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ABSTRACT

Molecular Modeling of DNA for a Mechanistic Understanding of Hybridization

Terry Schmitt
Department of Chemical Engineering

Doctor of Philosophy

DNA microarrays are a potentially disruptive technology in the medical field, but
their use in such settings is limited by poor reliability. Microarrays work on the principle
of hybridization and can only be as reliable as this process is robust, yet little is known
at the molecular level about how the surface affects the hybridization process. This work
uses advanced molecular simulation techniques and an experimentally-parameterized coarse-
grain model to determine the mechanism by which hybridization occurs on surfaces and to
identify key factors that influence the accuracy of DNA microarrays. Comparing behavior
in the bulk and on the surface showed, contrary to previous assumptions, that hybridization
on surfaces is more energetically favorable than in the bulk. The results also show that
hybridization proceeds through a mechanism where the untethered (target) strand often
flips orientation. For evenly-lengthed strands, the surface stabilizes hybridization (compared
to the bulk system) by reducing the barriers involved in the flipping event.

Additional factors were also investigated, including the effects of stretching or com-
pressing the probe strand as a model system to test the hypothesis that improving surface
hybridization will improve microarray performance. The results in this regard indicate that
selectivity can be increased by reducing overall sensitivity by a small degree. Another fac-
tor that was investigated was the effect of unevenly-lengthed strands. It was found that,
when unevenly-lengthed strands were hybridized on a surface, the surface may destabilize
hybridization compared to the bulk, but the degree of destabilization is dependent on the
location of the matching sequence. Taken as a whole, the results offer an unprecedented
view into the hybridization process on surfaces and provide some insights as to the poor
reproducibility exhibited by microarrays. Namely, the prediction methods that are currently
used to design microarrays based on duplex stability in the bulk do a poor job of estimating
the stability of those duplexes in a microarray environment.
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Chapter 1

Introduction

1.1 Motivation

DNA microarrays–high throughput, parallel assays for determining in parallel the

genes present in a sample–have been identified as a key technology in genomic sciences

and emergent medical techniques. Despite their abundant use in laboratories, microarrays

are not used in the clinical setting to their fullest potential. This is due to the fact that

reproducible results are difficult to obtain. To date, efforts made to optimize microarrays

have not lead to a robust device. The majority of these optimization efforts have focused on

laboratory techniques and fabrication processes, but have not addressed the molecular level

phenomena upon which microarrays function. The purpose of this research is to provide the

needed understanding of these molecular-level phenomena so that better microarrays can be

developed.

1.2 Microarrays

A DNA microarray is a flat surface, such as a glass slide, that has had thousands of

single stranded DNA (ssDNA) attached to it for the purpose of determining gene expression

in a sample. Fodor et al. first published an outline of the technology needed to develop

both protein and DNA microarrays in the early 1990s [1, 2]. In these papers, Fodor et al.

covered methods for building single stranded DNA onto the glass plate and analyzing where

hybridization has occurred. While alternative methods have been developed to attach ssDNA

to a solid substrate [3–5], microarrays still function the same way originally outlined in the

Fodor et al. paper. Once the ssDNA has been attached to the surface, fluorescently tagged

DNA samples are incubated over the chip. Hypothetically, these samples should hybridize

with complementary sequences among the ssDNA tethered to the surface. Since the ssDNA
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Figure 1.1: A simplified microarray at the molecular level. Target strands hybridize to probe
strands attached to the surface.

sequences were attached to specific locations on the microarray, a computer can measure the

fluorescent signals given off by the hybridized samples to determine the sequences present

in the unknown samples. Figure 1.1 shows a cartoon representation of what a microarray

surface looks like and Figure 1.2 gives a representation of how a microarray might appear to

the naked eye. An example of how microarrays are used is given below.

Microarrays have revolutionized genomic science with uses in sequencing [6], analyzing

DNA and RNA samples [7,8], drug discovery and delivery specialization [9], and monitoring

gene expression [10–12]. The study performed by Hayashi et al. [13] is characteristic of the

capabilities of microarrays. In this work, Hayashi et al. monitored the expression of genes in

the white blood cells of diabetic and non-diabetic rats before and after feeding. The intent

was to find out if diabetic traits could be observed and monitored from the white blood

cells. They harvested RNA from the rats before and after feeding and analyzed the RNA to

observe which genes were actively being transcribed under different conditions. The RNA
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Figure 1.2: A used microarray platform. Computers analyze the fluorescence at varying
locations to determine what genes were in the sample.

from the diabetic rats was tagged with a different fluorescent color than the RNA from the

control rats. This allowed simultaneous comparative analysis of the two groups. Hayashi et

al. compared the relative extent of expression of different genes in the diabetic and control

rats. They showed that genes linked to diabetes may be monitored by testing just the white

blood cells. This finding was important since obtaining and testing white blood cells is much

easier than traditional diagnosis methods that require tissue testing samples of liver, adipose,

or muscle cells.

Despite successes like the one above, microarrays have yet to be accepted for general

use by the medical community [14]. To date, only one microarray is approved by the FDA for

use in clinical settings [15]. The purpose of this array is to tailor drug dosage to the unique

metabolism of the patient to maximize the effectiveness of the drug while minimizing risk

of deleterious side effects. While many other drug treatments could also be tailored like this

one, no others have been approved by the FDA. Drug tailoring is not the only possible clinical

application of DNA microarrays. As shown above, they may also be used as a diagnostic
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tool. By monitoring what genes are being expressed in a patient, doctors can determine

which step in a complex biochemical system is leading to previously undiagnoseable health

concerns. For example, insomnia patients could be tested to see if any of the hundreds of

proteins involved in the circadian clock are not being produced in their body, causing the

later steps in the response pathway to fail. Similarly, people worried about specific diseases

may be tested to determine if they are expressing genes associated with those diseases.

1.2.1 Microarray Limitations

The problem that keeps microarrays from being widely used is that the results are

not consistent [16–18]. Several published works demonstrate the inconsistency of microar-

rays [19–25]. One notable example is found in the works of three independent research

groups studying embryonic, neural, and hematopoietic mouse cells [26–28]. The goal of

the independent studies was to determine the genes that carried the “stem cell” traits, or

which genes were “stemness genes.” Each research group used nearly identical methods and

materials, including microarrays made by the same company. Fortunel et al. found 385

genes that were common among the three types of stem cells, Ivanova et al. found 283, and

Ramalho-Santos et al. found 230. When the three lists where compared, however, only one

gene was found by all three groups [28]. To determine if methodology was the cause of the

discrepancy, Fortunel et al. compared the results obtained for each type of stem cell and

found considerable overlap. They determined that the aims of the experiment could not be

achieved with current microarray technologies. Specifically, the variability in data was so

high that specific conclusions could not be drawn.

1.2.2 Experimental Optimization

In an effort to eliminate possible inconsistencies originating from poor experimental

skill and methods, and to determine the cause of conflicting results, the FDA performed an

exhaustive study on microarray performance [29–39]. The study included researchers from

government, industry, and academia in a group known as the MicroArray Quality Control

(MAQC) consortium [33]. The MAQC consortium evaluated two high-quality RNA samples

on seven microarray platforms with three methodologies. Each platform was used at three

4



independent sites with five replicates at each site. The experimental design included stan-

dardization of data reporting, common analysis tools, useful controls to provide confidence

in the consistency and reliability, and stringent intersite protocol. In this manner the MAQC

consortium was able to separate microarray performance variation from variations due to

experimental procedures and reporting methods.

The MAQC consortium tested the microarrays on both the ability to detect genes that

were present in the samples and also gene expression levels. The former is an easier test, while

the latter is very sensitive to the amount of hybridization occurring. The results showed a

concordance rate of 80-95% for multiple tests done at the same site with the same microarray

brand. This means that when the scientists compared the gene lists from different replicates

of the same experiment, 80-95% of the genes on the lists were the same. Inter-platform

comparisons from different sites yielded 60-80% agreement in gene list overlap with only

one site dropping below 60%. Comparison of the relative expression level between devices

yielded a correlation of R = 0.87 − 0.69. The amount of overlap in the results show that

genes are being identified by hybridization onto the microarrays at a statistically significant

rate. In other words, DNA microarrays can give accurate results in some circumstances, but

the cross-site variation shows that accuracy of microarray results can be improved. These

improvements must be made if the devices are to be used in clinical settings or for medical

diagnostics [37].

At first glance, agreement of 60-80% among different platforms at different sites seems

a strong performance, but these results were somewhat biased in that they were obtained

using only the strongly expressed genes. To eliminate noise, genes with low level expression

were left out. Quantitatively, measurements of the relative amount of change in gene ex-

pression of genes expressed at low levels varied as much as 60% [30]. Moreover, since this

is an idealized study with ideal samples, the concordance would likely drop if more realistic

samples of biological relevance were used [37].

The MAQC consortium pointed out that “the expression patterns generated were

reflective of biology.” [37] In other words, the results show that hybridization is occurring

on the surfaces of the microarrays even if it does not occur with high fidelity. Microarrays

are designed based on melting points and relative stabilities of the possible probes in the

5



sequence of interest. These data, however, are from bulk systems and do not account for

characteristics of a microarray system that can change the relative stability of a DNA duplex,

such as the presence of a surface and the manner in which multiple probe strands are held

in close proximity while binding to a target strand. Therefore, as demonstrated by the

MAQC, optimizing only the laboratory procedures is not enough. Although the principle of

identifying genes and gene expression levels using hybridization is sound, the engineering of

the devices needs to address the hybridization process itself.

The mechanics of the hybridization process, however, are elusive. Experimental ap-

proaches have a limited resolution and molecular level data are sparse. This lack of data

leaves much unknown about the actual mechanics of the hybridization process. In particular,

very little is known about the effects of a surface on a hybridizing duplex or if bulk data

can be used to approximate surface conditions. More data of higher resolution details of

the hybridization process are needed in order to improve the engineering of DNA microar-

rays. Data with molecular level resolution is difficult to generate from experiments however.

Therefore, it may be necessary to use data generated from computer simulations of molec-

ular level interactions as a first step approximation for how to improve DNA microarray

design [40].

Recent improvements in molecular modeling techniques and computational power

have opened the doors to the possibility of generating the type of data that would be needed

to improve microarray design. Until recently, computer simulations of DNA were too com-

putationally demanding to obtain both the resolution and timescales that are necessary to

characterize hybridization. Simulations of sufficient resolution could not reach adequate sim-

ulation time to characterize hybridization while simulations of long time frame events did

not show the molecular level interactions that govern hybridization. Section 1.3 outlines

the past work that has been done and the improvements that have been made to simulation

techniques to make possible computer simulations that can generate the type of data that

can be used to improve microarray design.

6



1.3 Increased Understanding via Simulation

1.3.1 Atomistic Simulations

Because hybridization is a single-molecule phenomenon which current experimental

techniques cannot currently capture with high resolution, molecular simulations have been

used in a limited way to understand microarray behavior. However, the computational

demands of DNA simulations have limited the volume of work on the subject. In order to

produce significant data about hybridization, the simulation must sample the phase space

containing the hybridized duplex, the completely separated strands, and a continuous area of

phase space connecting these points. To obtain correct physical properties, this must happen

multiple times in a simulation. While atomistic simulations of DNA in bulk have received

regular attention [41–48], they generally address stand orientation, persistence length, and

hydration shells with little information on hybridization and other phenomena that are vital

to improving microarrays. Some prominent all-atom studies that did explore hybridization

have been done but the phenomena examined are limited. The works by Hagan et al. [49],

Maiti et al. [50], and Perez et al. [42] are of particular interest. Hagan et al. studied the

kinetic pathway for the binding and unbinding of a terminal base pair of a DNA duplex.

Using transition path sampling, a computationally demanding technique, this group was able

to simulate the binding events with enough efficiency to obtain statistically significant results.

They mapped a detailed pathway of the mechanism for the initial stage of hybridization,

but due to the simulation time required to observe this phenomenon, this is the only study

to date that has produced these data. Even with the advanced simulation techniques this

group was only able to generate the pathway for the terminal base pair of a three base pair

duplex. Specifically, they held all the bases in the simulation fixed except the cytosine they

endeavoured to observe making the flipping transition.

The other two studies are significant due to the size of the systems or the time scales

explored. The work by Maiti et al. [50] investigated paranemic crossover DNA. Paranemic

crossovers are complexes of DNA where four strands are intertwined. Their studies included

super-complexes as long as 49 bases per strand for a contour length of ∼17 nm. However,

as with other atomistic studies, the hybridization process itself was never observed or char-
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acterized. The authors started the simulation with the four strands intertwined and simply

let the system relax. The work by Perez et al. [42] is the first to simulate an atomistic DNA

dodecamer on the µs time scale. At this long time scale, partial and total openings were

observed, but base flipping and other phenomena needed for DNA melting were not sampled.

Both these studies required advanced molecular dynamics simulation techniques, but were

still limited by computational demands. The Maiti et al. study was only able to simulate 3

ns after equilibration and the Perez et al. study required 15 years equivalent of computation

time.

In the aforementioned studies, the DNA was simulated to replicate bulk phase behav-

ior. The microarray system is characterized by the presence of a surface and has received less

treatment by researchers. Wong and Pettit performed one of the first simulations of DNA

interacting with a surface [51]. In their simulation, the double stranded DNA dodecamer is

attached to a surface and allowed to equilibrate to its native conformation. The surface was

modeled as a glass substrate with epoxides grafted onto it. The DNA was attached to the

surface using an amine linker. All interaction parameters were taken from the CHARMM

forcefield [52–54]. In the 7 ns molecular dynamics simulation of this study, the DNA did not

collapse to the surface. Due to salt induced colloid-like interactions, the DNA tilts towards

its nearest neighbor, which was a periodic image of itself in this simulation.

Wong et al. completed a second atomistic study of DNA attached to a surface that was

extended from 7 ns to 40 ns [55]. The longer time scale allowed two different conformations

to be seen. The first was the same tilted confirmation seen in the first experiment. In

the second conformation, the DNA remained upright, but the linker collapsed allowing the

DNA to come in contact with the surface. In the 40 ns simulation the DNA only made one

transition from its initial position to the tilted position and back to the upright position

with the collapsed linker. This single transition did not make it possible to determine the

most stable conformation.

These studies show that the detail gained from atomistic models is overshadowed

by the computational demands. Moreover, only a few studies have been done for strands

attached to a surface, and all simulated systems are limited to the amount of simulation

time that can be generated computationally. In short, atomistic simulation reported in the
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literature have not been able to determine the stability of the DNA duplex due to the fact

that the hybridization/melting transitions can not occur on the time scales accessed with

these models. A simpler model is needed to capture the hybridization process that is so

fundamental to microarray perfomrance.

1.3.2 Meso-scale Simulations

The computational limitations of atomistic models have lead many researchers to

use meso-scale models for DNA in both theory and simulation [56]. Simple mathematical

and low-resolution models have been developed that can describe some DNA phenomena

including the orientational dependence of successive bases and the elastic properties of the

molecules [57–72]. Most of these simpler models, however, can not be used to simulate the

microarray system because they do not describe melting/hybridization or are not directly

applicable to molecular simulations. One example of this is the work by Bruant et al. where

groups of atoms were represented as beads [71]. The model reproduced bending, torsional,

and stretching rigidities, but did not address thermal denaturation or electrostatic interac-

tions. Tepper and Voth published a model that represented DNA as a complex network

of beads and springs in a coarse grain solvent [72]. Their model also failed to characterize

hybridization.

Several coarse grain models have been proposed that allow melting and hybridiza-

tion [56]. Drukker and Schatz developed a two site per nucleotide bead-spring model [73].

The model, with one site for the backbone and one for the base, allows for hybridization, but

does not account for columbic interactions, describe the major and minor grooves of DNA,

or address the mechanical properties of DNA. Another two-site model by Buyukdagli et al.

accounts for stacking interactions, but still neglects columbic interactions and mechanical

properties and does not have the correct geometry [74]. A model developed by Sales-Pardo et

al., is a bead-pin model with beads representing the sugar backbone and the pins represent-

ing the bases [75]. Despite its advantages, this model does not address the elastic properties

of DNA or electrostatic interactions.

The most applicable meso-scale model was produced by Knotts, Rathore, Schwartz

and de Pablo. Their model uses three sites to represent a nucleotide, one each for the
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phosphate backbone, sugar, and base. Besides accurately portraying the geometry and in-

tramolecular interactions of DNA, this model also closely reproduces melting curve data

found in experiments [56]. As this model was originally parameterized, it predicted DNA

melting, but the electrostatic repulsion of the backbones prevented the strands from hy-

bridizing. A recent modification of this model by Sambriski et al. added solvation effects to

make hybridization possible [76–78]. This model allows for the simulation of hybridization

on a surface.

Before this study, only one meso-scale DNA model had been used to simulate hy-

bridization of a target to a probe tethered to a surface. Jayaraman, Hall, and Genzer

performed two studies attempting to optimize microarray construction [79, 80]. Their first

study investigated the effect of probe length on hybridization [79]. It used a self avoiding

polymer chain model on a lattice to represent the DNA. This means that each DNA strand

was represented by a chain of beads. Each bead represented the length of DNA needed for

one turn, or approximately 11 nucleotides. One of the draw backs of the lattice system used

in this study is that it discretizes the space that the DNA strands may occupy. This means

that the DNA must move through the simulation space like pieces on a peg board instead

of strands in a fluid. Additionally, since each bead represented 11 nucleotides, each probe

segment was restricted to interact only with its compliment on the target segment. One

result of this approach is that the possibility of mismatches is eliminated. But despite these

shortcomings in the model, this study was able to show that hybridization is most likely

to start at the ends of the strands, and that the segments towards the stand centers would

remain bound longer. Unfortunately, due to being restricted to a lattice, no mechanism for

hybridization could be obtained. The second study used the same model to investigate the

effect of probe density and length, but still suffered from the same weaknesses [80].

1.4 Goal and Outline

The goal of this project is to determine the characteristics of microarrays that need to

be reengineered to improve the hybridization efficiency on the chip for improved microarray

performance. In vivo, DNA is able to unbind, replicate, and bind again smoothly and

efficiently with very high fidelity. The consistency with which DNA replication occurs is
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likely due to a robust and efficient system that controls hybridization. The results of the

MAQC consortium suggest that hybridization on the surface of a microarray is less robust

than in vivo. Specifically, this study uses molecular modeling to determine the effect of a

surface and other microarray features on the hybridization of DNA.

Possible characteristics of microarrays that affect DNA hybridization include the pres-

ence of the surface, similar target sequences competing to bind with the same probe strand,

and hybridization between strands of varying length. Each of these are addressed in this

research. The organization of the document is as follows. Chapter 2 contains information

on the simulation techniques used and the model chosen to simulate hybridization both in

the bulk and on the surface. Chapter 3 contains the work done to overcome the major limi-

tation of previous simulation work–insufficient sampling–by determining the optimal simula-

tion method that ensures the hybridization event occurs with sufficient fequency that reliable

data are obtained. Chapter 4 describes the research performed to determine the effect of

the surface on the hybridization of a tethered probe to a perfectly matching target. Chapter

5 expands the work performed in Chapter 4 by including a second reaction coordinate to

further elucidate the effect of the surface on the hybridization mechanism. Chapter 6 ex-

plores the effects of manipulating the hybridizing strands by introducing non-complementary

sequences on the stability of hybridized complexes and affecting the accessibility of the bases

on the nucleotides. Chapter 7 covers the changes that occur in both the stability of the

duplex and the mechanism of hybridization when the target strand is longer than the probe

strand. Finally, Chapter 8 summarizes the results obtained and the conclusions reached

from these results.
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Chapter 2

Methodology

2.1 Simulation Techniques

Computer simulations were used to calculate thermodynamic stabilities and mechanis-

tic pathways of DNA hybridization in the bulk and on a microarray surface. The differences

in the thermodynamics and mechanisms between there two cases were then analyzed to de-

termine the characteristics of microarray systems that lead to inconsistencies in microarray

results. With an understanding of which characteristics cause changes in the thermody-

namics and mechanisms of hybridization, steps can be made towards changing microarray

platforms to be more reliable.

Thermodynamic data are obtained by sampling various areas of phase space with

enough frequency to determine the probability that the system will reside at that state. To

improve phase space sampling, advanced Monte Carlo techniques have been developed [81–

84]. These include density of states [85–90], replica exchange [91–93], and umbrella sam-

pling [85, 94, 95]. The weighted histogram analysis method (WHAM) is used with these

methods to help calculate the density of states where it is not already explicitly calculated

by the method itself [96]. The density of states is then applied to the partition function to

find thermodynamic properties via the following equation:

X(T ) = 〈X〉T =
1

Q

∑
i

X(Ui)Ω(Ui)e
−βUi . (2.1)

In Equation 2.1, X is an arbitrary property, Q is the canonical partition function, Ω(Ui) is

the density of states for energy state i, β = 1
kBT

, < . . . >T denotes the ensemble average at

temperature T , and the summation over i includes all populated energy states. Due to the
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overwhelming degeneracy of an explicit solvent, advanced Monte Carlo methods are more

powerful with coarse-grain models where solvent effects are measured implicitly.

Adequate phase space sampling is often impeded by energy boundaries. The system

being simulated can become trapped in local energy minima due to a high energy state that

blocks the transition path to the global energy minimum. Replica exchange and umbrella

sampling are techniques designed to overcome this obstacle and are used in this research.

Replica exchange uses multiple sets of the same system at different temperatures. At given

intervals, a swap between adjacent systems is proposed. Swaps are accepted based on the

Metropolis algorithm [92]. The theory is that systems at higher temperatures have more

energy to overcome energy boundaries, so the energy landscape is effectively flattened. When

a system at a low temperature is trapped in a local minimum, swapping with a higher

temperature system will allow it to overcome the energy barriers.

Umbrella sampling is another advanced simulation method that forces the system

to sample areas of phase space that might not be visited with regular molecular dynamics.

The simulation includes an extra degree of freedom known as a reaction coordinate and the

fluctuations in free energy along this reaction coordinate can be calculated to estimate the

change in free energy between any two points along the reaction coordinate. The reaction

coordinates need to be selected such that they can uniquely identify the possible states

of the system. Important states in the hybridization process include the endpoints of the

process–the canonical B-form of DNA and the melted, single-strand state–as well as the sta-

ble intermediates connecting the endpoints. The reaction coordinates must also distinguish

between parallel and anti-parallel configurations.

Two order parameters that can serve as adequate reaction coordinates for the oligonu-

cleotide lengths used in this study are the strand separation distance, ξ, and the angle be-

tween the two strands, θ. Both are depicted in Figure 2.1. ξ is defined as the distance

between the central sugar on the probe strand and its corresponding sugar on the target

strand. θ is found by first defining u as the vector from the sugar at the 5′ end of the probe

stand to the sugar at the 3′ end of the probe stand and v as the vector from the sugar at

the 3′ end of the hybridizing sequence of the target strand to the sugar at the 5′ end of the
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Figure 2.1: Order parameters used as reaction coordinates for projections of the free energy
landscape of hybridization.

hybridizing sequence of the target strand. From this, θ is calculated according to

θ = cos−1

(
u · v
||u|| ||v||

)
(2.2)

This definition yields θ = 0° for antiparallel configurations and θ = 180° for parallel config-

urations. More information on how these coordinates were applied to the various sequences

is given in the individual chapters.

To force the system to sample an adequate portion of phase space along the reaction

coordinates, a biasing potential is applied. The biasing potentials are of the form of Equations

2.3 and 2.4 where ξ0 is the equilibrium distance between the strands for a particular umbrella,

ξ is the instantaneous distance, kξ, θ0 is the equilibrium angle between the strands for the

particular umbrella, θ is the instantaneous value of the angle, and kθ. Multiple independent
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simulations with varying values of ξ0 and θ0 were performed to generate an energy landscape

along these reaction coordinates. To avoid trapping the system in local minima along the

rough potential landscape, care must be taken that the potential of each simulation overlaps

the potential of all adjacent systems, or that the areas of phase space sampled in a simulation

with a given value of ξ0 and θ0 include some of the same areas of phase space that were

sampled in the simulations with a value of ξ0 and θ0 one step size greater and smaller. The

reasoning for this is that sharp potential increases will trap the two strands within small areas

of phase space along the reaction coordinate and discontinuities along the reaction coordinate

prohibit the calculation of the energy landscape [85]. This leads to a delicate balancing act

between the reaction coordinate step size, the amount ξ0 and θ0 are incremented from one

simulation to the next, and the magnitude of the equilibrium constants kξ and kθ. Step

sizes must be small enough to give a high resolution along the reaction coordinate while

remaining large enough that the number of simulations required to traverse the entirety

of the reaction coordinate remains manageable. At the same time, equilibrium constants

must hold the system around a specific point in the reaction coordinate while allowing it to

periodically sample adjacent points. Groups of simulations were run with varying reaction

coordinate step sizes and equilibrium constants to determine appropriate values for these

factors. Histograms of the potential energy of the simulations were graphed to determine

the overlap in phase space sampled by adjacent systems. Values were chosen as ∆ξ0 = 0.25

Å, ∆θ0 = 10°, kξ = 10 kJ

mol Å
2 , and kθ = 0.0382 kJ

mol deg2
such that the histograms of adjacent

systems overlapped ≈ 30− 60%. These values produced high quality energy landscapes that

were used to estimate properties and mechanisms that were not obtainable from regular

molecular dynamic simulations.

Uξ = kξ (ξ − ξ0)2 (2.3)

Uθ = kθ (θ − θ0)2 (2.4)

Advanced simulation techniques, such as replica exchange and umbrella sampling,

help to improve phase space sampling at a price. These techniques require the use of more

processor time. In the case of replica exchange, the extra processor time is characterized by
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the extra simulations at multiple temperatures run in parallel, while the cost of umbrella

sampling is characterized by extra simulations for each point along the reaction coordinate.

These prices are paid with the assumption that the amount of phase space explored from

these extra simulations is greater than the amount that would be explored if a single regular

molecular dynamics simulation was allowed to run for an equivalent amount of simulation

time.

The strength of this assumption varies for different conditions. Because replica ex-

change techniques will effectively flatten the entire energy landscape, it is most effective when

the energy barriers throughout the landscape are similar in size. Umbrella sampling forces a

system through specific areas of phase space and is therefore useful when studying the phase

space along a reaction coordinate particularly when those areas of phase space are blocked

by energy barriers that are larger than ones found elsewhere in the system. While a system

is held within a particular area of phase space by umbrella potentials, the roughness of the

local energy landscape becomes more important than the global roughness. At the local

level, it is probable that the magnitudes of the energy barriers are more uniform which is

preferable for replica exchange techniques. Therefore, it was proposed to use these two tech-

niques in tandem, but questions were raised as to the efficiency of this approach [97]. A small

study (Reported in Chapter 3) was performed to determine if umbrella sampling alone was

sufficient to investigate the systems of interest or if a combined umbrella sampling/replica

exchange algorithm was needed.

It was determined that calculations of properties at a single temperature would not

benefit from the improved sampling obtained from replica exchange. Therefore, only um-

brella sampling was used to calculate the change in free energy and mechanistic pathways

associated with hybridization. However, as will be described later, replica exchange dynam-

ics were used to calculate the heat capacity of the DNA duplex over a range of temperatures

and to validate the DNA model against experimentally-determined melting temperatures.

2.2 DNA Model

Recently, advanced coarse-grain models, which have been carefully parameterized

to reproduce correct geometry and capture both the thermal and mechanical properties of
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DNA, have been used to further study hybridization on surfaces. The one chosen for this

study is the Three-Sites-Per-Nucleotide (3SPN) formalism of Knotts et al. [56] with recent

improvements by Sambriski et al. [76–78] This model reduces a nucleotide to three interaction

sites–one each for the phosphate, sugar, and base. All four bases–adenine, thymine, cytosine,

and guanine–are represented. This model was carefully parameterized against experimental

data. It possesses the correct double-helical geometry of the molecule and replicates both the

thermal and the mechanical properties of DNA including salt-dependent effects [56,76–78].

The force field of this model includes both bonded and non-bonded interactions de-

scribed below. The total contribution to the potential energy is represented in Equation 2.5.

Utotal = Ubond + Ubend + Utors + Ustck + Ubase + Uelec + Usolv + Unnat (2.5)

The first three terms represent the bonded interactions in the system. Ubond is the two-body

term accounting for covalent bonding and is calculated as

Ubond =

nbond∑
i=1

[
k1 (di − d0i)

2 + k2 (di − d0i)
4] (2.6)

Where k1 and k2 are bond constants, di is the instantaneous bond distance, d0i is the equilib-

rium bond distance, and i designates the bond in the set of nbond bonds. Ubend is a three-body

term for bend energy where

Ubend =

nbend∑
i=1

kθ
2

(θi − θ0i)
2 (2.7)

Here, kθ is a bend constant, θi is the instantaneous bend angle for the ith three-body inter-

action, and θ0i is the equilibrium angle for the ith angle in the set of nbend angles. Four-body

bonding interactions were calculated from

Utors =
ntors∑
i=1

kφ [1− cos (φi − φ0i)] (2.8)

where kφ is a torsional constant and φi and φ0i are instantaneous and equilibrium angles in

the set of ntors dihedral angles.

17



The rest of the terms in Equation 2.5 are non-bonded, pairwise interactions. Ustck is

the energy associated with the sequence of the bases on the same strand and takes the form

Ustck =

nstck∑
i<j

4ε

[(
σij
rij

)12

−
(
σij
rij

)6
]

(2.9)

This potential acts on each pair of bases in the same strand that are within a cutoff radius

of 9Å. To expedite calculation, a list of nstck native contacts within the cutoff radius is

generated from the ideal reference structure of the DNA. εij and σij are the interaction

specific potential strength and length scale between sites i and j that contribute to the

stiffness of the backbone by controlling the instantaneous site-site separation distance rij.

Equation 2.10 gives the form of Ubase, the potential that accounts for hydrogen bond-

ing between complementary, or Watson-Crick, base pairs for both inter- and intrastrand

interactions (complementary pairs that are not accounted for in the stacking interactions).

The interstrand interactions account for the base pairing that drives hybridization and in-

trastrand interactions allow for hairpin formation. Bond strength (εi ∈ {εCG, εAT}) and

length (σi ∈ {σCG, σAT}) are determined from the base type of sites i and j. Comple-

mentary base pairs are considered hydrogen bonded when the distance between the bases

rij < σi + 2.0Å

Ubase =

nbase∑
i=j

4εbi

[
5

(
σij
rij

)12

− 6

(
σij
rij

)10
]

(2.10)

Uelec =

nelec∑
i<j

qiqje
−rij/λD

4πε0ε (T, I) rij
(2.11)

Usolv =

nsolv∑
i<j

εs
[
1− e−α(rij−rs)

]2 − εs (2.12)

The polyelectrolyte features of DNA are modeled with Equations 2.11 and 2.12. Uelec

accounts for electrostatic contributions at the Debye-Hückel level of theory and is applied

to all phosphate-phosphate interactions that are not accounted for in the bonded potential

Ubend. λD is the Debye length, which defines the spatial extent of charge screening caused
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by solvation conditions between sites i and j and separation distance rij. It is calculated as

λD =

[
ε0ε (T, I)

2βNAe2
cI

]1/2

(2.13)

where ε0 is the permittivity of free space, β = (kBT )−1, NA is Avogadro’s number, ec is

the elementary charge, and I is the ionic strength of the implicit solution, and ε (T, I) is a

function to calculate an effective dielectric constant.

ε (T, I) = ε (T ) a (I) (2.14)

The dielectric constant is calculated from the temperature and the salt concentration via

product contributions of the form

ε (T ) = 249.4− 0.788T/K + 7.20× 10−4 (T/K)2 (2.15)

and

a (I) = 1.000− 0.2551 (I/M) + 5.151× 10−2 (I/M)2 − 6.889× 10−3 (I/M)3 (2.16)

ε (T ) is the static, or zero-frequency, dielectric constant at absolute temperature T and a (I)

is the salt correction for a solution with molarity I.

The second potential of the model used to reproduce the unique electrolytic properties

of DNA systems is the solvation term Usolv. This term implicitly duplicates the effects

associated with the ordering of water and ionic species around DNA to create hydration

shells. Equation 2.12 shows the Morse-like potential with energy scale εs, particle separation

rij, spatial range coefficient α−1, and the minimum energy distance rs. The values of these

parameters were chosen to be compatible with the molecular geometry of DNA. Since the

solvent-induced interactions reproduce the many-body effects seen experimentally, which

depend on chain length and ionic conditions, the energy scale is approximated as εs = AIεN .
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AI is the contribution of the salt dependence and is parameterized from empirical data as

AI = 0.474876
(

1 +
{

0.148378 + 10.9553
[
NA+

]}−1
)

(2.17)

while the effect of the chain length, εN , is parameterized as

εN = ε∞
(
1− [1.40418− 0.268231n]−1) (2.18)

with ε∞ = 0.504982. These contributions had to be carefully parameterized such that both

denaturation and renaturation could occur. Parameterization was performed by simulating

multiple oligonucleotides with replica exchange molecular dynamics over a temperature range

that yielded fully renatured and denatured duplexes. The melting temperatures of the

oligonucleotides were calculated from the simulations and compared to experimental data.

This term of the forcefield was parameterized to closely recreate the experimental melting

temperatures [76].

The final term of the forcefield given in Equation 2.5 is the potential due to non-

native contacts, shown in Equation 2.19. The nnnat non-native contacts are all pairwise

interactions not accounted for in other potentials including mismatched base pairs. This is

a purely repulsive, excluded volume contribution based on a Weeks-Chandler-Anderson [98]

interaction with energy scale ε. Unnat does not contribute to the energy of the system until

interparticle separation rij is less than cutoff length rcoff. This represents the energy cost

of forcing particles close together. In the case of mismatched bases, rcoff = 1.00Å, for all

other cases, rcoff = 6.86Å. This potential is designed such that Unnat becomes zero for all

rij ≥ 2−1/6rcoff.

Unnat =
nnnat∑
i<j


4ε

[(
σ0
rij

)12

−
(
σ0
rij

)6
]

if rij < rcoff

0 if rij ≥ rcoff

(2.19)

2.2.1 Validation of the 3SPN Model

To ensure that the model would provide data in agreement with experimental re-

sults, it was validated by calculating and measuring melting temperatures. Initially, salt-
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dependant melting curves calculated from the model were compared to experimental re-

sults [99]. Owczarzy et al. measured the salt dependence on the melting point of hundreds

of oligonucleotides by measuring the absorbance of light in samples of DNA. The relation-

ship between the absorbance and the temperature produces a characteristic ”s” shaped curve.

The melting point of the oligonucleotide is determined to be the inflection point of the curve.

To compare the 3SPN model to the experimental data, a 20-base-pair sequence was chosen

from the sequences studied by Owczarzy et al. (TAC TTC CAG TGC TCA GCG TA)

and was simulated over a range of temperatures using replica exchange molecular dynam-

ics. The number of unpaired nucleotides was calculated as a function of temperature using

Equation 2.1 since this is the physical property driving the absorbance of light.

Figure 2.2 shows the melting curves generated from simulation. The shape of the

curves matches the shape seen in experimental absorbance data and the trend of increasing

melting temperature with increasing sodium concentrations matches the results obtained

by Owczarzy et al. The melting points predicted by calculating the inflection points in the

curves in Figure 2.2 are 57°C, 67°C, and 80°C for 119mM Na+, 220mM Na+, and 621mM Na+

respectively. The experimental values reported by Owczarzy et al. are 60.3°C, 64.4°C, and

67.7°C. While the melting points calculated from the 3SPN model deviated from the ex-

perimental values, they showed the same trends and offered a good basis of comparison

between similar systems. This is important since the comparative stabilities of similar sys-

tems is a major metric in this study. Additionally, the simulation results were as accurate

as another generally accepted prediction model, the salt-adjusted prediction method, which

estimated melting points of 64.7°C, 69.1°C, and 76.6°C [100] for this same sequence at the

salt concentrations given above.

To further validate the model, the melting point of the principle strand of interest for

this study, the human topoisomerase II target discussed in Chapter 4, was determined from

heat capacity data. The heat capacity was calculated from

C(T ) =
〈U2〉T − 〈U〉

2
T

kBT 2
(2.20)
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Figure 2.2: Salt-dependant hybridization curves follow the trends shown in experimental
work

where the internal energy U was generated as a continuous function of T from WHAM

data and Equation 2.1. This gives a continuous value of C(T ) as seen in Figure 2.3. Since

heat capacity is a measurement of how much thermal energy the system requires to increase

temperature and the thermal energy of a system is absorbed to break the hydrogen bonds

between bases at the melting point, the melting point can be found as the maximum in the

heat capacity curve. Replica exchange molecular dynamics was used with 20 boxes over the

temperature range shown in Figure 2.3. Throughout this study, shaded regions around curves

indicate the uncertainty of the results, or the statistical error in the numbers. Uncertainty

was estimated as σ√
N−1

, where σ is the standard deviation of the N values of the heat capacity

for each value of temperature. The value obtained from simulation, 349.3 ± 0.7 K, was in

good agreement with the nearest neighbor and salt-adjusted prediction methods, 350.15 K
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Figure 2.3: A heat capacity curve

and 345.15 K respectively [100]. Multiple temperature schemes were used in the replica

exchange simulations and the calculated melting point remained the same for each scheme.

These results indicate that results produced by the model are in satisfactory agreement with

experiment.

2.3 Coding

In order to implement the methods and techniques outlined above, computer codes

were adapted and scripts were written to produce and analyze hybridization data. This

study built upon a rich suite of code that was developed for biological systems, [56, 101]

but new code was added to implement enhanced models [102] and new techniques [103].

Additionally, the data generated by this research were large sets that required new methods
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of post processing. These additions to the software suite were challenges that needed to be

overcome before the research could be finished.

The first software challenge of this project was integrating the solvent-effect equa-

tions [102] into the existing code. Most of this implementation consisted of a straightfor-

ward process of adding new potentials into the already existing potentials and creating new

switches so the program would apply the proper potentials to the correct multi-site interac-

tions. Equation 2.18, however, presented an interesting challenge. In this equation, n is the

number of base pairs in the duplex. This is easily calculated as the number of bases on one

of the strands in the duplex when both strands are the same length. This research, however,

included simulations of duplexes of strands of different lengths, creating the problem of de-

termining what value should be used for n. It was determined that n represents the number

of base pairs that may form and a short loop was written to find the shortest strand and use

the number of bases in it as the value of n.

Once the model was running properly and calculating accurate representations of

DNA hybridization, attention was turned to expanding the simulation protocols to include

two dimensional umbrella sampling. This required creating a two dimensional matrix for

every simulation within the reaction coordinates. Each element in the matrix gave the fre-

quency in which a specific location along the two reaction coordinates was visited, with the

first reaction coordinate binned along the rows and the second reaction coordinate binned

along the columns. The element [i, j], therefore, represents the number of times the simula-

tion sampled a configuration in the ith bin of the first reaction coordinate and the jth bin in

the second reaction coordinate. Memory was then allotted to store these histogram matrices

according to the data given in one of the two new inputs required for this method.

Two-dimensional umbrella sampling required two new inputs to be read in by the

program. The first contained the binning instructions the simulation would use to determine

the size of the matrix required to store histogram data, the ranges and bin sizes the data

would span, and the amount of memory that needed to be allocated so that the program

could hold all of the histogram and consisted of a lower bound, an upper bound, and a bin size

for each reaction coordinate. For example, this input might contain the information: LB1

10, UB1 125, BN1 0.25, LB2 0, UB2 180, BN 10. These numbers would allow the simulation
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to create a [464, 19] matrix with rows spanning the range from 10 to 125 in increments of

0.25 and columns spanning the range from 0 to 180 in increments of 10 with enough memory

allocated to contain 8816 integers.

The second new input contained parameters for angle restraints. These parameters

were the number of angle restraints, the sites used to define vectors u and v, the strength

of the restraint kθ, and the equilibrium angle θ0. As outlined above, interstrand angle θ was

calculated from the coordinates of the four sites given in this input using Equation 2.2 with

u · v = xuxv + yuyv + zuzv (2.21)

and

||u|| =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 (2.22)

where xu = x2 − x1, xv = x4 − x3 and (x1, y1, z1) are the coordinates of the first site etc.

With the potential energy of the angle restraint, the simulation could iterate through its

calculations using well established methods.

Once the simulations had completed, the histograms were analyzed using the weighted

histogram analysis method [103] to generate potential-of-mean-force surfaces. Mathemati-

cally, this was done by iterating around the probability

P{λ}′,β′ (Vξ,θ,R, ξ, θ) =

∑R
k=1 Nk (Vξ,θ,k, ξ, θ) exp

[
−β′

∑L
j=1 λ

′
jV
′
ξ,θ,j

]
∑R

m=1 nm exp
[
fm − βm

∑L
j=1 λjmVξ,θ,j

] (2.23)

and the dimensionless free energy

exp (−fj) =
∑

Vξ,θ,R,ξ,θ

P{λ}j ,βj (Vξ,θ,R, ξ, θ) . (2.24)

Computationally, this was done using a Matlab script on the Fulton Supercomputing Labo-

ratory BigMem processor. The first step of this analysis was to load all the two-dimensional

histogram matrices into a three-dimensional matrix H. This matrix was used to sum up

the number of samples taken in each simulation, nm, for all R simulations over the entire
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reaction coordinate, and the number of samples taken across all simulations within each bin

combination of the two reaction coordinates, Nk. For example, if a distance reaction coordi-

nate had a bin of distances from 10 Å to 10.24 Å and an angle reaction coordinate had a bin

of angles from 0◦ to 9.99◦, the previous step would count the number of times all simulations

sampled a configuration that was within those ranges of the two reaction coordinates. Next,

a second matrix V was generated containing the energy required for the system to exist in

any given element in the matrix H. In other words, element [1, 1, 1] contained a calculation

of the amount of energy required for the first umbrella to contain a configuration in the first

bin along both reaction coordinates. Finally, an initial value of f was estimated as a matrix

of ones. With these inputs, a value for P was calculated from Equation 2.23. This value

was plugged into Equation 2.24 to calculate a new f . The new f was compared to the old f

and if the values were different the old f was replaced with the new f and another iteration

was performed. For the systems studied in this project, these iterations continued for about

24 hours before converging. Although computationally expensive, these systems produced

highly detailed thermodynamic data of complex biomolecular systems.

The systems outlined above were deceptively complex and time-consuming. In gen-

eral, debugging the new code, once it was written, took twice the amount of time as writing

it. Adding the solvation effects to the simulation suite, including new subroutines for inte-

gration, and rewriting a script that generated simulation inputs took about a month, but

the new sections of code were adjusted and edited for an additional two months before it

was confirmed that the suite was reproducing predicted values of a simulation standard.

Two-dimensional umbrella sampling required about six weeks to figure out the pointers that

would create dynamic memory allocation for efficient storage of the simulation histograms

although the code for generating the histograms was originally written in just two weeks.

Once the program would compile with the flags that allowed two-dimensional umbrella sam-

pling, an additional month was required to track down the cause of a segmentation fault that

occurred when the strands were perfectly aligned. Debugging the scripts for analyzing the

two dimensional histograms presented an additional challenge since the analysis itself was

so computationally demanding that script would often run entire days without giving any

indication of whether it was running successfully or had stalled. Most of the computational
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aspects associated with the two-dimensional umbrella sampling suffered from drawback. A

single potential-of-mean-force curve required over 11000 independent simulations. Scripts

were written that could generate and organize the unique inputs for each simulation, submit

all the simulations to the super computer scheduling cue, and extract and order all the out-

puts from the simulations for post processing once they had finished. Each of these scripts

required one to two hours to run in addition to the week required for all the simulations

to proceed through the cue. While simulations and scripts ran, errors in the setup of the

process could go unnoticed for up to a week before the they could be tracked down and

corrected and the process could be restarted. This debugging process added to the total

computational time required to obtain thermodynamic properties of the systems of interest.
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Chapter 3

The Efficiency of Replica Exchange Techniques for Sampling Phase
Space

3.1 Introduction

To obtain thermodynamic properties of the hybridization process, simulations must

sample sufficient phase space. As mentioned in Chapter 2, various Monte Carlo techniques

were considered. Replica exchange molecular dynamics was one of the techniques reviewed

for this study since it is a robust tool that is widely accepted for computational studies of

biological systems. It uses a biasing potential of temperature–a well understood thermody-

namic quantity–to move systems in and out of local minima in rough energy landscapes.

This shows the locations of such minima without allowing the system to get caught in them.

Replica exchange molecular dynamics accomplishes this by simulating the same system at

multiple temperatures, periodically proposing swaps between systems at adjacent tempera-

tures, and accepting those swaps based on a Metropolis algorithm. This is particularly useful

when the thermodynamic properties of a system are to be found over a range of temperatures

since the system would be simulated at multiple temperatures regardless. By swapping with

adjacent temperatures, a system stuck in a local energy minimum might swap to a temper-

ature where it has enough energy to escape that minimum, or a system with a flat energy

landscape might swap down to a temperature with a more characteristic energy landscape.

Swapping is considered useful when the amount of simulation time between swaps is long

enough that the system can relax between configuration changes and short enough to max-

imize the number of swaps in a simulation [104, 105]. As long as the energy profiles of the

systems overlap, thermodynamic information from the individual systems can be combined

to obtain the density of states over the entire temperature range. This allows the calculation

of more detailed thermodynamic data.
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The goal of this study, however, was to better understand the phenomena governing

micoarray hybridization of DNA at a single temperature. Although the principle advanced

Monte Carlo technique considered for this study was umbrella sampling, the viability of

using replica exchange molecular dynamics techniques in conjunction with umbrella sampling

techniques was explored. Replica exchange molecular dynamics is often used to study systems

at a single temperature of interest despite the fact that this technique requires simulating a

system at multiple temperatures. In these cases, the phase space sampled at the temperature

of interest is analyzed while the phase space sampled at other temperatures is only used to

enable the systems at the temperature of interest to move to areas of the energy landscape

that they might not have otherwise explored. When this method is used while only the

data at a single temperature of interest is desired, the computational cost of simulating the

system at other temperatures is an additional cost of the method. This additional cost is

often paid, by requisitioning the processor power required to simulate the systems at other

temperatures, with the postulate that it will cause a net gain by decreasing the total amount

of processor time to obtain the same results. In other words, it is believed that the amount

of phase space explored by switching to and from higher temperatures is greater than the

amount of phase space that would be explored by a single system that was allowed to run

for an amount of processor time equivalent to the amount required for multiple systems. In

2006, Zuckerman et al. [97] proposed that this postulate is not well founded and could be

false. Since the goal of the present study was to determine thermodynamic properties of

DNA in a microarray setting, the Zuckerman claim was investigated. It was believed that

evidence could be found validating the use of replica exchange molecular dynamics to obtain

single temperature results. Specifically, it was hypothesized that good thermodynamic data

could be obtained with less processor time by using replica exchange than by using regular

molecular dynamics alone.

3.2 Methods

3.2.1 Model

Due to the complex nature of DNA hybridization and the large amounts of processor

time needed to model it, it was decided that this initial investigation of simulation tech-
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niques should be conducted with a system that is simpler and better understood. Two

protein systems, modeled using a coarse-grain representation, were studied since they could

be simulated rapidly. The chosen model has been shown to accurately capture in vivo folding

mechanism [101,106]. It is a bead spring model that uses a single bead for each amino acid

in the protein. The potential energy of the system, U , is calculated as

U = Ubond + Ubend + Utors + Unat + Unnat (3.1)

where Ubond is the two body potential between bonded sites, Ubend is the three body potential

between sites forming an angle, Utors is the three body interaction between sites forming a

dihedral, Unat is the nonbonded energy between sites that are considered “native” contacts,

and Unnat is a two body potential between all pairs of sites not considered in one of the

other potentials. The bonded potentials, Ubond, Ubend, and Utors, are of the same form as the

CHARMM [54] forcefield and are given below.

Ubond =

nbond∑
i=1

kd (di − d0i)
2 (3.2)

Ubend =

nbend∑
i=1

kθ (θi − θ0i)
2 (3.3)

Utors =
ntors∑
i=1

kφ [1 + cos (nφi − δ)] (3.4)

A native-contact potential energy is applied to pairs of sites that do not form a bond or

a bend but are considered to form a hydrogen-bond in the native state of the protein. These

interactions form the secondary and tertiary structures of the protein and are determined

from experimental structures. The native contact potential allows this model to accurately

predict folding mechanisms [107,108]. All nonbonded pairs that are not native contacts are

considered non-native. The forms of the potentials for nonbonded interactions are as follows.

Unat =
nnat∑
i<j

εij

[
13

(
σij
rij

)12

− 18

(
σij
rij

)10

+ 4

(
σij
rij

)6
]

(3.5)
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Unnat =
nnat∑
i<j

εij

(
σij
rij

)12

(3.6)

Parameter and input files needed to simulate systems with this model were obtained

from the Gō model builder on the Multiscale Modeling Tools for Structural Biology internet

server [109]. Coordinates of the proteins were obtained from the Protein Data Bank. The

first protein system was of residues 10-55 of the B domain of protein A (Protein Data Bank

identification: 1BDD [110]). Simulations of this protein served as a metric for determining

the efficiency of replica exchange molecular dynamics for obtaining thermodynamic proper-

ties. The second system was of ribonuclease H (PDB ID: 2RN2 [110]). RNase H has 155

residues. This represents a contour length of nearly 60 nm along the backbone when the

protein is fully stretched. Umbrella sampling simulations along this length, with end-to-end

separation as a reaction coordinate, were used to obtain mechanistic pathways. Since both

mechanistic pathways and thermodynamic data are important goals of the DNA study, these

systems showed the usefulness of this technique in the desired research.

3.2.2 Theory and Experimental Design

The optimal technique for this study was defined as the most efficient one. Efficiency

was calculated by the amount of processer time required to accurately obtain data. The

target data of the protein A system were three thermodynamic properties, the potential

energy (U), heat capacity (C), and Gibbs energy of folding (∆Gf ) of a system. Heat capacity

was calculated from Equation 2.20. For MD simulations, the ensemble average is simply

the mean of the values at each time step throughout the simulation. For replica exchange

simulations, the ensemble averages are calculated from the canonical partition function, Q. In

general, the value of an arbitrary property, X, evaluated at temperature T is related to Q by

Equation 2.1. Ω is estimated from the Weighted Histogram Analysis Method (WHAM) [111].

The partition function is related to the density of states through

Q =
∑
i

Ω(Ui)e
−βUi . (3.7)

31



The free energy of folding of protein A was calculated by classifying the configura-

tions sampled during the simulation into “folded” and “unfolded” ensembles based upon the

instantaneous fractional nativeness, or the fraction of the native contacts listed in the native

contact list that are close enough to form hydrogen bonds. Since the native contacts repre-

sent the hydrogen bonds between amino acids that hold the protein in its folded structure,

the protein is considered folded when more than half of the tertiary structure native contacts

are formed and unfolded when less than half of those bonds are present, or contributing to

the potential energy of the system. The free energy of folding at any temperature can then

be calculated from

∆G = Gfolded −Gunfolded = −kT ln

(
Pf

1− Pf

)
, (3.8)

where Pf is the probability of the folded state at temperature T.

With the relationships given above, the potential energy, heat capacity, and free

energy of folding of the protein A systems were correlated with the amount of computational

time needed to generate these values. The time required to obtain these properties was

measured from the total amount of processor time needed for the simulation, or a total of

the computational time of each processor used in the simulation. For example, a simulation

that was run on one processor for two days was considered to have cost the same amount of

processor time as a simulation that was run on two processors for one day. This is important

since both replica exchange and umbrella sampling techniques require large numbers of

processors and combining the two multiplicatively increases processors demand. If replica

exchange can obtain good thermodynamic with less processor time, then the demand for

more processors will be out weighed by the demand for less time. This would be a more

efficient system. On the other hand, if replica exchange systems require the same amount of

process time to calculate good thermodynamic data as regular molecular dynamics systems,

than all that has been achieved is a more complex system with no net gain in efficiency.

The ribonuclease H systems provided an opportunity to test the efficiency of com-

bining replica exchange techniques with umbrella sampling techniques. Previous studies

have found that protein folding mechanisms differ when comparing thermal unfolding and
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mechanical unfolding [101]. Thermal unfolding occurs when a protein unfolds due to an

increase in energy in the system. The simplest method for inducing thermal unfolding is

to raise the temperature of a system. Mechanical unfolding occurs when an external force

acts on the ends of a protein, pulling them away from each other, and destroying the sec-

ondary structure. Experimentally, this is done with atomic force microscopy, or “optical

tweezers.” [112–115]

In simulations, mechanical unfolding is controlled by introducing a potential in the

same form as Equation 2.3 between the two ends of the protein, sites 4 and 155 for RNase

H, with spring constant kξ = 10 kcal/mol. ξ0 is the equilibrium end-to-end distance to

which the potential is pulling the protein and ξ is the instantaneous end-to-end distance.

Mechanical unfolding is simulated by using the end-to-end distance as a reaction coordinate

with umbrella sampling techniques. The system is moved along the reaction coordinate by

simulating with ξ0 being set to discrete lengths ranging from the distance between the two

ends when the protein is in its native conformation to the contour length of the protein

backbone. Specifics about how this was done for Ribonuclease H are given in Section 3.2.4.

From the umbrella sampling data, potentials of mean force were generated. These

show the relative free energy of the system with respect to the reaction coordinate. Energy

minima in the curve indicated stable folding states. Structural data such as native contacts

and simulation snapshots from the simulations corresponding to strand separation distances

with stable states were analyzed to determine the structures of the protein in these states

and to hypothesize the mechanical folding pathway.

The efficiency of replica exchange molecular dynamics was tested by creating two sets

of potentials of mean force of the system. The first contained only data that was generated

from regular molecular dynamics simulations while the second set was only calculated from

replica exchange molecular dynamics simulations. Potentials of mean force from the replica

exchange systems were generated from only the first box of the replica exchange simulations;

the other boxes simply provided higher energy environments where the protein could escape

energy wells that might trap it. The number of production steps used for the replica exchange

systems was equal to the number of production steps used in the regular molecular dynamics

simulations divided by the number of boxes in the replica exchange simulations. This yielded
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an equivalent amount of processor time for both sets so that efficiency could be compared

as results per computation time. The PMFs for the replica exchange systems and the

regular molecular dynamics simulations were compared to determine if the two schemes

produced significantly different results. Specifically, the sizes and locations of energy wells

were analyzed to determine which ones represented mechanical folding transition states and

if any represented nonrealistic choke points where the simulations were trapped by energy

barriers.

3.2.3 Simulation Protocols

Protein A

Before designing the simulations used to compare the amount of computation time

needed for the two techniques to obtain good thermodynamic data, the model needed to

be characterized with controls. Control simulations gave comparative values to help deter-

mine what constituted good thermodynamic data. They were obtained from conventional

molecular dynamics and replica exchange systems that were larger than those used for the

evaluation. In each simulation, the temperature was maintained using the Nosé-Hoover chain

method [116] with five thermostats and the time step was 1 fs. The replica exchange control

simulations were run with 75 ns of equilibration and 150 ns of production time. Each simu-

lation consisted of 26 boxes spanning temperatures below and above the suspected melting

point. Box density, the number of boxes spanning a given temperature interval, was set

higher around the suspected melting point and lower on the ends of the temperature range.

Using the results of the large replica exchange runs, two temperatures of interest were

chosen for the simulations designed to test the hypothesis that replica exchnage simulations

are more efficient than regular molecular dynamic simulations. These temperatures were

chosen far below and at the melting point for this model, 215 K and 257 K respectively.

Control regular-molecular-dynamics simulations were then run at these temperatures with

100 ns of equilibration and 2 µs of production time. The results were compared with the RE

results. Due to good agreement, the two sets of results were averaged and used for a basis

of comparison for the heat capacity and potential energy. The basis of comparison for the

free energy of folding was taken from only the replica exchange data.
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Table 3.1: Simulation schemes used to determine the efficiency of the REMD technique.

Temperatures are in units of kelvin.

Temperature Simulation Temperature
of Interest Scheme 1 2 3

MD 215 - -
215 2 Box REMD 215 225 -

3 Box REMD 215 225 235
MD 257 - -

257 2 Box REMD 257 267 -
3 Box REMD 257 267 277

When comparing the efficiency of replica exchange and molecular dynamics, all sim-

ulations were run using the same code. Every simulation was started from the minimized

average structure [110] with no equilibration. Equilibration was excluded to test phase space

sampling of each method, to see which method more rapidly moved out of the unlikely area

of phase space containing the ideal structure. Regular molecular dynamics simulations were

run with only one box while replica exchange simulations had either two or three boxes

with swaps between the boxes proposed every 2 ps. As discussed in Section 2.1, swaps were

accepted based on the Metropolis algorithm. When a swap was proposed, a random number

between zero and one was generated, if this number was smaller than the ratio of the energy

of the current system and the proposed system, the swap was accepted. Table 3.1 shows

how the schemes were organized.

Each scheme was set up to cause the simulation to run for a target amount of processor

time. Target processor times were estimated by dividing the number of production steps by

the number of boxes used in the simulation. Two box replica exchange systems had half the

number of production steps as regular molecular dynamics systems and three box systems

had one third. The actual amount of processor time used for each simulation was tracked

and the values of the properties mentioned above are graphed below as a function of this

actual processor time. Each simulation was run on a single node of a Dell 1955 Blade Cluster

with 1260 Dual Core Intel EM64T processors 2.6 GHz known as Marylou4.
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3.2.4 Ribonuclease H

Simulations of ribonuclease H were run on the same processors as the simulations of

protein A. The canonical ensemble was generated with the Nosé-Hoover-Chain method, with

four thermostats of mass 10−20 kg Å
2

and a time step of 3 fs. This time step was chosen as

the highest time step possible that still maintains an accurate integration, as determined by

monitoring the conservation of energy in the system. The conserved quantity of a canonical

ensemble is the extended Hamiltonian which is calculated as

|∆E| = 1

N

N∑
k=1

∣∣∣∣Ek − E0

E0

∣∣∣∣ (3.9)

where N is calculated as the total number of steps, Ek is the value of the conserved quantity

at step k, and E0 is the initial value of the conserved quantity. Quantitatively, integration is

considered stable when log |∆E| ≤ −2.5. To optimize the time step, log |∆E| was calculated

for ∆t = 1, 3, 5, 7, 9, 11 fs with three independent simulations using each time step. From

this, it was determined that 3 fs was the most aggressive yet stable time step. Choosing an

aggressive time step was important to this inquiry as it served as a method to determine the

extent of the phase space that may be explored by replica exchange and umbrella sampling

techniques with a minimal amount of processor time.

Umbrellas of this system were performed with a reaction coordinate of ξ0 ranging

from 30 to 350.75 Å in 0.25 Å increments. Therefore, each pathway along the reaction

coordinate required 1284 independent simulations. The data from these simulations were

combined using WHAM [96] to create a potential of mean force curve. To test the efficiency

of replica exchange molecular dynamics in increasing the phase space sampled, all of the

1284 simulations were repeated as small three box replica exchange simulations. Potentials

of mean force were generated from only the first box of the replica exchange simulations,

the box at the same temperature as the regular molecular dynamics simulations, 215 K, but

the other boxes provided higher energy environments, 225 and 235 K, where the protein

could escape energy wells that might trap it. Swaps were attempted every 6 ns (2000 steps).

To keep the amount of simulation time constant between regular molecular dynamics and

replica exchange, the number of production steps of each box in the replica exchange systems
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was a third the number of production steps for the regular molecular dynamics simulations,

or 30 ns of equilibration and 30 ns of production for a total of 180 ns for each state point.

This gave a qualitative expression of the efficiency, given the same amount of processor time,

for the exploration of phase space using the two methods.

This approach was much more qualitative than the quantitative approach used with

the Protein A systems. There, numerical values of predicted thermodynamic properties are

directly compared between one, two, and three box simulations; direct relationships can be

drawn between computation time and thermodynamic results. Here, the general features of

the curves from the two methods were compared to determine if, given equivalent amounts

of processor time, the methods produced differing results. These two tests provided different

vantage points into the quandary of whether replica exchange is more efficient at predicting

thermodynamic data of biomolecular systems.

3.3 Results

3.3.1 Protein A

Figure 3.1 shows the results obtained from the simulations of Protein A far below

the melting point of the protein; Panel A shows the calculation of potential energy from the

simulations, Panel B shows that for heat capacity, and Panel C shows that of free energy of

folding. All three schemes obtained the same value for the potential energy of the system after

two days of processor time. In the calculations of heat capacity and free energy of folding,

the lines for all three schemes follow the same trend; they decrease for ten days then level

out and remain constant. The value obtained from the characterization simulations for heat

capacity was 0.781±0.001 kJ/mol K. The one box molecular dynamics simulation converged

to 0.71±0.01 kJ/mol K, the two-box replica exchange to 0.75±0.01 kJ/mol K and the three-

box replica exchange to 0.78± 0.01 kJ/mol K. The respective deviations are approximately

9%, 4%, and 0.1%. Characterization simulations calculated the Gibbs energy of folding as

−12.7 ± 0.1 kJ/mol. The molecular dynamics, two-box replica exchange, and three-box

replica exchange simulations obtained values of −14.2 ± 0.8 kJ/mol, −12.8 ± 0.4 kJ/mol,

and −11.6± 0.3 kJ/mol respectively. These correspond to deviations of approximately 12%,

0.7%, and 8%.
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The results near the melting temperature, in Figure 3.2, are similar. Panel A shows

the large fluctuations in potential energy that would be expected for a system folding and

unfolding around its melting point. These fluctuations all start to oscillate around the same

average value, ≈ 118 kJ/mol, by the third day for all three schemes. Panel B shows an

increase in the heat capacity for the first ten days of processor time and then all three

schemes calculate similar values. Panel C shows the replica exchange schemes calculating

similar values for free energy of folding after just two days of processor time, but the regular

molecular dynamics scheme obtains the same value by the next data point. Discussion of

these results follows the results of the Ribonuclease H simulations.

3.3.2 Ribonuclease H

Figure 3.3 shows the potentials of mean force generated by mechanically unfolding

Ribonuclease H. The yellow line depicts the average energy for all of the regular molecular

dynamics simulations at every point along the reaction coordinate and the blue line shows

the same for the replica exchange simulations. The two lines are very similar and overlap

through much of their range. The only area of divergence for the two methods was in the

range between 175 Å and 250 Å where the general shape is the same, but the values predicted

for the PMF are shifted up to 0.3 Å. Of note, the PMF predicted with regular molecular

dynamics in this range contains a small local minimum that is not noticeable in the PMF

predicted from replica exchange molecular dynamics.

3.4 Discussion and Conclusions

The original hypothesis on the efficiency of these techniques, that replica exchange

is more efficient than molecular dynamics, was flawed. When efficiency was measured as

the amount of processer time required to obtain accurate thermodynamic properties, replica

exchange molecular dynamics techniques had only a slight advantage over regular molecular

dynamics. From the protein A simulations, it was shown that the total amount of real time

needed to obtain thermodynamic properties was reduced, but the amount of processor hours

required required for the systems to converge to a constant value stayed about the same for

all schemes. Although all three schemes converged after the same amount of time, the fact
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Figure 3.1: Below the melting point, all three schemes calculate similar values within the
same amount of simulation time.
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Figure 3.2: At the melting point, all three schemes calculate similar values for any given
amount of simulation time.
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Figure 3.3: PMFs of the mechanical folding of RNase H as predicted from molecular dynamics
umbrella sampling with and without replica exchange.

that they converged to different values for the heat capacity and the energy of folding below

the melting point raised important concerns.

Initial theories on the reason for this difference in predicted properties were focused

on the simulation protocols. These simulations were run without any equilibration steps

and the heat capacity and folding energy are time averaged quantities; they are calculated

from an average of all production steps. Since they were not given time to move from

the idealized, physically unlikely, structure before data was collected, the thermodynamic

properties of the crystal were averaged into thermodynamics of the protein at the simulation

temperature. The problem with this supposition is that it ignores the relaxation time, the

theory that states that, given a sufficient amount of time, a simulation will show no evidence

of events that have already happened. It is more likely that this discrepancy is due to barriers

in the rough energy landscape.
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Heat capacity is calculated as the variance in potential energy. Although all three

simulation schemes predicted the same average potential energy, it is possible that were

visiting very different energy ranges while remaining around the same average. This would

give different heat capacities while showing the same potential energy. The larger value

seen in the three box system suggests a larger variance, or that this system was exploring

more of the energy range of phase space. Additionally, energy of folding is calculated from

the probability of breaking hydrogen bonds based on the captured transition events. The

fact that these values are different for the different schemes suggests that some schemes

are making more transition events than others, or that some schemes are crossing energy

boundaries more than others. Again, the largest value for folding energy was calculated from

the three box system. This suggests that it captured more transition events, or that it was

crossing more energy barriers and exploring more phase space.

The replica exchange simulations were clearly exploring more phase space, but the

hypothesis of the research was with respect to predicting accurate thermodynamic data.

Increased phase space sampling is often considered synonymous with good thermodynamic

data under the assumption that computer models cover so little simulation time that any

real life observation would be made on a system that has spent ten orders of magnitude more

time exploring phase space. Conversely, computer simulations are considered viable under

the assumption that, at the molecular level, some atoms might be traveling through harder

to reach areas of phase space, but the vast majority of atoms are staying in a common area

of phase space. It is important, therefore, that efforts to increase phase space sampling do

not cause rarely visited areas of phase space to be sampled more frequently than they are

visited in real life. This was the reason for the emphasis on thermodynamic data. Although

the replica exchange values were closer to the characterization values than the molecular

dynamics ones were, the total difference in predicted heat capacities was only 0.07 kJ/mol

K. The data for folding energy had a greater spread, but these values were only being

compared to another replica exchange system. Fortunately, the ribonuclease H data offered

more insight into the problem.

The biggest difference between the replica exchange data and the molecular dynamics

data in the ribonuclease H results is the section from 175 to 250 Å. The molecular dynamics

42



results predict a small energy barrier here with a possible metastable folding state. This sug-

gests that as the molecule is being pulled to unfolded, it snags into a short lived configuration

before being pulled completely loose. Replica exchange, configured to facilitate traveling over

larger energy barriers associated with other folding transitions of this molecule, effectively

flattens out this section of the energy landscape losing these fine details. Although methods

that can overcome energy barriers are desired, it is important to conserve the details of the

energy landscape. DNA hybridization is characterized by a large energy barrier, associated

with the alignment of complementary bases, that could obscure smaller transitions surround-

ing it. This could lead to the loss of valuable data about the hybridization mechanism; data

that is desirable for understanding microarray design. Therefore, it was determined that

although replica exchange can increase the sampling of hard-to-reach areas of phase space,

this might not always be desirable. Additionally, since replica exchange carries a greater cost

in the absolute number if processors required to simulate a given system, a limited resource,

it was decided to use only regular molecular dynamics to explore hybridization of DNA on

a microarray surface.
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Chapter 4

Surface Effects

4.1 Introduction

The first component of the microarray environment that distinguishes it from the

environment in which DNA hybridization occurs in vivo is the presence of a surface. The

environments in which hybridization occurs in nature and most laboratory experiments have

negligible interactions with surfaces due to the relative length scales of the hybridizing se-

quences and the reaction vessels. This is untrue in the case of microarray experiments,

however, because half of the hybridizing duplex is tethered to the surface. Not only does

this ensure that the hybridizing sequence must interact with the surface, it also restricts

the range of motion of the tethered strand and reduces the phase space that the duplex

can sample. The complete effect of this reduction in mobility and available phase space is

unknown and was the first subject of interest in this study. It was hypothesized that this

reduction in mobility and available phase space would diminish the ability of the two strands

to hybridize and reduce the stability of the duplex on surfaces.

4.2 Methods

4.2.1 Experimental Design

The general approach used to test the hypothesis and determine the effects of the

presence of the surface in microarray experiments involved comparing the thermodynamic

stability of hybridization in the bulk (the control) with hybridization on the surface. For

each system, the potential of mean force, Φ, was calculated as the two strands were brought

together and allowed to hybridize. The stability of the duplex was quantified by defining

the free energy of hybridization, ∆Ghyb, as the free energy of the hybridized duplex at the
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minimum of the PMF, minus the free energy when the strands were separated by a long

enough distance that they did not interact. In practice, the minimum in Φ occurred at

approximately 13.5 Å and the interaction became zero for distances greater than 110 Å, so

∆Ghyb ' Φ
(
13.5Å

)
− Φ

(
110Å

)
. To facilitate comparison, ∆∆Ghyb was defined as the free

energy change which occurs upon hybridization for the test system minus the value for the

control. The effect of the surface can then be quantified as ∆∆Ghyb = ∆Gsurface
hyb −∆Gbulk

hyb .

If ∆∆Ghyb > 0, the tested system has inhibited hybridization; if ∆∆Ghyb < 0, the tested

system has enhanced hybridization.

4.2.2 Simulation Protocols

Umbrella sampling was used to simulate the hybridization process. The temperature

of each system was maintained at 300 K using the Nosé-Hoover chain method [116]. This

temperature is far enough below the melting point of the oligonucleotides to ensure stable

duplexes. Each umbrella was simulated with a time step of 1 fs for 4 ns of equilibration

and 100 ns of production. Systems usually equilibrated, in terms of the potential energy

reaching a steady-state value, in approximately 20 ps of simulation time. Only data from the

production time steps were analyzed. In total, each potential of mean force curve consisted

of 48.4 µs of simulation time.

Following the methods outlined in Chapter 2, the reaction coordinate for this set

of umbrella simulations, ξ, was defined as the distance between the central sugar in each

strand. Each point along the reaction coordinate was simulated as an independent system

with a biasing potential of the form

Urestraint = k (ξ − ξ0)2 (4.1)

where ξ0 is the equilibrium value of the reaction coordinate and k is the spring constant of

the potential. The distance between the molecules ranged from 10 Å to 130.75 Å in 0.25 Å

increments and k = 10 kJ

mol Å
2 .

The surface was modeled as an infinite slab of Lennard-Jones particles placed on the

z = 0 plane. The radial and angular dependencies were integrated across the respective
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domains to create a potential dependent only on the distance of a particle from the plane.

The resulting potential was truncated at the minimum and shifted by the well depth to

create a purely repulsive, short-range interaction potential is of the form [98]

Vsurface =
N∑
i

{
εsur

[(
σsur
zis

)9

− 7.5

(
σsur
zis

)3

+ c

]}
(4.2)

where zis is the distance between site i and the surface, εsur = 0.0363 kcal/mol, and the

value of σsur is site-specific. Previous work has shown that the exact value of εsur has

little effect on the behavior of the molecule attached to the surface [101]. The parameter

c is chosen such that the potential falls smoothly to zero at zis =
(

2
5

) 1
6 σsur. This model

creates a short-ranged, purely repulsive surface which captures the most important features

of the surface and has been used previously for similar systems [101]. Additionally, since

the dielectric constant is calculated from Equation 2.14 as a function only of temperature

and ionic strength, the surface has no effect on the dielectric constant of the system. The

probe strand was attached to the surface via a bead-spring, coarse-grain linker based upon

the atomistic model of Wong and Pettit [51].

4.2.3 DNA Model

Simulation of DNA hybridization was made possible using the carefully-parameterized

coarse-grain model of Knotts that was previously discussed in Chapter 2. Three DNA se-

quences of varying length were simulated with this model to study the effects of the surface.

The first was a target for human topoisomerase II (ACA GCT TAT CAT CGA TCA CGT;

PDB ID: 2JYK). This sequence was chosen since it is a biologically important sequence

of optimal length for maximum microarray specificity [117]. The other sequences are also

biologically significant but are longer and shorter than the first sequence to test the effect

of the surface on multiple sequence lengths. The second sequence was an operator for a

Restriction-Modification Controller Protein (ATG TGA CTT ATA GTC CGT GTG ATT

ATA; PDB ID: 3CLC chain E). The final sequence was a target sequence for a site specific

recombinase, Gamma-Delta Resolvase (GCA GTG TCC GAT AAT; PDB ID: 1GDT chain

C). Initial coordinates for all sequences were generated following the scheme outlined by
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Knotts et al. [56] Umbrella sampling was used to induce melting/hybridization in an im-

plicit solvent with a 750 mM salt concentration which was chosen based on experimental

precedence [118] and model constraints [76].

4.2.4 Statistics

Due to the large amounts of computer time required for each potential of mean force

in this study, replications of results were limited. This limitation impacted the statistical

analysis given herein. To obtain an estimate of the statistical significance of the results,

several independent umbrella simulations were repeated in their entirety. The results pre-

sented in the figures below show the mean of the N independant simulations as a solid line.

The uncertainties are represented by the shaded areas, where there was sufficient data to

calculate uncertainties, and were estimated as σ√
N−1

, where σ is the standard deviation of

the N values of the PMF for each value of ξ. Defined in this manner, the largest error in the

∆Ghyb was 0.7 while the smallest was 0.1. As such, ‖∆∆Ghyb‖ > 1.4 identifies treatments

which are significantly different from the control.

4.3 Results

4.3.1 Human Topoisomerase II Target Sequence

Figure 4.1 shows the comparison of the potentials of mean force for hybridization in

the bulk (the control) and on the surface for the human topoisomerase II target sequence

(2JYK). These PMFs are the reversible work done as the target strand approaches the

probe strand and hybridizes. The solid line in each PMF represents the average of four

sets of simulations and the gray shading represents the error across those simulations at

each point on the PMF, calculated as outlined in Section 2.2.1. A low energy minimum

is present in both cases at ξ ≈ 13.5 Å and represents the perfectly hybridized state. At

large values of ξ, the PMF of both systems is flat indicating the two strands do not interact.

As the two strands move closer together, the PMF increases for two reasons. First, the

charged backbones repel each other. Second, an entropic penalty is paid as the interstrand

distance is reduced. The degree of increase in the PMF, as the two strands move closer

together, is higher on the surface as the excluded volume interaction of the surface reduces
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Figure 4.1: Hybridization of the human topoisomerase II target sequence on the surface is
thermodynamically more favorable than in the bulk. The shaded regions indicate the standard
error of the calculations.

the phase space in which the two strands may move to align with each other. Besides having

a larger entropic barrier, the surface cases also have more defined local minima and maxima

throughout the entropic barrier region. These features are discussed in detail in Chapter 5.

As described above, the stability of the duplex is quantified by defining the free energy

of hybridization as the free energy of the duplex minus that of the separated strands. Defined

in this way, the bulk system gives ∆Gbulk
hyb = −19.4 ± 0.726 kJ/mol and the surface system

gives ∆Gsurface
hyb = −28.8 ± 0.721 kJ/mol. Accordingly, ∆∆Gsurface

hyb = −9.4 ± 1.45 kJ/mol

indicating that, contrary to preconceived expectations, the surface stabilized the hybridizing

duplex.
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Figure 4.2: Hybridization of the restriction-modification controller protein sequence on the
surface is thermodynamically more favorable than in the bulk.

4.3.2 Other Sequences

Similar results were obtained from simulations of the other sequences. Figure 4.2

shows the difference in the potentials of mean force for hybridization of the restriction-

modification controller protein sequence both in the bulk and on a surface. In the bulk,

the change in free energy for hybridization is ∆Gbulk
hyb = −37.819 kJ/mol. On the surface,

∆Gsurface
hyb = −38.158 kJ/mol. This translates into ∆∆Gsurface

hyb = −0.339 kJ/mol, an in-

significantly small stabilization on the surface. Figure 4.3 shows stronger results for the

Gamma-Delta Resolvase target sequence. For this sequence, ∆Gbulk
hyb = −15.442 kJ/mol,

∆Gsurface
hyb = −17.678 kJ/mol, and ∆∆Gsurface

hyb = −2.236 kJ/mol. All three sequences were

stabilized when hybridization occurred on the surface.
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Figure 4.3: Hybridization of the Gamma-Delta Resolvase target sequence on the surface is
thermodynamically more favorable than in the bulk.

Table 4.1: Thermodynamics of hybridization on a Surface.

System
∆Ghyb ∆∆Ghyb Base

(kJ/mol) (kJ/mol) Pairs
Topoisomerase Target in Bulk -19.4 0 21
Topoisomerase Target on a Surface -28.8 -9.4 21
Restriction-Modification Controller in Bulk -37.8 0 27
Restriction-Modification Controller on a Surface -38.2 -0.339 27
Resolvase Target in Bulk -15.4 0 15
Resolvase Target on a Surface -17.7 -2.24 15
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4.4 Discussion and Conclusions

Table 4.1 summarizes the data given above. All the surface duplexes were more stable

than their bulk counterparts. This stabilization effect varied from not significantly different

to six standard deviations of stabilization. Although the stabilization of the restriction-

modification controller protein sequence is not significant, it seems to maintained the trend

seen in the other sequences, that the surface stabilized DNA duplexes of ideal microarray

length. The sequence that was stabilized the most was the human topoisomerase target,

which is the sequence that is the closest to the ideal microarray probe length. Chapter 7

shows that this magnitude of stabilization is consistent for other sequences of similar length

to the topoisomerase target.

Another noteworthy result seen in the data above is the presence of a local energy min-

imum at about 40 Å seen in all three sequences. These minima are evidence of a metastable

transition state that could arise from the hybridization mechanism. Figure 4.1 shows that

when the results from multiple replicates of the entire reaction coordinate are averaged to-

gether, the minimum in the bulk case is smoothed out while the minimum in the surface

case is enhanced. This phenomenon is explored in Chapter 5. Figure 4.2 shows that the

number and size of the minima increase as the strand length increases. This phenomenon is

explored in Chapter 7.

4.4.1 Analysis of Hypotheses

The first hypothesis of this research was that hybridization on surfaces is less favorable

than in the bulk. From a thermodynamic perspective, the data indicate that there is little

support for this hypothesis. All three tested surface duplexes were more stable than their

counterparts in the bulk. The fact that the surface duplex is more stable than the bulk duplex

confirms recent experimental findings by Hurst et al. [119]. In that work, it was found that

when DNA was attached to gold nanoparticles, the particles stabilized DNA duplexes with

non-complementary sequences. The stabilization effect increased with particle size to such

an extent that, for 150 nm particles, duplexes would form with just one matching base pair.

It should be noted that as the particle size increases, the particle surface behaves more like

a flat microarray surface on the molecular level.
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One reason for examining this hypothesis is that previous theories about the poor

performance of microarrays were based on the belief that surfaces destabilize DNA duplexes

by restricting the ability of complementary ends to correctly align and that microarray

accuracy would increase if the destabilization was counteracted. Since the duplexes are

already stabilized on surfaces, there must be other factors affecting microarray consistency.

These factors could be linked to the hybridization process, or the mechanism of hybridization.

The shape of the PMF curves shown previously offers useful insights into the hy-

bridization process. One would intuitively expect that as the two strands are brought to-

gether, they overcome an energy barrier due to Coulombic interactions and the energy needed

to align bases. Once the bases are aligned, the strands form their double helix and settle into

an energy minimum. As seen in Figure 4.1, the PMFs for the bulk cases seem to support

this logic. The surface cases, however, show features not seen in the bulk, such as, the bump

between 20 and 50 Å of Figure 4.1. Equilibrium configurations for each point along the

PMF were analyzed to determine the cause of the features, and the behavior was linked to

the surface’s ability to restict the reorientation of probe/target complexes. Representative

snapshots of these equilibrium configurations are shown in Figure 4.4. These structures were

chosen from the umbrella simulations for being indicative of the hybridization process on a

surface. The process begins as the two strands move along each other until they meet in a

way that the major and minor grooves are aligned. They then start to wind around each

other to start a helical formation. Once this occurs, the two strands slide into the hybridized

state by aligning complementary bases. The fact that the bases do not align until after the

initial partial helix is formed is seen in steps three and four where the oligonucleotides are

clearly offset. Chapter 5 explores these data in greater detail.
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Figure 4.4: Snapshots of the hybridization process on the surface. The two strands of DNA
match grooves, wind around each other, and shift into position.
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Chapter 5

Analyzing the Hybridization Mechanism with Two-Dimensional
Umbrella Sampling

5.1 Introduction

It was shown in Chapter 4 that surfaces improve the stability of DNA hybridization.

This unexpected result was calculated from potential of mean force (PMF) curves along

a reaction coordinate of strand separation distance by comparing the free energy of the

non-interacting ssDNA with the free energy of the hybridized duplex of DNA of the same

strands. The PMFs for the human topoisomerase II target also showed that the surface

systems, in addition to being more thermodynamically stable, contained an unexpected

feature that appears to be a meta-stable intermediate state and was not present in the PMF

of the bulk case. The purpose of this chapter was to explain these features by quantifying

the mechanisms of hybridization on a surface and in the bulk and better understand why

surface duplexes were stabilized. It was hypothesized that these features were evidence of

the formation of intermediates in the hybridization mechanism due to a “flipping” transition

in which the duplex would switch from a parallel to an anti-parallel orientation. It was

proposed that the hybridization mechanism in both surface and bulk cases was the same,

but that the greater stability of intermediates and the greater entropic barriers to move into

and out of these intermediates on the surface caused these features to only be visible for

surface cases.

The hybridization of two strands of DNA occurs in two regimes. The first is a regime

governed by colloidal interactions and occurs when the strands are separated by large dis-

tances. In this stage, colloidal interactions cause attractive forces which draw the strands

together without regard to sequence effects. This means that as two strands approach each

other there is roughly a 50% chance that the strands will be properly aligned (i.e. the 5’
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Figure 5.1: The process of hybridization in the bulk, Panel (a), and on the surface, Panel
(b), when the approach produces an anti-parallel configuration. No reorientation is needed in
these cases and the strands slide into place.

end of one strand with the 3’ end of the other) and a 50% chance for improper alignment.

In the second regime, which occurs at short interstrand distances, strand-strand interac-

tions are governed by specific base pairing interactions. In this regime, strands slide up and

down each other seeking proper sequence alignment and must often “flip” to complete the

hybridization process. One important feature of the hybridization process is the presence

of an energy barrier separating the two regimes. The previous research suggested that this

energy barrier was entropic in nature and originated in the reorientation process. As the

two strands approach each other, the strands must overcome this barrier before falling into

the low-energy, hybridized state.

If the approach produced a parallel configuration, complete hybridization cannot

occur until the strands reorient to be antiparallel. This situation is shown in Figure 5.2.

The top panel is possible pathways a bulk duplex may follow to move from a parallel to

an antiparallel orientation. In this case the process can occur via movement of only one

strand or by both strands simultaneously. Once the strands have moved into an antiparallel

orientation, hybridization can proceed as depicted in Figure 5.1. The bottom panel of

Figure 5.2 shows how the reorientation process is different for a surface attached duplex.

The first distinction is that the probe strand can not participate in the movement due to its

connection to the surface. Second, the target strand is limited in the ways it may pivot due
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Figure 5.2: The process of hybridization in the bulk, Panel (a), and on the surface, Panel
(b), when the approach produces a parallel configuration. Here the strands must reorient into
an anti-parallel orientation before completing hybridization.

to the presence of the surface, particularly when the target strand initiates hybridization

with the end of the probe strand nearest to the surface. The dual facts that only the target

strand can reorient, and that reorientation can result in the target approaching the probe

from the surface-bound end, could cause the “bumps” seen only in the PMFs for the surface

cases, see Figure 4.1.
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5.2 Methods

5.2.1 Experimental Design

Determining the mechanism to test the hypothesized method given above required

projecting the free energy landscape onto measurable reaction coordinates. As outlined in

Chapter 2, the reaction coordinates were chosen as strand separation distance ξ and strand

interaction angle θ. These coordinates allowed the calculation of the free energy landscape

by moving the two strands through all important states in the hybridization process with

two-dimensional umbrella sampling.

Two-dimensional umbrella sampling– using the two reaction coordinates of strand

separation distance and the angle formed by the two strands–was used to test if this rough

energy landscape was caused by the surface inhibiting transitions between antiparallel and

parallel orientations. This technique produced a three-dimensional energy landscape as a

function of both of the reaction coordinates. The energy landscape was then used to deter-

mine the relative stability of all possible transition states by using the same method outlined

in Section 4.2.1.

5.2.2 Simulation Protocols

The simulations of this chapter followed many of the conventions of the previous

chapter. The simulated systems were all held at a temperature of 300 K using the Nosé-

Hoover chain method [116]. The salt concentration was set equal to 750 mM. Surfaces were

modeled with a Weeks-Chandler-Anderson potential [98], to create a short-ranged, purely

repulsive surface. The probe strand was attached to the surface via a bead-spring, coarse-

grain linker based upon the atomistic model of Wong and Pettit [51]. Umbrellas were used to

generate potentials of mean force (PMFs), Φ, of the hybridization process along the reaction

coordinates using WHAM [120, 121]. The reaction coordinates spanned from 10 to 50 Å in

0.25 Å increments for ξ and from 0° to 180° in 10° increments for θ. These reaction coordinates

required 3059 simulations for each PMF compared to the 484 simulations required per 1D

PMF in Chapter 4. Due to this increase in computer time, only the sequence for a target of

57



human topoisomerase II (ACA GCT TAT CAT CGA TCA CGT; PDB ID: 2JYK) was used

for this part of the study.

The PMF was used to quantify the stability of the various duplexes by defining the free

energy of a transition, ∆Gtrans, which was calculated in the same manner as was previously

discussed with the following specifications. Several changes of free energy were calculated.

The most important was the change in free energy of hybridization, or ∆Ghyb, defined as the

energy value at a location where the PMF becomes flat minus the value of the PMF for the

perfectly hybridized structure, an absolute minimum. The former occurs at long distances of

ξ and physically means that the strands do not interact. In practice, the absolute minimum

in Φ occurred at approximately ξ = 13.5 Å and θ = 0°. Another important change in free

energy was that for flipping events where the strands change from a parallel to an antiparallel

configuration. As will be shown below, such a transition does indeed occur. To facilitate

comparison of the stabilities of the intermediates, the change in free energy for this target flip

transition is defined as ∆Gflip ' Φ
(
13.5Å, 0°

)
− Φ

(
13.5Å, 180°

)
. To facilitate comparisons,

∆∆Gflip was defined as the free energy change of flipping for a certain treatment minus

the free change energy of flipping for the control case (∆∆Gflip = ∆Gtreatment
flip − ∆Gcontrol

flip ).

As mentioned above, the control case was bulk hybridization of the probe with the target

sequence.

All systems were simulated with a 1 fs time step for 4 ns of equilibration and 100 ns

of production time. Equilibration, in terms of the potential energy reaching a steady-state

value, usually occurred within 100 ps of simulation time. Only the data from the production

steps were analyzed. The total amount of simulation time needed to generate the 2D PMF,

calculated as the sum of the simulation times for all umbrellas used to generate the curve,

was 319 µs.

5.3 Results

5.3.1 DNA Hybridization Mechanism in Bulk

Figure 5.3 shows the free energy for hybridization of the human topoisomerase II

target sequence duplex in bulk as a function of the distance and angle between the two

strands. The arrows on the figure indicate representative pathways that the two strands can
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take as they proceed from large separation distances to the hybridized state and are only

present to help guide the following discussion. The orientations of the strands along each

pathway are also found in schematic form in the figure, and the changes in free energy as

the system travels along these pathways are summarized in Table 5.1 for convenience. It is

important to note that φ raises at the edges of the graph due to end effects associated with

the cutoff of a reaction coordinate in umbrella sampling techniques.

When the distance separating the stands is greater than ξ ≈ 37 Å, the strands show

little preference with respect to orientation over most θ values. The exceptions occur when

θ approaches 0° (antiparallel) and 180° (parallel). The increase in free energy for these two

cases is entropic in nature in that a penalty is paid to order the system into such aligned

configurations.

As the strands come closer together, they are no longer free to orient themselves at

any value of θ. Specifically, an energy barrier begins to appear between the parallel and

antiparallel orientations at ξ ≈ 36.5 Å. This barrier is largest at θ = 102.5° and separates

the two energy minima found on the landscape. Both minima occur at ξ = 13.5 Å. One is

found at θ = 0° while the other is found at θ = 180°. The former is the global minimum and

is the antiparallel, hybridized state. The latter is a state where the strands are duplexed in

the wrong orientation where the complementary bases do not align.

The strands can essentially take two paths as they come closer together. These

are indicated as Path A and B on the figure and the resulting configurations are parallel

and antiparallel respectively. If the strands follow Path A, producing a parallel state, a

reorientation event must take place for correct hybridization to occur. The free energy

associated with this flipping event is ∆Gbulk
flip = −19.7 kJ/mol which favors the correctly

folded state, but various paths can be followed for this to happen. Path D shows one

way that this transition can occur where the strands remain close together. Specifically,

if the strand separation distance remains constant at ξ = 13.5 Å, the energy barrier that

must be overcome for the flip to occur (measured as the difference in free energy between

the transition state separating the two minima and the parallel state) is ∆G13.5 Å, bulk
barrier =

Gbulk
transition state − Gbulk

parallel = 16.5 kJ/mol. However, if the strands separate before flipping,
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Figure 5.3: Free energy of hybridization of bulk hybridization as a function of strand separa-
tion distance (ξ) and angle (θ).

as illustrated in Path C, this barrier is reduced. For example, if the strands separate to

approximately ξ = 40 Å before reorienting, ∆G40 Å, bulk
barrier = 10.0 kJ/mol.

5.3.2 DNA Hybridization Mechanism on the Surface

Figure 5.4 shows the free energy of hybridization on the surface as a function of

ξ and θ. As before, the arrows are representative pathways that the system can follow,

the orientations of the strands along each pathway are shown in schematic form, and the

changes in free energy are summarized in Table 5.1. Similar to the bulk situation, two

minima exist at close distances corresponding to the parallel (θ = 180°) and antiparallel

(θ = 0°) configurations. However, the bulk and surface cases are different in multiple ways,

including the depths of the energy wells, the heights of the barriers between the wells, and

the number of wells, as is now described.

Unlike the bulk case, a third minimum is found at ξ ≈ 41 Å and θ ≈ 160° for

hybridization on the surface. The presence of this additional intermediate helps the system

arrive at the correct, hybridized state more easily than in the bulk. The two strands can

follow Path A and produce the antiparallel duplex without a flip occurring. If the strands

follow Path B, the system has two options. It can proceed along Path C to form the parallel

duplex or it can proceed through Path D to form the correct final structure. Following
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Table 5.1: Changes in free energy for the hybridization process of 2JYK.

Data for duplexes in the bulk and on the surface.

∆G
Value

(kJ/mol)
Description

∆Gbulk
flip -19.7

Change in free energy to flip from parallel to antiparallel in the
bulk. (See Paths C and D of Figure 5.3.)

∆G13.5 Å, bulk
barrier 16.5

The barrier that must be overcome to flip in the bulk if the
strands remain at close distances (ξ = 13.5 Å). (See Path D of
Figure 5.3.)

∆G40 Å, bulk
barrier 10.0

The barrier that must be overcome to flip in the bulk if the
strands first separate. (See Path C of Figure 5.3.)

∆Gsurface
flip -43.5

Change in free energy to flip from parallel to antiparallel on the
surface. (See Path E and the reverse of Path C followed by Path
D of Figure 5.4.)

∆Gsurface
Path C -0.2

Change in free energy to move from the intermediate to the
parallel state on the surface. (See Path C of Figure 5.4.)

∆Gsurface
Path D -43.7

Change in free energy to move from the intermediate to the
antiparallel state on the surface. (See Path D of Figure 5.4.)

∆G13.5 Å, surface
barrier 3

The barrier that must be overcome to flip on the surface if the
strands remain at close distances (ξ = 13.5 Å). (See Path E of
Figure 5.4.)

Path C, while energetically favorable with ∆Gsurface
Path C = −0.2 kJ/mol, requires the system to

overcome an energy barrier on the order of kbT which will reduce the kinetic likelihood that

this transition occurs. However, Path D follows a valley through the free energy landscape

where the barriers are all much less than kbT . This transition is not only thermodynamically

favorable, with ∆Gsurface
Path D = −43.7 kJ/mol, it is also kinetically more likely as the barriers

are very small.

If the strands arrive in the parallel duplex, the system can proceed to the correct

final state by either separating and flipping (e.g. traveling backwards along Path C and

then taking Path D as was discussed above) or by flipping at close distances. The latter is

energetically favorable with ∆Gsurface
flip = −43.5 kJ/mol compared to a value of -19.7 kJ/mol

in the bulk. Also different from the bulk case is the energy barrier that must be overcome
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Figure 5.4: Free energy of hybridization on the surface as a function of strand separation
distance (ξ) and angle (θ).

to flip at close distances. Specifically, ∆G13.5 Å, surface
barrier = 3 kJ/mol on the surface compared

to the bulk value of 16.5 kJ/mol.

5.4 Discussion and Conclusions

5.4.1 Analysis of Results

Figures 5.3 and 5.4 show that flips occur in both the bulk and surface cases which

supports the theory that DNA hybridization occurs via a mechanism with metastable states

that are due to the strands moving from parallel to antiparallel orientations. However, no

intermediate state is found in the bulk. Specifically, in the bulk, two strands separated at

long distances will be attracted to each other, but the attraction can lead to either a parallel

or an antiparallel stable state at short distances. Until ξ approaches the value found at

hybridization there is no preference for parallel vs. antiparallel configurations and no low-

energy minimum in the energy landscape. On the surface, the situation changes such that

a stable intermediate forms at longer distances. This intermediate, located at ξ ≈ 41 Å and

θ ≈ 160° is such that the completion of the hybridization preferentially follows a path that

leads to the antiparallel hybridized state rather than a parallel state (Path D rather than

Path C of Figure 5.4). This intermediate state is a parallel configuration which requires a flip

to occur to complete hybridization. Thus, there is evidence for the theoretical hybridization
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mechanism with metastable intermediate states on the surface. In the bulk, however, no

intermediate is found but flips are still required to complete hybridization if the system

arrives at the parallel state at close distances.

The results presented above give rise to two important questions. First, if surfaces

stabilize duplexes, why is the parallel duplex less stable on the surface than it is in the bulk?

Surface duplexes are stabilized by entropic effects. The surface acts as a barrier that blocks

the duplex from exploring certain areas of phase space. This reduction in available phase

space lowers the entropy of the system, which increases the thermodynamic stability. The

enthalpy of the system also contributes to the thermodynamic stability of the duplex. It is

likely that the decreased entropy of the parallel duplex on the surface is accompanied by a

decrease in enthalpy that is greater in magnitude than the change in entropy and therefore

represents a net decrease in thermodynamic stability.

The second important question raised by Figure 5.4 is why is there an energy minimum

at ξ ≈ 41 Å and θ ≈ 160° on the surface but not in the bulk? The reduction in free energy

is most likely due to interactions between the two strands since the formation of hydrogen

bonds between complementary bases will lower free energy. On the surface, the degeneracy

of ways in which the two strands can arrange themselves at a separation distance of 41 Å

and an angle of 160° is much less than in the bulk. This reduction in possible configurations

forces the strands on the surface over any energy barriers blocking the formation of these

hydrogen bonds while strands in the bulk may continue through configurations of low energy

that do not require crossing those barriers.

5.4.2 The Thermodynamic Origins of Surface Stability

Chapter 4 showed that surfaces stabilize DNA hybridization of tethered probe/target

complexes over their bulk counterparts, but the reason for the stabilization was not known [122].

The results presented above demonstrate that there are at least two reasons for the stabi-

lization. The first, which was discussed in Section 5.3.2, is that the surface creates a stable

intermediate at long distances that alters (compared to the bulk case) the free energy land-

scape in such a way that the system can follow a low-energy valley from long distances to the

properly-hybridized state. There is no such valley connecting the intermediate state to the
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parallel state, so the system preferentially follows a path to arrive at the correct final state.

In the bulk, no path to either the parallel or antiparallel state follows a low-energy valley.

The presence of such a path on the surface results in a more stable hybridization process.

A second factor, the ease with which a “flip” can occur at short distances, also

contributes to the stabilization of hybridization on the surface. In both the bulk and on the

surface, it is possible for the two strands to arrive at short intermolecular distances in both

antiparallel and parallel configurations. The “flip” is more easily done on the surface because

it 1) decreases the free energy of the system by a greater amount than in the bulk and 2)

has to overcome a smaller energy barrier to do so. Specifically, ∆Gsurf
flip = −43.5 kJ/mol

compared to a value of -19.7 kJ/mol in the bulk and ∆G13.5 Å, surf
barrier = 3 kJ/mol compared to

the bulk value of 16.5 kJ/mol. This means that, when compared to the bulk case, both the

overall move from parallel to antiparallel and the first step of overcoming the energy barrier

are more thermodynamically favorable. Specifically, the difference between the surface and

the bulk cases for the flip gives ∆∆Gflip = −23.8 kJ/mol and ∆∆Gtrans = −13.5 kJ/mol.

In summary, the stabilizing influence of the surface arises from at least two factors.

First, the presence of the intermediate on the surface drives any duplexes that are parallel

at long distances towards the antiparallel configuration along the energy valley (Path D of

Figure 5.4). Second, any surface system that finds itself in the parallel duplex can more easily

make the change to the antiparallel configuration compared to the bulk case. This is true

whether the system first separates to the intermediate and follows Path D or follows Path

E which has a lower energy barrier than in the bulk (See Figure 5.4). Chapter 7 expands

on the universality of these results by applying a similar treatment to a completely different

sequence.

64



Chapter 6

The Effects of Strand Manipulation

6.1 Introduction

In a microarray system, not only does hybridization occur on a surface, it must also

occur with high fidelity. Probe strands should only hybridize with perfectly complementary

target sequences. Hybridization with non-complementary sequences would result in false

positives. It is important, therefore, to determine how preferentially a DNA microarray probe

strand hybridizes to the target it is designed to find over a target strand that is similar but not

completely complementary. In microarray design, this preference is called specificity. This

chapter explores the relative stabilities of perfectly complementary DNA duplexes and DNA

duplexes with a single nucleotide mismatch, or a single nucleotide polymorphism (SNP), both

in the bulk and on a surface. The first hypothesis of this chapter was that the differences

in stability of perfectly complementary DNA duplexes and SNP duplexes would be significant

and measurable both in the bulk and on a surface.

The second goal of this chapter was to find ways to enhance hybridization and increase

selectivity. It was proposed that stretching one strand of DNA along its backbone would

increase the accessible surface area of the bases and thereby allow the bases on the strands

to interact more freely. The increased interactions would then lead to higher fidelity in the

hybridization process both in the bulk and on a surface. These hypotheses were motivated by

work by Southern et al. [123] who proposed that stretching facilitates molecular recognition

between the two molecules thereby enhancing hybridization. The second hypothesis of this

chapter was that stretching the probe strand would preferentially stabilize complementary

sequences.
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6.2 Methods

6.2.1 Experimental Design

The simulations and analysis used for this chapter follow the same pattern as Chap-

ter 4. Umbrella sampling techniques were used to simulate hybridization in the bulk and

on a surface along a single reaction coordinate, ξ. PMFs were then generated from these

simulations and ∆Ghyb was calculated as a measurement of duplex stability. ∆∆Ghyb was

then calculated to determine the relative stabilities of varying duplexes and to quantify the

specificity of microarray systems. The first hypothesis of this chapter was tested by calcu-

lating ∆∆Ghyb of SNP duplexes in the bulk and on a surface and the second hypothesis was

tested by calculating ∆∆Ghyb of complementary and SNP duplexes with backbone restraints

in the bulk and on the surface. For a better contrast among the simulations with backbone

restraints, one strand was also compressed along its backbone to decrease the accessibility

of its bases. In all cases, the control system used to determine the ∆∆Ghyb of a system was

the completely complementary duplex in the bulk with no artificial backbone restraints. See

Chapter 4 for more details.

6.2.2 DNA Model

This chapter uses the same DNA model and sequences that were used in previous

chapters. Single nucleotide polymorphisms were modeled by changing the central nucleotide

in the target strand to a non-complementary pyrimidine while keeping the probe strand

the same. For human topoisomerase II, the probe strand remained the same (ACA GCT

TAT CAT CGA TCA CGT) and the target strand was ACG TGA TCG ATT ATA AGC

TGT. This sequence represents a single nucleotide polymorphism at the tenth base pair

(shown in boldface type). Mismatched strands were simulated under the same conditions as

the perfectly complementary strands with the single reaction coordinate ξ to generate one

dimensional PMFs. The stability of the duplexes was quantified by calculating ∆∆Ghyb in

an analogous manner as described previously.
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6.2.3 Simulation Protocols

Simulations were performed in the same manner as has been previously discussed with

the following changes. To assess how efforts to improve hybridization on the surface affects

microarray performance, simulations were performed where the probe strand was stretched

or compressed by an external force. Stretching and compressing does not correspond to any

process currently used in microarray experiments but could serve in the future as a way

to thermodynamically stabilize DNA hybridization [118]. The idea behind stretching is to

improve molecular recognition between the hybridizing strands. In nature, oligonucleotides

form coils and hairpins in solution. To hybridize, the molecule must elongate enough for the

bases on both strands to interact. Stretching by external means is a way to drive this process

and is expected to improve the hybridization process. In contrast, compressing will increase

the propensity of the ssDNA molecule to fold back on itself which inhibits the base/base

interactions.

In simulation, one of the DNA strands was stretched or compressed with a harmonic

potential of the same form as Equation 4.1 with k = 42 kJ

mol Å
2 , tuned to maintain the backbone

length of the probe molecule. The “stretching/compressing” potential acted between the first

and last sugars of the probe strand and the distance was maintained at values of 80%, 85%,

90%, 95%, 105%, 110%, and 115% of the equilibrium distance found in dsDNA when no

external force was applied (66.3Å for the human topoisomerase II target).

6.3 Results

6.3.1 Single Nucleotide Polymorphisms

The effect of a SNP on hybridization in the bulk and on the surface of the human

topoisomerase II target sequence is depicted in Figure 6.1. The complementary bulk and

surface cases are shown along with the SNP cases in the bulk and on the surface. The least

stable process is hybridization of the SNP in the bulk with ∆Gbulk SNP
hyb = −18.7 kJ/mol.

This gives ∆∆Ghyb = 0.7 kJ/mol which is not significantly different from the bulk case. On

the surface, the SNP duplex is more stable than the control with ∆Gsurface SNP
hyb = −29.4 kJ

mol

and ∆∆Ghyb = −10.0 kJ/mol. These data indicate that, on a surface, mismatched duplexes
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Figure 6.1: The surface stabilizes both the complementary and the mismatched sequences
compared to the bulk case.

were more stable than perfectly matched duplexes in bulk. The most stable systems occured

on the surface for both the complementary and the mismatched strands. Similar results were

found for the other two sequences.

6.3.2 The Effects of Manipulating Base Accessability in the Bulk

Figure 6.2 shows the effect of stretching/compressing the probe strand on the hy-

bridization of perfectly complementary strands. As discussed above, multiple degrees of

stretch and compression (80%, 85%, 90%, 95%, 105%, 110%, and 115%) were simulated;

however, only two cases are shown (along with the control) for clarity. Those depicted are

stretching to 110% of the native length and compressing to 95% of the native length since
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these were the most stable degrees of stretching and compressing. The results for all cases,

those shown and not shown, are consistent with the discussion that follows.

The free energy barrier for hybridization, the entropic barrier that must be overcome

for hybridization to occur, is similar in height for all cases peaking at ξ ≈ 45Å but the

depth of the free energy minimum for the duplex changes as the probe strand is stretched or

compressed. For all compressed strands, the minimum free energy of the duplex is greater

(less negative) than that of the duplex without any stretch/compression. The 95% PMF is

shown as it results in the least amount of destabilization with ∆∆G95%
hyb = 0.6 kJ/mol, a value

that is not significantly different from the control. The implications of this will be discussed

later. As the probe is stretched, the minimum free energy for the duplex decreases up to

a certain point (110%). After this, further stretching causes the free energy of the duplex

to rapidly increase (not shown). At 110%, the most stable case, ∆∆G110%
hyb = −1.9 ± 0.9

kJ/mol.

6.3.3 Effects of Compressing Mismatched Strands on the Surface

Figure 6.3 emphasizes the effect of compressing the probe strand on the hybridization

of complementary and mismatched strands on the surface. Depicted are four curves: the

control, non-compressed complinentary strands on the surface, 95% compressed complemen-

tary strands on the surface, and 95% compressed mismatched strands on the surface. As

has been seen in other cases, the barrier to hybridization is similar in each instance, but the

depth of the well in the hybridized state is different. Each of the surfaces cases is more stable

than the control. The most stable states are the uncompressed, complementary, surface case

(the same system seen in Figure 4.1) and the 95% compressed surface case, which are not

significantly different. These results are a combination of two competing forces. Compres-

sion acts to hinder hybridization and destabilize the duplex compared to the control (see

Figure 6.2) while the surface acts to stabilize hybridization (see Figure 4.1). However, the

surface effects dominate the behavior yielding ∆∆Gsurface, 95%
hyb = −9.6± 0.4 kJ/mol which is

not significantly different than the ∆∆Gsurface
hyb = −9.4 ± 1.5 kJ/mol for the uncompressed

state. In contrast to the complementary strands, compression affects mismatched strands
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Figure 6.2: Stretching slightly enhances the stability of the duplex while compressing slightly
destabilizes the duplex compared to the bulk.

to a greater degree. For the 95% mismatched surface case, ∆∆Gsurface, SNP, 95%
hyb = −7.6± 0.1

kJ/mol.

6.3.4 Effects of Stretching Mismatched Strands on the Surface

Figure 6.4 illustrates the effect of stretching both complementary and mismatched

strands tethered to a surface. Four cases are depicted: the control, unstretched complemen-

tary strands on the surface, 110% stretched complementary strands on the surface, 110%

stretched mismatched strands on the surface. As has been seen before, the barrier to hy-

bridization is greatest on the surface, but the least stable state is the complementary strands

in the bulk (the control). The most stable state is stretching of the complementary strand

on the surface with ∆∆Gsurface, 110%
hyb = −14.3 kJ/mol. Strikingly, the next-most stable situ-

ation is stretching the mismatched strand on the surface with ∆∆Gsurface, SNP, 110%
hyb = −11.9
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Figure 6.3: Compressing the probe strand on the surface has no significant effect on the
complementary duplex but significantly destabilizes the duplex with a SNP.

kJ/mol. This represents a stabilization of ≈ 1 kJ/mol over the complementary surface case

with no stretch (see Figure 4.1).

6.3.5 Summary of Results

The data presented in the figures found in this section were selected to make the most

useful comparisons as placing all of the data on one figure would have made identification

of trends difficult. To summarize all of the results, Table 6.1 contains ∆Ghyb and ∆∆Ghyb

for every situation discussed above. The table is ordered with the most stable duplex at the

top and the least stable duplex at the bottom.
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Figure 6.4: Stretching stabilizes both the complementary and the mismatched strands.

Table 6.1: Thermodynamics of hybridization for complementary and mismatched strands.

Data for duplexes in multiple environments.

System
∆Ghyb ∆∆Ghyb

(kJ/mol) (kJ/mol)
complementary, Surface, 110% -33.7 -14.3
SNP, Surface, 110% -31.3 -11.9
SNP, Surface -29.4 -10.0
complementary, Surface, 95% -29.0 -9.6
complementary, Surface -28.8 -9.4
SNP, Surface, 95% -27.0 -7.6
complementary, Bulk, 110% -21.3 -1.9
complementary, Bulk (Control) -19.4 0.0
complementary, Bulk, 95% -18.8 0.6
SNP, Bulk -18.7 0.7

72



6.4 Discussion and Conclusions

The first hypothesis of this chapter was that a SNP would significantly decrease the

stability of a DNA duplex. This was found to be incorrect as neither of the SNPs that were

simulated without backbone restraints were significantly less stable than their complemen-

tary counterparts. The implications of this finding are of greater import for the surface

case. As in previous chapters, this set of simulations found that the surface stabilizes du-

plexes. While this might increase the sensitivity of a microarray device, it does not improve

its specificity, or the ability to preferentially hybridize with completely complementary se-

quences over mismatching sequences, given that the stability of a SNP duplex on a surface

is not significantly different than the stability of a complementary duplex on a surface. Fur-

ther more, since hybridization of complementary strands on a surface is more stable than in

the bulk, SNP hybridization on a surface is also more stable than the hybridization of the

perfectly complementary duplex in the bulk.

One reason this is important is that microarray probes are designed based upon

oligonucleotide behavior in the bulk. The expected melting temperatures of both compli-

mentary and possible mismatched probe/target duplexes are important parameters taken

into account when designing microarrays. When microarrays are designed, probes are cho-

sen such that all surface duplexes will have approximately the same melting temperature.

This garners confidence that when samples are incubated over the platform at a temper-

ature below but near the melting point, complementary sequences (the ones the microar-

ray was designed to detect) will be stable enough to form but mismatched sequences will

not. Current prediction techniques, such as the nearest-neighbor and salt-adjusted methods,

were developed using melting temperature data obtained in the bulk. The data presented

above indicate that such an approach under predicts the melting temperature for a given

probe/target duplex on the surface. Thus mismatched duplexes occur more easily than ac-

counted for in the microarray design. This is likely part of the reason for the high variability

seen in microarray data.

The hypothesis that stretching probe strands improves hybridization on surfaces, was

investigated as a model system to test the idea that improving base accessibility on the probe

strand would improve microarray selectivity. These simulations found that stretching indeed
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improved the stability of the hybridized duplex for the DNA sequences tested; however, this

stabilizing effect occurred for both the complementary and the mismatched sequences. When

the perfectly-matched sequences were compressed on the surface, there was little change in

the stability of the duplex (∆∆Ghyb = −10.5) compared to the uncompressed perfectly-

matched sequence (∆∆Ghyb = −9.4). Compressing the mismatched sequence on the surface

destabilized the duplex (∆∆Ghyb = −8.7). This might suggest that rather than designing

strategies to enhance hybridization on a surface, efforts should be made to hinder the process.

The latter could result in a small decrease in overall sensitivity while increasing specificity.

Since the variability in microarray results is likely due to false positives, increasing specificity

would increase the reproducibility of microarray results.
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Chapter 7

Dangling Ends

7.1 Introduction

Chapter 5 explored the mechanism of hybridization for dsDNA with strands of the

same length. It was found that the surface affected the ability of the target to change its

orientation, or to flip. Because flipping is likely length dependent, investigation was made

into systems where the probe and target strands differ in both length and the location of

the complementary sequence on the target. This last point is important in advancing the

knowledge of the biophysics of DNA microarrays as target strands are usually much larger

than the probe strands which increases the opportunity of the former to interact with the

surface and change the hybridization mechanism compared to the bulk system. This study

uses a more detailed model compared to previous efforts examining such effects [79], and the

results offer unprecedented insight into the hybridization process.

The purpose of this chapter is to examine how the hybridization mechanism changes

when the two hybridizing strands are of different length. In practice, probe strands on a

microarray surface are carefully designed with specific composition characteristics [124] and

lengths [117], but the target strands in a sample will vary in length and composition. Usually,

the target strands are much longer than probe strands which likely has a significant effect

on the hybridization mechanism. For example, if a long target strand approaches the probe

from the bulk with parallel orientation, the reorientation can cause a large portion of the

target to interact with the surface. This will likely destabilize the molecule compared to an

approach where the target does not interact with the surface. Other scenarios are possible,

and the hypothesis of this section seeks to understand these phenomena. Stated specifically,

the hypothesis is duplexes of uneven length will be destabilized on a surface only if they must
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reorient with the dangling end on the 5’ end of the target, such that it extends towards the

surface when it is properly hybridized with the probe.

7.2 Methods

7.2.1 DNA Model

This chapter required the use of new sequences of DNA. Simulations were performed

using probes of 20 base pairs and targets of 60 base pairs. The sequences were selected from

an exon for human insulin [125]. A well designed probe sequence [124] of 20 bases [117] was

chosen from the exon and 60 base strands around the complementary sequence were selected

for target sequences. The specific sequences are found in Table 7.1. The first line contains

the 20 base probe sequence. The next three lines have the sequence for the three targets,

each of which were simulated with the probe sequence found in the first line of the table.

The portion of the target that is complementary to the probe is indicated in bold font.

The probe strand was attached to the surface at the 3′ end. The targets were chosen

to satisfy three distinct bonding motifs [79] as indicated in Figure 7.1. The first target

was designed so that hybridization would occur at its 3′ end. In this case, the location of

the complementary sequence forces the rest of the strand down towards the surface. This

case is termed “top” because the top of the target, relative to the surface, contains the

complementary sequence. The second target, termed “middle,” was designed to hybridize

with the probe from bases 21 to 40 leaving a segment of the target extending towards the

surface and a segment extending away from the surface. The last target was designed to

hybridize with the probe at the 5′ end of the target. This causes the target to hybridize in a

way that leaves all the bases not involved in hybridization extending away from the surface.

This case is termed “bottom” because the complementary sequence is found at the bottom

of the target.

The control for each insulin target was simulation in the bulk with the probe strand

listed in the first line of Table 7.1 and only the equally-lengthed complementary portion of

the targets (found in the bold font.) This control was chosen because in practice, microarray

probes are designed based upon bulk melting temperatures of evenly-lengthed probe/target

duplexes. This choice also helps isolate the effects of “extra,” nonhybridizing bases, or
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Figure 7.1: Different bonding motifs for probe-target complexes of unequal length: A) match-
ing sequence on target strand is at the 5′ (“bottom”) end of the molecule, B) matching sequence
on the target strand is at the 3′ end (“top”) of the molecule, and C) matching sequence on the
target strand is in the “middle” of the molecule.

Table 7.1: Sequences used to study the effect of dangling ends.

Taken from the sequence for human insulin.

Probe CCA GCC GCA GCC TTT GTG AA

Targets
Matching
Sequence
Location

Target 1
3′ End GTA GAG AGC TTC CAC CAG GTG TGA GCC GCA
(Top) CAG GTG TTG GTT CAC AAA GGC TGC GGC TGG

Target 2
Center GTG AGC CGC ACA GGT GTT GGT TCA CAA AGG

(Middle) CTG CGG CTG GGT CAG GTC CCC AGA GGG CCA

Target 3
5′ End TTC ACA AAG GCT GCG GCT GGG TCA GGT

(Bottom) CCC CAG AGG GCC AGC AGC GCC AGC AGG GGC AGG

dangling ends. Since the matching sequence is the same in all three cases, the hydrogen

bonds that form to build the final duplex will be the same. If the majority of the change in

free energy that occurs upon hybridization is due to the formation of hydrogen bonds, then

the free energy of hybridization should be the same for all treatments and the control. Any

changes that do appear in the thermodynamic stability of the hybridized duplex are due to

effects of the sections that do not directly participate in base pairing.
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7.2.2 Simulation Protocols and Experimental Design

Simulations were organized and run according to the methods outlined in Chapters

4 and 5. For this query, two types of PMFs were calculated: one-dimensional PMFs using ξ

as the reaction coordinate (following the method of Chapter 4) and two-dimensional PMFs

using both ξ and θ as reaction coordinates (following the method of Chapter 5). One-

dimensional PMFs were used where appropriate due to the large computational demands

required to calculate the two-dimensional variety. In both cases, each point along the reaction

coordinate was simulated as an independent system with appropriate biasing potentials.

For the one-dimensional PMFs of the unevenly-lengthed insulin pairs, ξ0 ranged from

10 to 325.75 Å in increments of 0.25 Å requiring a total of 1264 simulations. For the one-

dimensional PMF of the evenly-lengthed control for the insulin pairs, ξ0 ranged from 10 to 150

Å in increments of 0.25 Å requiring necessitating 561 simulations. For the two-dimensional

PMF’s, θ0 ranged from 0° to 180° in 10° increments and ξ0 ranged from 10 to 160 Å in 0.25

Å increments. A two-dimensional PMF of the system, therefore, required 11476 simulations

across both ξ and θ and represented a total of 1.19 ms of simulation time.

7.3 Results

Figure 7.2 which shows the potential of mean force for hybridization of uneven strands

in both the bulk and on the surface as well as the control case of hybridization in the bulk

for two strands of the same length. Panel A is the 1D PMF when hybridization occurs at

the 3′ end of the longer strand (Target 1, “Top”), Panel B in the center of the longer strand

(Target 2, “middle”), and Panel C at the 5′ end of the longer strand (Target 3, “bottom”).

The solid line on each graph is the control while the dashed and dotted lines correspond to

uneven hybridization in the bulk and on the surface respectively.

Below, the bulk data are discussed first followed by the surface data. In these dis-

cussions, comparisons are made between the free energies of hybridization for the control

and each treatment. As mentioned above, ∆Ghyb is defined as the free energy of the hy-

bridized state minus the free energy of the state where the strands do not interact. As

shown in Figure 7.2, the hybridized state (located at the minimum of the free energy curve)

occurs at approximately ξ = 13.5 Å while the non-interacting state (Φ = 0) occurs for
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Table 7.2: Changes in free energy for the hybridization of human insulin.

Data of various probe/target pairs
in the bulk and on the surface.

∆G
Value

(kJ/mol)
Description

∆Gcontrol
hyb -34.0

Change in free energy upon hybridization of the evenly-length,
insulin probe/target pair in the bulk. (See solid lines of all panels
in Figure 7.2.)

∆Gtop, bulk
hyb -17.6

Change in free energy upon hybridization of the insulin probe
with Target 1 (“top”) in the bulk. (See dashed line of Panel A
of Figure 7.2.)

∆Gmiddle, bulk
hyb -22.1

Change in free energy upon hybridization of the insulin probe
with Target 2 (“middle”) in the bulk. (See dashed line of Panel
B of Figure 7.2.)

∆Gbottom, bulk
hyb -18.6

Change in free energy upon hybridization of the insulin probe
with Target 3 (“bottom”) in the bulk. (See dashed line of Panel
C of Figure 7.2.)

∆Gtop, surface
hyb -21.4

Change in free energy upon hybridization of the insulin probe
with Target 1 (“top”) on the surface. (See dotted line of Panel
A of Figure 7.2.)

∆Gmiddle, surface
hyb -24.2

Change in free energy upon hybridization of the insulin probe
with Target 2 (“middle”) on the surface. (See dotted line of
Panel B of Figure 7.2.)

∆Gbottom, surface
hyb -24.5

Change in free energy upon hybridization of the insulin probe
with Target 3 (“bottom”) on the surface. (See dotted line of
Panel C of Figure 7.2.)

ξ greater than approximately 235 Å. This leads to the following functional definition of

∆Ghyb = G(ξ = 13.5 Å) − G(ξ = 250 Å) = G(ξ = 13.5 Å). The errors associated with

these ∆Ghyb values ranged from ±0.1 to 0.6 so ∆∆G values greater than 1.2 are considered

significant. For convenience, each of the ∆Ghyb values are summarized in Table 7.2.

Figure 7.2 shows that hybridization of two strands of different length in the bulk is

destabilized compared to bulk hybridization of the same sequence without extra nucleotides

on one of the strands. This destabilization occurs regardless of the location of the com-

plementary sequences on the longer strand. Specifically, the free energy of hybridization

for the control (Panels A, B, and C, solid line) is ∆Gcontrol
hyb = −34.0 kJ/mol. When the
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Figure 7.2: Potential of mean force (Φ) of DNA hybridization of unevenly-lengthed strands
in the bulk and on the surface as a function of the distance between the strands (ξ). Panel A)
“top”, Panel B) “middle”, Panel C) “bottom.”

80



matching sequence is found at the “top” of the longer target strand (Panel A, dashed line),

∆Gtop, bulk
hyb = −17.6 kJ/mol. This represents ∆∆Gtop, bulk

hyb = 16.4 kJ/mol, or a destabiliza-

tion of the duplex compared to the evenly-lengthed strands. When hybridization occurs

in the “middle” of the longer strand (Panel B, dashed line), the duplex is also destabi-

lized as ∆Gmiddle, bulk
hyb = −22.1 kJ/mol and ∆∆Gmiddle, bulk

hyb = 11.9 kJ/mol. Hybridization

at the 5′ end of the longer strand (Panel C, dashed line) continues this same pattern with

∆Gbottom, bulk
hyb = −18.6 kJ/mol and ∆∆Gbottom, bulk

hyb = 15.4 kJ/mol.

The PMFs for hybridization of unevenly-lengthed strands on the surface are shown as

dotted lines in Figure 7.2. Panel A is the “top” case where the non-hybridizing nucleotides

of the target strand must extend down towards the surface. In this case, the ∆Gtop, surface
hyb =

−21.4 kJ/mol which translates to ∆∆Gtop, surface
hyb = 12.6 kJ/mol. This is more stable than

when these two molecules hybridize in the bulk, but it is still a destabilization from the

bulk duplex with strands of the same length (the control). Panel B is the “middle” case

where hybridization occurs in the center of the target strand. Here, ∆Gmiddle, surface
hyb = −24.2

kJ/mol and ∆∆Gmiddle, surface
hyb = 9.8 kJ/mol. As with the “top” configuration, hybridization

of these two molecules is more stable on the surface than in the bulk, but it is still less

favorable than hybridizing two evenly-lengthed strands in either environment. This same

pattern is also found in the “bottom” case (Panel C) where ∆Gbottom, surface
hyb = −24.5 kJ/mol

and ∆∆Gbottom, surface
hyb = 9.5 kJ/mol.

One of the features of hybridization of unevenly-lengthed strands, seen in both the

bulk (dashed lines of Figure 7.2) and the surface (dotted lines) is the presence of rough

landscapes along the hybridization free energy curves that are not present for hybridization

of evenly-lengthed strands (solid lines). To determine the cause of these minima, whether

they are local energy minima or noise, 2D PMF’s were generated for each unevenly-lengthed

system. Panel A of Figure 7.3 shows the “top” case, Panel B the “middle” case, and Panel

C the “bottom” case. To aide in the discussion that follows, Figure 7.4 shows representative

snapshots of configurations of the “top” and “bottom” cases at various minima on the free

energy landscapes. The dashed lines indicate transitions between neighboring low-energy

minima. Transitions that move the system between antiparallel and parallel orientations

with respect to sequence are labeled “flip.” Those that move a system initially in either
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a parallel or antiparallel configuration to a perpendicular configuration are labeled “partial

flip,” and a subsequent partial flip from perpendicular to either parallel or antiparallel will

produce a complete flip. Transitions that move the system away from an ability to finish

hybridization by having the target slide into place are colored in gray.

Complete hybridization in the “top” situation forces unmatched nucleotides into the

surface. Panel A of Figure 7.3 and the top panel of Figure 7.4 suggest that the system seeks

to minimize this surface interaction while maximizing the ability of the strands to contact

each other without respect to sequence. At long distances (ξ ≈ 144 Å) the system prefers

an orientation where the matching portion of the target adopts a more parallel orientation

(θ ≈ 138°). This allows the strands to contact each other and create both canonical and

non-canonical base pairing motifs even though the sequence alignment is incorrect. A stable

intermediate progressing to the final hybridized state is found at ξ ≈ 88 Å and θ ≈ 109°

Here, the two molecules are intertwined with the matching portion of the target farthest away

from the surface and a small number of the non-hybridizing bases contacting the surface.

Hybridization finishes as the target slides down the probe. The sliding process occurs in an

energy “valley” (with only small energy barriers) at low values of θ and forces the remaining

non-hybridizing bases into the surface. This configuration is accommodated by the duplexed

portion of the molecule leaning down toward the surface. Also note that there are no local

minima at short distances for the parallel state. This contrasts with what is seen for strands

of equal length (See Figure 5.4).

When the hybridizing sequence is found in the center of the probe strand, the “middle”

case, flipping between parallel and antiparallel configurations seems to occur more easily

at shorter distances compared to the “top” case. As shown in Panel B of Figure 7.3, at

long distances, the most favorable configuration occurs when the strands are approximately

perpendicular to each other (θ ≈ 90°). As the strands move closer together, they prefer

an antiparallel orientation at ξ ≈ 107 Å but very quickly adopt a more perpendicular to

parallel orientation from ξ ≈ 75 − 95 Å. At ξ ≈ 58 Å, the strands prefer an antiparallel

orientation. From here, the system can follow two paths. The first is they can remain in

the antiparallel configuration and hybridize into the low-energy, duplexed state crossing a

few small energy barriers. The second is that the strands can adopt a parallel orientation
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centered at ξ ≈ 45 Å. To complete the hybridization process from this state requires a “flip”

event. If the strands do not separate, a small energy barrier must be overcome for this to

occur. However, if the strands separate, the “flip” can follow a low-energy path to go back

to the antiparallel state at ξ ≈ 58 Å and follow the first path mentioned.

Hybridization for the “bottom” case starts similar to that of the “top” case in that at

long distances, the system prefers a parallel orientation. As the bottom panel of Figure 7.4

depicts, in this configuration (ξ ≈ 145 Å and θ ≈ 155°) the non-matching portion of the tar-

get can interact with the probe without significant surface effects. As the distance between

the two strands decreases, the system drifts toward a perpendicular arrangement where a

small number of the bases from the non-matching portion of the molecule are attempting to

hybridize with the probe (ξ ≈ 85 Å and θ ≈ 89°). From here, the system can proceed one

of two ways depending on the movement the target takes. If the target moves in a coun-

terclockwise direction (relative to the position depicted in the bottom panel of Figure 7.4)

the system will arrive at a stable intermediate at 69 Å and 146° where the system appears

hybridized, but the strands are in the incorrect orientation and the sequences do not match.

The second is where the target moves clockwise so that it can be in the correct orientation

to slide along the probe and complete hybridization. The sliding process occurs in an energy

“valley” (with only small energy barriers separating multiple energy minima) at low values

of θ. Sliding initially forces the matching bases into the surface (ξ ≈ 59 Å and θ ≈ 61°), but

the final state is the properly-hybridized duplex with the extra bases extending away from

the surface.

Of note in the “bottom” case is that no parallel state is favorable less than 69 Å. The

intermediate found at 69 Å and 146° is the last time a true parallel state is seen. The low

energy state at 47 Å and 158° (snapshot not depicted but is similar to the 51 Å, 41° state for

the “top” target) is not a true parallel state but a J-like structure produced from the sliding

process where the portion of the matching bases that are not yet hybridized are seeking to

minimize their contact with the surface. Moreover, a significant energy barrier to flipping

forms at about 30 Å from 90− 120°. This particular barrier is not found in the other cases.

Another distinct feature of the “bottom” case is that the well for the properly-hybridized

state is deeper over a wider range of ξ values than both the “top” and “middle” cases.
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Figure 7.3: Potential of mean force (Φ) of DNA hybridization of unevenly-lengthed strands
on the surface as a function of distance between the strands (ξ) and angle made by the strands
(θ). Panel A) “top”, Panel B) “middle”, Panel C) “bottom.”
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Figure 7.4: Representative snapshots for configurations of the system for the “top” and
“bottom” unevenly-lengthed strands corresponding to low-energy minima in Figure 7.3.
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7.4 Discussion and Conclusions

This chapter explored how the flip mechanism explained in Chapter 5 changes with

strands of uneven length and how those changes affect the stability of the duplex. Figures 7.3

and 7.4 show that flipping occurs even for unevenly-length pairs and involves a metastable

state at intermediate distances. For the “top” case, flipping occurs at long distances (ξ ≈ 144

Å and θ ≈ 138°) to properly orient the target strand for sliding into place and produces a

metastable state at 88 Å and 155°. From here, a flip leads to stable states at shorter distances

(ξ ≈ 47 Å and θ ≈ 147° and ξ ≈ 41 Å and θ ≈ 41°) that cannot result in proper hybridization

without a subsequent flip that takes the system back to 88 Å and 155°. In the “middle” case,

the flipping occurs at both long and short distances with relative ease as an “extra” amount

of bases are found on both sides of the molecule so that the surface does not affect either

end preferentially. However, a metastable state is also present at ξ ≈ 90 Å and centered

around θ ≈ 110°. In the “bottom” case, flipping occurs gradually to move the system at

long distances and parallel orientations (ξ ≈ 145 Å and θ ≈ 155°) through a metastable

state with a perpendicular orientation (ξ ≈ 85 Å and θ ≈ 89°) to finally end up at short

distances and an antiparallel orientation (ξ ≈ 59 Å and θ ≈ 61°) from which hybridization

can finish by the target molecule sliding into the proper duplex. Complete flipping is not

found at long distances since both sequence and the extra bases work together to keep the

molecule in the correct orientation. In summary, the data for unevenly-lengthed strands

on the surface support the findings in Chapter 5 with respect to flipping mechanisms and

metastable states.

The hypothesis of this chapter was duplexes of uneven length will be destabilized

on a surface only if the reorientation process to correctly align complimentary bases for

hybridization increases the interaction of the target molecule with the surface. The results do

not support this hypothesis. The data in Figure 7.2 and Table 7.2 demonstrate that targets

of longer length than the probe, regardless of the location of the matching sequence on the

target, result in less favorable hybridization both on the surface and in the bulk compared

to evenly-lengthed strands (the control). Moreover, even if the comparison is restricted to

only uneven strands in the bulk and on the surface, the data show that the surface stabilizes

duplexes even if the unmatching bases must extend into the surface (the “top” case). These
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results are in agreement with previous work on evenly-lengthed strands that showed that

the surface stabilizes hybridization (see Chapter 5). In short, the data do not support the

hypothesis of this chapter whether the comparison is made to the control (hybridization of

evenly-lengthed strands in the bulk) or between the same unevenly-lengthed strands in the

bulk and on the surface. Extra bases that extend toward the surface do have a destabilizing

effect, as indicated by the fact that the “bottom” case is more stable than the “top” case,

but the degree of this destabilization is less than the overall stabilizing effect of the surface.

The data presented above also help place the role of unevenly-lengthed probe/target

complexes in perspective. In the bulk, the most stable duplex was the one that hybridized at

the center of the longer strand. On the surface, this duplex was just as stable as the duplex

that hybridized at the 5′ end of the target strand (the “bottom” case). This indicates that

the thermodynamic stability gained by hybridizing at the center of the strand is lost to

the unfavorable interactions between the surface and the extra length of the target that

extends towards the surface. Further evidence of the negative effect of nonhybridizing bases

interacting with the surface is seen in the case of the probe hybridizing at the 3′ end of the

target (the “top” case). This duplex, which was just as stable as the duplex at the 5′ end of

the longer strand in the bulk, is less stable than the other duplexes on the surface. Although

this destabalization is small, ≈ 3 kJ/mol, it does mark a significant change of more than

three standard deviations in the ∆∆Gsurface
hyb . This is in agreement with previous results [79].

Finally, the data also indicate that there are two competing forces that affect the

stability of unevenly-lengthed strands: the destabilizing effect of the extra bases and the

stabilizing effect of the surface. Extra bases, regardless of the location of the hybridizing

sequence, destabilize DNA duplexes both in the bulk and on the surface. Surfaces, for both

evenly- and unevenly-lengthed strands act to stabilize the duplex. The latter appears to

be the dominant force in this interplay as seen in the fact that all surface cases for the

unevenly-lengthed duplexes are more stable than their bulk counterparts.

Because the stabilizing surface effect seems to overcome at least part of the destabi-

lizing effect of the extra bases, the location of the hybridizing sequence on the target is likely

to be of secondary importance. Figure 7.2 shows that the difference in the stability between

the “top,” “middle,” and “bottom” cases on the surface is only 4 kJ/mol at the largest. This
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means that while there are differences in the hybridization pathway in each case, the effect

of the location of the hybridizing sequence on the performance of real microarrays is likely

to be small if the targets do not become too long.
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Chapter 8

Conclusions

8.1 Summary of Results

8.1.1 Surfaces and Hybridization Mechanisms

This study found that the presence of a surface thermodynamically stabilizes hy-

bridization. Specifically, for each duplex system simulated, ∆Gsurf
hyb < ∆Gbulk

hyb . This can be

attributed to the way the hybridization mechanism changes on the surface compared to the

bulk. As shown in Chapter 5, strand reorientation, or flips, occur both in the bulk and

on the surface. In the bulk, however, no stable intermediate state is present. Specifically,

in the bulk, two strands separated at long distances will be attracted to each other, but

the attraction can lead to either a parallel or an antiparallel stable state at short distances.

Until ξ approaches the value found at hybridization there is no preference for parallel vs.

antiparallel configurations and no low-energy minimum in the energy landscape. On the

surface, the situation changes such that stable intermediates form at longer distances. These

stable intermediates help to guide the system along the hybridization process and into proper

orientation.

8.1.2 Mismatches and External Forces

It was found in Chapter 6 that surfaces stabilize duplexes with single nucleotide

polymorphisms to the same extent that they stabilize perfectly matched duplexes. Chap-

ter 6 showed that efforts to counteract that stabilization via external forces would be more

effective at improving microarray specificity than trying to further stabilize the correctly

hybridized duplexes. The overall unexpected result of these chapters was that the stabilities

of mismatched and perfectly matched duplexes were too similar on a microarray surface.
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8.1.3 Unevenly-Length Strands

Chapter 7 showed that long dangling ends destabilize duplexes. This destabilization

occurs in the bulk and on a surface. The presence of a surface counteracts some of the

destabilization seen in the bulk and some binding motifs are more stable than others, but

the overall effect is still a destabilization.

8.2 Implications of Results

These results have implications in designing microarray probes. One of the parame-

ters used to design probe sequences is the melting temperature of the probe/target complex.

These melting temperatures are generated assuming the pair is composed of two single-

stranded DNA molecules of equal length and neglects the fact that targets are usually much

longer than probes. This approach, according to the unevenly-lengthed PMF data presented

in Chapter 7, results in duplexes that are less stable than expected. Though melting temper-

ature is not directly analogous to stability, it has been shown [101,126–128] that increases in

stability result in higher melting temperatures and vice versa. It is therefore reasonable to

suspect that the melting temperatures with which an array is designed are higher than those

that actually occur on the chip. Additionally, according to the results of Chapter 6, the

melting points calculated for possible competitive duplexes on a microarray surface might

not be as different as those that actually occur on the chip. These discrepancies are likely

part of the cause for the limited reproducibility seen in microarrays. As such, changing the

prediction methods used to design microarrays might improve accuracy and reproducibility

on microarrays.

Despite the results presented above, further work is needed to fully understand how

microarray environments affect duplex stability. Experimental studies on the subject give

varied results that both agree and disagree with those presented above. Primarily, the work

by Hurst et al. confirms the findings that surfaces stabilize both perfectly matched and

mismatched DNA duplexes [119]. Chapter 7, however, showed that the destabilizing effects

of dangling ends was greater than the stabilizing effect of the surface and the experimental

results on this topic are more varied. For example, Guckian et al. [129] found that adding

a single nucleotide dangling end stabilizes duplexes, but Bommarito et al. [130] showed that
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such can produce both stabilization and destabilization. In more recent work, Isaksson and

Chattopadhyaya [131] confirmed that both stabilization and destabilization are possible;

however, Moreira et al. [132] found that dangling ends have little effect on duplex stability.

Future simulation work should seek to interpret the experimental findings and help

determine the cause for the apparent discrepancies. Before doing so, one difference between

the experiments and simulations needs to be addressed. Specifically, the simulations pre-

sented above were done in the single molecule regime while the experiments were done in the

thermodynamic limit. It has been shown that this difference can have a pronounced effect

on thermodynamic transitions [133]. Moreover, this difference may be crucially important

to the problem at hand as it has been hypothesized that stabilization is due to the dangling

ends of multiple molecules interacting in non-canonical base pairing motifs [134]. Future

work needs to be done to determine how the presence of multiple probe and target molecules

affects the hybridization mechanism and the duplex stability of unevenly-lengthed strands.

8.3 Summa Summarum

The purpose of this study was to develop a more detailed understanding of the DNA

hybridization in microarray environments. The results show that the surface changes the

hybridization process compared to the bulk situation by creating a stable intermediate on

the free energy landscape. This intermediate makes it easier for strands to “flip” orientations

if such is required to complete hybridization. The surface stabilizes all duplexes compared

to the same duplex in the bulk, including mismatched duplexes, but if one strand is shorter

than the other the duplex becomes less stable. Due to the fact that microarrays are designed

based on the thermodynamic stability of evenly-length duplexes in the bulk, microarray

design may be improved by considering the effects of strands of varying lengths in the design

calculations. Finally, it was found that the location of the hybridizing sequence on the longer

strand was of secondary importance for surface hybridization.
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