
Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2008-07-28

The Development of a Computational Model of
Thrombosis in Hemodialysis Catheters
Daniel J. Lattin
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Chemical Engineering Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Lattin, Daniel J., "The Development of a Computational Model of Thrombosis in Hemodialysis Catheters" (2008). All Theses and
Dissertations. 1524.
https://scholarsarchive.byu.edu/etd/1524

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F1524&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F1524&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F1524&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F1524&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F1524&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/240?utm_source=scholarsarchive.byu.edu%2Fetd%2F1524&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/1524?utm_source=scholarsarchive.byu.edu%2Fetd%2F1524&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

THE DEVELOPMENT OF A COMPUTATIONAL MODEL OF

THROMBOSIS IN HEMODIALYSIS CATHETERS

by

Daniel J. Lattin

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Chemical Engineering

Brigham Young University

December 2008

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Daniel J. Lattin

This dissertation has been read by each member of the following graduate committee and

by a majority vote has been found satisfactory.

_____________________________ ____________________________________

Date Kenneth A. Solen, Chair

_____________________________ ____________________________________

Date Thomas A. Knotts

_____________________________ ____________________________________

Date Sivaprasad Sukavaneshvar

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate‘s graduate committee, I have read the dissertation of Daniel J.

Lattin is in its final form and have found that (1) its format, citations, and bibliographical

style are consistent and acceptable and fulfill university requirements; (2) its illustrative

materials including figures, tables, and charts are in place; and (3) the final manuscript is

satisfactory to the graduate committee and is ready for submission to the university

library.

_____________________________ ____________________________________

Date Kenneth A. Solen

Chair, Graduate Committee

Accepted for the Department

 Larry L. Baxter

 Graduate Coordinator

Accepted for the College

 Alan R. Parkinson

Dean, Ira A. Fulton College of Engineering

and Technology

ABSTRACT

THE DEVELOPMENT OF A COMPUTATIONAL MODEL OF

THROMBOSIS IN HEMODIALYSIS CATHETERS

Daniel J. Lattin

Department of Chemical Engineering

Master of Science

Thromboembolism (TE) significantly limits the usefulness and safety of blood-

contacting devices such as hemodialysis catheters. Computer simulation of TE can

provide understanding of the process and can facilitate the design of more effective

devices. Previous work conducted at BYU successfully modeled TE in a simple, two-

dimensional flow cell design by adding quantitative TE code to a commercial

computational fluid dynamics (CFD) package, Fluent. This two-dimensional model

predicted thrombus initiation and growth and adjusted flow to accommodate thrombus

geometries, but was limited by computational power and unsophisticated meshing

techniques. To build upon this work, and take advantage of BYU‘s new supercomputing

system and improvements in automatic meshing software, development of a three-

dimensional computational model of thrombosis in three hemodialysis catheters designs

was undertaken.

Development of the computer model was beset with challenges associated with

limitations in both software and hardware, but those challenges were ultimately overcome

as both software and hardware evolved. Eventually, the previous C-based Fluent model

was ported to the Fortran-based STAR-CD model successfully. A computer geometry of

a blood flow cell matching the geometry used with the previous two-dimensional model

was created, and results for that geometry using the new computer compared favorably

with the results from the previous model. Catheter geometries were created using

computer-aided design (CAD) software and were meshed using auto-meshing software.

CFD analysis identified potentially-troublesome flow regimes in the catheter designs that

coincided with thrombotic regimes observed in preliminary experiments using those same

catheter designs. The TE model is now ready for application to the catheter geometries

and for rigorous testing (e.g., grid-independence, in-depth comparison with quantitative

experiments, etc.).

xi

TABLE OF CONTENTS

List of Figures .. xiii

List of Tables .. xv

Chapter 1 - Introduction .. 1

Chapter 2 - Background .. 5

2.1 - Blood-Material Interactions .. 5

2.2 - Computational Modeling .. 6

2.3 - Previous CFD Models .. 9

Chapter 3 - Objectives .. 11

Chapter 4 - Creating The Mesh ... 13

4.1 - Designing the Geometry ... 13

4.2 - Mesh Generation .. 14

Chapter 5 - Porting the Model into STAR-CD ... 17

5.1 - Defining Basic Model Properties ... 17

5.2 - Creating User Subroutines .. 18

5.2.1 - Surface Reactions .. 18

5.2.2 - Source Terms ... 20

5.2.3 - Shear Activation of Platelets ... 21

5.2.4 - Shear-Dependence of Diffusivity .. 22

5.2.5 - Viscosity of a Thrombus .. 23

5.3 - Comparison with Goodman‘s Results .. 23

Chapter 6 - Overcoming Challenges of Pushing the Software Limits 27

6.1 - User-Defined Variables .. 27

6.2 - STAR-CD Internal Variables ... 28

6.3 - Upgrading Versions of STAR-CD ... 29

6.4 - Summary of Software Challenges and Solutions ... 29

Chapter 7 - Determining Feasibility of Three-Dimensional Computations 31

7.1 - Generating Computational Meshes .. 32

7.2 - Defining Problem Parameters and Calculating a Solution 33

7.3 - Feasibility with Current Hardware Limitations .. 35

Chapter 8 - Performing a Preliminary Comparison .. 37

xii

8.1 - CFD-Only Results .. 37

8.2 - Preliminary Experimental Results .. 39

8.2.1 - Blood Collection and Experimental Apparatus ... 40

8.2.2 - Comparison of Catheter Designs ... 41

8.2.3 - Time Course of Thrombus Development .. 44

8.2.4 - Conclusions from Preliminary Comparison .. 46

Chapter 9 - Conclusions and Recommendations .. 47

9.1 - Conclusions .. 47

9.2 - Recommendations .. 48

References ... 51

Appendix A: Paul Goodman‘s Code Overview .. 53

Appendix B: Automeshing in pro-STAR 4.06 ... 55

Appendix C: Setting up a pro-STAR 4.06 model ... 59

Appendix D: Running a Batch Solution in STAR-CD ... 65

Appendix E: Post-processing in pro-STAR 4.06 .. 67

Appendix F: User subroutines in pro-STAR 4.06 .. 69

xiii

LIST OF FIGURES

Figure 2.1. Process of thrombosis and embolization. .. 5

Figure 4.1. Insertion region for the Mahurkar catheter design. 13

Figure 4.2. Insertion region for Decathlon (split lumen) catheter design. 14

Figure 4.3. Insertion region for Ash (side hole) catheter design. 14

Figure 5.1. Thrombus growth on leading edge of contraction. .. 25

Figure 5.2. Thrombus growth on trailing edge of contraction. .. 25

Figure 8.1. Flow pattern for proximal and distal inlet ports of Ash catheter. 38

Figure 8.2. Flow pattern for inlet region of Decathlon catheter. 39

Figure 8.3. Flow pattern for inlet region of Mahurkar catheter. 39

Figure 8.4. Schematic of experimental setup for preliminary testing. 41

Figure 8.5. Preliminary experimental results before bisection. 43

Figure 8.6. Preliminary experimental results after bisection. .. 43

Figure 8.7. Early thrombus growth in first Mahurkar catheter. 45

Figure 8.8. Late thrombus growth in first Mahurkar catheter.. 45

Figure 8.9. Late thrombus growth in second Mahurkar catheter. 45

xiv

xv

LIST OF TABLES

Table 2.1. Summary of utilities available in STAR-CD package. 7

Table 5.1. Species parameters. ... 17

Table 5.2. Description of user subroutines. ... 18

Table 5.3. Surface reaction terms. ... 19

Table 5.4. Scalar source terms. .. 20

Table 5.5. Agonist concentrations needed for platelet activation. 21

Table 5.6. Summary of calculated thrombus areas. ... 24

Table 7.1. Memory requirements for automated meshing. .. 32

Table 7.2. Analysis of computational time for 783,000 cell mesh. 34

Table 8.1. Pressure results from experimental catheter comparison. 42

xvi

1

CHAPTER 1 - INTRODUCTION

While much has been done to improve their functionality, blood-contacting

devices are limited in their use by thrombosis and thromboembolism. Thrombosis is the

aggregation of blood platelets onto the device surface, creating a growth known as a

thrombus. Thrombi affect the flow of the blood and can shear off into the blood stream

in a phenomenon known as thromboembolism. These free-flowing emboli present a

severe risk to patients using medical devices as they can occlude downstream blood

vessels, causing serious health complications or even death. It is difficult to

experimentally assess device designs for thrombosis, as it requires an expensive

procedure involving extensive animal testing. Despite rigorous testing to improve

designs, however, it is generally acknowledged that thromboembolism regularly occurs

while using blood-contacting devices.
1

Hemodialysis catheters, which provide access to the blood of patients undergoing

hemodialysis, are among those devices known to exhibit thromboembolism. In order to

minimize the risk associated with thromboembolism, catheters are inserted in the venous

side of the vascular system. In this way, the body is able to naturally filter the blood of

emboli via the pulmonary system. However, dialysis patients and others using catheters

often already have severely compromised or weakened immune systems, increasing the

risk of complications due to thromboembolism. Because of these restrictions, patients

using catheters must be closely monitored for thrombosis, with those most susceptible

2

often needing alterations to their treatment plan, such as systemic anticoagulation and/or

anti-platelet therapy.
2
 Additionally, thrombolytic procedures are used to break apart or

destroy thrombus formations that have built up over time in catheters.
3

An important tool in the effort to minimize thromboembolism in medical devices

is computational modeling. Because the formation of thrombi is influenced by flow

patterns, computational fluid dynamic (CFD) software can be used as a foundation upon

which to develop a predictive model of thromboembolism. Goodman et al. developed

such a model within a commercial CFD software package, Fluent, and successfully

compared thromboembolism predicted for a simple flow cell with experimental

thromboembolism in such a flow cell.
4
 However, extension of the model to geometries

with more clinical relevance was prevented at that time by the need for faster

supercomputers (with the supercomputers then available, computation times already

extended over several days) and the ability to create computational meshes for more

complex geometries (at that time, Fluent required structured meshing which was

accomplished by the user manually generating all mesh points, as is discussed below).

While Goodman‘s work was an important step towards a comprehensive model,

there have been significant technological improvements since his research, with both an

increase in the computational power of BYU‘s supercomputers as well as enhanced

meshing capabilities. At the onset of this research, it was therefore desired to take

advantage of these improvements and develop a three-dimensional computational model

of thrombosis in three hemodialysis catheter designs: Mahurkar, Decathlon, and Ash. As

the research progressed, the majority of time was spent overcoming obstacles discussed

in this thesis, and the full realization of this goal was not possible. The purpose of this

3

research, therefore, was to lay a foundation upon which future researchers can build in

applying the thrombosis model to the catheter geometries.

4

5

CHAPTER 2 - BACKGROUND

2.1 - Blood-Material Interactions

In the design of all medical devices an important consideration is the blood-

material interactions associated with the device. Whenever an artificial material comes in

contact with blood, the surface acquires a layer of adsorbed blood proteins.
5
 These

proteins then further interact with the cells and molecules in the blood, especially

platelets, and dangerous thrombus formations can grow. As a thrombus increases in size,

the shear force exerted on the thrombus can eventually exceed the adhesive force keeping

it attached to the surface, causing the growth to embolize. Figure 2.1 depicts this process.

Figure 2.1. Process of thrombosis and embolization.

6

Platelets are non-nucleated cells comprising only about 0.23% of total blood

volume, and normally function in the body to form an initial plug to repair damaged or

lacerated blood vessels.
6
 Platelets can become activated, either by shear forces or by

agonists in the blood, causing them to be more adhesive. In the case of acute thrombosis,

thrombi are largely composed of both activated and unactivated platelets.
7

Flow conditions greatly influence the formation of thrombi for a variety of

reasons. The rate of transport of cells and proteins to the surface, both by diffusion and

convection, is governed by flow rate. Additionally, shear rates influence the initial

attachment of platelets to artificial surfaces as well as the rate of activation of platelets.
8

Unfortunately, according to Hanson, ―the relationships between material surface

properties… and the design of blood-contacting cardiovascular devices are not well

understood… because the dynamics of protein-cell-surface interactions under flow are

extraordinarily complex.‖
9

2.2 - Computational Modeling

Because of the complexity of blood-material interactions, as well as their

dependency on flow conditions, computational fluid dynamics can be used as a platform

for modeling blood-material behavior. In recent years, CFD has taken on a greater role in

the design of artificial organs and medical devices.
10

 CFD can quickly demonstrate the

effects of design alterations on blood flow, along with blood-material interactions added

to the CFD model, thus significantly reducing the costs, time, and risks involved in

developing new medical device designs. While such computational simulations can be of

great benefit to the design stages, it is still important to validate the predicted results.

7

Although several CFD software packages exist that predict flow patterns with

great success, STAR-CD was chosen for several reasons. Its user-friendly graphical user

interface (GUI) allows for complex geometries to be modeled easily, and its automated

meshing software provides for sophisticated, unstructured meshing of those geometries.

Additionally, STAR-CD has excellent post-processing tools that can be used after the

solution is found to graphically display the solution. A summary of utilities available in

the STAR-CD package is found in Table 2.1.

Table 2.1. Summary of utilities available in STAR-CD package.

Name Function

STAR Calculation of the CFD solution.

Pro-STAR GUI-based pre-processing. Prepares model for calculation in STAR.

Pro-am Automated meshing.

STAR-Design Basic CAD. Includes a simple CFD solver.

CFD uses numerical techniques to governing mass- and momentum-conservation

equations. For general compressible and incompressible fluid flow, STAR-CD solves

total mass (Eq. 2.1), momentum (Eq. 2.2), and species mass (Eq. 2.3) conservation

equations simultaneously using a finite-volume approach. The equations used, expressed

in Cartesian tensor notation, are as follows:
11

(2.1)

(2.2)

(2.3)

8

where,

 t = time

xi = Cartesian coordinate

 ui = absolute fluid velocity component in direction xi

 p = piezometric pressure = ps – ρogmxm where ps is static pressure, ρo is reference

 density, gm are gravitational acceleration components and the xm are

 coordinates relative to a datum where ρo is defined

 ρ = density

 τij = stress tensor components

 sm = mass source

 si = momentum source components

 sk = mass source of constituent k

 Yk = mass fraction of constituent k

 Fk,j = Diffusional flux component.

There are two solution methods utilized by STAR-CD to simplify these

differential equations into algebraic relationships. The first is the Pressure Implicit with

Splitting of Operators (PISO) algorithm and the second is the Semi-Implicit Method for

Pressure Linked Operators (SIMPLE). Both algorithms employ forms of the predictor-

corrector strategy, in which the flow equations are decoupled from each other by

predicting the next value and then refined in an ensuing corrector stage through an

iterative process. The SIMPLE algorithm differs from the PISO in that it employs only

one corrector stage.
12

Solving these algorithms is made possible by dividing the flow geometry into

many individual points, or nodes. These nodes form a computational mesh used by the

CFD software in predicting such things as velocity fields, species transport by diffusion

and convection, and shear forces. In order to obtain an accurate solution, the nodes in the

computational mesh must be sufficiently close to each other to justify approximating the

differential relationship algebraically. One of the significant obstacles in computational

hemodynamic analyses is the generation of an accurate computational mesh.
13

9

There are two types of computational meshes: structured and unstructured. A

structured mesh is one in which equally sized, regular hexahedrons are used. These are

often created by the user specifying the location of each node in the mesh, and can be

both tedious and time-consuming to create. Unstructured meshes consist of irregular

tetrahedrons, hexahedrons, or both. Unstructured meshes allow for greater flexibility in

modeling complex geometries. They are typically created using automated meshing

software. Additionally, meshing software can create meshes that have variable cell sizes,

to give accurate resolution in regions of importance while minimizing the total number of

cells required. These variable-sized cells consist of regular hexahedrons.

2.3 - Previous CFD Models

There are not many examples in the literature of computational thrombosis

models. However, an early attempt to use CFD to model the complex blood-material

interactions was made by Sorenson et al., who developed a comprehensive two-

dimensional model for platelet deposition in flowing blood. Their study included both

shear-induced and agonist platelet activation, platelet transport, platelet-platelet

interactions, and platelet-surface interactions. While these efforts represented an

important step forward in the modeling of thromboembolism, it was limited to initial

conditions and did not model thrombus growth over time.
14

Other researchers have taken a CFD-only approach to predicting thrombosis in

hemodialysis catheters. One such example is Mareels et al. They developed a three-

dimensional CFD model of a dual-lumen Niagara catheter in a simulated venous

environment. Several performance parameters, such as pressure drop and shear rates,

were analyzed.
15

 In a follow-up study, Mareels validated the CFD with Particle Image

10

Velocimetry by comparing simulated and measured velocities and shear strains.
16

 Using

a steady-state CFD calculation, these studies identified regions of high shear stress and/or

stagnation, areas where thrombosis is likely to occur. Studies such as these have become

fairly common, but are limited to a CFD analysis only, and do not incorporate thrombosis

into the computational model nor dynamically change the flow patterns and solutions

based on the presence of thrombi.

Goodman et al. were able to develop a computational model for thrombosis in a

simple flow-cell geometry. Like Sorenson, Goodman effectively incorporated shear- and

agonist-induced platelet activation, species transport, and both platelet-platelet and

platelet-surface interactions. However, he was also able to predict the growth of thrombi

over time and to adjust the flow patterns to accommodate the presence of the thrombi.

He also incorporated the embolization of single adherent platelets based on experimental

measurements. His predictions were validated by dynamic experimental measurements of

thrombus initiation, growth, and embolization. Interactive changes in a transient problem

represent one of those most difficult challenges in modeling, and Goodman accomplished

this by increasing the viscosity of computational grid cells by several orders of magnitude

when they became a thrombus. This, however, increases the number of computations

required to converge to an accurate solution. Because of this, and due to existing

hardware limitations, the model was restricted to simple two-dimensional geometries

rather than those of clinically-relevant devices. Additionally, the meshing capabilities

then available limited the model to a regular, structured mesh of uniform cell size.
4

11

CHAPTER 3 - OBJECTIVES

As mentioned in the Introduction, the original aim of this research was to build

upon Goodman‘s previous two-dimensional flow-cell model and develop a thrombosis

model in clinically-relevant, three-dimensional hemodialysis catheters. Goodman‘s

model was developed using the CFD software Fluent. At the time, Fluent was limited in

its meshing capabilities. Another CFD program, CD-adapco‘s STAR-CD, advertised

vast improvements in automated meshing as well as post-processing capabilities

(animation of transient results, etc.). These promised improvements, coupled with

concerns over the availability of Fluent licenses, prompted the decision to develop the

catheter thrombosis model using STAR-CD. However, as research progressed, the

majority of time developing the model was spent overcoming limitations associated with

the STAR-CD software (see Chapter 6). Research was impeded to such a degree that full

application of the thrombosis model to catheter geometries was prevented. As a result,

the research objectives were modified in such a way as to prepare a framework for future

researchers to easily apply the thrombosis model to the catheters. Specifically, the

research objectives were:

1) Creating three-dimensional meshes of the catheters using computer-aided design

(CAD) and automated meshing software that can be used by future researchers.

2) Porting Goodman‘s C-based Fluent model into a Fortran-based STAR-CD model.

3) Overcoming issues related to pushing the limits of the software.

12

4) Determining the feasibility of three-dimensional computations with current

hardware limitations.

5) Performing a preliminary comparison of CFD and experimental results in the

hemodialysis catheters. These results could be used by future researchers as an

early benchmark for the performance of the thrombosis model.

13

CHAPTER 4 - CREATING THE MESH

4.1 - Designing the Geometry

The first step in creating the computational mesh is designing the geometry of the

catheter. The three different designs selected are the Mahurkar, Decathlon, and Ash

hemodialysis catheters. These three catheters were chosen because they have aspects to

their geometry that are representative of a range of catheter designs. The Mahurkar

design has a large central intake port with small side ports that help prevent obstruction.

The Decathlon catheter has a split-tip design, while the Ash design has a tapered outlet

tip and side holes for the inlet. CAD software, such as CD-adapco‘s STAR-Design and

Autodesk‘s AutoCAD, was used to create geometric representations of all three catheters

(See Figures 4.1, 4.2, and 4.3, respectively). These programs allow for the complex

geometries found in catheters to be created with relative ease.

Figure 4.1. Insertion region for the Mahurkar catheter design.

14

Figure 4.2. Insertion region for Decathlon (split lumen) catheter design.

Figure 4.3. Insertion region for Ash (side hole) catheter design.

4.2 - Mesh Generation

Once the geometry was created, it was necessary to represent the flow regions of

the catheter with a computational mesh. This was done with STAR-CD‘s automatic

meshing utility, pro-am. By importing the geometries previously created, pro-am is able

to generate computational meshes of variable cell size. As described above, Goodman

was restricted to a uniform grid cell size. One of the significant advantages of current

technology is that the grid size can be varied within a mesh, so that the edge length of a

15

cell is smaller near regions of interest, such as a catheter wall. In the interior core of the

model, edge lengths can be increased. In this way, the total number of cells required to

mesh a specific geometry can be significantly reduced, in turn reducing the

computational time and memory required for a solution.

 The edge length required for grid-independence in Goodman‘s two-dimensional

model was 0.5 microns, which, for his simple flow cell geometry, translated to

approximately 2.3 million cells.
4
 Uniform meshes with edge lengths of approximately

150 microns, or approximately 3.5 million cells, have been created for the catheter

meshes for the purposes of CFD-only calculations. However, it is anticipated that a much

smaller edge length, closer to 0.5 microns, would be required for the three-dimensional

catheter thrombosis models. With a uniform mesh, this would require hundreds of

millions of cells, if not more. The current supercomputing technology would not be able

to handle creating the computational mesh, let alone calculating the solution. Therefore,

creating variable-sized computational meshes using pro-am is necessary to developing

the thrombosis model. Further discussion of the feasibility of generating these meshes is

addressed in Chapter 7.

16

17

CHAPTER 5 - PORTING THE MODEL INTO STAR-CD

5.1 - Defining Basic Model Properties

The first step in porting the model was to create a model using STAR-CD‘s pre-

processing utility, pro-STAR. Pro-STAR provides a user-friendly GUI for establishing

model parameters. Since the flow characteristics would be changing as thrombus

developed, the model was defined to be transient. A transient solution iterates at each

time step to solve the various conservation equations, rather than converging to a single,

steady-state value. The fluid properties of blood, such as density, viscosity, etc., were

then defined. Scalar species were then created for activated and unactivated platelets, as

well as the various agonist species involved in platelet activation. The initial mass

fraction, molecular weight, and effective diffusivity for each scalar species is listed in

Table 5.1. Boundary and initial conditions were also defined for the scalar species and

fluid flow.

Table 5.1. Species parameters.
4

Initial

Mass Fraction

Molecular

Weight

(g/mol)

Thermal

Diffusivity, Db

(cm
2
/s)

Unactivated Platelet (Pl) 0.0006 1.28x10
12

1.58x10
-9

Activated Platelet (aPl) 0.000006 1.28x10
12

1.58x10
-9

Adenosine Diphosphate (ADP) − 424.4 2.57x10
-6

Thromboxane (TxA2) − 352.5 2.14x10
-6

Prothrombin (pT) 0.000075 72000 3.32x10
-7

Thrombin (T) − 36600 4.16x10
-7

Antithrombin III (aT) 0.000167 62000 3.49x10
-7

18

5.2 - Creating User Subroutines

Simply defining the problem parameters in pro-STAR would have allowed

STAR-CD to solve only the CFD portion of the model. In order to include thrombosis, it

was necessary to include user subroutines. STAR-CD allows users to create subroutines

that can dynamically modify problem parameters as it solves. Goodman similarly used

Fluent macros in order to accomplish this. He used macros that defined the inlet profile,

viscosity, source terms, surface reaction kinetics, and adjusted certain variables. All of

his programming was in the C language. However, STAR-CD uses the FORTRAN

programming language. Also, the data structure used by STAR-CD is very different

from that used in Fluent. This necessitated porting the code he developed into the new

language and data format. To do this, seven user subroutines were created. Table 5.2

contains a list of the subroutines and a description of their function. The full code of each

subroutine is included in the appendix.

Table 5.2. Description of user subroutines.

Name Function

initfi.f Initializes bulk fluid with parabolic flow profile.

bcdefi.f Establishes parabolic flow profile at inlet boundary.

diffus.f Creates shear rate dependence for diffusivity of larger species.

sorsca.f Calculates source terms for scalar species.

scalfn.f Calculates the maximum shear rate in each cell at each time step.

vismol.f Increases viscosity of a ―thrombus‖ cell.

posdat.f Calculates platelet surface fluxes and thereby determines whether a cell

has become a thrombus.

5.2.1 - Surface Reactions

The first significant hurdle faced in porting the code was the handling of surface

reactions. Platelet-surface interactions are an important aspect to thrombosis. Fluent had

19

built-in surface reactions, but STAR-CD does not, making it necessary to determine a

strategy for including these important blood-material interactions. It was determined to

include these reactions as part of the source terms in the computational cells next to walls.

This was done by calculating the mass flux to or from the wall due to the reaction and

then converting it into a volumetric source term using the ratio of the area of a cell face to

the total cell volume for a cell at the wall. A summary of the surface reaction terms,

based on Sorenson‘s work, is given in Table 5.3.
4, 14

Table 5.3. Surface reaction terms.

Species Term

Pl (platelet/m
2
∙s) -S∙kps[Pl]surface+Femb∙Mu

aPl (platelet/m
2
∙s) -S∙kas[aPl]surface-Ma/M∞∙kt∙[aPl]

ADP (mol/m
2
∙s) −

TxA2 (mol/m
2
∙s) Ma(x,t)∙st

pT (mol/m
2
∙s) -(φrt∙Mu+ φat∙Ma)∙[pT]

T (mol/m
2
∙s) (φrt∙Mu+ φat∙Ma)∙[pT]

aT (mol/m
2
∙s) −

In these reaction terms,

 S = fraction of surface available for platelet-surface adhesion

 Femb = fraction of surface-adherent platelets that embolize during each time step

Mu = local concentration of unactivated platelets on the surface

 Ma = local concentration of activated platelets on the surface

 M∞ = local concentration of activated platelets on the surface (6.0x10
10

 plt/m
2
)

 kps = rate constant for unactivated platelets adhering to the surface (2.5x10
-6

 m/s)

 kas = rate constant for activated platelets adhering to the surface (3.5x10
-3

 m/s)

 kt = rate constant for platelets adhering to other platelets (3.5x10
-3

 m/s)

 st = rate of synthesis of ADP by platelets (9.5x10
-12

 nmol/plt∙s)

 φat = rate of thrombin generation from prothrombin on activated platelets

 (6.50x10
-10

 U/plt∙s∙μM pT)

 φrt = rate of thrombin generation from prothrombin on unactivated platelets

 (3.69x10
-9

 U/plt∙s∙μM pT)

20

5.2.2 - Source Terms

As platelets become activated, they are more likely to adhere to biomaterials.

This activation can take place either by shear activation, as discussed below, or through

interaction with agonist species. These interactions can be represented through source

terms, or bulk reaction terms. Like the surface reaction terms, they are based on

Sorenson‘s work, and are given below in Table 5.4.
4, 14

Table 5.4. Scalar source terms.

Species Term

Pl (platelet/mL∙s) -kpa[Pl]

aPl (platelet/mL∙s) +kpa[Pl]

ADP (mol/m
2
∙s) +λ∙kpa[Pl]

TxA2 (mol/m
2
∙s) +st[aPl]-ki[TxA2]

pT (mol/m
2
∙s) -[pT](φat[aPl]+φrt[Pl])

T (mol/m
2
∙s) [pT](φat[aPl]+φrt[Pl])-Γ[T]

aT (mol/m
2
∙s) - Γ[T]

In these equations,

 kpa = rate constant for platelet activation (see below)

λ = amount of ADP released per activated platelet (2.48x10
-8

 nmol/plt)

Γ = rate constant for heparin-catalyzed inhibition of thrombin by antithrombin III,

 from Griffith‘s template model:
4, 17

(5.1)

where,

 k1 = first-order rate constant (13.33 s
-1

)

 [H] = concentration of heparin (1.0 U/mL)

 α = factor simulating the change in affinity of heparin for aT when it is bound to T

 or for T when it is bound to aT (set to 1.0)

 KaT = dissociation constant for the heparin/aT complex (0.100 μM)

 KT = dissociation constant for the heparin/T complex (0.035 μM)

21

Sorenson developed kpa as a linear rate equation with an activation threshold:
4, 14

(5.2)

where Ω was the activation function:
4, 14

(5.3)

In these equations,

 na = total number of agonists in the model

 aj = concentration of the j
th

 agonist

 aj,crit = threshold concentration of that agonist for platelet activation (see below)

wj = agonist-specific weight to mimic the differential effects of strong and weak

 agonists on the activation reaction (see below)

tact = characteristic time constant for platelet activation (1.0 sec.)

In this way, platelet activation occurs only once critical levels have been reached for

multiple agonists. The critical concentrations and agonist-specific weights for those

species involved in platelet activation is given in Table 5.5.
4

Table 5.5. Agonist concentrations needed for platelet activation.

Species Conc. Needed for Activation Weight (wj)

ADP 2.00 μM 1
*

TxA2 0.6 μM 3.3

T 0.01 U/mL 220
*Weights were calculated by dividing the concentration required for

activation of the least stimulatory species (ADP) by the concentration

required for activation of the species in question.

5.2.3 - Shear Activation of Platelets

Platelets can also be activated through the shear forces of the blood. This takes

place in a time-dependent manner, once unactivated platelets have adhered to a surface or

22

to a thrombus. Equation 5.4 shows the relationship between the shear stress, τ, and the

time required for platelet activation, as described by Hellum.
4, 18

 (5.4)

If agonist-induced activation had not occurred by this time, the platelets were

considered activated. This model is based solely on local shear stress on surfaces.

However, recent research by Nobili et al. indicates that platelets in the bulk fluid can be

activated by lower shear stresses than indicated by Hellums if those stresses are applied

over time and in certain patterns.
19

 Future development of the model may benefit from

examining how much the catheter results change by adding this method of shear

activation to the model.

5.2.4 - Shear-Dependence of Diffusivity

The diffusivities listed above in Table 5.1 are thermal, or Brownian, diffusivities.

As such, they do not take into account the diffusion-enhancing effect of red cell motion in

flowing blood. This motion creates an effective diffusivity for the platelets, as well as the

large scalar species (pT, T, aT). For these species, equation 5.5 was applied, following

Wootton et al.
4, 20

 (5.5)

where,

 De = effective diffusivity

 Db = thermal (Brownian) diffusivity

 α = scaling factor (6.0x10
-10

 cm
2
)

 γ = maximum local shear rate

23

5.2.5 - Viscosity of a Thrombus

In order to simulate the creation of a thrombus, Goodman increased the viscosity

of a ―thrombus‖ computational cell by a factor of approximately 25,000. This effectively

created a solid region. Such a large step in viscosity is difficult for the CFD solver to

account for, increasing the number of iterations required to converge each time step as

well as necessitating a smaller edge length. In order to reduce the solution time, the

STAR-CD model introduced a step in viscosity of only 250 times that of the blood. This

smaller step in viscosity may also be more representative of thrombus behavior, as

thrombus is living tissue, and as such may allow for very limited flow through it. While

determining the ―effective viscosity‖ of a thrombus is outside the scope of this project,

future research might benefit from an investigation of the effect of varying levels of

thrombus viscosity on the model results, as well as attempting to experimentally

determine thrombus viscosity.

5.3 - Comparison with Goodman’s Results

In order to determine the validity of porting the model from Fluent to STAR-CD,

it was necessary to compare the model‘s results with those obtained by Goodman. While

it was initially thought that this would be an easy step in the process, significant

challenges were faced in developing the model in STAR-CD (see Chapter 6). The

majority of time spent on this project was dedicated to addressing issues created by

pushing the limits of STAR-CD. However, a two-dimensional mesh of the simple flow

cell, with a uniform 0.5 micron cell edge length, was created. The same time step size

(0.05 seconds) and run time (30 seconds) used by Goodman were also applied to the

model, and a solution calculated. Using the PISO algorithm, a stable solution was never

24

obtained. However, by implementing the SIMPLE algorithm, it was possible for the

solution to converge.

The flow cell geometry consists of a cylindrical flow cell 1 mm in length (ID =

580 μm) with an abrupt contraction (ID = 280 μm), also 1 mm in length, followed by an

expansion to the original diameter. Thrombus growth generally occurs in two main

regions, the leading and trailing edges of the contraction.
4
 The STAR-CD model

replicates the Fluent model favorably. Table 5.6 shows the area occupied by thrombus in

both of these regions, as calculated by the Fluent and STAR-CD models.

Table 5.6. Summary of calculated thrombus areas.

 Fluent Model STAR-CD Model

Leading Edge Trailing Edge Leading Edge Trailing Edge

Area (μm
2
) 52.96 51.97 121.2 152.8

While the STAR-CD model generates more thrombus than the Fluent model, it is

still on the same order of magnitude. A possible explanation for the discrepancy between

the two models is there were a few mathematical errors found in Goodman‘s model.

These errors, while minor, have been corrected in the STAR-CD model, and could

account for the differences in thrombus growth. Also, the differences in surface reaction

terms and viscosity, as discussed above, may slightly influenced the solution. As seen in

Figures 5.1 and 5.2, while there are some differences in the amount and shape of the

thrombus growth, the growth occurs in the same location in both models.

25

Figure 5.1. Thrombus growth on leading edge of contraction. The Fluent model is on

the left and the STAR-CD model is on the right. (Run time = 30 sec., time step = 0.05

sec, grid edge length = 0.5 μm)

Figure 5.2. Thrombus growth on trailing edge of contraction. The Fluent model is on

the left and the STAR-CD model is on the right. (Run time = 30 sec., time step = 0.05

sec, grid edge length = 0.5 μm)

26

27

CHAPTER 6 - OVERCOMING CHALLENGES OF PUSHING THE

SOFTWARE LIMITS

CD-adapco advertises the feature of Star-CD in which the user can add user-

defined subroutines to supplement the CFD calculations, as described above. However,

interactions with CD-adapco have given the impression that the company focuses most of

their energy on building as many packaged configurations as possible, customizable

through the GUI. In this way the company attempts to minimize the need for user-

created subroutines. As a result, documentation and functionality associated with the use

of custom subroutines is incomplete. Furthermore, obtaining information about such

matters from the customer-support arm of the company is extremely slow and

problematic.

6.1 - User-Defined Variables

One example illustrating the challenge of pushing the software was illustrated in

the problem of handling the various user-defined variables Goodman used in his model.

Besides the concentrations of various agonist species, an additional set of variables

permitted the identification and tracking of computational cells that had reached certain

conditions, such as whether the cell had become thrombus or neighbored thrombus, or

whether the platelet activation time had been reached in a particular cell. Goodman

accomplished this using built-in Fluent ―User-Defined Memory Allocations.‖ Initially

personnel at CD-adapco recommended using dynamically-sized arrays to store these

28

variables in STAR-CD. However, it was discovered after significant testing (and months

of time) that the handling of memory for the arrays by STAR-CD was flawed and

prevented successful execution of the user subroutine code by this method.

Eventually, after numerous and persistent inquiries to CD-adapco, finally

resulting in personnel at the company testing the user subroutines, the company

acknowledged that the code was not performing adequately using their recommended

strategy (although the cause for the malfunction was never identified). At that point, they

recommended that we create passive scalar species in the pro-STAR GUI for each

necessary variable. These passive species are not solved for in the transport equations,

and thus do not influence the solution during each time step. However, they are used at

the end of each time step to record thrombus location and growth, and to then modify the

flow regime in the ensuing time step through the user subroutines. Eventually, this

second strategy successfully allowed us to accomplish this necessary task.

6.2 - STAR-CD Internal Variables

While developing the code for the user subroutines, it was often necessary to use

variables, functions, and procedures internal to the STAR-CD proprietary code in order to

perform tasks such as looping through computational cells, identifying neighbor cells, etc.

These items were often mentioned in the user subroutine documentation without any

description of their functionality. Full documentation of these variables and procedures

was either difficult to locate within the directory structure of STAR-CD or non-existent.

The majority of the time spent developing the model was spent determining how to use

these various tools in order to accomplish necessary tasks, often through a tedious, trial-

29

and-error approach. Documentation of the knowledge gained about the various internal

variables and functions is included in the appendix of this thesis.

6.3 - Upgrading Versions of STAR-CD

When development of the model was initially undertaken, the most current

version of STAR-CD was version 3.20. As model development continued and challenges

presented themselves, solutions were often not available using the (then) current version

of the software. What seemed to be problems with the user subroutines or model

parameters were often problems inherent to the STAR-CD coding that were fixed in later

versions. It became clear that many of the features advertised by CD-adapco were not

fully functional in the latest version, or did not perform at a level necessary for successful

solution of the thrombosis model. Development was often stalled until a newer version

of the software was released. Additionally, the current version of STAR-CD, version

4.06, required porting the user coding from FORTRAN 77 to FORTRAN 90. This

necessitated a significant re-write of essential user subroutines, further extending the

project‘s time.

6.4 - Summary of Software Challenges and Solutions

The above-mentioned cases are but a few of numerous time-consuming obstacles

encountered in the development of this model. Each obstacle had at least one, often all, of

the following characteristics:

 Inadequate documentation.

 Very slow response from the customer-support arm of CD-adapco.

 Failure of the remedy/procedure provided by CD-adapco to work.

30

Unfortunately, these technological challenges associated with the software typically were

severe enough that the model could not solve to successful completion. Much, if not the

majority, of the time spent developing the model was spent in addressing these issues

rather than debugging and trouble-shooting the user subroutine code. The current

thrombosis model is able to run and return results for the two-dimensional flow cell

geometry. Therefore, the software challenges that have prevented further development of

the model have been overcome. From this point forward, it should be possible for future

researchers to apply the model to three-dimensional catheter geometries.

31

CHAPTER 7 - DETERMINING FEASIBILITY OF THREE-

DIMENSIONAL COMPUTATIONS

While there has been significant improvement in the computational capabilities of

the supercomputer hardware since Goodman‘s work, there is still a limit to how much

data can be processed in a given amount of time. This limit is a function of both the

processor speeds and available memory on the supercomputing system. As the number

of nodes in a computational mesh increases, it requires more computing power both to

generate the mesh and to solve the CFD calculations. Because the simple flow-cell used

in Goodman‘s model had radial symmetry, he was able to represent the flow-cell with a

two-dimensional geometry. Although this significantly reduced the amount of

computation time necessary, it still required several days for the supercomputer system to

complete the calculations.

Since most, if not all, clinically relevant devices do not have convenient

symmetry, it is necessary to represent these devices using three-dimensional meshes to

accurately predict thrombosis. Obviously, meshes in three dimensions require many

more nodes to represent the geometry. The number of computational cells required to

achieve appropriate resolution, often tens of millions or more, may limit the system‘s

ability to complete the solution in a reasonable amount of time. In order to create an

accurate model of thrombosis in catheter designs, it must first be determined if the

current hardware technology is capable of performing the necessary tasks.

32

7.1 - Generating Computational Meshes

Because STAR-CD can be parallelized between dozens of processors on the

supercomputing system, sharing both available memory and processor power, solving the

model is not the limiting step in the process. Instead, it is the actual generation of the

computational mesh that taxes the system‘s resources. The current version of STAR-CD

does not permit automated meshing to be parallelized. While the process is not

computationally intensive, it is very memory-intensive. To determine the anticipated

amount of memory required for a catheter model, a series of tests were conducted on a

simple three-dimensional flow cell model. The dimensions of the flow cell were the

same as the flow cell used in Goodman‘s model, except it was half of the length. Pro-am

was used to automatically generate a mesh with variable edge lengths. Table 7.1 shows

the memory required to mesh the geometry and number of cells generated as the

minimum edge length decreases.

Table 7.1. Memory requirements for automated meshing.

Minimum Edge Length Number of Cells Memory Required

(microns) (millions) (GB)

15 0.089 0.136

10 0.215 0.216

7.5 0.419 0.314

5 1.081 0.619

2.5 4.574 2.291

1 30.622 14.149

As the edge length decreases, both the number of cells and required memory

increase according to a power law relationship of the form. There was not a system

available to generate a mesh on this test model with a minimum edge length of 0.5

33

microns. However, by fitting the data to a power law equation of the form bxay ,

where y is the required memory, x is the edge length, and a and b are both constants, a

and b are found to be 12.156 and -1.7454, respectively (R
2
 = 0.9912). According to this

relationship, the memory required to generate a 0.5 micron mesh would be 40.7 GB.

It is unknown whether computational meshes for catheter geometries will require

the same resolution as the meshes used by Goodman. If the same minimum edge length

of 0.5 microns is required, it is anticipated that generating a computational mesh for

catheter geometries would require perhaps hundreds of gigabytes. If, however, the

process of automated meshing in pro-am can be parallelized, the memory requirements

could be shared over several nodes. Representatives from CD-adapco have said that such

a parallelization process is currently being developed. This could address the needs of

creating the required computational meshes. Currently, however, this is still a limitation

in the technology.

7.2 - Defining Problem Parameters and Calculating a Solution

Once a mesh has been generated, it is necessary to input the various problem

parameters into pro-STAR, as described previously in Chapter 5. When a mesh has been

created with millions of computational cells, it requires an extensive amount of memory

to use the pro-STAR GUI. However, without the GUI, it is difficult to accurately assign

boundaries and input other parameters. Even if the meshing process is parallelized, pre-

processing with the GUI is not. This is potentially a limitation in developing the

thrombosis model in catheters. In order to prepare the model in pro-STAR, it will be

necessary to use a workstation with large amounts of available memory. A workstation

34

with 32 GB of memory has been obtained for this purpose, but it is still undetermined

whether this amount of memory will be sufficient for catheter meshes with high

resolutions.

The actual computation of a solution is not hampered by available memory, but is

instead dependent on processing power. Because this aspect of STAR-CD can be run in

parallel mode, it is possible to assign dozens of processors to calculate the solution. A

computational mesh of the simple flow cell geometry with approximately 783,000 cells

was created and an analysis of the time required to complete computations using the

PISO algorithm was conducted. Table 7.2 shows the results of this analysis. As can be

seen, computational times using 64 processors for this mesh were very reasonable, about

2.25 hours to complete 400 time steps. For fewer processors, the calculations timed out

after 24 hours. The solution using 16 processors diverged before finishing calculations.

Table 7.2. Analysis of computational time for 783,000 cell mesh.

Number of Processors Elapsed Time (hr) Completed Steps

64 2.25 400

32 4.51 400

16 4.30 380

12 6.08 400

8 9.06 400

4 15.03 400

2 24.01 359

1 24.00 246

Calculations (implementing the SIMPLE algorithm) on the two-dimensional flow

cell mesh containing 2.3 million cells and using 64 processors took approximately 12

hours to calculate all 600 time steps. This would imply that for the catheter geometries,

several days would be necessary to complete the calculations. This would not be an

35

unreasonable amount of time and should not be considered a limiting factor in the overall

process.

7.3 - Feasibility with Current Hardware Limitations

The most significant hardware limitation is available memory. While this does

not affect the actual computation of the solution, it does affect pro-am‘s automated

meshing capabilities as well as defining the problem parameters with pro-STAR‘s GUI.

Although meshes have been created for each catheter design for the purpose of CFD-only

analysis (discussed below in Chapter 8), because CFD does not require the same grid

resolution as the thrombosis model, these meshes were fairly crude, with a uniform edge

length of only approximately 150 μm. As a starting point, it is recommended the

thrombosis model be applied to these meshes. However, a grid-independence study

should be conducted to ensure that the results are valid. In order to minimize the total

number of cells, the edge lengths of the meshes in the grid-independence studies should

be variable-sized. Even so, it is unknown whether the current memory available will be

sufficient to obtain the resolution desired near the walls. In order to further reduce the

total number of computational cells and thereby the memory required for generating the

meshes and defining the problem parameters, the catheter geometries should be cut

across planes of symmetry. In this way, future researchers can maximize the feasibility

of applying the model to the catheters given current memory limitations.

36

37

CHAPTER 8 - PERFORMING A PRELIMINARY COMPARISON

At the onset of this research, the primary objective was to apply the computational

thrombosis model to the catheter geometries and obtain results that could be validated by

in vitro testing. However, significant time was lost addressing the challenges that arose

in developing the STAR-CD model, as discussed in Chapters 6 and 7, and it became

necessary to adjust the objectives in such a way as to lay a foundation that future

researchers can use in applying the computational model to the catheter geometries.

While it is left to future researchers to apply the STAR-CD model to the catheter designs,

it was decided to perform a preliminary comparison between a CFD-only analysis of the

catheters and in vitro experiments. In this preliminary comparison, no quantitative

analyses were conducted, but could be anticipated once the computational model has

been applied to the catheter geometries.

8.1 - CFD-Only Results

A CFD-only analysis on each of the catheter geometries was performed. These

analyses were not intended to be an exhaustive study of hemodynamics in the catheters,

but instead a preliminary look at potential locations of thrombus growth in the

computational model. Therefore, memory-intensive grid resolution analyses were not

conducted. However, by examining the flow patterns, regions of high shear were

identified by determining where fluid flow was forced near the walls of the catheters.

38

These are the areas that should promote thrombus growth in the computational model.

For the purposes of this analysis, only the inlet regions of the catheters were modeled.

Figure 8.1 shows the flow pattern for the Ash catheter. The proximal inlet port

(left) is first exposed to the blood flow, and has a higher flow rate through it, inducing

higher shear rates than seen in the distal inlet port. Because of the sharp change in

direction of the flow, as well as the high velocities, it is anticipated that thrombus would

grow in several locations, as indicated in the figure.

Figure 8.1. Flow pattern for proximal (left) and distal (right) inlet ports of Ash catheter. Regions of

potential thrombus growth are highlighted in red.

The flow pattern for the Decathlon and Mahurkar catheters are similar to each

other and are shown in Figures 8.2 and 8.3, respectively. The Decathlon catheter has

been modeled with the split tips slightly separated from each other. Both of these models

have large main inlet ports, with smaller side ports nearby. The Decathlon side ports are

directly across from each other, causing turbulent mixing of the inlet streams, whereas

the inlet flow through the side port in the Mahurkar design is direct against the opposing

wall. Those areas where thrombus growth is anticipated are marked in the figures.

39

Figure 8.2. Flow pattern for inlet region of Decathlon catheter.

Regions of potential thrombus growth are highlighted in red.

Figure 8.3. Flow pattern for inlet region of Mahurkar catheter.

Regions of potential thrombus growth are highlighted in red.

8.2 - Preliminary Experimental Results

While a complete and rigorous experimental validation of the computational

model is outside the scope of this project, a preliminary analysis of the various catheter

designs was conducted at the Medical Device Evaluation Center (MDEC) in Salt Lake

City, UT. Because the computational model should account for changes in geometry as

40

well as predict the growth of thrombus over time, two preliminary experimental analyses

were conducted. The first was a comparison of thrombus growth location between the

three catheter designs. The second analysis was that of the time course of thrombus

development in the Mahurkar catheter only.

8.2.1 - Blood Collection and Experimental Apparatus

Fresh bovine blood was obtained from an abattoir following a cardiac puncture

and collected into collapsible reservoirs containing the anticoagulant heparin (final

concentration 2 U/ml). The blood was then filtered through a 40-μm filter to remove

particulates. Platelet reactivity, which is an essential component of thrombosis, is

unstable in blood stored for longer than 8 hours. Therefore, experiments were conducted

within 8 hours of blood collection to ensure that the platelets and the clotting system were

active and relatively stable.

The test circuit consisted of 25 mm I.D. PVC tubing (outer loop) into which the

catheter was inserted and sealed. The 25 mm ID PVC tubing was connected to 12.5 mm

ID PVC tubing, whose ends were submerged into the blood reservoir maintained at 37˚C.

The inflow and outflow ports of the catheters were connected to 6.4-mm I.D. tubing,

which served as the inner (‗dialysis‘) loop. Blood flow in the outer loop (2 L/min for

acute catheters and 2.5 L/min for chronic catheters) was achieved with the help of a

Cobe-Stockert roller pump, and blood flow in the inner loop (300 ml/min) was

established with the help of a Masterflex peristaltic pump (See Figure 8.4). A pressure

gauge was placed in the inner loop between the inlet lumen of the catheter and the pump.

This gauge helped establish the degree to which the inlet ports of the catheter were

occluded by thrombus. As thrombus formation in the ports increased, there was a

41

corresponding decrease in flow area, thus increasing the pressure drop through the

catheter system. When a thrombus embolized, the flow area increased and the pressure

drop was restored to the pre-thrombus value.

Figure 8.4. Schematic of experimental setup for preliminary testing.

8.2.2 - Comparison of Catheter Designs

The three catheter designs were run simultaneously for a period of forty-five

minutes and the pressure drop recorded every five minutes. Table 8.1 shows the pressure

measurements over the course of the experiment. The Mahurkar and Ash designs both

experienced a pressure pattern consistent with thrombus growth (i.e. steady increase in

pressure drop through the catheters) followed by embolization (i.e. sudden decrease in

pressure drop), while the Decathlon design experienced only a steady increase in pressure

drop.

42

Table 8.1. Pressure results from experimental catheter comparison.

 Pressure Drop (mm Hg)

Time (min) Decathlon Mahurkar Ash

0 205 123 187

5 267 277 199

10 271 214 176

15 280 200 150

20 278 167 136

25 307 108 123

30 373 110 111

35 368
*
 90 106

40 421 94 106

45 500 94 106
*Transient spikes to 500

After forty-five minutes of run time, the catheters were rinsed in saline and

bisected, in order to visually examine any remaining thrombi. As can be seen in Figure

8.5, each of the geometries had significant thrombus growth in the inlet and outlet ports.

The Decathlon (split tip) geometry also experienced thrombosis in the region between the

split tips as well as the flat exterior surface of the outlet branch. The Ash (side hole)

geometry experienced dramatic thrombosis in the side holes, but also had a layer of

thrombus growth along the entire exterior surface. Because this was a preliminary

analysis, the exact reason for increased surface growth on this geometry compared to the

other geometries is unknown. However, one explanation might be found in the research

conducted by Nobili et al.
19

 As platelets in the bulk are forced through the occluded side

holes, they experience a repeated history of significant shear forces, becoming activated

and increasing the affinity for the catheter surface. Alternatively, the occluded side holes

contain activated platelets, which in turn activate nearby platelets through agonist release,

propogating the thrombus growth across the surface. Further experimentation is

necessary to test these hypotheses.

43

Figure 8.5. Preliminary experimental results before bisection. (Run time = 40 min.)

In Figure 8.6, the interior of the catheter insertion regions can be seen. Again,

thrombosis was observed in the inlet and outlet ports of each design. The Decathlon

design also had growth along the interior corners of the inlet branch. As on the exterior,

significant growth appeared along the entire interior surface of the Ash catheter design.

It is likely that some of the thrombus embolized during the course of the experiment.

Therefore, it is difficult to use these runs as an absolute measure of thrombus location.

However, those locations that contain thrombus are good candidates for thrombus growth

in the computational model.

Figure 8.6. Preliminary experimental results after bisection. (Run time = 40 min.)

44

8.2.3 - Time Course of Thrombus Development

It was also desirable to determine how the thrombus developed over time. To

accomplish this, blood was run through two Mahurkar catheters. One of the catheters

was allowed to run for forty minutes. The other catheter was removed from the

experimental system after 12 minutes for qualitative analysis, and then reinserted into the

experimental system for an additional 15 minutes. Both catheters were then removed

from the system, rinsed with saline and visually inspected for thrombus formations.

Figure 8.7 shows the catheter that was removed from the system after 12 minutes.

Thrombus is clearly visible in the main inlet port, whereas the two side ports are still

clear. The same catheter is shown again in Figure 8.8. It is clear that the main port and

side ports have nearly completely occluded. In Figure 8.9, the second catheter is shown

after running uninterrupted for 40 minutes. It shows the same pattern of growth as that of

the first catheter after only 12 minutes. This clearly demonstrates the variability of blood

response, even within the same donor batch. On first glance, it also alludes to a pattern of

thrombus growth over time, beginning with occlusion of the main port, followed by the

occlusion of the side ports. However, as seen in Figure 8.3, the CFD analysis shows

significantly higher velocities and shear rates in the side ports, indicating thrombus

growth is more likely in that region. A possibly explanation is that thrombus initially

grows in the side ports, but due to the high shear forces present in that location, quickly

embolizes. The main port experiences lower shear force and thrombus growth is

permitted to slowly develop there without much embolization. This growth continues

until it eventually occludes the side ports as well.

45

Figure 8.7. Early thrombus growth in first Mahurkar catheter. The occlusion of

the main port can clearly be seen in the left-hand image, whereas the side ports are

still clear of thrombus in the right-hand image. (Run time = 12 min.)

Figure 8.8. Late thrombus growth in first Mahurkar catheter. Near-total occlusion

of both the main and side inlet ports is visible. (Run time = 27 min.)

Figure 8.9. Late thrombus growth in second Mahurkar catheter. Thrombus has

only occluded the main inlet port. (Run time = 40 min.)

46

8.2.4 - Conclusions from Preliminary Comparison

While these results are preliminary, they help to give a qualitative perspective on

where and how thrombosis should develop when the computational model is applied to

the catheter designs. In this way future researchers have a benchmark by which to judge

early catheter computational runs. In the CFD-only analyses of the catheters, there are

clearly potential areas of high shear. The blood is forced to reverse direction as it travels

from the blood vessel, through the inlet ports, and into the catheter. This increases

platelet transport to the surface at the sharp corners of the ports, as well as in the

recirculation zones just inside the catheter inlet branch. As the computational model

incorporates shear-activation of platelets and platelet transport, it would be expected that

thrombosis should occur in those regions.

The CFD analysis agrees nicely with the preliminary experimental results, as

thrombosis occurred in the inlet and outlet ports of all three designs, even to the extent of

plugging the ports. The Ash design grew thrombus along the interior and exterior

surfaces. However, further repetitions of experimental runs should be conducted, to

determine if those are consistent regions of thrombus growth. The time course

experiments of the Mahurkar catheter give a basis for how thrombus should develop over

time in that design. While a cursory inspection of the results might indicate that

thrombus growth occurs first in the main port, it does not take into account the possible

embolization of thrombi that forms in the side ports. It is likely that rapid growth occurs

in the side ports but embolizes quickly, followed by slower, more stable growth in the

main inlet port. As the current thrombosis model does not include embolization, this

would be an important improvement to include in future research.

47

CHAPTER 9 - CONCLUSIONS AND RECOMMENDATIONS

9.1 - Conclusions

This research initially undertook to take advantage of BYU‘s new

supercomputing system and improvements in automatic meshing software by developing

a three-dimensional computational model of thrombosis in three hemodialysis catheters

designs. While limitations both in the computational fluid dynamic software and in the

hardware prevented the full realization of this goal, significant groundwork has been laid

for future researchers to accomplish this task. A significant amount of time was

dedicated to addressing the challenges presented by both of these limitations. However,

catheter geometries have been designed using CAD software and the automatic meshing

process defined. Goodman‘s C-based Fluent model has been ported to a Fortran-based

STAR-CD model. The software limitations that impeded development have been

addressed and Goodman‘s results have been reproduced. The current hardware

limitations as well as expected hardware needs for three-dimensional automated meshing

and computation have been explored and possible solutions presented. A preliminary

comparison of a CFD-only analysis and qualitative in vitro experiments for the three

catheter designs found that anticipated regions of thrombus growth coincided favorably.

Based upon this research, future researchers should be able to apply the thrombosis

model to catheter designs and validate the findings experimentally.

48

9.2 - Recommendations

Significant groundwork has been laid for the future development of the

thrombosis model. There are a few improvements that could be made to the model itself.

Currently, the model does not allow for the embolization of thrombi. Future directions for

the model should include modification of the user subroutines in such a way that this

phenomenon is represented. The model may also benefit from inclusion of shear-induced

activation of platelets in the bulk, as investigated by Nobili et al., as well as a study of the

effect of thrombus viscosity on thrombus growth. Even without these improvements

included, though, it is recommended that the current model be applied to the catheter

geometries.

The first step in applying the model will be generating a fairly crude mesh using

pro-am. In order to minimize the number of computational cells, the catheter geometries

should be cut along planes of symmetry. A high memory (32 GB) workstation has been

obtained for this purpose, as well as preparing the model once a mesh has been generated.

However, in order to produce an accurate model, a grid-independence analysis should

then be conducted with meshes of variable-sized edge lengths. Incrementally smaller

edge lengths should be generated until the solution obtained is independent of the grid

resolution. However, as the edge length decreases, the required memory increases.

Therefore, even with the recently obtained workstation, meshing of the catheter

geometries to a suitable resolution may require an increase in available memory, or the

release of a parallelized automatic meshing utility by CD-adapco.

Once accurate results are obtained from the STAR-CD model in the catheters, it is

also recommended that an in-depth statistical comparison between the computational and

49

experimental results be performed. Because the computational model predicts both the

size of thrombus as well as thrombus growth over time, a time-dependent experimental

model should be created. By bisecting the various catheters at regular time intervals, the

location and size of thrombus as a function of time can be determined qualitatively.

Quantitative results can also be obtained by radiolabeling platelets in the blood used in

the catheters, so that the mass of thrombus can be assessed via radioactive counting. In

this way, a statistical comparison of the computational and experimental models can be

conducted. This will be an important verification that the computational model

accurately predicts thrombosis in each of the three catheter designs.

50

51

REFERENCES

1. Branger, B.; Garreau, M.; Baudin, G.; Gris, J., Biocompatability of blood tubings.

International Journal of Artificial Organs 1990, 13, 697-703.

2. Zellweger, M.; Bouchard, J.; Raymond-Carrier, S.; Laforest-Renald, A.; Querin,

S.; Madore, F., Systemic Anticoagulation and Prevention of Hemodialysis Catheter

Malfunction. ASAIO Journal 2005, 51, (4), 360-365.

3. Gray, R. J., Percutaneous Intervention for Permanent Hemodialysis Access: A

Review. SO - Journal of Vascular & Interventional Radiology 1997, 8, (3), 313-327.

4. Goodman, P. D.; Barlow, E. T.; Crapo, P. M.; Mohammad, S. F.; Solen, K. A.,

Computational Model of Device-Induced Thrombosis and Thromboembolism. Annals of

Biomedical Engineering 2005, 33, (6), 780-797.

5. Oeveren, W. V., Blood flow dynamics and surface interactions. In Surfaces and

interfaces for biomaterials, Vadgama, P., Ed. Woodhead Publishing Limited: Cambridge,

2005; pp 414-446.

6. Hanson, S. R., Blood-Material Interactions. In Encyclopedia of Biomaterials and

Biomedical Engineering, Wnek, G. E.; Bowlin, G. L., Eds. Marcel Dekker, Inc.: New

York, NY, 2004; Vol. 1, pp 144-154.

7. Goel, M. S.; Diamond, S. L., Thrombosis. In Encyclopedia of Biomaterials and

Biomedical Engineering, Wnek, G. E.; Bowlin, G. L., Eds. Marcel Dekker, Inc.: New

York, NY, 2004; Vol. 2, pp 1458-1466.

8. Turitto, V. T.; Hall, C. L., Mechanical factors affecting hemostasis and

thrombosis. Thrombosis Research 1998, 92, (6, Supplement 2), S25-S31.

9. Hanson, S. R.; Ratner, B. D., Evaluation of Blood-Materials Interactions. In

Biomaterials Science, 2 ed.; Ratner, B. D.; Hoffman, A. S.; Schoen, F. J.; Lemons, J. E.,

Eds. Elsevier Academic Press: London, 2004; pp 367-379.

10. Verdonck, P., The Role of Computational Fluid Dynamics for Artificial Organ

Design. Artificial Organs 2002, 26, (7), 569-570.

11. Methodology: STAR-CD Version 4.06. In CD-adapco: 2007; pp 1.1,1.6.

52

12. Methodology: STAR-CD Version 4.06. In CD-adapco: 2007; pp 7.1-6.

13. Prakash, S.; Ethier, C. R., Requirements for Mesh Resolution in 3D

Computational Hemodynamics. Journal of Biomechanical Engineering 2001, 123, (2),

134-144.

14. Sorensen, E. N.; Burgreen, G. W.; Wagner, W. R.; Antaki, J. F., Computational

Simulation of Platelet Deposition and Activation: I. Model Development and Properties.

Annals of Biomedical Engineering 1999, 27, (4), 436-448.

15. Mareels, G.; De Wachter, D. S.; Verdonck, P. R., Computational Fluid Dynamics-

Analysis of the Niagara Hemodialysis Catheter in a Right Heart Model. Artificial Organs

2004, 28, (7), 639-648.

16. Mareels, G.; Kaminsky, R.; Eloot, S.; Verdonck, P. R., Particle Image

Velocimetry-Validated, Computational Fluid Dynamics-Based Design to Reduce Shear

Stress and Residence Time in Central Venous Hemodialysis Catheters. ASAIO Journal

2007, 53, (4), 438-446.

17. Griffith, M. J., The heparin-enhanced antithrombin III/thrombin reaction is

saturable with respect to both thrombin and antithrombin III. J. Biol. Chem. 1982, 257,

(23), 13899-13302.

18. Hellums, J., 1993 Whitaker lecture: Biorheology in thrombosis research. Annals

of Biomedical Engineering 1994, 22, (5), 445-455.

19. Nobili, M.; Sheriff, J.; Morbiducci, U.; Redaelli, A.; Bluestein, D., Platelet

Activation Due to Hemodynamic Shear Stresses: Damage Accumulation Model and

Comparison to In Vitro Measurements. ASAIO Journal 2008, 54, (1), 64-72.

20. Wootton, D.; Markou, C.; Hanson, S.; Ku, D., A Mechanistic Model of Acute

Platelet Accumulation in Thrombogenic Stenoses. Annals of Biomedical Engineering

2001, 29, (4), 321-329.

53

APPENDIX A: PAUL GOODMAN‘S CODE OVERVIEW

Introduction

Paul Goodman‘s thrombosis model was done in the Fluent CFD application and

programmed in the C language.

Important Concepts

Hellum‘s equation: Relationship between exposure time and shear stress for predicting

the length of time needed to activate surface-adherent platelets

Sorenson‘s model: Platelet model Paul based his model on. Incorporates platelet

activation based on achieving threshold of agonist concentrations, as well as surface

deposition based on surface availability.

Single platelet embolization: One of the important and unique aspects to Paul‘s model is

he incorporated single platelet embolization (as well as thrombus embolization).

User-Defined Memory Allocations (C_UDMI): User-defined variables specific to cell.

Summary contained on pg. 2 of Annotated Code (AC). Enabled Paul to calculate all of

the necessary terms for the thrombosis model.

Thrombus Growth: Thrombus growth is comprised entirely of platelets, both activated

and unactivated. It is measured by the mass flux of platelets to both wall surfaces and

other thrombus cells, then converted to a volume fraction of thrombus in the cell.

Summary of Functions

DEFINE_ADJUST: Loops through cells and performs the following tasks in each cell:

 Sums area of all faces in the cell (pg. 5)

 Calculates cumulative thrombus growth in the cell(pg. 5)

o Adds ―delthu‖ and ―deltha,‖ the change in activated and unactivated thrombus

fraction.

 Calculates shear rate in the cell (pg. 6)

o Examines all shear rates (du/dx, du/dy, du/dz, dv/dx…) and identifies

maximum value.

 Updates activation time of the cell that is on wall or in thrombus (pg. 6 & 8)

o Follows Hellum‘s equation (dissertation pg. 73)

 Identifies and adjusts ―cell type‖ (pg. 6-9)

 Calculates and updates M, Ma, S, X for the cell (pg. 7-8)

o Based on flux of resting (unactivated) platelets and activated platelets to wall,

as well as single platelet embolization (dissertation pg. 63).

 Pages 10-15 are his attempts at performing embolization. I haven‘t looked too

closely at this.

54

DEFINE_PROPERTY: Fixes the viscosity of thrombus cells at a very high value

(essentially making it solid).

DEFINE_PROFILE: Gives a laminar inlet profile (specific to flow-cell)

DEFINE_SOURCE: Defines source terms for each scalar species

 Uses ―grid id‖ of cell to determine the source term

 For platelets:

o Includes Sorenson‘s ―activation threshold‖ model (pg. 16-17, dissertation pg.

59)

o Incorporates platelets adhering to activating platelets attached to wall (uses M,

etc.)

o Builds ―thrombus‖ from both unactivated and activated platelets as a vol% of

cell.

 Other species:

o Follows Source Terms from pg. 59 of dissertation, although also has different

terms if it is in a thrombus. It‘s a little convoluted, because some terms are

multiplied together, etc.

DEFINE_DIFFUSIVITY: Defines the diffusivity of the various species

 Larger species are dependent on shear rate. His routine is incomplete as given in

the annotated code.

DEFINE_SR_RATE: Defines the reaction rate for platelet adhesion, thrombin,

thromboxane A2. Also calculates the values here that will alter M, etc. (such as

single platelet embolization).

 Seems to duplicate some of the code from the platelet sources. I think, but could

be wrong, that the surface reaction adds to (or takes away from) a surface

concentration, whereas the source terms are for the bulk concentration in the cell.

55

APPENDIX B: AUTOMESHING IN PRO-STAR 4.06

Introduction

 This will start in STAR-Design.

 In order to use STAR-Design and Automeshing on the supercomputers, you will

need to know how to ―source‖ between v3.26 and v4.04 (STAR-Design is only

available with v3.26).

o Depending on your shell configuration, the command to source to v3.26 is

either of the following two commands:

 ―source /fslapps/starcd_3.26/etc/setstar‖

 ―. /fslapps/starcd_3.26/etc/setstar‖

o For v4.06, it is one of the following two commands:

 ―source /fslapps/starcd_4.06/etc/setstar‖

 ―. /fslapps/starcd_4.06/etc/setstar‖

 The over-all process can be summarized by:

o Model the geometry in STAR-Design

o Create a surface mesh in pro-surf

o Generate a volume mesh using pro-am

STAR-Design: This is where you will create the geometry. Alternatively, you could

create it in a different CAD program and import it here.

 Source to v3.26

 Open STAR-Design by entering the command ―stardesign gl‖ in the Linux

command line

 Create the desired geometry

 Save the geometry by selecting ―FileSave As…‖ (not a necessary step, but

useful if you ever want to open the geometry again).

 Select ―FileExport…‖ from the main menu bar.

o Select a ―File type‖ of ―pro-Surf Restart Files (*.ezs,*.EZS)‖

o Name the file

o Click on ―Save‖

 Exit STAR-Design

pro-surf: This is where you will create the surface mesh and the meshing database file

 Source to v4.06

 Open pro-surf by entering the command ―prosurf gl‖ in the Linux command line.

 Select ―FileRead pro-surf Restart File‖ from the menu bar

o In the ensuing window, click on the icon that looks like a folder

o Select the appropriate file and click ―Open‖

56

o Click on ―OK‖

 In the upper-right corner of the screen, under ―Entity Display‖ you can toggle

whether to show the model‘s ―Curves‖ or ―Surfaces.‖ It is useful to have the

―Surface‖ option selected.

 In the ―pro-surf NavCenter‖ click on ―Surface Groups.‖ It is often useful to

organize the various surface into the future boundary regions of the model.

o Click on ―Create New Group‖

 Give it a ―Name‖ (I usually name it the same as the boundary region it

will be, i.e. ―Inlet‖ or ―Walls‖)

 Click OK

o Under ―Select Surfaces‖ (making sure that the ―Surface‖ option is selected as

described above), click on the icon that looks like an arrow.

 In the main viewing area, click on the surfaces you want associated with

the group. If you make a mistake, you can clear the surfaces from the list

by clicking on the icon that looks like an ―X‖

o Once all of the surfaces associated with that group have been selected, click

on ―Add Selected.‖

o Click on ―Create a New Group‖ to repeat the process for each group

 Click on ―Grid‖ and then ―Generate‖

o You can either ―Use Default Values‖ or ―Use Custom Values‖ for the edge

length scale. If you choose to use custom values, they can not be smaller than

the ―Point‖ and ―Curve‖ tolerances. You can change these tolerances Under

―Cad RepairSet Tolerance‖ in the pro-surf NavCenter.

o Click on ―OK‖ to generate the surface mesh

 Click on ―OutputWrite Database‖

o Enter the name of the ―Database File.‖ It is a good idea to give it the same

name you will give the pro-am ―Case Name‖ (see below)

o Input the ―Database ID Number.‖ I usually leave it at the default of ―2.‖

o If you created groups previously that corresponded to boundary regions,

Select ―By Group‖ from the ―Save Cells to Tables:‖ drop-down option

o Click on ―OK‖

 Exit pro-surf. Feel free to first save the pro-surf restart file.

pro-am: This is where you will generate the volume mesh. Feel free to play around with

the various options and learn how to use it. You can reference the ―Meshing User Guide‖

for explanations of all of the various options. I will describe what I normally do.

 Start pro-am by entering the command ―proam gl‖ in the Linux command line

 Give the file a ―Case Name‖

 Select ―AdvancedAutomesh…‖ from the main menu bar

o Set ―Mesh Type‖ to ―Trimmed‖ and ―Prism Layers‖ to ―Yes‖.

 A trimmed mesh starts with smaller cells near the wall and larger cells in

the core. This minimizes the number of cells necessary. Alternatively you

could create a tetrahedral or polyhedral mesh, but these don‘t have the

capability to vary cell size.

 Prism layers are designed to be used in heat transfer situations and a few,

flat cells to be created immediately next to the wall. I don‘t really use it

57

for that, but it also allows you to identify the boundary regions that

correspond to the groups created in pro-surf.

o Input Settings

 Click on the ―Database‖ button and select ―Load.‖ This will load

whichever Database ID is in the text field immediately to the right of the

button. This should correspond to the ―Database ID Number‖ input above

(defaulted to ―2‖).

 Leave the ―Input Size Option‖ set to ―Model Units‖. This means all length

sizes you input will be relative the units you specify for the model, i.e. if

one model unit length is equal to 1 mm, then an edge length of 0.05 will

be 0.05 mm, or 50 microns.

 You can input ―Volume Sources‖. I have never really used this option,

but it might be very valuable. It allows you to insert previously defined

geometries (cylinders, spheres, bricks, or cones) that have a specific edge

length. This might allow you to create larger cells of a specific length in a

defined region, rather than allowing AutoMesh to dynamically size the

cells in that region.

o Trimmed Cell Mesh Settings

 Set ―Surface Size‖ to ―Min and Target‖

 Input the ―Minimum Size‖, ―Target Size‖, and ―Max Cell Size.‖ By

varying these values, you can vary how dense the final mesh is. I usually

start with a ―Target Size‖ and then modify the other two correspondingly.

 You can specify certain ―Boundary Values‖ for specific boundaries.

 I haven‘t really used this very much, but it may be possible to use this

to minimize the number of cells used at the inlet and outlets.

 Click on ―Template Settings‖.

 Set ―Template Mesh Type‖ to ―Hexahedra‖

 Set ―Template Mesh Growth Type‖ to ―Two Level‖. I have found this

works better for having a thicker region of small cells near the walls.

 Set the ―Core Mesh Growth Rate‖. I usually set it to ―Slow‖ or

―Medium‖

 I haven‘t played much with the ―Surface Mesh Growth‖. I usually

leave it at ―0‖

 Specify the ―Small Cell Cutoff Size‖. I usually set this to a value near

my ―Target Size‖, but that might not be the best way to do it.

 Set the ―Small Cell Growth Rate‖. I usually use ―Very Slow‖. The

slower the growth rate, the more small cells in the mesh.

 Click ―Close‖

o Prism Layer Settings

 Specify the ―Prism Layer Thickness‖. I usually set it to my ―Minimum

Size‖ set above. This is the thickness of all the prism layers combined.

 Specify the ―Number of Prism Layers‖. I usually only have 1 or 2.

 The ―Stretch Factor‖ is the thickness of each prism layer relative to the

preceding prism layer.

 Click on ―Boundary Settings‖. This is where you can associate the

previously created groups with a corresponding boundary type.

58

 Specify a ―Description‖, such as ―Inlet 1‖, etc.

 Set the ―Boundary Type(s)‖.

o By clicking on ―ToolsCell...‖ from the main menu bar, you can

view all of the cell types. If you created groups in pro-surf and

specified to save the cells to tables ―By Group‖, they will be listed

here by group. The pro-surf groups usually begin number with 11,

and are in the same order created in pro-surf (the first user-created

group, which is usually group #2 is pro-surf is cell type 11 in pro-

am).

 Make sure ―Cell/Group‖ is set to ―Cell Type‖.

 Set the appropriate ―Boundary Type‖

 Click on ―Close‖

o Click on ―Start Meshing‖. If you would like to submit the job as a batch job

on the supercomputers (for memory purposes), follow the instructions below:

 Once the ―Status‖ finishes reading ―AutoMesh – Initializing‖, click on

―Abort‖

 Close the AutoMesh panel

 Save the model (―FileSave Model‖)

 Quit pro-am.

 A directory called ―automesh_batch‖ should have been generated. Go into

this directory by typing ―cd automesh_batch‖ into the Linux command

line.

 Edit the file ―mktrun.sh‖ by typing ―vi mktrun.sh‖ in the command line.

 Enter into insert mode by typing ―i‖

 Above the line starting ―$PROSTAR/bin…‖, insert a line containing

the appropriate source command for v4.06 (see above).

 Exit out of insert mode by typing ―Esc‖

 Save and exit by typing ―:x‖

 You can now submit mktrun.sh to the PBS scheduler by using the ―qsub‖

command, as described in the document ―Running a Solution‖. It should

look something like this:

 ―qsub –q quad –l nodes=1:ppn=8,walltime=3:00:00 mktrun.sh‖

 In this case, I specifed using the 8 processor ―quad‖ queue. This is a high

memory (24 GB RAM) node. You must reserve all 8 processors on the

node to access all of the memory. Unfortunately, it will be phased out in

the near future (possibly end of summer 2008). Fortunately, it should be

replaced with different high memory nodes.

You need approximately 1 GB of memory for every million cells being generated using

Trimmed Cell meshing. On a normal node (not using the ―–q quad‖ option), there are

only 8 GB available. If you attempt to create a mesh that requires more memory, it will

essentially shut down the node. This is not good, and the supercomputing people really

don‘t like when we do that.

59

APPENDIX C: SETTING UP A PRO-STAR 4.06 MODEL

Introduction

 This assumes the mesh has already been generated.

 At each step, it is important to press ―Apply‖ in order to actually save the changes.

 It will usually prompt you to do this if you attempt to move away from the screen

 without doing this.

 The output for most commands appear in the pro-STAR output screen just below t

he plotting area. This is a good place to look for explanation of errors, etc.

 Sometimes an error will come up, especially when dealing with boundaries and gr

ids, instructing the user that there is ―insufficient scratch space.‖ Simply follow th

e instructions by typing ―memory‖ in the pro-STAR command line, followed by t

he parameter indicated and a sufficient size (it usually gives a minimum required

size in the pro-STAR standard output window, located beneath the plotting area).

 Before doing any further set-up, you must enable user subroutines.

o From the main pro-STAR toolbar, select ―FileSystem Command…‖

o In the ensuing window, type the command ―ufiles‖

o Close the ―System Command‖ window

 If you have previously created a problem input file, simply load it by selecting ―Fi

leRead Coded Input File…‖ and then selecting the appropriate file from the ens

uing window. You will still need to go through the problem parameters to make s

ure they loaded correctly, as well as check that the boundaries are defined appropr

iately both under ―Locate Boundaries‖ and ―Define Boundaries‖ (see below).

 If you don‘t have a previously created problem input file, the following outline sh

ould mirror the structure found in the pro-STAR Model Guide:

Analysis Features: Establishes the general properties for the model: steady state vs.

transient, reacting flow, etc.

 Set the ―Time Domain to ―Transient‖ and click ―Apply‖

o This should activate the ―Time Relationships‖ submenu in the Guide

 Time should be specified in ―Seconds‖

 All other categories should remain the default value:

o Free Surface: Off

o Cavitation: Off

o Multi-Phase Treatment: None

o Rotating Reference Frame Status: Off

o Reacting Flow: None—Our model has flow at the surfaces, but this option is f

or bulk flow reactions only.

o Aeroacoustic Analysis: Off

60

o Liquid Films: Off

o Stress Analysis: Off

Geometry: Not used, unless you would like to create geometric entities by hand. Not

recommended, except perhaps to create splines. Splines allow you to track pressure drops,

etc. along a specific path.

Grids: Allows the user, to import, create, check, refine grids (computational meshes)

 Check Grids

o Select ―All‖, then click ―Apply‖ to run an integrity check on the mesh.

o If there are errors, you may just want to create a new mesh. I have not had mu

ch success using the ―Fix Grids‖ utilities.

Locate Boundaries: Used to identify and create boundaries.

 Create Boundaries. This is an essential step. Usually grids created with the AutoM

esh utility identify all boundaries as walls. The best way to change the boundaries

is as follows:

o Make sure the ―Regions‖ tab is selected.

o Select the ―Boundary Region‖ that you wish to create by clicking on the first o

pen space in the list. If you wish to modify a region, click on the number for t

hat boundary region.

 In order to be compatible with the input file (described later), I have usuall

y selected Region 1 as Walls, Region 2 as Inlet, and Region 3 as Outlet. T

his setup may have to be modified, depending on the geometry being mod

eled.

o Select the ―Type‖ of boundary from the drop-down menu

o Give the boundary a meaningful ―Name‖ and click ―Define‖

o If the boundary regions are not already organized according to corresponding

groups, do the following:

 Make sure the region you desire to identify as the boundary is visible in th

e plotting area and the recently defined boundary is highlighted in the ―Bo

undary Regions‖ list.

 Select ―Create by Picking Surface based on Edges‖ from the ―Create/Modi

fy Boundary Action List‖ then click ―Apply.‖

 Right-click on the face of the desired boundary region in the plotting area.

 Click ―Define‖ again

o If the boundaries are organized according to region and you would like to assi

gn them to a different boundary:

 Click on the number of the region you wish to modify.

 Create a new boundary set from that region, by clicking on the boundary s

et toolbar (Looks like ―B►‖ in the lower left-hand side of the screen), and

 clicking ―NewRegion Current.‖

 Click on the number of the region you wish to assign them to

 Click on ―Change Curent Boundary Set‖ from the ―Create/Modify Bounda

ry Action List‖ then click ―Apply.‖

Validate Boundary Locations: Can be used to make sure there are no illegally placed

boundaries

Thermophysical Models and Properties: This is where all of the properties of blood

and various scalars are defined.

61

 Thermal Options: We aren‘t modeling any heat transfer.

 Gravity: Make sure that the ―Direction of Gravity Force‖ is correct, according to t

he indicated Coordinate System.

 Liquids and Gases

o Molecular Properties

 Select ―Define user material‖ from the drop-down menu

 Name the material ―Blood‖

 Give it a ―Constant‖ density of 1056 kg/m3

 Indicate a ―User‖ molecular viscosity and give it a default value of 0.0035

kg/ms

 Specify the molecular weight as 28.964 kg/kmol

 Click ―Apply‖ and ―User Define.‖ This second button creates the skeleton

molecular viscosity user subroutine, ―vismol.f‖

o Turbulence Models: Turn ―Turbulence‖ off.

o Thermal Models: Turn ―Temperature Calculation‖ off.

o Fluid Initialization: This initializes the bulk fluid conditions. Could select ―Us

er‖ to define a user subroutine that gives a laminar profile throughout the mod

el. For simplicity‘s sake, I have just given it a ―Constant‖ velocity in the axial

direction (for the flow cell model, 0.0466 m/s in the W direction).

o Monitoring and Reference: In the ―Reference Data‖ area, input both a referenc

e temperature and a reference pressure. All pressure and temperature data are

actually calculated as deviations from these reference values. Select a ―Pressur

e Cell Number‖ and ―Monitoring Cell Number‖ using the following process.

The Monitoring Cell is the cell used to output data throughout the solution pro

cess.

 I have found it helpful to first set the plot to a ―Geometry‖ plot using a ―Cl

ipped Hidden‖ plot type in order to select an interior cell.

 Click on the button with an image of a computer mouse. Select the desired

 cell from the plotting area.

 I usually use a cell near the entrance as the Pressure Reference Cell and a

cell where thrombus growth is expected as the Monitoring Cell

 Additional Scalars: This is where both the active and passive scalars are input. A

ctive scalars are the agonist species whose concentrations are solved for. The pass

ive scalars are what is used in place of Fluent‘s User Defined Memory Allocation

s. They keep track of variables used to simulate thrombus growth.

o Molecular Properties—Make sure to click ―Apply‖ after entering each scalar

 Names and molecular weights of scalar species 1-7 (in ascending order): P

l—1.28e12, aPl—1.28e12, ADP—424.4, TxA2—352.5, pT—72000, T—3

6600, aT—62000

 Set ―Influence‖ to ―Active‖ and set the density and molecular viscosity

 to be the same as blood (1056 and 0.0035, respectively).

 Names of scalar species 8-22 (in ascending order): nBldSt, ThrFr, actT, Sh

rRt, newThr, NFcBnd, NFcThr, xM, xMact, Xact, Sp, PlSrc, aPlSrc, pulse,

 NPlsFl

o Binary Properties

 Set the ―Material Mass Diffusivity‖ to ―User‖ then click ―User Define.‖ T

62

his will activate the subroutine ―diffus.f‖

 Sometimes, in order to click ―Apply‖, you must first select a scalar species

 from the list.

o Scalar Initialization: This sets the initial value for each scalar species.

 To set a particular scalar species‘ value, click on the desired ―Scalar Numb

er‖ of the species in the list in the lower half of the screen.

 Make sure the ―Values‖ drop-down list is set to ―Constant‖ and e.0nter the

 value in the ―Initial Mass Fraction‖ text area. Make sure to click ―Apply‖

after each species.

 Initial Values for Active species: Pl—0.0006; aPl—6e-6; ADP—0; Tx

A2—0; pT—7.5e-5; T—0; aT—0.000167.

 Initial Values for Passive species: Set all to 0

 Porosity: We don‘t use any porosity features

 Sources:

o For the seven Active species, under ―Source Term,‖ set the drop-down menu t

o ―Scalar,‖ the ―State‖ to ―On‖ and ―Define Source‖ to ―User Coding.‖ This w

ill create the subroutine for generating sources, ―sorsca.f‖

o You navigate between scalar species using the small arrow buttons next to the

―Scalar #.‖ Make sure to click ―Apply‖ after changing each species.

o None of the passive species should have a source term.

Define Boundaries

 Define Boundary Regions: This allows you to set the conditions for each individu

al boundary.

o Click on the ―Wall‖ boundary region(s). Make sure the ―Slip‖ Wall Parameter

 is set to ―No‖ and there are no velocities set

o Click on the ―Inlet‖ boundary region(s). Set the ―User Option‖ to ―User‖ then

click ―Apply‖ and ―User Define.‖ This will allow you to set up a parabolic pro

file at the inlet in subroutine ―bcdefi.f‖

o Click on the ―Outlet‖ boundary region(s). Depending on the geometry, you m

ay need to specify a ―Condition‖ of ―Split,‖ and then input the fraction of ―Flo

w Split‖ associated with that outlet.

 Scalar Boundaries: Sets the boundary condition for the scalar species.

o All of the scalar species for the ―Wall‖ boundary region should have a conditi

on of ―Zero Flux‖

o All of the Active scalar species should have a ―Boundary Condition‖ of ―Cons

tant‖ with the ―Value‖ set to the initial mass fraction specified above.

Analysis Controls

 Solution Method: This is where you can specify the solution method, residual tole

rance, corrector stages, pressure under-relaxation factor, etc. Can be a useful place

 to fine-tune obtaining an accurate solution.

o Set ―Solution Algorithm‖ to ―SIMPLE‖

o Increase ―Maximum Number of Outer Iterations‖ to ―1000‖

 Primary Variables: Depending on the solution method, can choose which variable

s to solve for, as well as relaxation factors, etc.

 Additional Scalars: Specify which scalars to solve for and how to solve for them.

o Scalars 1-7 (active)

63

 Should have the ―Solve for Scalar‖ box checked

 ―Solution Method‖ should be set to ―Transport‖

o Scalars 8-22 (passive)

 All except ShrRt (scalar 11) should have ―Solution Method‖ set to ―Off.‖

ShrRt should have ―Solution Method‖ set to ―User‖ and the click on the

―User Define‖ button. This creates the ―scalfn.f‖ user subroutine.

 All except nBldSt, ShrRt, NFcThr (scalars 8, 11, and 14) should have ―Sol

ve for Scalar‖ unchecked. Those three should have it checked (although n

BldSt and NFcThr should still have ―Solution Method‖ turned ―Off.‖ By c

hecking the box, I think (although I could be wrong, since there isn‘t any r

eal documentation about this) that it makes it available for writing a new v

alue in posdat.f (see below). Even if it is not checked, it is still available fo

r reading the current value in posdat.f

 Analysis Output: Specify which data to output to the post-processing file

o Click on the ―Post‖ tab.

 Make sure the ―Write Solution file‖ option is checked

 Under ―Additional Output Data‖, check the box next to ―User Subroutine‖

 then click ―Apply‖ and ―User Define‖. This creates the subroutine ―posda

t.f‖ which will contain most of the thrombus calculations.

o Click on the ―Transient‖ tab.

 Make sure the ―Output file format‖ is ―ccmt‖ and check the ―Define outpu

t period‖ box.

 Specify a ―Starting at time‖ (usually 0 sec) and an ―Output interval‖ (t

he ccmt files are huge—several GB—so try to use the greatest frequen

cy that is still useful, depending on whether you are more interested in

the initial time steps or the final solution).

 Under ―Data to Write,‖ check the ―Cell‖ box

 For each variable in the list you desire to have in the post processing file, s

elect the variable, check the ―Post‖ box, then click ―Apply.‖ I usually have

 the velocity, pressure, molecular viscosity, nBldSt, and ThrFr variables tu

rned on.

o Switches and Real Constants: These are a bunch of secret CD-adapco variable

s. The only way to know how to use them is to contact them. Ridiculous. We

did manage to obtain a list of definitions for v3.22

 Make sure Real Constant ―C11‖ is set to one (―1‖) under the ―Real Consta

nts‖ tab. This makes all of the velocity derivatives available to both sorsca.

f and scalfn.f

Analysis Preparation

 Model Validation: Make sure to Validate ―All‖

 Run Time Controls: This is where you set the time steps and length of time (mode

l time) the solution will run for.

o Set ―Run time control‖ to ―Run for‖ in the drop-down menu

o Input the desired amount of run time in the ―Time (sec)‖ field and click ―Appl

y‖.

o Set ―Time Step Method‖ to ―Constant‖

o Set the ―Period start time‖ to 0

64

o Input the size of the time step in ―Time step for period‖ and then click ―Set.‖

Paul found time-step independence at 0.05 second intervals.

 Run Analysis Interactively: This allows for creating the problem and geometry fil

es. These two files are necessary for running a solution.

o Make sure the ―Model Units‖ are correct (for the flow cell, millimeters). The

―Scale Factor‖ should update automatically.

o Set the ―Precision‖ to ―Double.‖ This slows the calculation slightly, but is nec

essary for an accurate calculation, since our agonist concentrations are so low.

o Make sure ―Write Geometry File‖ is set to ―Yes‖ (unless you have previously

created the geometry file. This is done by selecting ―FileSave Geometry…‖

 from the main pro-STAR toolbar, and then clicking ―Apply‖ in the ensuing w

indow. Make sure to close the window. You can also create a problem file by

selecting ―FileSave Problem…‖ and then clicking on ―Save.‖)

o Click on ―Create Batch.‖ Wait for the message window to appear and click ―O

K‖. This will create the problem file, as well as generate a script file in the mo

del‘s directory that can be run in order to submit a job in batch mode. By click

ing ―Start,‖ pro-STAR will start solving the problem interactively. This is typi

cally not practical for the meshes we have, unless they are very crude.

Saving the Model

 Make sure to save the model by selecting ―FileSave Model‖ or ―FileSave Mo

del As…‖ from the main pro-STAR toolbar.

You can also save a ―problem setup file‖ that will save all of the parameters you have set

and allow you to read it into another model. This way, you only have to set up the model

once, and then tweak it (especially the boundary definitions) for each individual model.

To do this, select ―FileSave As Coded Format…‖ from the main pro-STAR toolbar.

65

APPENDIX D: RUNNING A BATCH SOLUTION IN STAR-CD

Introduction

 This assumes that the geometry and problem files have already been created.

 This also assumes that the ―Create Batch‖ option was executed in pro-STAR, so

that the ―star_inter.sh‖ file has already been created.

 If you have already run a solution in the same directory, in order to run the

―star_inter.sh‖ script (see below), you must first delete the ―.reg‖ files previously

generated.

Creating and setting up the batch script file

 In the directory containing the model files, execute ―star_inter.sh‖ by typing in the

Linux command line ―./star_inter.sh‖

 The previous step will have generated a new script file, ―batch.sh‖ This is what

will be submitted to the supercomputer. First you will need to modify it slightly.

o Edit ―batch.sh‖ by typing ―vi batch.sh‖ in the Linux command line.

o VI is not a very user-friendly word processing program. Be careful what you

type, as you may execute an undesired command. In order to edit the file,

type the letter ―i‖

o The line starting ―star –case=‖ should have the option ―-mpi=mpich ‖ input

just prior to the variable ―$PNP_JOBNODES‖. Make sure there is still a space

between them, i.e. ―-mpi=mpich $PNP_JOBNODES‖. This makes sure the

mpich option is used for parallel processing. The default option is hpmpi, but I

have found that mpich has a lower failure rate on our supercomputing system.

o Exit editing mode by hitting the ―Esc‖ button and save batch.sh by typing ―:x‖

o If you want to exit without saving any changes, type ―:q!‖

 I have found that, especially with the larger meshes, the jobs have a 25-50%

failure rate. For this reason, I usually submit the three or four identical jobs. I do

this by first executing the above steps, then copying all of the files into three or

four different directories. To do this:

o First make the directories using the ―mkdir‖ command, i.e. ―mkdir dir1 dir2

dir3‖

o Copy the contents of the original directory using ―cp –r [orig_dir]/*

[destination]‖

o Go into each directory and execute the qsub command (see below).

66

Submitting the job to the supercomputers

 Once ―batch.sh‖ has been created and modified, you can submit it to the

supercomputers, using the ―qsub‖ command. Instructions are found on the

supercomputing website. An example is shown below:

o Type ―qsub –l nodes=2:ppn=4,walltime=8:00:00 batch.sh‖

 The letter l option lets you specify the number of nodes, processors per

node (ppn), and walltime. These three values follow the ―-l‖ option. The

first two are separated by a colon and the second two are separated by a

comma. The walltime is the amount of time it will remain on the

supercomputers once it has started running and is given in the format

hh:mm:ss. It is better to over-estimate slightly, so that the queue system

doesn‘t kick the job off before it has finished. It will automatically

remove itself once it has solved completely.

Monitoring the job

 Once the job has been submitted, you can monitor it a couple of ways.

o You can monitor the supercomputers to see if it is still running by typing

―showq –u [username]‖ in the Linux command line. This will show any jobs

you have submitted, whether they are running, waiting, or blocked (I have

found that blocked jobs will still eventually make it to the queue).

o You can monitor the output of the job (which time step it is on, etc.) by

reading the ―batch.sh.o[job#]‖ file that is automatically created by STAR-CD

once the job starts running. To view the whole file type ―less [filename]‖ in

the command line. To view just the end of the file (and thus the last time step),

type ―tail [filename] in the Linux command line. You can quantify how many

lines to see with the ―tail‖ command by adding a ―-n [# of lines]‖ option.

o You can determine the nodes used by the job by typing the command

―checkjob [job#]‖ The job number is displayed by the showq command.

67

APPENDIX E: POST-PROCESSING IN PRO-STAR 4.06

Introduction

 This assumes that calculations have already been run on the given model and the

model file has been loaded.

Post Processing: Click on this folder in the pro-STAR Model Guide to start

 Load Data

o Click on the ―Files(s)‖ tab

 Under ―Analysis‖ select ―Transient‖

 Make sure the ―Post File‖ is set to [model name].ccmt

 Click on ―Add File‖

 Click on the name of the file that appears in the ―Transient‖ list.

 Click on ―Open Transient File‖

 Click on the desired time step in the subsequent ―Time Step‖ list.

 Click on ―Store Time‖

o Click on the ―Data‖ tab

 The ―Data Type‖ should be set to ―Cell‖

 Select a ―Vector Data‖ and/or a ―Scalar Data‖ that you would like to view

for that time step. I usually select the ―Velocity Components UVW‖ from

the vector data and/or the ―ThrFr‖ Scalar Data (although sometimes I look

at ―nBldSt‖ or ―Molecular Viscosity‖).

 Click on the ―Get Data‖ button.

 Create Plots: This is where you graphically display the data for the time step. Play

 around with the various types of plots available. Below is what I usually do:

o Select the ―Section/Clipped‖ tab

 Set the ―Plot Type‖ to ―Clipped‖

 Set the ―Option‖ to correspond to the type of data you loaded

 Set the ―Plot‖ to ―Single Plane‖

 Pick which normal plane to plot (I usually have the X & Z normals set to 0

and the Y normal set to 1, with each point set to 0).

 Click on ―Apply‖ then ―Plot to Screen‖

Panels: Panels can be used to animate transient results in pro-STAR. They are

created by selecting from the pro-STAR menu bar ―PanelsDefine Panel…‖ After

giving the panel an appropriate name in the available text field, click on ―New‖. This will

add newly created panel to the list. Select it from the list and click on ―Open‖.

Once the panel is open, there is a bank of available, blank buttons. Select one of

the buttons, enter a name for it in the ―Button Name & Definition‖ text field, then input

the desired pro-STAR coding in the large field below.

68

There is not a lot of documentation about pro-STAR coding, and I have not

worked out all of the kinks in v4.06. Page 9-46 of the User Manual has some information

for transient animation (albeit, not very helpful). Other resources include the ―Day 3:

Transient Analysis Tutorial‖ from the custom user training (more helpful, but limited in

scope) and the Star-CD New User Training Manual, Exercise 3.4: ―Advanced Post

Processing Using Macros and Panels.‖ Here is some sample code for animating transient

results on the screen (Use the pro-STAR Help for details on each command):

TRLOAD,,

!This line loads the transient results

POPT,BOTH PLTY,SECT

!Sets the Plot Option (In this case both contour and vector) and Plot Type (in this

case a section plot)

CSET,NEWS,FLUID

!Defines a new cell set of the fluid cells

*DEFI,NOEX

!Begins the loop

STOR,NEXT

!Stores the next time step in the transient data

GETC,ALL,CONC,9

!Gets the specific data to be plotted (for this case, all of the velocity vectors and

the concentration of scalar 9)

CSCALE,14,USER,0,1.0 !CSCALE,14,AUTO

!These are two ways to set the color scale. I find it useful for my work to use a

user scale that doesn't change with time like the auto scale

CPLOT

!Plots to the screen

*END *LOOP,1.0,100,1.0

!Ends the loop and sets the start, end, and increment values for the loop

69

APPENDIX F: USER SUBROUTINES IN PRO-STAR 4.06

Introduction

 Uses Fortran 90

 In order for these files to be included in the solution calculations, they must be pre

sent in the ―ufile‖ directory.

 The following is a list of all the subroutines and their functions. Following the list

 is the complete code for each subroutine:

initfi.f

 Called once in each cell before any time steps have started

 Used to give an initial parabolic profile to the bulk fluid.

bcdefi.f

 Defines the boundary condition for inlet boundaries.

 Called in each cell during the solution phase of the time step.

 Currently used to set a parabolic profile at the inlet.

 Returns several variables, including U,V,W, the three velocity vectors.

 Would need to be changed or not included based on the geometry.

diffus.f

 Sets the diffusivity of each scalar species as a function of shear rate.

 Called in each cell during the solution phase of the time step.

 Returns the variable DIF.

scalfn.f

 Calculates the maximum shear rate in the cell.

 Called in each cell during the solution phase of the time step.

 Returns the variable PHI.

sorsca.f

 Sets the volumetric source terms for the active scalar species (agonists).

 Called in each cell during the solution phase of the time step.

 Returns the variables S1P & S2P, where the form is ―Source = S1P – S2P*SCAL

AR(IS).‖ SCALAR(IS) is the mass fraction of scalar species IS in the current cell.

 We actually set S2P = 0, so that we can specify a constant source term each time

step.

 Based on Paul‘s code. I tried to annotate it fairly heavily.

 There is a variable ―AtoV‖ which converts surface flux terms to volumetric sourc

e terms. This needs to be updated, depending on the shape of the cell used (hexah

edral vs. tetrahedral).

70

vismol.f

 Sets the molecular viscosity of the computational cell.

 Called in each cell during the solution phase of the time step.

 Based on the variable ―ThrFr‖ (thrombus fraction).

 Returns the variable VISM.

posdat.f

 Enables the user to output (and input) data.

 Called once (not once in each cell) at the beginning and end of each time step.

 Contains the majority of our ―thrombus growth‖ calculations.

 At the beginning of the first time step, loops through all cells and initializes the ―b

lood status‖ or grid ID.

 At the beginning of each time step, loops through all cells and:

o Calculates surface coverage terms (M, Mact, S, Xact)

o Calculates the change in thrombus and updates thrombus fraction.

 At the end of each time step, loops through all cells and updates the ―blood status‖

 or grid ID of cells that become thrombus (or are neighbors to a new thrombus).

 There is a variable ―AtoV‖ which converts surface flux terms to volumetric sourc

e terms. This needs to be updated, depending on the shape of the cell used (hexah

edral vs. tetrahedral).

 The surface reactions included in Paul Goodman‘s codes are calculated here, save

d, and used in sorsca.f

71

C**

 SUBROUTINE INITFI(U,V,W,PR,TE,ED,T,SCALAR,XVF2)

C Initialise fields

C**

C---*

C STAR-CD VERSION 4.06.000

C---*

 INCLUDE 'comdb.inc'

 COMMON/USR001/INTFLG(100)

 DIMENSION SCALAR(*)

 INCLUDE 'usrdat.inc'

 EQUIVALENCE(UDAT12(001), ICTID)

 EQUIVALENCE(UDAT03(001), CON)

 EQUIVALENCE(UDAT04(001), CP)

 EQUIVALENCE(UDAT04(002), DEN)

 EQUIVALENCE(UDAT04(062), VISM)

 EQUIVALENCE(UDAT04(063), VIST)

 EQUIVALENCE(UDAT04(067), X)

 EQUIVALENCE(UDAT04(068), Y)

 EQUIVALENCE(UDAT04(069), Z)

C--

C

C This subroutine enables the user to initialise the following

C dependent variables: U,V,W,PR,TE,ED,T,SCALAR,XVF2 to arbitrary

C values.

C

C ** Parameters to be returned to STAR: U,V,W,PR,TE,ED,T,

C SCALAR,XVF2

C

C The returned velocity components (U, V and W) are in the

C coordinate system requested for initialisation.

C

C--

 Rmax = 2.9E-4

 Vavg = 0.0466

 Rlocal = (X**2.0+Y**2.0)**0.5

 Vmax = 2.0*Vavg

 W = Vmax*(1.0-(Rlocal/Rmax)**2)

 RETURN

 END

C**

 SUBROUTINE BCDEFI(SCALAR,U,V,W,TE,ED,T,DEN,TURINT,RSU,V2P,F2P)

C Boundary conditions at inlets

C**

C---*

C STAR-CD VERSION 4.06.000

C---*

 INCLUDE 'comdb.inc'

 COMMON/USR001/INTFLG(100)

 DIMENSION SCALAR(*)

 DIMENSION RSU(6)

 LOGICAL TURINT

72

 INCLUDE 'usrdat.inc'

 DIMENSION SCALC(50)

 EQUIVALENCE(UDAT12(001), ICTID)

 EQUIVALENCE(UDAT04(002), DENC)

 EQUIVALENCE(UDAT04(003), EDC)

 EQUIVALENCE(UDAT02(005), PR)

 EQUIVALENCE(UDAT04(005), PRC)

 EQUIVALENCE(UDAT04(009), SCALC(01))

 EQUIVALENCE(UDAT04(007), TC)

 EQUIVALENCE(UDAT04(008), TEC)

 EQUIVALENCE(UDAT04(059), UC)

 EQUIVALENCE(UDAT04(060), VC)

 EQUIVALENCE(UDAT04(061), WC)

 EQUIVALENCE(UDAT04(064), UCL)

 EQUIVALENCE(UDAT04(065), VCL)

 EQUIVALENCE(UDAT04(066), WCL)

 EQUIVALENCE(UDAT02(070), X)

 EQUIVALENCE(UDAT02(071), Y)

 EQUIVALENCE(UDAT02(072), Z)

C--

C

C This subroutine enables the user to specify INLET boundary

C conditions for U,V,W,TE,ED,T,(V22,F22 for V2F model) and SCALAR.

C

C

C ** Parameters to be returned to STAR: U,V,W,TE,ED,T,

C SCALAR, DEN, TURINT

C

C NB U,V and W are in the local coordinate-system of the

C inlet boundary.

C

C--

C---- This subroutine gives the inlet fluid a parabolic profile.

C It will be required to update this subroutine with different

C geometries, flow conditions, and coordinate systems.

 Rmax = 2.9E-4

 Vavg = 0.0466

 Rlocal = (X**2.0+Y**2.0)**0.5

 Vmax = 2.0*Vavg

 W = Vmax*(1.0-(Rlocal/Rmax)**2)

 RETURN

 END

C**

 SUBROUTINE DIFFUS(DIF)

C Diffusivity

C**

C---*

C STAR-CD VERSION 4.06.000

C---*

 INCLUDE 'comdb.inc'

 COMMON/USR001/INTFLG(100)

 INCLUDE 'usrdat.inc'

 DIMENSION SCALAR(50), DENSC(50), VISSC(50)

 EQUIVALENCE(UDAT05(001), IDR)

73

 EQUIVALENCE(UDAT05(002), IDRT)

 EQUIVALENCE(UDAT06(004), TD)

 EQUIVALENCE(UDAT12(001), ICTID)

 EQUIVALENCE(UDAT10(001), DENSC(01))

 EQUIVALENCE(UDAT10(051), VISSC(01))

 EQUIVALENCE(UDAT11(001), CP)

 EQUIVALENCE(UDAT11(002), DEN)

 EQUIVALENCE(UDAT11(003), ED)

 EQUIVALENCE(UDAT11(006), P)

 EQUIVALENCE(UDAT11(007), T)

 EQUIVALENCE(UDAT11(008), TE)

 EQUIVALENCE(UDAT11(009), SCALAR(01))

 EQUIVALENCE(UDAT11(016), SCALAR(08))

 EQUIVALENCE(UDAT11(019), SCALAR(11))

 EQUIVALENCE(UDAT11(059), U)

 EQUIVALENCE(UDAT11(060), V)

 EQUIVALENCE(UDAT11(061), W)

 EQUIVALENCE(UDAT11(062), VISM)

 EQUIVALENCE(UDAT11(063), VIST)

 EQUIVALENCE(UDAT11(067), X)

 EQUIVALENCE(UDAT11(068), Y)

 EQUIVALENCE(UDAT11(069), Z)

 EQUIVALENCE(UDAT09(001), IS)

 EQUIVALENCE(UDAT11(073), CON)

C--

C

C This subroutine enables the user to specify the molecular

C diffusivity (DIF) of species IS as an arbitrary function.

C STAR calls this subroutine for cells and boundaries.

C

C ** Parameter to be returned to STAR: DIF

C

C NOTE: This subroutine also defines the molecular diffusivity

C in the Schmidt number and the Sherwood number used in

C droplet mass transfer calculations. If this molecular

C diffusivity is different to that used in the species

C transport equations, then a condition is needed such as

C

C IF(IDR.GT.0) THEN

C DIF= value for droplet mass transfer calculation

C ELSE

C DIF= value for species transport equation

C ENDIF

C

C--

C

 nBldSt = SCALAR(08)

 ShrRt = SCALAR(11)

C-- Calculate Diffusivity

C For larger molecules, diffusivity is a function of the shear rate

C For smaller molecules, it is constant

C Unactivated & Activated Platelets

 IF (IS.EQ.1.OR.IS.EQ.2) THEN

 DIF = 6.02E-14*ShrRt + 1.58E-13

C ADP -- neglecting the shear rate term due to small size

 ELSEIF (IS.EQ.3) THEN

74

 DIF = 2.57E-10

C Thromboxane A2 -- neglecting the shear rate term due to small

C size

 ELSEIF (IS.EQ.4) THEN

 DIF = 2.14E-10

C Prothrombin

 ELSEIF (IS.EQ.5) THEN

 DIF = 6.02E-14*ShrRt + 3.32E-11

C Thrombin

 ELSEIF (IS.EQ.6) THEN

 DIF = 6.02E-14*ShrRt + 4.16E-11

C Antithrombin III

 ELSEIF (IS.EQ.7) THEN

 DIF = 6.02E-14*ShrRt + 3.49E-11

 ENDIF

 RETURN

 END

C**

 SUBROUTINE SCALFN(PHI)

C Species-scalar function

C**

C---*

C STAR-CD VERSION 4.06.000

C---*

 INCLUDE 'comdb.inc'

 COMMON/USR001/INTFLG(100)

 INCLUDE 'usrdat.inc'

 DIMENSION SCALAR(50), HFORM(50)

 EQUIVALENCE(UDAT12(001), ICTID)

 EQUIVALENCE(UDAT03(001), CON)

 EQUIVALENCE(UDAT03(009), DUDX)

 EQUIVALENCE(UDAT03(010), DVDX)

 EQUIVALENCE(UDAT03(011), DWDX)

 EQUIVALENCE(UDAT03(012), DUDY)

 EQUIVALENCE(UDAT03(013), DVDY)

 EQUIVALENCE(UDAT03(014), DWDY)

 EQUIVALENCE(UDAT03(015), DUDZ)

 EQUIVALENCE(UDAT03(016), DVDZ)

 EQUIVALENCE(UDAT03(017), DWDZ)

 EQUIVALENCE(UDAT04(001), CP)

 EQUIVALENCE(UDAT04(002), DEN)

 EQUIVALENCE(UDAT04(003), ED)

 EQUIVALENCE(UDAT04(006), P)

 EQUIVALENCE(UDAT04(008), TE)

 EQUIVALENCE(UDAT04(009), SCALAR(01))

 EQUIVALENCE(UDAT04(059), U)

 EQUIVALENCE(UDAT04(060), V)

 EQUIVALENCE(UDAT04(061), W)

 EQUIVALENCE(UDAT04(062), VISM)

 EQUIVALENCE(UDAT04(063), VIST)

 EQUIVALENCE(UDAT04(007), T)

 EQUIVALENCE(UDAT04(067), X)

 EQUIVALENCE(UDAT04(068), Y)

 EQUIVALENCE(UDAT04(069), Z)

75

 EQUIVALENCE(UDAT09(001), IS)

 EQUIVALENCE(UDAT10(101), HFORM(01))

C--

C

C This subroutine enables the user to specify SCALAR(IS) in an

C arbitrary manner, instead of solving the corresponding transport

C equation.

C

C ** Parameter to be returned to STAR: PHI

C

C--

C---- Re-define the mass fractions of the various scalars with helpful

C names:

 REAL ShrRt

C---- Calculate the Maximum Shear Rate from dU/dX, etc. for each cell

C (used in diffus.f,posdat.f)

 IF (IS.EQ.11) THEN

 ADUDX = ABS(DUDX)

 ADUDY = ABS(DUDY)

 ADUDZ = ABS(DUDZ)

 ADVDX = ABS(DVDX)

 ADVDY = ABS(DVDY)

 ADVDZ = ABS(DVDZ)

 ADWDX = ABS(DWDX)

 ADWDY = ABS(DWDY)

 ADWDZ = ABS(DWDZ)

 ShrRt = MAX(ADUDX,ADVDX,ADWDX,ADUDY,

 &ADVDY,ADWDY,ADUDZ,ADVDZ,ADWDZ)

 PHI = ShrRt

 ENDIF

 RETURN

 END

C**

 SUBROUTINE SORSCA(S1P,S2P)

C Source-term for scalar species

C**

C---*

C STAR-CD VERSION 4.06.000

C---*

 INCLUDE 'comdb.inc'

 COMMON/USR001/INTFLG(100)

 INCLUDE 'usrdat.inc'

 DIMENSION SCALAR(50)

 EQUIVALENCE(UDAT12(001), ICTID)

 EQUIVALENCE(UDAT03(001), CON)

 EQUIVALENCE(UDAT03(002), TAU)

 EQUIVALENCE(UDAT03(009), DUDX)

 EQUIVALENCE(UDAT03(010), DVDX)

 EQUIVALENCE(UDAT03(011), DWDX)

 EQUIVALENCE(UDAT03(012), DUDY)

 EQUIVALENCE(UDAT03(013), DVDY)

 EQUIVALENCE(UDAT03(014), DWDY)

 EQUIVALENCE(UDAT03(015), DUDZ)

76

 EQUIVALENCE(UDAT03(016), DVDZ)

 EQUIVALENCE(UDAT03(017), DWDZ)

 EQUIVALENCE(UDAT03(019), VOLP)

 EQUIVALENCE(UDAT04(001), CP)

 EQUIVALENCE(UDAT04(002), DEN)

 EQUIVALENCE(UDAT04(003), ED)

 EQUIVALENCE(UDAT04(004), HP)

 EQUIVALENCE(UDAT04(006), P)

 EQUIVALENCE(UDAT04(008), TE)

 EQUIVALENCE(UDAT04(009), SCALAR(01))

 EQUIVALENCE(UDAT04(010), SCALAR(02))

 EQUIVALENCE(UDAT04(011), SCALAR(03))

 EQUIVALENCE(UDAT04(012), SCALAR(04))

 EQUIVALENCE(UDAT04(013), SCALAR(05))

 EQUIVALENCE(UDAT04(014), SCALAR(06))

 EQUIVALENCE(UDAT04(015), SCALAR(07))

 EQUIVALENCE(UDAT04(016), SCALAR(08))

 EQUIVALENCE(UDAT04(017), SCALAR(09))

 EQUIVALENCE(UDAT04(018), SCALAR(10))

 EQUIVALENCE(UDAT04(019), SCALAR(11))

 EQUIVALENCE(UDAT04(020), SCALAR(12))

 EQUIVALENCE(UDAT04(021), SCALAR(13))

 EQUIVALENCE(UDAT04(022), SCALAR(14))

 EQUIVALENCE(UDAT04(023), SCALAR(15))

 EQUIVALENCE(UDAT04(024), SCALAR(16))

 EQUIVALENCE(UDAT04(025), SCALAR(17))

 EQUIVALENCE(UDAT04(026), SCALAR(18))

 EQUIVALENCE(UDAT04(027), SCALAR(19))

 EQUIVALENCE(UDAT04(028), SCALAR(20))

 EQUIVALENCE(UDAT04(029), SCALAR(21))

 EQUIVALENCE(UDAT04(030), SCALAR(22))

 EQUIVALENCE(UDAT04(059), U)

 EQUIVALENCE(UDAT04(060), V)

 EQUIVALENCE(UDAT04(061), W)

 EQUIVALENCE(UDAT04(062), VISM)

 EQUIVALENCE(UDAT04(063), VIST)

 EQUIVALENCE(UDAT04(007), T)

 EQUIVALENCE(UDAT04(067), X)

 EQUIVALENCE(UDAT04(068), Y)

 EQUIVALENCE(UDAT04(069), Z)

 EQUIVALENCE(UDAT09(001), IS)

C--

C

C This subroutine enables the user to specify source terms (per unit

C volume) for species in linearized form:

C

C Source = S1P-S2P*SCALAR(IS), (kg/sm3)

C

C in an arbitrary manner.

C

C If the species is to be fixed to a given value SCI, then the

C following may be used:

C

C S1P=GREAT*SCI

C S2P=GREAT,

C**********

77

C Must ACTUALLY use the GREAT term in these equations for it

to work!!!

C**********

C where SCI can be a constant or an arbitrary function of the

C parameters in parameter list.

C--

C Sample coding 1: Fix the mass concentration of scalar 1 in fluid

2

C to a constant value SCALAR(1)=.75

C

C IF(IS.EQ.1.AND.IMAT.EQ.2) THEN

C S1P=GREAT*.75

C S2P=GREAT

C ENDIF

C

C--

C ** Parameters to be returned to STAR: S1P,S2P

C

C--

C For Blood Status (nBldSt):

C 0 = interior fluid

C 1 = wall fluid

C 2 = wall thrombus

C 3 = interior thrombus

C 4 = interior fluid with thrombus neighbor

C 5 = wall fluid with thrombus neighbor

C

C M = concentration of platelets on the surface (Pl/m2)

C Mact = concentration of activated platelets on the surface

C (Pl/m2)

C Sp = 1-M/Minfinity = fraction of surface not covered by platelets

C Xact = fraction of activated platelets on surface

C---- Re-define the mass fractions of the various scalars with helpful

C names:

 yPl = SCALAR(01)

 yaPl = SCALAR(02)

 yADP = SCALAR(03)

 yTxA2 = SCALAR(04)

 ypT = SCALAR(05)

 yT = SCALAR(06)

 yaT = SCALAR(07)

 nBldSt = SCALAR(08)

 ThrFr = SCALAR(09)

 actT = SCALAR(10)

 ShrRt = SCALAR(11)

 newThr = SCALAR(12)

 NFcBnd = SCALAR(13)

 NFcThr = SCALAR(14)

 xM = SCALAR(15)

 xMact = SCALAR(16)

 Xact = SCALAR(17)

 Sp = SCALAR(18)

 PlSrc = SCALAR(19)

 aPlSrc = SCALAR(20)

 pulse = SCALAR(21)

 nPlsFl = SCALAR(22)

78

C---- Calculate the Ratio of Volume of the Cell / Area of a Face

C Assumes a regular tetrahedral mesh -- even if not exact, good

C enough approx.

C Used to Convert Fluxes (mass/area*time) to source terms

C (mass/volume*time)

C VOLP comes from usrdat.inc (see nom.inc)

C --This one is for tetrahedral meshes

c AtoV = 0.555*VOLP**(1./3.)

C --The one is for flat cells near boundary

c AtoV = 4.0E-6

C --This one is for hexahedral meshes

 AtoV = VOLP**(1./3.)

C---- Initialize the source terms (S1P & S2P) to 0.0

 S1P = 0.0

 S2P = 0.0

C---- Define the basic source term

C From pgs. 59-60 of Paul's dissertation:

C omega = sum (w.j *(a.j/a.j,crit)

C if omega < 1.0, k.pa =0

C else k.pa = omega/t.act [call k.pa ratec]

C

C the platelet source term "Pl_src" below = k.ap * [Pl]

 tact = 1.0

 ratec = 0.0

 omega = (1.0E06)*(1.244*yADP + 16.48*yTxA2 + 62.79*yT)

 IF (omega.GE.1) THEN

 ratec = omega/tact

 ENDIF

 Pl_src = ratec*yPl*1056.

C---- Unactivated Platelet

 IF (IS.EQ.1) THEN

C In cells other than thrombus... see posdat.f for calculation of

C PlSrc

 S1P = -Pl_src + PlSrc

C In cell that is wall thrombus (2) or interior thrombus (3)

 IF (nBldSt.EQ.2.OR.nBldSt.EQ.3) S1P = 0.0

C---- Activated Platelet

 ELSE IF (IS.EQ.2) THEN

C In cells that are not thrombus... see posdat.f for calculation of

C aPlSrc

 S1P = Pl_src + aPlSrc

C In cell that is wall thrombus (2) or interior thrombus (3)

 IF (nBldSt.EQ.2.OR.nBldSt.EQ.3) S1P = 0.0

C---- ADP (see pg. 21 of AC and pg. 59-61 of D) -- Same no matter where

C source(ADP) = +lambda*kpa*[Pl]

C lambda = 0.0046 kg_ADP/kg_platelet-- pg. 21 of AC

 ELSE IF (IS.EQ.3) THEN

79

C ADP released from agonist-induced activating platelets

C = lambda*kpa*[Pl], lambda = 2.4*10^-8 nmol ADP/platelet

C (in kg ADP/m3*s), = lambda*(mol/nmol)*(platelet/kg

C platelet)*(kg ADP/mol ADP)

C (mol/nmol) = 10^-9, platelet/kg = 1/2.12E-15, kg/mol = 0.4244

 S1P = 2.4E-8*1.0E-9*(1.0/2.12E-15)*0.4244*Pl_src

C ADP released from shear-induced activating platelets

C = lambda*(M-Ma) when Hellum's activation time is reached, M-Ma

C is platelets that activate

C (in kg ADP/m3*s), = lambda*(mol/nmol)*(kg ADP/mol

C ADP)*(Area/Volume)*(1/time step)*(M-Ma)

C (mol/nmol) = 10^-9, kg/mol = 0.4244, time step = DT, Area/Volume

C = 1/AtoV, M-Ma = pulse

 IF (nPlsFl.EQ.1) THEN

 S1P = S1P + pulse*2.4E-8*1.0E-9*0.4244*(NFcBnd/AtoV)/DT

 ENDIF

C IF(MOD(IPSTAR,500).EQ.0.0) write(*,*) IS, IPSTAR, S1P

C---- Thromboxane A2 (see pg. 21 of AC and pgs. 59,61 of D)

C source(TxA2) = +st[aPl]-ki[TxA2] ---> need to convert to units

C kg TxA2/m3*s

C = st(mol TxA2/platelet*s)*(kg TxA2/mol

C TxA2)*(platelet/mass)*(mass blood/volume)*(mass

C platelet/mass blood)

C - ki*(mass blood/volume)*(mass TxA2/mass blood)

C st = 9.51*10^-21 mol TxA2/platelet*s, kg TxA2/mol

C TxA2 = 0.3525 kg/mol, platelet/mass = 1/2.212*10^-15,

C mass blood/vol = 1056. kg/m3, mass platelet/mass

C blood = yaPl

C ki = 0.0161*s^-1, mass TxA2/mass blood = 1056.

 ELSE IF (IS.EQ.4) THEN

 S1P = 9.51E-21*0.3525*(1./2.12E-15)*1056.*yaPl

 &- 0.0161*1056.*yTxA2

C In wall fluid (1) or wall fluid with thrombus neighbor (5),

C Add the boundary terms to the bulk terms, i.e. S1P = source +

C boundary term,

C Multiply boundary term by number of faces on a boundary

C (NFcBnd), and

C Divide boundary term by Volume/Area ratio (AtoV) to convert

C from flux to volumetric source

 IF (nBldSt.EQ.1.OR.nBldSt.EQ.5) THEN

C kg TxA2/m2*s = Ma*st*(kg TxA2/mol TxA2)

C st = 9.5*10^-21 mol TxA2/platelet*s, Ma = activated

C platelet/m2, kg TxA2/mol TxA2 = 0.3525 kg/mol

 S1P = S1P + (xM*Xact*9.5E-21*0.3525)*NFcBnd/AtoV

C In cell that is wall thrombus (2) or interior thrombus (3)

C source(TxA2) mol/mL*s = st[aPl], [aPl] = [platelet/mL]

C kg/m3*s = st*(vol pl/vol thrombus)*(platelet/vol

C platelet)*(kg TxA2/mol TxA2)*(10^6 ml/m3)

 ELSE IF (nBldSt.EQ.2.OR.nBldSt.EQ.3) THEN

 S1P = 9.5E-21*0.3525*(1./2.011E-12)*1.0E6*0.9

 ENDIF

C IF(MOD(IPSTAR,500).EQ.0.0) write(*,*) IS,IPSTAR,S1P

C---- Prothrombin (see pg. 21 of AC and pgs. 59,61-62 of D)

 ELSE IF (IS.EQ.5) THEN

C source(pT) mol pT/m3*s = -Beta*[pT](Fi_at[aPl]+Fi_rt[Pl])

80

C Fi_at (units*m3/plt*s*mol pT) = 3.69*10^-6, Fi_rt

C (units*m3/plt*s*mol pT) = 6.5*10^-7

C Beta = 9.11*10^-12 mol pT/unit,

C " kg pT/m3*s = -Beta*(mass pT/mol pT)*(mass pT/mass

C blood)*(mass blood/vol)*(mol pT/mass pT)

C *[Fi_at*(mass aPl/mass blood)*(mass

C blood/vol)*(platelet/mass platelet) +

C Fi_rt*(mass Pl/mass blood)*(mass

C blood/vol)*(platelet/mass platelet)]

C mass pT/mass blood = ypT, mass blood/vol =

C 1056. kg/m3, mass aPl/mass blood = yaPl,

C mass Pl/mass blood = yPl, platelet/mass

C platelet = 1./2.12*10^-15 kg^-1,

 S1P = -9.11E-12*1056.*ypT*(3.69E-06*yaPl + 6.5E-07*yPl)*

 &1056.*(1./2.12E-15)

C In wall fluid (1) or wall fluid with thrombus neighbor (5),

C Add the boundary terms to the bulk terms, i.e. S1P = source +

C boundary term,

C Multiply boundary term by number of faces on a boundary

C (NFcBnd), and

C Divide boundary term by Volume/Area ratio (AtoV) to convert

C from flux to volumetric source

 IF (nBldSt.EQ.1.OR.nBldSt.EQ.5) THEN

C boundary source (kg/m2*s) ~= -Fi_at*Ma*[pT]

C Fi_at = (3.69*10^-9 units/plt*s*microM

C pT)*(9.11*10^-6 micromol pT/unit)(1 m3/1000*L)

C = 3.36*10^-17 m3/plt*s

C Ma = activated platelet/m2, [pT] = (mass pT/mass

C blood)*(mass blood/vol) = ypT*1056. kg pT/m3

C Must then convert to volumetric source term

 S1P = S1P - (xMact*ypT*3.36E-17*1056.)*NFcBnd/AtoV

C In cell that is wall thrombus (2) or interior thrombus (3)

 ELSE IF (nBldSt.EQ.2.OR.nBldSt.EQ.3) THEN

C source(pT) kg pT/m3*s = same as above, except using assumption

C yaPl = 1.0 and yPl = 0.0 in thrombus

C -9.11E-12*1056.*3.69E-6*1056.*(1/2.12E-15) = 1.77E04

 S1P = -1.77E04*ypT*Xact

 ENDIF

C IF(MOD(IPSTAR,500).EQ.0.0) write(*,*) IS,IPSTAR,S1P

C---- Thrombin in Bulk (see pg. 22 of AC and pgs. 59,61-62 of D)

 ELSE IF (IS.EQ.6) THEN

C source(T) = [pT](fi_at[aPl]+Fi_rt[Pl])-Gamma[T]

C tgen (kg/m3*s) = Beta*[pT](Fi_at[aPl]+Fi_rt[Pl])*(mass

C thrombin/mass prothrombin)

C = (see prothrombin source for variable definitions),

C mass thrombin/mass prothrombin = 0.508

C

 tgen = 4.792E09*ypT*(3.69E-06*yaPl+6.5E-07*yPl)*0.508

C tloss = Gamma*[T]

C where Gamma =

C k1t*[H]*[aT]/(alpha*Kat*Kt+alpha*Kat*[T]+alpha*Kt*[aT]+[aT]*[T]

C k1t = 13.33 s^-1, [H]=2.08*10^-7 kgmol/m3, alpha = 1.0,

C Kat = 10^-7 kgmol/m3, Kt=3.6*10^-8 kgmol/m3

C k1t*[H]*[aT]*[T] (kg T/m3*s) = k1t*[H]*(mass

C blood/vol)*(mass aT/mass blood) = k1T*[H]*1056. kg/m3*yT*[aT]

C [aT] (kgmol/m3) = (mass aT/mass blood)*(mass

81

C blood/vol)*(mol aT/mass aT) = yaT*1056. kg/m3*1/62000 kgmol/kg

 tloss = (49.8*yaT*yT)/(3.6E-09 + 2.89E-03*yT

 &+ 6.12E-04*yaT + 491.*yaT*yT)

 S1P = tgen - tloss

C In wall fluid (1) or wall fluid with thrombus neighbor (5),

 IF (nBldSt.EQ.1.OR.nBldSt.EQ.5) THEN

C boundary source (kg/m2*s) ~= Fi_at*Ma*[pT]

C Fi_at = (3.69*10^-9 units/plt*s*microM

C pT)*(9.11*10^-6 micromol pT/unit)(1 m3/1000*L) = 3.36*10^-17 m3/plt*s

C Ma = activated platelet/m2, [pT] = (mass pT/mass

C blood)*(mass blood/vol) = ypT*1056. kg/m3

C Must then convert to volumetric source term

 S1P = S1P + (xMact*ypT*3.36E-17*1056.)*NFcBnd/AtoV

C In cell that is wall thrombus (2) or interior thrombus (3)

 ELSE IF (nBldSt.EQ.2.OR.nBldSt.EQ.3) THEN

C tgen = Positive value of the Prothrombin source, but multiplied

C by 0.508 (MW_t/MW_pt)

 tgen = 8.973E03*ypT*Xact

C tloss = same as tloss above (Gamma*[T])

 tloss = (49.8*yaT*yT)/(3.6E-09 + 2.895E-03*yT

 &+ 6.12E-04*yaT + 491.*yaT*yT)

 S1P = tgen - tloss

 ENDIF

C IF(MOD(IPSTAR,500).EQ.0.0) write(*,*) IS,IPSTAR,S1P

C---- antiThrombin III (see pg. 22 of AC and pgs. 59,61-62 of D) –

C Same no matter where

C source(aT) = -Gamma*[T] (84.077 =

C 0.047*1056*mass_antithrombinIII/mass_thrombin)

C where Gamma =

C k1t*[H]*[aT]/(alpha*Kat*Kt+alpha*Kat*[T]+alpha*Kt*[aT]+[aT]*[T]

C k1t = 13.33 s^-1, [H]=2.08*10^-7 kgmol/m3, alpha = 1.0,

C Kat = 10^-7 kgmol/m3, Kt=3.6*10^-8 kgmol/m3

C k1t*[H]*[aT]*[T] (kg aT/m3*s) = k1t*[H]*(mass

C blood/vol)*(mass aT/mass blood) = k1T*[H]*1056. kg/m3*yaT*[T]

C [T] (kgmol/m3) = (mass T/mass blood)*(mass

C blood/vol)*(mol T/mass T) = yT*1056. kg/m3*1/36600 kgmol/kg

 ELSE IF (IS.EQ.7) THEN

 S1P = (-84.6*yaT*yT)/(3.6E-09 + 2.89E-03*yT

 &+ 6.12E-04*yaT + 491.*yaT*yT)

C IF(MOD(IPSTAR,500).EQ.0.0) write(*,*) IS, IPSTAR, S1P

 ENDIF

 RETURN

 END

C**

 SUBROUTINE VISMOL(VISM)

C Viscosity (molecular)

C**

C---*

C STAR-CD VERSION 4.06.000

C---*

 INCLUDE 'comdb.inc'

 COMMON/USR001/INTFLG(100)

82

 INCLUDE 'usrdat.inc'

 DIMENSION SCALAR(50)

 EQUIVALENCE(UDAT12(001), ICTID)

 EQUIVALENCE(UDAT03(009), DUDX)

 EQUIVALENCE(UDAT03(010), DVDX)

 EQUIVALENCE(UDAT03(011), DWDX)

 EQUIVALENCE(UDAT03(012), DUDY)

 EQUIVALENCE(UDAT03(013), DVDY)

 EQUIVALENCE(UDAT03(014), DWDY)

 EQUIVALENCE(UDAT03(015), DUDZ)

 EQUIVALENCE(UDAT03(016), DVDZ)

 EQUIVALENCE(UDAT03(017), DWDZ)

 EQUIVALENCE(UDAT03(018), SECINV)

 EQUIVALENCE(UDAT11(001), CP)

 EQUIVALENCE(UDAT11(002), DEN)

 EQUIVALENCE(UDAT11(006), P)

 EQUIVALENCE(UDAT11(007), T)

 EQUIVALENCE(UDAT11(009), SCALAR(01))

 EQUIVALENCE(UDAT11(017), SCALAR(09))

 EQUIVALENCE(UDAT11(059), U)

 EQUIVALENCE(UDAT11(060), V)

 EQUIVALENCE(UDAT11(061), W)

 EQUIVALENCE(UDAT11(067), X)

 EQUIVALENCE(UDAT11(068), Y)

 EQUIVALENCE(UDAT11(069), Z)

C--

C

C This subroutine enables the user to specify the molecular

C viscosity

C (VISM) in an arbitrary manner for boundaries and cells.

C

C IFLUTYP - (Free surface only) Light/Heavy fluid flag

C IFLUTYP=1 for light fluid

C IFLUTYP=2 for heavy fluid

C

C ** Parameter to be returned to STAR: VISM

C

C--

C

C Sample coding: To calculate viscosity from the 'power law'

C constitutive relation for Non-Newtonian flow (as in

C the standard STAR coding)

C

C EM=0.001

C EN=2.

C VISM=EM*(ABS(SECINV))**(0.5*(EN-1.))

C--

C---- Change the viscosity of a cell depending on whether or not it is

C a thrombus

 ThrFr = SCALAR(09)

 IF (ThrFr.GE.0.9999) THEN

 VISM = 1.0

 ENDIF

83

 RETURN

 END

c**

 subroutine posdat(level)

c Post-process data

C**

C---*

C STAR-CD VERSION 4.06.000

C---*

 USE allmod

 IMPLICIT NONE

 INCLUDE 'std.inc'

c

c Argument variables

 INTEGER level

C--

C

C This subroutine enables the user to output data and is called

C at the beginning and at the end of each iteration/time step,

C i.e.

C if (level.eq.1) then

c.> called at the beginning of iteration/time step

C else if (level.eq.2) then

c.> called at the end of iteration/time step

C end if

C Any user code which is not enclosed in the IF condition will

C be executed for both calls

C

C Note: 1. File units available to the users for opening their own

C files are from 84 to 89. Users may write to unit 6 or 60

C if they want to see their output on the terminal or

C the run file.

C 2. All variables passed to this routine use STAR cell

C numbering, which is different from pro-STAR cell numbers.

C pro-STAR cell number can be obtained from a STAR cell

C number ICSTAR by ICPROSTAR=ICLMAP(ICSTAR)

C--

C

C Sample coding: (a) To write values of U-velocity component,

absolute

C pressure and temperature at 5 specified points

C to a file at each time step (for plotting).

C

C (b) To calculate average temperature at all walls

C and in cell next to walls in domain 1.

C

C (c) To calculate and print mass averaged

concentra-

C tion of SC1 at the end of the run into the

C run file.

C--

C For Blood Status (nBldSt):

C 0 = interior fluid

C 1 = wall fluid

C 2 = wall thrombus

84

C 3 = interior thrombus

C 4 = interior fluid with thrombus neighbor

C 5 = wall fluid with thrombus neighbor

C

C M = concentration of platelets on the surface (Pl/m2)

C Mact = concentration of activated platelets on the surface

C (Pl/m2)

C Sp = 1-M/Minfinity = fraction of surface not covered by

platelets

C Xact = fraction of activated platelets on surface

C

C Dimension variables to be used

 REAL(ra) AtoV,xMinf

 REAL(ra) rpadh,rpadhm,apadh,apadhm,upemb,upembm

 REAL(ra) deltha,delthu,uthromb,athromb

 INTEGER iyPl,iyaPl,inBldSt,iThrFr,iactT,iShrRt,inewThr,iNFcBnd,

 &iNFcThr,ixM,ixMact,iXact,iSp,iPlSrc,iaPlSrc,ipulse,inPlsFl

 INTEGER ir,nset,IS,IC,nd,NBRCLL,fset,j,jf

 iyPl = 1

 iyaPl = 2

 inBldSt = 8

 iThrFr = 9

 iactT = 10

 iShrRt = 11

 inewThr = 12

 iNFcBnd = 13

 iNFcThr = 14

 ixM = 15

 ixMact = 16

 iXact = 17

 iSp = 18

 iPlSrc = 19

 iaPlSrc = 20

 ipulse = 21

 inPlsFl = 22

C Stuff to do at the beginning of the time step (Level = 1)

 IF (level.EQ.1) THEN

C In the first time step, set-up the Blood Status for cells next to a

C wall.

C Make sure that this stuff is only done once

 IF (INTFLG(20).EQ.0) THEN

 INTFLG(20) = 1

 INTFLG(21) = -1

C Set the number of wall boundary faces on a cell

 do ir=0,regi_no

 if (regi(ir)%type.eq.WALL) then

 call FsetBoun(fs,0,ND_ALL,NSD_ALL,ir,ISIDE_ALL)

 do nset=1,fs%no

 do IS=fs%ns(nset), fs%ne(nset)

 IC = lfc(1,IS)

 c(IC,inBldSt) = 1.0

 c(IC,iNFcBnd) = c(IC,iNFcBnd) + 1.0

85

 enddo

 enddo

 endif

 enddo

 ENDIF

 IF (INTFLG(21).NE.ITER) THEN

C---- Loop through all of the cells to do calculations at the beginning

C of the time step

 DO nd=1,doma_no

 if (doma(nd)%mattyp.eq.FLUID) then

 call cset(cs,0,nd,NSD_ALL,INTERNAL)

 do nset=1,cs%no

 do IC=cs%ns(nset),cs%ne(nset)

 delthu = 0.0

 deltha = 0.0

 c(IC,iPlSrc) = 0.0

 c(IC,iaPlSrc) = 0.0

C---- Calculate the activation time for each cell, if it hasn't already

C been calculated

C Only calculate it in cells next to the wall, or next to uthrombs

C Uses Hellum's equation (see pg. 73 of dissertation) where 0.035

C is viscosity of blood in poise.

 IF (c(IC,inBldSt).EQ.1.0.OR.c(IC,inBldSt).EQ.4.0) THEN

 IF (c(IC,iShrRt).GT.0.0.AND.c(IC,iactT).EQ.0.0) THEN

 c(IC,iactT) = TIME + 4.0E6*(c(IC,iShrRt)*0.035)**(-2.3)

 ENDIF

 ENDIF

C---- Calculate the "pulse" of activated platelets when activation time

C is reached and set the flag that it has been reached

 IF (TIME.GT.c(IC,iactT).AND.c(IC,iactT).GT.0.0) THEN

 IF (c(IC,inPlsFl).EQ.0.0) THEN

 c(IC,ipulse) = c(IC,ixM) - c(IC,ixMact)

 c(IC,inPlsFl) = 1.0

 ENDIF

 c(IC,ixMact) = c(IC,ixM)

 c(IC,iXact) = 1.0

 ENDIF

C---- Calculate the Ratio of Volume of the Cell / Area of a Face

C Assumes a regular tetrahedral mesh -- even if not exact, good

C enough approx.

C Used to Convert Fluxes (mass/area*time) to source terms

C (mass/volume*time)

C VOLP comes from usrdat.inc (see nom.inc)

C --This one is for tetrahedral meshes

c AtoV = 0.555*VOL(IC)**(1./3.)

C --This one is for flat cells near boundary

c AtoV = 4.0E-6

C --This one is for hexahedral meshes

 AtoV = VOL(IC)**(1./3.)

C---- Define and check the xMinf, Sp, xM, xMact,Xact terms

C xMinf = maximum platelet surface coverage (platelets/m2)

 xMinf = 6.0E10

C---- Calculate source terms for Pl, aPl--store as scalars for use in

86

C sorsca.f

C---- If cell is next to a wall

 IF (c(IC,inBldSt).EQ.1.0.OR.c(IC,inBldSt).EQ.5.0) THEN

 uthromb = 0.0

 athromb = 0.0

 upembm = 0.0

 upemb = 0.0

 rpadhm = 0.0

 rpadh = 0.0

 apadhm = 0.0

 apadh = 0.0

C---- Define the upemb, rpadhm, apadhm, thromb terms

C Calculate flux of resting platelets embolizing FROM the wall

C upemb (plt/m2*s) = (frac. rp embolized/time)*(conc. of resting

C platelet on surface)

C frac. rp embolized/time = (1-Femb)/(120 s) -- see

C D, p. 77, and AC, pg. 23

C conc. of resting platelet on surface = M*(1-Xa)

C upembm (kg/m2*s) = upemb(plt/m2*s)*(mass platelet/platelet)

C mass platelet/platelet = 2.12*10^-15 kg/plt

 upemb = ((1-EXP(-0.000309*c(IC,iShrRt)))/120.0)*c(IC,ixM)*

 &(1-c(IC,iXact))

 upembm = upemb*2.12E-15

C Calculate the flux of resting platelets adhering TO the wall

C rpadhm (kg/m2*s) = -S*krs*[Pl]

C S (plt/m2), krs = 0.0000025 m/s, [Pl] (kg/m3) =

C (mass Pl/mass blood)*(mass blood/vol blood)

C mass Pl/mass blood = yPl, mass blood/vol blood = 1056 kg/m3,

C rpadh (plt/m2*s) = rpadhm*(platelet/mass platelet)

C platelet/mass platelet = 1/2.12*10^-15 kg^-1

 rpadhm = c(IC,iSp)*0.0000025*c(IC,iyPl)*1056.

 rpadh = rpadhm*(1.0/2.12E-15)

C Calculate the flux of active platelets adhering TO the wall

C apadhm (kg/m2*s) = -S*kas*[aPl]

C S (pl/m2), kas = 0.0035 m/s, [aPl] (kg/m3) = (kg platelet/kg

C blood)*(kg blood/vol)

C kg platelet/kg blood = yaPl, kg blood/vol = 1056. kg/m3

C apadh (plt/m2*s) = apadhm*(platelet/mass platelet)

C platelet/mass platelet = 1.0 platelet/2.12E-15 kg,

 apadhm = 0.0035*1056.*c(IC,iyaPl)*c(IC,iSp)

 apadh = apadhm*(1.0/2.12E-15)

C Calculate the mass of unactivated platelets adhering to

C activated platelets on the surface (i.e. forming uthrombs)

C uthromb (kg/m2*s) = -Ma/Minf*kt*(mass platelet/mass

C blood)*(mass blood/volume)

C kt = 3.5E-3 m/s, mass platelet/mass blood = yaPl, mass

C blood/volume = 1056 kg/m3

 uthromb = c(IC,ixMact)/xMinf*3.5E-3*1056.*c(IC,iyPl)

C Calculate the mass of activated platelets adhering to activated

C platelets on the surface

C athromb (kg/m2*s) = -Ma/Minf*kt*(mass platelet/mass

C blood)*(mass blood/volume)

C kt = 3.5E-3 m/s, mass platelet/mass blood = yaPl, mass

C blood/volume = 1056 kg/m3

 athromb = c(IC,ixMact)/xMinf*3.5E-3*1056.*c(IC,iyaPl)

C Calculate the source terms used in sorsca.f (i.e. S1P)

C Convert to a volumetric source from flux by multiplying by

87

C number of faces on a boundary (NFcBnd),

C and dividing by Volume/Face Area ratio (AtoV)

 c(IC,iPlSrc) = (upembm - rpadhm - uthromb)*

 &c(IC,iNFcBnd)/AtoV

 c(IC,iaPlSrc) = -(apadhm + athromb)*c(IC,iNFcBnd)/AtoV

C Calculate the change in volumetric fraction of the cell

C occupied by uthrombs

C 0.00472 comes from vol/mass of platelet: 10.2 fL and 2.12 pg

C 0.8 comes from assumption of 20% void volume in a uthrombs

 delthu = delthu + uthromb*c(IC,iNFcBnd)/AtoV*0.00472/0.8

 deltha = deltha + athromb*c(IC,iNFcBnd)/AtoV*0.00472/0.8

 ENDIF

C In interior fluid with uthrombs neighbor (4) or wall with

C uthrombs neighbor (5),

C Add the uthrombs contribution to the bulk terms, i.e. S1P =

C source + uthrombs term,

C Multiply uthrombs term by number of faces on a uthrombs

C (NFcThr)

 IF (c(IC,inBldSt).EQ.4.0.OR.c(IC,inBldSt).EQ.5.0) THEN

 uthromb = 0.0

 athromb = 0.0

C Calculate the mass of unactivated platelets adhering to

C activated platelets on the uthrombs

C thromb (kg/m2*s) = -Xact*kt*(mass platelet/mass blood)*(mass

C blood/volume)

C kt = 3.5E-3 m/s, mass platelet/mass blood = yaPl, mass

C blood/volume = 1056 kg/m3

C --Paul uses Xact here instead of Ma/Minf (see above).... why?

C Convert to a volumetric source from flux by multiplying by

C number of faces on a uthrombs (NFcThr),

C and dividing by Volume/Face Area ratio (AtoV)

 uthromb = c(IC,iXact)*0.0035*1056.*c(IC,iyPl)

C athrombs growth (kg/m^3) = Xact*kt*yPl*density of

C blood*area/volume

 athromb = c(IC,iXact)*0.0035*1056.*c(IC,iyaPl)

C Re-Calculate the source terms used in sorsca.f (i.e. S1P)

 c(IC,iPlSrc) = c(IC,iPlSrc) - uthromb*c(IC,iNFcThr)/AtoV

 c(IC,iaPlSrc) = c(IC,iaPlSrc) - athromb*c(IC,iNFcThr)/AtoV

C Calculate the change in volumetric fraction of the cell

C occupied by uthrombs

C 0.00472 comes from vol/mass of platelet: 10.2 fL and 2.12 pg

C 0.8 comes from assumption of 20% void volume in a uthrombs

 delthu = delthu + uthromb*c(IC,iNFcThr)/AtoV*0.00472/0.8

 deltha = deltha + athromb*c(IC,iNFcThr)/AtoV*0.00472/0.8

 ENDIF

C---- Adjust the ThrFr, deltha, delthu terms

 c(IC,iThrFr) = c(IC,iThrFr) + deltha + delthu

 IF (c(IC,iThrFr).GE.0.9999) c(IC,iThrFr) = 1.0

 c(IC,ixM) = c(IC,ixM) + (rpadh + apadh - upemb)*DT

 IF (c(IC,ixM).GT.xMinf) c(IC,ixM) = xMinf

 c(IC,iSp) = 1.0-(c(IC,ixM)/xMinf)

 IF (c(IC,iSp).LT.0.0) c(IC,iSp) = 0.0

88

 c(IC,ixMact) = c(IC,ixMact) + apadh*DT

 IF (c(IC,ixMact).GT.c(IC,ixM)) c(IC,ixMact) = c(IC,ixM)

 enddo

 enddo

 endif

 END DO

 INTFLG(21) = ITER

 ENDIF

C---- If at the end of the time step

 ELSE IF(level.EQ.2) THEN

 DO nd=1,doma_no

 if (doma(nd)%mattyp.eq.FLUID) then

 call cset(cs,0,nd,NSD_ALL,INTERNAL)

 do nset=1,cs%no

 do IC=cs%ns(nset),cs%ne(nset)

C Change the pulse flag for when activation time has been reached.

 IF (c(IC,inPlsFl).EQ.1.0) THEN

 c(IC,inPlsFl) = 2.0

 c(IC,ipulse) = 0.0

 ENDIF

C Looking at all cells that are thrombus (i.e. have a high viscosity),

C and it's a new thrombus

 IF (c(IC,iThrFr).GE.0.9999.AND.c(IC,inewThr).EQ.0.0) THEN

C Changing Blood Status of cells that became thrombus

 IF (c(IC,inBldSt).EQ.0.0.OR.c(IC,inBldSt).EQ.4.0) THEN

 c(IC,inBldSt)=3.0

 ELSE IF (c(IC,inBldSt).EQ.1.0.OR.c(IC,inBldSt).EQ.5.0) THEN

 c(IC,inBldSt)=2.0

 ENDIF

c-----FIND NEIGHBOR CELLS AND IDENTIFY AS SUCH

 do jf=1,c2f(IC)%No

 IS = c2f(IC)%List(jf)

 IF(IS.GT.0) THEN

 do j=1,2

 IF(lfc(j,IS).NE.IC) THEN

 NBRCLL = LFC(j,IS)

 c(NBRCLL,iNFcThr) = c(NBRCLL,iNFcThr) + 1.0

 IF (c(NBRCLL,inBldSt).EQ.0.0) THEN

 c(NBRCLL,inBldSt) = 4.0

 ELSE IF (c(NBRCLL,inBldSt).EQ.1.0) THEN

 c(NBRCLL,inBldSt) = 5.0

 ENDIF

 ENDIF

 enddo

 ENDIF

 enddo

 c(IC,inewThr) = 1.0

89

 ENDIF

 enddo

 enddo

 endif

 ENDDO

 ENDIF

 RETURN

 END

	Brigham Young University
	BYU ScholarsArchive
	2008-07-28

	The Development of a Computational Model of Thrombosis in Hemodialysis Catheters
	Daniel J. Lattin
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1: Introduction
	Chapter 2: Background
	Blood-Material Interactions
	Computational Modeling
	Previous CFD Models

	Chapter 3:Objectives
	Chapter 4: Creating The Mesh
	Designing the Geometry
	Mesh Generation

	Chapter 5: Porting the Model into STAR-CD
	Defining Basic Model Properties
	Creating User Subroutines
	Surface Reactions
	Source Terms
	Shear Activation of Platelets
	Shear-Dependence of Diffusivity
	Viscosity of a Thrombus

	Comparison with Goodman’s Results

	Chapter 6: Overcoming Challenges of Pushing the Software Limits
	User-Defined Variables
	STAR-CD Internal Variables
	Upgrading Versions of STAR-CD
	Summary of Software Challenges and Solutions

	Chapter 7: Determining Feasibility of Three-Dimensional Computations
	Generating Computational Meshes
	Defining Problem Parameters and Calculating a Solution
	Feasibility with Current Hardware Limitations

	Chapter 8: Performing a Preliminary Comparison
	CFD-Only Results
	Preliminary Experimental Results
	Blood Collection and Experimental Apparatus
	Comparison of Catheter Designs
	Time Course of Thrombus Development
	Conclusions from Preliminary Comparison

	Chapter 9: Conclusions and Recommendations
	Conclusions
	Recommendations

	References
	Appendix A: Paul Goodman's Code Overview
	Appendix B: Automeshing in Pro-STAR 4.06
	Appendix C: Setting Up a Pro-STAR 4.06 Model
	Appendix D: Running a Batch Solution in STAR-CD
	Appendix E: Post-Processing in Pro-STAR 4.06
	Appendix F: User Subroutines in Pro-STAR 4.06

