments at 70 and 500 kHz and measuring release of drug within the previ-

ously unexplored narrow window of 0-1 W/cm2 in order to find a threshold for

release (if any) and by using a calibrated hydrophone to monitor the acoustic

signals emitted by the oscillating bubbles and tracking:

• subharmonic and ultraharmonic signals

• background noise emission

• any apparent thresholds for acoustic signals

3. Mathematically model the bubble dynamics of the system with the purpose

of elucidating the mechanism underlying drug release. Specifically, the mod-

els were used to reproduce the cavitation signals encountered in (2) and to

subsequently relate the observed behavior of the system to physical arguments

established in the literature.
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Chapter 4

Materials and Methods

4.1 Drug Release Experiments

4.1.1 Fluorescence Detection

Preparation of the drug micelle carriers followed the protocol already estab-

lished by Husseini et al. [27]: a PluronicTM P105 (BASF, Mount Olive, NJ) solution

(10 wt% in PBS) was loaded with 10 µg/mL Dox (a control of Dox at this concen-

tration in pure PBS was also prepared). Stabilized PlurogelTM [77] and PNHL [98]

were synthesized by Yi Zeng and similarly loaded with 10 µg/mL Dox.

The apparatus previously used to measure drug release [27] was modified in

order to capture fluorescence emission from a small volume. A branch of a bifurcated

fiber optic bundle directed a 488 nm beam of an argon ion laser (Ion Laser Technology,

5500 A) into a transparent (both optically and acoustically) plastic tube of cellulose

butyrate containing the drug solution. Dox molecules absorbed the light at 488 nm

and emitted fluorescent light between 530 and 630 nm. This emitted fluorescence

was then captured by fibers in the fiber optic bundle and directed through its second

branch to a silicon detector (EG&G 450-1). A dielectric bandpass filter (Omega

Optical 535DF35) was used to eliminate emissions below 517 nm and above 552 nm.

Finally, the signal from the photodetector was captured on an oscilloscope (Tektronix

TDS 3012) and stored.

The amount of drug release from the micelles was calculated from the data

acquired by the system described above by using the same analysis as Husseini et al.

[27]. It was assumed that the decrease in fluorescence of the solution was proportional

to the amount of drug released relative to a known baseline. Dox fluorescence at 100
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% release was approximated by the measured fluorescence of Dox in PBS (IPBS) while

the Dox fluorescence at 0 % release was approximated by the measured fluorescence

of Dox in the carrier without the action of US (IP105). Hence, the percent drug release

was defined as

% release =
IP105 − IUS

IP105 − IPBS

× 100%, (4.1)

where IUS is the fluorescence intensity under the action of US.

4.1.2 Ultrasonic Insonation

An ultrasonicating bath (SC-40, Sonicor, Copiaque, NY)) filled with degassed

water was used to apply US at 70 kHz, as was done in previous work [27]. A calibrated

hydrophone (Bruel and Kjaer 8103, Decatur, GA) was used to find an acoustically

intense spot wherein the Dox solution and the end of the fiber optic bundle were

placed. A variable AC transformer was used to power the bath and to produce a

range of intensities of ultrasound from 0 to 1 W/cm2. The fluorescence and acoustic

measurements at each intensity level were repeated at least four times to facilitate

statistical analysis.

Ultrasound at 476 kHz, which we hereafter nominally call 500 kHz, was applied

using a focused transducer (H-104B, Sonic Concepts, Woodinville, WA). A sinusoidal

waveform was generated using a function generator (HP 33120A, Hewlett-Packard)

and amplified with a RF power amplifier (240L ENI, Rochester, NY). The signal

was sent to the transducer from the amplifier through a matching network (Sonic

Concepts, Woodinville, WA) to minimize reflected power while being monitored with

an oscilloscope. The experiments were carried out in an aluminum chamber (16 cm

x 13 cm x 17.8 cm) filled with degassed water and containing acoustically absorbing

rubber on the bottom and sides of the box in order to minimize reflections and

standing waves.

Figure 4.1 shows the setup for 70 kHz; the chamber described above replaced

the bath for the 500 kHz experiments.

16



Figure 4.1: Experimental setup.

Since the US at 500 kHz is focused, the most acoustically intense spot (or

focal point) is unique and so had to be carefully located before experiments began.

The acoustic field of the transducer was mapped out by placing a calibrated needle

hydrophone (HNR-1000, Onda, Sunnyvale, CA) within the transducer’s field and sys-

tematically moving it across the three coordinate axes with the help of micrometers.

These micrometers were attached to a base holding the hydrophone that also served

as the top of the acoustic chamber. Once the focal point of the transducer was lo-

cated, the Dox sample was placed there and the experiments proceeded as described

above for 70 kHz. In this instance, however, the US intensities employed extended

over a larger range than those used at 70 kHz, given that no previous data had been

collected at these settings.
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4.1.3 Monitoring of Acoustic Activity

To measure the ultrasonic power density delivered experimentally at 70 kHz,

the output from the hydrophone (placed at the same intense spot as the sample) was

recorded with an oscilloscope and then converted into an average acoustic intensity:

IAV E =
V 2

RMSQ2

Z
, (4.2)

where VRMS is the root-mean-squared voltage from the hydrophone, Q is the man-

ufacturer’s frequency-dependent calibration factor, and Z is the acoustic impedance

of water (1.5× 106 kg/m2/s). At 70 kHz, the conversion became

IAV E = 0.1839
W

cm2 V 2
RMS

V 2
RMS

and, at 500 kHz,

IAV E = 2.9785
W

cm2 V 2
RMS

V 2
RMS.

For the experiments at 500 kHz, the relationship between the voltage supplied

(V in
PP ) and the voltage read by the hydrophone at the spot of highest intensity (V hyd

RMS)

was found to be (see Appendix A):

V hyd
RMS = 10.368 V in

PP + 0.0292 V,

and this voltage is the same voltage used in Equation (4.2) to calculate average

acoustic intensity.

The acoustic chamber for 500 kHz described above also contained an orifice

on a side wall through which the needle hydrophone was placed in order to monitor

the acoustic activity within the chamber during the experiments.
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The hydrophone signal for each run at 70 and 500 kHz was collected with an

oscilloscope and the acoustic spectrum for each was obtained through the Fourier

Transform of the signal.

4.1.4 Monitoring Radical Generation

A collapse cavitation event is strong enough to produce free radicals [64] whose

rate of production can provide a quantifiable measure of collapse cavitation activity.

The rate of OH radical formation under 500 kHz ultrasound was monitored by the re-

action of hydroxyl radicals with iodide (I−) ions in order to form iodine (I2). A 70 mL

solution of 0.03 wt% KI was sonicated for an hour with the same 500 kHz transducer

described above at three different average intensities (374, 666, and 1040 W/cm2)

and circulated into a spectrophotometer (DU-640, Beckman Coulter, Fullerton, CA)

which scanned the absorbance at 355 nm every fifteen seconds. This absorbance data

was used to calculate a rate of iodine (and hence, hydroxyl radical) formation.

4.2 Mathematical Modeling

A MATLAB code that solves the Rayleigh-Plesset equation was written (Ap-

pendix B). The Rayleigh-Plesset equation is

pV (T∞)− p∞(t)

ρL

+
pG0

ρL

(
R0

R

)3k

= RR̈ +
3

2

(
Ṙ
)2

+
4νLṘ

R
+

2S

ρLR
, (4.3)

where R is the bubble radius, ρL and νL the density and kinematic viscosity of the

liquid medium, respectively, S is the surface tension at the bubble surface, pG0 is

the partial pressure of the gas at some reference bubble radius R0, pV is the vapor

pressure at some temperature T∞ far from the bubble, k is the polytropic constant,

and the dot represents differentiation with respect to time. With the addition of a

sinusoidal driving pressure p∞(t) = pstat + A sin (2πft), the Equation (4.3) is non-

autonomous and highly non-linear and lacks an analytical solution except for limiting
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cases [9]. For ease of computation, the equation was transformed into an autonomous,

three-dimensional system of differential equations by introducing the variables u = Ṙ

and Θ = ft mod 1. The system is then

Ṙ = u

u̇ =
pV (T∞)− pstat − A sin (2πΘ)

ρLR
+

(
pG0

ρLR

)(
R0

R

)3k

− 3

2

u2

R
(4.4)

− 4νL
u

R2
− 2S

ρLR2

Θ̇ = f.

Hence, by moving the analysis into the state space M = R+×R×S1, a simple

MATLAB ODE solver (ode45) was used to numerically approximate the solution.

The first goal was to model the bubble behavior observed in the drug release

experiments as closely as possible. In particular, frequency spectra corresponding to

the acoustic spectra found experimentally were generated by computing the Fourier

transform (MATLAB function fft) of the radial oscillations obtained as part of the

numerical solution to the bubble equation.

Once the integration of the ODE system was in place, analysis was conducted

on a qualitative level using several results from dynamical systems theory. Trajectories

were plotted as functions of pressure amplitude and fixed frequency (70 and 500

kHz) and equilibrium bubble diameter (10 µm). Bifurcation values of the pressure

amplitude parameter and the resulting routes to chaos were found and compared to

the experimental values (both subharmonic and collapse cavitation thresholds).

Finally, the analysis was moved from the continuous to the discrete realm of

dynamical systems by plotting Poincaré maps (maps of first return on a suitably

defined hyperplane Σ ⊂ M , in this case a cut of M transverse to the Θ direction

yielding a projected plane on u and R) of the system at parameters of interest (such

as any thresholds and bifurcation locations). Orbit diagrams giving a more complete

picture of the dynamic behavior of the system as pressure increased were created.
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Chapter 5

in vitro Drug Release

The fluorescent properties of Dox were exploited as a probe for micellar drug

release by tracking the dynamic quenching of its fluorescence upon sonication, which

is a signal of release into the aqueous medium surrounding the micelle. In particular,

in vitro drug release experiments at 70 kHz were conducted within 0 and 1 W/cm2

while those at 500 kHz within 0 and 20 W/cm2 in order to find any release thresholds

indicative of cavitation-related phenomena. The role of cavitation was also explored

by monitoring, by means of a hydrophone and spectrum analyzer, the acoustic spectra

generated by the oscillating bubbles under the action of ultrasound, as explained in

Chapter 4.

5.1 Drug Release at 500 kHz

No decrease in Dox fluorescence was detected at 500 kHz for intensities ranging

from 0 to 20 W/cm2. A typical fluorescence profile is shown in Fig. 5.1. The lack

of change in fluorescence indicated that Dox molecules remained in the hydrophobic

environment provided by the core of the P105 micelles when exposed to ultrasound.

Hence, it is inferred that no Dox was released from P105 micelles at 500 kHz within

the range of intensities indicated.

Acoustic spectra show the behavior of the bubbles by giving the intensity of

oscillation readings as a function of frequency. For a group of bubbles driven at a

given frequency f , it is expected that the strongest intensity reading will belong to f ,

called the fundamental frequency. This behavior is seen in Fig. 5.2, a representative

spectrum at 500 kHz and for an applied average intensity of 1.53 W/cm2. As the ap-

plied intensity increases, the peak grows stronger and the baseline shifts up (Fig. 5.3,
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Figure 5.1: Fluorescence of P105-encapsulated Dox (in arbitrary units) during 500
kHz sonication. Average intensity during the pulse is 20 W/cm2.

applied intensity of 195.8 W/cm2). A shift in non-harmonic background emission is

indicative of bubble collapse (a shock wave emitting all frequencies at the moment of

collapse). Harmonic (nf , n ∈ N) and a few ultraharmonic ((2n+1)f/2, n ∈ N) peaks

are present as well. The subharmonic peak, which is the signature most associated

with both types of cavitation activity (see Section 2.2), never appeared at any of the

intensities used.

According to the preceding results, no evidence of Dox release from P105

micelles using ultrasound at 500 kHz was found. Previous work by Husseini [27] has

shown that drug release decreases with increasing frequency, and so high intensities

are thought to be needed for release at 500 kHz. That intensities as high as 20 W/cm2

failed to release Dox from micelles seems to disprove this prediction. The dependence

may be nonlinear, however, which would mean that the necessary intensities may be

outside the range used in this research. In that case, the applied pressures needed

would exceed the accepted limits set for the safe medical use of ultrasound. These

limits are defined by means of a parameter called the mechanical index (MI).
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Figure 5.2: Acoustic spectrum for 500 kHz insonation, I = 1.53 W/cm2.

Following the work of Apfel and Holland [3], the mechanical index was for-

mulated by the American Institute of Ultrasound in Medicine as a measure of the

likelihood of collapse cavitation occurring during ultrasound imaging [5]. It is defined

as

MI =
P−/(1 MPa)√

f/(1 MHz)
,

where P− is the peak negative pressure and f is the applied frequency in the units

specified. Apfel and Holland reported that bioeffects and possible tissue damage

can be expected for mechanical indices above 0.7 [3]. Barnett reported the more

conservative value of 0.6 [5] and, elsewhere, cites an FDA upper limit of 0.23 for

ophthalmologic exams [6]. In general, a value of MI above unity is considered unsafe

and its use on humans is discouraged [6]. For these experiments at 500 kHz, the

highest intensity used (20 W/cm2) corresponds to a mechanical index of 10, clearly

past the limits of safe use. This means that, if higher intensities than the ones used
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Figure 5.3: Acoustic spectrum for 500 kHz insonation, I = 195.8 W/cm2.

in this research are indeed needed to release drug, they may not be of practical use

in human therapy.

The high mechanical indices achieved in these experiments imply that inertial

cavitation occurred but no drug was released. Hydroxyl radicals were generated at a

rate of 0.78, 0.112, and 0.120 µmoles/hour for applied intensities of 374, 666, and 1040

W/cm2, respectively (see Section 4.1.4). Hence, as the applied intensity increased,

radical generation (i.e., bubble collapse events) also increased. These intensities cor-

respond to mechanical indices of 4.74, 6.32, and 7.90, well below the highest levels

used in the drug release experiments. Radical monitoring and acoustic spectra sug-

gested that, for sufficiently high intensities, bubble collapse occurs but the absence

of a subharmonic signal raises doubts about the route followed by the bubbles to

this eventual collapse. The clear harmonic oscillations that preceded the increase in

broadband emission reflect the stable oscillations of the bubbles in the system up

until the point of collapse. It appears that this type of bubble activity is unable to

open P105 micelles and release their load. A comparison of this bubble behavior to
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that which occurs under ultrasonic frequencies that are known to lead to drug release

(70 kHz) should provide the answer.

5.2 Drug Release at 70 kHz

Release of doxorubicin from micelles using 70 kHz ultrasound has been re-

ported [27], but while the data pointed to cavitation as the most likely mechanism,

its role was not clearly explored. Deciphering the role of cavitation during drug re-

lease at 70 kHz and comparing it to bubble activity at 500 kHz is imperative if the

absence of drug release at 500 kHz is to be explained. This information is found

through the acoustic spectra generated by the bubbles and by the presence of any

thresholds in drug release.

5.2.1 PluronicTM

Dox release from PluronicTM micelles under 70 kHz US was tracked by the

fluorescence detection system over a range of intensities between 0 and 0.8 W/cm2.

Measurements were repeated several times at each intensity level (n = 8 for I > 0.27

W/cm2 and n = 4 for I ≤ W/cm2) and averaged. Drug release from micelles was

calculated as described in Section 4.1.1. The results are found in Fig. 5.4, which

shows the percent of doxorubicin release (see Equation 4.1) as a function of the

average power density delivered to the system.

The sigmoidal shape of the release profile reveals that percent release behaves

nonlinearly with ultrasound intensity. Most tellingly, no significant (p > 0.05) change

in fluorescence was detected below approximately 0.28 W/cm2. At this intensity

value there is a sudden onset of drug release which continues as intensity increases

and eventually levels off. This is analogous to the bioeffect thresholds described

previously. A similar threshold in bubble dynamic behavior at these power levels

would associate drug release with cavitation activity, and so we turn to the acoustic

spectra generated by the bubbles in the system.

Four representative acoustic spectra for these experiments using 70 kHz ultra-

sound are shown in Figure 5.5. Similarly to those seen in Section 5.1, they all show a
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Figure 5.4: Average percent release of doxorubicin as a function of acoustic intensity
at 70 kHz. Error bars represent standard deviations (n > 4) from the mean.

strong fundamental peak and several harmonics. The spectrum at I = 0.005 W/cm2

(Fig. 5.5(a)) is analogous to Fig. 5.2, reflecting the stable oscillations of bubbles at the

driving frequency and its integer multiples. However, they contain no subharmonic

peak, the signal of interest.

The spectra shown in Fig. 5.5(b) and Fig. 5.5(c) for intensities of 0.25 and 0.28

W/cm2, respectively, are significant as they present behavior that differs from that

seen at 500 kHz. The former was taken at an intensity where no drug release was

detected while the latter was taken at the onset of release (when the first measurable

change in fluorescence was detected) and shows the development of a subharmonic

peak at approximately 35 kHz. The baseline level also increases at this threshold, yet

not for the first time, as Fig. 5.5(b) clearly shows a raised baseline. The spectrum

at 0.52 W/cm2 is shown as Fig. 5.5(d) for comparison and shows that as the applied

intensity is increased, the magnitude of the subharmonic peak increases, as well as

the level of the baseline.
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(a) I = 0.005 W/cm2 (b) I = 0.25 W/cm2

(c) I = 0.28 W/cm2 (d) I = 0.52 W/cm2

Figure 5.5: Acoustic spectra for 70 kHz insonation at I = (a) 0.005, (b) 0.25, (c)
0.28, and (d) 0.52 W/cm2.

Thus, the onset of drug release corresponds to the emergence of the subhar-

monic signal in the acoustic spectrum. The spectra in Fig. 5.5 also suggest that the

percentage of drug release increases as the magnitude of the subharmonic signal in-

creases above baseline after the threshold. A correlation of this relationship is shown

in Fig. 5.6, where the abscissa represents the logarithmic rise in subharmonic intensity

above baseline and the ordinate represents the percent drug release from the micelles.

The preceding results merit careful analysis, as they hold a number of hints

about the role that cavitation plays in ultrasonic drug delivery. In particular, there are

two important phenomena which confirm the presence of cavitation activity in drug
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Figure 5.6: Percent doxorubicin release from Pluronic micelles correlated with the
acoustic intensity of the subharmonic peak. Error bars represent standard deviations
from the mean.

release: (1) the release and subharmonic thresholds and (2) the correlation between

release and subharmonic intensity.

As explained in Section 2.2, thresholds for inertial cavitation are readily found

in the literature and hence the behavior of the subharmonic signal in these experi-

ments is not surprising. What is surprising is that it so clearly corresponds with the

onset of drug release. Bio-effect thresholds are common as well [5, 21, 56, 64], varying

with cell or tissue and type of effect sought, and they rarely coincide with the onset

of collapse cavitation. Examples of bio-effect thresholds include 0.9 W/cm2 for skin

permeabilization at 76.6 kHz [90] and reach as high as 2000 W/cm2 for DNA delivery

to rabbit endothelial cells using 0.85 MHz ultrasound [25]. With such varied thresh-

olds, the question naturally arises as to the type of cavitation associated with them
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– specifically if inertial cavitation is needed for each. Cell membrane damage has

been reported to occur in the region of stable cavitation [81], suggesting that bubble

destruction (collapse) is not a necessary condition for many of these effects (though

it is most likely sufficient due to the strong forces exhibited during the phenomenon).

So it can be concluded that while the presence of both thresholds are definite signs of

non-thermal ultrasound effects (cavitation), one cannot discard one or the other kind

of cavitation based on this information alone. Furthermore, it still does not explain

the absence of either a threshold for release or for subharmonic emission under 500

kHz ultrasound, given that, according to Tezel et al., the bio-effect threshold should

increase with increasing frequency [90] and not simply disappear.

Surely the origin of the subharmonic emission and its strong correlation with

drug release holds the answer. Before delving into this, however, the three data

points that are outliers to this correlation in Fig. 5.6 need an explanation. These

points represent instances when the subharmonic signal noticeably appeared above

the baseline with a relatively low percent drug release. All three also occurred in the

applied intensity range of 0.27 to 0.34 W/cm2, that is, right at the onsets of drug

release and subharmonic emission. Near the latter, the subharmonic emission is said

to be intermittent [48, 62] and chaotic [9]. Such intermittency may have caused the

signal to be present long enough to be registered by the spectrum analyzer but not

long enough to induce drug release (a time constant on the order of 200 ms [28]).

There exist a number of known studies associating a specific bio-effect with

the subharmonic emission in the literature. These, just as the reports on the enduring

debate about the origin of subharmonic signals, are nevertheless contradictory. Sun-

daram et al. reported that inertial cavitation was responsible for sonoporation of cell

membranes since they were able to correlate 3T3 mouse cell viability and membrane

permeability with acoustic white noise, which they also showed to be independent of

subharmonic energy density [87]. On the other hand, Liu et al. were able to correlate

hemolysis to subharmonic and ultraharmonic pressures but not broadband emission

[49]. The root of these contradictions is found in the ongoing disagreement of whether

the subharmonic signal is produced by stable or inertial cavitation.
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Theoretical and experimental studies that associate the subharmonic emission

with stable cavitation [2, 49, 51, 87] generally do so at intensities high enough to be

considered close to the onset of collapse or under carefully controlled experimental

conditions [51, 68] which generate stable nonlinear oscillations and are unlikely to

be found in this experimental system. As mentioned in Chapter 2, the experiments

of Phelps and Leighton [68] linking surface waves to subharmonic emission are il-

lustrative of the debate in that they contradict Leighton’s own previous conjecture

[48] that a prolonged bubble expansion phase prior to collapse produces the signal.

Others have reported correlations between the subharnonic signal and iodine release,

sonoluminescence, and acoustic broadband emission [20, 21, 31, 62], all of which are

evidences of bubble collapse.

The presence of signatures (other than the subharmonic) during drug release

that are indisputably related to either type of cavitation may thus tilt the balance

towards stable or collapse cavitation being behind micellar drug release. Such signals

include, for example, radical generation and acoustic broadband emission, character-

istic of bubble collapse [64]. Rapoport et al. captured free radicals with the spin

trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) using experimental conditions very

close to the ones used in this research at intensities between 0.68 and 3.4 W/cm2 [80].

While radicals were not trapped at the threshold intensity found in these experiments,

the values are qualitatively close enough to presume that perhaps the amount of rad-

icals generated at such low intensities was not large enough for measuring purposes.

With regards to acoustic broadband emission, Figure 5.5 shows that the baseline does

indeed shift at the onset of release (compare Fig. 5.5(b) and Fig. 5.5(c)), though, as

noted before, not for the first time. That is, there is evidence that even before drug

release, some bubbles were collapsing and generating acoustic signals containing the

full frequency spectrum. Thus, one may conclude that at 70 kHz bubble collapse is

present during the phenomenon that generates the subharmonic signal and correlates

with drug release. These two signatures (radical trapping and broadband emission)

are not correlated with release in the same way that the subharmonic signal is, how-
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ever, and so care is imperative before declaring a definitive causal relationship between

collapse cavitation and drug release.

As in Section 5.1, the Mechanical Index is also useful in the interpretation

of these results. The MI for the drug release/subharmonic threshold shown in Fig-

ure 5.4 is 0.35, below the aforementioned tissue damage threshold. This MI value is

interesting in that it is consistent with results by Shi et al. [85], wherein SonazoidTM

microbubbles were exposed to 2.5 MHz US and found to sustain nonviolent (i.e.: non-

inertial cavitation) damage for intensities between 0.6 and 1.6 MPa, or between a MI

of 0.4 and 1.0. For intensities above 1.6 MPa (MI > 1.0), the bubble damage turned

from a slow, gradual dissolution into a quick, disintegrating collapse. Hence, for val-

ues between MI of 0.4 and 1.0, bubble destruction is slow and gradual as opposed

to a violent collapse. Shi et al. made no mention of the acoustic spectrum in their

report, so it is difficult to know what kind of signature these damaged bubbles might

generate. It is unlikely that they would generate the white noise associated with a

violent collapse, which may mean that the baseline shift seen in Figure 5.5 may be

due to peripehral bubbles which are closer to the resonance size and which may not

necessarily be participating in the phenomenon responsible for drug release. It could

then be argued that the subharmonic signal is really a measure of how much of this

nonviolent damage is being inflicted on the bubbles present, which are eventually led

to a slightly more stable collapse which is then able to release the drug load from the

micelle.

Bubble interaction with different materials [51] and medium viscosity [23] in-

fluence the duration of stable cavitation and the threshold for collapse cavitation,

respectively. These factors, together with the ultimate goal of medical application,

suggested that investigation of the drug delivery system using stabilized micelles and

different temperatures was necessary. This part of the research is covered in the next

section.
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5.2.2 Stabilized Micelles And Temperature Effect

If the drug delivery system studied in this research is ever to be used clinically,

the micelle carrier must be stabilized in order to resist dissociation upon introduction

into the bloodstream (see Section 2.1) and whatever cavitation phenomena responsible

for release must be repeatable at physiologic temperature (37◦C). To establish this,

similar experiments were conducted using PluronicTM at 37◦C and 58◦C as well as

using the stabilized carriers Plurogel and PNHL at 37◦C.

Analogous to the previous results, the percent release of Dox from the micelles

is presented as a function of the applied power is shown in Figure 5.7. The data for

all four experiments are included for comparison. The first and most obvious aspect

of these results is that release from PluronicTM is more than three times higher than

from the stabilized carriers at the same temperature of 37◦C.

Figure 5.7: Average percent release of doxorubicin as a function of acoustic intensity
at 70 kHz from unstabilized and stabilized micelles, ◦: P105, 37◦C; ◦: P105, 58◦C; �:
Plurogel, 37◦C; ∆: PNHL, 37◦C. Error bars represent standard deviations (n > 4) from
the mean.
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Another immediately noticeable feature of Fig. 5.7 is that the release threshold

seen before is here repeated and appears to be independent of carrier. While the

percent release varies by carrier, the threshold intensity above which any significant

decrease in fluorescence was recorded is the same for all: around 0.38 W/cm2.

Just as before, representative acoustic spectra for these experiments are shown

in Figure 5.8. The first spectrum (I = 0.43 W/cm2) shows the behavior of the bubbles

around the release threshold while the second shows it for higher intensities (I = 0.76

W/cm2). No subharmonic signal was seen at lower intensities and there were no

differences in bubble behavior as recorded by the Spectrum Analyzer among the

different carriers or temperatures. The onset of the subharmonic corresponded with

the threshold of drug release, just as it did in the previous experiments. Also, an

increase in the background noise can be seen as the half-harmonic appears, together

with an increase in the subharmonic intensity as the applied power is increased.

(a) I = 0.43 W/cm2 (b) I = 0.76 W/cm2

Figure 5.8: Acoustic spectra for 70 kHz insonation at I = (a) 0.43 and (b) 0.76 W/cm2.

At this point, it is reasonable to anticipate that there might be a correlation

between subharmonic intensity and drug release. These plots, similar to Figure 5.6,

are shown in Figure 5.9 for PluronicTM (Fig. 5.9(a)) and the stabilized compounds

(Fig. 5.9(b)). There is an apparent linear relationship between the logarithmic in-
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tensity of the subharmonic above noise level and drug release for PluronicTM at both

temperatures (confirming the previous result); yet, surprisingly, this fairly linear be-

havior is lost with the stabilized carriers.

(a) P105 at 37 and 58oC

(b) Plurogel and PNHL at 37oC

Figure 5.9: Percent Doxorubicin release as a function of subharmonic peak intensity
of (a) ◦: P105, 37◦C; ◦: P105, 58◦C (non-stabilized micelles) and (b) �: Plurogel,
37◦C; ∆: PNHL, 37◦C (stabilized micelles). Error bars represent standard deviations
from the mean.
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Acoustic measurements reveal little more than they did in previous experi-

ments. As before, the onset of release corresponds to the onset of the subharmonic

signal for all compounds and at all temperatures. The same kind of baseline shift

at the subharmonic threshold is also seen, one that is not necessarily a consequence

of the subharmonic signal but more a function of the increase in applied pressure.

Conversely, it is important to note that no subharmonic signal was ever seen in the

absence of this increase in background noise. Nevertheless, one can say that, for

all of these experiments, bubble collapse occurs before subharmonic oscillations are

recorded and drug release is detected.

The mechanical index (MI) for the threshold in these experiments is 0.4, close

to the value found for PluronicTM at room temperature (0.35). This MI value is

also the one reported by Shi et al. as the threshold for the “nonviolent destruction”

of microbubbles discussed previously. Hence, we conclude that the same acoustic

phenomenon (whatever it may be) is responsible for drug release from both stabilized

and non-stabilized micelles and is independent of temperature.

Figure 5.7 suggests that percent drug release is a function of temperature and

of the type of carrier. While drug release from PluronicTM seems higher at 58◦C than

at 37◦C, the difference between the slopes (0.25 and 0.24 % release/W/cm2) of the two

data sets is statistically insignificant (p = 0.112). The thresholds of release at 58◦C

and at 37◦C were also estimated by linear extrapolation (0.355 and 0.379 W/cm2,

respectively), a difference which is marginally significant (p = 0.035). This effect can

be understood by examining the effects of temperature on bubble dynamics. The ef-

fects of temperature are felt in the changing viscosity of the surrounding medium and

in the vapor pressure of water within the bubble [9]; as temperature increases, water

viscosity decreases, which in turn decreases the damping of bubble oscillations. Less

damping of oscillations allows the bubble to reach a collapse event at lower acoustic

intensities than would otherwise be needed [23]. Thus, an increase in medium tem-

perature would have the overall effect of reducing the cavitation threshold, which is

consistent with the results summarized in Fig. 5.7, where the threshold of drug re-

lease is reached at (barely significant) slightly lower intensities when the temperature
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is increased. This temperature effect was not seen in the acoustic spectra collected,

however, as both temperatures yielded basically the same acoustic readings. Two

things explain this discrepancy: the temperature difference needed for such detection

may be higher than the one employed (witness the p-value of 0.035) and the bub-

ble dynamics system may be so chaotic and unstable that such resolution may be

impossible with the equipment used. The chaotic behavior of the system studied is

examined in more detail in the next chapter.

The unexpected result in these experiments is that the linear relationship be-

tween the logarithm of the subharmonic intensity and drug release is absent with

stabilized micelles (Fig. 5.9). The linear correlation shown in Figure 5.9(a) is consis-

tent with the results at room temperature shown in Figure 5.6 while the correlation for

Plurogel in Figure 5.9(b) is nonlinear. A Plurogel micelle (see Section 2.1) is simply

a P105 micelle with an interpenetrating network of N,N-diethyl acrylamide polymer-

ized into its hydrophobic core. This nonlinear behavior and the fact that stabilized

and cross-linked micelles release less than PluronicTM micelles (Fig. 5.7) suggest that

shearing is important to the release process. It appears that higher shear forces are

necessary to induce release from these carriers since they have stronger stabilization

forces when compared to micelles of P105.

It was mentioned previously that bubble collapse has been shown to not be

necessary for certain bio-effects, but that collapse is normally assumed to be sufficient

to produce bio-effects due to the shock waves and subsequent strong forces produced

by the event. It is therefore disconcerting to find that although bubble collapse oc-

curred at 500 kHz, no drug release was recorded, in an apparent contradiction to this

claim. Bubble activity under 70 and 500 kHz applied ultrasound is explored theoret-

ically in the next chapter, but it is pertinent at this point to consider the possibility

that it may not significantly differ between the two frequencies. If that is the case,

then the fluorescence detection system used in these (and previous) experiments must

be critically reexamined. The system is, after all, only an indirect measure of drug

release. The question of what phenomenon (other than drug release) could be causing

changes in fluorescence would need to be addressed. The involvement of cavitation
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and in particular of double-period oscillations should be tested in this regard, that

is, could this type of bubble activity interfere with the light in the fluorescence de-

tection system enough to create the illusion of fluorescence quenching of Dox? Of

course, there is evidence found in this research which would seem to also contradict

this line of logic. Decrease in fluorescence due to ultrasound is a signal that occurs

with such repeatability that it seems unlikely to happen out of a number of bubbles

simply interfering with the light in the same way every time. Also, and perhaps most

importantly, the results presented here for stabilized and cross-linked micelles directly

disprove this hypothesis. If decrease in fluorescence is indeed an artifact, one would

expect to see the same amount of decrease regardless of the carrier being used, espe-

cially when the acoustic signatures generated are essentially the same as those found

for PluronicTM. That we see significantly less fluorescence decrease for stabilized and

cross-linked micelles reflects that the changes in the signal are related to changes

in the Dox environment and not to some independent phenomenon. Nevertheless,

future research should address improving (perhaps even completely revamping) the

experimental system that monitors drug release. One such way would be to introduce

(either coating the container or in the medium itself) a compound that selectively

binds Dox and then to measure the change in Dox bound to this compound (a type

of assay); this experiment would undoubtedly turn into a kinetic study of Dox bind-

ing due to Dox’s equilibrium with its surrounding medium when encapsulated in a

micelle.
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Chapter 6

Ultrasound and Bubble Dynamics

Our investigation into the nature of ultrasonic drug release from polymeric

micelles has so far revealed three important details: (1) cavitation is involved, (2) the

subharmonic signal of the acoustic spectra generated by the bubbles in the medium

correlates with drug release at a frequency of 70 kHz, and (3) this phenomenon is not

present at 500 kHz. The first was suspected due to previous results [27], while the

latter two were heretofore unknown; all results were obtained experimentally by means

of the fluorescent detection system described in Section 4.1.1 and are summarized in

Chapter 5. One is naturally left to inquire about the nature of the bubble oscillations

that generate the subharmonic signal (and concomitant drug release) at 70 kHz and

what is so exceptional about them that they are absent at 500 kHz. The field of

bubble dynamics is concerned with these questions.

The history behind the mathematical modeling of bubble oscillations under

an applied pressure field was briefly summarized in Section 2.3. Among those who

have contributed to the understanding of this physical system, Lauterborn stands

out in that he used the qualitative tools of chaos physics (dynamical systems) [46] to

interpret the behavior of bubble oscillations [67], revealing a glimpse of the complex

dynamics inherent within the governing equations. In this Chapter, we follow Lauter-

born’s lead by analyzing bubble oscillations at 70 and 500 kHz with similar tools. In

particular, we seek to find the same (or analogous) experimental acoustic signatures

through modeling and to explore bubble behavior in a neighborhood of the thresholds

found in Chapter 5. If the dynamics at 70 and 500 kHz are vastly different we may

find the answers to the two remaining questions: (1) what type of bubble behavior
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is responsible for release and (2) precisely under what conditions can drug release be

achieved.

6.1 Mathematical Model of Bubble Oscillator

In Section 4.2 the Noltingk-Neppiras-Poritsky modification of the classic Rayleigh-

Plesset equation was introduced (4.3); it is presented here again:

pV (T∞)− p∞(t)

ρL

+
pG0

ρL

(
R0

R

)3k

= RR̈ +
3

2

(
Ṙ
)2

+
4νLṘ

R
+

2S

ρLR
. (4.3)

This modification accounted for the bubble contents as a polytropic gas. The system

was driven by a sinusoidal driving pressure:

p∞(t) = pstat + A sin (2πft) .

As explained in the same section, a MATLAB program (see Appendix B) was created

that solved the following system of autonomous differential equations by means of the

adaptive ODE solver ode45:

Ṙ = u

u̇ =
pV (T∞)− pstat − A sin (2πΘ)

ρLR
+

(
pG0

ρLR

)(
R0

R

)3k

− 3

2

u2

R
(4.4)

− 4νL
u

R2
− 2S

ρLR2

Θ̇ = f.

Unfortunately, this formulation is incapable of yielding reliable information

around the moment of collapse (when high temperatures and pressures are gener-

ated) since it fails to account for liquid compressibility [9]. Keller and Kolodner

[36] and later Keller and Miksis [37] rectified this by introducing the Mach num-
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ber into the equation. Their versions, however, require the driving pressure expres-

sion shown above to contain a retarding term in its argument (that is, p∞(t) =

pstat + A sin (2πf(t + R/c)), where c is the speed of sound in water) which compli-

cates the definition of the Poincaré map later on. Parlitz et al. (under Lauterborn’s

auspices) ignore this term in their analysis and show that their modification and the

Keller and Miksis equation are equivalent up to terms of order O
(
c−2
)
, which terms

are ignored during the derivation of the latter. Accordingly, we used the Parlitz mod-

ification of the Keller-Miksis model for the results presented in this chapter. The

equation is

(
1− Ṙ

c

)
RR̈ +

3

2
Ṙ2

(
1− Ṙ

3c

)
=

(
1− Ṙ

c

)
P

ρL

+
R

ρLc
Ṗ , (6.1)

where P is given by

P =

(
pstat − pV (T∞) +

2S

R0

)(
R0

R

)3k

− 2S

R
− 4µLṘ

R

− pstat + pV (T∞)− A sin (2πft) ,

and all variables remain the same as before and µL is the dynamic viscosity.

We can now introduce the variables u = Ṙ and Θ = ft mod 1 just as before

to transform the Keller-Miksis-Parlitz equation into a system of three autonomous

differential equations:

Ṙ = u

u̇ =

[(
1− u

c

)
R +

4µL

ρLc

]−1 [
−u2

2

(
3− u

c

)
+
(
1 + (1− 3k)

u

c

)
(

pstat − pV (T∞)

ρL

+
2S

ρLR0

)(
R0

R

)3k

− 2S

ρLR
− 4µL

ρL

u

R

−
(
1 +

u

c

) pstat − pV (T∞) + A sin (2πΘ)

ρL

−R
2πf

ρLc
A cos (2πΘ)

]
Θ̇ = f.
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This system was solved, again, using a standard MATLAB adaptive solver (ode45,

see Section B.2).

Difficulties in the integration of the system above arise when the bubble oscil-

lations contain the sharp downward peaks which are characteristic of collapse. Either

more sophisticated algorithms or a smaller time step can resolve this difficulty, adding

to the computation time [67]. Parlitz et al circumvented this problem by integrating a

topologically equivalent system that smoothed out the singularities. Their approach

was used in this research whenever the integration procedure was unable to handle

the singularities arising in the Keller-Miksis-Parlitz model and inevitably “blew up.”

Briefly, the original system was transformed into a new one that allowed for smoother

oscillations but also retained all of its qualitative, topological properties. This is ac-

complished by means of a diffeomorphism. The following definitions are adapted from

Devaney [14]:

Definition 1. Let f : I → R be a function and I ⊆ R. We say f is of class Cr on I

if f (r) exists and is continuous at all x ∈ I, where f (r) is the r-th derivative of f .

Definition 2. Let f : I → J , I, J ⊆ R, be a continuous bijection. The function f is

a homeomorphism if f−1 : J → I is also continuous.

Definition 3. Let f : I → J , I, J ⊆ R. The function f is a Cr-diffeomorphism if f

is a Cr-homeomorphism such that f−1 is also Cr.

Intuitively, a homeomorphism is a function that preserves all topological prop-

erties (that is, any property that can be defined by open sets) and homeomorphic

spaces are thus topologically identical. A diffeomorphism is stronger in that this

property is carried over to differentiability, which is appropriate in the case of our

analysis of a vector field.

Parlitz et al. [67] define the following diffeomorphism from the state space

M = R+ × R× S1 into its topologically equivalent space M ′:

x1 = α exp

(
βR

R0

)
, x2 = γu exp

(
βR

R0

)
, x3 = Θ, (6.2)
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where the parameters α, β, and γ control the smoothness of the oscillations in the

new space. Time is also rescaled:

t′ = f0t,

where f0 = αβ/γR0. The inverse map is, naturally,

R =
R0

β
ln
(x1

α

)
, u =

α

γ

x2

x1

, Θ = x3. (6.3)

The new vector field is found by proper substitution:

x′1 = x2

x′2 = x1(y
2 + [(1− p9y) z + p12]

−1 [(p3 + p4y) y2 + (p5 − p6y) z−3k

− (p7 + p8y) z−1 − (1 + p9y) (p10 + p2 sin (2πx3))− p11 cos (2πx3)])

x′3 = p1,

where, for notational convenience, we have introduced the new variables y =
x2

x1

and z =
1

β
ln

x1

α
and defined p1 =

f

f0

, p2 =
A

δ2βρL

, p3 = − 3

2β
, p4 =

δ

2βc
, p5 =

1

δ2βρL

(
pstat − pV (T∞) +

2S

R0

)
, p6 = (1− 3k) p5p9, p7 =

2S

δ2βρLR0

, p8 =
4µL

δβρLR0

,

p9 =
δ

c
, p10 =

pstat − pV (T∞)

δ2βρL

, p11 =
2πfAR0

δ2βρLc
, p12 =

4µL

ρLcR0

, and δ =
α

γ
. Differ-

entiation is with respect to rescaled time. A new MATLAB program was written

to solve this system whenever the inward oscillations leading to collapse calculated

from Equation 6.1 became so pronounced that the standard solver (ode45) was un-

able to yield reasonable values. The values used for the control parameters in the

transformation were: α = 1, β = 2, and γ = 0.001, as reported by Parlitz et al. [67].

The initial conditions used were R = 10 µm, u = 0 m/s, and Θ = 0. Trajec-

tories were plotted once transients disappeared, which normally occurred after about

250 µs.
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It is important to note that these models are, of course, an overly simplified

reflection of the experimental conditions. First and foremost, the models trace the

behavior of only a single bubble under an external applied pressure, ignoring the

coupling effects found in bubble clusters [1, 50, 65]. We found this acceptable since

we seek only a qualitative sketch of how a bubble behaves at the parameters at

which the experiments were run. Second, the initial bubble size is kept constant

for all frequencies and pressures used in these calculations. Again, the objective

was to find the qualitative differences in bubble behavior between 70 and 500 kHz;

one bubble size was reasonable. In effect, by doing so, we are looking at a slice of

parameter space, a space which is vast and highly complex [67]. Also, even though

PluronicTM was present as a surfactant in the experiments its effect on bubble size

distribution is negligible for purposes of comparison between the two frequencies (its

effect on bubble dynamics is subject for future research). The bubble size used in these

calculations was R0 =10 µm, a standard size used in the literature when the medium

is water at room temperature [46, 67]. Additionally, by considering a single bubble

of a given initial size, it is easier to study an acoustic signal in particular. This helps

to separate behavior directly related to drug release (such as the subharmonic) from

acoustic signals that may not be directly related to it (such as baseline shift). This is

exemplified in Figures 5.5 and 5.8, where only the subharmonic correlates with drug

release and the background noise shift is most likely a result of collapsing bubbles of

a different resonant size. Finally, there are two differences worth mentioning between

the experiments at 70 and 500 kHz. While the signal used to drive the 500 kHz was

a clean sine wave (and hence directly analogous to these numerical calculations), the

signal generated by the 70 kHz bath is actually a 70 kHz wave amplitude modulated

sinusoidally at about 0.12 kHz. This “noisiness” is enhanced by the actual geometry

of the bath itself, thereby helping one of its primary purposes, which is the cleaning

of laboratory equipment. This explains the noisy appearance of the 70 kHz spectra

(Figs. 5.5 and 5.8) compared to the ones generated at 500 kHz (Figs. 5.2 and 5.3).

The clean driving pressure used for calculations at 70 kHz is thus an approximation
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deemed appropriate since we are interested solely in exploring the dynamics arising

out of a frequency difference.

6.2 Bubble Behavior at 500 kHz

The bubble dynamics equations return the radial displacement and the bubble

wall velocity as a function of time; representative time series are shown in Figure 6.1

for a driving pressure of 141.4 kPa, corresponding to a mechanical index (MI) of

0.20. These are equivalent to voltage measurements made by the hydrophone during

experiments and were similarly Fourier transformed to obtain the frequency spectra

of the bubble oscillations.

Figure 6.1: Radius-time and velocity-time curves for MI = 0.20.

The state space given by the equations described in the previous section is

three-dimensional, so trajectories of any given initial conditions should trace a three-

dimensional shape. The definition of the variable Θ leads to a convenient state space:

the product of the conic section traced by the smooth oscillations (R+ × R) and S1

gives a toruslike state space M . Hence, the evolution of the variable Θ reflects the

number of revolutions of a particular trajectory around this state space. One can then

generate a projection of both R and u, eliminating Θ and investigating the resulting
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phase portraits two-dimensionally. The result is a limit cycle (an isolated closed

trajectory) that appears to (incorrectly) cross itself, a consequence of the elimination

of the extra dimension.

We define the Poincaré map as follows (adapted from Strogatz [86]):

Definition 4. Consider an n-dimensional system ẋ = f(x). Let Σ be an n − 1

dimensional surface of section, required to be transverse to the flow. The Poincaré

map P : Σ → Σ is a mapping of Σ to itself, obtained by following trajectories from

one intersection with Σ to the next. Let xk ∈ Σ be the kth intersection, then the

Poincaré map is defined by

xk+1 = P (xk).

The Poincaré map is a powerful tool that allows one to move from the realm of contin-

uous dynamical systems to the more intuitive world of discrete maps. Unfortunately,

it is rarely possible to find an explicit form of the map. Here we rely on the numerical

approximations of the ODE solver. Note that if x∗ is a fixed point (i.e., P (x∗) = x∗),

then a trajectory starting at x∗ returns to x∗ after some time T and is therefore a

closed orbit for the original system ẋ = f(x). Hence, when plotting this map on S,

any attracting limit cycles generated by the bubble equations will result in points on

the plane. If the bubble is oscillating at the driving frequency f , a single point should

appear. If the bubble, however, begins oscillations at twice the period of the applied

pressure (that is to say, at half the frequency, f/2), then two points should appear

on the plane, and so forth. In nonlinear dynamical systems such as the one analyzed

here, it is common to find another type of attractor, called a strange attractor. This

is no longer a point, curve, or surface, but a fractal, and will reveal itself on the

Poincaré cross-section as a type of “smearing” of points with self-similar structure

[46, 67, 86].

Bubble dynamics at 500 kHz follow a well-known dynamic pattern as the

driving pressure increased. For low values of the applied pressure (in the case shown

in Figure 6.2, A = 106.1 kPa, corresponding to a MI of 0.15), the oscillations settle
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onto a stable limit cycle, a periodic orbit with period equal to that of the driving

pressure (Fig. 6.2(a)). Accordingly, we see a single point in the Poincaré cross-section

(Fig. 6.2(b)). This means, as expected, that the acoustic spectrum should have a

single peak at the driving frequency (fundamental) f = 500 kHz (Fig. 6.2(c)).

(a) Orbit, 500 kHz, MI = 0.15 (b) Poincaré, 500 kHz, MI = 0.15

(c) FT, 500 kHz, MI = 0.15

Figure 6.2: For a single 10 µm bubble at 500 kHz applied pressure and at a MI = 0.15:
(a) trajectory in state space projection, (b) Poincaré section plot, and (c) frequency
spectrum.

These oscillations are considered stable since they attract nearby initial con-

ditions and because, as can be seen in Figure 6.2(a), the velocity remains uniform

enough that the orbit traces a simple ellipse (no significant acceleration is seen as the

bubble expands or contracts). The thickness of the cycle is due the superposition of

the curves traced by the orbit as it returns, which curves do not exactly agree due
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to the numerical integration algorithm. Nevertheless, the cycle is stable, and this

dynamic behavior persists until the bubble alters its period of oscillation.

At a pressure of about 195 kPa (MI ≈ 0.275), a second loop forms in the state

space trajectory (Fig. 6.3(a)), as it appears the solution winds around once more

before returning to the same point. This is clearly seen in the Poincaré plot for this

case (Fig. 6.3(b)), where another point is born, signifying the doubling of the period

of oscillation (it takes the solution two driving periods to come back to the same point

in space). One then expects the frequency spectrum to develop a subharmonic peak

(at f/2 = 250 kHz), which is seen in Figure 6.3(c). This is a classic example of a

period-doubling bifurcation of cycles.

(a) Orbit, 500 kHz, MI = 0.275 (b) Poincaré, 500 kHz, MI = 0.275

(c) Spectrum, 500 kHz, MI = 0.275

Figure 6.3: For a single 10 µm bubble at 500 kHz applied pressure and at a MI
= 0.275: (a) trajectory in state space projection, (b) Poincaré section plot, and (c)
frequency spectrum.
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Figure 6.3(a) reveals more than just period doubling. It can be seen that the

radial velocity begins to govern the dynamics of the bubble. While the maximum

radius has only increased by about 25 %, the maximum velocity (which occurs at low

radii) has doubled, hence the slightly lopsided appearance of the cycle. While this

is all, of course, expected, it reveals the nonlinear nature of the oscillations, which

becomes more evident as the accelerations at the moment immediately preceding and

following collapse increase dramatically.

The appearance of the subharmonic peak at this MI value is puzzling as this

was not seen experimentally (see Section 5.1). The biggest difference between the

experiments and this model is, as mentioned above, the fact that only one bubble

is modeled. This could mean that bubble clouds at the parameters above inhibit

double-period oscillations. This remains to be explored. Another possibility is that

the experimental setup was not accurate enough to reach this particular parameter

value. This is unlikely since this double period persists for a range of close to 1 unit

of MI, as explained below. On the other hand, the hydrophone may not have been

able to clearly register the subharmonic signal. The matter is taken up again in the

last section of this chapter.

As stated above, the dynamics remain the same (double-period cycles) until

a pressure of about 233 kPa is reached (MI ≈ 0.33), at which point a new period-

doubling bifurcation of cycles is encountered. The orbit diagram in Figure 6.4(a)

does not explicitly show this new loop since it is so close to the original that it looks

almost superimposed, but the Poincaré section plot (Fig. 6.4(b)) shows the creation

of two more points on the plane. Most tellingly, the frequency spectrum shows peaks

at f/4 = 125 kHz and its multiples (Fig. 6.4(c)).

The funnel-type shape of the limit cycle shown in Figure 6.4(a) contrasts with

the one seen in Figure 6.3(a), which was rounder and smoother. The sharp acceler-

ation at low radii reflects the bubble’s increasingly violent behavior and augurs an

impending collapse. A comparison of the spectrum in Figure 6.4(c) with Figure 6.3(c)

reveals that, despite having undergone another period-doubling bifurcation, the base-

line remains at the same level. This becomes important for subsequent pressure
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(a) Orbit, 500 kHz, MI = 0.33 (b) Poincaré, 500 kHz, MI = 0.33

(c) Spectrum, 500 kHz, MI = 0.33

Figure 6.4: For a single 10 µm bubble at 500 kHz applied pressure and at a MI = 0.33:
(a) trajectory in state space projection, (b) Poincaré section plot, and (c) frequency
spectrum.

values and in the context of the relationship between the subharmonic signal and

non-harmonic background shift.

Having seen two period-doublings, we would like to know if this behavior

continues on indefinitely. This is precisely the case. The orbit shown in Figure 6.5(a)

for an applied pressure of approximately 274 kPa (MI ≈ 0.875) reveals an increasingly

complex trajectory which winds and twists “within” the projected orbit and stays

preferentially at the highest velocities. Little can be gleamed from this orbit about the

periods present at this pressure value but the frequency spectrum (Fig 6.5(c)) shows

the clear emergence of a peak at f/8 = 62.5 kHz (and its multiples as ultraharmonics).

The baseline has changed shape somewhat, becoming noisier and slightly leveling off

the downward slope seen previously. This is most likely due to other frequencies that

may be just outside the numerical accuracy in the spectrum but that start to appear
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as a curve on the Poincaré cross-section (Fig. 6.5(b)), where no clear period 8 point

can be seen.

(a) Orbit, 500 kHz, MI = 0.3875 (b) Poincaré, 500 kHz, MI = 0.3875

(c) Spectrum, 500 kHz, MI = 0.3875

Figure 6.5: For a single 10 µm bubble at 500 kHz applied pressure and at a MI
= 0.3875: (a) trajectory in state space projection, (b) Poincaré section plot, and (c)
frequency spectrum.

It is important to mention at this point that the MI values reported become

more and more approximate as numerical resolution decreases and it becomes increas-

ingly difficult to find bifurcation thresholds. That said, it is indisputable that another

period-doubling bifurcation has occurred around the MI value reported above. This

are the signs of what is known in dynamical systems theory as the period-doubling

route to chaos [14]. We speak now, in particular, of the Poincaré map, which is a

discrete map, since this “route to chaos” is defined for iterative maps of the line.

We define a chaotic map properly in the last section of this chapter, but suffice it
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to say that, roughly, we expect infinitely many periodic points in a chaotic regime

(alternatively, all frequencies in the spectrum). This can only come from a strange

attractor, speaking of continuous differential equations (such as the famous Lorenz

equations). Indeed, a small perturbation in MI at the f/8 threshold shown above

creates a strange attractor.

A small step in applied pressure from 274 (MI = 0.3875) to 274.4 kPa (MI

= 0.388) reveals the strange attractor that provides the infinitely many periodic

points characteristic of a chaotic map. Figure 6.6(a) shows the projection of this

attractor, with its characteristic self-similar (fractal) structure, and is reminiscent

of previous results in the literature that report on the chaotic attractors present in

bubble dynamics [46, 67]. As expected, the Poincaré cross-section (Fig. 6.6(b) appears

as more of a smear of points that retain, however, some sense of structure. Strangely,

contrary to what is expected, the whole fractal image does not seem to be traced out

on the plane; it seems the numerical solution is not seeing some frequencies. More

revealing, then, is the frequency spectrum shown in Figure 6.6(c). The baseline does

not seem altered in any significant way (which is expected from the Poincaré plot

which fails to show all periods) but the appearance of third harmonics (f/3 and its

multiples) stands out.

The peak at f/3 = 166.6 kHz in Figure 6.6(c) means that we have, in the

discrete sense of the Poincaré map, a point of period three. Points of period three are

important oddities in discrete dynamical systems, as expounded in the famous result

of Sarkovskii. Consider the following ordering of N (known as Sarkovskii’s ordering

of the natural numbers):

3 . 5 . 7 . · · · . 2 · 3 . 2 · 5 . · · · . 22 · 3 . 22 · 5 . · · · . 23 · 3 . 23 · 5 . · · · . 23 . 22 . 2 . 1,

where all odd numbers (except 1) are listed first, followed by 2 times the odds, 22

times the odds, and so forth, leaving the powers of 2 for last, followed by 1. The

theorem is:
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(a) Orbit, 500 kHz, MI = 0.388 (b) Poincaré, 500 kHz, MI = 0.388

(c) Spectrum, 500 kHz, MI = 0.388

Figure 6.6: For a single 10 µm bubble at 500 kHz applied pressure and at a MI
= 0.388: (a) trajectory in state space projection, (b) Poincaré section plot, and (c)
frequency spectrum.

Sarkovskii’s Theorem. Let f : R → R be continuous. Suppose f has a periodic

point of prime period k. If k . l in the above ordering, then f also has a periodic

point of period l.

The theorem above is taken from Devaney [14], who also provides a basic proof.

This theorem is remarkable for its simple hypothesis and strong result. The obvious

corollary which concerns us is:

Corollary. Let f : R → R be continuous. Suppose f has a periodic point of period

three. Then f has periodic points of all other periods.

Hence, by the Corollary above, if we restrict our Poincaré map to the real line

(by, for example, collapsing it onto the radius or velocity axis) and it is continuous,

then a periodic point of period three implies the existence of points of all other
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periods. The theorem, however, says nothing about the stability of these points,

and so while they may exist, they may not be stable and therefore invisible to the

computer algorithm, which is most likely the case here. The stability of these points

can be expected to change upon perturbation, however, thereby revealing them in

the solution to the differential equations.

For pressures higher than 274.4 kPa (MI > 0.388) the oscillations become

chaotic and we finally see the periods that were absent in Figure 6.6. The represen-

tative results for A = 495 kPa (MI = 0.70) are shown in Figure 6.7. The beautiful

self-similarity of the orbit is now even more clear (Fig. 6.7(a)), while the Poincaré

cross-section (Fig. 6.7(b)) shows the fractal that we expected all along (notice that it

shows a shape similar to the orbit). The frequency spectrum (Fig. 6.7(c)) now shows

a noisy, raised baseline, a sign of the presence of all frequencies.

(a) Orbit, 500 kHz, MI = 0.70 (b) Poincaré, 500 kHz, MI = 0.70

(c) Spectrum, 500 kHz, MI = 0.70

Figure 6.7: For a single 10 µm bubble at 500 kHz applied pressure and at a MI = 0.70:
(a) trajectory in state space projection, (b) Poincaré section plot, and (c) frequency
spectrum.
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Thus we see that the dynamics of a 10 µm oscillating bubble with a driving

frequency of 500 kHz follows the classic period-doubling route to chaos, starting at

a MI of about 0.275. The oscillations reach chaos around MI = 0.388 and continue

in the chaotic regime until at least a MI = 0.7. There are no stable regimes in this

chaotic interval, except at MI ≈ 0.50 where a period three orbit is clearly seen again,

implying (as previously seen) a brief change in the stability of the infinitely many

periodic points that masks them from the numerical solution.

6.3 Bubble Behavior at 70 kHz

A bubble undergoes the period-doubling route to chaos at 500 kHz; we now

question whether the same route to chaos is observed at 70 kHz (or if any chaos

is reached at all). It turns out that the dynamics differ significantly at the lower

frequency. Having introduced the majority of the qualitative tools previously, we

immediately proceed to examine the dynamic behavior of bubbles at 70 kHz.

A stable limit cycle is created for low pressures just as in the 500 kHz case.

The similarities end there, however, as Figure 6.8 reveals, which is a representative

case with a pressure of 26.5 kPa (MI = 0.10). The orbit shown in Figure 6.8(a) is

curiously different than its 500 kHz analog (Fig. 6.2(a)): it seems to be a mirror

version with a slight pinching near R0. The Poincaré cross-section (Fig. 6.8(b)) and

frequency spectrum (Fig. 6.8(c)) show that the bubble is oscillating at the driving

frequency and hence a single fixed point appears and the fundamental and second

harmonic peaks are visible.

The “pinching” of the orbit reflects velocity variations as the bubble contracts

and expands not seen at 500 kHz. In particular, the bubble achieves its highest

velocities at its maximum radii, the exact opposite of what occurred at 500 kHz. Also,

the bubble tends to momentarily slow down whenever it reaches a radius of about 99 %

of its equilibrium radius R0. Spectrum and Poincaré map-wise, however, the dynamics

deceptively appear to be the same. Resonance may explain this phenomenon. For

an air bubble in water at atmospheric pressure with an equilibrium radius R0, the

resonant frequency is reasonably approximated by [64]
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(a) Orbit, 70 kHz, MI = 0.10 (b) Poincaré, 70 kHz, MI = 0.10

(c) Spectrum, 70 kHz, MI = 0.10

Figure 6.8: For a single 10 µm bubble at 70 kHz applied pressure and at a MI = 0.10:
(a) trajectory in state space projection, (b) Poincaré section plot, and (c) frequency
spectrum.

fres =
3.3 m/s

R0

. (6.4)

Hence, we can say that for a driving frequency of 70 kHz, the resonant bubble

size is about 47 µm, while the resonant size at 500 kHz is 6.6 µm, much closer to the

bubble size being modeled here. Hence, we can say that it is relatively “easier” for

the bubble to oscillate at 500 kHz than at 70 kHz, explaining the bizarre behavior

seen in Figure 6.8(a).

The solutions continue to show this “pinching” as the pressure is increased

and the bubble oscillates at a frequency far removed from its resonance. Eventually,

the acceleration of the bubble wall for low radii takes over and we see an orbit that
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seems slightly more familiar, where the highest velocities are achieved at low radii,

as seen in Figure 6.9(a). The pressure in Figure 6.9 is 84.7 kPa with a MI = 0.32.

The orbit looks like a complicated series of twists and turns, yet the Poincaré cross-

section (Fig. 6.9(b)) reveals a surprising detail: the period has doubled, showing two

clear isolated points. The frequency spectrum (Fig. 6.9(c)) confirms this, showing the

appearance of the subharmonic (f/2 = 35 kHz) signal.

(a) Orbit, 70 kHz, MI = 0.32 (b) Poincaré, 70 kHz, MI = 0.32

(c) Spectrum, 70 kHz, MI = 0.32

Figure 6.9: For a single 10 µm bubble at 70 kHz applied pressure and at a MI = 0.32:
(a) trajectory in state space projection, (b) Poincaré section plot, and (c) frequency
spectrum.

The orbit seen when the 500 kHz system underwent period-doubling (Fig. 6.3(a)

contrasts with the present case. The former shows a clean doubling of the original

cycle while the latter winds around numerous times before finally returning to itself.

The “velocity pinching” mentioned before remains as well. In fact, it seems that, as

57



the pressure increases, the bubble struggles with being out of phase with the incoming

wave more and more, leading to a jagged velocity profile.

The period doubles at MI = 0.32, the theoretical subharmonic threshold. Note

that, from the results found in Chapter 5, the experimental threshold (in MI) was

found to occur between 0.35 and 0.40. Considering the limitations of the model pre-

sented here (see Section 6.1), especially the fact that a single bubble is being studied

and not a more realistic cluster of bubbles, the values show remarkable agreement.

This suggests that, at least as far as subharmonics go, bubble interaction does not

change the dynamics significantly. Or rather, that bubble interaction is not the dom-

inant parameter at these conditions.

This double-period orbit continues for a number of pressures until the trajec-

tories slowly move towards each other before seemingly coalescing into one. At a

pressure of about 90.9 kPa, (MI ≈ 0.3435), we see that the solution trajectory has

settled into a rather less complicated set than before (Fig. 6.10(a)). The Poincaré

map (Fig. 6.10(b)) shows the two points almost superimposed on one another, ef-

fectively becoming a fixed point again. Half-frequency signals are barely visible in

Figure 6.10(c), suggesting that the second period survives but is close to disappearing.

This is a drastic departure from what was seen at 500 kHz. At the higher

frequency, after the first period doubling, the two points on the Poincaré cross-section

slowly moved apart until they bifurcated in a second period-doubling. At 70 kHz, the

second period solution appears to exist only momentarily before collapsing back into

a single fundamental mode. A second period-doubling is absent and instead we find

sudden chaos, as explained in the next paragraph.

Slightly perturbing the driving pressure after the seeming disappearance of the

double-period orbit unexpectedly sends the system into chaos. Figure 6.11 presents

results for a pressure of 92.6 kPa (MI = 0.35) almost immediately proceeding the

stable double-period orbit shown above. The orbit projection (Fig. 6.11(a)) reveals

the strange attractor that is created, which looks similar to the one found at 500

kHz (Fig. 6.7(a)), except for the large accelerations in the latter (which is at a high

MI). Although the Poincaré cross-section (Fig. 6.11(b)) does not yet show a complete
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(a) Orbit, 70 kHz, MI = 0.3435 (b) Poincaré, 70 kHz, MI = 0.3435

(c) Spectrum, 70 kHz, MI = 0.3435

Figure 6.10: For a single 10 µm bubble at 70 kHz applied pressure and at a MI
= 0.3435: (a) trajectory in state space projection, (b) Poincaré section plot, and (c)
frequency spectrum.

fractal shape, the frequency spectrum confirms the chaos created with its noisy, raised

baseline (Fig. 6.11(c)).

The results of figure 6.11 find the bubble eschewing the route to chaos by a

series of infinitely many period doublings seen in the previous section. Instead, the

bubble oscillation develops a double period for a short time before creating all periods

almost instantly. This apparently direct and sudden transition from some type of

stable oscillation into a strange attractor is generally known as the intermittent route

to chaos [69]. It arises out of a kind of bifurcation known as a saddle-node bifurcation

of cycles (or fold), which, roughly, is concerned with the birth and/or destruction of

stable and unstable limit cycles [22, 86]. All it takes to reach chaos is a single saddle-

node bifurcation, although it could be the result of a series of them; the presence of

this type of route to chaos in bubble oscillators has been reported by Lauterborn [46].
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(a) Orbit, 70 kHz, MI = 0.35 (b) Poincaré, 70 kHz, MI = 0.35

(c) Spectrum, 70 kHz, MI = 0.35

Figure 6.11: For a single 10 µm bubble at 70 kHz applied pressure and at a MI = 0.35:
(a) trajectory in state space projection, (b) Poincaré section plot, and (c) frequency
spectrum.

The resulting chaotic oscillations persist before ending as abruptly as they

commenced, unlike the case at 500 kHz where, once chaos is reached, it remains

indefinitely (up to MI = 0.70). At approximately 114 kPa (MI ≈ 0.43), a stable limit

cycle is created out of the strange attractor (Fig. 6.12(a)). The Poincaré cross-section

(Fig. 6.12(b)) accordingly shows a fixed point while the return of the fundamental

peak (and its integer harmonics) is seen in the frequency spectrum (Fig. 6.12(c)).

It is noteworthy not only that the strange attractor disappears and a single-

period stable limit cycle is created but that this new oscillation is not necessarily

a return to the original fundamental oscillation (for MI < 0.32). A comparison of

Figures 6.8(a) and 6.12(a) shows that the new cycle is not only wider but also quite

faster, with dramatic accelerations at low radii. The maximum inward velocity in

Fig. 6.12(a) is revealing in that it has exceeded the speed of sound in air at the
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(a) Orbit, 70 kHz, MI = 0.43 (b) Poincaré, 70 kHz, MI = 0.43

(c) Spectrum, 70 kHz, MI = 0.43

Figure 6.12: For a single 10 µm bubble at 70 kHz applied pressure and at a MI = 0.43:
(a) trajectory in state space projection, (b) Poincaré section plot, and (c) frequency
spectrum.

simulation conditions, which is approximately 350 m/s. This is most likely evidence

of a bubble collapse as the incoming bubble wall is moving faster than the speed of

sound of the vapor, creating a density discontinuity and a shock wave. The model

predicts a symmetric collapse and so mathematically the bubble “bounces back” to

continue oscillating. In reality, the bubble will collapse asymmetrically and fragment

into smaller bubbles. As will be shown shortly, for increasing pressures, the bubble

wall velocity will continue to exhibit this behavior, and we can say that the bubble

is in a collapsing regime. The oscillations, however, do not remain as a stable limit

cycle and so we investigate how the new chaotic regime is achieved.

First, at some point just before A = 132 kPa (MI = 0.50), the system un-

dergoes another period-doubling bifurcation (Fig. 6.13). A close examination of the

resulting limit cycle in Figure 6.13(a) reveals the second loop trailing closely to the
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original cycle, leading to a second point on the Poincaré plot (Fig. 6.13(b)) and the

reemergence of the subharmonic peak in the frequency spectrum (Fig. 6.13(c)).

(a) Orbit, 70 kHz, MI = 0.50 (b) Poincaré, 70 kHz, MI = 0.50

(c) Spectrum, 70 kHz, MI = 0.50

Figure 6.13: For a single 10 µm bubble at 70 kHz applied pressure and at a MI = 0.50:
(a) trajectory in state space projection, (b) Poincaré section plot, and (c) frequency
spectrum.

The bubble’s motions keep increasing in velocity as it collapses, as the pro-

jected orbit shows in Figure 6.13(a). The velocity is close to zero at the equilibrium

radius with most of the acceleration concentrated at very low radii, close to collapse.

Also, the bubble wall achieves its maximum velocity as it contracts close to collapse,

almost twice the velocity attained as it expands.

The bubble’s behavior is starting to look familiar. Instead of creating a single-

period oscillation before launching into chaos however, the two points on the Poincaré

plot keep moving apart from each other. At a pressure of about 140 kPa (MI ≈ 0.53),
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the first indications of chaos begin to appear (Fig. 6.14). The strange attractor is not

clearly visible yet (the cycle seems to be slowly winding into itself, see Figure 6.14(a)),

the system appears to be stuck in the transition between stable double-period oscilla-

tions and chaos, as seen in the frequency spectrum (Fig. 6.14(c)), where the subhar-

monic remains amidst a raised and noisy baseline. This behavior is common in the

intermittent route to chaos, where the system moves between stable oscillations (at

the period immediately preceding chaos) and short bursts of chaotic motion (hence,

“intermittent”). These “laminar phases” eventually disappear into full chaos [46].

Predictably, the Poincaré cross-section (Fig. 6.14(b)) begins to show the stretching

of periodic points as they start to form the fractal indicative of chaos.

(a) Orbit, 70 kHz, MI = 0.53 (b) Poincaré, 70 kHz, MI = 0.53

(c) Spectrum, 70 kHz, MI = 0.53

Figure 6.14: For a single 10 µm bubble at 70 kHz applied pressure and at a MI = 0.53:
(a) trajectory in state space projection, (b) Poincaré section plot, and (c) frequency
spectrum.
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A new strange attractor is formed for values of A > 140 (MI > 0.53) containing

oscillations of all periods. This is verified in a way similar to what was done at

500 kHz. There are several windows within the chaotic regime where oscillations of

period three are present, such as at A = 148 kPa (MI = 0.56) (Fig. 6.15). The orbit

(Fig. 6.15(a)) looks self-similar but without a multitude of winding trajectories within

it resulting from all periods being present (hinting that they may be temporarily

invisible to the computer).

(a) Orbit, 70 kHz, MI = 0.56 (b) Poincaré, 70 kHz, MI = 0.56

(c) Spectrum, 70 kHz, MI = 0.56

Figure 6.15: For a single 10 µm bubble at 70 kHz applied pressure and at a MI = 0.56:
(a) trajectory in state space projection, (b) Poincaré section plot, and (c) frequency
spectrum.

The frequency spectrum (Fig. 6.15(c)) reveals sharp peaks at f/3 = 23.3 and

2f/3 = 46.6 with a small shoulder all that remains of the subharmonic signal. This

suggests the existence of periodic points of period three in discrete space, confirmed
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by the Poincaré cross-section in Figure 6.15(b). As explained in the previous section,

according to Sarkovskii’s ordering, the existence of periodic points of period three

implies the existence of periodic points of all periods, even if a numerical algorithm

remains blind to them.

This chaotic pattern continues up to and past MI = 0.70, with a strange

attractor creating oscillations of all periods along with windows of periodic points of

period three. An example of the chaos encountered at these values is given Figure 6.16,

where A = 153 kPa and MI = 0.58.

(a) Orbit, 70 kHz, MI = 0.58 (b) Poincaré, 70 kHz, MI = 0.58

(c) Spectrum, 70 kHz, MI = 0.58

Figure 6.16: For a single 10 µm bubble at 70 kHz applied pressure and at a MI = 0.58:
(a) trajectory in state space projection, (b) Poincaré section plot, and (c) frequency
spectrum.

As expected, the projected orbit (Fig. 6.16(a)) retains the basic shape seen

before with the addition of self-similar windings and twists within it. The Poincaré
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plot (Fig. 6.16(b)) tells little, perhaps due to the time interval of integration not al-

lowing for a full picture to form. The frequency spectrum confirms the chaotic nature

of the system at this pressure value, Figure 6.16(c) shows an increase in background

noise, indicative of the presence of all frequencies.

The preceding results for a 10 µm bubble driven at 70 kHz stand out for their

difference from those at 500 kHz. The bubble oscillations are not as uniform as those

seen at the higher frequency and follow a sequence of intermittent routes to and back

from chaos as the pressure is changed. At MI ≈ 0.32 the bubble undergoes a period-

doubling bifurcation and then at about MI = 0.35 either a single or a number of saddle-

node bifurcations push the system from stable to chaotic oscillations. Immediately

prior to this bifurcation, however, the double-perid seems to disappear as the two

periodic points slowly coalesce, though this may be a signature of the intermittent

nature of the route to chaos. The strange attractor disappears at about MI = 0.43,

where a stable limit cycle is created only to period-double again at about MI = 0.50

and eventually enter a new chaotic regime intermittently. This chaotic regime then

persists up to at least MI = 0.70.

6.4 Discussion

The dynamics of an oscillating bubble under the action of ultrasound are

markedly different between 70 and 500 kHz. This was expected since the system of

equations of motion of bubble dynamics is a well known chaotic dynamical system.

But just how different and how does this relate to drug release from micelles? We

summarize the findings of this chapter for each frequency in what is called a bifurcation

diagram.

In the realm of discrete dynamical systems, a bifurcation diagram simply plots

the periodic points (including fixed points, of course) of a map against a control

parameter. Thus, they contain the entire dynamic history of the system for the

parameter of interest. For the system of differential equations studied in this research,

the link between the continuous and discrete is the Poincaré plot, explained in detail

previously. Even if we cannot find its explicit analytic form, the qualitative results
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presented above allow us to create a rough sketch of the bifurcation diagrams. We

choose the bubble radius given by the Poncaré map (after Parlitz et al. [67]) as the

state variable for the bifurcation diagrams.

Figure 6.17 presents the bifurcation diagrams as a function of the mechanical

index (MI) for 500 (Fig. 6.17(a)) and 70 kHz (Fig. 6.17(b)). These plots effectively

summarize the results of the previous two sections.

Figure 6.17(a) shows the well-known pattern of the period-doubling route to

chaos, especially due to its windows of stable period-three orbits (at about 0.50 and

0.68 in MI) and its covering of a large interval of R/R0 values in the chaotic regime.

This contrasts with Figure 6.17(b)’s intermittent route to, back from, then back to

chaos. Not only does period-doubling never happen past points of period two, but the

chaotic regime intervals are much narrower (and seem to follow an increasing R/R0

pattern) than those found at 500 kHz.

The seemingly discontinuous jumps in R/R0 as the MI increases are unex-

pected. This happens at precisely the second period-doubling (MI ≈ 0.33) for 500

kHz and at the start and end of the first chaotic regime (MI ≈ 0.35 and 0.43) for

70 kHz. There are two possible explanations for this phenomenon. Either it is a

result of the dynamic structure of the oscillator or it is a numerical artifact arising

from the integration algorithm used by MATLAB. If the latter is true, the qualitative

differences in bubble behavior may still yield valid arguments for comparison between

frequencies.

If the discontinuities are a characteristic of the system structure, they may arise

out of saddle-node bifurcations. As explained before, saddle-node bifurcations govern

the creation and destruction of limit cycles (through stability of orbits). Discontinuous

jumps in bifurcation diagrams are precisely the destruction of a stable limit cycle and

the creation of a new stable one (in this case, one that crosses the surface of section S

at a larger radius). Lauterborn explains this type of bifurcation to some length [46]

and presents bifurcation diagrams with similar (seemingly) discontinuous behavior

for the bubble oscillator itself [46, 67], using the driving frequency as the control

parameter rather than the pressure amplitude as in this work. We established that
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(a) BIfurcation Diagram for insonation f = 500 kHz

(b) BIfurcation Diagram for insonation at f = 70 kHz

Figure 6.17: Bifurcation diagrams as a function of applied pressure for a 10 µm
bubble at: (a) f = 500 kHz and (b) f = 70 kHz.

the route to chaos at 70 kHz is intermittent in the previous section, which route

proceeds through a single or a series of saddle-node bifurcations. It is therefore

reasonable to consider that such a bifurcation created the discontinuities at 70 kHz.

The mystery is why a saddle-node bifurcation would occur in the middle of a

period-doubling route to chaos (at 500 kHz). To confirm that this is a true saddle
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node bifurcation, the hyperbolicity of the system of differential equations must be

studied in detail in the neighborhood of the bifurcation using the analytical tools of

chaos dynamics. In the present study we are not concerned with the details of this

phenomenon, but solely with gaining a rough idea of the qualitative behavior of the

bubble and it is thus not necessary to delve any deeper into this. This is nevertheless

a future area of research to explore.

The bifurcation diagrams in Figure 6.17 elegantly illustrate the chaotic nature

of the bubble oscillator, in particular, the chaotic map that is created when one moves

to discrete space via the Poincaré plot. In order to interpret this further, we provide

a basic definition of a chaotic map (from Devaney [14]).

Definition 5. Let V be a set. Then f : V → V is said to be chaotic on V if

1. f has sensitive dependence on initial conditions

2. f is topologically transitive

3. periodic points are dense in V

Briefly, the first condition is present if for any x ∈ V , there exist points arbitrarily

close to x which eventually separate from x by at least some δ > 0 under iteration

of f . The second condition means that a particular map has points which eventually

move under iteration from one arbitrarily small neighborhood to any other. Finally,

the third condition states that for any x ∈ V , any neighborhood of x contains at least

one periodic point.

It can be shown that if V ∈ R, then the second condition implies the rest. In

any topological space, the second and third condition imply the first. No rigorous

attempt to prove that the Poincaré map of the bubble oscillator is chaotic will be

attempted here (especially since we do not know what it is analytically) but the last

two conditions are easy to see from the preceding results. Topological transitivity

can be seen by the “smearing” of points in the Poincaré cross-section as points are

taken, under iteration, from one neighborhood to another. We have already shown

that the system exhibits periodic points of all periods (necessarily an infinite number
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of points and periods) and the bifurcation diagrams show that any interval in the

strange attractor regime will contain periodic points. The discrete Poincaré map is

therefore chaotic.

Given that all periods (i.e., frequencies) are present at the onset of chaos, we

can then directly relate the onset of chaos (the appearance of a strange attractor) to

the shift in baseline seen in the experiments, which means that background noise does

not necessarily imply a collapse event. The literature lacks a well-defined criterion to

identify a collapse event out of the equations of bubble dynamics. The approaches

differ by author and include defining the moment of collapse as the point at which the

bubble contents reach a temperature of 5000 K [3] and when radial oscillations show

“sharp peaks” in the direction of small values of the radius [67]. Using the criterion

of bubble wall velocity exceeding the speed of sound in air (explained in the previous

section) to identify collapse is sufficient for our qualitative purposes and reveals that

the bubble starts collapsing at around a mechanical index of 0.40 for 70 kHz but

does not occur until about 0.70 for 500 kHz. In any case, we can see that collapse

is approached by the increasingly violent behavior of the bubble (particularly in its

inward movement) as the applied pressure increases, similar to its approach to chaos.

Having thus established the connection between the information presented

by the bifurcation diagrams and the physical phenomena they represent, we can

succinctly state the fundamental difference between bubble oscillations at 70 and 500

kHz: the bubble follows different routes to chaos, leading to contrasting behavior at

collapse. Interpreting the meaning of this statement proves rather difficult, however,

but raises a number of interesting questions. The first, of course, is: what do we

mean physically when we speak of a route (or path) to chaos?

The period-doubling route to chaos contrasts with the intermittent one in that

it appears to be more gradual and deliberate than the intermittent movement between

stable oscillations and sudden and erratic chaos. A difference reported by Lauterborn

[46] is the existence of hysteresis under the intermittent route to chaos (a testable

phenomenon for future research). Additionally, the oscillations themselves appear to

be quite different (see the orbit diagrams in the previous two sections), with oscilla-
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tions at 70 kHz more uneven and unstable than at 500 kHz (a possible consequence of

resonance, as argued earlier). It is possible that the forces that alter the structure of

a micelle are produced only under the type of “quasi-stable” subharmonic oscillations

seen at 70 kHz and that the transient and gradual period-doublings at 500 kHz are

insufficient for this effect. A future experiment to test this would be to measure the

forces, temperatures, and pressures generated locally under both types of routes to

chaos and compare them.

It was hypothesized earlier that bubble resonance played the defining role

in the drastically different type of oscillations leading to chaos that were seen at

the two frequencies. This provides future avenues of research rich in possibilities.

Looking at the diagrams in Figure 6.17 one must remember that they are but slices

(i.e., projections) of a highly complex multi-dimensional space. If we let the axis

perpendicular to the plane shown represent the equilibrium bubble size R0 and move

along it, the resulting surface will reveal the effect of resonance the we have discussed.

For example, the small period-doubling window in Figure 6.17(b) (0.32 ≤ MI < 0.35)

could very likely change in radius as R0 changes and affect the resulting route to

chaos. Comparison of these predictions with experiments in which the bubble sizes

present are carefully controlled would be the next natural step.

These routes to chaos must also be shown to occur experimentally. Period-

doubling was not seen in the experiments conducted at 500 kHz, although the series

of period-doublings could have been so fast as to avoid detection by the experimental

system. Parlitz [66] recently presented a method to locate period-doubling and saddle-

node bifurcations in experimental systems. Using these tools the presence of both

routes to chaos could be confirmed for the experimental system directly. Conversely,

an analytical approach to the problem will yield the conditions necessary to create

the single (or series of) saddle-node bifurcation needed at 500 kHz for an intermittent

route to chaos like the one witnessed at 70 kHz. In this case the tools of bifurcation

theory (in particular, catastrophe theory) could be used to figure out under which

parameter values a fold in the geometry of parameter space could be reproduced at
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500 kHz. Recorded drug release under such conditions would finally confirm that,

indeed, the route to chaos followed by the bubbles is directly responsible for release.

Ultimately, drug release correlated with the subharmonic signal and not bub-

ble collapse itself. This is why it is pertinent to focus on the long-term dynamic

differences between frequencies and not exclusively on the moment of collapse. It is

the subharmonic that still holds the answer. That the subharmonic signal should be

intermittent at 70 kHz seems to be confirmed by the three outliers seen in Figure 5.6

and explained earlier. It is possible that the experimental setup used for 70 kHz

(a water bath) created (through hysteresis and/or a distribution of bubble sizes) a

wider window of intermittent subharmonic/chaotic oscillations than the bifurcation

diagram predicts and that these “quasi-stable” oscillations died off eventually [46],

characterized by the leveling off in percent drug release seen in Figure 5.4.

FInally, all of these findings challenge the validity of the original questions

asked in Chapter 1. Can we still say (with apologies to Gertrude Stein) that a collapse

is a collapse is a collapse? Or, more to the point, that a subharmonic is a subharmonic

is a subharmonic? This research has shown two seemingly baffling conclusions: (1)

drug release correlates with the subharmonic signal at 70 kHz but not at 500 kHz

(where it is not even experimentally detectable though theoretically predictable) and

(2) bubble collapse is not sufficient for drug release at either frequency. Such apparent

paradoxes only serve to add to the confusion already present in the long-ongoing

stable vs. collapse cavitation debate. Actually, however, what these findings reveal

is that we have been asking the wrong questions all along. The chaotic nature of

bubble dynamics shows that our physical interpretation of bubble oscillations cannot

possibly remain within the oversimplified rubric of “stable” or “collapse.” Indeed, our

definition and categorization of cavitation must be updated to include cases analogous

to all the dynamic states present in this complex dynamical system, including, but

not limited to, the two distinct routes to chaos here discussed. The definition of

mechanical index may have to be reevaluated similarly as well. Admittedly, in order

to fully define all types of cavitation, parameter space must be explored fully (a

herculean task, to say the least). In the present case, it can at least be said that drug
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release requires and correlates with a type of “intermittent subharmonic” but not

with the “cascade subharmonic” associated with the period-doubling route to chaos.
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Chapter 7

Conclusions and Recommendations

7.1 Conclusions

Sequestration of harmful chemotherapeutic agents and their subsequent con-

trolled release at the tumor site promises to be a more humane alternative to the

present practice in cancer treatment. The use of PluronicTM and PluronicTM-derived

cross-linked micelles as drug carriers together with low-frequency ultrasound appli-

cation as a release trigger has been previously shown to achieve this end both in

vitro and in vivo. The question remained as to the viability of the system at higher

frequencies, its potential to be focused and to operate at conditions closer to those

in wide use in the world of ultrasound diagnostics. Additionally, the possible use of

novel stabilized polymeric micelles as carriers also needed to be addressed. In essence,

the question reduced itself to the role of the phenomenon known as cavitation in drug

release.

The foregoing results and accompanying analysis demonstrate that ultrasound-

induced drug release from polymeric micelles at 70 kHz is, in general, independent

of drug carrier (stabilized or not) and temperature, which solely affect the absolute

amount of drug released but not the mechanism itself. The existence of a drug re-

lease threshold (between 0.35 and 0.40 in mechanical index) suggested that cavitation

(generally defined) was responsible for drug release. Acoustic spectra confirmed this

suspicion as subharmonic intensity correlates faithfully with drug release, the signal

appearing at the same time as the onset of release. Bubble collapse occurred before

drug release was detected, implying that the subharmonic oscillations involved in

drug release are independent of the violent collapse associated with acoustic signa-

tures such as the increase in background noise. In the same vein, no drug release (or
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subharmonic signal) was detected at 500 kHz despite evidence of bubble collapse in

the form radical generation and baseline shift in the acoustic spectrum.

A mathematical model investigation into the differences between bubble be-

havior at 70 and 500 kHz revealed that the dynamics of bubble oscillations are fun-

damentally different. For a single 10 µm bubble, oscillations under 70 kHz were more

irregular and unstable than those at 500 kHz, most likely due to the bubble’s reso-

nance frequency (330 kHz) being closer to the higher than the lower frequency. This

difference was ultimately reflected in the choice of routes to chaos by the bubble. It

was found that at 70 kHz the bubble follows an intermittent route to chaos (with

a subharmonic signal appearing at about 0.32 in mechanical index) while, at 500

kHz, the bubble followed the more well-known period-doubling route to chaos (the

subharmonic appearing around 0.275 in mechanical index).

Given that (1) bubble activity is directly correlated with drug release at 70

kHz, (2) there is no change in fluorescence suggesting no drug release at 500 kHz,

and (3) bubble activity is dynamically different between the two frequencies, it was

concluded that “intermittent subharmonic” oscillations at 70 kHz were responsible

for change in fluorescence, and possibly drug release (as opposed to the “cascade

subharmonic” oscillations seen at 500 kHz). Hence, if drug release is to be achieved

at higher frequencies, the parameters must be such that this type of intermittent

cavitation will be produced.

The contributions to the body of research in this subject that were presented

in this thesis are as follows:

1. Establishing that ultrasonic drug release from PluronicTM micelles as indicated

by a decrease in Dox fluorescence is not possible at 500 kHz under the system

parameters as presently constituted.

2. Confirmation that bubble dynamic activity (cavitation) is, at the very least, a

major factor in drug release at 70 kHz.
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3. Exploration of the effect of carrier stabilization and temperature in drug release:

both influence amount of drug released yet the mechanism apparently remains

the same.

4. Finding that drug release at 70 kHz correlates with the subharmonic signal of

the acoustic spectrum.

5. Establishing the main dynamic difference in bubble oscillations between 70 and

500 kHz: an intermittent and a period-doubling route to chaos, respectively.

7.2 Recommendations and Future Work

This research does not say that ultrasonic drug release from micelles is not

possible at high frequencies. It merely showed that under the experimental conditions

used, no change in Dox fluorescence is detected at 500 kHz. Mathematical modeling

revealed key aspects of the dynamic behavior of bubbles at 70 kHz (where release is

seen) that are deemed necessary for release at other (including higher) frequencies.

The main recommendation is to conduct experiments at 500 kHz (and possibly higher

frequencies) under conditions that reproduce the intermittent cavitation seen at 70

kHz. A controlled distribution of bubble size is critical for these experiments. Such

experiments will confirm that it is this type of cavitation and not a simple collapse

that is responsible for drug release and provide the conditions to extend this treatment

into eventual clinical trials.

A refinement of the laser detection system is suggested in order to make sure

that the fluorescence changes measured actually correspond to drug release and not

to some artifact created by clouds of bubbles created and induced into motion by

the applied ultrasound. An assay-type experimental setup where a molecule that

preferentially binds to Dox is included in the present system would achieve this end.

Also, experiments should be conducted at 70 kHz where the driving pressure signal

is modified as well as the geometry of the container is altered in order to “clean up”

the signal presently used (by eliminating standing waves, for example) and thereby

conduct experiments closer to the conditions modeled.
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Investigation and confirmation of the suggested different types of cavitation is

an important future work related to this research. First, a stronger characterization

of the cavitation phenomena described in this study is needed, including mechanical

and thermodynamic (by measuring the forces, temperatures, pressures, etc. created

during the routes to chaos investigated). Second, these routes to chaos must be

identified experimentally in order to confirm their existence in the system studied.

Third, a more expansive and exhaustive mathematical analysis of the bubble oscillator

system must be carried out in order to characterize its dynamic behavior over the

entire parameter space. Finally, these results must be synthesized in order to create

a more accurate and descriptive definition and characterization of cavitation activity.
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Appendix A

500 kHz Transducer Calibration

The voltage at the spot of highest intensity in the acoustic chamber ((x, y, z) =

(0.3, 0.3, 0.3) in. on the calipers) was measured using the hydrophone while the voltage

supplied to the transducer was varied using a signal generator. Figure A.1 shows that

the relationship is linear.

Figure A.1: VRMS from hydrophone vs. VPP from signal generator.
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A least-squares fit (R2 = 0.9974) of the data above gave the relationship

between the voltage supplied through the signal generator (V in
PP ) and the voltage

read by the hydrophone at the hotspot (V hyd
RMS) as:

V hyd
RMS = 10.368 V in

PP + 0.0292 V. (A.1)
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Appendix B

MATLAB Code

B.1 Keller-Miksis Equation

This function contains the bubble dynamics equations of the Keller-Miksis-

Parlitz model for 500 kHz. It can easily be adapted to 70 kHz as well as into any

other bubble model by simply changing the appropriate terms in the line starting

with vdot(1).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %

% k e l l e r l a u t 5 0 0 k .m Mario Diaz %

% −Function f i l e con ta in ing bubb l e dynamics %

% equa t i ons f o r Ke l l e r−Lauterborn model %

% −Use wi th bubb l e500 .m to s o l v e %

% −Takes i n i t i a l c ond i t i on s as arguments %

% −Al l SI un i t s %

% %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function vdot=k e l l e r l a u t 5 0 0 k ( t , v )

%−−−−−−−−−−−−−−−%

% Constants %

%−−−−−−−−−−−−−−−%

R0 = 10e−6; %Equi l i b r ium rad ius
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f = 500000; %Frequency

A = xedni ( f , 0 . 71 )∗10ˆ3 ;%Pressure ampl i tude f o r g i ven MI

S = . 0 7 3 ; %Surface t ens ion

muL = 0 . 0 0 1 ; %Dynamic v i s c o s i t y

rhoL = 998 ; %Densi ty

vL = 1.0 e−6; %Kinematic v i s c o s i t y

c = 1500 ; %Speed o f sound in water

pv t i n f = 2 .34 e3 ; %Vapor pres sure

p in f 0 = 1.01325 e5 ; %S t a t i c pre s sure

k = 1 . 4 ; %Heat capac i t y r a t i o

%−−−−−−−−−−−−−−−−%

% Eq . System %

%−−−−−−−−−−−−−−−−%

%d [ u r t h e t a ]

vdot (1 ) = ( (−0.5∗(v (1))ˆ2)∗(3−( v (1)/ c ) ) . . .

+ (1+(1−3∗k )∗ ( v (1)/ c ) ) ∗ ( ( ( p inf0−pv t i n f )/ rhoL ) . . .

+(2∗S/( rhoL∗R0) ) ) ∗ (R0/v (2 ) ) ˆ (3∗ k ) . . .

− (2∗S/( rhoL∗v ( 2 ) ) ) − (4∗vL∗v (1)/ v ( 2 ) ) − . . .

(1+(v (1)/ c ) ) ∗ ( ( p inf0−pv t i n f+A∗ sin (2∗pi∗mod(v ( 3 ) , 1 ) ) ) / rhoL ) . . .

− v (2)∗ cos (2∗pi∗mod(v ( 3 ) , 1 ) )∗ ( 2∗ pi∗ f ∗A/( rhoL∗c ) ) ) . . .

∗((1−(v (1)/ c ) )∗ v (2) + 4∗vL/c )ˆ(−1);

vdot (2 ) = v ( 1 ) ;

vdot (3 ) = f ;

vdot = vdot . ’ ; %Make in to column vec to r
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B.2 Solution of Bubble Dynamics Equations

This m-file solves the equations above and plots the diagrams seen in Chapter 6

for 500 kHz. It can be changed to solve for 70 kHz. Any bubble model can be used

by using the appropriate function title in the ode45 call.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %

% bubb le500 .m Mario Diaz %

% −So l v e s bubb l e dynamics equa t i ons %

% −Generates phase diagrams , FT spectrum %

% and Poincare p l o t s %

% %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%−−−−−−−−−−−−%

% Timespan %

%−−−−−−−−−−−−%

t0 = 0 ;

t f = 0 . 0004 ; %end time ( in seconds )

%crea t e two new time ve c t o r s :

%f i x e d time s t ep ( f o r FT)

tspan = t0 : 0 . 0 0 00002 : t f ;

%step same as app l i e d per iod ( f o r Poincare )

tspanp = t0 : ( 1/500000 ) : 200∗ ( 1/500000 ) ;

%−−−−−−−−−−−−−−−−−−−−%

% I n i t i a l Condi t ions %

%−−−−−−−−−−−−−−−−−−−−%

%[ u R the t a ]
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X0 = [0 10e−6 0 ] ;

%equ i l i b r i um rad ius f o r norma l i za t ion

R0 = 10e−6;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

% Solve equa t i ons f o r each time vec t o r %

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

%data f o r FT

[ t ,X] = ode45 (’keller_laut_500k’ , tspan ,X0 ) ;

%data f o r phase diagrams

[ tg ,Xg ] = ode45 (’keller_laut_500k’ , [ t0 t f ] , X0 ) ;

%data f o r Poincare p l o t

[ tp ,Xp ] = ode45 (’keller_laut_500k’ , tspanp , X0 ) ;

%Create v e c t o r s f o r each s o l u t i o n :

r = X( : , 2 ) ;

rnorm = r/R0 ; %normal ize

rdot = X( : , 1 ) ;

theta = mod(Xg ( : , 3 ) , 1 ) ;

rg = Xg ( : , 2 ) ;

rnormg = rg /R0 ; %normal ize

rdotg = Xg ( : , 1 ) ;

rp = Xp( : , 2 ) ;

rnormp = rp/R0 ; %normal ize

rdotp = Xp( : , 1 ) ;

%Convert to micrometers and microseconds

84



rmicrons = r ∗1000000;

tmsecs = t ∗1000000;

rmicronsg = rg ∗1000000;

tmsecsg = tg ∗1000000;

rmicronsp = rp ∗1000000;

tmsecsp = tp ∗1000000;

%−−−−−−−−−−−−−−−−−−−−−%

% Fourier Transform %

%−−−−−−−−−−−−−−−−−−−−−%

Y = f f t (X( : , 2 ) , 4 0 9 6 ) ;

Pyy = Y.∗ conj (Y) / 4086 ;

smplrate = 1 / 0 .0000002 ;

f = smplrate ∗ ( 0 : 2048 )/4096 ;

%y−ax i s l im i t s f o r b e t t e r p l o t t i n g :

l im i t = Pyy (410 )∗6 ; %normal p l o t

l im i t l o g = Pyy (410)∗100 ; %log p l o t

freqkHz = f /1000; %conver t to kHz

%−−−−−−−−−−−−−−−−−−−−%

% Generate P lo t s %

%−−−−−−−−−−−−−−−−−−−−%

%ge t pre s sure ( kPa) f o r g i ven mechanical index (MI)

k i l oP r e s s = xedni (500000 , 0 . 7 1 ) ;

%conver t pre s sure in t o a s t r i n g

p r e s s s t r i n g = [ ’P = ’ , num2str( k i l oPr e s s , 4 ) , ’ kPa’ ] ;
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%Fi r s t f i g u r e p l o t s rad ius and v e l o c i t y vs . time

f igure (1 )

subplot (211)

plot ( tmsecsg , rnormg )

% ax i s ( [250 300 0.5 1 . 5 ] ) %ad ju s t axes as needed

xlabel (’Time (\mus)’ )

ylabel (’Bubble Radius (R/R_0)’ )

t i t l e ( [ ’R_0 = 10 \mum, f = 500 kHz, ’ , p r e s s s t r i n g ] ) ;

subplot (212)

plot ( tmsecsg , rdotg )

% ax i s ( [250 300 −10 10 ] ) %ad ju s t axes as needed

xlabel (’Time (\mus)’ )

ylabel (’Bubble Radial Velocity (m/s)’ )

%Plot phase diagram pro j e c t i on onto radius−v e l o c i t y p lane

f igure (2 )

plot ( rnormg , rdotg ) ;

xlabel (’Bubble Radius (R/R_0)’ )

ylabel (’Bubble Radial Velocity (m/s)’ )

t i t l e ( [ ’R_0 = 10 \mum, f = 500 kHz, ’ , p r e s s s t r i n g ] ) ;

%Plot complete s o l u t i o n in Eucl idean space ( not on torus )

f igure (3 )

plot3 ( rdotg , rnormg , theta ) ;

t i t l e ( [ ’R_0 = 10 \mum, f = 500 kHz, ’ , p r e s s s t r i n g ] ) ;

%Plot Fourier Transform as g iven

f igure (4 )

plot ( freqkHz , Pyy ( 1 : 2 0 4 9 ) ) ;
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axis ( [ 0 1100 0 l im i t ] )

xlabel (’Frequency (kHz)’ )

ylabel (’Intensity’ )

t i t l e ( [ ’R_0 = 10 \mum, f = 500 kHz, ’ , p r e s s s t r i n g ] ) ;

%Plot Fourier Transform on l o g p l o t

f igure (5 )

semilogy ( freqkHz , Pyy ( 1 : 2 0 4 9 ) ) ;

axis ( [ 0 1100 0 l im i t l o g ] )

xlabel (’Frequency (kHz)’ )

ylabel (’Intensity’ )

t i t l e ( [ ’R_0 = 10 \mum, f = 500 kHz, ’ , p r e s s s t r i n g ] ) ;

%Plot Poincare cross−s e c t i on

f igure (6 )

plot ( rnormp , rdotp , ’.’ ) ;

axis ( [ 0 3 . 5 −400 300 ] )

xlabel (’Bubble Radius (R/R_0)’ )

ylabel (’Bubble Radial Velocity (m/s)’ )

t i t l e ( [ ’R_0 = 10 \mum, f = 500 kHz, ’ , p r e s s s t r i n g ] ) ;
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B.3 Mechanical Index

Simple function that quickly returns an applied pressure from a mechanical

index (MI) at any frequency.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %

% xedni .m Mario Diaz %

% −Gives pre s sure ( in kPa) %

% fo r g iven MI %

% %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function k i l oP r e s s = xedni ( f r eq , MI)

%conver t to MHz:

freqMega = f r e q / 10ˆ6 ;

%de f i n i t i o n o f MI:

PressMega = MI ∗ sqrt ( freqMega ) ;

%conver t to Pa :

Press = PressMega ∗ 10ˆ6 ;

%conver t to kPa :

k i l oP r e s s = Press / 10ˆ3 ;
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