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ABSTRACT

Protein-Surface Interactions with Coarse-Grain Simulation Methods

Shuai Wei
Department of Chemical Engineering

Doctor of Philosophy

The interaction of proteins with surfaces is a major process involved in protein mi-
croarrays. Understanding protein-surface interactions is key to improving the performance
of protein microarrays, but current understanding of the behavior of proteins on surfaces is
lacking. Prevailing theories on the subject, which suggest that proteins should be stabilized
when tethered to surfaces, do not explain the experimentally observed fact that proteins are
often denatured on surfaces. This document outlines several studies done to develop a model
which is capable of predicting the stabilization and destabilization of proteins tethered to
surfaces. As the start point of the research, part of this research showed that the stability
of five mainly-alpha, orthogonal-bundle proteins tethered to surfaces can be correlated to
the shape of the loop region where the tether is placed and the free rotation ability of the
part of proteins near surfaces. To test the expandability of the protein stability prediction
pattern derived for mainly-alpha, orthogonal-bundle proteins, same analysis is performed for
proteins from other structure motifs. Besides the study in these small two-state proteins, a
further analysis of surface-induced change of folding mechanism is also studied with a multi-
state lysozyme protein 7LZM. The result showed that by tethering a protein on a surface,
the melting temperature of a part of the protein changed, which leads to an avoidance of
the meta-stable state. Besides the change of folding mechanism, by tethering the lysozyme
protein to a certain site, the protein could both keep a stable structure and a good orien-
tation, allowing active sites to be available to other proteins in bulk solution. All the work
described above are done with a purely repulsive surface model which was widely used to
roughly simulate solid surfaces in protein microarrays. For a next-level understanding of
protein-surface interactions, a novel coarse-grain surface model was developed, parameter-
ized, and validated according to experimental results from different groups. A case study of
interaction between lysozyme protein 7LZM and three types of surfaces with the novel model
has been performed. The results showed that protein stabilities and structures are dependent
on the types of surfaces and their different hydrophobicities. This result is consistent with
previously published experimental work[1].

Keywords: simulation, thermodynamics, tertiary structure, interaction, protein microarray
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Chapter 1

Protein Folding and Stability on Protein Microarrays

1.1 Introduction

Protein-surface interactions are the key phenomenon involved in many technologies

such as diagnostics, bioanalytes, and biomaterials [2, 3, 4, 5, 6]. Protein microarrays, in

particular, are a prominent example because of their potential to revolutionize medicine,

biocatalysis, and biosensors. To create protein microarrays, specific proteins are deposited at

addressable locations on a solid substrate. The deposited proteins perform functions such as

binding or reacting with complementary molecules found in solutions placed on the chip. For

example, antibody-antigen microarrays are created by depositing different antibody proteins

on the surface. A sample containing unknown antigens can then be incubated on the surface

to screen for identification using fluorescent labels. Such technologies have been used in the

research setting to identify proteins in serum, determine levels of protein expression, screen

drug candidates, ascertain functions, and detect protein-ligand interactions [3, 4, 5, 6].

However, despite the promise of protein microarrays, the use of the technology is

limited as it is difficult to obtain reproducible, qualitative results [7]. Placing a protein on a

surface in a manner that maintains protein native structure and stability is the key to protein

microarray performance. This is complicated because surfaces can induce conformational

changes in proteins [7, 8, 9, 10, 11, 12, 13]. Since protein structure leads directly to protein

function, transformations that do occur prevent the proteins on the surface from producing

the desired outcome. Designing around this fact is difficult because no method exists to

predict à priori how a particular tethered protein will behave.

There are basically two different techniques through which proteins are deposited on

surfaces. The molecule can either adsorb non-covalently to the substrate or can be tethered

to the surface by covalent linkage. Covalent tethering has emerged as the favored method to
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create protein arrays, as conformation changes are more pronounced for adsorbed proteins,

but significant challenges still remain. Thus rational design of protein arrays is difficult with

current understanding and ad hoc choices must be made about variables such as the location

of the tether site on the protein or the type of surface to use.

Although many researchers, using both simulation and experiment, have been in-

volved in understanding what affects protein behaviors on a chip, there is still little known

about the underlying biophysics. The lack of capabilities in predicting protein stabilities and

structures on surfaces hinder researchers from optimizing protein arrays for improved perfor-

mance. Therefore, the overall goal of this work is to develop a fundamental understanding of

the mechanism by which surfaces affect protein stabilities, so that rational design of protein

arrays can occur.

This document is organized as follows. The remainder of Chapter 1 discusses details

about protein microarrays and previous experimental, simulation, and theoretical studies of

protein-surface interactions. Chapter 2 focuses on the simulation methods used in the work.

Simulation was used because experimental techniques do not exist which can probe protein

structure on surfaces with atomic level resolution. Chapters 3-6 contain the bulk of the results

for the work. Chapter 3 describes how stability can be correlated to the type of loop region

where the tether is placed in the protein. The results of this work show, for the first time,

that protein stability on surfaces can be correlated to tertiary structure for a specific family

of proteins called alpha-helical, orthogonal-bundles. A paper Predicting Stability of Alpha-

helical, Orthogonal-bundle Proteins on Surfaces related to Chapter 3 has been published on

the Journal of Chemical Physics in 2010. Chapter 4 explains how well the protein stability

prediction pattern derived for mainly-alpha, orthogonal-bundle proteins are suitable to other

tertiary motifs. Chapter 5 extends the concepts outlined in Chapters 3 and 4 to explain how

large proteins that fold through a multi-state mechanism are affected by the surface and how

correct tether placement can both stabilize the protein on the surface and keep the active

site available to the bulk solution. A paper Effects of Tethering a Multistate Folding Protein

to a Surface related to Chapter 5 has been published on the Journal of Chemical Physics in

2011. Chapter 6 describes how the study of protein-surface interactions is moved to the next

level by developing a new model that more realistically captures experimentally-observed

2



adsorption energies than models used previously. This document ends with Chapter 7 where

the results are summarized and ideas about future work are offered. Taken as a whole,

the work reported in this dissertation presents a rigorous thermodynamic understanding of

the origins of protein stabilization/destabilization of surfaces and offers hope that rational

prediction of protein behavior on surfaces is possible.

1.2 Background

1.2.1 Protein Structure

Ca

O

NC

Ca

O

N
C

Ca

O

N

R
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C

R

H

H

H

Peptide bond

Figure 1.1: Protein primary structure.

Proteins are large biological molecules consisting of one or more chains of amino acids

as shown in Figure 1.1. Each amino acid has a carboxyl and an amino group, connected

to a carbon atom (Cα). A different function group side chain (R) is also connected to the

Cα. There are 20 different side chains in standard amino acids found in nature. Individual

amino acids are connected to each other by forming peptide bonds between the carboxyl and

amino groups of adjacent amino acid residues. Because it is a linear chain, one end of the

protein molecule ends in a carboxyl group (C-terminus), and the other ends with an amine

group (N-terminus).

The interaction of the amines, carbonyls, and side chains with each other and the

solvent causes proteins to self aggregate or “fold” into complex three-dimensional structure.
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Figure 1.2: Protein secondary structures: α-helix and β-sheets.

Different terms are given to these structures. The primary structure is simply the chain

of amino acids as described above. The first level of folding produces what are called sec-

ondary structures. Figure 1.2 depicts the two main types of secondary structures: α-helix

and β-sheets. Unstructured portions of the molecule, pictured in green in Figure 1.2, are

termed coils and loops and connect different secondary structures together. A given protein

molecules will be composed of several secondary structure elements linked by loops. These

will also aggregate together or fold into more complex shapes called tertiary structure. This

final structure is important and it imparts to the protein its specific function. If the protein

structure breaks (unfolds) then function is lost.

1.2.2 Protein Microarrays and Their Limitations.

A protein microarray is a high-throughput diagnostic device that can perform thou-

sands of biological assays in parallel. This technology has been identified as a powerful tool

to facilitate next generation proteomics and patient-tailored medicine [14, 15]. An array is

created by depositing proteins onto a solid substrate with a different type of protein located
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at each addressable point on the “chip” to facilitate identification. With a label-based de-

tection method [3, 16, 4, 5, 6] – such as fluorescent dyes, radioisotopes, epitope tags – or

label-free techniques [17, 18, 19, 20] – such as surface plasmon resonance, carbon nanotubes

and nanowires, and microcantilevers – researchers can identify proteins or determine protein

concentrations in samples.

Several protein array platforms have been developed. The first high-density antibody

microarrays were studied by Haab et al., and were used to test whether a linear relationship

could be detected between an antibody and antigen pair in an array format [21]. Soen et al.

fabricated an analytical microarray using peptide-MHC complexes to detect and characterize

antigen-specific T-cell populations [22]. Hsu et al. have built up a lectin chip with 21 lectins

for use in profiling the surface lipopolysaccharides in bacterial cells [23]. The lectins were

able to capture the bacterial cells onto the chip when labeled E.coli cells were incubated on

the chip.

There are two basic types of protein microarrays: [24, 25] functional protein microar-

rays and protein-detecting microarrays. Functional protein microarrays are employed to

qualitatively distinguish proteins (Figure 1.3), and the protein-detecting microarrays serve

as quantitative analytical tool of monitoring protein levels in a given biological sample (Fig-

ure 1.4). Both perform massively parallel assays. In the first application, native ligands are

arrayed in defined spots, and fluorescently labeled proteins in solution are screened as they

are incubated on the chip. Those spots where complementary proteins bind will fluoresce

thus allowing identification. In the second format, one specific kind of ligand is arrayed on

the chip so that levels of corresponding proteins in solution may be detected and calculated

according to the binding concentration.

Although protein arrays have great potential in both research and clinical settings, the

technology is currently limited by poor performance [7]. It is difficult to obtain reproducible,

quantitative results. As such, regulatory agencies are reluctant to approve, and end-users

are reluctant to use, the technology in its current state.

For example, results from antibody arrays are not always conclusive due to different

arraying technologies [26]. Some antibodies have been shown to be active in standard assay-

ing techniques such as ELISA while the activity can not be measured on surfaces [27]. Also,
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Figure 1.3: Protein microarray to identify proteins in a sample.

Figure 1.4: Protein microarray for monitoring protein levels in a sample.

signal intensities can vary as much as 43% on the same chip [28]. Moreover, since antibody

arrays are the most advanced of the technologies [29], arraying other proteins, such as cy-

tokines [26, 30, 31, 32], is even more challenging. In short, despite the promise of protein

arrays as a diagnostic tool, current technology cannot produce arrays that perform at levels

commensurate for use in clinical settings [26, 6, 8, 29, 33].

There are two main factors leading to the poor performance of microarrays. One

is the cost of expressing and purifying proteins; the other is the difficulty in maintaining

protein stabilities and orientation on chip surfaces. To address the first problem, He et

al. developed and simplified an in situ synthesis method for protein arrays that improves

proteins expression and convenience of handling [34, 35, 36]. By using this method, protein

microarrays can be produced at the precise time needed, which improves protein stabilities

by eliminating the storage time of the chip. However, the second factor, described in detail

in the next section, has not received much attention because of the lack of experimental
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techniques which can probe protein structure on the surface with atomic and molecular-level

resolution.

1.2.3 Experimental Understanding of Protein-surface Interactions

Two general conditions for protein-surface interactions are needed for functional mi-

croarrays. The first is to create a surface that allows molecules in the bulk to interact with

complementary molecules on the surface but prevent non-specific adsorption. The second

is to place the diagnostic proteins on the surface at the precise location desired while pre-

serving the structure and function of the molecule. Researchers have studied the behavior

of polypeptides at interfaces for decades with these goals in mind. However, as will be

described shortly, this research has not produced better microarrays because no experimen-

tal techniques exist which can measure stability while also providing the molecular-level

resolution needed to correlate structure and stability.

There are many methods for placing proteins on surfaces [6, 36]. The simplest is the

adsorption of the protein directly to the surface. This technique has been used in the standard

enzyme-linked immunosorbent assay (ELISA) and Westen blot for many years. It is generally

mediated by electrostatic charges [21] or hydrophobic interactions [37]. Despite its simplicity,

the main drawback of this method is the high probability of denaturation of the diagnostic

proteins and non-specific protein adsorption [6]. Covalent binding of proteins to substrate

surfaces is a more efficient and robust approach [38, 39, 34, 25].The surfaces are designed

with reactive groups, such as epoxides, aldehydes, succinimidyl esters, or isothiocyanates,

which react with nucleophilic groups (e.g., amino, thiol or hydroxyl groups) of amino acid

residues. However, when the immobilization is done via random attachment, proteins tend

to denature. Researchers have also developed a method of affinity interaction by specific

tags which provides a means of immobilizing proteins in a defined orientation on a tag-

capture surface [15]. It produces better biological activity of immobilized protein than protein

microarrays that employs non-site-specific immobilization techniques by providing controlled

protein orientation on solid surfaces. However, it is still not clear how to make the selection

of the tether site to keep the protein stable.
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Perhaps the most popular technology to control protein-surface interactions are self-

assembled-monolayers (SAMs) of alkanethiols on gold surfaces and alkylchlorosilanes or alky-

lalkoxysilanes on glass surfaces. Both are effective at preventing non-specific adsorption as

well as directing desired protein placement on the surface [40, 41]. However, their inherent

instability prevents their effective use outside of the research setting particularly as medi-

cal diagnostics which require an extended shelf life [42]. Polymer coated surfaces, usually

polyethylene glycol (PEG)-based, are used extensively to prevent fouling of surfaces and to

control protein placement on the surface through appropriate functionalization of the poly-

mer. It has been shown by several research works [43, 44, 45] that optimized polymer coating

improves the performance of protein microarrays. Despite the success of SAMs, polymers,

and other coatings on surfaces, predicting protein behavior on surfaces remains difficult. A

striking example is the fact that some antibodies are active in solution but not on surfaces

while others are not affected by the substrate despite both two groups of antibodies having

similar structure [27].

One difficulty of understanding protein-surface interactions is that experimental meth-

ods are limited. Typical techniques for obtaining structures of proteins such as NMR and

X-ray crystallography, are not adaptable to surface-bound proteins. Some techniques, such

as surface plasmon resonance (SPR), dual-polarisation interferometry (DPI), ellipsometry,

circular dichroism spectroscopy (CD), and fourier transform infrared spectroscopy (FTIR)

can be used to provide a gross estimate of protein structure but cannot provide mechanis-

tic understanding or atomic-level structural resolutions [46]. Tsapikouni and Missirlis [47]

summarized the experimental techniques to study protein surface interactions from micro-

to-nano scale. In their work, the wide-spread use of atomic force microscopy (AFM) is

introduced as a turning point in studying protein structure and measuring the interaction

force, but even this advanced technique does not provide the needed resolution.

Most experimental studies have focused on developing a thermodynamic understand-

ing of protein-surface interactions is essential for understanding the protein recognition phe-

nomenon in biology and describing possible protein adsorption mechanisms [48]. There are

two main methods for thermodynamic analysis of protein binding: chromatography with

van’t Hoff analysis [49, 50, 51, 52] and microcalorimetry. Researchers have used reverse
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phase chromatography (RPC) and hydrophobic interaction chromatography (HIC) to ana-

lyze the hydrophobic characteristics of biomolecules [53, 54]. With the van’t Hoff method,

the enthalpy of protein adsorption on the surface is calculated from the free energy change

at different temperatures. The temperature change has to be in a narrow range to assume

that the thermodynamic parameters and protein folding mechanisms are invariable. The

other method, microcalorimetry, emerged in the last two decades as an alternate for directly

determining adsorption enthalpy [48, 1]. There are some observable differences in enthalpy

results between these two methods and the reason is well explained by Chen et al. [48]

Microcalorimetry measures all energy changes happen during protein-surface interactions–

including dilution heat, binding heat, desolvation energy, and protein melting– while the

van’t Hoff method does not include the contribution of protein conformation change.

Latour’s group used atomic force microscopy (AFM) and surface plasmon resonance

(SPR) to measure protein adsorption free energy [55]. Since only surfaces that can be formed

as thin layers on metallic biosensor substrates on nanometer scales can be used for SPR, they

evaluated the transferability of the energy measured on SPR to the AFM technique that can

be used with a variety of surfaces. Their results showed a linear correlation between data

from AFM and that from SPR for a similar set of protein-surface systems.

In summary, a variety of experimental techniques exist which can measure thermo-

dynamic properties of protein-surface interactions but none of these provide details on the

structure of the protein or the surface at the resolution needed to correlate structure and

stability. What is needed is a way to measure both the thermodynamic stability of the sys-

tem and the structural details of the molecule at the same time. Such would allow predictive

models to be developed that could be used to rationally design protein microarrays according

to the specific protein being tethered to the surface. Molecular simulation can provide the

needed capability, and was used to accomplish the goals of this work. The following section

summarizes previous simulation research into protein surface interactions.

1.2.4 Theoretical and Simulation Understanding

Since experimental methods cannot provide atomic-level information, several groups

have done simulations and theoretical work to understand protein-surface interactions both
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with atomistic and coarse-grain methods. In an all-atom simulation, each atom in the sys-

tem is explicitely represented by a particle and particles interact with each other through

empirically-parameterized mathematical descriptions called force fields. Coarse-grained sim-

ulation is a method that simplifies molecular structure by grouping atoms into single sites

and using an implicit solvent, and is thus less accurate than atomic force fields. In general,

all-atom simulations can be highly accurate because aqueous solvation effects are explic-

itly addressed which enables solvent molecules to participate in the molecular system. [56]

However, in all-atom methods, simulation size and time scales are limited due to the high

computational resource demands. This can be overcome by using a coarse-grain model.

Even though there is a cost in accuracy, well-parameterized coarse-grained model, such as

that of Karanicolas and Brooks [57, 58, 59, 60, 61], can capture the most important effects

with regard to proteins-surfaces interactions and have been shown to reproduce experimental

results.

1.2.4.1 Progress Using Atomistic Simulations

Some groups have implemented atomistic simulations of proteins on surfaces. For

example, Latour and coworkers have investigated both model peptides [62] and biologically

relevant proteins, such as fibrinogen [63], using SAMs of many different functionalizations

using an all-atom representation. In each study, they report both agreement and conflict

between simulation and experiment. Jiang et al. used atomistic models [64] to study the

structure of phosphorylcholine self-assembled monolayers (PC-SAMs) for protein-surface in-

teractions. Jiang [65] also showed conflict with experimental results in energies of adsorption

and monolayer structure. Kubiak et al. [66] atomistically simulated Egg-white Lysozyme in

three different systems, and found that lysozyme has a preferred orientation for absorption

to surfaces. Wei et al. [67] performed a series of atomistic MD simulations with explicit wa-

ter to study lysozyme-polyethylene interactions with different initial lysozyme orientations.

However, they realized that the time scale in this simulation was too short to adequately

sample the configurations for proper understanding of the protein-surface interaction.

In recent years, Kokh et al. [68] developed an atomistic force field for modeling protein-

metal surface interactions. They validated their work by comparing the adsorption free
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energies and potential of mean force (PMFs) of capped amino acids to previously published

MD simulations by Hoefling et al. [69] Latour and coworkers performed very careful atomistic

simulations considering pressure for a system with constrained atoms and methods to assess

electrostatic effects [70, 71]. In another review paper from the same group, it was emphasized

that a novel coarse-grain method is needed to bridge time and length scales to properly study

protein-surface interaction [72].

The Latour group, whose research was just mentioned, is among the premier groups

studying protein-surface interactions. They use a combined experimental and all-atom simu-

lation approach and in a recent review pointed out three main issues that must be considered

in a molecular simulation of protein-surface interactions: [56] force field parameterization,

solvation effects, and sampling ergodicity which suggests that all accessible microstates are

equiprobable over a long period of simulation time. Latour sought to capture these effects by

developing an experimentally-validated, all-atom force field for protein-surface interactions

based upon novel experimental techniques measuring the free energy of adsorption for 11

naturally occurring amino acids [73].

A recent paper [74] illustrates the current limitations of all-atom models to reproduce

experimentally-observed behavior. Simulations of a variety of proteins on both hydrophobic

and hydrophilic surfaces were done using an all-atom model with three different param-

eterizations (termed force fields): CHARMM-22, AMBER94, and OPLS-AA. The study

concluded that CHARMM-22 generally produced more reliable conformational behavior of

proteins on surfaces than other force fields. However, it is mentioned that an improved force

field is needed for fully understanding protein adsorption behavior to material surfaces. The

work is a significant advancement in studying adsorption, but due to computational limi-

tations, the group later realized that a coarse-grain model is needed. The all atom model

could probe global orientation of a protein with respect to the surface and local structural

changes, but was too computationally slow to probe the larger structural changes needed to

ascertain stability.
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1.2.4.2 Progress Using Coarse-grain Simulations

As mentioned previously, predicting protein stabilities on surfaces is key to designing

better arrays. To calculate protein stability, the protein must fold and unfold many times

during the simulation. It is hard to achieve such sampling using atomistic models, so re-

searchers have developed different coarse-grain approaches to solve the problem. The general

idea of coarse-grain model is to reduce the degrees of freedom modeled in the system. This

can be done a variety of ways, such as fixing configurations in space and removing solvent

molecules [75, 76, 77, 78, 79, 80, 81]. For example, Sun et al. [75] employed an implicit

solvent in simulations to decide the orientation of proteins when absorbed to surfaces. Zhou

et al. developed a united-residue model to study the adsorption and orientation of two anti-

bodies on surfaces with Monte Carlo simulations. Carlsson et al. [79] reported a study about

lysozyme adsorption to charged surfaces by Monte Carlo simulation. The lysozyme in their

simulation was modeled as a large hard sphere with charges placed on the surface of the

sphere at locations corresponding to charged amino acids in the real protein.

One important way that coarse-grain simulations have improved understanding of

protein-surface interactions is by providing a thermodynamic perspective. Several years ago,

Dill et al. predicted that proteins are always stabilized when tethered to non-attractive,

purely-repulsive surfaces (those found in protein arrays) [76, 82]. The reason is summarized

in Figure 3.9. As depicted, the number of unfolded conformations available to tethered

peptides is less than in the bulk because configurations are confined by the surface. This

decreases the entropy of unfolded protein on the surface which destabilizes the unfolded

state, favoring the folding process. Assuming that the enthalpy of folding is approximately

the same on and off the surface, a decrease in the entropic cost of folding decreases the

Gibbs energy of folding (∆Gf ) for the tethered protein relative to the bulk protein resulting

in stabilization on the surface. In short, the theory shows that the entropic cost of folding is

greater in the bulk case than the on the surface because unfolded bulk peptides have more

entropy to lose than the surface proteins. A decrease in the entropic cost results in a more

negative (more stable) value of ∆Gf .

Coarse-grain simulations have helped show that Dill’s theory does not take into ac-

count several important phenomena and does not describe reality. In one example, work by
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Figure 1.5: Theory behind the stabilizing influence of the surface on tethered proteins.

Friedel et al. [83, 84] used simulations of a four-strand, beta-barrel protein both in the bulk

and on surfaces with different tethering sites in outer loop regions. The results show that

the protein could be stabilized or destabilized on the surface depending on the tethering

site, which was contrary to the “always stabilized” idea proposed in the theory. Results also

showed that if the tethering is done to a site on the interior of the molecule the protein is

always destabilized. More recent work by Zhuang et al. also shows variation of protein sta-

bility when tethering the src-SH3 protein on surfaces with different sites [85]. Similar results

were seen in prior work by Knotts et al. done on the all-alpha, three-helix-bundle protein

from Staphylococcus aureus [86]. In this study both the mechanical and thermal stabilities

of the peptide were reduced when the protein was tethered to the surface. In recent years,

Freed and Cramer [87] did a study of protein-surface interaction maps. A good estimates of

electrostatic interaction strengths were generated by their work, which were consistent with

the primary mechanism of interaction in ion-exchange chromatography.
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Other work by Knotts et al. used four proteins: protein A, 434 repressor, SH3, and

Protein G, which have different secondary and tertiary structure motifs [88]. All four proteins

were simulated both in the bulk and tethered to an inert (non-attractive) surface at the

N− and C− termini of the protein molecule, and the thermal stability of the proteins was

probed using configurational-temperature-density-of-states simulations. The work showed

that proteins could be both stabilized and destabilized on surfaces. It was also shown that

only all-alpha proteins displayed the surface-induced destabilization, while the proteins with

beta-content displayed only stabilization. This is consistent with results from Zhuang et

al. [85] Another important result from the work by Knotts et al. is that the stability cannot

be correlated to secondary structure as protein A and 434 repressor, which are both all-α

helical peptides, displayed different behaviors [88]. Furthermore, as the results for protein

A suggested, the same protein can behave differently on surfaces depending on different

tethering sites.

1.3 Summary

Although researchers realize the importance of understanding protein stability on

surfaces, there is still a lack of convincing theory for predicting protein behavior on surfaces.

Even though methods for binding proteins to surfaces in a predetermined manner have

been developed, and there are some successful instances of binding proteins with conserved

stabilities, most tethering does not result in functional proteins on the surface. This is in

large part because there are no theories guiding how to tether a protein to a surface and

maintain its function.

Simulation is an adept means of exploring this topic if used properly. Atomistic

simulations have shown to be ineffective in rendering protein folding information due to

their large computational requirement, but some coarse-grain models have proven to provide

results that are consistent with experiments. Results using such methods have shown that

proteins could be stabilized or destabilized on surfaces, and that the folding mechanism could

be changed if the tethering site is in a part of the molecule involved in transition between

the folded and unfolded structure [85]. Moreover, protein stabilities cannot be correlated

to secondary structure motifs. Since protein structure leads to protein function, a deeper
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study and analysis of protein stabilities on surfaces with respect to their tertiary structure

is needed.

In short, despite the success in understanding the behavior of a select few proteins

on a surface, no method currently exists to predict how to tether a protein to a surface

to maintain stability. This study seeks to address this in two ways. The first thrust is to

develop a prediction method that can identify which amino acid in the protein to use when

tethering to the surface based upon the structure of the protein. The second thrust is to

develop a new model for protein-surface interactions that takes into account the fact that

many surfaces are attractive to proteins. This second effort is needed to move the study of

protein-surface interactions to the next level.
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Chapter 2

Efficiently Simulating Protein Folding

In this chapter, general simulation tools and thermodynamic calculation methods are

introduced. After that, the replica exchange simulation method is discussed in the context

of rugged energy landscapes and how these relate to protein folding. This chapter also

describes how a new parallelized code was developed to achieve the simulation times needed

to study protein stability. Finally, the umbrella sampling method, used for calculating

protein adsorption free energies is described as it was used to develop the new model for

protein-surface interactions that was mentioned in the previous chapter.

2.1 General Approach and Thermodynamic Quantities Calculation

2.1.1 Monte Carlo and Molecular Dynamics Simulation Methods

Monte Carlo (MC) is a simulation technique based on repeated stochastic sampling.

Statistical mechanics teaches that the probability of a particular system configuration is de-

pendent on system potential energy and temperature. The statistical ensemble representing

a probability distribution of microscopic states of the system that all have the same number

of particles (N), volume (V), and temperature (T) is called the canonical (NVT) ensemble.

Monte Carlo simulations proceed by randomly generating configurations of the system, eval-

uating the energy of the new configuration, and accepting the new state as the next in the

ensemble according to it probability. The specific algorithm used is that of Metropolis [89].

This algorithm moves the system from high to low energy. If the sampling is adequate, ther-

modynamic properties of the simulation system can be determined by calculating ensemble

averages.

Each random sampling step of MC simulation needs to follow the Metropolis criterion,

which is based on the ratio of probabilities of the new configuration and the old one. It is
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ideal that the whole energy landscape could be fully accessed with sufficient sampling steps

and appropriate sampling acceptance ratio. If that is the case, thermodynamic properties of

the simulation system would be derived by calculating ensemble averages.

The molecular dynamics (MD) method is a simulation technique based on force driven

deterministic moves. Essentially, the forces between the atoms in the system are calculated

and used in Newton’s equations of motion to propagate the system through space and time.

As with Monte Carlo, the end result is that the system will move from a high-energy state to

a low-energy state. Macroscopic thermodynamic properties of the system can be calculated

from the MD simulation as time averages.

One important thing that has to happen in both MC and MD is that the system needs

to sample all the relevant conformations of the system. In protein simulations, this means

that the folded and unfolded states of the proteins, and all the states in between, need to

occur multiple times in the simulations. This is difficult to do in protein simulations because

the energy landscape of the system is rugged. For a complex system such as protein folding

on solid surfaces, the potential energy surface contains numerous local minima separated by

relatively high energy barriers. As shown in the Figure 2.1, with commonly used sampling

protocols, such as MC and MD, the system could be trapped in some of the local minima,

and not sample all the states between the folded and unfolded molecule. Should this occur,

the thermodynamic quantities that are calculated from the simulations would not be correct.

To prevent the system from becoming trapped in low-energy minima, two advanced sampling

methods are use in this research: replica exchange and umbrella sampling.

2.2 Replica Exchange

Replica exchange (RE), also known as parallel tempering, is a method developed by

Sugita and Okamoto [90] to overcome energy barriers during simulations. It provides an

efficient sampling method to solve the problem using a series of replicas of the system of

interest. Each replica is simulated in the canonical ensemble at a different temperature [91,

92]. To accomplish barrier crossings, replicas at different temperatures exchange complete

configurations (a process called “swapping”). Swaps are accepted using a Metropolis criterion

that ensures that at any given temperature a canonical distribution is realized. Swaps
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Figure 2.1: Typical energy landscape of a protein.

between each two adjacent replicates X and X ′ at temperatures Tm and Tn with potential

energy of Ui and Uj are accepted with probability:

Pacc(swap) = min {1, exp(−∆β∆U)} (2.1)

where β = 1
kBT

, kB is Boltzmann’s constant, and U is the potential energy of the system.

The equation 2.1 is derived from the basic Metropolis rule that

PX−>X′ =
PX′

PX
(2.2)

where

PX′ = e−βmUie−βnUj (2.3)

and

PX = e−βmUje−βnUi (2.4)

Figure 2.2 shows how replica exchange works on a single processor. Replica exchange

works because the systems at higher temperature will not become trapped in local energy

minima so that swapping down to lower temperatures will allow the system to traverse energy
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Figure 2.2: Replica exchange simulation.

barriers. The replica exchange method provides a powerful tool to ensure proper sampling of

protein configurations in the simulation and therefore leads to an easy way to study protein-

surface interactions. However this comes at a cost as significantly longer computation time

is required comparing to the traditional MC or MD methods. In general, 24 replicas at

different temperatures are needed to generate a complete folding curve for the proteins used

in this study. The number of replicas 24 is chosen with regard to the typical temperature

range and the supercomputer architecture. Furthermore, for statistical consideration, many

simulations need to be run to prove significance. In short, a very large amount of simulation

time is needed to accomplish the aims of the research.

It was realized early on that the computational time required to simulate protein

folding in simulation needed to be reduced if the aims of the research were to be accomplished.

Parallel computing provided the answer. With parallel programming, different parts of a

simulation work simultaneously on multiple processors instead of working in a sequential

way on the same computing unit.

2.2.1 Parallel Programing with MPI

Fortunately, the RE simulation method is easy to parallelize. This is done by running

each simulation replicate on a different computer. Using parallel programming means that

the need for computational time can be changed into a need for computational resources.

In this case, it is not required to force one computer to run all 24 replicas for a long time,
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because it is easy to assign each replica to different processors, as shown in Figure 2.3. The

only challenge is found in implementing the swaps described earlier. Recall that at certain

steps in the replica exchange method, swaps are proposed between replicas. In the case of

parallel coding, the replicas are found on different processors. Communication between the

computers is thus required for the swapping.

Processor/core 1 Processor/core nProcessor/core2

Replica 1 Replica nReplica 2

Figure 2.3: Replica exchange with MPI.

Message Passing Interface (MPI), [93, 94] is a specification for an application pro-

gramming interface (API) that allows many computers to communicate with one another.

This feature is just what is needed in parallel simulation of RE. With proper design in MPI,

replicas can be simulated on each processor with MD and exchange their coordinates at

certain iterations as expected. The time savings are large in that a 24-box simulation will

take 1/24th of the time it would on a single processor.

The benefits of parallization of the replica exchange simulation method were so large,

that the first part of this research concerned implementing such an approach. It took about

two and a half months to write the code to perform replica exchange simulations in parallel

and test the program on the BYU supercomputer. The scripts needed to analyze the data

were also written at this time. Code for performing RE simulations on a single processor were

already available in our group, including the basic MD simulation algorithm and the swap

algorithm; therefore, work consisted of using MPI to assign each replica to an individual
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computer and communicate between the computers when a swap move was proposed. The

general algorithm is as follows:

First, replicas are assigned to different processors by using submission files in multi-

processor format. Each 2,000 iterations, every processor then calls a function that controls

the swap. This includes sending the energy and temperature of one box to the other and

evaluating if the swap is accepted according to Equation 2.1. If the swap is accepted,

the coordinates between the two boxes are then swapped. If the move is not accepted,

each simulation just keeps its own replica and continues to run MD simulation until the

next swapping call. The details of the MPI programming for replica exchange are found in

Appendix A.

2.2.2 Performance of the MPI Scripts

To validate the MPI implementation of the replica exchange method, the protein

3WRP was simulated using the single-processor code and the parallel code. The melting

temperature of the protein was calculated from the results of each case. A value of 303.57±

0.78 K was obtained with MPI and 304.62 ± 1.01 K without MPI. There is no statistically

significant difference between the two values. Tests with other proteins showed the same

consistency.

After validating the accuracy of the parallel replica exchange code, the next step was

to determine the time savings offered by the approach. The protein 3WRP was used again

in these tests. Without MPI code, the simulation 40 ns of 3WRP on a single processor

took 10.98 days. The MPI code accomplished the same feat in just 7.55 hours. As before,

simulations with other proteins showed similar time savings using MPI code.

To summarize, using MPI speeds up simulations by a very large degree while still

providing accurate results. This code played a large part in the ability of this research to

accomplish the goal of understanding protein-surface interactions. Simulations of longer time

and larger protein size could be performed.
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2.3 Umbrella Sampling

Umbrella sampling is another method to overcome high energy barriers found in a

simulation, and is particularly useful for a protein adsorbing onto a surface. In umbrella

sampling, an artificial driving force is added to the simulation to faciliate escape from local

minima and more fully sample the whole phase space. By using umbrella sampling, a biased-

probability distribution Pij,biased is sampled during simulation. This artificially applied force

field is then removed to obtain unbiased thermodynamic properties. The main property

obtained from an umbrella sampling simulation is the potential of mean force or free energy

for each state of the system. This information can be used to calculate changes in free energy

as the system moves from one state to another.

As will be shown in Chapter 5, a harmonic potential is the umbrella force that is

added to the simulation to study protein adsorption. This harmonic potential holds the

protein at different distances away from the surface to sample all of the states involved as

a protein adsorbs to the surface. Distances sampled ranged from 1 to 100 Å. At 100 Å, the

interaction between the protein and the surface has decayed to zero. After the simulation,

the data are analyzed to remove the bias and calculate the free energy of the system as

a function of the distance that the protein is from the surface. Using these data, the free

energy of adsorption (∆Gads) can be obtained.
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Chapter 3

The Structure and Stability of Alpha-helical,
Orthogonal-bundle Proteins on Surfaces

As mentioned in Chapter 1, the goal of this research is to develop a fundamental

understanding of the mechanism by which surfaces affect protein stabilities, so that rational

design of protein arrays can occur. This chapter describes efforts to accomplish this goal by

correlating the structure of a protein to the stability of the protein when tethered to surfaces.

The focus is on a class of proteins called alpha-helical, orthogonal-bundles.

3.1 Background and Hypothesis

Previous studies [83, 84, 86] demonstrated that protein stability is related to tether

site in two ways. First, tethering must be done to a residue found on the surface (rather

than the interior) of the protein. Second, tethering must not interfere with the folding

pathway. The hypothesis stated below is formulated to comply with these two requirements.

In order to cast the results in a usable light, a second goal of the research is to correlate the

stability patterns to easily-identifiable structural motifs. Prior work showed that stability

is not correlated to secondary structure, so this work examines the suitability of tertiary

structure for prediction. Formally, the hypothesis tested is that proteins with the same

tertiary structure, when tethered only in loop regions, will be stabilized on surfaces. Loop

regions are chosen as they are usually found on the outside of the protein and are less

likely to interfere with intermediate states found in the folding pathway. As many tertiary

structural motifs exist, this study focuses on only one type alpha-helical, orthogonal bundle.

As will be described later, this is a classification of proteins with a large number of members.

Specifically the hypothesis of this work is alpha-helical peptides with orthogonal-bundle
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tertiary structure will be stabilized when tethered to the surface in the loop regions joining

adjacent helices.

3.2 Methods

3.2.1 Proteins

Five different proteins were used to test the hypothesis. These were identified with the

CATH classification method [95, 96]. CATH (Class, Architecture, Topology, Homologous

superfamily) is a method of categorizing proteins. The first two levels do so according to

structure. Class describes the overall secondary structure and Architecture the tertiary struc-

ture (groupings of structural elements). Each of the five proteins have the same class, mainly

alpha, and the same architecture, orthogonal bundle. The five proteins, shown in Figure 3.1,

are the N-terminal domain of phage 434 repressor (PDB ID: 1R69), cytochrome C-552 from

Nitrosomonas europaea (1A56), retinoblastoma tumor suppressor (1AD6), cytochrome C6

(1A2S), and myoglobin (5MBN). The size of these proteins ranges from 64 to 163 residues.

Mainly-alpha, orthogonal-bundle proteins provide a convenient starting place to in-

vestigate the behavior of families of proteins on surfaces. It may appear that studying only

orthogonal-bundle proteins limits the scope of subsequent conclusions; however, such speci-

ficity is needed to find useful patterns in the results as attempts to create correlations using

broader descriptors have proven difficult [88]. Moreover, this architecture contains over 71%

of all the proteins in the mainly-alpha class in the CATH universe.

Mainly-alpha, orthogonal bundle proteins are composed of alpha-helices connected by

loop regions. The helices lie at approximately 90◦ with respect to each other. By comparison,

mainly-alpha, up-down bundles (a family of proteins with the same CATH class but differ-

ent architecture) are composed of alpha-helices which lie in a roughly parallel orientation

resulting in an elongated structure rather than a globular structure. The globular nature

of orthogonal-bundle proteins is such that the loop regions are found on the exterior of the

molecule, a condition that has been shown to be necessary to maintain the native structure

of the protein when tethered to the surface [84, 85].

For computational efficiency, a coarse-grain model is used to represent the proteins.

The specific implementation is the Gō-like model of Karanicolas and Brooks [58, 59, 60, 61].
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Figure 3.1: Schematic representation of the five alpha-helical, orthogonal-bundle proteins:
(a) 1R69, (b) 1A56, (c) 1AD6, (d) 1A2S, (e) 5MBN.

In this formalism, each residue is represented by one site placed at the Cα position. The model

extends earlier Gō-like models by introducing different energy scales to describe hydrogen

bonding between side chains and sequence-dependent dihedral potentials. (Previous models

employed fewer energy scales and set dihedral parameters based upon the PDB structure

and not sequence.) As such, the resulting energy surface mimics that of real proteins more

closely than earlier models. Moreover, the model has been shown to give good agreement

with experimental folding studies [58, 59, 60, 61, 97]. Input files were generated using the

MMTSB website http://www.mmtsb.org.

Table 3.1 contains a residue-level, structural analysis of the five proteins used in the

study. The residues comprising each helix and loop are listed. The categorization of each

residue as either “loop” or “helix” was performed with VMD [98] which uses the STRIDE

algorithm [99]. The number of helices among the proteins ranges from 4 to 9. The lengths
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listed are the distance between the first and last residue for each structural element. For

example, the length of Helix 1 of 1R69 is 16.30 Å which is the distance between residues 2

and 13.

3.2.2 Surface Model

The peptides were attached to a short-range, repulsive surface, located at the z = 0

plane, that did not interact with the peptide until a residue came into close proximity. The

influence of the surface on the system is described by a Lennard-Jones type potential:

Vsurface =
N∑
i

{
εsur

[(
σsur
zis

)9

− 7.5

(
σsur
zis

)3

+ c

]}
(3.1)

where zis is the distance between site i and the surface, εsur = 0.0363 kcal/mol, and the value

of σsur is residue specific. Previous work has shown that the exact value of εsur has little effect

on the behavior of the protein [86]. The parameter c is chosen such that the potential falls

smoothly to zero at zis =
(
2
5

) 1
6 σsur. This interaction remains zero for distances greater than

this cutoff. The peptide is bound to the surface by a harmonic restraint with an interaction

potential of the form:

Vrestraint =
1

2
krr

2 (3.2)

where kr is the parameter describing the strength of the restraint and r is the distance of the

restrained site from its original position of (0, 0, 5.8) Å. For each type of surface, kr = 100

kcal/mol.

3.2.3 Experimental Design

The effect of the surface on protein stability was quantified by simulating the five

proteins in the bulk (no surface) and tethered to the surface at several locations in each of

the loop regions identified in Table 3.1. In each case, the melting temperature (Tm), Gibbs

energy of folding (∆Gf ), enthalpy of folding (∆Hf ), and entropy of folding (T∆Sf ) were

determined. In addition, order parameters such as the fraction of native contacts formed
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and the radius of gyration were calculated to analyze the correlation between structures and

stabilities.

Comparing the stability of tethered protein to bulk protein is done using Tm and

∆Gf . For the melting temperatures, results are presented with the temperatures scaled by

the melting temperature of the protein in bulk (Tm/T
∗
m). If this scaled temperature is less

than 1, the protein is destabilized by the surface. If the scaled temperature is greater than

1, the protein is stabilized by the surface. Comparing Gibbs energies of folding in different

environments is commonly done by defining the quantity ∆∆G. For the present purposes,

∆∆G = ∆Gsurface
f −∆Gbulk

f which is the difference between the Gibbs energy of folding on

the surface and in the bulk. As the Gibbs energy of folding is a temperature-dependent

property, the data presented later are tabulated at the melting temperature of the protein

in the bulk. At this temperature, ∆Gbulk
f = 0 by definition and ∆∆G = ∆Gsurface

f . The

double-∆ notation is therefore dropped and Gibbs energies are reported as simply ∆Gf .

For tethered proteins, if ∆Gf < 0, the protein is stabilized, and if ∆Gf > 0, the protein is

destabilized.

3.2.4 Simulation Protocols

To prevent the simulation from becoming trapped in local energy minima, simulations

were performed using the replica exchange (RE) algorithm [100, 101]. Twenty-four replicas

were used for each protein, and the canonical ensemble was generated using the Nosé-Hoover-

Chain [102, 103, 104] integration method with 3 thermostats of mass 10−26 kg Å2. The time

step was 1 fs, and each simulation contained 10 million steps of equilibration followed by

30 million steps of production. Swaps were attempted every 2000 steps, and temperature

increment between adjacent boxes ranged from 2.5 to 10 degrees. The smaller increments

were used close to the melting temperature and the larger increment farther away. By

tracking the potential energies, it is known that 10 million steps of equilibrium is long

enough for all simulation systems described in this chapter and Chapter 4, 5, and 6.
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3.2.5 Thermodynamic Quantities Calculation

The metrics used to quantify stability were calculated from simulation data using

standard methods from statistical mechanics. The melting point is the temperature of the

peak in the heat capacity curve. The heat capacity, C, is related to the fluctuations of the

potential energy of the system according to

C(T ) =
〈U2〉T − 〈U〉

2
T

RT 2
(3.3)

where R is the gas constant, T is the temperature, U is the potential energy, and the <>’s

denote the average of the corresponding quantities. The average of any arbitrary quantity,

X, can be found from

X(T ) = 〈X〉T =

∑
U

X(U)Ω(U)e−βU∑
U

Ω(U)e−βU
. (3.4)

where β = 1
kbT

and kB is Boltzmann’s constant. The key quantity needed to evaluate

Equation 3.4 is the density of states, Ω(U), which is calculated using the Weighted Histogram

Analysis Method (WHAM) [105] on the data obtained from replica exchange simulations.

Each of the proteins investigated in this study fold through a two-state mechanism.

For two-state folders, the Gibbs energy of folding is calculated from

∆Gf = Gfolded −Gunfolded = −kBT ln

(
Pf

1− Pf

)
, (3.5)

where Pf is the probability of the folded state at temperature T. The values of Pf are deter-

mined by classifying the configurations sampled throughout the simulation into “folded” and

“unfolded” ensembles based upon the instantaneous fractional nativeness, Q. The fractional

nativeness is the ratio of the number of native contacts formed at a particular instance to

the total number of native contacts possible. A protein is considered folded if Q > Q(Tm)

where Tm is the melting temperature of the protein. This treatment yields ∆Gf = 0 for a

protein at its melting temperature–a relationship which must be true by definition.
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The enthalpy change, ∆Hf , associated with folding is calculated as the difference of

the potential energy between the folded and unfolded states. Strictly, H = U +PV , but the

changes in the PV term are assumed to be negligible as has been done previously [106, 86, 88].

The change in entropy is then obtained from T∆Sf = ∆Hf −∆Gf .

To evaluate the reproducibility of the results, a total of N = 6 independent RE

simulations were performed for each protein in each environment. Results for an arbitrary

property, P , are presented as the average, 〈P 〉, of the N replicate values. Uncertainties are

calculated from these N quantities as σ〈P 〉/
√
N − 1, where σ〈P 〉 is the standard deviation of

the N averaged property values. The error bars reported later are ±σ〈P 〉/
√
N − 1.

3.2.6 Order Parameters

In order to correlate the stability of the protein to different patterns in the structure

of the molecule, several order parameters were defined. Order parameter selection is a trial-

and-error process, and several parameters were calculated to describe protein stability as

a function of measurable variables. The lengths reported in Table 3.1 were one type of

parameter tried. Others included the number of residues in the loop segment, the lengths of

the helices adjacent to the tether point, the angle formed by adjacent helices, the free rotation

volume and the free rotation angle. The last four parameters are described in Figure 3.2 and

Figure 3.3.

The length of a helix is the distance between the first and last sites comprising the

helix as found in Table 3.1. To define the angle made by adjacent helices, a vector is defined

for each helix. Each vector extends away from the tether point and is formed between the

two points within the helix that are farthest away from each other but lie on the same side

of the structure. Choosing sites on the same side of the helix creates a vector that is parallel

to the vector running directly through the middle of the helix. With the two vectors defined,

the angle between the helices is found from definition of the dot product.

For the first three investigated order parameters: 1) the angle formed by consecutive

helices, 2) the distance between the consecutive helices, and 3) the presence/absence of

β-turns in the loop regions, no correlation was found between stabilization/destabilization

and these parameters. For example, it was hypothesized that if the protein was tethered in
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Figure 3.2: Order parameters defined as (a) angle and length (b) free rotation volume.

a loop region where the adjoining helices made an acute angle that the protein would be

stabilized. However, this does not explain results where two sites in the same loop show

different behavior such as site 41 of 1A2S, which was destabilized, and site 46, which was

stabilized (See Figure 3.5). It was also thought that stability is related to the number of

residues in the loop region as a longer loop was expected to allow the protein more flexibility

to accommodate surface interactions without disrupting the positions of the helices forming

the bundle. For example, all the tethering sites in Loop 3 (18 residues in length) of 1A56

showed stability. In fact, all the sites in loop regions with more than 10 residues resulted

in stability that was equal to or greater than that found in the bulk. However, for loops

less than 10 residues in length, varied behavior was seen. For example, site 15 (destabilized)

and site 25 (stabilized) of 1R69, are found in separate loops of 3 residues in length but have

different stability.

31



Actually, these order parameters were tried when fewer tether sites were tested. After

failures of distinguishing loop regions by using these order parameters, simulations of more

tether sites were implemented to clarify the trend. Finally, two kinds of differences between

tether sites were realized: the difference between tether sites in the same loop region and

the difference between loop regions. As shown below, tether site positions in three kind of

loop region shapes were used to distinguish tether sites in the same loop, and the rotational

volume or angle were tried to tell the differences between loop regions.

As shown below, the ability of the protein to vibrate and rotate on the surface is

important in stability. The volume fraction available for rotation (VFAFR), the metric used

to follow this phenomenon, is seen in Panel b of Figure 3.2. The VFAFR is protein and

tether site specific and is calculated by first defining a cylinder which contains the portion

of the protein which can interact with the surface. The axis of the cylinder line connects the

tethering point and the mass center of the protein. The length of the cylinder, l, is 70% of

the length of the center line (about one third of the diameter of the protein) plus 5.8 Å (the

length of the tethering bond). The radius of the cylinder if found by first identifying all the

atoms that lie between two planes placed perpendicular to the cylinder axis at the ends of

the cylinder. The distance between each of these atoms and the cylinder axis is calculated

and the radius (r) of the cylinder is taken to be the largest of these values.

To calculate the VFAFR, the volume of the residues found within the cylinder must

be subtracted from the volume of the cylinder. The volume of the cylinder is Vc = πr2l.

The volume of each of the residues found within the cylinder is calculated using Voroni

tessellations on the full atomic coordinates using the software PROVAT. [107] The protein

volume, Vp, is the sum of the residue volumes. Then the VFAFR per atom is then given by

V FAFR =
Vc − Vp
Vc

. (3.6)

As observed, small rotation angles are always formed by those atoms far from the

center line which cross the mass center of the protein and the tethering site, and they

are the limitation for the rotation of proteins. Therefore, the average free rotation angles

formed by those atoms that are far from the center line could be an acceptable metric that
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distinguish site 145 from others. The free rotation angle is defined (in orange in Figure 3.3)

as the complement angle of the one that is formed by a ray through one site on the protein

and a ray through the mass center, both of which are across at the tethering site. More

serious consideration of the calculation of free rotation angles were discussed in the following

result section.

Figure 3.3: Definition of the free rotation angle for proteins.

3.3 Results and Discussion

3.3.1 Melting Temperatures

As described in the previous sections, stabilities were quantified using several ther-

modynamic quantities and order parameters. Figure 3.4 shows C, Q, and Rg as a function of

temperature for 1R69. (The other four proteins studied show similar behavior in C, Q, and
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Rg, so the results are not shown for conciseness.) A single, sharp peak is present in the heat

capacity (panel (a)). The location of this peak is the melting temperature of the protein. The

fractional nativeness and radius of gyration, panels (b) and (c), display a sigmoidal shape

indicating an abrupt transition from the folded to the unfolded state. The inflection point

in each of these curves occurs at the location of the peak in the heat capacity curve. The

fact that the heat capacity displays only one peak, and the melting temperature identified

by C coincides with the transition temperature of the order parameters Q and Rg, indicates

1R69 follows a two-state folding model. Therefore, our assumption of two state folding to

calculate ∆Gf is reasonable.

Figure 3.5 shows a summary of the melting temperatures, identified from the respec-

tive heat capacity curves, of the five proteins in the bulk and tethered to the surface at

multiple locations. The value reported on the ordinate is Tm/T
∗
m where Tm is the melting

temperature on the surface when tethered at the site indicated on the abscissa and T ∗m is

the melting temperature of the protein in bulk. The proteins were tethered to the surface

in each of the loop regions joining adjacent helical segments. The results are grouped by

alternating colors. Adjacent bars of the same color indicate that each of the listed tether

sites are found in the same loop region. For example, tether sites 27, 30, and 32 are found

in Loop 1, sites 41 and 46 in Loop 2, and sites 64, 66, and 68 in Loop 3 of 1A2S. The bulk

value is designated by the letter “B”.

The melting temperatures show a large amount of variability according to which site is

tethered. Tethering the protein resulted in melting temperatures which were approximately

equal to or greater than the bulk values in 31 of the 42 cases (74%). Included in these 31

are the 4 situations, such as site 24 of 1A56, where the error bars are such that the scaled

melting temperature cannot be shown to be statistically different from 1.

3.3.2 Analysis of Hypothesis

The hypothesis of this work was that all-alpha, orthogonal-bundle proteins, when

tethered to the surface only in the loop regions adjoining adjacent helices, will be stabilized

compared to the bulk value. At first glance, the data in Figure 3.5 indicate that the hypoth-

esis is incorrect. However, a careful examination of the data reveals an interesting pattern.
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Figure 3.4: Heat capacity (Panel a), fractional nativeness (Panel b), and radius of gyration
(Panel c) as a function of temperature for 1R69.

In 18 of the 19 loop regions investigated, tethering sites can be found which stabilize the

protein on the surface. The only exception is the loop formed by sites 145 to 147 of 1AD6.

In this region, no site could be found which stabilized the protein. In general, however, it

appears that loop-region sites can be found that result in stabilization of tethered all-alpha,

orthogonal-bundle proteins. The next section examines in more detail why certain tethering

sites result in stabilization while others do not.
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Figure 3.5: Scaled melting temperatures of 1A2S, 1A56, 1R69, 5MBN, and 1AD6 in the bulk
and tethered to the surface in various locations.

3.3.3 Categorization of Tethering Sites

Previous theoretical work has shown that stabilization of proteins on surfaces is re-

lated to how the tethering site affects both the entropy and enthalpy of the protein [86, 83,

84, 88] as well as the degree to which the tethered site disrupts the transition state along

the folding pathway. [85] The difficulty with applying this knowledge in a predictive manner

is that either the folding pathway must be known or experiments or simulations have to

be performed to ascertain the mechanism. It would be ideal if design heuristics could be

developed which when applied to the crystal structure of the protein of interest would result

in a list of tethering sites that would maintain the stability of the protein on the surface. In

this section, several geometric order parameters, and their ability to predict the stability of

orthogonal-bundle proteins on surfaces, are described.

The first order parameters investigated were: 1) the angle formed by consecutive

helices, 2) the distance between the consecutive helices, 3) the number of residues comprising

the loop region, and 4) the presence/absence of β-turns in the loop regions. However,

no correlation was found between stabilization/destabilization and these parameters. For

example, Figure 3.6 shows angles formed by consecutive helices as a function of the melting

temperatures. Notice that there is no pattern between angle and the melting temperature. As

another example, it was hypothesized that if the protein was tethered in a loop region where
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the adjoining helices made an acute angle that the protein would be stabilized. However,

this does not explain results where two sites in the same loop show different behavior such

as site 41 of 1A2S, which was destabilized, and site 46, which was stabilized (See Figure 3.5).

It was also thought that stability is related to the number of residues in the loop region as a

longer loop would be expected to allow the protein more flexibility to accommodate surface

interactions without disrupting the positions of the helices forming the bundle. For example,

all the tethering sites in Loop 3 (18 residues in length) of 1A56 showed stability. In fact, all

the sites in loop regions with more than 10 residues resulted in stability that was equal to or

greater than that found in the bulk. However, varied behavior was seen for loops less than

10 residues in length. For example, site 15 (destabilized) and site 25 (stabilized) of 1R69, are

found in separate loops of 3 residues in length but have different stabilities (See Figure 3.5).
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Figure 3.6: Angles formed by consecutive helices as a function of the melting temperatures.

Further examination revealed that for short loops, loops less than 10 residues in

length, the local structure of the loop must be taken into account. Figure 3.7 shows the

different classifications of loop regions. Panel (a) is the long loop just described. In this type
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of loop, stabilization occurs as long as the tether site is not next to one of the helices. Panel

(b) shows a U-shaped loop. If a loop is composed of less than 10 residues, but the tether

is placed in a U-shaped loop, then the protein is stabilized. This is the case for Loop 1 of

1AD6 and Loop 2 of 5MBN. Panel (c) shows a W-shaped loop. For this type, the placement

of the tether is important. If the tether is placed in the “concave-up” portion of the loop,

the protein will be stabilized on the surface. If the tether is place in the “concave-down”

portion of the loop, the protein will be destabilized on the surface.

(a) Long Loop

(b) U-shaped Loop

(c) W-shaped Loop

Figure 3.7: Types of loop regions found in alpha-helical, orthogonal-bundle proteins: (a)
Long loop, (b) U-shaped loop, (c) W-shaped loop.

The “loop-structure” discussion just described accounts for all of the stability patterns

except one. Loop 4 of 1AD6, consisting of sites 145-147, forms a W-shape, but stabilization

does not occur when tethered at any of sites involved. Analysis of this anomaly reveals

another factor affecting the stability of proteins on surfaces, and the idea is depicted in

Figure 3.8. The protein is 1AD6. Panel (a) shows the protein tethered at site 57, panel (b)

at site 163, and panel (c) at site 145. For each configuration, the shaded region shows the

volume available for the protein to rotate and vibrate on the surface. Notice that the protein

tethered at site 57 forms a V-shape which allows the protein a large amount of volume to
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rotate and vibrate with respect to the surface. By tethering at site 163, one side of the

molecule forms a flat foundation, but the other portion has a V-shape. By tethering at site

145, the three helices nearest the surface form a flat base which severely restricts the ability

of the protein to rotate and vibrate on the surface. For each of these sites, the protein is

tethered in either a U-loop or the concave-up region of a W-loop and would expected to be

stabilized; however, site 145 is destabilized.

(a) (b) (c)

Figure 3.8: Free volume available for rotation for 1AD6 according to tether site: (a) Site 57,
(b) Site 163, (c) Site 145.

The origins of the destabilization lies in the restriction of the movement of the protein.

In the bulk, proteins are free to rotate through all possible angles. When tethered to the

surface, the ability of the protein to rotate is inhibited by the surface itself with the degree

of restriction being dependent upon the structure of the protein at the tether point. At a

given temperature, the bond, angle, dihedral, and rotational vibrations of the protein seek

to populate a characteristic distribution of frequencies. For tether sites which restrict the

rotational freedom of the protein, such as site 145, the energy which usually partitions into

the rotational modes is transferred to the bond, angle, and dihedral vibrations. The increase

of energy into these vibrations causes the protein to unfold at a lower temperature than

would be expected. Once unfolded, rotational modes can be populated with ease.

Evidence to the fact that the vibrations increase for tethering configurations which

restrict rotational movement is found in Table 3.2. Listed are the vibrational entropies, at

240 K and 440 K, for tethering 1AD6 at sites 57, 163, and 145 (See Figure 3.8). The values
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were calculated assuming a quasi-harmonic approximation [108] using the Wordom analysis

package [108]. The lower temperature, 240 K, is below the melting temperature of the

protein. The higher temperature, 440 K, is above the melting temperature. At 440 K, the

entropies are very similar indicating that the unfolded state of the protein, regardless of tether

site, partitions energy into vibrations in roughly equal amounts. At the lower temperature,

the vibrational entropy increases as the volume available for rotation decreases. Specifically,

the flat base produced by tethering at site 145, which restricts the rotational ability of the

protein, has the most vibrational entropy. Site 57, which produces a V-shape with the largest

amount of rotational ability, has the least amount of vibrational entropy. The mixed, flat-V

shape created by tethering at site 163, which has an intermediate ability to rotate relative

to the surface, has an intermediate amount of vibrational entropy.

Table 3.2: Vibrational entropy of 1AD6 for various tether sites.

Site
Svib (kJ mol-1 K-1)

240 K 440 K
57 6.89± 0.04 18.039± 0.005
163 7.78± 0.21 18.080± 0.001
145 9.63± 0.02 18.030± 0.001

3.3.3.1 Free Rotation Volume

Since the lack of free rotation volume of tethering at site 145 is believed to be the

major reason why this protein is destabilized on surfaces, the first metric for quantifying this

difference is the measurement of the fraction of free rotation volume. However, to tether

at site 145 showed about 78% of the free rotation volume as defined above, which is not

consistent with the observation. The reason for the failure is because the definition of the

free rotation volume is ineffective to describe the difference in free rotation or vibration

ability between different tethering sites.

When the fraction of free rotation volumes was calculated, both the radius and the

height of the cylinder are variables. The radius is the largest distance between the atom and
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the axis, while the height is 0.7 times the length between tethering site and the mass center,

plus 5.8 Å. That is an easy way to define the volume but it does not provide comparable

results for different tethering cases. For example, with the site 145 tethered, the radius of

the cylinder is very large due to a couple of long strands close to the surface. This leads

to a very large cylinder volume compared to other cases. Most volume between these long

strands in the cylinder is taken as free rotation volume but it is not accessible to the protein

by rotation or vibration because the couple of long strands formed a frame that blocked the

way. The free rotation volume that is interested is the volume between the frame formed by

strands and the surfaces, which could be accessed by rotation or vibration of the protein.

3.3.3.2 Free Rotation Angle

The free rotation angle could be a better metric for describing the difference between

the site 145 on 1AD6 to all others than the free rotation volume metric. The result in

Table 3.3 as the column of “Angle from site” showed a lowest value 14.95 of free rotation

angle of site 145 on protein 1AD6. However, the value of site 163, a site with which the

protein tethered and showed partially flat bottom and partially V-shape bottom, is also very

low 19.72. As described above, the protein is stable by tethering site 163 but unstable by

tethering site 145. Even though these two sites are distinguishable somehow, the sensitivity

of this metric is not very convincing due the small difference between the two angles.

Instead of using sites to define the free rotation angle, a better description of rotation

or vibration ability of the protein could be the angle formed by the center point between

two sites and the surface as shown in red in the Figure 3.3. This definition describes how

much angle the protein can rotate or vibrate in the area between two long strands. If two

long strands are close to each other, there would be not much more angle the protein could

rotate or vibrate between them than below each strand. However, if the two strands formed

a very large angle between them, the protein would have much more ability to access the

area between them, which therefore generate larger free rotation angle. The result shown in

the column of “Angle from center” in Table 3.3 proves this idea. The site 145 has the least

free rotation angle (37.09◦), and the next least one the site 163, which has a value of 48.00◦.

The better sensitivity of this method can be seen because a larger difference of these two
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cases are calculated. To make this metric as a criterion, the cutoff is needed to be measured

from a larger amount of data of different sites.

For the present purposes, the easiest way to determine if the tether site has adequate

rotation volume is to view the protein in a molecular viewer such as VMD. Sites which

could be problematic can quickly be discerned using such an approach. Several attempts

shown above were made to quantify the ability of the protein to vibrate on the surface,

but determining a simple, quantifiable metric which delineates between the types of shapes

pictured in Figure 3.8 is difficult. Any averaging of angles or distances, which is usually

required for simple metrics, reduces ability to distinguish the difference between site 163

[Panel (b)] and site 145 [Panel (c)]. More sophisticated metrics were investigated, but the

added complexity, while increasing sensitivity, is beyond the scope of the present purposes.

Moreover, as site 145 was the only instance of destabilization from inhibited rotation, the

cutoff value for any metric marking the limits of stabilization/destabilization is imprecise at

best. As such, quantifying the free volume available for rotation is left to future work where

it can be addressed with the required detail.

Though the above analysis concerning loop structure and vibration/rotation on the

surface involves only five proteins, the consistency and logic is such that the following heuris-

tics for designing protein-surface interactions of alpha-helical, orthogonal-bundle proteins are

presented. It is recognized that these are preliminary and are based upon a limited data set,

but formalization provides a starting point for future investigations. Moreover, for a field

where little is known, these heuristics provide a needed first step towards rational design of

protein-surface interactions.

1. Long Loops Tethering in loop regions of greater than 10 residues in length will result

in stabilization of the protein on the surface.

2. U-shaped Loops Tethering in U-shaped loop regions of less than 10 residues in length

will result in stabilization if the protein can vibrate freely on the surface.
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Table 3.3: Order parameters for protein rotation.

Protein Location
VFAFR Angle from Angle from

(%) site (◦) center (◦)

1R69

Site 14
81.05 36.74 53.48

Site 15

Site 25
76.43 43.22 66.96

Site 26

Site 38
77.17 27.64 52.90

Site 39

Site 53
64.13 40.84 64.50

Site 55

1A56

Site 19

81.82 41.65 58.34Site 20

Site 24

Site 33
80.60 36.39 53.96

Site 36

Site 59

67.88 41.25 58.02Site 60

Site 65

5MBN

Site 46
79.61 52.17 67.10

Site 50

Site 78

75.56 39.89 57.65Site 80

Site 81

Site 98
77.34 34.51 52.85

Site 99

Site 122
74.52 34.80 53.11

Site 123
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Table 3.3: Continued

Protein Location
VFAFR Angle from Angle from

(%) site (◦) center (◦)

1AD6

Site 30
85.48 50.61 70.09

Site 31

Site 57
72.08 41.82 62.77

Site 58

Site 125
97.71 50.60 68.47

Site 127

Site 145
78.51 14.95 37.09

Site 146

Site 163
81.56 19.72 48.00

Site 165

1A2S

Site 27

84.35 47.32 64.58Site 30

Site 32

Site 41
76.54 28.55 48.47

Site 46

Site 64

79.28 50.77 66.06Site 66

Site 68

3. W-shaped Loops

(a) Tethering in “concave-up” regions will result in stabilization if the protein can

vibrate freely on the surface.

(b) Tethering in “concave-down” regions will result in destabilization.
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3.3.4 Thermodynamic Analysis

The influence of the surface on the stability of proteins can be explained in terms of

common thermodynamic properties. For stable proteins, ∆Gf = ∆Hf−T∆Sf < 0. In other

words, the more stable the protein, the more negative the value of ∆Gf or the greater the

value of |∆Gf |. The thermodynamic perspective explaining the influence of the surface on

the stability of proteins, theorized by Dill et al. [109, 76], predicts that proteins are always

stabilized when tethered to short-ranged, repulsive surfaces. The reason is summarized in

Figure 3.9. As depicted, the number of unfolded conformations available to tethered peptides

is less than in the bulk because configurations are confined by the surface. This decreases

the entropy of unfolded surface proteins which destabilizes the unfolded state favoring the

folding process. Assuming that the enthalpy of folding is approximately the same on and off

the surface, a decrease in the entropic cost of folding decreases the Gibbs energy of folding

for the tethered protein relative to the bulk protein resulting in stabilization on the surface.

In short, the theory suggests that the entropic cost of folding is greater in the bulk than on

the surface because unfolded bulk peptides have more entropy to lose than unfolded surface

proteins. A decrease in the entropic cost results in a more negative value of ∆Gf .

The results in Figure 3.5 indicate that proteins are not always stabilized when tethered

to surfaces as the theory predicts. Prior work has shown that the entropic portion of the

argument is valid, namely that the entropic cost of folding for tethered proteins is less than

in the bulk [86, 84, 88], so any destabilization must be an enthalpic effect. One of the

assumptions upon which the theory is based is that ∆Hf is the same on and off the surface.

The validity of this assumption, which has received little treatment in the literature, is now

addressed.

Table 3.4 shows a summary of ∆Gf , ∆Hf , and T∆Sf for each protein in the bulk

and tethered to the surface at the same sites depicted in Figure 3.5. For reference, the type

of loop for each site is also listed. The temperature in each case is the melting temperature

of the protein in the bulk. As such, ∆Gf = 0 for each protein in the bulk. Comparing

the ∆Gf values with the corresponding Tm/T
∗
m values of Figure 3.5 shows that the data are

consistent, that is, tethering sites which result in an increase in the melting temperature of

the protein on the surface compared to the bulk have negative values for ∆Gf . Similarly,
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|∆S|           <    |∆S|surface                             bulk

|∆H|           ≈    |∆H|

|∆G|           >    |∆G|
surface                              bulk

surface                              bulk

conformation 
prohibited
by surface

Figure 3.9: Theory behind the stabilizing influence of the surface on tethered proteins.

sites which result in melting temperatures that are less than the bulk value have positive

values for ∆Gf . As Tm and ∆Gf are calculated in two distinct and independent ways, the

agreement between the two values attests to the reliability of the results.

As reported in the table, all the surface-tethered proteins studied in this work have

T∆Sf values that are statistically equal to or larger than (less negative) the bulk values. This

agrees with the theory as a reduction in the loss of entropy causes a decrease in ∆Gf . For
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tethering sites that stabilize the protein on the surface, the value for ∆Hf is approximately

equal in the bulk and on the surface. For sites that result in destabilization, the ∆Hf value

is greater (less negative) on the surface than in the bulk. Thus, in the limit that ∆Hf is

equal on and off the surface (the situation described by the theory), stabilization occurs.

Away from this limit, destabilization occurs.

Further analysis provides additional insights. In general, the change in enthalpy

upon folding is related to both the enthalpy of the folded state and the unfolded state

(∆Hf = Hfolded − Hunfolded). Figure 3.10 shows the influence of the surface on the folded-

state and unfolded-state enthalpies for 1R69 at T = T ∗. Depicted is the difference between

the enthalpy on the surface and in the bulk for both folded and unfolded protein. Specifically,

δHfolded ≡ Hsurface
folded −Hbulk

folded and δHunfolded ≡ Hsurface
unfolded−Hbulk

unfolded. The symbol δ is used in place

of ∆ to prevent confusion between the change that occurs upon folding (∆) and the difference

between the value on and off the surface (δ). If Hsurface
folded ≈ Hbulk

folded then δH folded ≈ 0, and a

similar relationship holds for the unfolded values. If the surface stabilizes the state (either

folded or unfolded), the corresponding δ-value will be negative. If the surface destabilizes

the state, the corresponding δ-value will be positive. For convenience, values of ∆Gf are

also shown in the Figure 3.10.

Figure 3.10 is evidence that tethering configurations which result in destabilization of

the protein are caused by the effects of the surface on the folded state of the protein rather

than the unfolded state. The data show that the unfolded states are always affected in the

same direction by the surface, but the folded states show varied behavior. In each case,

the enthalpy of the unfolded state on the surface is less (more favorable) than the enthalpy

of the unfolded state in the bulk, but the enthalpy of the folded state on the surface is

sometimes greater than and sometimes less than the value found in the bulk. The reason

for the unfolded-state behavior is straightforward. Whether in the bulk or on the surface,

the enthalpy drives the system to fold to increase hydrogen bonding and reduce hydropho-

bic/hydrophilic contacts in favor of hydrophobic/hydrophobic and hydrophilic/hydrophilic

contacts. Enthalpically-favorable contacts can only form as the distance between compli-

mentary sites decreases. When the protein is on the surface, the average distance between

sites of the unfolded protein is reduced which causes a reduction of the enthalpy.
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Table 3.4: Thermodynamic quantities of proteins.

Protein Location
∆Gf ∆Hf T∆Sf

Shape
(kJ/mol) (kJ/mol) (kJ/mol)

1R69

Bulk 0.0 −236.8± 1.7 −236.8± 1.7 -

Site 14 −13.7± 0.8 −228.0± 4.3 −214.3± 4.0 W

Site 15 13.7± 0.7 −191.1± 4.2 −204.8± 3.8 W

Site 25 −10.0± 1.8 −232.5± 1.1 −222.5± 1.7 W

Site 26 16.0± 0.6 −176.6± 5.1 −192.6± 4.8 W

Site 38 −9.5± 1.4 −227.9± 2.1 −218.4± 2.5 W

Site 39 17.3± 0.5 −166.8± 4.0 −184.1± 4.4 W

Site 53 −10.7± 1.6 −227.5± 1.3 −216.9± 0.7 W

Site 55 −14.6± 2.4 −225.8± 3.0 −211.2± 4.8 W

1A56

Bulk 0.0 −105.1± 1.7 −105.0± 1.9 -

Site 19 −2.6± 1.1 −96.9± 5.6 −94.2± 4.7 Long

Site 20 −4.3± 0.4 −93.6± 2.3 −89.4± 2.1 Long

Site 24 0.5± 0.7 −88.2± 3.2 −88.7± 3.8 Long

Site 33 1.2± 0.4 −77.2± 2.4 −78.4± 2.4 W

Site 36 −2.9± 0.4 −93.9± 4.2 −91.0± 3.8 W

Site 59 −4.1± 0.5 −97.8± 3.7 −93.7± 3.6 Long

Site 60 −0.8± 0.7 −86.7± 4.5 −85.9± 4.1 Long

Site 65 −2.4± 0.6 −99.2± 2.6 −96.8± 2.1 Long

1AD6

Bulk 0.0 −502.8± 6.9 −502.2± 6.6 -

Site 30 −9.3± 1.5 −494.3± 13.8 −485.0± 14.3 U

Site 31 −11.9± 2.2 −489.9± 9.8 −478.0± 9.8 U

Site 57 −6.5± 1.0 −466.7± 13.4 −460.2± 13.7 U

Site 58 −0.7± 2.4 −432.1± 37.7 −431.4± 36.0 U

Site 125 −8.2± 2.5 −487.9± 18.9 −479.7± 16.5 Long

Site 127 −13.0± 1.4 −494.1± 8.1 −481.1± 9.4 Long

Site 145 30.2± 0.8 −282.2± 10.9 −312.4± 10.3 W
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Site 146 40.0± 0.7 −262.0± 11.51 −302.0± 12.1 W

Site 163 −10.1± 1.9 −497.0± 24.7 −487.0± 25.6 W

Site 165 28.4± 1.8 −264.6± 13.0 −293.0± 12.9 W

1A2S

Bulk 0.0 −128.2± 1.7 −128.2± 2.0 -

Site 27 −4.4± 0.7 −125.5± 3.2 −121.1± 3.2 Long

Site 30 −0.5± 0.7 −112.0± 4.6 −111.6± 5.0 Long

Site 32 1.0± 0.6 −105.7± 1.6 −106.7± 1.2 Long

Site 41 1.0± 0.5 −107.4± 2.0 −108.4± 2.3 W

Site 46 −4.5± 1.0 −131.7± 3.4 −127.3± 4.0 W

Site 64 −0.4± 0.5 −125.4± 1.2 −125.0± 1.4 Long

Site 66 −0.9± 0.3 −112.2± 1.8 −111.2± 1.6 Long

Site 68 1.3± 0.4 −120.4± 4.3 −121.7± 3.9 Long

5MBN

Bulk 0.0 −577.1± 11.5 −577.0± 11.6 -

Site 46 11.5± 1.1 −468.2± 7.4 −479.7± 8.0 W

Site 50 −6.7± 2.9 −553.3± 16.6 −546.6± 16.0 W

Site 78 −14.9± 2.8 −517.8± 25.2 −502.8± 27.8 U

Site 80 −8.4± 3.4 −516.6± 11.7 −508.2± 14.9 U

Site 81 −10.3± 2.4 −533.9± 14.0 −523.6± 16.1 U

Site 98 −5.3± 5.0 −529.4± 22.2 −524.1± 27.1 W

Site 99 17.5± 0.2 −456.5± 10.4 −474.0± 10.3 W

Site 122 −12.3± 2.0 −545.7± 16.5 −533.4± 18.2 W

Site 123 2.9± 1.9 −504.0± 13.3 −506.8± 12.9 W

In contrast to the unfolded state, the surface affects the folded state in ways that do

not always allow for favorable contact to be made. For sites that result in overall stabilization

(sites 14, 25 38 53, and 55), δHfolded < 0 suggesting that the surface improves the ability

of the protein to make favorable contacts. The degree of stabilization in these cases is

similar in magnitude to that seen for the unfolded state (i.e. δHfolded ≈ δHunfolded), and the

result is that ∆Hsurface
f ≈ ∆Hbulk

f as previously described (see Table 3.4). For destabilized

configurations (sites 15, 26, and 39), δHfolded > 0 meaning that the surface inhibits the
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Figure 3.10: Influence of the surface on the enthalpy of the folded and unfolded state of 1R69
at T = T ∗.

formation of favorable contacts. The extent of destabilization of the folded state is so great

that ∆Hsurface
f > ∆Hbulk

f .

It is instructive to discuss the enthalpic effect in a similar manner as was done for

entropy (see Figure 3.9 and the accompanying discussion). Just as folding “costs” Gibbs

energy entropically, it “profits” enthalpically. The surface either allows the protein to ener-

getically profit from folding by the same amount that it would in the bulk or it reduces the

profit. When the latter occurs, the Gibbs energy of folding on the surface is greater than it

would be in the bulk and the result is destabilization.

The above analysis significantly improves current understanding of protein-surface

interactions and provides the most complete picture to date of the the thermodynamics

involved. To summarize the findings, entropy works to stabilize tethered proteins on the
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surface as expected from theory, and the effect is concentrated on the unfolded state. Proteins

will be stabilized or destabilized depending upon the extent to which the surface affects the

ability of the protein to form correct enthalpic contacts, and the effect is concentrated on the

folded state. The enthalpic effect is related to the loop analysis described previously. Sites

in long loops, U-shaped loops, and the concave-up regions of W-shaped loops, which have

adequate free rotation volume, allow the folded state of the protein to exist on the surface as is

does in the bulk. As such, ∆Hsurface
f ≈ ∆Hbulk

f and the result is entropic stabilization. Sites in

the concave-down region of W-shaped loops and those which restrict rotation and vibration,

inhibit the ability of the protein to exist in its native state. Consequently, ∆Hsurface
f > ∆Hbulk

f

and the result is enthalpic destabilization.

3.3.5 Applicability of the Results

This study used a coarse-grain representation to model the proteins of interest. As

with all simulation results, the findings presented above are only valid if the model can

reproduce the relevant physics involved. The model used in this study (as stated in the

Methods section) has been shown to reproduce realistic folding mechanisms compared to

experimental results and has been extensively used to study protein folding [58, 59, 60, 61,

97, 97]. It is therefore reasonable to assume that the trends seen in this study are applicable

to real situations.

Because coarse-graining reduces the number of degrees of freedom of the system,

and solvent interactions are included only implicitly, the numerical values reported for the

thermodynamic properties are not expected to correspond exactly to those that would be

seen if experimental results could be obtained. Moreover, as neither the surface nor the

protein model explicitly account for chemical composition, the results presented above are

only valid for weakly-interacting surfaces and not for surfaces of mixed chemical composition

or those that are highly attractive or repulsive. Despite these limitations, the model is

expected to approximate the biophysics involved sufficiently enough to give realistic trends.

In a field where atomic simulations are not possible due to computational limitations, and

current experimental techniques cannot probe the relevant phenomena, the reported results

are welcomed findings.
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3.4 Summary

The results of the chapter show, for the first time, that protein stability on surfaces can

be correlated to tertiary structural elements for alpha-helical, orthogonal-bundle proteins.

The important factors to consider when selecting a tether site are the shape of the loop

region and the volume available for the protein to rotate on the surface. For loop regions

that have large rotation volumes, sites can always be found which stabilize the protein. A

thermodynamic analysis shows that proteins are always stabilized entropically when tethered

to surfaces and that any destabilization is an enthalpic effect. Taken as a whole, the results

offer hope for rational design of protein surface interactions and a rigorous thermodynamic

understanding of the origins of stabilization/destabilization on surfaces.
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Chapter 4

The Stability of Proteins in Other Tertiary Motifs on Surfaces

The previous chapter outlined research that showed how to predict the stabilities of

alpha-helical, orthogonal-bundle proteins on surfaces using only the structure of the protein.

According to the prediction pattern, this class of proteins could be stabilized on a surface if

the tethered protein has large free rotation volume and the tethering is done at a “concave-

up” residue in the loop region. The question is if the prediction pattern derived for mainly-

alpha, orthogonal-bundle proteins is transferable to proteins with other tertiary structure.

This questions is addressed in this chapter using several proteins from three other tertiary

motifs.

4.1 Method

Identifying if there are structural patterns that can be correlated to stability when

proteins other than alpha-helical, orthogonal bundles are tethered to the surface was done in

a similar way as was described in Chapter 3. Various proteins are selected and tethered to

the surface at different locations. For these proteins, the tethering sites were selected based

upon the results described above. Namely, the tether sites were selected based upon the

VFAFR and the type of loop region to see if the patterns found previously are transferable

to other classes of proteins.

4.1.1 Proteins with Different Tertiary Motifs

As was done in Chapter 3, the proteins were chosen according to the CATH classi-

fication method [110, 111]. The three tertiary motifs considered in this research, as shown

in Table 4.1, were updown-bundle (Figure 4.1), beta-barrel (Figure 4.2), and beta-sandwich

(Figure 4.3). These were chosen because they are the most abundant tertiary motifs in the
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mainly-alpha and mainly-beta secondary motifs. Together with mainly-alpha, orthogonal-

bundle motif studied in chapter 3, 96.57% of mainly-alpha and 76.13% of mainly-beta protein

domains are represented.

Figure 4.1: Alpha-helical, updown-bundle proteins.

4.1.2 Simulation Model

For computational efficiency, the Gō-like model of Karanicolas and Brooks [58, 59,

60, 61] is used as in previous research (see Chapter 3 for details). Input files are generated

using the MMTSB website http://www.mmtsb.org.
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Figure 4.2: Beta-barrel proteins.

4.1.3 Surface Model

The peptides are attached to a short-range, repulsive surface that does not interact

with the peptide until a residue came into close proximity. The influence of the surface on

the system is described by a Lennard-Jones type potential:

Vsurface =
N∑
i

{
εsur

[(
σsur
zis

)9

− 7.5

(
σsur
zis

)3

+ c

]}
(4.1)
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Figure 4.3: Beta-sandwich proteins.

where zis is the distance between site i and the surface, εsur = 0.0363 kcal/mol, and the value

of σsur is residue specific. Previous work has shown that the exact value of εsur has little

effect on the behavior of the protein [86]. The parameter c is chosen such that the potential

falls smoothly to zero at zis =
(
2
5

) 1
6 σsur. This interaction remains zero for distances greater

than this cutoff. The peptide will be bound to the surface by a harmonic restraint with an

56



Table 4.1: Protein structure motifs for further study.

Secondary Tertiary PDB ID

Mainly α Up-down Bundle

1A7M
1AEP
1AJ3
1GS9
1IL6

Mainly β

β-Barrel

1D1N
2RKF
2UXZ
2QV1

β-Sandwich

1HDF
1NC7
1VJ2

1WKT

interaction potential of the form:

Vrestraint =
1

2
krr

2 (4.2)

where kr is the parameter describing the strength of the restraint and r is the distance of

the restrained site from its original position of (0, 0, 5.8) Å.

4.1.4 Experimental Design and Simulation Protocols

The comparison of stabilities of proteins tethered to surfaces and proteins in the bulk

can be done using the melting temperature Tm. Results are presented with the temperatures

scaled by the melting temperature of the protein in bulk (Tm/T
∗
m). If this scaled temperature

is less than 1, the protein is destabilized by the surface. If the scaled temperature is greater

than 1, the protein is stabilized by the surface.

To prevent the simulation from becoming trapped in local energy minima, simulations

were performed using the replica exchange (RE) algorithm [100, 101]. Twenty-four replicas

were used for each protein, and the canonical ensemble was generated using the Nosé-Hoover-

Chain [102, 103, 104] integration method with 3 thermostats of mass 10−26 kgÅ2. The time

step was 1 fs and each simulation contained 10 million steps of equilibration followed by

30 million steps of production. Swaps were attempted every 2000 steps, and temperature
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increments between adjacent boxes ranged from 2.5 to 10 degrees. The smaller increments

were used close to the melting temperature and the larger increment farther away.

4.2 Results and Discussion

4.2.1 Up-down Proteins

Figure 4.4: Scaled melting temperature of updown-bundle proteins in the bulk and on sur-
faces.

Figure 4.4 shows the scaled melting temperatures for the five mainly-alpha, updown-

bundle proteins 1A7M, 1AEP, 1AJ3, 1IL6, and 1GS9. Several tethering sites are chosen

for each protein that are expected to be both stabilized and destabilized based upon their

VFAFR and loop structure. As shown in Figure 4.4 all sites resulted in stabilization. Thus

it appears that up-down bundles behave slightly differently than orthogonal bundles. The

latter exhibited both stabilization and destabilization (see Chapter 3) while the former only

stabilization.

Site 52 in protein 1A7M is an example of a residue that is predicted to be unstable (it

is a concave down site in a W-shape loop region) but is actually stabilized. The structure is

shown in Figure 4.4. These results suggest that the shape of the loop region is of secondary

importance for these proteins and that the VFAFR is the dominant parameters governing

stabilization. Due to their elongated shape, most tethering sites in updown-bundle proteins

have very large VFAFR. The parallel shape of alpha helices makes it is easier for loop regions
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to access to surfaces, so the surface has less effect on the interhelical forces stabilizing the

protein. In summary, for mainly-alpha, updown-bundle proteins, the VFAFR is the main

factor that the correlates to stability on the surface.

Figure 4.5: Protein 1A7M is tethered on surface with site 52.

In contrast, when dealing with mainly-alpha, orthogonal-bundle proteins, it is impor-

tant to determine the shape of the loop region at the tethering point. This is because this

class of proteins in general has a large VFAFR only for concave-up residues. For example,

in the specific case of site 145 in protein 1AD6, the free rotation volume is not even large

enough when tethering to concave-up sites. Compare this to mainly-alpha, updown-bundle

proteins. Here, the VFAFR is always very large so that both concave-up and concave-down
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sites results in stabilization on the surface. In summary, for mainly-alpha proteins, both

the VFAFR and the shape of tethering loop region are important factors for predicting pro-

tein stabilities on surfaces, and the rotation volume of the tethering loop region should be

considered first.

4.2.2 Beta-sandwich Proteins

Figure 4.6: Scaled melting temperature of beta-sandwich proteins in the bulk and on surfaces.

Figure 4.6 shows the scaled melting temperatures for four beta-sandwich proteins

(1HDF, 1NC7, 1VJ2, and 1WKT) in the bulk and tethered to the surface at different lo-

cations. Residues for tethering were selected that were expected to be both stabilized and

destabilized based upon the VFAFR and loop structure. Those residues expected to be

destabilized because they were tethered in the concave-down region of the loop are sites 86

and 65 in 1HDF, site 74 in 1NC7, and site 88 in 1VJ2. The scaled melting temperatures for

each of these sites is less than one. This means that the protein tethered at these residues was

destabilized as predicted from the rules generated from the mainly-alpha, orthogonal-bundle

results. Also in agreement with the rules is that all the others sites, which were predicted to

stabilize proteins, did result in stabilization when simulated. Beta-sandwich proteins have

a globular shape similar to that of mainly-alpha, orthogonal-bundle proteins, and thus have
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sufficiently-large VFAFR to be stabilized when tethered to a surface in a concave-up loop.

Also like the alpha-helical, orthogonal-bundle proteins, the VFAFR is not large enough when

the proteins are tethered in concave-down loop regions.

4.2.3 Beta-barrel Proteins

Four beta-barrel proteins were simulated both in the bulk and on surfaces to examine

another class of proteins. As before the proteins were tethered to the surface in multiple

locations that were expected to be both stabilized and destabilized based upon the loop

structure and the VFAFR. Unstable sites were predicted in each of the proteins. These were

site 84 in 1D1N, site 68 in 2QV1, site 38 in 2UXZ and sites 36 and 8 in 2RKF.

In accordance with prediction, tethering to most of the sites in 1D1N resulted in

stabilization. The one exception was site 84. Though this site is found in a long loop region,

tethering results in very little free rotation volume as shown in Figure 4.8. The simulations

show that tethering at this site does destabilize the protein as predicted. A low VFAFR is

also observed for site 68 for the protein 2RKF as shown in Figure 4.9 and simulation also

shows that this site results in destabilization. In fact, the prediction method holds true

for all but one of the tethering sites investigated. This was site 51 in 2UXZ. As shown in

Figure 4.10, this site is in a U-shape loop region and there is large free rotation volume

for the protein with this site tethered. It is therefore expected to be stabilized. But the

simulations show that tethering at this site actually destabilizes the protein.

One reason for this unexpected behavior could be that the two beta strands con-

nected by the loop region are long and extend relatively far from the rest of the protein

(see Figure 4.10). This means there are fewer attractive forces stabilizing these strands, so

the surface can easily affect the structure of this region of the protein which leads to the

destabilization of the protein. However, future work is needed to firmly establish the cause.

4.3 Summary

The purpose of this chapter was to show how the rules for stability on the surface, gen-

erated using alpha-helical, orthogonal-bundle proteins, transferred to other tertiary structure

motifs. Three other protein families were investigated. The results show that the prediction
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Figure 4.7: Scaled melting temperature of beta-barrel proteins in the bulk and on surfaces.

Figure 4.8: Protein 1D1N is tethered on surface with site 84.

patterns could generally be applied to many proteins regardless of tertiary structure motifs.

It was also observed that beta-barrel proteins seem more unstable than other classes. The

VFAFR for beta-barrel proteins, in general, is fairly low. This is not the case for other classes

of proteins. In fact, up-down-bundles, by nature of the loops being found at the ends of their

elongated structures, rarely have low VFAFR. The results also indicate that mainly-alpha
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Figure 4.9: Protein 2RKF is tethered on surface with site 68.

Figure 4.10: Protein 2UXZ is tethered on surface with site 51.

proteins are generally more stable than mainly-beta proteins. In summary, over 119 tether-

ing locations were tested on 18 proteins. Out of these 119 cases, only one failed to follow the

rules for stabilization. Thus, taken as a whole, the results of this and the previous chapters
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shows that most proteins will be stabilized on the surface if two conditions are met: 1) the

tethering is done in a concave-up residue of the loop region and 2) the tethering results in a

sufficiently large VFAFR.
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Chapter 5

Surface Induced Changes to Folding Mechanism

The results presented in the previous two chapters, as well as previous studies men-

tioned in Chapter 1, have offered many valuable insights into the folding of proteins on

surfaces. However, a careful reading of the literature reveals that all such studies involve

proteins which fold through a two-state mechanism. A two-state mechanism means that the

protein is only found in one of two states: folded and unfolded. Most small proteins fold

through such a two-state mechanism, but as proteins increase in size, many fold through

multistate mechanisms which include one or more partially-folded but stable intermediates.

The purpose of this chapter is to investigate how surfaces affect the folding mecha-

nisms of multistate folders. Specific focus is placed upon finding the tethering configurations

which stabilize the multistate folder on the surface and keep the active site available to the

bulk phase–two necessary requirements for proper array function. The remainder of this

chapter is structured as follows. First, a description of the protein used in the study, com-

pleted with an analysis of secondary and tertiary structure, is presented. This is followed

by an outline of the methods used to compare folding on the surface and in the bulk. The

results, which illustrate how the surface can drastically alter the folding mechanism of a

protein, are then presented followed by a discussion about the impact of the findings. In all,

the results of this chapter show that the effect of surfaces on the folding of multistate folders

involves rich phenomena not seen in previous studies involving two-state folders.

5.1 Methods

5.1.1 Protein

Bacteriophage T4 lysozyme (PDB ID: 7LZM) was used as a model system to deter-

mine how tether site location can affect the folding mechanism of surface-tethered proteins.
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This protein is 164 residues in length and folds through a multistate mechanism as will

be described later. 7LZM is classified as a mainly-alpha, orthogonal-bundle protein by the

CATH classification scheme [112, 95, 96]. It is composed of ten alpha-helices, one 310 helix,

and a four-stranded beta-sheet. Figure 6.8 shows a cartoon schematic of 7LZM with the

secondary structural elements as identified using the STRIDE [99] program implemented in

VMD [98]. Effort has been taken to code the secondary structure type using color. Helices

are represented by cool colors (e.g. blues and violets) and strands with warm colors (e.g. reds

and oranges). The protein has two sections. Helices 1 and 4-11 form a orthogonal bundle.

Helix 2 along with the beta-sheet composed of strands 1-4 form an alpha/beta roll. Helix

3 connects the bundle with the roll. The residues comprising each secondary structure and

loop region are found in Table 5.1.

Table 5.1: Residue-level secondary structure analysis of 7LZM with site numbers
corresponding to the associated residue number in the

primary amino acid sequence of the protein.

7LZM
Coil 1 Helix 1 Loop 1 Beta 1 Loop 2 Beta 2 Loop 3 Beta 3

Sites 1-2 3-11 12-13 14-19 20-24 25-28 29-30 31-34
Loop 4 Helix 2 Loop 5 Helix 3 Loop 6 Helix 4 Loop 7 Helix 5

Sites 35-38 39-50 51-59 60-80 81-82 83-90 91-92 93-106
Loop 8 Helix 6 Loop 9 Helix 7 Loop 10 Helix 8 Loop 11 Helix 9

Sites 107 108-113 114 115-123 124-125 126-134 135-136 137-141
Loop 12 Helix 10 Loop 13 Helix 11 Coil 2

Sites 142 143-155 156-158 159-161 162

Lysozyme has been very carefully studied with experiments as a model system for

protein folding [113, 114, 115, 116, 117, 118]. These works have shown that there is an

intermediate detected in the folding pathway and therefore a multi-stage folding mechanism

could be expected. Folding includes an early hydrophobic collapse of the alpha-domain of the

protein [116, 119] and a stage of slow folding of the beta-domain after that. In addition, 20%

of the molecules fold in a fast way without an observable intermediate [117]. Many efforts

have been put into understanding the importance of the intermediate state and the refolding
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Site 91

Figure 5.1: Schematic representation of 7LZM.

kinetic process of lysozyme [120]. However, for the sake of further practical implementation,

it is still important to characterize the intermediate in this research. Furthermore, because it

is still not easy to obtain a high revolution configuration of the intermediate by experimental

means, a simulation method that can capture protein folding mechanism is used in this

research. As was done in the previous two chapters, the protein is modeled using the Gō-like

model of Karanicolas and Brooks [58, 59, 60, 61]. Input files were generated using tools

available on the MMTSB website1 and simulations were performed using code developed

“in-house.”

1http://www.mmtsb.org/
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5.1.2 Surface Model

The protein was attached to a short-range, repulsive surface, located at the z = 0

plane, which did not interact with the peptide until a residue came into close proximity. The

influence of the surface on the system is described by a Lennard-Jones type potential:

Usurface =
N∑
i

{
εsur

[(
σsur
zis

)9

− 7.5

(
σsur
zis

)3

+ c

]}
(5.1)

where zis is the distance between site i and the surface, εsur = 0.0363 kcal/mol, and the value

of σsur is residue specific. Previous work has shown that the exact value of εsur has little effect

on the behavior of the protein [86]. The parameter c is chosen such that the potential falls

smoothly to zero at zis =
(
2
5

) 1
6 σsur. This interaction remains zero for distances greater than

this cutoff. The peptide is bound to the surface by a harmonic restraint with an interaction

potential of the form:

Urestraint =
1

2
krr

2 (5.2)

where kr = 100 kcal/mol is the parameter describing the strength of the restraint and r is

the distance of the restrained site from its original position of (0, 0, 5.8) Å.

5.1.3 Simulation Protocols

Simulations were performed using the replica exchange (RE) algorithm to prevent the

simulation from becoming trapped in local energy minima [100, 101]. Twenty-four replicas

were used for each system, and the canonical ensemble was generated using the Nosé-Hoover

Chain [102, 103, 104] integration method with 3 thermostats of mass 10−26 kg Å2. The time

step was 1 fs, and each simulation contained 10 million steps of equilibrium followed by 30

million steps of production. Equilibrium, as defined by the convergence of the potential

and kinetic energies of the system at the temperature of interest, occurred in roughly 3

million steps. Temperature steps between boxes ranged from 2.5 to 10 degrees across the

temperature range with the smaller increments found near transition temperatures. The

data were analyzed using the Weighted Histogram Analysis Method (WHAM) [105].
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5.1.4 Metrics to Quantify Folding Behavior

One metric useful in identifying and quantifying folding transitions is the heat ca-

pacity. Two-state folders will display a single, sharp peak in a plot of heat capacity vs.

temperature. The temperature at which the peak occurs is the melting temperature of such

proteins. For multistate folders, more than one peak is present. For example, two peaks in-

dicate a three-state folder. For such proteins, the temperatures at which the peaks occur are

often termed “transition” temperatures. Another useful quantity for understanding protein

folding is the fractional nativeness or fraction folded, q. Fractional nativeness measures how

much of the protein is found in the native state at any particular time during the simulation.

It is defined as the number of native contacts considered to be correctly formed at time t

divided by the total number of contacts possible. Following the scheme of Karanicolas and

Brooks [58, 59, 60, 61], a native contact is considered present if the distance between the

two sites comprising the contact is less than 1.2 times the distance between the sites in the

PDB structure.

Fractional nativeness is a useful metric to study protein folding for multiple reasons.

First, during transitions, q decreases very quickly and a plot of q vs. T will show a sig-

moidal shape. A transition temperature can be determined by identifying the location of

the inflection point in such a curve. Agreement between the transition temperature found

in this manner, and the corresponding value obtained from the heat capacity curve helps

validate the appropriateness of the protein model. These two methods for determining tran-

sition temperatures involve different types of data (thermal vs. structural) and less robust

coarse-grain models often show a lack of agreement.

The other reasons q is a useful metric are: 1) it is analogous to data that can be

obtained from experimental methods such as circular dichroism and 2) it can be used to help

determine the structure of the stable states involved in the folding pathway. The latter is

possible by classifying each type of native contact found in the molecule and calculating the

q for individual secondary and tertiary structures. For example, among the native contacts

found in 7LZM are those between one site found in Helix 4 and one site in Helix 5. This

would be classified as a tertiary contact, denoted as qH4−H5, since it involves sites from two

different secondary structures. Alternatively, a native contact could act to stabilize a single
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secondary structure element, such as one formed from two sites found in Helix 3 (qH3−H3).

Each qx−x for the molecule will undergo a sigmoidal transition at the same temperature for

a two-state folder. However, for a multistate folder, different structural elements will unfold

at different temperatures, and the individual qx−x curves can be used to determine which

portions of the molecule undergo changes at each transition.

5.1.5 Experimental Design

To determine how the surface affects the folding mechanisms of multistate folders,

7LZM was simulated in the bulk (the control) and tethered to the surface at different residues.

The tether sites were chosen based upon work described in Chapters 3 and 4 where it

was shown that tethering in loop regions of most proteins can lead to predictable stability

patterns. As such, 7LZM was tethered to the surface in each of the loop regions joining

secondary structural elements as denoted in Table 5.1. In each case, the heat capacity and

fractional nativeness curves were calculated to facilitate comparisons between each surface

case and the control. Two main features were looked for during comparisons. The first were

changes in the location of the peaks in the C vs. T curve or the location of the sigmoidal

transitions in the q vs. T curves. Such changes indicate an increase or decrease in transition

temperature and a corresponding increase or decrease in stability. The second was a change

in the number of transitions which would indicate a surface-induced change in the folding

mechanism of the protein. When changes were identified, qx−x curves were used to explain

the differences.

5.2 Results

5.2.1 Folding in the Bulk

Panel A of Figure 5.2 shows the heat capacity as a function of temperature for 7LZM

in the bulk. Three peaks are present in the curve indicating that 7LZM folds through a four-

state process. Since a coarse-grain model with implicit solutions is used in this research,

these transition temperatures can not be taken as a realistic temperature scale. However,

the temperatures still capture different transition states as they shifted in the same scale.

The first transition occurs at approximately 265 K, the second at 301 K, and the third at
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335 K. The most prominent transition, the highest and most narrow peak, is at 335 K. The

peak at the 301 K transition is small and broad. The peak at 265 K is sharper than that at

301 K but is about a third of the size of the larger peak at 335 K.

The structure of the protein in each of the stable states along the folding pathway in

the bulk was determined by plotting qx−x versus temperature for each type of native contact

found in 7LZM. Figure 5.3 shows the results of this effort. For clarity, the figure is constructed

such that contacts are grouped according to transition temperature. Panel (A) contains the

contacts for the 265 K transition, Panel (B) for the 301 K transition, and Panels (C) and

(D) for the 335 K transition. For convenience, the discussion that follows is taken from the

perspective of melting (starting at low temperature and moving to higher temperature), but

this direction is arbitrary as the results, obtained from equilibrium simulations, displayed no

dependence on the starting structure of the protein (i.e. folded or unfolded).

During the transition at 265 K, part of the alpha/beta roll formed by Helix 2 and

Strands 1-4 comes apart. The tertiary contacts holding the roll together–those between

Strands 1-3 and Helices 2-3, the inter-strand contacts holding the sheet together, and the

contacts between Helices 2 and 3–come apart, but the secondary structure of Helices 2 and

3 remains largely intact. During the transition at 301 K, Helix 1 breaks apart from the

bundle. On the surface, the fact that only Helix 1 is involved in the second transition, may

seem insignificant, but such is not the case. When Helix 1 is bound to the bundle formed by

Helices 4-11, the top portion of the molecule forms a loop which reduces the conformations

accessible to the melted alpha/beta roll. However, when Helix 1 breaks away from the bundle,

the residues comprising the entire top portion of the molecule, Helices 1-3 and Strands 1-5,

can sample random coil configurations with ease. During the highest-temperature transition

at 335 K the entire lower portion of the molecule, the bundle formed by Helices 4-11, breaks

apart.

Figure 5.4 shows the conformations of the protein in each of the four states found

between the transitions. These are labeled, beginning at the low temperature, states 1-b,

2-b, 3-b, and 4-b where the “b” signifies “bulk.” State 1-b is located at low temperatures and

represents the folded state of the protein. State 2-b shows the protein after the alpha/beta

roll has melted. Notice that because Helix 1 keeps contact with the helical bundle, the
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Figure 5.2: Heat capacity as a function of temperature for 7LZM in the bulk (Panel A) and
tethered to the surface at sites 162 (Panel B) and 91 (Panel C).
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Figure 5.3: Folding/Unfolding transitions of individual tertiary structures as a function of
temperature for 7LZM in the bulk. Transitions occurring at ≈ 265 K are found in Panel (A),
those at ≈ 301 K in Panel (B), and those at ≈ 335 K in Panels (C) and (D).
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residues forming the roll have limited mobility and remain close to their positions found

in the native state. State 3-b shows the conformation of the molecule once Helix 1 breaks

away from the bundle during the transition at 301 K. After this transition, the entire upper

portion of the molecule assumes coil-like configurations. State 4-b is the unfolded state of

the protein after the highest-temperature transition at 335 K. The tertiary, helical bundle

formed by Helixes 4-11 comes apart and the individual helices themselves lose most of their

secondary structure.

State 1-b

• T ≈ 190 K

• Folded State

State 2-b

• T ≈ 280 K

• Strands 2-3 break

   away from α/β roll

   but remain together

State 3-b

• T ≈ 320 K

• All tertiary structure 

   of α/β roll breaks

• Helix 1 breaks away

   from bundle 

State 4-b

• T ≈ 360 K

• All tertiary structure breaks

• Melting of most secondary

   structure

Figure 5.4: Conformations of 7LZM in the bulk at 190, 280, 320, and 360 K.

The size and shape of the peaks in the heat capacity are related to the amount of

secondary and tertiary structure affected at the particular transition in question. During the

335 K transition, a large amount of secondary and tertiary structure melts which results in a

high, sharp peak. The 301 K transition involves only the breaking away of Helix 1 from the

rest of the bundle. As such, the heat capacity peak is small and broad. The 265 K transition,

where the alpha/beta roll melts, involves more structure than the 301 K transition but less

than the 335 K transition. As such, the shape and size of the peak lies in between that of

the two extremes.
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5.2.2 Folding on the Surface

As discussed above, the protein was tethered to the surface in each of the loop regions

joining two different secondary structures (see Table 5.1). Each simulation was analyzed,

but only two cases are discussed below for brevity. All but one of the tether sites resulted

in heat capacity curves similar to that shown for site 162 (Panel B of Figure 5.2), three

peaks with the most prominent occurring at the highest temperature. In some cases, as for

site 162, the locations of the peaks were slightly higher compared the bulk indicating that

the surface stabilized the protein. In other cases, the locations of the peaks were shifted

to slightly lower temperatures than in the bulk indicating that the surface destabilized the

protein. However, whether stabilized or destabilized, the structure of the protein in each

state is the same as in the bulk (see Figure 5.4) for all surface cases with three peaks. Notice

that the states shown in Figure 4 and 6 are typical structures in those temperatures, which

show the common characters of the ensemble of states.

An interesting phenomenon is observed for tethering at site 91; the folding mechanism

changes. As shown in Panel C of Figure 5.2, one peak is missing in the heat capacity curve

for tethering at this site compared to the the bulk situation. The missing peak indicates that

one of the stable intermediates along the folding pathway of 7LZM has been eliminated.

Explicit evidence to this fact is seen in Figure 5.5 which contains the plots of qx−x as a

function of temperature for tethering at site 91. The lowest-temperature transition, occurring

at 273 K, is similar to that found in the bulk. Part of the alpha/beta roll formed by Helix 2

and Strands 1-4 comes apart, Helices 2 and 3 maintain their secondary structure, and Helix

1 maintains it secondary structure as well as its tertiary contacts with the bundle formed

by Helices 4-11. In the next transition, all of the native contacts break. This is analogous

to the highest-temperature transition found in the bulk where the resulting molecule has no

tertiary structure and little secondary structure. The transition that is eliminated in site 91

compared to the bulk is the breaking away of Helix 1 from the rest of the bundle. In the

bulk, this occurred at a much lower temperature than the melting of the rest of the bundle,

but on the surface, Helix 1 and the bundle all melt at approximately the same temperature.
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Figure 5.5: Folding/Unfolding transitions of individual tertiary structures as a function of
temperature for 7LZM when tethered to the surface with residue 91. Transitions occurring at
≈ 273 K are found in Panel (A) and those at ≈ 332 K in Panels (B) and (C).
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Figure 5.6 shows the conformations of 7LZM, when tethered at site 91, in each of

the stable states found between the transitions. These are labeled, beginning at the low

temperature, 1-s91, 2-s91, and 3-s91 where the “s91” signifies “site 91.” State 1-s91 is the

folded state of the protein found at low temperatures and corresponds to state 1-b in the

bulk. State 2-s91 is the protein after the alpha/beta roll has melted and corresponds to

state 2-b in the bulk where Helix 1 keeps contact with the helical bundle. State 3-s91 is the

unfolded state of the protein found at high temperatures and corresponds to state 4-b in the

bulk. When tethered to the surface at site 91, no state is found that is analogous to state

3-b.

State 1-s91

• T ≈ 190 K

• Folded State

State 2-s91

• T ≈ 280 K

• Strands 2-3 break

   away from α/β roll

   but remain together

State 3-s91

• T ≈ 360 K

• All tertiary structure breaks

• Melting of most secondary

   structure

Figure 5.6: Conformations of 7LZM tethered to the surface at site 91 at temperatures of 190,
280, and 360 K.
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5.3 Discussion

5.3.1 Protein Array Design

As explained previously, one of the major reasons for studying protein-surface inter-

actions is optimization of protein arrays. Over the last several years, multiple techniques

have been developed to successfully tether proteins to the surface at specific residues. For

example, DNA and unnatural amino acids have been shown to be effective at site-specific

tethering. [29, 33] However, the question as to the particular residue to tether in each case

has not yet been answered.

The results of this study offer hope that simulation can help answer this question.

In the bulk, 7LZM folds through a pathway with four states (see Panel A of Figure 5.2 and

Figures 5.3 and 5.4). When tethered to the surface in the loop regions of the molecule,

these same states are seen in the majority of the situations. However, for site 91, the folding

pathway changes significantly affecting the two lower-temperature transitions. The middle

transition is eliminated in its entirety and the lowest-temperature transition is muted. This

suggests that tether site selection for multistate folders can be used as an optimization

parameter when designing technologies involving protein-surface interactions.

To understand how this can occur, consider the relationship between the structure and

the function of the molecule. 7LZM is a lysozyme–an enzyme which cleaves peptide bonds.

The active site of this enzyme is found in the “cleft” formed between the two portions of

the molecule. Panel A of Figure 5.7 shows a space-filled representation of 7LZM with the

location of the active site in red. The orientation of the protein is the same as in Figure 6.8

where the top portion of the molecule is the alpha/beta roll formed by Helix 2 and Strands

1-4 and the bottom portion of the molecule is the helical bundle formed by Helices 1, 4-11.

The location of residue 91 is shown in green and is located on the side opposite the active

site cleft. For reference, Panel B of Figure 5.7 shows the molecule rotated approximately

200 degrees about the vertical axis compared to the orientation in Panel A. Panel C show

how the molecule would be orientated when bound to the surface at site 91. Notice that the

active site cleft is still accessible to the bulk phase.
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(A) (B) (C)

Res. 91 Active Site

Figure 5.7: Relationship between reside 91 and the active site of 7LZM. Panel (A): Space-fill
representation in the same orientation as in Figure 5.1; Panel (B): Depiction of the active site
obtained by rotating the molecule approximately 200 degrees about the vertical axis compared
to the orientation found in Panel (A); Panel (C): Position of the molecule when tethered at
site 91.

Recall that tethering at site 91 made the protein behave more like a two-state folder.

In effect, the surface constrained the protein in such a way that the partially-unfolded inter-

mediate found in the bulk, where the alpha/beta roll and Helices 1 and 3 were melted, was

no longer present. The consequence is that the protein remains in a more folded configura-

tion a greater amount of time. In the bulk, the entire top portion of the molecule melts at

the transition occurring at 301 K. However, when tethered to the surface at site 91, the top

portion of the molecule does not unfold to such a degree until approximately 332 K when

the entire molecule unfolds. For 7LZM to function, both portions of the molecule must be

folded so that the active-site cleft is formed. By eliminating the transition occurring at 301

K, the surface greatly enhances the ability of the protein to sample conformations closer to

the native state which can be expected to lead to enhanced enzymatic activity. It is true

that some denaturation of the protein happens at the lower temperature transition, which

would decrease the activity compared to the perfectly-folded protein, but compared with

the bulk case the situation on the surface will lead to more native-like behavior. In short,

tethering at site 91 is predicted by the model to stabilize the active state of the protein and
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keep the catalytic site available to the bulk–two conditions which are essential for proper

array function.

5.3.2 Applicability of the Results

This study investigated the behavior of only one multistate protein, so more studies

are needed to fully investigate the universality of the reported phenomena. Due to the

diversity of structure in proteins, it is likely that other proteins will display different and

unique, protein-specific behavior. However, the methods outlined above to study 7LZM are

very versatile, so investigation of many proteins of interest is possible.

The results presented above are also limited by the coarse-grained representations of

the protein and the surface. For example, the chemical composition of the surface was not

modeled explicitly, so the results are only valid for weakly-interacting surfaces. Though this

is the type most frequently encountered in protein-surface applications, different behavior is

likely to be observed for highly attractive or repulsive surfaces. Despite this, the approach

presented above has been extensively used before to study protein-surface interactions [86,

83, 84, 88, 85, 121] and protein folding [58, 59, 60, 61, 97], so it is reasonable to assume that

the trends observed in the results represent realistic behavior. The numerical values reported

are not expected to correspond exactly to those that would be observed experimentally, due

to the reduction in the degrees of freedom resulting from the coarse-graining of the system

and the use of an implicit solvent model, but the comparisons between the bulk and surface

behavior are valid as the same model was used in both instances.

To ensure statistical significance, multiple independent simulations for each system

were performed where each was initialized with a different seed from the random number

generator. The results from these simulations were determined to be reproducible and con-

sistent. This suggests that the features of each plot, as discussed above, adequately represent

the behavior of the system within the accuracy of the model.

5.4 Summary

The results in this chapter showed, for the first time, how surfaces can change the

folding mechanism of a protein that folds through multiple states. In the bulk, 7LZM folds
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through a four-state mechanism. When tethered to the surface, this same mechanism is

seen for most of the tether locations; however, when tethered at residue 91 the mechanism

changes. One of the intermediates is eliminated creating a three-state mechanism. It was

found that this change stabilized the active site of the protein in a way that would increase

function at higher temperatures. Moreover, it was shown that tethering at site 91 presented

the active site away from the surface so that substrates would have access to the tethered

enzyme from the bulk phase. The results offer hope that rational design of protein arrays is

possible once a molecular-level understanding of the relevant phenomena is obtained.
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Chapter 6

New coarse-grained Model for Protein Surface-interaction

Despite the fundamental understanding gained from the coarse-grained simulations

described in the previous chapters as well as those of prior studies [83, 84, 86], the tech-

nique to date has suffered from a major limitation: the surface has been modeled in only

a rudimentary way even by coarse graining standards. Specifically, the vast majority of all

coarse-grained simulations have used either a hard surface or a short-range repulsive surface.

This approach captures what is arguably the most important feature of protein-surface in-

teractions, which is the reduced conformational entropy caused by a decrease in the phase

space available to the protein, but it has three implications. First, the model does not take

into account the solvent exclusion (or desolvation) which occurs between the peptide and

the surface as adsorption occurs. Second, the surface affects all residues equally regardless

of the chemical specificity of the residues comprising the proteins or the composition of the

surface. Third, attractive surfaces have not been adequately studied and in the few cases

where such have been investigated, they continue to suffer from the first two weakness. In

essence, these weakness means that the enthalpic contribution to the free energy from the

interaction of the protein with the surface has not been adequately described to date.

In regard to the first weakness mentioned above, experiments have shown that a

barrier exists to adsorption of proteins to surfaces. When a protein is adsorbing to the

surface, solvent molecules between the protein and the surface need to be excluded to achieve

the adsorption. The energy required for this solvent exclusion (or desolvation) causes a small

energy barrier as the protein come close to the surface but before it completely adsorbs..

In regard to the second and third weakness described above, recent experiments have

shown that peptides are not repelled by relevant surfaces regardless of the composition of

the surface or the identity of the amino acids involved [73]. Rather, all peptide-surface
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interactions are attractive with the degree of attraction varying according to the chemical

nature of the interaction. As mentioned above, research into attractive surfaces is limited,

but examples do exist. Knotts et al. [88] showed that attractive surfaces cause entropic

frustration to occur in the folding mechanism of proteins tethered to attractive surfaces

and Shea et al. [122] recently used an attractive surface model to study peptides aggregate

morphology. But the conclusions drawn from these studies are limited because they do not

take into account chemical specificity and are not parameterized against experimental data.

The examples listed above demonstrate that a new model is needed to make further

advances in the simulation and understanding of protein-surface interactions. This chapter

describes efforts to create a new coarse-grained model for protein-surface interactions which is

parameterized against experimental data, takes into account the chemical composition of the

protein and the surface, includes the desolvation penalty which is present as proteins adsorb

onto surfaces, and replicates experimental adsorption free energies for proteins not used in

the parameterization. The remainder of the chapter is constructed as follows. First, the key

features for the new model will be discussed and the exact mathematical description will be

outlined. This will be followed by a description of the procedure followed to parameterize

the model including a depiction of the experimental data used to this end. Next, the results

of the parameterization will be presented, and this will be followed by an explanation of how

the model was validated against experimental data not used in the parameterization. The

chapter will end with a discussion of the implications of the work.

6.1 Model

The model proposed here was developed to have several key features. These are:

1) The model should be coarse-grained to make investigation into protein stability com-

putationally possible.

2) The model should be concise and easy to understand.

3) The model should capture characteristics such as solvent exclusion, chemically-specific

adsorption, and hydrophobic effects.
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4) The model should be parameterized against experimental data for adsorption free

energies.

5) The model should reproduce experimental adsorption free energies for large, biologically-

relevant proteins.

6) The model should provide realistic protein folding mechanisms on surfaces.

As producing realistic folding mechanisms is a key feature needed in the new model, it

was decided to build the model based on the principles explained by Karanicolas and Brooks

[58, 59, 60, 61] whose existing model has met with considerable success in bulk simulations.

Specifically, all of the intra-protein interactions are the same as those used previously to

model protein folding. New terms were added to the model to account for the protein-

surface interactions. These terms were specifically designed to reproduce two key features

found in both experiments and atomistic simulations. The first is the presence of a minimum

in the free energy of adsorption curve between a protein and a surface at short distances.

The second is the presence of an energy barrier, caused by solvent exclusion effects,between

this minimum and long distances where the protein does not feel the presence of the surface.

The proposed surface potential is found in Equation 6.1. The first three terms in

the force field equation capture the repulsion energy of proteins close to the surface (rep-

resented by the 9th-power term), the adsorption well (represented by the 7th-power term),

and the energy barrier (represented the cubic term with parameter θ3). According to Wei

and Latour’s previous analysis [55], the hydrophobicity of a surface affects protein/surface

interaction mainly by changing the ability of the incoming molecule to induce exclusion of

the solvent molecules between the surface and the protein.Therefore, a second cubic term

is included to specify the hydrophobic effect for different surfaces with parameters θs and

χs. For a similar reason, the hydrophobic effect of different amino acids also has a cubic

dependence on the distance with parameters θp and χp.
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)3
]} (6.1)

Also in Equation 6.1, zis is the distance between site i and the surface, σsur is a residue

specific van der Waals parameter, and εsur is parameter controlling the overall strength of the

interaction. θ1 and θ3 are the two parameters controlling the repulsive part of the potential, θ2

is the parameter governing the depth of the attractive well, χs values are hydropathy indices

assigned to distinguish different surfaces, and χp values are hydropathy indices of amino

acids. χs and χp are experimental values which characterize the hydrophobic/hydrophilic

values of chemical moieties and are not fitting parameters. The χp values for each amino

acid are found in Table 6.1.

Table 6.1: Hydropathy index of guest amino acids χp.

G A P V L I M F Y W
−0.4 1.8 1.6 4.2 3.8 4.5 1.9 2.8 −1.3 −0.9

S T C N Q K H R D E
−0.8 −0.7 2.5 −3.5 −3.5 −3.9 −3.2 −4.5 −3.5 −3.5

Values for each θ are obtained by fitting simulation results to match experimental

data in the manner described below.

6.2 Method

6.2.1 Systems

Different simulation systems are used in this research to parameterize the surface

model and validate the transferability of the parameters to other systems. Below is the

description of each and an appropriate designation.
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1) Eleven host-guest style peptides and three types of surfaces with different hydropho-

bicities are used to parameterize the new surface model. These correspond to peptides

used in the experimental work of Latour et al. who have measured the change in free

energy upon adsorption for several such peptides. A host-guest peptide refers to a

peptide with the sequence of TGTG-X-GTGT (where G and T are glycine and threo-

nine amino acid residues respectively and X represents a different “guest” amino acid

residue) [73]. The eleven guest peptides used in this research are (X = D, F, G, K, L, N,

R, S, T, V, and W). For the surface, rather than parameterize specific chemical moieties

that could represent different surfaces, it was decided to create three different classes:

hydrophobic, hydrophilic, and moderately hydrophilic. Experiments have shown that

most surfaces, regardless of the exact chemical composition, have interactions that can

be grouped into one of these classifications [73].

2) Three proteins: hen egg-white lysozyme protein (PDB ID: 2LYZ), myoglobin (PDB ID:

1MBN), and cytochrome c (PDB ID: 1HRC), are used to validate the model parame-

ters. These proteins are chosen because the melting temperature, folding mechanism,

and adsorption free energy to different surfaces of these proteins are available from sev-

eral experimental and simulation studies [1, 120, 48, 123, 124, 125, 126]. Note that no

reparameterization of the new model is done with these proteins. All parameterization

uses only the host-guest peptides. 2LYZ, 1MBN, and 1HRC are only used to test the

transferability of the parameters to real systems.

6.2.2 Protein Model

As mentioned above, the Gō-like model of Karanocolis and Brooks [58, 59, 60, 61] is

used to represent intramolecular interactions. This includes both bonded and non-bonded,

intra-protein interactions. In this formalism, each residue is represented by one site placed

at the Cα position of the residue. This model is used because it keeps the number of

interaction sites per amino acid to a minimum but uses different energy scales to describe

hydrogen bonding between side chains and sequence-dependent dihedral potentials. Less-

realistic models employ fewer energy scales and set dihedral parameters based upon the

PDB structure and not sequence. As such, the resulting energy surface mimics that of real
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proteins, and the model has been shown to give good agreement with experimental folding

studies. [58, 59, 60, 61, 97]

For the eleven host-guest peptides, initial structures are generated from atomistic

simulation with the CHARMM simulation program [127, 128, 129] with implicit solvent. To

ensure adequate sampling, the system was heated, cooled, and equilibrated to find the most-

favorable conformation of the peptides at 298 K. The Gō-like model input files are obtained

from the MMTSB website http://www.mmtsb.org using coordinates from the equilibrated,

all-atom structures, but native contacts are removed to inhibit the formation of unrealistic

secondary structures and keep the host-guest peptides in a coiled state as expected form

experiments. [73]

6.2.3 Simulation Temperature

One of the limitations of coarse-grained simulation is that the removal of degrees of

freedom alters the energy of the system so that the temperature scale becomes relative. This

means, for example, that the melting temperature of the protein can be scaled to any value

desired by arbitrarily increasing the strength of the intramolecular interactions. This ability

to scale the melting temperature requires careful selection of the simulation temperature

used in parameterization. The goal was to make this value correspond to an experimental

temperature of 298 K. This value is widely used in protein-related experiments because most

biologically-relevant proteins are stable at this temperature. Previous simulation work has

shown the melting temperature of lysozyme, modeled according to Karanocolis and Brooks,

is about 265 K [130]. The experimentally-measured value is about 348 K for a difference of

approximately 83 K. Also, previous simulation research has shown that several other proteins

also melt at 298 K [121, 130].

To be consistent with the experiments, simulations must be performed at a tem-

perature low enough for the proteins of interest to maintain their native structures. A

temperature of 215 K is used to accomplish this purpose for the guest-host peptides. This

value was obtained based on lysozyme data. The value of 215 K was obtained by subtract-

ing 83 from 298. Simulations have shown that the exact value of the temperature used to

capture protein adsorption is not important as long as it is far enough below the melting
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temperature of the protein. Moreover, calculations of the over 30 proteins described in this

dissertation and modeled using the method of Karanocolis and Brooks have all shown to be

stable at 215 K [57, 58, 59, 60].

6.2.4 Parameterization

Experimentally, the nature of the surface can be controlled by changing the chemical

moieties presented on the surface. To capture this in the model, the parameterization of the

θ′s in Equation 6.1 was done against data from Latour et al. [73] who measured adsorption

potentials for 108 different protein-surface combinations. This was done by matching exper-

imental adsorption free energies with those calculated from simulation. The free energy of

adsorption ∆Gads is defined as the change in free energy that occurs by moving a protein

from a position far away from the surface to a favorable position close to the surface. Exper-

imental values for ∆Gads were determined by Latour et al. [55] The simulation values were

obtained using umbrella sampling [131] to induce protein adsorption to the surface. Using a

potential of the form

Vumb = ku (ξ − ξh)2 (6.2)

where ku is a force constant, ξh is the desired distance between the center of mass of a

protein and the surface for a particular umbrella, and ξ is the instantaneous distance from

the surface. The umbrella’s ranged from ξh = 1 to 100 Å in increments of 0.25 Å. 100 Å is

far enough away from the surface that the protein-surface interaction has decayed to zero.

The canonical ensemble is used, and the temperature is maintained at 215 K by Nosé-

Hoover-Chain integration method with 3 thermostates of mass 10−26 kgÅ2 [102, 103, 104].

Each simulation consists of 10 million steps of equilibrium and 30 million steps of production

with a step size of 1 fs. The general parameterization scheme consisted of an umbrella

simulation of one of the host-proteins, analysis of the simulation data to obtain ∆Gads,

comparison of this value to experimental data, ad hoc selection of new parameters, and

repeating until the agreement between simulation and experiment was satisfactory.
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6.2.5 Characterization and Validation

Once the model was parameterized using the iterative method just described, valida-

tion was done by simulating larger, more-relevant proteins for which experimental adsorption

data on different types of surfaces is available. For the validation simulations– which were

done for lysozyme (PDB ID: 2LYZ), myoglobin (PDB ID: 1MBN), and cytochrom c (PDB

ID: 1HRC)– the model parameters were not changed to test the transferability of the model.

Structures of these three proteins are shown in Figure 6.1. For each protein, umbrella sam-

pling was performed to calculate the adsorption free energy of the protein on the surface and

the protein-surface distance ranged from 1 to 450 Å with an interval size of 0.5 Å. At 450 Å

the protein is far enough from the surface that the interaction decays to zero. Simulations

were done in the canonical ensemble, and the temperature was maintained at 215 K by

the Nosé-Hoover-Chain integration method [102, 103, 104]. Each simulation consisted of 10

million steps of equilibrium and 30 million steps of production with a step size of 1 fs. The

surface hydrophobic index was set equal to 4.5 to mimic the hydrophobic surfaces used in

experiments [1, 48].

6.3 Result and Discussion

6.3.1 Parameterization

To demonstrate the functional form of the qualitative features seen in experimental

adsorption curves, Figure 6.2 compares the potential of mean force generated using a purely

repulsive surface model (as done in previous research) with the new surface model prior

to parameterization (θ1,2,3 = 1 and θs,p = 0 ). The new model produces features in the

experiment not seen using the previous repulsive model. These include the attractive well

and the small energy barrier found before dropping into the energy well.

The first round of parameterization used threonine as the guest residue in the host-

guest peptide. The purpose of this round was to produce a rough estimate of the model

without regard to specific residues. Threonine was chosen because all-atom simulations had

been performed previously for this host-guest peptide and the hydropathy index of threonine
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Figure 6.1: Structure of the three large proteins used for model validation.

(−0.7) is close to the middle of the range for all amino acids (−4.5 to 4.5). Specifically

TGTG-T-GTGT was used to obtain the three parameters (θ1,2,3) in Equation 6.1.

The resulting potential of mean force curve of protein adsorption on surface is found

in Figure 6.3 (with θs = 0 and θp = 0). The red dotted line data were generated by Latour
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(A) Potential of mean force curve of the previous, purely repulsive surface
model.
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(B) Potential of mean force curve of the new surface model.

Figure 6.2: Potential of mean force curve for a purely-repulsive model (Panel A) and the new
model (Panel B).
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et al. [132] using all atom simulation. The new, coarse-grained model reproduces the data

from Latour et al. very well. Both show a double energy well and small desolvation barriers

at similar values of ξ. The depth of the energy well is slightly smaller than the atomistic

data, and the atomic overlap repulsion occurs at a slightly different location, but these are

minor issues. As shown in Table 6.2, the ∆Gads from the coarse-grained simulation with X

= T is −2.70 kcal/mol and the experimental value is −2.76± 0.28 kcal/mol. Moreover, the

barrier heights are similar to those from Latour et al.. Since it is a preliminary estimation

of model parameters, detail statistical analysis with error bars is not performed.
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Figure 6.3: Potential of mean force curves from atomistic simulation and from the new surface
model .

As just described, parameterizing θ1, θ2, and θ3, which gives just the overall shape of

the potential and does not take into account exact chemistries, gave remarkably agreement

between the new model and experimental ∆Gads values. Using the set of parameters obtained

with X = T, ∆Gads values were obtained for proteins with guest residues X = D, K, and V
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on the SAM-CH3 surface. As shown in Table 6.2 the simulations produce adsorption free

energies in very good agreement with the experimental values for three of the four peptides

(X = D, K, and T) on the SAM-CH3 surface, but the ∆Gads of the peptide with X = V

was slightly off. To correct this problem, the next round of parameterization included the

chemistry of the surface.

Table 6.2: ∆Gads for X = D, K, T, and V on the SAM-CH3 surface parameterizing only θ1,
θ2, and θ3 but leaving θs and θp equal to zero.

∆Gads kcal/mol
D K T V

Experimental −3.54± 0.60 −3.34± 0.39 −2.76± 0.28 −4.40± 0.31
Simulation −3.21 −3.54 −2.70 −3.00

Hydrophobic Hydrophobic Moderately-hydrophilic Hydrophilic

As mentioned previously, surface chemistry is included in the model with the term

containing θs. The exact chemistry is controlled by χs, the hydropathy index of the surface.

Rather than parameterize every possible chemical group that could be used to create a sur-

face, it was decided to parameterize “types” of surface. Experimental data has shown that

there are basically three types of surfaces involved in protein-surface interactions: hydropho-

bic, hydrophilic, and moderately hydrophilic. The exact chemical groups used to create such

surfaces is not important. Rather, the actual type of surface created is the dominant factor.

Figure 6.4 shows three potential of mean force curves used to parameterize θs and θp. These

correspond to simulation of a host-guest peptide with X = Asp on the three different types of

surfaces. The χs values used to describe each type of surface are found in Table 6.4. Notice

that the hydrophobic surface provides the deepest adsorption well and the flattest energy

barrier, while the hydrophilic surface provides the shallowest adsorption well and highest

energy barrier. These trends, though counter-intuitive, are consistent with results from La-

tour’s experimental research. It might be expected that Asp, being a hydrophilic residue,

would be most attractive to a hydrophilic surface. However, the experiments show that the

opposite is true. The new model captures this unexpected behavior both qualitatively and
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quantitatively as the ∆Gads produced in the simulation is very close to the experimental

values. (The exact values will be described shortly in the discussion about Table 6.5).
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Figure 6.4: Potential of mean force curves with different surfaces.

The set of parameters used to produce the results found in Figure 6.4 are listed in

Table 6.3. As mentioned previously, the χ values for the surface are found in Table 6.4 and

those for the residues are found in Table 6.5. To test the transferability of the model, several

guest-host systems were simulated. These are summarized in Table 6.5. The free energies

of adsorption from both the new model and experiment are found in the table. The rows,

showing different amino acids, are groups according to the residue type with polar residues

at the top followed by non-polar residues and charged residues. The columns, represent

different types of surfaces with the hydrophobic surface on the left followed by moderately

hydrophilic and hydrophilic surfaces.
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Table 6.3: Parameters for the surface model.

θ1 θ2 θ3 θs θp
0.2340 0.4936 0.1333 0.0067 0.0333

Table 6.4: χs for different surfaces.

Hydrophobic Moderately-Hydrophilic Hydrophilic
4.5 1.5 −1.0

Notice that the results are in good agreement with experiment for proteins with polar

guest residues on all three types of surfaces. In addition, good agreement with experiment is

found for all peptides on hydrophobic surfaces. Small deviations can be noticed for peptides

with nonpolar guest residues on the hydrophilic surface. However, overall the agreement is

remarkable considering that the fitting is only done with the five θ parameters and all the

chemistry is contained in the experimental χ values.

Table 6.5: Comparison of adsorption free energy ∆Gads (kcal/mol) between the simulation
with the surface model and experiments for Host-Guest proteins. [73]

Hydrophobic Moderately-Hydrophilic Hydrophilic
-X- Experiment Simulation Experiment Simulation Experiment Simulation

Nonpolar Guest Residues
-L- −3.87± 0.69 −4.17 −1.04± 0.30 −2.81 −0.40± 0.28 −1.60
-F- −4.16± 0.16 −4.29 −2.44± 0.40 −2.89 −0.30± 0.13 −1.62
-V- −4.40± 0.31 −3.82 −0.16± 0.10 −2.66 −0.26± 0.06 −1.37
-W- −3.89± 0.34 −3.40 −1.94± 0.45 −1.80 −1.72± 0.33 −0.62

Polar Guest Residues
-T- −2.76± 0.28 −3.21 −0.16± 0.09 −1.74 −0.28± 0.15 −0.23
-G- −3.40± 0.39 −3.67 −1.86± 0.20 −2.15 −0.30± 0.20 −0.64
-S- −2.75± 0.23 −2.91 −1.49± 0.47 −1.24 −0.34± 0.11 −0.25
-N- −4.33± 0.62 −3.95 −1.64± 0.23 −2.30 −0.59± 0.11 −0.61

Charged Guest residues
-R- −4.15± 0.55 −3.99 −1.60± 0.80 −2.64 −0.20± 0.10 −1.48
-K- −3.34± 0.39 −2.74 −0.12± 0.07 −0.87 −0.19± 0.07 +0.62
-D- −3.54± 0.60 −3.04 −1.93± 0.52 −1.35 −0.44± 0.14 −0.05
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6.3.2 Validation
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Figure 6.5: Potential of mean force curve for adsorption of lysozyme onto a hydrophobic
surface.

The parameters used to generate the data in Table 6.3 were optimized against ex-

perimental data for the host-guest proteins. To test the transferability of the parameters,

especially for real, scientifically-relevant proteins, simulations were done to calculate the

∆Gads for three large proteins: lysozyme, myoglobin, and cytochrome C. No new reparam-

eterization was done in these simulations. The parameters found in Table 6.1 were used

unaltered along with a hydrophobic surface (χs = 4.5). A hydrophobic surface was used

because experimental data is available for the proteins of interest on such a surface. The

potential of mean force curves for adsorption of each peptide onto the surface are found in

Figures 6.5, 6.6, and 6.7 for lysozyme, myoglobin, and cytochrome C respectively.
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The adsorption free energy calculated from the lysozyme curve is −25.1 kJ/mol. The

adsorption free energy of lysozyme onto hydrophobic surfaces has been measure using mul-

tiple techniques by various groups. One group used a PEG-600 surface and found that the

adsorption energy ranged from −23.1 to −27.8 kJ/mol [133] depending upon ionic density.

Other groups have reported values of −37.3 kJ/mol [1] and −19.5 kJ/mol [48]. Thus, the

experimental data place the value between −19.5 kJ/mol and −37.3 kJ/mol. The simula-

tion with the new model yielded a value of −25.1 kJ/mol which falls in the range set by

experimental results.
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Figure 6.6: Potential of mean force curve for adsorption of myoglobin onto a hydrophobic
surface.

Experimentally measured adsorption free energy of myoglobin from different groups

are also varied. One group measured a value of −19.0 kJ/mol on hydrophobic surfaces. [48]

Others place the value at −27.6 kJ/mol (transformed from adsorption constant K of Lang-
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muir isotherm) on a biomimetic hydroxyapatite surface [123] and −32.0 kJ/mol (transformed

from adsorption constant K of Langmuir isotherm) on hydrophobic surfaces. [124] Figure 6.6

shows that the new model predicts a value of −24.6 kJ/mol which is within the range of the

experimentally-measured values.
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Figure 6.7: Potential of mean force curve for adsorption of cytochrom c onto a hydrophobic
surface.

Finally, simulation of cytochrome C on a hydrophobic surface gives a ∆Gads value

of −39.1 kJ/mol (See Figure 6.7). Experiments place the value between −36.8 and −49.4

kJ/mol. [125, 126] Thus, the simulation value again lies within the experimentally-determined

range.

The results are summarized in Table 6.6 which shows ∆Gads obtained from simulation

and experiment for all three proteins. These data demonstrate that the new model is in

remarkable agreement with experiment. The model not only predicts the qualitative trend
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(cytochrome C is most strongly attractive to the surface in both simulation and experiment)

but it also produces quantitative agreement in each case.

Table 6.6: Comparison of adsorption free energy, ∆Gads (kJ/mol), between simulation and
experiments for large proteins.

Protein (PDB ID) Simulation Experiments
Lysozyme (2LYZ) −25.1 −19.5 to −37.3

Myoglobin (1MBN) −24.6 −19.0 to −32.0
Cytochrom c (1HRC) −39.1 −36.8 to −49.4

6.3.3 Case Study of the Protein Lysozyme

Lysozyme has been so extensively studied experimentally that additional validation

of the model is possible. Figure 6.8 depicts the structure of lysozyme (PDB ID: 7LZM)

colored by secondary structures. The protein contains two sections: the upper part that is

formed by several β-strands and α-helices and the lower part that is formed by a group of

α-helices.

Experiments have shown that the stability of lysozyme changes depending upon the

type of surface to which it is tethered. Hanson et al. [1] tethered lysozyme to three different

types of surfaces (P2HEMA, PEMA, and POMA). These surfaces correspond to hydrophobic,

moderately hydrophilic, and hydrophilic surfaces respectively. It was found that the protein

was totally unfolded on the hydrophobic surface, partly folded on the moderately-hydrophillic

surface, and folded on the hydrophilic surface.

To see if the model captures this behavior, simulations of 7LZM were done by tethering

site 91 to three different surfaces: hydrophobic, moderately hydrophilic, and hydrophilic

surface. Site 91 was chosen based upon the results from Chapter 5 where it was shown

that tethering protein 7LZM on a purely repulsive surface at site 91 stabilized the protein

compared to the protein in the bulk solution. Figure 6.9 shows the equilibrium structure of

7LZM on a hydrophobic surface. The protein is totally melted on this type of surface (with

χs = 4.5) at a temperature 215 K. The protein is stable at this temperature in the bulk. As
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Figure 6.8: Structure of 7LZM colored by secondary structures.

shown in Figure 6.10, at the same temperature 215 K, the protein is only partially stable on

a moderately hydrophilic surface (with χs = 1.5) as the upper part of the protein is melted

while the lower part is still folded. Finally, as depicted in Figure 6.11, the protein maintains

a folded structure when it is tethered to a hydrophilic surface (with χs = −1.0) with the

same tethering site and simulation temperature.
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These results are in agreement with the experimental results described previously.

No reparameterization was done to achieve these results. The only difference between the

simulations is the χs value, and yet both simulation and experiment show that the protein

unfolds on a hydrophobic surface, remains folded on a hydrophilic surface, and partially

unfolds on a moderately hydrophilic surface.

The reason for the different behavior is found in how attractive the protein is to the

surface. The hydrophobic surface provides a deep adsorption well for the protein when it

is close to the surface and a low energy barrier as it approaches the surface. This causes

all of the sites of the protein to want to be close to the surface and the result is a random

coil structure confined to a single plane. When the protein is tethered to a hydrophilic

surface, a large energy barrier keeps the protein farther away from the surface. Moreover,

the adsorption well in this case is shallow. The overall result is the protein remains stable

on the surface. The moderately hydrophilic surface, where the protein partially unfolds, is

a case in between. The energy barrier is lower than the hydrophilic surface and higher of

than that of the hydrophobic surface. Moreover, the adsorption well is deeper than with the

hydrophilic surface and shallower than with the hydrophobic surface.

Figure 6.9: Structure of 7LZM tethered on a hydrophobic surface with site 91.
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Figure 6.10: Structure of 7LZM tethered on a moderately hydrophilic surface with site 91.

Of note is the portion of the molecule that unfolds on the moderately hydrophilic

surface. It is the upper portion of the molecule that contains the α-β roll. Results in

Chapter 5 showed that this portion of the molecule is weaker than the bottom portion

composed of the orthogonal bundle of α helices. It appears that the α-β roll is the first to

unfold regardless of the forces causing the denaturation. In Chapter 5, the unfolding was

accomplished using temperature as the denaturant. In this chapter, the forces between the

surface and the protein cause the unfolding. The agreement demonstrates the consistency of

the simulation approach and the ability of the simulation to accurately capture the effects

of different environments.

6.4 Conclusion

This chapter described a new coarse-grained surface model for protein-surface inter-

actions. The model successfully reproduces several important features of protein-surface

interactions including the adsorption well, the barrier due to solvent exclusion between the

protein and the surface, and residue-level hydrophobic effects. These were lacking in models
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Figure 6.11: Structure of 7LZM tethered on a hydrophilic surface with site 91.

used previously. The performance of the surface model was validated by comparing adsorp-

tion free energy of three different proteins with the available experiments data from different

groups. The simulation and experiment agree both qualitatively and quantitatively. Ad-

ditional qualitative validation was done using lysozyme where it was shown that the new

model accurately predicts the folding/unfolding behavior of the protein on three different

types of surfaces.

This new model will open up new avenues in the simulation of protein/surface inter-

actions. Because the model accurately captures the adsorption well, simulation no longer has

to be restricted to systems where the protein is physically tethered to the surface. Now the

effects of protein adsorption can be studied. Such effects are important for understanding

non-specific protein-surface interactions that are not only found in protein microarrays but

in a variety of biomedical applications.
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Chapter 7

Conclusion

7.1 Summary

Protein surface interactions are important in a variety of applications but previous

research has not provided the needed understanding to predict how a particular system will

behave. This work has shown, for the first time how protein stability can be correlated

to structure. Specifically, Chapter 3 explained how the shape of the tethering loop region

and the ability of the protein to rotate and vibrate on the surface affects stability. Three

types of loop regions were discovered: a long loop, a U-shaped loop, and a W-shaped loop.

Proteins were stabilized when tethered in each type except the concave-down region of the

W-shaped loop. Moreover, a thermodynamic analysis showed that the entropic part of the

free energy always helps to stabilize the protein on surfaces and that destabilization in mainly

an enthalpic effect.

Further research, described in Chapter 4, showed that the stability of most proteins,

not just those possessing alpha-helical, orthogonal bundle structure, can be correlated to

loop structure and surface rotation ability. It was also found that the complicated shapes of

beta-barrel proteins made them susceptible to destabilization. The results also suggest that

mainly-alpha proteins are generally more stable than mainly-beta proteins.

The results in Chapter 5 showed, for the first time, how surfaces can change the folding

mechanism of a protein that folds through multiple states. The folding mechanism of 7LZM

changes when the protein is tethered on the surface with site 91. One of the intermediates is

eliminated creating a three-state mechanism instead of a four-state mechanism as in the bulk

condition. It was found that this change stabilized the active site of the protein in a way that

would increase function at higher temperatures. Moreover, it was shown that tethering at

site 91 presented the active site away from the surface so that substrates would have access
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to the tethered enzyme from the bulk phase. The results offer hope that rational design of

protein arrays is possible once a molecular-level understanding of the relevant phenomena is

obtained.

Finally, Chapter 6 described a new coarse-grain model for protein-surface interactions.

It successfully reproduced several important features that have been observed experimentally:

the adsorption well, the solvation/desolvation effect, and residue-level hydrophobic effects.

None of these were found in models used previously. The performance of the new model

was validated by comparing adsorption free energy of three different proteins with available

experiments data from different groups. The results were in remarkable agreement with

experiment both qualitatively and quantitatively. Further validation was done using the

protein lysozyme (PDB ID: 7LZM) on three different types of surfaces. Both experiment and

simulation without reparameterization showed the same behavior with lysozyme unfolding

on a hydophobic surface, remaining folded on a hydrophilic surface, and partially unfolding

on a hydrophobic surface. This model, because it accurately replicates the attractive well

found between proteins and surfaces, has the capability to examine protein adsorption in a

manner not previously possible.

7.2 Future Work

Fundamental study of protein-surface interactions is in its infancy and many avenues

for future work remain. One of these that relates directly to the work described in Chapters

3 and 4 concerns studying more protein structures. Those presented above encompass a

majority of the proteins, but more work is needed for a comprehensive understanding. These

are found in the mixed alpha/beta class in the CATH classification method. Table 7.1 shows

the tertiary motifs that are found in this class that need to be studied.

Table 7.1: Protein structure motifs for further study.

Secondary Tertiary

Mixed α− β
2-Layer Sandwich
3-Layer Sandwich
Apha-Beta Barrel
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Since the novel coarse-grain model that has been developed is well validated, various

applications of protein-surfaces interactions could be performed. Comparisons of results

generated using the new model with those from previous models needs to be performed to

validate the previous results. Studies comparing adsorption to tethering also need to be

done.

Future efforts with parameterization could also focus on charged surfaces. This would

help improve agreement between the simulation and experiment on surfaces created with

−COOH and −NH2 functional groups. Improvement of the protein model to include charge

effects is needed for this to occur. Charge effects could be accounted by an additional term in

the potential equation. Parameterizations of parameters based on the Latour’s benchmark

experimental work[73] are needed to be performed for different types of charge models.

Finally, further parameterization efforts could improve the numerical agreement between

simulation and experiment for the melting temperature of the proteins.

Finally, since the motivation for the entire research is to develop predictive simulation

tools that can ultimately improve the performance of protein microarrays, the research will

eventually need to address protein-protein interactions. These are foundational to microarray

function. Such studies could be based on the protein-surface interaction model explained

in Chapter 6, but further development is needed for protein-protein interactions. Charge

effects, desolvation effects, and the van der Waals forces between a protein and its ligand

need to be taken into account.
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Appendix A

Detail of MPI coding

In the following script, swap requests are proposed from certain processors (odd or
even ones) to their upper neighbor processors. For example, if there are 8 processors (p1 to
p8), swap requests are initially proposed from odd processor, p1, p3, p5, and p7, to their
upper neighbors p2, p4, p6, and p8. And then, in a certain number of steps, swap requests
are proposed from even processors, p2, p4 and p6, to p3, p5, and p7. Since processor p8
does not have an upper neighbor processor, it does not propose such a swap request.

if(mpi.my_rank!=mpi.p-1 && flag ==1)//flag=1 mean the box is sending a request to rank+1

{...

MPI_Send(&swap_request,sizeof(swap_request),MPI_CHAR,mpi.my_rank+1,1,MPI_COMM_WORLD);

...}

At the same time, some processors must receive those requests information from
their lower neighbors, and then determine if they will accept the deal or not, based on the
Metropolis criterion. The following scripts show how that works.

else if(mpi.my_rank!=0 && flag==0)//flag 0 means the box is receiving a request from rank-1

{...

MPI_Recv(&swap_request,sizeof(swap_request),MPI_CHAR,mpi.my_rank-1,1,MPI_COMM_WORLD,&status);

double accep_crit = exp(delta_beta*delta_energy);

if(accep_crit > ran2()){//Swap is accepted

swap_accept.accept = 1;

...}

...}

In the script above, ’MPI-Send’ and ’MPI-Recv’ are MPI functions for sending and
receiving information from each other, based on their ranks, which are their processor num-
bers). They are effective in the range of 24 processors, which are defined in the ’MPI-COMM-
WORLD’.

After the scprits above finish their job, the acceptance decision is made and sent back
to the requesting processors. If requests are accepted, processors work on changing their
replicas, while if not, they will keep running their own replicas. The commands used are just
the same ones as shown above for swapping requests. After each swap, requesting processors
are changed between odd and even ranks by changing flags. Therefore, each processor can
communicate to both upper and lower neighbor processors. The whole function script is
shown as follows.

#ifdef MPI

#include "defines.h"

void nblist (int);
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double ran2 (void);

#ifdef STATUS

void curr_status (int,int);

#endif

int swap_box_mpi(int flag)

{

int k = 0;

MPI_Status status;

#ifdef STATUS

curr_status(k,5);

#endif

if(mpi.my_rank!=mpi.p-1 && flag ==1)//flag=1 mean the box is sending a request to rank+1

{

struct msg_swap_request swap_request;

swap_request.potens = en[k].potens;

swap_request.kT = sim.kT[k];

struct msg_swap_accept swap_accept;

MPI_Send(&swap_request,sizeof(swap_request),MPI_CHAR,mpi.my_rank+1,1,MPI_COMM_WORLD);

MPI_Recv(&swap_accept, sizeof(swap_accept), MPI_CHAR,mpi.my_rank+1,2,MPI_COMM_WORLD,&status);

if(swap_accept.accept==0){

return 0;

}

else if (swap_accept.accept==1){

for(int i =0; i< box[k].boxns; i++){

atom_temp[k][i] = atom[k][i]; /* Back up coordinates of box k */

atnopbc_temp[k][i] = atnopbc[k][i]; /* Back up coordinates of box k */

ff_temp[k][i] = ff[k][i];

vv_temp[k][i] = vv[k][i];

}

en_temp[k] = en[k];

#ifdef PRESSURE

pvir_temp[k] = pvir[k];

#endif

MPI_Recv(atom[k], box[k].boxns * sizeof(struct atoms),MPI_CHAR,mpi.my_rank+1,3,MPI_COMM_WORLD,&status);

MPI_Recv(atnopbc[k],box[k].boxns * sizeof(struct atoms),MPI_CHAR,mpi.my_rank+1,4,MPI_COMM_WORLD,&status);

MPI_Recv(ff[k], box[k].boxns * sizeof(struct veloc),MPI_CHAR,mpi.my_rank+1,5,MPI_COMM_WORLD,&status);

MPI_Recv(vv[k], box[k].boxns * sizeof(struct veloc),MPI_CHAR,mpi.my_rank+2,6,MPI_COMM_WORLD,&status);

MPI_Recv(&en[k], sizeof(struct energy),MPI_CHAR,mpi.my_rank+1,11,MPI_COMM_WORLD,&status);

#ifdef PRESSURE

MPI_Recv(&pvir[k], sizeof(struct virial),MPI_CHAR,mpi.my_rank+1,13,MPI_COMM_WORLD,&status);

#endif

for(int i=0; i< box[k].boxns; i++){

vv[k][i].x /= swap_accept.scale;

vv[k][i].y /= swap_accept.scale;

vv[k][i].z /= swap_accept.scale;

uu[k][i] = vv[k][i];

}

MPI_Send(atom_temp[k], box[k].boxns * sizeof(struct atoms),MPI_CHAR,mpi.my_rank+1, 7,MPI_COMM_WORLD);

MPI_Send(atnopbc_temp[k],box[k].boxns * sizeof(struct atoms),MPI_CHAR,mpi.my_rank+1, 8,MPI_COMM_WORLD);

MPI_Send(ff_temp[k], box[k].boxns * sizeof(struct veloc),MPI_CHAR,mpi.my_rank+1, 9,MPI_COMM_WORLD);

MPI_Send(vv_temp[k], box[k].boxns * sizeof(struct veloc),MPI_CHAR,mpi.my_rank+1,10,MPI_COMM_WORLD);

MPI_Send(&en_temp[k], sizeof(struct energy),MPI_CHAR,mpi.my_rank+1,12,MPI_COMM_WORLD);

#ifdef PRESSURE

MPI_Send(&pvir[k], sizeof(struct virial),MPI_CHAR,mpi.my_rank+1,14,MPI_COMM_WORLD,&status);

#endif

#ifdef NLIST

nblist(k);

#endif

return 1;

}// if swap accepted then for the sending box

}// end of mpi.rank !=p-1

else if(mpi.my_rank!=0 && flag==0)//flag 0 means the box is receiving a request from rank-1

{

struct msg_swap_request swap_request;

struct msg_swap_accept swap_accept;

MPI_Recv(&swap_request,sizeof(swap_request),MPI_CHAR,mpi.my_rank-1,1,MPI_COMM_WORLD,&status);

double e2 = swap_request.potens;

double delta_energy = e2 - en[k].potens;
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double T2 = swap_request.kT;

double delta_beta = 1.0/T2-1.0/ sim.kT[k];

double accep_crit = exp(delta_beta*delta_energy);

if(accep_crit > ran2()){//Swap is accepted

swap_accept.accept = 1;

swap_accept.scale = sqrt(sim.kT[k]/T2);

MPI_Send(&swap_accept,sizeof(swap_accept), MPI_CHAR,mpi.my_rank-1,2,MPI_COMM_WORLD);

MPI_Send(atom[k], box[k].boxns * sizeof(struct atoms),MPI_CHAR,mpi.my_rank-1,3,MPI_COMM_WORLD);

MPI_Send(atnopbc[k],box[k].boxns * sizeof(struct atoms),MPI_CHAR,mpi.my_rank-1,4,MPI_COMM_WORLD);

MPI_Send(ff[k], box[k].boxns * sizeof(struct veloc),MPI_CHAR,mpi.my_rank-1,5,MPI_COMM_WORLD);

MPI_Send(vv[k], box[k].boxns * sizeof(struct veloc),MPI_CHAR,mpi.my_rank-1,6,MPI_COMM_WORLD);

MPI_Send(&en[k], sizeof(struct energy),MPI_CHAR,mpi.my_rank-1,11,MPI_COMM_WORLD);

#ifdef PRESSURE

MPI_Send(&pvir[k], sizeof(struct virial),MPI_CHAR,mpi.my_rank-1,13,MPI_COMM_WORLD,&status);

#endif

MPI_Recv(atom[k], box[k].boxns * sizeof(struct atoms),MPI_CHAR,mpi.my_rank-1, 7,MPI_COMM_WORLD,&status);

MPI_Recv(atnopbc[k],box[k].boxns * sizeof(struct atoms),MPI_CHAR,mpi.my_rank-1, 8,MPI_COMM_WORLD,&status);

MPI_Recv(ff[k], box[k].boxns * sizeof(struct veloc),MPI_CHAR,mpi.my_rank-1, 9,MPI_COMM_WORLD,&status);

MPI_Recv(vv[k], box[k].boxns * sizeof(struct veloc),MPI_CHAR,mpi.my_rank-1,10,MPI_COMM_WORLD,&status);

MPI_Recv(&en[k], sizeof(struct energy),MPI_CHAR,mpi.my_rank-1,12,MPI_COMM_WORLD,&status);

#ifdef PRESSURE

MPI_Recv(&pvir[k], sizeof(struct virial),MPI_CHAR,mpi.my_rank-1,14,MPI_COMM_WORLD,&status);

#endif

for(int i=0; i< box[k].boxns; i++){

vv[k][i].x *= swap_accept.scale;

vv[k][i].y *= swap_accept.scale;

vv[k][i].z *= swap_accept.scale;

uu[k][i] = vv[k][i];

}

#ifdef NLIST

nblist(k);

#endif

return 1;

}//end of accept for receiving box

else { //swap is rejected

swap_accept.accept=0;

swap_accept.potens=e2;// e2 belongs to myrank-1

MPI_Send(&swap_accept,sizeof(swap_accept), MPI_CHAR,mpi.my_rank-1,2,MPI_COMM_WORLD);

return 0;

}// end of reject for receiving box

}// end of rank!=0 loop

return 2;

}

#endif

}
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