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ABSTRACT

PREDICTION OF FLUID VISCOSITY THROUGH TRANSIENT

MOLECULAR DYNAMIC SIMULATIONS

Jason Thomas

Department of Chemical Engineering

Doctor of Philosophy

A novel method of calculating viscosity from molecular dynamics simulations is devel-

oped, benchmarked, and tested. The technique is a transient method which has the potential

to reduce CPU requirements for many conditions. An initial sinusoidal velocity profile is

overlaid upon the peculiar velocities of the individual molecules in an equilibrated simula-

tion. The transient relaxation of this initial velocity profile is then compared to the corre-

sponding analytical solution of the momentum equation by adjusting the viscosity-related

parameters in the constitutive equation that relate the shear rate to the stress tensor.

The newly developed Transient Molecular Dynamics (TMD) method was tested for a

Lennard-Jones (LJ) fluid over a wide range of densities and temperatures. The simulated

values were compared to an analytical solution of the boundary value problem for a New-

tonian fluid. The resultant viscosities agreed well with those published for Equilibrium

Molecular Dynamics (EMD) simulations up to a dimensionless density of 0.7. Application

of a linear viscoelastic Maxwell constitutive equation was required to achieve good agree-

ment at dimensionless densities greater than 0.7. When the Newtonian model is used for

densities in the range of 0.1 to 0.3 and the Maxwell model is used for densities higher than

0.3, the TMD method was able to predict viscosities with an uncertainty of 10% or better.



Application of the TMD method to multi-site molecules required the Jeffreys constitu-

tive equation to adequately fit the simulation responses. TMD simulations were performed

on model fluids representing n-butane, isobutane, n-hexane, water, methanol, and hexanol.

Molecules with strong hydrogen bonding and Coulombic interactions agreed well with

NEMD simulated values and experimental values. Simulated viscosities for nonpolar and

larger molecules agreed with NEMD simulations at low to moderate densities, but deviated

from these values at higher densities. These deviations are explainable in terms of potential

model inaccuracies and the shear-rate dependence of both NEMD and TMD viscosity val-

ues. Results show that accurate viscosity predictions can be made for multi-site molecules

as long as the shear-rate dependence of the viscosity is not too large or is adequately ad-

dressed.
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Chapter 1

Introduction

Transport properties are important physical properties of a fluid. They can be exper-

imentally measured at many temperatures and pressures, but not at all conditions. High

temperatures and pressures can be problematic for experimental design, and thermal de-

composition may make high-temperature measurements impossible, yet such conditions

commonly exist where lubricants are used. In addition, experimental measurements can be

expensive and time consuming. Consequently, a reliable and efficient method for prediction

of transport properties, accurate at virtually any condition, is desirable. Many current vis-

cosity prediction methods are based on group contribution methods, corresponding states

theory, or empirical correlations. These methods are of limited accuracy and do not ex-

trapolate well to chemicals and conditions outside the domain of experimental data upon

which they were based. Newer molecular dynamics simulations methodologies offer possi-

ble solutions to these challenges based on physically realistic simulations on the molecular

scale.

In this study, a new transient molecular dynamics (TMD) method is developed and

tested as a more efficient method to predict viscosity at virtually any condition. While the

general idea and preliminary implementation of a TMD method for transport property pre-

dictions are not new, the approach used here is a novel, more general and efficient approach.

The purpose of this research is to develop, benchmark and test a reliable TMD method

which is quicker, simpler to implement and more flexible than previous molecular dynam-

ics methods, that has broader applicability and that is more accurate than semi-empirical
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or theoretical correlations for the prediction of viscosity. An immediate and significant

need of the method is in the Design Institute for Physical Properties (DIPPR R©) Project 801

at Brigham Young University where prediction methods must be used to obtain the tem-

perature dependence of vapor and liquid viscosities for new compounds to be included in

the database, but for which there are no experimental values. Current methods have been

found to be very limited in accuracy, sometimes being in error by more than an order of

magnitude.

There are a number of methods currently available for estimating different transport

properties. The methods most commonly used to predict viscosity fall into the follow-

ing categories: empirical correlations, corresponding states methods, group contribution

methods, and molecular dynamics simulations.

Empirical correlations, corresponding states methods and group contribution methods

rely on trends in properties that correlate with compound structure. A distinct advantage

of these types of methods is their simplicity, ease of use, and hand-calculator-level compu-

tations, but they are often only applicable to certain types or families of compounds. For

instance, empirical correlations should not be used on families or compounds dissimilar

to the ones used in the correlations’ development. Corresponding states methods should

only be used on conformal fluids, generally excluding fluids comprised of strongly-polar

or hydrogen-bonded molecules, unless specifically extended to these types of compounds.

Group contribution methods also are restrictive in the types of molecules and families that

can be considered as they depend upon having regressed information from experiment for

the type and possible arrangement of the various chemical moieties within the molecule.

They generally neglect electron induction effects from next-nearest neighbor groups. Even

if a method can be applied to a particular compound, the resulting accuracy can vary widely.

As a general rule, gas viscosity can be better predicted than liquid viscosity due to a stronger

theoretical basis. Methods for liquids often rely on empirical trends, restricting their gen-

erality. At any one condition, there can be large differences among values predicted us-

2



ing empirical correlations, corresponding states methods and group contribution methods.

And, predicting an accurate temperature and pressure dependence using these methods can

be even more difficult.

Molecular dynamics simulation offers an alternative method for predicting viscosity by

modeling interactions at the molecular level. These methods predict fluid properties from

the underlying physical forces between the molecules themselves. Models for these molec-

ular forces typically include Lennard-Jones interaction sites to account for van der Waals

forces and can include charges to account for Coulombic forces associated with polar in-

teractions and association. Current techniques have shown promise in predicting viscosity

for the simple molecules for which they have been tested, although their main drawback is

the substantial computer time required to obtain statistically accurate values. Their main

advantage is that the simulated properties result naturally from the molecular interactions

model. This means that all of the physics, the temperature and pressure dependence of the

properties as well as their inter-relationships, are fully included, and accuracy at any condi-

tion depends primarily upon the accuracy of the intermolecular potential model. However,

ease of implementation and computational efficiency vary with the available methods.

The two dominant methods used today are equilibrium molecular dynamics (EMD) and

non-equilibrium (steady-state) molecular dynamics (NEMD) methods. Time is spent im-

plementing, maintaining and modifying codes, but currently a primary limitation of these

methods is the actual simulation time required to get results. For all of these methods,

increased simulation time usually increases the result’s accuracy for a given molecular po-

tential. EMD methods use natural fluctuations within the fluid to obtain transport proper-

ties, but prolonged simulation times are required to achieve accurate results because of the

low signal-to-noise ratio. NEMD methods are designed to enhance the signal-to-noise ratio

by applying very large (orders of magnitude larger than physically realizable) shear rates

in the simulation, but in so doing they require multiple long simulations made at several

different shear rates to effectively extrapolate to zero (or at least to a physically realizable)

3



shear rate. While both methods are successful, the excessive simulation time required still

restricts their wide use. In this work, we seek to develop a transient simulation method that

will take advantage of the tremendous strengths of MD simulation methods while minimiz-

ing the current disadvantages mentioned above.

A selection of current analytical prediction methods is reviewed. The assumptions of

the analytical prediction methods determine the scope of the methods and show where they

can be used reliably. Next, current molecular dynamic simulation methods are presented

to show what capabilities are currently available and provide a basis for comparison. The

transient simulation method is developed for the well characterized Lennard-Jones fluid and

results are compared to previous simulation studies. Application of the transient simulation

method is applied to more complex molecules and the method is extended to account for

a more complex behavior. Results show the strengths and weaknesses of the transient

simulation method and where improvement can be made.
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Chapter 2

Analytical Prediction Methods

The important role viscosity plays in many engineering applications has led many to

develop prediction methods. The viscosity of a fluid is a strong function of density and

less so a function of temperature. The strong density dependence makes it difficult to de-

velop a method to cover both liquid and vapor densities. Typically, empirical correlations,

corresponding-states methods and group-contribution methods treat condensed-phase (liq-

uid) and vapor-phase viscosities separately. The primary features of current methods that

can be used to characterize the method are identified in this chapter, although some meth-

ods can use multiple features spanning the different types. While many methods have been

developed, only the most notable methods will be discussed.

2.1 Types of Analytical Prediction Methods

The principal types of analytical prediction methods are empirical correlation meth-

ods, corresponding-state methods, and group-contribution methods. Empirical correlation

methods are the least robust prediction methods and may be limited to a specific com-

pound, family, or group of compounds. Group-contribution methods tend to be simpler to

implement and more general. A similarity between basic molecular groups is assumed and

often the contribution of a group is assumed to be linearly additive. The last method type

presented, corresponding states, relies on the similarity of observed behavior and applies

trends observed in one compound to another.
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2.1.1 Empirical Correlations

Experimental viscosity has been correlated with a multitude of functional forms. Some

are simple in form and applicable to only one compound. Not only can they not be extended

to other compounds, they may even have trouble when extrapolated outside of the original

conditions upon which the method was based. Other correlations are more complex, relate

some physical quantity to viscosity, and attempt to be general for the vast majority of

organic compounds. Some postulated physical explanations have been connected to certain

functional forms in an effort to either improve accuracy or broaden applicability. Although

potential underlying physical relationships are presented with some correlations, agreement

with experiment tends to be a stronger driving force for acceptance.

Many examples of empirical correlations can be found, a few of which are below.

Sometimes a correlation reduces the viscosity value in some way, similar to corresponding

states. The most general type of empirical correlations often employs a functional form

similar to

lnη = A+
B
T

+C lnT +DT E (2.1)

where η is viscosity, T is temperature, and the other variables are fitting parameters. This

functional form provides the flexibility needed to account for three trends seen when lnη

is graphed versus 1/T ;

• The dependence of lnη on 1/T is approximately linear

• Higher temperature viscosities can deviate below the linear trend

• Lower temperature viscosities can deviate above the linear trend

The variables A and B account for the linear dependence. Deviations about the linear trend

at temperature extremes can be fitted with the remaining C, D, and E coefficients.
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The functional forms given below demonstrate how different reference points can pro-

duce variations on the general theme above.

ln
(

η

ηb

)
= B

(
1
T
− 1

Tb

)
+C ln

(
T
Tb

)
+D

(
T E −T E

b
)

(2.2)

lnηr =
B
Tb

(
1
Tr
−1
)

+C lnTr +DT E
b
(
T E

r −1
)

(2.3)

Here Tb is the normal boiling point, ηb is the viscosity at Tb, and Tr is temperature reduced

by the critical point temperature, and ηr is the reduced viscosity made dimensionless by

dividing by the viscosity at the critical point.

2.1.2 Group-Contribution Methods

Group-contribution methods are a popular and straightforward way to predict viscosity.

Molecules are divided into individual groups by chemical functionality and each group is

assigned a viscosity contribution. Group-contribution methods tend to be the most com-

prehensive prediction methods, although groups lacking a defined contribution can be a

problem, i.e., the desired group is not found in the reported method. An advantage of

group-contribution methods is the ability to create a method based on a small set of com-

mon groups and, when needed, less common groups can usually be added without altering

the original method.

The choice of groups is often crucial to the accuracy and complexity of a method. Some

common methods of defining groups are as individual atoms (C, H, O, N, etc.), as sim-

ple functional groups (CH3, -CH2-, CH2 ,̄ -OH, etc.), or as longer-range functional groups

connected to specific neighbors (CH2-CH2-OH, etc.). The complexity of the method in-

creases from the former to the later. The more complex methods can also have difficulty

predicting values for molecules dissimilar to those used to develop the method [1]. Group-

contribution methods tend to be the most versatile, robust, and popular prediction methods

currently used [2].
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2.1.3 Corresponding States

The similarity between liquid molecular interactions gives rise to similarities in the

viscous behavior of liquids when appropriately compared on equivalent bases. Property

values for different compounds are calculated through a mapping or transformation of

the data. Graphically, multiple data sets are collapsed into one data set through the map-

ping function. The saturated liquid viscosities of the n-alkanes, Figure 2.1, exhibit similar

temperature-dependent behavior that suggests an appropriate transformation could collapse

the curves into one. One state point of the reduced data set would correspond to different

state points for different molecules. The correspondence of different state points from dif-

ferent molecules to one reduced state point is called corresponding-states. This single data

set would then be referred to as reduced viscosity values. The success of such a method

can be measured by plotting multiple reduced data sets and measuring the scatter of the

data. A successful method would result in a coherent trend with little scatter. The greater

the scatter the less accurate the method. Adjusting the n-alkane data found in Figure 2.2

to correspond at the critical point by reducing the temperature with the critical temperature

and reducing the viscosity with ξ is successful to an extent in collapsing the viscosity at

higher temperatures, but less so near the melting point. The value ξ is defined as

ξ =
(

RTcN2
0

P4
c M3

)1/6

. (2.4)

where R is the universal gas constant, Tc is the critical temperature, N0 is Avogadro’s num-

ber, Pc is the critical pressure, and M is the molecular weight. While the curves appear

closer together, there is room for improvement considering the curves fan out at lower

temperatures. A method which uses corresponding states principles is the method by

Przezdziecki and Sridhar [3]. Values predicted using this method can disagree with ex-

perimental data significantly, and the predicted values can exhibit unphysical trends, such

8



Figure 2.1: The saturated liquid viscosities of the n-alkanes [4]. Methane is the first curve
at the bottom left and towards the right the number of carbon atoms increases. Values for
molecules with 1 – 30, 32, and 36 carbon atoms are plotted.

as increasing viscosity for increasing temperature of saturated liquids at higher tempera-

tures [4].

2.2 Vapor Viscosity

Vapor viscosity is among the easier transport properties to predict. There is sufficient

theoretical basis to calculate the ideal-gas viscosity accurately. Accurate low-density meth-

ods are generally modifications of the well-known Chapman-Enskog solution [5]. Some of

these methods include the Reichenberg method [6, 7, 8], the method of Yoon-Thodos [9],

the method of Stiel-Thodos [10], and the method of Chung [11]. For an ideal gas, statis-

tical mechanics provides a theoretical background for the method of Chung. The methods

of Reichenberg, Yoon-Thodos and Stiel-Thodos build upon the Chapman-Enskog method

9



Figure 2.2: The saturated liquid viscosities of the n-alkanes plotted as a function of reduced
temperature and reduced viscosity obtained with the reducing parameter ξ [4]. Methane is
the first curve at the bottom. Compare to Figure 2.1.

and include corrections based on corresponding states. Corresponding-states methods typi-

cally do poorly for polar or highly-branched molecules. Extended Lee-Kesler methods also

exist, but are not typically used. One extended Lee-Kesler method designed to account for

polarity was developed by Okeson and Rowley [12]. The training set used indicates er-

rors below 10 percent, but the method has not been tested further. Based on experience,

the DIPPR R© 801 project has found that the Reichenburg, Yoon-Thodos, Chung and Stiel-

Thodos methods produce errors typically below 10 percent. Despite the well-behaved na-

ture of most gases, none of the methods above deal adequately with associating gases. This

is an area in which molecular dynamics simulations clearly excel.

10



Chapman-Enskog

The Chapman-Enskog method is based on a rigorous calculation for a dilute monatomic

gas. The method assumes a low-density limit because the binary collisions are treated ex-

plicitly, while collisions involving three or more molecules are truncated from the expan-

sion used to develop the method. As the density of the gas increases, the higher-order col-

lisions occur more frequently and lead to deviations from theory. Treatment of the binary

collisions involves multiple integrals over the intermolecular potential to give a collision

integral. A hard-sphere potential gives a collision integral of 1. The Chapman-Enskog

method uses numerically calculated values of the collision integrals for a Lennard-Jones

potential. These values have been tabulated and correlated for convenience [13].

Ωη =
1.16145
T ∗0.14874 +

0.52487
exp(0.77320T ∗)

+
2.16178

exp(2.43787T ∗)
. (2.5)

The value T ∗ is defined as kbT/ε where kb is Boltzmann’s constant, T is the temperature,

and ε is the Lennard-Jones well-depth parameter. The collision integral Ω is then related to

the viscosity η by

η =
5

16

√
πmkbT

πσ2Ωη

(2.6)

where σ is the Lennard-Jones size parameter and m is the mass of a molecule. For molecules

adequately modeled with a Lennard-Jones potential, the results are virtually exact for the

low-density limit.

2.3 Liquid Viscosity

While vapor viscosity is relatively easy to predict, liquid viscosity proves much more

difficult. All the methods to be discussed have little theoretical basis and rely heavily on

empiricism. Methods such as Hsu’s method [14], Van Velzen’s method [1], Bhethanabotla’s
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Figure 2.3: Prediction of liquid viscosity by various methods for cyclooctane.

method [15], Thomas’ method [16], and the method of Przezdziecki and Sridhar [3] can dis-

agree significantly. For example, Figure 2.3 compares the predicted values for cyclooctane

to the experimental values and the DIPPR R© 801 recommended correlation. Van Velzen,

Bhethanabotla and Thomas are all group-contribution methods, while the Przezdziecki

and Sridhar method is a corresponding-states method. Some methods develop the whole

temperature-dependent curve all at once, while the basis of other methods is an accurate

prediction of the viscosity at one point and with an added on temperature dependence.

The Hsu and Van Velzen prediction methods are thought to predict liquid viscosity within

about 10%. The Bhethanabotla, Thomas and Przezdziecki-Sridhar methods are believed to

predict liquid viscosity within a 25% error. Because liquid viscosity is so much harder to

predict than vapor viscosity, there remains much room for improved prediction in this area.
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2.3.1 The Method of Thomas

Thomas [16] proposed a group-contribution method of the form

log
(
η
√

v
)

= 0.0670+ k
(

Tc

T
−1
)

(2.7)

where η is the liquid viscosity in 10−1 ·mPa · s, v is specific volume in cm3 ·g−1, and k is

a sum of group contributions. Molecules are split primarily into atomic groups (C, I, H,

O, Cl, S, Br) with specific groups for double bonds, C6H5, CO (ketones and esters), and

CN (cyanides). The basis of the method is that log(η
√

v) at the critical point is approx-

imately constant for normal non-associated liquids with further variations accounted for

by the group sum k. 123 compounds were used in the method’s development resulting in

an average error of 5% for 108 compounds, but the remaining compounds either showed

significant prediction errors or a k value could not be calculated. The method of Thomas is

a very simple prediction method, but its lack of group parameters and prediction errors for

compounds not included in the original analysis significantly hinder its utilization.

2.3.2 The Method of Hildebrand

Hildebrand [17] based his model of viscosity on the ability of the fluid to flow due to

expansion beyond the closest-packed structure of the fluid. The model is generally written

as
1

ηL
= B

(
V −V0

V0

)
. (2.8)

The parameter B represents the ability of the molecules to absorb momentum while V0 rep-

resents a molecular volume at which viscous flow stops. This method has been a starting

point for other prediction methods and is a fluidity model because the inverse of the viscos-

ity, or the fluidity, is proportional to the free space within the fluid. The fluidity is viewed

as linear relative to the expansion of the fluid beyond the core molecular volume, V0.
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2.3.3 The Method of Przezdziecki and Sridhar

Przezdziecki and Sridhar [3] present a correlation of liquid viscosity values based on

Hildebrand’s fluidity model. The method attempts to accurately predict values of B and V0

which can then be used in Hildebrand’s model.

B is correlated according to the following equation

B =
0.33Vc

f1
−1.12 , (2.9)

where

f1 = 4.27+0.032MW −0.077Pc +0.014Tm−3.82
Tm

Tc
(2.10)

and Vc is the critical volume in cm3 ·mol−1, Pc is the critical pressure in atm, Tc is the

critical temperature in K, Tm is the melting temperature in K, and MW is the molecular

weight in g ·mol−1.

V0 is correlated with the volume at the melting temperature

V0 = 0.0085Tcω−2.02+
Vm

0.342Tm
Tc

+0.894
(2.11)

where ω is the acentric factor. Przezdziecki and Sridhar note that it is very important to

accurately predict V0 because Equation 2.8 is very sensitive to the value of V0. This sensitiv-

ity leads to some erroneous predictions due to unphysical behavior when V0 is inaccurately

chosen. The most notorious behavior is the unrealistic decrease in viscosity as temperature

decreases along the liquid saturation curve. The published method shows predictions for

27 compounds and reports an average error of 8.7%.

2.3.4 The Method of Van Velzen

An alternative view of the mechanism of momentum transport in liquids, in opposi-

tion to the fluidity model proposed by Hildebrand, is that of Eyring’s theory of activated
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complexes. In this view, movement of one molecule past another is an activated process,

requiring energy for one molecule to move past another into a hole in the fluid. This gives

rise to the so-called Andrade equation which ascribes a reciprocal-temperature dependence

to the logarithm of viscosity with the corresponding coefficient being related to the activa-

tion energy. Van Velzen’s method [1] assumes the liquid viscosity adheres to the Andrade

equation between the melting point and the normal boiling point,

log(ηL) = A+B/T . (2.12)

This is modified to give

log(ηL) = A
(

1
T
− 1

T0

)
(2.13)

where T0 =−B/A. B and T0 are determined by the functional groups and structural effects.

The Andrade equation gives a straight line behavior relationship between log(ηL) and

1/T . It is acknowledged that for certain compounds such as associated liquids and hydro-

carbon mixtures of higher molecular weight that the behavior is actually slightly curved.

Van Velzen and coworkers have chosen the simpler functional form knowing accuracy

would suffer for such compounds.

The approach used in this method is to correlate the chain length N for the n-alkanes to

values of B and T0. Depending on the magnitude of N, one of two correlations is chosen.

For all other compounds an equivalent chain length is calculated to allow the correlations

developed for n-alkanes to be used. The B value is then adjusted further based on structure

or functional groups. While the chosen function is simple, calculation of the parameters B

and T0 is not. For many compounds with sufficient differences from those included in the

regression set, predicted values suffer greatly.
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2.3.5 The Method of Hsu

Hsu’s method [14] is an empirical group-contribution method. It is valid between the

melting point and a reduced temperature of 0.75 at atmospheric pressure. The method is

based on the following equation which has proven effective in correlating data:

ln(ηL) = A+BT +
C
T 2 +D ln(Pc) (2.14)

where A, B, C, and D are found by group contributions, Pc is the critical pressure in bar, and

η is in mPa · s. The method’s test set used 482 organic compounds with 4627 experimental

data points. The AAD% was 4.14. Aromatics, alcohols and ketones showed slightly higher

deviations. A test set of 35 organic compounds with 117 data points gave the lowest average

deviation when compared to the methods of van Velzen, Przezdziecki and Sridhar, and

Orrick and Erbar [18, 19]. Application of the method is straightforward and only requires

knowledge of Pc.

2.3.6 The Method of Bhethanabotla

Bhethanabotla’s method [15] can be used up to a reduced temperature of 0.8. Like the

Van Velzen method, it is based on the activated process view of viscosity or the Andrade

temperature dependence. An equation of the form

ln
(

η

ρMW

)
= A+

B
T

(2.15)

is used where A and B are found by group contributions and ρ is the density and MW is

the molecular weight. Use of van Velzen’s method would generally be preferred over this

method.
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2.3.7 The Method of Okeson and Rowley

Okeson and Rowley’s method [12] is a four-parameter corresponding-states method

developed to be an extended Lee-Kesler method. The reducing parameter, ξ, for viscosity

is

ξ =
(

RTcN2
0

P4
c M3

)1/6

. (2.16)

R is the universal gas constant, Tc is the critical temperature, N0 is Avogadro’s number, Pc

is the critical pressure, and M is the molecular weight. The viscosity is correlated with the

following equation

ηξ = (ηξ)0 +
α

α1
[(ηξ)1− (ηξ)0]+β

{
(ηξ)2− (ηξ)0−

α2

α1
[(ηξ)1− (ηξ)0]

}
(2.17)

where α is a size/shape factor and β is a polar factor. The subscripts indicate that three

reference fluids are used. Methane is reference fluid 0, n-octane is reference fluid 1, and

water is reference fluid 2. The value of α is given by

α =−7.706×10−4 +0.0330r +0.01506r2−9.997×10−4r3 (2.18)

where r is the radius of gyration. The value for β must be back-calculated based on a single

data point, but not necessarily from a viscosity value. The extended Lee-Kesler method

was developed for other fluid properties as well and typically a density point can be used

to obtain the value of β which is independent of the type of property being considered.

Reducing Parameter

When developing their method Okeson and Rowley found that the reducing parame-

ter given in Equation 2.16 produced the best agreement of their method with experiment.

However, there are many ways to construct a reducing parameter. Okeson and Rowley had
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considered another reducing parameter of

ξT =
V 2/3

c

(TcMW )1/2 . (2.19)

The difference between ξ and ξT is the value of the critical compressibility factor. The

critical values within ξ and ξT could be replaced by other compound properties. Tc could

be replaced by Tb, Pc by 1 atm, and Vc by Vb. The choice of reducing parameter only

needs to be influenced by its efficacy at “reducing” differences for a single chosen point of

commonality, whether this be the critical point, boiling point, or other designated point.

2.4 Methods Covering Gas and Liquid Viscosity

Because of the difficulty of developing a prediction method which covers both vapor

and liquid viscosities, few have been developed. A well-known method covering a large

density range is presented below.

TRAnsport Property Prediction (TRAPP)

TRAPP is an extended corresponding states method for nonpolar fluid mixtures for

densities ranging from dilute gas to dense liquid [20]. The only constants used are critical

constants and the acentric factor. The viscosity of the mixture of interest, ηmix, is related

to the viscosity of a hypothetical pure fluid, ηx, at the given temperature and density. This

hypothetical pure fluid is then related to a reference fluid using a factor Fη based on corre-

sponding states:

ηmix(ρ,T ) = ηx(ρ,T ) = η0(ρ0,T0)Fη . (2.20)

The factor Fη is calculated based on the molecular weight M and substance reducing pa-

rameters fx,0 and hx,0 using

Fη =
Mx

M0

1/2
f 1/2
x,0 h−2/3

x,0 , (2.21)
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where x refers to the hypothetical pure fluid of interest and 0 is the reference fluid. The

state point of the ideal pure fluid and the corresponding state point of the reference fluid

are related by the substance reducing parameters.

T0 =
T
fx,0

(2.22)

ρ0 = ρhx,0 (2.23)

Further details found in the literature on the calculation of fx,0 and hx,0 show that these are

functions of the critical parameters and acentric factor and use mixing rules for mixtures

based on van der Waals mixing rules [20]. The substance reducing parameters and density

are iteratively solved prior to calculating Fη.

For TRAPP the reference fluid was chosen to be methane which was the only fluid

with adequate experimental data at the time. Because the range of data available for the

reference fluid dictates the scope and accuracy of the method, the relatively high freezing

point of methane on a reduced scale had to be addressed. A 32-term BWR equation of state

for methane was extended and extrapolated to 40 K. The reference viscosity correlation

utilized was based on methane’s experimental viscosity except for high densities where

pseudo-data based on propane allowed a sufficient density range to be covered. At high

densities a noncorrespondence in viscosity was also taken into account.

The authors of TRAPP initially were interested in properties of LNG and light hydro-

carbon mixtures which made methane a suitable reference fluid. The method was found to

work well for hydrocarbons having up to 20 carbon atoms. The prediction error for pure

fluids and mixtures is reported to be on the order of 7 to 8% [20].

2.5 Conclusion

Each of the methods presented has expanded the prediction capabilities available. Al-

though prediction methods have become more powerful and accurate over time, the limita-
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tions imposed by assumptions and data sets used in the regressions must be remembered.

Group-contribution methods such as Hsu’s method can be used for a diverse set of com-

pounds; however, common compounds with ample experimental data may be better char-

acterized by an empirical correlation. Methods such as TRAPP are reliable and accurate

over a large range of state points; however, this method can only be used for hydrocar-

bon mixtures. Methods which do not cover the desired density and temperature range or

which do not apply to the fluids of interest cannot be used reliably. Out of the large num-

ber of methods available, each has its strengths and weaknesses indicating that at present a

tradeoff of generality and accuracy must usually be made.
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Chapter 3

Simulation Methods

3.1 Current Molecular Dynamics Methods

Molecular dynamics simulations have been used to obtain a number of fluid properties

including viscosity. Comprehensive overviews of molecular dynamics simulations have

been written by Allen and Tildesley [21] and Frenkel and Smit [22]. It has been shown

that viscosity model data can be obtained from molecular dynamics simulations in two

principal ways. Equilibrium molecular dynamics (EMD) have been used to successfully

calculate viscosity from the Green-Kubo relations [23, 24, 25]. The other principal method

is through nonequilibrium molecular dynamics (NEMD) [26, 27, 28, 29, 30].

3.1.1 Equilibrium Molecular Dynamics – Green Kubo Formalism

EMD predictions calculate time correlations using the mechanical variables of molecules

found in equilibrated molecular dynamics simulations and relate the time correlations to

transport properties. The Green-Kubo integral formula is used to obtain the viscosity from

the integral of the averaged time correlation function for the decay of natural fluctuations

in the localized off-diagonal elements of the pressure tensor:

η =
V

kbT

Z
∞

0
〈ταβ(0)ταβ(t)〉dt , (3.1)
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where the components of the pressure tensor are given by

ταβ(t) =
1
V ∑

i

(
pαi pβi

mi
+αi fβi

)
. (3.2)

Here η is the viscosity, V is volume of the simulation cell, T is temperature, t is time, kb

is the Boltzmann constant, ταβ is an off-diagonal element of the pressure tensor (α 6= β),

i is a molecular index, p is momentum, m is molecular mass, f is force, α is a Cartesian

coordinate, and β is a Cartesian coordinate [21].

The integral over infinite time is truncated for use with simulations of finite length. A

long simulation is required due to the slow convergence of the integral. The slow integral

convergence is often referred to as a long time tail. Data from basic molecular dynamics

simulations evaluated in accordance with Equations 3.1 can accurately predict the viscosity,

but use of this method may require prohibitively long simulations for routine use. This is

because the natural fluctuations in the off-diagonal elements of the pressure tensor are small

so that many averages of the time correlation function are required to achieve statistical

reliability.

3.1.2 Steady-State Periodic Perturbation

The steady-state periodic perturbation method applies a periodic force and relates the

steady-state velocity profile to the viscosity [31, 32]. The periodic force does not depend

on time and is represented by

Fx(z) = mγ̇sin
(

2πnz
Lz

)
, (3.3)

where γ̇ is a constant shear rate, m is the mass of an individual particle, n is the wave

number, and Lz is the box length in the z direction. The analytical solution to the Navier-

Stokes equations for the supplied force is itself a steady-state periodic velocity profile. The

chosen force is applied and the velocity profile is allowed to develop. Once a steady-state
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is reached the magnitude of the resulting sinusoidal velocity profile is fit to the equation

ux(z) = u0 sin
(

2πnz
Lz

)
, (3.4)

where u0 is the magnitude of the profile. The magnitude is then related to the shear viscosity

by

η =
ρL2

z γ̇

4π2n2u0
, (3.5)

where ρ is the mass density. A thermostat, such as that by Berendenson [33, 34], is needed

because the external force constantly adds energy to the system which eventually becomes

thermal motion.

A couple of issues arise when implementing this method. The larger the simulation

size the longer it will take to reach steady-state. The efficiency of the method decreases

as the time prior to reaching steady-state dwarfs the time after reaching steady state. In

addition, it is possible that the viscosity depends on the wavelength which could require

an extrapolation to zero wavelength. Multiple runs could be used to fit the wave-length

dependence, or a sufficiently small wavelength could be found by increasing the simulation

size and/or decreasing n to 1.

Simulation results for a Lennard-Jones fluid were reported in the literature for a number

of state points [31, 32]. Results obtained showed that the velocity profile was sinusoidal

within a tolerable error, but the viscosity was dependent upon the magnitude of γ̇. Results

agreed with published EMD values only when the γ̇ corresponding to the lowest viscosity

value was used.

3.1.3 Boundary-Driven NEMD

In boundary-driven NEMD simulations, the system is driven by application of forces or

changes in the molecular motion or energy at the boundaries in order to enhance the signal-

to-noise ratio and decrease the amount of averaging required to obtain statistically reliable
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results. One method uses “sliding brick” boundary conditions, known as the Lees-Edwards

boundary conditions [35]; see Figure 3.1. The rate at which adjacent boxes slide past each

other is related to the shear rate as described below.

Introduced into the equations of motion is a drift velocity that maintains the fluid in

Coutte flow,

vd(y) = y
dvx

dy
, (3.6)

where vd is the drift velocity and dvx/dy is the shear rate. The maximum drift velocity

occurs at the top of the simulation cell, y = Ly, where Ly is the length of the cell in the y

direction, and the replicate box above that can be viewed as a sliding box of velocity vd(Ly)

with the same linear additional drift velocity profile within the replicate box above as given

in Equation 3.6. When a particle crosses boundaries into an adjacent “sliding” box, its

position and velocity are altered before normal periodic boundary conditions (PBC) are

applied. Looking at Figure 3.1, the drift velocity vd is subtracted from the molecular ve-

locity of a molecule that crosses the upper boundary or added to the velocity of a molecule

that crosses the lower boundary before the molecule is placed back into the simulation cell

on the opposite side of the cell by the periodic boundary conditions. The position is also

adjusted by a displacement xdisp if the molecule crosses the upper boundary or subtracted

if the molecule crosses the lower boundary. The displacement is found according to

xdisp = vdt−Lxfloor(vdt/Lx) (3.7)

where t is time, and Lx is the length of the simulation in the x direction. The function

floor() simply truncates the non-integer portion. The result of the boundary conditions is

Coutte flow, but the linear velocity profile takes time to develop. If non-polar molecules

are incorporated into the simulation, then the Lee-Edwards boundary conditions are easily

added. If polar molecules are incorporated, then the method used to account for Coulombic
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interactions must also be altered. This is not a trivial matter, but the technique to do so is

available in the literature [36].

3.1.4 Homogeneous Field-Driven NEMD

Like boundary-driven NEMD simulations, homogeneous field-driven NEMD simula-

tions drive the system to create Coutte flow. However, the homogeneous field-driven algo-

rithms include an additional force on all of the molecules in the simulation, not just those

at the boundaries. With respect to viscosity, homogeneous field-driven NEMD simulations

alter the equations of motion to either apply a specified shear rate and measure shear stress,

or impose a well-defined shear stress and measure the shear rate. The SLLOD equations

of motion combined with the Lees-Edwards boundary conditions [35] form the primary

NEMD method used in simulations. The SLLOD equations are derived from Newton’s

equations of motion and are constrained to give Couette flow. The SLLOD equations of

motion are

q̇i =
pi

m
+qi ·∇u , (3.8)

ṗi = Fi−∇u ·pi , (3.9)

where ∇u is the shear rate tensor, m is the mass of a site, qi is the position of site i, pi is

the momentum of site i, q̇i is the time derivative of position, and ṗi is the time derivative of

momentum. For Coutte flow there is only one non-zero element, (∇u)yx = γ̇. This gives

q̇i =
pi

m
+ x̂γ̇yi , (3.10)

ṗi = Fi− x̂γ̇pyi . (3.11)

Due to better signal-to-noise ratios, NEMD simulations are more computationally ef-

ficient than EMD simulations. However, the shear rates required are much higher than

any experimental apparatus is capable of measuring and result in non-Newtonian behavior.
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Figure 3.1: Representation of Lees-Edwards boundary conditions.

As discussed below, results at several different shear rates are required to extrapolate to a

zero-shear-rate viscosity. As a result NEMD simulations still require substantial effort and

simulation time, limiting their use as a routine prediction method.

Viscosity Shear-Rate Dependence

Many fluids of interest exhibit Newtonian behavior for the shear rates encountered in

real-world fluid applications; however, MD simulations often show non-Newtonian behav-

ior. The apparent discrepancy between experiment and simulation is due to the high shear

rates needed in NEMD simulations to create a signal strong enough to overcome the noise.

Typically the largest shear rates achievable in experiment are orders of magnitude lower

than those commonly used in NEMD simulations. Experimental shear rates are typically

limited to be below 105 s−1 while many simulated shear rates are on the order of 109 s−1.

This is a concern for those using MD simulations to predict real world conditions and

with most compounds it is unclear at what point Newtonian behavior gives way to non-

Newtonian behavior. Some experimentalists have seen non-Newtonian behavior of fluids

such as C30H62, but at very large pressures and low temperatures. There has been some

work focused on achieving lower shear rates in simulation [37].
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To address the shear-rate dependence of viscosity as seen in NEMD simulations, dif-

ferent extrapolation procedures to zero shear have been used [38, 39, 40, 41, 42, 43, 44].

Simulations at different shear rates are carried out, and the dependence of viscosity upon

shear rate is fitted to some functional form. One example uses a linear dependence to

correlate viscosity and shear rate, γ̇, with an example extrapolation seen in Figure 3.2.

A frequently used shear-rate dependence of viscosity assumes viscosity is proportional

to the square root of shear rate, γ̇1/2. This assumption appears to do well for low density

liquid data, but may not do so well for very dense liquids. The sample extrapolation for

isobutane in Figure 3.2 shows that the assumed temperature dependence appears to be valid

for low densities, but it appears to fail at the higher densities which led the researchers to

ignore these values in the fit because the assumed dependence is no longer linear. The

extrapolation procedure resulting from linear response theory [38, 39] is also proportional

to γ̇1/2 given by

η = η0 +Aγ̇
1/2 (3.12)

where η is the viscosity for a given shear rate γ̇, and η0 and A are fitting parameters. η0 is

taken to be the zero-shear viscosity value reported in the literature.

For polymeric compounds, a power law is often used to fit the shear-rate dependence

of experimental data. The form of the power law is given by

η = Aγ̇
n−1 . (3.13)

MD simulation results have used the power law to fit the shear-rate dependence [40]. Such

a dependence predicts a linear behavior when logη is graphed vs. log γ̇ (log of shear rate).

The value n−1 is often found to be in the range−0.4 to−0.9 for polymeric liquids. NEMD

simulations for hexadecane produced a value of −0.45, which was within the experimen-

tally observed range. Although n−1 falls within the experimentally valid range, the actual
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Figure 3.2: NEMD extrapolation applied to isobutane results for viscosity [45, 46]. Mul-
tiple shear rates at the following state points were used to extrapolate to a zero-shear vis-
cosity: 9.905 kmol/m3 & 300 K ( ), 10.735 kmol/m3 & 250 K ( ), 11.502 kmol/m3 &
200 K ( ), 11.822 kmol/m3 & 180 K ( ), 12.141 kmol/m3 & 140 K ( ), 12.333 kmol/m3 &
135 K ( ), 12.461 kmol/m3 & 120 K ( ), 12.589 kmol/m3 & 125 K ( ), and 12.716 kmol/m3

& 125 K ( ). Values obtained from EMD simulations corresponding to the above state
points are plotted as an ( ) at zero shear. Used with permission from Rowley and Ely [46].

viscosity values were found to be too low. The under-predicted viscosities for hexadecane

were assumed to result from an inadequate potential model.

Another scheme to fit the shear-rate dependence is given by

η = η0−Aγ̇ . (3.14)

One could also use [41, 42]

η = η0−Aγ̇
2 . (3.15)
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An inverse viscosity relation has also been proposed [43]

η
−1 = η

−1
0 −A Pxz . (3.16)

Shear-rate-dependent viscosity appears to have different regimes. At high shear rates

there is often one shear-rate dependence, and another at lower shear rates. This can be seen

in the different slopes shown in Figure 3.2 at different shear rates for the higher density

simulations. At very low shear rates, a Newtonian plateau region has been identified. One

model known as the Carreau–Yasuda model tries to incorporate both shear dependence and

a plateau region with the given functional form [44]

η−η0

η−η∞

= [1+(λγ̇)a)]
η−1

a
(3.17)

NEMD simulations of 2,2,4,4,6,8,8-heptamethylnonane over a range of shear rates exhibit

a plateau region as shown in Figure 3.3.

In summary, there are a number of schemes that can be used to fit the shear-rate depen-

dence of viscosity. Unfortunately each one is based on particular example fluids which limit

the predictive or extrapolation capability to new fluids under investigation. Many results

have been published using a square-root dependence on shear rate, but as more computa-

tionally intensive simulations are carried out at lower shear rates, a plateau is reached. The

plateau region is taken to be independent of shear rate allowing one to obtain the low- or

zero-shear viscosity from the average of points within the plateau region. This of course

requires substantial computer time to identify the plateau region. Moreover, use of the

plateau region to get the zero-shear value is limited by the same efficiency issues as EMD

simulations where the statistical noise associated with a low driving force requires longer

simulations. It is important to understand the errors associated with the extrapolation pro-

cedure regardless of the method chosen.
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Figure 3.3: NEMD simulations of 2,2,4,4,6,8,8-heptamethylnonane at 0.1 MPa and
298 K ( ), 333 K ( ), and 363 K ( ) show a distinct plateau in the viscosity values at
lower shear rates [47]. Lines have been drawn to highlight the plateau region where vis-
cosity appears independent of shear rate. Experimental values corresponding to the above
state points are plotted as open symbols.

3.2 TMD Methods

Unlike NEMD methods which rely on a steady-state value, transient molecular dynam-

ics (TMD) methods attempt to explain time varying behavior. Three previous TMD meth-

ods include prediction of mutual diffusion, viscosity and thermal conductivity. All three

methods specify initial and boundary conditions and obtain appropriate solutions to the

macroscopic equations of change for momentum, energy and mass. The data are then fitted

to the macroscopic solutions to obtain transport coefficients. The three transient methods

are summarized below.

In 1993, Maginn and colleagues presented a TMD method to predict diffusivity of
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methane in silicalite [48]. The method (referred to as gradient relaxation molecular dy-

namics (GRMD)) uses a step profile in the concentration gradient. The equation used in

their regression was a Fourier series solution that required tracking the concentration in

both space and time. The method was deemed computationally demanding and appeared

to under-predict diffusivities. The under-prediction was blamed on the simulation being

outside the linear response regime where Fick’s law is applicable. This method apparently

was not developed further for diffusivity.

In 2000, Arya, Maginn and Chang published a TMD method to predict viscosity [49].

They referred to this method as the momentum impulse relaxation method (MIR). A Gaus-

sian velocity profile was used with a Fourier series solution in the infinite domain. This

required the PBCs to be modified to mimic the infinite domain. The computational effi-

ciency of the method was shown to be a significant improvement over EMD and NEMD

methods. Arya and coworkers conceded that the main disadvantages of their method are the

modifications required to the PBCs and the inability of the modified PBCs to completely

mimic an infinite domain. To account for these shortcomings, larger simulation boxes were

used and the initial Gaussian velocity profile was chosen so that the bulk of the “hump,”

or velocity gradient region, was far from the boundaries. This leads to a less efficient use

of the simulation cell and makes the method more reliant on choosing a “good” Gaussian

shape for a given condition. The inefficiency is due to the large portion of the momen-

tum gradient that is confined to a small portion of the total simulation cell which results

in only a small portion of the molecules participating in momentum transport. A more

efficient method would allow a larger fraction of the molecules to significantly contribute

to the momentum transport process. This method apparently was not developed further for

viscosity.

In 2005, Hulse and colleagues presented a TMD method to predict thermal conduc-

tivity [50]. A lumped-capacitance approach was used for a small, instantaneously heated

volume within the overall fluid simulation cell with the solution given in spherical coordi-
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nates. A spherical volume of molecules within a cubic simulation cell is heated and allowed

to relax. Subsequently, the temperature of the heated molecules is then tracked to give a

temperature decay which is then fitted to the transient solution of the energy equation sub-

ject to semi-infinite boundary conditions. The isochoric heat capacity of the simulation was

also found from the simulation in order to calculate the residual thermal conductivity with

reference to a zero-density liquid. A zero-density thermal conductivity was added to obtain

the actual thermal conductivity.

Hulse found a bias in his simulation temperature profiles. Hulse noted [51] that al-

lowing the thermal conductivity to vary with temperature eliminated the bias in this tem-

perature profiles, but resulted in a slight, consistent under prediction. The Hulse method,

similar to the MIR method, does not use the entire simulation cell to transport energy and

is inefficient in that sense. Finally, the transient solution against which the simulated re-

sponse is matched assumes a constant thermal conductivity independent of temperature,

which may be a source of error for the large temperature gradients used.

Deficiencies in the previous methods include a number of issues. One such issue al-

ready noted is inefficient simulation cell usage. Both the viscosity and thermal conductivity

methods limit initial gradients to a small portion of the simulation cell and therefore only

a fraction of the molecules participates in momentum or energy transport. Another issue is

the PBC changes required by the MIR method. As a side effect of the boundary-condition

deficiencies, larger gradients are used to counteract the inefficient use of the simulation cell

volume. Maginn and coworkers’ GRMD method has adequate boundary conditions, but

it has a large gradient that is initially discontinuous. These large gradients may generate

nonlinear responses not properly accounted for in the method.

In addition, an issue that is not fully addressed in any of the previous studies is ballistic

effects that occur at the start of any transient method. Ballistic phenomena at extremely

short times are due to the more straight-line velocities of molecules before collisions with

neighboring molecules alter the velocities and the properties dependent upon them. Hulse’s
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thermal conductivity method clearly showed nonconformity to the continuum equations at

the beginning of the response to the temperature jump. This difference was most likely a

ballistic phenomenon and should be expected to occur. Ballistic effects are more prominent

in gases than liquids, but they still exist in liquids at very short times observable in TMD

simulations.

Improvements in transport-property prediction will always be desired. These improve-

ments include simpler prediction methods, more efficient prediction ability and better accu-

racy. In the realm of molecular dynamics simulations, these correlate to easier code imple-

mentation and quicker simulation times for a given accuracy. The simplicity and clarity of a

method are also good characteristics. By this we mean that simulations that mimic experi-

mental determinations of transport properties aid in the recognition of potential difficulties,

the equivalency of the simulated and measured transport property, and in the identification

of possible improvements to the method. In addition to efficiency, these are some of the

characteristics incorporated in the TMD method developed in the next chapter.
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Chapter 4

Transient Molecular Dynamics: Develop-
ment and Results for a LJ Fluid

4.1 Viscosity Prediction

To adequately predict viscosity using a TMD method, a suitable solution to a physically

meaningful boundary-value problem must be made. For a molecular dynamics simulation

based on Cartesian coordinates, a Cartesian-coordinate solution should naturally give the

easiest and simplest solution. The equation of change for momentum can be simplified

by several realistic assumptions. Any simulation where viscosity will play a role includes

velocity gradients. When one assumes that there is no bulk flow in the y or z direction and

there are no pressure gradients or external forces, the equation of change for momentum

simplifies to

ρ
∂vx

∂t
= η

∂2vx

∂y2 (4.1)

where ρ is density, vx is the velocity in the x direction and η is the viscosity. This is the same

equation that Arya et al. used in their MIR method. Although they solved the equation for

an initial Gaussian velocity distribution on an infinite domain, we will solve the equation

on a periodic finite domain, better representing the molecular dynamics simulation with

its PBC. When the velocity profile is an even function about the boundaries, the above

equation can be solved with a finite Fourier integral transform with the Neumann-Neumann
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boundary conditions of (
∂vx

∂y

)∣∣∣∣
y=0

= 0 =
(

∂vx

∂y

)∣∣∣∣
y=L

(4.2)

to give the following solution

vx(t,y) = C0
1
L

+
2
L

∞

∑
n=1

Cn cos
(nπ

L
y
)

exp
[
−η

ρ

(nπ

L

)2
t
]

(4.3)

where

Cn =
Z L

0
vx(0,ξ)cos

(nπ

L
ξ

)
dξ for n = 0,1,2, . . . (4.4)

Here t is time, L is the length of the simulation box in the y direction and ξ is an integration

variable in the y direction. In order to fit the molecular dynamics simulation to the bound-

ary conditions, an initial velocity profile must be chosen such that the profile is an even

function about the boundary condition (the profile forms a mirror image on either side of

the boundary). In accordance with the previous statement and to simplify the Fourier series

solution, the initial velocity profile

vx(0,y) = vmax cos
(

2π

L
y
)

(4.5)

is used to obtain the following simple solution of Equations 4.1 – 4.5.

vx(t,y) = vmax cos
(

2π

L
y
)

exp

[
−η

ρ

(
2π

L

)2

t

]
= vx(0,y)φ(t) , (4.6)

where vmax is the maximum streaming velocity and φ(t) is the magnitude of the velocity

profile normalized by the profile at t = 0. The initial velocity profile and solution also

indicate that there is no net bulk velocity. Such a solution is simple and suggests that a

molecular dynamics simulation using the above constraints will have an exponential decay

in time of the streaming velocity profile. Molecules throughout the cell transport momen-
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tum and the whole cell is involved in the regression of η from Equation 4.6, enhancing the

method’s efficiency.

Anticipating the above solution, one first equilibrates the molecular dynamics simula-

tion and then adds the above initial velocity profile to the random velocities of the simula-

tion. Because the solution above indicates that one can separate the spatial solution from

the temporal solution, analysis of the data becomes simplified. Rather than fit all the data

at once, it can be done in two steps. At each time step, the magnitude of the sinusoidal pro-

file is found. The decay of the sinusoidal profile is then fit to an exponential. Finally, the

viscosity is extracted from the parameters of the exponential fit. Fitting the data becomes

simple and efficient.

4.2 Preliminary Results

Simulations have been carried out for a Lennard-Jones fluid to predict viscosity at a

number of different conditions. The range of conditions and their accuracy indicates how

versatile the TMD method is at predicting viscosity. A typical run at a particular condition

is repeated and averaged to get both an average value and to quantify the repeatability of

the results. Simulations for a Lennard-Jones fluid were run using dimensionless quantities.

Dimensionless quantities are found with the following relations:

T ∗ = kbT/ε , (4.7)

ρ
∗ = ρσ

3N0 , (4.8)

t∗ = t(ε/mσ
2)1/2 , (4.9)

η
∗ = ησ

2/(mε)1/2 , (4.10)

where T is temperature, ρ is molar density, t is time, η is viscosity, kb is Boltzmann’s con-

stant, N0 is Avogadro’s number, m is a molecule’s mass, ε is the LJ well-depth parameter,
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Table 4.1: Preliminary results over a range of conditions compared to EMD
simulation results of Painter et al. [52].

T ∗ ρ∗ η∗tmd ± η∗emd ±

1.5 0.4 0.428 0.035 0.412 0.052
0.8 0.8 2.188 0.215 2.325 0.41
2.1 0.8 1.832 0.124 1.852 0.455

and σ is the LJ size parameter. Comparison with previous EMD results [52] show good

agreement.

Fitting is best done by separating the spatial and temporal portions of Equation 4.6. The

spatial data are analyzed by fitting data to a sinusoidal curve at specified time steps. The

combined results over a number of time steps can then be fitted to the temporal portion of

the equation with an exponential decay. The regressed parameter of the exponent is then

used to obtain the viscosity. The spatial element of the data is fitted in the code, while a

representative graph of the temporal element can be seen in Figures 4.1 and 4.2 below. The

manipulated spatial data can be fitted directly with an exponent as shown in Figure 4.1, or

the equation can be linearized by taking the logarithm of the data and fitting these values

to a line as shown in Figure 4.2. Fitting the data to an exponential function appears to give

the best fit, but viewing the natural log of the data helps identify any ballistic effects, as

evident in the left of Figure 4.2. It is evident that the first few time steps should be truncated

before a fit is made. Lennard-Jones sites continuously exert a force upon one another;

however the strong interaction within a couple diameters behaves similarly to the collision

of two hard spheres. The inverse of the collision frequency for hard spheres, shown as the

vertical line at short times in Figures 4.1 and 4.2, seems to adequately predict the amount of

truncation required. The previous TMD papers fail to make note of the required truncation

and this would presumably account for some low predictions, particularly at low densities.

Preliminary results are found in dimensionless units in Table 4.1 below and are compared

to the simulation results of Painter et al. [52].
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Figure 4.1: Fit to exponential decay and truncated ballistic region seen prior to vertical
dotted line. φ is the magnitude of the velocity profile normalized by the profile at t = 0.
( ) simulation results, ( ) fit, and ( ) truncation.
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Figure 4.2: Linear fit to exponential decay and truncated ballistic region seen prior to verti-
cal dotted line. φ is the magnitude of the velocity profile normalized by the profile at t = 0.
( ) simulation results, ( ) fit, and ( ) truncation.
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Application of the Lennard-Jones fluid results to other fluids is easily done by choosing

the appropriate Lennard-Jones parameter values for ε and σ. A table of Lennard-Jones

parameters for simple molecules is found in Table 4.2.

Table 4.2: Lennard-Jones parameters for simple molecules [5].

σ (Å) ε/kb (K)

He 2.576 10.2
Ne 2.789 35.7
Ar 3.432 122.4
Kr 3.675 170.0
Xe 4.009 234.7
CH4 3.780 154

4.3 Theory

In the TMD method, the simulation configuration conforms to that of a physically-

meaningful solvable boundary-value problem with an initial non-equilibrium profile of a

property that relaxes toward equilibrium. The transport property governing the profiles rate

of decay toward equilibrium is obtained by adjusting it to obtain the best fit (usually in

a least-squares sense) of the solution of the macroscopic boundary-value problem to the

corresponding response observed in the simulation. For example in a TMD method de-

veloped by Hulse et al. [50], molecules within a small spherical region of a previously

equilibrated simulation cell are instantaneously heated by scaling their velocities. The sub-

sequent transient temperature decay of this spherical region is then matched, by adjusting

the value of the thermal conductivity in the analytical solution, to the analytical solution

of the macroscopic boundary-value problem corresponding to the temperature decay of a

spherical fluid with an initial temperature higher than the spatially infinite, initially isother-

mal fluid in which it is embedded. Similarly, the TMD method developed by Maginn and
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coworkers [48, 49, 53] matches the transient decay of an initial composition or velocity

profile to the analytical solutions of the corresponding boundary value problems for mass

and momentum transfer, respectively, by adjusting the diffusion coefficient or viscosity.

The method developed in this study is analogous to these previous methods in requiring

the transient simulation to conform to a well-defined macroscopic boundary-value problem

for which an analytical solution is available. Here we use the simulation cell and coordi-

nates shown in Figure 4.3. An initial sinusoidal velocity profile is overlaid on the molecular

velocity vectors in a previously equilibrated simulation cell as sketched in Figure 4.3. This

two-dimensional configuration in Cartesian coordinates with vx(y) and vy = 0 = vz meshes

well with standard MD simulations performed in Cartesian coordinates. Assuming the fluid

is relatively incompressible and that there are neither pressure gradients nor external forces,

one can combine the equations of continuity and momentum for this configuration into one

equation as

ρ
∂vx

∂t
=−

∂τyx

∂y
(4.11)

where ρ is density, vx is the velocity in the x direction, t is time, and τyx is the shear stress.

A constitutive equation relating the shear stress to the viscosity is required to complete

the formulation of the boundary-value problem. We consider in development of this TMD

method only fluids that can be adequately modeled with either a Newtonian or a linear

viscoelastic constitutive equation. Restriction of the method to these two classes of fluid

guarantees that the solution of the boundary-value problem is separable, but does not sig-

nificantly restrict application of the simulation method for the model fluids of interest in

this and related work.
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Figure 4.3: Schematic of the simulation cell showing the x and y coordinates with an over-
lay representation of the initial cosine velocity profile for vx.

4.3.1 Newtonian Fluid Constitutive Equation

For the geometry depicted in Figure 4.3, the relation between shear stress and shear rate

for a Newtonian fluid is

τ =−η
∂vx

∂y
(4.12)

where η is viscosity. Insertion of Equation 4.12 into Equation 4.11 gives the working partial

differential equation that relates the transient behavior of the velocity to the viscosity:

ρ
∂vx

∂t
= η

∂2vx

∂y2 (4.13)

In the TMD method developed here, we use an initial velocity profile of the form

vx(0,y) = vmax cos
(

2π

L
y
)

(4.14)

which exhibits maxima in the velocity, vmax, at the cell boundaries in the y direction as
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illustrated in Figure 4.3 and conforms to the periodic boundary conditions of the simulation

and Neumann-Neumann boundary conditions that require zero shear at y = 0 and y = L;

namely (
∂vx

∂y

)∣∣∣∣
y=0

= 0 =
(

∂vx

∂y

)∣∣∣∣
y=L

(4.15)

The solution of this boundary value problem is

vx(t,y) = vmax cos
(

2π

L
y
)

exp

[
−η

ρ

(
2π

L

)2

t

]
= vx(0,y)φ(t) (4.16)

where

φ(t) = exp

[
−η

ρ

(
2π

L

)2

t

]
(4.17)

The initial streaming velocity distribution is thus seen to decay exponentially with time t,

by the transient function φ(t). The corresponding MD simulation is performed in a box of

length L in the y direction. The streaming velocity given by Equation 4.14 is overlaid on the

instantaneous molecular velocities of an initially equilibrated simulation. The exponential

decay in time of the velocity profile is tracked, and the viscosity is obtained by matching

in a least-squares sense the analytical solution given in Equation 4.16 to the simulated

transient data.

A convenient form for φ(t) that optimizes Equation 4.16 to the simulation values can be

derived that uses individual particle positions and velocities instead of a continuous profile,

thus avoiding “binning” of molecular velocities and fitting to a velocity profile. The sum

of squared residuals is first written as

S =
N

∑
i=1

[
vxi−φ(t)vmax cos

(
2π

L
yi

)]2

(4.18)

To minimize S, the derivative of S with respect to φ is set equal to zero, and the resultant
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equation is solved to find the optimum value of φ at each t. This gives

φ(t) =
∑

N
i=1

vxi(t)
vmax

cos
[2π

L yi(t)
]

∑
N
i=1 cos2

[2π

L yi(t)
] (4.19)

For large enough values of N and under the assumption that particles are evenly distributed

along the y axis, the denominator can be treated as a Riemann sum which can be taken as a

definite integral in the limit of small particle spacing, ∆y. Thus,

N

∑
i=1

cos2
[

2π

L
yi(t)

]
=

1
∆y

Z L

0
cos2

[
2π

L
y
]

dy =
(

1
∆y

)(
L
2

)
=

N
2

, (4.20)

where the orthogonality of the trigonometric cos function has been used to perform the

integration. This gives the final expression for the optimized φ(t) calculated in terms of

individual molecular yi and vxi values at each time step:

φ(t) =
2
N

N

∑
i=1

vxi

vmax
cos
(

2π

L
yi

)
(4.21)

4.3.2 Viscoelastic Constitutive Equation

Keshavarzi et al. [54] suggest that LJ fluids exhibit viscoelastic behavior at higher den-

sities, for example when ρ∗ > 0.7 where ρ∗ = ρ/σ3. Here ρ is the number density and

σ is the LJ size parameter. Linear viscoelastic fluids can be represented by a number of

different models, but all can be rearranged into the form

τ =−
Z t

−∞

G(t− t ′)γ̇(t ′)dt ′ (4.22)

where G(t− t ′) is the relaxation modulus. For simplicity the Maxwell equation [55] which

includes both elastic and viscous effects is used here. For a fluid with flow in the x direc-

tion and the velocity gradients in the y direction as in Figure 4.3, the chosen constitutive

44



equation is

τyx +λ
∂τyx

∂t
=−η0γ̇yx (4.23)

The variable λ is the relaxation time and η0 is the viscosity at zero shear. The subscripts

on γ̇yx indicate the direction in which shear is taking place. If λ is zero, the equation for a

Newtonian fluid is returned. This differential equation can be solved to give

τyx =
Z t

−∞

{
η0

λ
exp
(
−t− t ′

λ

)}
γ̇yx(t ′)dt ′ (4.24)

The quantity in brackets is the relaxation modulus. Substitution of Equation 4.24 into

Equation 4.11 gives

ρ
∂vx(t,y)

∂t
=

Z t

−∞

[
η0

λ
exp
(
−t− t ′

λ

)][
∂2vx(t ′,y)

∂y2

]
dt ′ (4.25)

This equation simplifies to

∂φ(t)
∂t

=−a
λ

Z t

−∞

exp
[
−(t− t ′)

λ

]
φ(t ′)dt ′ , (4.26)

where

a =
η0

ρ

(
2π

L

)2

, (4.27)

for the case of a factorable velocity profile of the form

vx(t,y) = φ(t)vmax cos
(

2π

L
y
)

(4.28)

as used in the TMD simulations. Equation 4.26 can be solved using Laplace transforms for

the initial sinusoidal pulse represented by Equation 4.14.

The transform of Equation 4.26 is

sΦ(s)−φ(0) =−a
[

1
1+λs

]
Φ(s) (4.29)
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where Φ(s) is the Laplace transform of φ in terms of the Laplace space variable s.

The inverse transform of Equation 4.29 gives the solution for φ(t), which can be written

in the convenient form

φ(t) =
1
2

[A− exp(−B+t/2λ)+A+ exp(−B−t/2λ)] (4.30)

where

A± = 1± (1−4aλ)−1/2 B± = 1± (1−4aλ)1/2 a =
η0

ρ

(
2π

L

)2

(4.31)

As was the case for the Newtonian constitutive equation, Equation 4.21 can be used with

the transient velocity data obtained from the simulation to find the optimized values for φ,

in the least squares sense. These values for φ(t) are then used to regress the best values

for η0 and λ using Equation 4.30 and 4.31. Although not straightforward, it can be shown

that Equation 4.30 is equivalent to Equation 4.17 in the limit as λ approaches zero. This is

easily verified with the constitutive equations by taking the limit as λ approaches zero.

4.3.3 Simulation Details

Molecular dynamics simulations were performed for LJ fluids using periodic boundary

conditions and the minimum image convention. Pair-wise additivity of the LJ pair poten-

tials was assumed, and the LJ potential was truncated at 3.5σ. A velocity Verlet algorithm

was used with a dimensionless time step of t∗ = 0.003 for all but the two highest tem-

peratures studied; a shorter time step of t∗ = 0.001 was used for these two temperatures.

Although 256 particles were used in the “standard” simulations, additional simulations

were performed for higher densities with 512 particles by doubling the simulation cell

length in the y direction. These larger simulations were performed to help decouple the

two parameters η0 and λ in Equations 4.30 and 4.31 when analyzing the data using the

viscoelastic model. Simulations were made at a large number of state points within the
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domain 0.8 < T ∗ < 4.0 and 0.05 < ρ∗ < 1.0 as shown in Table 4.3. Here T ∗ = kT/ε, k is

Boltzmann’s constant, and T is temperature.

Standard NVT MD simulations were used to create the initially equilibrated starting

configurations at each desired temperature and density. These NVT simulations were al-

lowed to equilibrate for 20,000 time steps after which equilibrated configurations were

saved at 1000 time-step intervals to create 80 different equilibrated configurations from

which to initiate the transient simulations. An instantaneous cosine velocity profile con-

forming to Equation 4.14 was added to the specific particle velocities of the equilibrated

configurations, and standard NVE simulations were then performed allowing the veloc-

ity profile to relax. The magnitude of the initial velocity profile was calculated from a

specified maximum velocity gradient of dv∗x/dy∗ = 0.056 for 256-particle simulations and

dv∗x/dy∗ = 0.028 for 512-particle simulations. Parametric studies of the shear rate sug-

gested that these values were optimal in producing a clear transient response without pro-

ducing shear-rate dependent viscosities that can occur at higher shear rates.

Values of v∗x(t,y) generated by the simulation, such as those shown in Figure 4.4, were

collected as a function of time and converted to optimum φ(t) values using Equation 4.21.

A heuristic was used to dynamically determine when to terminate collection of the tran-

sient data. The time required for φ(t) to decay from 0.5 to 0.25 was monitored, and the

simulation was continued beyond the φ(t) = 0.25 time for nine times this time interval.

The 80 φ(t) transient-decay samples were averaged to obtain a smoother data set and

ten replicates of these smoother data sets were generated at each state point. A single

regression was performed to obtain the predicted viscosity at each state point from the

ten replicate data sets (800 transient decays), but separate regressions on the individual

replicates were also performed to estimate the standard deviation of the viscosity value.

Three examples of fitting the transient φ decay to the macroscopic analytical equations for

the two different constitutive models, Equations 4.17 and 4.30, are shown in Figure 4.5. At

lower densities, roughly ρ∗ < 0.3, φ(t) is well represented with the Newtonian model. At
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Figure 4.4: Typical decay of the initial velocity profile of the molecules in the simulation
cell. This particular response is for ρ∗ = 0.95 and T ∗ = 1.5.

high densities, ρ∗ > 0.7, φ(t) can exhibit a negative region which the viscoelastic model

can reproduce but the Newtonian model cannot. At intermediate densities, 0.3 < ρ∗ < 0.7,

either model can be used to fit the transient response data. A chi-squared test was used to

determine quality of the regressions. In all cases, the observed decay retained the cosine

shape conformal to the original applied velocity distribution.

As can be seen from Figure 4.5, φ(t) for low densities and very short times (t∗ < 0.5)

is inconsistent with the purely exponential decay of the Newtonian model given in Equa-

tion 4.17. This short-time inconsistency, prior to the purely exponential decay of φ(t),

correlates roughly with the inverse of the collision frequency that one would calculate

for hard spheres with the same value of T ∗ and ρ∗, suggesting that multiple molecular

collisions may be required before the continuum equations apply. For hard spheres, sim-

ple kinetic theory [56] predicts 〈v∗〉 =
√

8T ∗/π for the expectation of the velocity and

〈l∗〉= 1/(
√

2πρ∗) for the mean free path. A straightforward estimate of the collision time
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Figure 4.5: Theoretical fit to simulated temporal response φ(t). The three graphs corre-
spond to ρ∗ = 0.05, 0.40 and 0.95 all at T ∗ = 1.50. A Newtonian fit is not included for
the highest density. Graphed are the simulated data ( ), Newtonian fit ( ), and Maxwell
fit ( ).
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is therefore

t∗coll =
〈l∗〉
〈v∗〉

=
1

4ρ∗
√

πT ∗
(4.32)

In regressing low-density data with the Newtonian model, we have not used the early simu-

lation data before 1.4t∗coll to accommodate this molecular relaxation period. The multiplier

of 1.4 is an approximate time when discrepancies between simulation data and the analyt-

ical solution appear to fall within the noise, as seen in Figures 4.1 and 4.2. Regressions at

higher densities generally did not agree with simulated data, even after the early simula-

tion data was truncated. This lack of effect was expected, because at higher densities the

amount of simulation data truncated becomes diminishingly small.

4.4 Results

Table 4.3 shows the regressed dimensionless viscosity values η∗ and the calculated

standard deviations obtained over the whole ρT domain using the Newtonian constitutive

equation and the 256-particle simulation results. Figure 4.6 compares these results to the

correlation (based on EMD values) reported by Rowley and Painter [52]. The results of

this work are best compared to the results of Rowley and Painter due to the similarities in

the simulation details and simulation sizes used. We have also made a similar comparison

(not shown) to EMD viscosity values reported by Woodcock [57] for larger simulation

cells. That comparison gives the same trend in bias and larger deviations at very large

densities near the solid-liquid transition line where the simulated viscosity appears to have

a size dependence. Extensive and very accurate EMD simulation results (±3% for liquid

densities, increasing to ±10% for low-density gases) were recently reported by Meier et

al. [24]. The largest differences between EMD results of Painter et al., Woodcock, and

Meier et al. occur for dense liquids near the solid-liquid equilibrium curve when the number

of molecules in the simulation becomes increasingly important.
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Table 4.3: Lennard-Jones dimensionless viscosity values η∗ and calculated standard deviations (in parenthesis) obtained from
TMD simulations using the Newtonian fluid assumption and Equation 4.17. The shaded areas correspond to the liquid-vapor

two-phase region and the solid-phase region.

ρ* 0.80 1.00 1.10 1.20 1.25 1.30 1.50 1.80 2.10 2.50 3.00 3.50 4.00
0.05 0.104 0.110 0.124 0.126 0.137 0.155 0.182 0.200 0.231 0.273 0.241

(0.009) (0.005) (0.010) (0.008) (0.008) (0.011) (0.013) (0.032) (0.033) (0.067) (0.024)
0.10 0.133 0.140 0.143 0.164 0.180 0.204 0.234 0.276 0.313 0.323

(0.008) (0.012) (0.014) (0.018) (0.006) (0.013) (0.027) (0.027) (0.044) (0.025)
0.15 0.174 0.194 0.222 0.244 0.276 0.321 0.325 0.356

(0.011) (0.015) (0.012) (0.018) (0.027) (0.026) (0.025) (0.050)
0.20 0.203 0.220 0.262 0.280 0.311 0.368 0.400 0.399

(0.013) (0.006) (0.016) (0.022) (0.022) (0.036) (0.048) (0.075)
0.30 0.297 0.309 0.355 0.372 0.445 0.485 0.460

(0.020) (0.014) (0.041) (0.046) (0.038) (0.056) (0.072)
0.40 0.410 0.445 0.484 0.489 0.515 0.614 0.622

(0.039) (0.054) (0.032) (0.041) (0.066) (0.091) (0.082)
0.50 0.559 0.585 0.579 0.628 0.636 0.728 0.770 0.734

(0.034) (0.053) (0.037) (0.085) (0.072) (0.106) (0.101) (0.126)
0.60 0.805 0.803 0.804 0.840 0.851 0.878 0.876 0.881 0.945 1.013

(0.060) (0.066) (0.079) (0.087) (0.097) (0.097) (0.103) (0.101) (0.144) (0.124)
0.70 1.167 1.186 1.237 1.291 1.212 1.200 1.191 1.276 1.341 1.330 1.347

(0.115) (0.122) (0.084) (0.084) (0.098) (0.133) (0.190) (0.142) (0.199) (0.121) (0.193)
0.80 2.516 2.436 2.231 2.282 2.272 2.107 1.893 1.843 1.966 2.029 1.780 1.949 1.681

(0.288) (0.275) (0.300) (0.228) (0.164) (0.179) (0.274) (0.313) (0.208) (0.333) (0.255) (0.274) (0.373)
0.85 4.359 3.639 3.241 3.310 3.142 2.989 2.693 2.550 2.744 2.505 2.256 2.151 2.194

(0.366) (0.351) (0.261) (0.297) (0.270) (0.346) (0.271) (0.203) (0.483) (0.365) (0.313) (0.433) (0.427)
0.90 5.556 5.252 4.611 4.395 4.541 3.953 3.510 3.184 3.248 2.777 2.959 2.931

(0.619) (0.378) (0.337) (0.325) (0.487) (0.583) (0.473) (0.296) (0.531) (0.444) (0.504) (0.740)
0.95 - - - 5.951 5.155 4.566 4.117 3.458 3.309 3.630

(0.593) (0.551) (0.459) (0.598) (0.618) (0.726) (0.640)
1.00 7.023 6.057 5.451 5.087 4.290 4.137

(0.876) (0.717) (0.809) (0.987) (1.051) (0.963)

T*

51



-40%

-30%

-20%

-10%

0%

10%

20%

30%

40%

0 0.2 0.4 0.6 0.8 1

0.8

1

1.1

1.2

1.25

1.3

1.5

1.8

2.1

2.5

3

3.5

4

T*

d
if
fe
r
e
n
c
e

r*

Figure 4.6: Plot of percent difference between TMD results assuming a Newtonian fluid
and Painter’s EMD results [52].

The assumption of Newtonian behavior yields good agreement of the predicted viscos-

ity values with the EMD results over a large range of fluid conditions (0.1 < ρ∗ < 0.7) as

seen in Figure 4.6, but the systematic deviation between the two methods is evident at di-

mensionless densities above 0.8. This increasingly positive deviation from the EMD values

with increasing density corresponds with the transient behavior of φ(t) that we observed

above a dimensionless density of 0.7, namely, that φ(t) exhibited increasingly larger nega-

tive regions with increasing density for ρ∗ > 0.7. This behavior is attributed to viscoelastic

behavior.

Table 4.4 provides the η∗ values and their standard deviations obtained when the sim-

ulation results are analyzed in terms of the viscoelastic model; the positive systematic bias

observed at the higher densities is removed. Figure 4.7 compares the viscosity values ob-

tained using the viscoelastic model to the same EMD results used in Figure 4.6. Figure 4.8

shows a comparison of the TMD results to the more recent Meier EMD values [24]. Both

Figures 4.7 and 4.8 suggest a slightly negative bias of the TMD results relative to the EMD

results, but the agreement is well within the uncertainty of the two data sets. Values us-

ing the viscoelastic model are not reported for ρ∗ < 0.15 based on a poor goodness of fit
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Figure 4.7: Plot of percent difference between TMD results assuming a Maxwell fluid and
Woodcock’s EMD results [57].
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Figure 4.8: Plot of percent difference between TMD results assuming a Maxwell fluid and
Meier’s EMD results [24].

obtained when simultaneously fitting the response from the 256-and 512-particle systems.

Values of the viscosity in the region 0.3 < ρ∗ < 0.7 obtained by both the Newtonian and

viscoelastic model were the same within the uncertainty of the simulated results. As men-

tioned above, use of the viscoelastic model provided very good fits of all of the transient

data and is seen to remove the high-density bias.
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Table 4.4: Lennard-Jones dimensionless viscosity values η∗ and calculated standard deviations (in parenthesis) obtained from
TMD simulations using the Maxwell fluid assumption and Equation 4.30. The shaded areas correspond to the liquid-vapor

two-phase region and the solid-phase region.

ρ* 0.80 1.00 1.10 1.20 1.25 1.30 1.50 1.80 2.10 2.50 3.00 3.50 4.00
0.05 - - - - - - - - - - -

0.10 - - - - - - - - - -

0.15 0.172 0.193 0.220 0.243 0.277 0.313 0.343 0.370
(0.006) (0.009) (0.010) (0.011) (0.013) (0.018) (0.021) (0.048)

0.20 0.201 0.219 0.255 0.280 0.299 0.335 0.374 0.392
(0.010) (0.010) (0.009) (0.035) (0.013) (0.016) (0.014) (0.022)

0.30 0.301 0.332 0.352 0.393 0.422 0.471 0.494
(0.040) (0.044) (0.021) (0.047) (0.029) (0.039) (0.051)

0.40 0.401 0.436 0.457 0.484 0.511 0.571 0.586
(0.013) (0.010) (0.030) (0.055) (0.062) (0.128) (0.079)

0.50 0.548 0.590 0.588 0.615 0.637 0.654 0.732 0.749
(0.077) (0.142) (0.032) (0.038) (0.150) (0.086) (0.175) (0.106)

0.60 0.788 0.786 0.790 0.801 0.829 0.831 0.854 0.944 0.925 1.008
(0.089) (0.092) (0.021) (0.033) (0.102) (0.051) (0.043) (0.243) (0.260) (0.122)

0.70 1.203 1.214 1.183 1.180 1.164 1.166 1.235 1.221 1.262 1.293 1.314
(0.063) (0.082) (0.137) (0.048) (0.047) (0.142) (0.299) (0.156) (0.080) (0.181) (0.186)

0.80 2.164 2.025 1.961 1.930 1.948 1.947 1.867 1.833 1.813 1.876 1.802 1.761 1.871
(0.064) (0.071) (0.077) (0.079) (0.059) (0.085) (0.097) (0.213) (0.124) (0.275) (0.053) (0.432) (0.264)

0.85 3.007 2.719 2.598 2.497 2.564 2.480 2.391 2.279 2.260 2.203 2.248 2.127 2.099
(0.106) (0.114) (0.167) (0.105) (0.111) (0.098) (0.103) (0.128) (0.128) (0.159) (0.205) (0.207) (0.549)

0.90 3.801 3.602 3.399 3.482 3.243 3.119 2.868 2.851 2.667 2.602 2.751 2.622
(0.081) (0.146) (0.157) (0.118) (0.191) (0.187) (0.167) (0.175) (0.179) (0.373) (0.199) (0.275)

0.95 - - - 4.318 3.981 3.705 3.541 3.295 3.165 3.146
(0.244) (0.233) (0.175) (0.240) (0.381) (0.408) (0.746)

1.00 5.178 4.898 4.273 4.236 3.963 3.822
(0.401) (0.282) (0.355) (0.330) (0.264) (0.453)

T*
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Viscosity predictions show a negative systematic bias in Figures 4.6 at very low den-

sities (ρ∗ < 0.1). The TMD method is less well suited for prediction of gas viscosities at

low density. This is likely because the low (relatively speaking) molecular collision fre-

quency in dilute gases makes momentum transport less easily modeled with the continuum

equations. As the density decreases the time frame which is truncated increases, indicat-

ing that the large mean free path of molecules influences a greater portion of the response.

Additional simulations with longer times and larger system sizes suggest that accurate re-

sults can be obtained at dimensionless densities lower than 0.1, but we have not pursued

that avenue further because of the decreased efficiency of the method in that region and

because the Chapman-Enskog theoretical equations [56] are accurate and easier to use in

this density range.

It should be noted that there are three missing entries in Tables 4.3, 4.4, and 4.5 at

very high densities near the liquid-solid phase boundary. These values were omitted from

these tables because the chi-squared statistics indicated an inability to adequately fit the

simulated decay of φ(t) even with the viscoelastic equations. While the response from

either the 256- or 512-particle systems could be fitted individually, both responses could not

be simultaneously regressed suggesting an inadequacy in the linear viscoelastic model near

the solid-liquid phase boundary. The two sizes of simulation cells were used both to ensure

size consistency of the model and to provide good decoupling of the two parameters in the

viscoelastic model. Values of the dimensionless viscoelastic relaxation time λ∗ obtained

and their standard deviations are reported in Table 4.5.

4.5 Conclusion

A TMD method has been developed for efficient prediction of fluid viscosity. The sim-

ulation produces transient velocities from an initial cosine velocity profile. These transient

velocities are fitted to a theoretical analytical solution of the boundary value problem de-

scribing the macroscopic momentum transfer for the geometry and initial condition used in
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Table 4.5: Lennard-Jones dimensionless viscosity values λ∗ and calculated standard deviations (in parenthesis) obtained from
TMD simulations using the Maxwell fluid assumption and Equation 4.30. The shaded areas correspond to the liquid-vapor

two-phase region and the solid-phase region.

ρ* 0.80 1.00 1.10 1.20 1.25 1.30 1.50 1.80 2.10 2.50 3.00 3.50 4.00
0.05 - - - - - - - - - - -

0.10 - - - - - - - - - -

0.15 0.501 0.519 0.537 0.426 0.355 0.435 0.343 0.361
(0.204) (0.199) (0.271) (0.194) (0.091) (0.162) (0.098) (0.221)

0.20 0.459 0.390 0.323 0.337 0.344 0.364 0.369 0.254
(0.159) (0.243) (0.167) (0.225) (0.122) (0.161) (0.156) (0.138)

0.30 0.232 0.179 0.176 0.125 0.197 0.184 0.162
(0.180) (0.170) (0.120) (0.182) (0.089) (0.136) (0.125)

0.40 0.176 0.154 0.159 0.152 0.119 0.109 0.195
(0.073) (0.157) (0.117) (0.112) (0.127) (0.147) (0.207)

0.50 0.110 0.058 0.080 0.137 0.105 0.070 0.021 0.075
(0.114) (0.091) (0.125) (0.071) (0.131) (0.105) (0.101) (0.104)

0.60 0.030 0.049 0.092 0.081 0.033 0.068 0.141 0.009 0.033 0.013
(0.064) (0.046) (0.039) (0.051) (0.046) (0.066) (0.095) (0.070) (0.114) (0.106)

0.70 0.039 0.035 0.060 0.062 0.047 0.038 0.044 0.042 0.066 0.068 0.021
(0.029) (0.034) (0.049) (0.032) (0.041) (0.041) (0.053) (0.044) (0.052) (0.050) (0.072)

0.80 0.120 0.103 0.092 0.074 0.063 0.072 0.073 0.037 0.067 0.022 0.037 0.022 0.036
(0.016) (0.032) (0.028) (0.027) (0.036) (0.032) (0.042) (0.038) (0.041) (0.031) (0.029) (0.055) (0.047)

0.85 0.170 0.131 0.111 0.097 0.080 0.081 0.074 0.066 0.055 0.049 0.037 0.040 0.020
(0.012) (0.031) (0.018) (0.028) (0.019) (0.018) (0.035) (0.034) (0.021) (0.033) (0.033) (0.051) (0.061)

0.90 0.157 0.148 0.126 0.111 0.115 0.091 0.061 0.054 0.058 0.037 0.052 0.040
(0.022) (0.024) (0.027) (0.023) (0.019) (0.040) (0.024) (0.032) (0.041) (0.042) (0.026) (0.022)

0.95 - - - 0.129 0.115 0.071 0.067 0.037 0.064 0.049
(0.018) (0.022) (0.028) (0.023) (0.028) (0.028) (0.052)

1.00 0.112 0.095 0.085 0.053 0.053 0.045
(0.025) (0.029) (0.019) (0.024) (0.035) (0.011)

T*
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the simulation. The viscosity is adjusted in this procedure to give the best least-squares fit

of the simulation data to the macroscopic equation.

To obtain the macroscopic equation explicit in the viscosity, a constitutive equation is

used to relate the stress tensor to the velocity gradient. In this work we have used two

different constitutive relations. If the fluid is considered to be Newtonian, the analysis

equation is capable of fitting the transient response observed from the simulation only for

dimensionless densities less than 0.7. At higher densities, the velocity decay shows a re-

gion of velocity reversal indicative of viscoelastic behavior. Correspondingly, the resultant

viscosity values obtained from the method agree with previous EMD results in the density

range 0.1 < ρ∗ < 0.7. The TMD method as developed here is not recommended for dimen-

sionless densities below 0.1 where the frequency of molecular collisions is low. Increased

simulation cell sizes can be used to ameliorate this problem, but this comes at the expense

of the efficiency of the method which is one of the method’s strongest assets. This does not

limit the method because simulations are generally not required in the low-density region

where theoretical equations can be used to predict dilute-gas viscosities.

At higher densities, the transient velocity decay is well-represented by the equations

obtained using a linear viscoelastic model to relate the shear stress to the velocity gradient.

The Maxwell model adequately represents the regions of reversed velocity flow observed

in the transient velocity decay for ρ∗ > 0.7. We have used two cell sizes in our simulations

and required the model to adequately fit both transient responses to ensure a decoupling

of the two parameters in the viscoelastic model. The resultant viscosity values agree well

with EMD results over the density domain ρ∗> 0.3 and also with the TMD results obtained

using the Newtonian fluid assumption in the region 0.3 < ρ∗ < 0.7. However, the transient

responses in the two different size systems could not be fitted simultaneously using the

viscoelastic model for three densities along the liquid-solid phase transition line.

The TMD method developed here can be used to rapidly simulate fluid viscosity for

dimensionless densities above 0.1. The viscoelastic model can be used for densities above
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0.3, but must be used to obtain accurate results at dimensionless densities greater than 0.7.

The velocity relaxation in the LJ fluid is very fast and data are collected over a dimension-

less time of 10 – 20, corresponding to approximately 20 – 40 ps for Ar. An average of

800 of these velocity relaxations produces a viscosity estimate with an uncertainty of less

than 10%.
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Chapter 5

Transient Molecular Dynamics Results for
Complex Fluid Models

In the last chapter, it was shown that TMD simulations of simple Lennard-Jones molecules

produce viscosity values which agree well with other simulation methods over a wide range

of state points. The purpose of those comparisons was to validate the simulation procedure

itself by benchmarking its results against those of well-established methods for the same

simple interaction potential model. While the Lennard-Jones fluid is an important the-

oretical fluid which can be used to model simple, spherical molecules such as argon and

methane, different intermolecular potential models are needed to capture the more complex

interactions of most fluids of interest since the molecular structure of these multiatomic

fluids is considerably more complex. Consequently, applying the TMD method to these

complex models requires further method testing to ensure the system response conforms to

the theory.

In addition to the added complexity of the intermolecular interactions, internal degrees

of freedom involving vibrations, bond rotations, and angle bending may be part of the

intramolecular potential model. The effect of shear on the molecular configurations con-

trolled by these intramolecular interactions is also expected to impact the rheology of the

molecules. That is, we expect that there may be need for more flexibility in the response

to shear for fluids modeled with more complex molecular potential energies. We there-

fore included in our testing of the TMD method an additional constitutive equation that
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can model additional rheological response beyond that which we found sufficient for the

simple LJ fluid treated in Chapter 4.

5.1 Complex Fluid Models

The complexity of potential models used in simulations has been traditionally limited

by expensive force calculations that are the core of MD simulations. The early use of MD

simulations required very simple intermolecular potential models in accordance with the

computational power of the day. The hard-sphere fluid played a dominant role in both

theory and computation due to its very simple potential and its amenability to some ana-

lytical solutions. The Lennard-Jones model was another primary workhorse in the early

development of simulation methods and is still the most widely used model in simulations,

though now it is most common to use multiple instances of this potential centered at each

atom within the molecule rather than as a single interaction potential with its origin at the

molecular center. The term “Lennard-Jones potential” does not identify a unique potential,

but simply a function of the form

El j = cm,nε

[(
σ

r

)m
−
(

σ

r

)n]
. (5.1)

El j is the Lennard-Jones potential, cm,n is a coefficient dependent on m and n, σ is the size

parameter, ε is the well-depth parameter, r is the distance between sites, m is a positive

integer, and n is a positive integer. Common usage associates the Lennard-Jones potential

with the 6-12 potential form, where c12,6 = 4, m = 12, and n = 6. These simple models

can represent only the most basic of molecules, but they serve as important fundamental

building blocks of more complex models.

Most complex models are based on a decomposition of the complex molecular potential

into simpler interactions. This often involves mathematically separating the forces into Van

der Waals, Coulombic, dihedral, bond-vibration, and angle-bending forces; some are seen
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Figure 5.1: Molecular interactions which serve as the building blocks for complex molecu-
lar models include van der Waals or dispersion interactions, bond vibrations, angle bending,
torsional or dihedral changes, and electrostatics.

in Figure 5.1. Lennard-Jones potentials often serve as the basis for the van der Waals

interactions. Often the van der Waals interaction associated with a a single atom or small

group such as -CH2- will be approximated with a LJ potential at the center of the atom or

group. Coulombic interactions which account for hydrogen bonding and/or ionic effects

are added by placing point charges at different sites in the molecule. Dihedral potentials

are added for groups consisting of four or more sites separated by three consecutive bonds.

Bond vibrations and angle bending can be modeled explicitly or replaced by rigid bonds

and angles through the use of constraints. Bond vibrations and angle bending occur on a

much shorter time scale than translational and rotational motion. Inclusion of these modes

therefore adds considerable CPU cost to MD simulations and depending on the property of

interest may be unnecessary [58]. As multiple potentials are combined into one molecular

model, different relaxation modes and constraints affect the simulation results.
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An explicit example of a molecular force field is presented as follows

E = Evdw +Ebond +Eangle +Edihedral +Ecoul (5.2)

with individual interactions given by

Evdw = ∑
i

∑
j>i

4εi j

[(
σi j

ri j

)12

−
(

σi j

ri j

)6
]

(5.3)

Ebond = ∑
bonds

Kr(r− req)2 (5.4)

Eangle = ∑
angles

kθ(θ−θeq)2 (5.5)

Edihedral = kb ∑
dihedrals

5

∑
i=0

aφ,i cosi
φ (5.6)

Ecoul = ∑
i

∑
j>i

qiq je2

ri j
. (5.7)

The variable r is the bond distance, req is the equilibrium bond distance, Kr is a fitting

parameter, θ is the bond angle, θeq is the equilibrium bond angle, kθ is a fitting parameter,

φ is the dihedral angle, kb is Boltzmann’s constant, aφ,i is a fitting parameter, q is the charge

on site i or j, and e is the charge of an electron.

The purpose of any molecular force field is to capture the realistic behavior of the

molecular systems. The Equations given for Evdw, Ebond , Eangle, and Edihedral are all ap-

proximations to the real potentials. For each of these interactions other alternative potential

models are available. The van der Waals interaction has been successfully modeled using

a square-well potential, Lennard-Jones potential, and Morse potential in addition to many

other proposed models. A simple harmonic potential is shown for the bond vibration po-

tential and bond bending potential, but more complex anharmonic potentials could be used.

Bond and angle potentials significantly increase the cost of a simulation due to the shorter

time scales on which bond vibrations and angle bending occur. Because shorter time steps
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must be taken, the length of time which can be simulated for a certain computational effort

is reduced, or the number of time steps in the simulation must be increased to obtain the

same statistical accuracy of the resultant properties. Methods have been implemented to

address and somewhat mitigate these issues and often are based on multi-time step algo-

rithms [21]. Alternatively the bond lengths and bond angles can be frozen out through the

use of constraints allowing larger time steps to be used [21]. The effects of using rigid

bonds and angles depend on the property being studied. Most dihedral potentials are given

by a sum of cos and sin terms which fit the periodic nature of this potential as the dihedral

angle is rotated through 360 degrees. The time scale required by the dihedral potential is

of the same magnitude of the van der Waals interaction. The Coulombic interactions given

by Ecoul are based on rigorous physics, and therefore the major competing methods are

based on this same potential. Work has been done on reducing the computational expense

associated with the Coulombic interactions and has resulted in multiple methods such as

the Ewald-sum, Particle-Mesh Ewald, and P3M methods designed to efficiently solve the

fundamental electrostatic problem [36, 59, 60, 61, 62].

The most expensive part of a MD simulation is the explicit force calculation between

sites [21]. The calculations of van der Waals interactions scale as O(N2), where N is the

number of interaction sites, if efficiency steps are not taken. Some methods to improve

the efficiency include application of a cut-off distance and a neighborhood list. Molecules

within a certain cut-off distance are considered neighbors and stored in a list to be used in

the force calculation. A neighborhood list can considerably reduce the computation time,

particularly for lower densities. Calculations for bond potentials, angle bending potentials,

and dihedral potentials scale linearly with the number of interaction sites O(N). Explicit

bond vibrations and angle bending unfortunately require shorter time steps than the van

der Waals force calculations. This is often ameliorated by only performing bond vibration

and angle bending calculations for a certain number of short time steps between larger time

steps in which the full force calculation is done.
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Dealing with the Coulombic interactions can also be expensive and depends on the

method used but can be reduced to order O(N logN). Because the Coulombic interaction

is a long-range interaction, it cannot be truncated for the box sizes used in MD simulations

without excessive error. In contrast, van der Waals interactions are often truncated on the

order of 13 Å. For the case of a cubic simulation cell with periodic boundary conditions the

Coloumbic potential is modified slightly to

Ecoul =
1
2

N

∑
i=1

N

∑
j=1

′

∑
n∈Z3

qiq je2

|ri j +nL|
(5.8)

The prime indicates that when i = j the n = {0,0,0} term is omitted. This slow converging

series is the subject of more efficient methods such as the Ewald Sum and the P3M methods.

These more efficient methods split the Coulombic potential into two parts with a splitting

function f (r),
1
r

=
f (r)

r
+

1− f (r)
r

. (5.9)

The function f (r) is chosen such that f (r)/r quickly decays in a manner suitable for a

spherical cut-off that may be applied with the van der Waals cut-off and 1− f (r)/r will be

a mildly varying long range portion which can be accurately approximated with only a few

Fourier terms. The most popular methods use the complementary error function for f (r),

but many other functions could be used. In addition to separating the Coulombic potential

into two parts, the Ewald method uses a Fourier transform when solving the electrostatic

Poisson equation. The P3M method similarly splits the potential, but interpolates the point

charges on regularly spaced grids to take advantage of the fast Fourier transform [61, 62].

The available computational power and time requirements of the simulation will of-

ten limit the type of potential model which may be chosen. Four sets of fairly com-

plete potential models have been developed by two groups, each producing a set used

to build atomistic models and another used to build courser models. Jorgenson’s group

developed the OPLS (Optimized Potentials for Liquid Simulations) and OPLS–AA mod-
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els [63, 64, 65, 66, 67]. Siepmann’s group developed the TRAPPE and TRAPPE–EH

models [68, 69, 70, 71, 72, 73, 74, 75, 76]. All of these are transferable potential models in

which the pieces of the molecular potential can be reused to build new molecular models.

Because OPLS was developed earlier and is a simpler model set, most viscosity simulation

values reported in the literature have used models based on OPLS. Thus the nonbonded or

van der Waals interaction potential between two -CH2- groups is taken to be independent

of the molecule in which it appears, and the model (LJ in this case) parameters can be used

to represent the interaction between all pairs of -CH2- groups within the total molecule-

molecule force field equations for simulations involving n-butane, n-pentane, n-hexane,

and other similar molecules containing -CH2- groups.

5.2 Theory

Similar to that for a LJ fluid, the TMD method for complex molecules uses the same

well-defined macroscopic boundary-value problem for which an analytical solution is avail-

able if a viscoelastic constitutive equation is used. A constitutive equation relates the shear

rate to the shear stress and determines the particular solution to the boundary value prob-

lem. Solutions of a Newtonian constitutive equation and Maxwell constitutive equation to

the boundary-value problem and initial conditions presented in sections 4.1 and 4.3 have

already been derived in sections 4.3.1 and 4.3.2 and used for the case of a LJ fluid [77]. The

Newtonian constitutive equation worked well for lower liquid densities, but failed at high

liquid densities. The Maxwell constitutive equation was considered as an extension to the

Newtonian equation and worked well for the high density LJ fluid. Unfortunately, simula-

tions of fluids modeled with multiple sites showed the two previous constitutive equations

to be inadequate, leading to the consideration of a third constitutive equation, the Jeffreys

equation. The Jeffreys equation is also a linear visco-elastic constitutive equation amenable

to separation of variables whose solution to the boundary-value problem is presented be-
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low which is then compared to the constitutive equations and solutions for Newtonian and

Maxwell fluids.

5.2.1 Solution to Jeffreys Equation

An analytical solution to the Jeffreys equation can be obtained for the initial conditions

and boundary conditions that we have defined for the TMD simulations. A solution of

ρ
∂vx

∂t
=−

∂τyx

∂y
(5.10)

in which the Jeffreys constitutive equation

τyx +λ
τyx

∂t
=−η0

(
γ̇yx +λ2

∂γ̇yx

∂t

)
(5.11)

is used in place of τyx, subject to the boundary conditions

(
∂vx

∂y

)∣∣∣∣
y=0

= 0 =
(

∂vx

∂y

)∣∣∣∣
y=L

(5.12)

and the initial condition of

vx(0,y) = vmax cos
(

2π

L
y
)

(5.13)

can be obtained. Here ρ is density, vx is the velocity in the x direction, t is time, and τyx is

the shear stress.

The solution of the Jeffreys equation in terms of shear stress can be written as

τyx =
Z t

−∞

[
η0

λ

(
1− λ2

λ

)
exp
(
−t− t ′

λ

)
γ̇yx(t ′)

]
dt ′+

η0λ2

λ
γ̇yx(t) . (5.14)
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Combining this with Equation 5.11, one obtains

ρ
∂vx(t,y)

∂t
=

Z t

−∞

[
η0

λ

(
1− λ2

λ

)
exp
(
−t− t ′

λ

)(
∂2vx(t ′,y)

∂y2

)]
dt ′+

η0λ2

λ

∂2vx(t,y)
∂y2 .

(5.15)

For the given initial velocity profile

vx(0,y) = vmax cos
(

2π

L
y
)

, (5.16)

the equation can be simplified to

∂φ(t)
∂t

=−a
λ

(
1− λ2

λ

)Z t

−∞

exp
(
−t− t ′

λ

)
φ(t ′)dt ′− aλ2

λ
φ(t) (5.17)

where

vx(t,y) = vmax cos
(

2π

L
y
)

φ(t) = vx(0,y)φ(t) . (5.18)

A solution can be found through Laplace transforms if φ(t) = 0 for t < 0. The Laplace

transform of Equation 5.17 is

sΦ(s)−φ(0) =
a
λ

(
1− λ2

λ

)(
1

s+ 1
λ

)
Φ(s)− aλ2

λ
Φ(s) . (5.19)

The transformed function can be rearranged to give

Φ(s) =
φ(0)

2

(
A−

1

s+ B+
2λ

+A+
1

s+ B−
2λ

)
(5.20)

where

A± = 1± 1−aλ2√
1+2aλ2 +a2λ2

2−4aλ

(5.21)

B± = 1+aλ2±
√

1+2aλ2 +a2λ2
2−4aλ (5.22)
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a =
η0

ρ

(
2π

L

)2

. (5.23)

The inverse transform provides the final solution,

φ(t) =
1
2

[A− exp(−B+t/2λ)+A+ exp(−B−t/2λ)] . (5.24)

When λ2→ 0 the result clearly becomes that of the Maxwell constitutive equation.

A parametric study for the Jeffreys solution gives a similar response as seen with the

Maxwell solution, but shifted along the time axis.

5.2.2 Comparison of Constitutive Equations

The constitutive equations for a Newtonian fluid, Maxwell equation, and Jeffreys equa-

tion are

τyx =−ηγ̇ (Newtonian) (5.25)

τyx +λ
∂τyx

∂t
=−η0γ̇yx (Maxwell) (5.26)

τyx +λ
∂τyx

∂t
=−η0

(
γ̇yx +λ2

∂γ̇yx

∂t

)
(Jeffreys) (5.27)

In all three equations τyx is the shear stress or the yx component of the stress tensor, γ̇yx

is the shear rate, and η is the viscosity. In the Maxwell equation and Jeffreys equation η0

is the zero-shear-rate viscosity and it is analogous to the Newtonian viscosity. The λ term

is a relaxation time. The λ2 term is a retardation time. As the relaxation time increases

the fluid takes longer to respond to changes in velocity gradients (analogous to a spring

constant). As the retardation time increases, the fluid shows greater resistance to changes

in velocity gradients (analogous to a damping constant). If the relaxation time is zero then

the retardation term cannot be uncoupled from the viscosity term.
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Because each constitutive equation is a linear viscoelastic constitutive equation, each

has a solution of the form

vx(t,y) = vmax cos
(

2π

L
y
)

φ(t) = vx(0,y)φ(t) (5.28)

where φ(t) has a functional form specific to the constitutive equation. In each instance

values of φ(t) are regressed from the simulation at specific values of t using

φ(t) =
2
N

N

∑
i=1

vxi

vmax
cos
(

2π

L
yi

)
. (5.29)

The solutions for each constitutive equation are repeated below. For the Newtonian fluid

the solution is

φ(t) = exp(−at) (5.30)

where

a =
η

ρ

(
2π

L

)2

. (5.31)

For the Maxwell constitutive equation the solution is

φ(t) =
1
2

[A− exp(−B+t/2λ)+A+ exp(−B−t/2λ)] (5.32)

where

A± = 1± (1−4aλ)−1/2 (5.33)

B± = 1± (1−4aλ)1/2 (5.34)

a =
η0

ρ

(
2π

L

)2

. (5.35)

For the Jeffreys constitutive equation the solution is

φ(t) =
1
2

[A− exp(−B+t/2λ)+A+ exp(−B−t/2λ)] (5.36)
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Figure 5.2: The response of φ(t) for a Maxwell fluid when λ1 = 1.0 ps and a = 0.1, 0.2,
0.5, 1.0, and 2.0 ps−1. Smaller values of a correspond to diminished oscillations, slower
decay and a darker color.

where

A± = 1± 1−aλ2√
1+2aλ2 +a2λ2

2−4aλ

(5.37)

B± = 1+aλ2±
√

1+2aλ2 +a2λ2
2−4aλ (5.38)

a =
η0

ρ

(
2π

L

)2

. (5.39)

Comparing the constitutive equations and solutions to the given boundary value prob-

lem, one can see that as λ2→ 0 the Jeffreys solution becomes the Maxwell solution. Simi-

larly for the Maxwell solution the fluid becomes Newtonian as λ→ 0.

A parametric study of the response curve based on different values of a, λ, and λ2 is

found in Figures 5.2, 5.3 and 5.4. For the simple case of a Newtonian fluid the response is

an exponential decay whose rate of decay is determined by a.

The Maxwell solution can be recast from a function of three independent variables into

a function of two dimensionless variables. The characteristic shape of the Maxwell solution
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Figure 5.3: The response of φ(t) for a Maxwell fluid when a = 1.0 ps−1 and λ = 0.0, 0.5,
1.0, and 2.0 ps. Larger values of λ correspond to increased oscillations and a lighter color.
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Figure 5.4: The response of φ(t) for a Jeffreys fluid when a = 0.2,0.5,2.0 ps−1, λ = 1.0 ps,
and λ2 is increases from 0.0 to 0.5 ps. An increase in λ2 casues the intial slope to steepen.
Smaller values of a correspond to diminished oscillations, slower decay and a darker color.
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only depends on the product aλ. The domain of interest for the response is dependent on

a dimensionless time. The product aλ determines the shape of the response curve, while

the values of a and/or λ determine the time scale upon which the response occurs. The

response can monotonically decay or overshoot with an oscillatory behavior. As a result,

for the Maxwell solution response a larger a value will typically lead to a faster decay,

however when a · λ > 0.25 oscillations begin to form in the response curve. The fastest

overall rate of decay occurs when 4aλ = 1. Figure 5.2 shows the effect of a upon the

response of φ(t). When oscillations are exhibited, smaller values of a will diminish the

number and size of oscillations but not decrease the overall rate of decay for a fixed λ

value. Once 4aλ becomes smaller than 1, the value of a begins to dominate the overall rate

of decay. Figure 5.3 shows the effect of λ when a is fixed. When oscillations are present,

the overall rate of decay is clearly determined by λ.

For the solution using the Jeffreys equation, λ2 is the only new factor. The effect of a

non-zero λ2 value causes the initial decay rate to be faster.

The values for φ(t) obtained by application of Equation 5.29 are used to regress the best

values for η, λ, and λ2 in the least squares sense.

5.3 Simulation Details

MD simulations were performed for the non-polar compounds n-butane, isobutane and

n-hexane in addition to the polar compounds water, methanol, 1-hexanol using united atom

models and explicit sites for oxygen atoms and hydrogen atoms attached to oxygen. The

SPC/E model for water was employed [78]. The hydrocarbon-backbone torsional potential

is modeled with

utors(φ(t))/k =
5

∑
i=0

ai cosi
φ (5.40)

where φ is the torsional angle and ai are coefficients specific to the dihedral angle being

modeled. The torsional potentials for the C-C-C-C backbone were taken from the Ryckaert-

72



Figure 5.5: Nonpolar site models for n-butane, isobutane, and n-hexane.

Bellmans potential [79]. Model parameters for the compounds studied can be found in

Tables 5.1, 5.2, 5.3, and 5.4. A series of simulations spaced periodically along the phase

dome for a saturated liquid were carried out for each compound. The following details were

used for these simulations. The LJ site-site interactions were truncated to the smaller of

13 Å or half the length of the smallest dimension of the simulation box. Point charges were

treated using the P3M method [61, 62]. A fourth-order Gear predictor corrector scheme

was used to integrate the time steps. The time step was taken to be 1 fs. Simulation

sizes of 256, 384, and 512 molecules were run with the box cell length in the y direction

extended to give aspect ratios of 1, 1.5 and 2, respectively. The multiple cell sizes were

used to help decouple the fitting parameters η, λ, and λ2. The shape of the curves are

primarily determined by the values of aλ and aλ2. Changes in the length of the simulation

cell directly impact a, yet leave λ and λ2 unchanged, resulting in different shapes for the

response curve and indicating that multiple lengths should allow better decoupling of the

parameters.

In addition to the above simulations, additional simulations reproduced state points of
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Figure 5.6: Polar site models for water, methanol, and 1-hexanol showing the use of spher-
ical site-site potential models for CHx, α-CH2 (connected to the OH group), oxygen, and
hydrogen atoms colored by partial charge (blue - positive, gray - neutral, red - negative.

simulated values as reported in the literature, primarily from NEMD simulations. Simula-

tions at state points found in the literature were run under slightly different conditions as

noted below. Plots of the simulated state points in relation to the phase dome are given.

The saturated liquid part of the phase dome comes from DIPPR R©’s saturated liquid den-

sity correlations [4] and the saturated vapor curves come from calculations based on the

Peng-Robinson equation of state and required constant values from DIPPR R©.

5.3.1 n-Butane

A number of NEMD values for n-butane have been reported in references [45, 46].

TMD simulations at 7 state points duplicating those in the reference were run. A time step

of 2.90 fs was used for these simulations, and the Lennard-Jones interactions were truncated

at 9.8075 Å. Simulation sizes of 256, 384, and 512 molecules were run with the box cell

length in the y direction being extended to give aspect ratios of 1, 1.5 and 2, respectively.

Additional simulations were run with 125, 187, and 250 molecules with aspect ratios of
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Table 5.1: Lennard-Jones site parameters used to simulate n-butane, isobutane, n-hexane,
water, methanol and 1-hexanol.

site(s) mass epsilon/kb sigma charge Ref.
amu K Å e-

n-Butane CH2, CH3 14.5130 72.000 3.923 0.0000 [45, 46]

Isobutane CH3, CH 14.5130 72.000 4.020 0.0000 [45, 46]

n-Hexane CH2, CH3 14.3628 72.000 3.923 0.0000 [80]

SPCE O 15.999 78.197 3.166 -0.8476 [78]
H 1.008 0.000 0.000 0.4238

Methanol CH3 15.0347 105.200 3.740 0.2650 [36]
O 15.9994 86.500 3.030 -0.7000
H 1.008 0.000 0.000 0.4350

1-Hexanol CH3 15.0347 88.060 3.905 0.0000
CH2 14.0268 59.380 3.905 0.0000

CH2-α 14.0268 59.380 3.905 0.2650
O 15.9994 85.550 3.070 -0.7000
H 1.008 0.000 0.000 0.4350

Table 5.2: Bond distances used to simulate n-butane, isobutane, n-hexane, water, methanol
and 1-hexanol.

Connectivity Bond Length (Å) Ref.

n-Butane C-C 1.53 [45, 46]

Isobutane C-C 1.53 [45, 46]

n-Hexane C-C 1.53 [80]

SPCE O-H 1.00 [78]

Methanol C-O 1.4246 [36]
O-H 0.9451

1-Hexanol C-C 1.54
C-O 1.43
O-H 0.99
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Table 5.3: Bond angles used to simulate n-butane, isobutane, n-hexane, water, methanol
and 1-hexanol.

Connectivity Angle ◦ Ref.

n-Butane C-C-C 109.47 [45, 46]

Isobutane C-C-C 109.47 [45, 46]

n-Hexane C-C-C 109.47 [80]

SPCE H-O-H 109.47 [78]

Methanol C-O-H 108.53 [36]

1-Hexanol C-C-C 112.4
C-C-O 113.09
C-O-H 104.0

Table 5.4: Dihedral parameters used to simulate n-butane, n-hexane, and 1-hexanol.

Connectivity a0 a1 a2 a3 a4 a5 Ref.

n-Butane C-C-C-C 1116 1462 -1578 -368 3156 -3788 [45, 46]

n-Hexane C-C-C-C 1116 1462 -1578 -368 3156 -3788 [80]

1-Hexanol C-C-C-C 1116 1462 -1578 -368 3156 -3788
C-C-C-O 1116 1462 -1578 -368 3156 -3788
C-C-O-H 852 2235 196 -3460 47.5 134

1, 1.5 and 2, respectively. The relationship of these points to the equilibrium coexistence

curve is shown in Figure 5.7. The saturation lines or coexistence curves were obtained

from the DIPPR R© 801 [4] correlation for saturated liquid densities while the saturated

vapor curve was obtained from the Peng-Robinson equation of state.

5.3.2 Isobutane

Several NEMD values of viscosity for isobutane are also reported in references [45,

46]. TMD simulations at 9 state points were run duplicating the conditions reported for

the NEMD simulations. A time step of 2.97 fs was used in these simulations. The LJ
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Figure 5.7: Conditions at which the TMD simulations were run for model n-butane ( ) rel-
ative to previously published NEMD simulations ( ) [45, 46], the actual n-butane saturated
vapor ( ) and liquid ( ) curves [4], and the solid density at the melting point ( ) [4].

interactions were truncated at 10.050 Å. Simulation sizes of 256, 384, and 512 molecules

were run with the box cell length in the y direction being extended to give aspect ratios of 1,

1.5 and 2, respectively. Additional simulations were run with 125, 187, and 250 molecules

with aspect ratios of 1, 1.5 and 2, respectively. As for n-butane, the relationship of the

isobutane points at which the TMD simulations were performed are shown relative to the

equilibrium coexistence curve in Figure 5.8. The saturation lines or coexistence curves

were obtained from the DIPPR R© 801 [4] correlation for saturated liquid densities while the

saturated vapor curve was obtained from the Peng-Robinson equation of state.

5.3.3 n-Hexane

NEMD viscosity values for n-hexane have been reported in reference [80]. TMD sim-

ulations at 9 state points were run, duplicating the conditions reported for the NEMD sim-

ulations. In this case, the time step used in the simulations was 2.88 fs. The LJ interactions

were truncated at 9.8075 Å. Simulation sizes of 256, 384, and 512 molecules were run with

the box cell length in the y direction being extended to give aspect ratios of 1, 1.5 and 2, re-

spectively. Additional simulations were run with 125, 187, and 250 molecules with aspect
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Figure 5.8: Conditions at which the TMD simulations were run for model isobutane ( ) rel-
ative to previously published NEMD simulations ( ) [45, 46], the actual isobutane saturated
vapor ( ) and liquid ( ) curves [4], and the solid density at the melting point ( ) [4].

ratios of 1, 1.5 and 2, respectively. The relationship of these points relative to the saturation

curve is shown in Figure 5.9. As for the other fluids studied here, the saturation lines or

coexistence curves were obtained from the DIPPR R© 801 correlation for saturated liquid

densities while the saturated vapor curve was obtained from the Peng-Robinson equation

of state.

5.3.4 Water

The extended simple point charge SPC/E developed by Berendsen [78] was used to

model water. NEMD simulation values for water using the SPC/E model have been pub-

lished for three state points corresponding to densities of 55.2642 kmol/m3, 55.2900 kmol/m3,

and 55.3974 kmol/m3 [81, 82, 83].

Balasubramanian et al. [81] ran both EMD and NEMD simulations for SPC/E water

at a single state point of 303.15 K and 55.2642 kmol/m3. Reported viscosity values were

from simulations with 512 molecules at a density of 0.9956 g/cm3. A rcut value of 11.4 Å

was used and an α value of 0.307 was used for the splitting parameter of the Ewald sum.

A time step of 2.5 fs was used for the results of interest. From the NEMD simulations,
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Figure 5.9: Conditions at which the TMD simulations were run for model n-hexane ( )
relative to previously published NEMD simulations ( ) [80], the actual n-hexane saturated
vapor ( ) and liquid ( ) curves [4], and the solid density at the melting point ( ) [4].

shear thinning was observed at shear rates of 0.1 ps−1 and higher, 5 orders of magnitude

higher than an experimentally accessible shear rate. Below this shear rate was a plateau

region where viscosity appeared independent of shear rate. The reported viscosity value of

0.66± 0.02 mPa·s came from EMD simulations. NEMD simulations with a shear rate of

0.025 ps−1 and was assumed to be within the shear-independent plateau region produced a

slightly lower value of 0.62±0.02 mPa·s. The experimental value at zero shear is 0.797±

0.02 mPa·s.

Wheeler et al. [82] reported a viscosity value for SPC/E water using NEMD simulations

at a state point of 0.996 g/cm3 and 298.15 K. A simulation size of 300 molecules was used

with an rcut value of 20.8 Å. Five shear rates of 400, 200, 100, 50, and 16 ns−1 were

used to extrapolate to zero shear. The value reported was 0.754± 0.05 mPa·s. Results

were compared to an experimental value of 0.890± 0.02 mPa·s [84]. Another viscosity

value was reported by Wheeler et al. [83] for SPC/E water that was obtained from EMD

simulations at 0.998 g/cm3 and 298 K. The simulation size was between 3500 and 4000

molecules. The value reported was 0.74±0.05 mPa·s.

TMD simulations were run at the same three conditions at which Wheeler reported
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Figure 5.10: Conditions at which the TMD simulations were run for SPC/E water ( ) rel-
ative to previously published NEMD and EMD simulations ( ) [81, 82, 83], the actual
water saturated vapor ( ) and liquid ( ) curves [4], and the solid density at the melting
point ( ) [4].

results. The relationship of these points to the equilibrium phase dome for water is shown

in Figure 5.10. The phase dome for water was obtained from the Peng-Robinson equation

of state.

5.3.5 Methanol

Simulated viscosity values have also been reported in the literature [36] for methanol.

TMD simulations at 5 state points duplicating those in this reference were also performed.

The time step used was 1.0 fs, and the LJ interactions were truncated at 10.0 Å. Simulation

sizes of 256, 384, and 512 molecules were run with the box cell length in the y direction be-

ing extended to give aspect ratios of 1, 1.5 and 2, respectively. Additional simulations were

run with 216, 324, and 432 molecules with aspect ratios of 1, 1.5 and 2, respectively. Some

EMD simulation values were reported in the reference to benchmark and corroborate the

NEMD values. The relationship of these points to the methanol vapor-liquid equilibrium

dome is shown in Figure 5.11. The coexisting densities for methanol were obtained from
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Figure 5.11: Conditions at which the TMD simulations were run for model methanol ( )
relative to previously published NEMD simulations ( ) [36], the actual methanol saturated
vapor ( ) and liquid ( ) curves [4], and the solid density at the melting point ( ) [4].

the DIPPR R© 801 correlation for the liquid branch and from the Peng-Robinson equation of

state for the vapor branch.

5.3.6 1-Hexanol

No literature values for simulated viscosity of 1-hexanol have been reported to our

knowledge. The saturated liquid curve was again obtained from the DIPPR R© 801 correla-

tion, and the vapor curve was obtained from Peng-Robinson equation of state. Six different

state points along the saturated liquid curve were chosen at which TMD simulations were

performed. These points are shown in relation to the coexistence curve in Figure 5.12.

5.3.7 Additional Simulation Details

All of the initial equilibrated starting configurations for the above model systems were

created by starting the simulation at a low density gas, gradually compressing the simula-

tion, and allowing the simulation to equilibrate at the final desired density. Standard NVT
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Figure 5.12: Conditions at which the TMD simulations were run for model 1-hexanol ( )
relative to the actual 1-hexanol saturated vapor ( ) and liquid ( ) curves [4], and the solid
density at the melting point ( ) [4].

MD simulations were used at the desired densities and temperatures to equilibrate each sys-

tem for 20,000 time steps. Subsequently, the NVT simulations were allowed to continue

while saving configurations every 500 time steps to create 50 equilibrated configurations.

An instantaneous cosine velocity profile conforming to Equation 5.18 was applied to the

configurations which were allowed to relax as NVE ensembles. The initial magnitude of

the velocity profile was chosen to balance the effects of an increased signal to noise ratio

with trade-offs in thermal heating and shear-rate effects.

The magnitude of thermal heating was quantified as follows. Application of a given

velocity profile adds a known quantity of heat. If the heat capacity of the fluid is known

then the average final temperature can be calculated. Even when the heat capacity is not

known, the average final temperature can still be bounded. The heat capacity at constant

volume of the fluid must be greater than the value 1.5R associated with the translational

degrees of freedom. An upper bound to the average temperature increase due to thermal

heating can be calculated if one uses a lower bound for the heat capacity of 1.5R. For

the TMD simulations the upper bound to the average temperature increase due to thermal
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heating is

∆Tub =
mv2

max
6kb

(5.41)

where m is the mass of the molecule, and ∆Tub represents the upper-bound estimation of

the temperature increase due to viscous dissipation of the energy into sensible heat. This

bounding equation is applicable over the entire range of states and should work well for

gases, but becomes much more conservative for liquids because their heat capacities are

larger than those for the gas. The values of vmax used in all the simulations result in a ∆Tub

value of 15K or below. The actual temperature increases were as expected even lower.

Even though viscosity has a temperature dependence, the temperature change in the system

is assumed small with respect to its effect on viscosity for the simulations run.

The shear-rate effect on viscosity cannot be known a priori unless observed in previous

simulations. In NEMD simulations a shear-rate effect on viscosity is seen and seems to

increase at increasing density, see Figure 3.2. For the TMD simulations, the shear rate

changes along the y axis. A maximum shear rate can be calculated, but even this changes

over time as the velocity profile decays with time. At each state point multiple box sizes

are used to create different shear-rate profiles. For a given state point, if shear-rate effects

are large enough, it is believed that they will be observed when fitting the φ(t) values

simultaneously from the different box sizes.

Larger shear rates will give a larger signal-to-noise response. Based on the magnitude

of thermal velocity fluctuations, the expected uncertainty in the fitted response is given by

σCN =

√
2kbT

m
(5.42)

where m is the mass of a molecule. The signal to noise ratio as given by

signal
noise

=
vmax

σCN

. (5.43)

83



The φ(t) values were monitored and fitted by adjusting the viscosity parameters in

the appropriate constitutive equations. An original heuristic was used to determine the

stopping point of the simulation. This heuristic consisted of observing the time it took for

the average signal of several responses to reach 25% of the original value after reaching

50% of the original value. The simulation time was then set to the time it took to decay

75% plus nine times the time from 50% decay to 75% decay. 50 φ(t) response curves were

averaged together to create a smoother response. 20 replicates of these data sets were used

at once in the regressions.

As stated above, multiple cell sizes were used to help decouple the fitting parameters η,

λ, and λ2. The shape of the curves are primarily determined by the values of aλ and aλ2.

Changes in the length of the simulation cell directly impact a because it is a function of

cell length, yet leave λ and λ2 unchanged. Simultaneously fitting the results from multiple

simulations of various sizes ensures that a is decoupled from the λ and λ2 parameters. The

performed regressions use one set of η, λ, and λ2 parameters to fit the simulation data of

the multiple simulations of various sizes at once.

5.4 Results

The transient velocity responses to the TMD simulations were observed to be more

complex than those seen with the LJ model fluid. Because the simulations were for the

liquid state it was expected that a visco-elastic effect would be prominent as found for a

LJ fluid. However, simply using the solution for the Maxwell constitutive equation given

by Equation 5.32 did not adequately fit the response curves. Use of the solution for the

Jeffreys constitutive equation given by Equation 5.36 fared much better. As a result all

results are reported by using Equation 5.36 to fit the response curves of the simulations.

Some examples of responses seen for n-butane are given in Figures 5.13 and 5.14. Fig-

ure 5.13 shows the response and fit at medium density while Figure 5.14 shows the response
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Figure 5.13: Sample responses ( ) of n-butane and the regressed best fit ( ) at a density
of 11.689 mol/L and 200 K. Multiple curves correspond to aspect ratios of 1, 1.5, 2, and 3
with a slower response for the larger simulations.

and fit at the highest density simulated for n-butane. Within the figure for the medium den-

sity, only slight differences between the best fit curve and the simulation response can be

detected. Errors in the best fit curve of the higher density response are larger, but are still

considered small.

For all compounds, results at low saturated liquid densities (and subsequently higher

temperatures) were found to agree with previous literature values and the DIPPR R© 801

correlations better than at high densities for saturated liquid viscosity. Results at the lowest

densities were within 15% of the DIPPR R© 801 correlations. Specifically for n-butane and

isobutane, results at the lowest densities were within 2% of the reported NEMD simula-

tion values. At higher densities disagreement between TMD results and literature values

were found and tended to increase for increasing density for all compounds. Disagree-

ment between the EMD and NEMD literature values and DIPPR R©’s correlation also grew

larger at increasing density and indicates possible limitations of the molecular models. Un-

like results for other compounds, results for water and methanol correlated very well with
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at a density of 12.721 mol/L and 140 K. Multiple curves correspond to aspect ratios of 1,
1.5, 2, and 3 with a slower response for the larger simulations.

EMD and NEMD literature values at higher densities. Results for water agreed with lit-

erature values within 10% while results for methanol at high densities showed less than a

15% discrepancy with literature values. Results from simulation at the highest densities for

methanol still showed greater than 50% deviation from the DIPPR R© 801 correlation. The

largest discrepancy with the DIPPR R© 801 correlation occurred for hexanol at dense state

points. The accuracy of results for n-hexane fell between those associated with n-butane

and hexanol. Although we have compared simulation values to the reported DIPPR R© 801

values, it should be remembered that deviations between experiemntal and simulated values

are a result of model inadequacies. Agreement between simulated values using different

techniques is a better indicator of the efficacy of the simulation method.

Much of the disagreement for n-butane and isobutane at denser state points is a result

of the greater shear-rate dependence of viscosity at those conditions. A major difficulty in

NEMD simulations is accounting for the shear-rate dependence of viscosity and relating

it back to the zero-shear Newtonian viscosity. As already discussed in Section 3.1.4 there
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are multiple methods one can try to use to extrapolate to the zero-shear viscosity. Each

method may depend on the fluid and state point. The NEMD simulations of n-butane and

isobutane assumed a linear shear-rate dependence vs. γ̇0.5. This assumption works well

for most of the state points, but it appeared to become deficient for the higher densities.

Unfortunately, the TMD simulations at high densities also appear to have some shear-rate

dependence. If the responses at the four different simulation aspect ratios (see Figure 5.14)

for the highest n-butane density are fit individually instead of simultaneously one obtains

a viscosity which appears to increase as the shear rates decreases as seen in Figure 5.15.

The values of η regressed from these simulations for fixed values of λ and λ2 appear fairly

linear with respect to γ̇0.5
max, as shown in Figure 5.16. Also shown in Figure 5.16 are the

NEMD values of η versus the applied steady-state shear rate, γ̇. The extrapolated value

of 1.538 mPa·s still falls below the corresponding NEMD literature value of 2.277 mPa·s.

When all the responses were used simultaneously in one regression without accounting

for shear-rate dependence, the fitted response appeared to fit the curves well resulting in

a viscosity value of 1.409 mPa·s. This can be deceptive because the influence of shear

rate on the viscosity does not appear to be pronounced in these responses; however the

value obtained is 9% lower than the TMD value obtained through zero-shear extrapolation.

The shear-rate dependence of the TMD simulated η is different than the η values from the

NEMD simulation. This is because in the TMD simulation, γ̇0.5
max overstates the average

shear in the simulation. The maximum shear rate reported on the x-axis is only seen at the

start of the simulation and only over a portion of the simulation cell. The very steep slope

used to extrapolate the NEMD values is likely to overestimate the zero-shear viscosity;

especially since any low-shear plateau in η is severely missed by this extrapolation. Al-

though for these shear-thinning fluids the TMD method does not completely eliminate the

need for extrapolation to zero shear for very dense liquids, it does lessen the dependence

of the observed η value on the shear rate and may improve the efficiency and accuracy of

the extrapolation. As done with NEMD simulations, the best indicator of shear-rate de-
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Figure 5.15: Sample responses ( ) of n-butane and the regressed best fit ( ) at a density
of 12.721 mol/L and 140 K for four simulation cell sizes. The shear rates decrease and the
box length increase from top left, top right, bottom left, to bottom right. The corresponding
aspect ratios are 1, 1.5, 2, and 3, respectively.

pendence is to duplicate simulations at different shear rates and see if the viscosity value

is significantly affected. When this is done for water, the shear-rate dependence was seen

to be negligible. This was expected due to the good agreement of results for water with

literature values.

Tables 5.5, 5.6, 5.7, 5.8, 5.9, and 5.10 show results for the regressed viscosity values

η, λ, and λ2. Trends in λ and λ2 were expected as density increased, but the regressed pa-

rameter values did not show any discernable systematic trends. The insensitivities of λ and

λ2 in the regression were likely to blame for the large uncertainties in the regressed values.

Any attempt to resolve the behavior of λ and λ2 using this method would require many

more simulations than performed here and was not an objective of this study. Viscosity

values have been previously reported from NEMD simulations using the same models for
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Figure 5.16: Extrapolation to zero-shear rate using regressed n-butane viscosity values at a
density of 12.721 mol/L and 140 K for four simulation cell sizes assuming a linear shear-
rate dependence vs. γ̇0.5 and compared to the extrapolation of NEMD values. ( ) TMD
results, ( ) TMD zero-shear extrapolation, ( ) NEMD results, ( ) NEMD zero-shear
extrapolation.

n-butane and isobutane in addition to a similar model for n-hexane. Results from the TMD

method compare favorably with values reported for all three compounds. There is some

discrepancy between values for isobutane at higher densities which is likely due to shear-

rate dependence of viscosity. The NEMD study also has larger errors due to extrapolation

at the higher density values. Comparing results for polar fluids against experimental corre-

lations shows similar trends to those observed for the non-polar fluids. Values agree well

for lower-density liquids, but at higher densities the viscosity can be significantly under-

predicted. It is believed that the discrepancies with experimental values at higher densities

are due to inadequacies in the model. Agreement with NEMD results indicate the TMD

method gives correct values for the given model.

It is believed that the Coulombic forces dominate the viscosity for polar molecules.

Methanol NEMD results published in the literature suggest that Coulombic interactions

became more significant at higher densities [36]. Results were reported for identical simu-
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Figure 5.17: Values of n-butane viscosity obtained by using the TMD method compared
to the DIPPR R© 801 correlation and NEMD published results [45, 46]. ( ) TMD results,
( ) NEMD results, and ( ) DIPPR R© 801 correlation.
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Figure 5.18: Values of isobutane viscosity obtained by using the TMD method compared
to the DIPPR R© 801 correlation and NEMD published results [45, 46]. ( ) TMD results,
( ) NEMD results, and ( ) DIPPR R© 801 correlation.

lations where the Coulombic potential was turned off, leaving only the LJ potentials. Turn-

ing off the Coulombic forces resulted in lower viscosity values with increasing deviations

as density increased. Whether this shows the significance of including Coloumbic effects

or simply the lack of a LJ site on hydrogen is uncertain; however, it makes physical sense

that the Coulombic forces could dominate dense liquid behavior.
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Figure 5.19: Values of n-hexane viscosity obtained by using the TMD method compared
to the DIPPR R© 801 correlation and NEMD published results [80]. ( ) TMD results,
( ) NEMD results, and ( ) DIPPR R© 801 correlation.
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Figure 5.20: Values of water viscosity obtained by using the TMD method compared to
the DIPPR R© 801 correlation and EMD or NEMD published results [81, 82, 83]. ( ) TMD
results, ( ) EMD or NEMD results, and ( ) DIPPR R© 801 correlation.
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Figure 5.21: Values of methanol viscosity obtained by using the TMD method compared
to the DIPPR R© 801 correlation, EMD and NEMD published results [36]. ( ) TMD results,
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0.0

5.0

10.0

15.0

20.0

25.0

4.0 5.0 6.0 7.0 8.0 9.0

η,
η 0

  [
m

P
a·

s]

ρm [ kmol/m3 ]

Figure 5.22: Values of 1-hexanol viscosity obtained by using the TMD method compared
to the DIPPR R© 801 correlation. ( ) TMD results, and ( ) DIPPR R© 801 correlation.

5.5 Conclusions

The TMD method has been shown to give qualitatively correct results for the prediction

of viscosity for multi-site models given an appropriate constitutive equation is used. It has

been found that responses from multi-site models can be adequately fit when the Jeffreys

constitutive equation is chosen. The results are also quantitatively accurate to within 15%
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of the literature values and the DIPPR R© 801 correlations at the lowest saturated liquid

densities. The accuracy of viscosity results at higher densities more heavily depends on the

accuracy of the molecular model and the magnitude of the shear-rate dependence. For the

small polar molecules water and methanol, the TMD method is quantitatively accurate to

within 15% for the given molecular model at all densities. Results for larger molecules such

as hexanol at high densities were more than 80% too low in comparison to the DIPPR R© 801

correlation.

The TMD method works best at predicting viscosity at low density state points along

the saturated liquid viscosity curve. There is less of a concern for shear-rate dependent

viscosity and the fluid response becomes more Newtonian. The method works for dense

systems, but care must be taken that the appropriate simulation conditions are chosen. The

size of the shear rate must not be too large. A smaller shear rate negates potential temper-

ature increases, negates shear-rate viscosity dependence and will create a more Newtonian

response in φ(t).

As stated above, it is important to use an adequate potential model to represent the

real molecular systems. The models used for isobutane, n-hexane, methanol and 1-hexanol

did poorly at high densities in regards to viscosity when compared to experimental values.

Simulated viscosities of isobutane, n-hexane, methanol and 1-hexanol all were too low

with an error greater than 50% at high saturated liquid densities. Results using the n-butane

molecular model show adequate behavior for dense systems with an error smaller than 50%

of the experimental values. The water model performed even better at dense state points

with an error smaller than 42% of the experimental values with significant improvement as

density decreases. Improved molecular models could significantly improve the quantitative

accuracy of the TMD method. In addition, adequately addressing shear-rate dependence

remains an issue.
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Table 5.5: TMD n-butane viscosity results.

ρ T ηTMD +/- λ +/- λ2 +/- ηDIPPR ηEMD ηNEMD

kmol/m3 K mPa·s ps ps mPa·s mPa·s mPa·s
10.31 275.04 0.1908 0.19458 0.1946
11.00 249.98 0.2589 0.29152 0.2713
11.69 200.02 5.618, 3.745, 2.809, 1.873 0.293, 0.256, 0.233, 0.203 0.4290 0.0014 3.5525 0.0398 1.2934 0.0217 0.52502 0.526

21.759, 14.506, 10.880, 7.253 1.135, 0.992, 0.901, 0.787 0.4270 0.0004 3.3076 0.0106 1.2250 0.0060
12.03 180.00 5.673, 3.782, 2.836, 1.891 0.293, 0.256, 0.233, 0.203 0.5868 0.0021 4.2667 0.0368 1.2795 0.0154 0.78974 0.77

21.970, 14.647, 10.985, 7.323 1.135, 0.992, 0.901, 0.787 0.5769 0.0007 4.3466 0.0133 1.3559 0.0056
12.38 159.84 5.726, 3.818, 2.863, 1.909 0.293, 0.256, 0.233, 0.203 0.9074 0.0053 7.0603 0.0725 1.7214 0.0181 1.37085 1.17

22.178, 14.785, 11.089, 7.393 1.135, 0.992, 0.901, 0.787 0.8537 0.0018 6.2224 0.0237 1.5939 0.0065
12.58 146.16 5.758, 3.839, 2.879, 1.919 0.293, 0.256, 0.233, 0.203 1.0610 0.0060 6.7357 0.0632 1.4782 0.0140 2.05108 1.708

22.300, 14.867, 11.150, 7.433 1.135, 0.992, 0.901, 0.787 1.0563 0.0032 6.9905 0.0338 1.5917 0.0073
12.72 139.97 5.779, 3.853, 2.889, 1.926 0.293, 0.256, 0.233, 0.203 1.4090 0.0113 8.2797 0.0957 1.5230 0.0144 2.277

22.381, 14.921, 11.191, 7.460 1.135, 0.992, 0.901, 0.787 1.2341 0.0043 7.3523 0.0383 1.4988 0.0069

v0,maxγ̇max
..
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Table 5.6: TMD isobutane viscosity results.

ρ T ηTMD +/- λ +/- λ2 +/- ηDIPPR ηEMD ηNEMD

kmol/m3 K mPa·s ps ps mPa·s mPa·s mPa·s
9.90 300.02 0.1745 0.20427 0.1726

10.74 249.98 0.2793 0.32781 0.2968
11.50 200.02 0.4352 0.69749 0.7057
11.82 180.00 0.5543 1.13197 0.8905
12.14 139.97 5.690, 3.793, 2.845, 1.897 0.293, 0.256, 0.233, 0.203 1.4450 0.0086 7.0413 0.0602 1.2767 0.0094 2.18107 1.427

22.036, 14.691, 11.018, 7.345 1.135, 0.992, 0.901, 0.787 1.2894 0.0034 6.2310 0.0246 1.2150 0.0045
12.33 135.00 5.719, 3.813, 2.860, 1.907 0.293, 0.256, 0.233, 0.203 1.7794 0.0139 7.6000 0.0806 1.2013 0.0098 3.64909 2.247

22.152, 14.768, 11.076, 7.384 1.135, 0.992, 0.901, 0.787 1.5904 0.0053 6.8835 0.0325 1.1887 0.0047
12.46 120.02 5.739, 3.826, 2.870, 1.913 0.293, 0.256, 0.233, 0.203 2.0609 0.0177 8.0204 0.0896 1.1158 0.0089 5.5914 2.808

22.228, 14.819, 11.114, 7.409 1.135, 0.992, 0.901, 0.787 1.9026 0.0085 7.3737 0.0439 1.1228 0.0051
12.59 124.99 5.759, 3.839, 2.879, 1.920 0.293, 0.256, 0.233, 0.203 2.1515 0.0189 7.5044 0.0861 1.0471 0.0088 9.27703 3.241

22.304, 14.869, 11.152, 7.435 1.135, 0.992, 0.901, 0.787 2.1040 0.0104 7.5356 0.0488 1.1026 0.0051
12.72 124.99 5.778, 3.852, 2.889, 1.926 0.293, 0.256, 0.233, 0.203 2.3222 0.0201 7.1966 0.0803 0.9427 0.0076 4.876

22.379, 14.919, 11.189, 7.459 1.135, 0.992, 0.901, 0.787 2.3581 0.0140 7.6535 0.0583 1.0370 0.0054

γṁax v0,max
..
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Table 5.7: TMD n-hexane viscosity results.

ρ T ηTMD +/- λ +/- λ2 +/- ηDIPPR ηEMD ηNEMD
kmol/m3 K mPa·s ps ps mPa·s mPa·s mPa·s
7.61 298.15 0.2479 0.0004 3.2725 0.0403 1.9284 0.0298 0.29268 0.259
8.54 298.15 0.5368 0.0016 4.0272 0.0415 1.7687 0.0215 1.13514 0.693
8.84 298.15 0.7104 0.0027 3.8050 0.0415 1.5006 0.0188 3.31404 1.032
9.15 298.15 0.9025 0.0036 3.1885 0.0312 1.0702 0.0126 - 1.31
4.95 477.14 0.0536 0.0000 0.4562 0.0651 0.1906 0.0635 0.09447
6.27 408.57 0.0990 0.0001 1.2905 0.1230 1.0464 0.1183 0.13198
7.41 317.14 0.2041 0.0005 3.0171 0.0709 1.9524 0.0571 0.24701
8.11 248.57 0.3684 0.0014 3.9918 0.0654 1.9946 0.0394 0.51597
8.53 202.86 0.5866 0.0034 3.5201 0.0586 1.3059 0.0273 1.10793
8.73 180.00 0.7857 0.0057 3.4732 0.0574 0.9870 0.0209 2.00919
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Table 5.8: TMD water viscosity results.

ρ T ηTMD +/- λ +/- λ2 +/- ηDIPPR ηEMD ηNEMD
kmol/m3 K mPa·s ps ps mPa·s mPa·s mPa·s
33.69 613.93 0.0679 0.0001 0.0000 0.1907 0.0614 0.1814 0.06782
43.29 535.71 0.1012 0.0003 0.3672 0.1602 0.3203 0.1569 0.10261
50.55 431.43 0.1720 0.0006 0.1148 0.0328 0.0465 0.0314 0.16969
50.89 301.07 0.5592 0.0063 0.5030 0.0199 0.1127 0.0119 0.1776
53.79 353.21 0.3074 0.0019 0.2571 0.0221 0.0936 0.0189 0.3558
55.15 301.07 0.6011 0.0071 0.4628 0.0203 0.1104 0.0124 0.85303
55.63 275.00 0.9471 0.0163 0.6888 0.0246 0.1076 0.0095 1.61681
55.29 298.15 0.99434 0.754
55.26 303.15 0.96049 0.66
55.40 298.00 1.14002 0.74
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Table 5.9: TMD methanol viscosity results.

ρ T ηTMD +/- λ +/- λ2 +/- ηDIPPR ηEMD ηNEMD
kmol/m3 K mPa·s ps ps mPa·s mPa·s mPa·s
16.07 486.43 0.0625 0.0000 1.9243 0.0911 1.7980 0.0889 -
20.42 415.71 0.1311 0.0001 0.7261 0.0221 0.5829 0.0209 -
23.93 321.43 0.3631 0.0003 1.4960 0.0071 0.7275 0.0046 0.40747
25.99 250.71 0.8285 0.0014 1.9438 0.0064 0.4287 0.0020 1.16694
27.22 203.57 1.7001 0.0050 2.9993 0.0123 0.3436 0.0015 3.95216
27.81 180.00 2.5340 0.0105 3.8658 0.0204 0.3050 0.0013 9.81507
18.66 453.15 - 0.084 0.0882
21.53 393.15 - 0.198 0.189
23.44 337.85 0.34881 0.378 0.346
24.72 293.15 0.55681 0.588 0.564
26.78 248.15 2.3531 1.388 1.367
24.53 298.15 0.51236 0.574

98



Table 5.10: TMD hexanol viscosity results.

ρ T ηTMD +/- λ +/- λ2 +/- ηDIPPR ηEMD ηNEMD
kmol/m3 K mPa·s ps ps mPa·s mPa·s mPa·s
5.06 573.57 0.08736
6.27 494.29 0.1988 0.0003 3.5095 0.0353 2.1925 0.0251 0.16987
7.29 388.57 0.5627 0.0013 4.1612 0.0275 1.3625 0.0112 0.59875
7.91 309.29 1.3751 0.0027 4.2886 0.0138 0.7712 0.0027 3.25832
8.27 256.43 2.7986 0.0092 5.9529 0.0253 0.5301 0.0019 21.1034
8.45 230.00 3.7701 0.0130 6.8805 0.0295 0.4613 0.0015 -
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Chapter 6

Conclusions and Recommendations

It has always been a challenge to understand and predict viscosity for the wide range

of behaviors seen from the dilute gas to the dense liquid. A theory may work well within

a limited scope, but it is extremely difficult to build a comprehensive analytical prediction

method. The speed and simplicity of analytical methods are significantly better than for

molecular dynamic simulations. Unfortunately the assumptions in conjunction with re-

gressed parameters which occur in an analytical prediction method often cause the method

to fail significantly when applied outside the scope in which it was developed and tested. In

comparison to analytical prediction methods, simulations allow greater detail to be incor-

porated and address the complexity of molecular interactions in an explicit, though com-

putationally expensive, manner. With the choice of an appropriate molecular model, a sim-

ulation can account for the statistical nature of collisions and their effect upon viscosity.

This work leveraged the molecular dynamics method in order to connect the microscopic

forces that lead to viscous behavior to the quantitative macroscopic property of viscosity

that is important in many chemical engineering applications.

The development of the TMD method and its application to a LJ fluid is able to account

for transient behaviors in a methodical manner. The very simple LJ fluid model showed

complex behavior over the range of state points. Application of the Newtonian constitutive

equation was shown to work well for the low density fluid. Surprisingly, the dense LJ fluid

required the more flexible Maxwell constitutive model. The Maxwell constitutive model

did exceptionally well at accounting for the liquid response to the transient perturbation.
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As a result the TMD results of a LJ fluid were able to predict viscosity within an estimated

10% accuracy.

Extension of the method to multi-site molecules was a natural extension of the TMD

method. The inadequacy of the Newtonian or Maxwell constitutive equations was discov-

ered, in contrast to the more general Jeffreys model. The added flexibility of the Jeffreys

model allowed the simulation response to be fitted with greater accuracy and overcame

some of the problems encountered with under-predicting the viscosity at dense fluid states.

Some of the problems encountered with NEMD simulations such as the shear-rate de-

pendence of viscosity must also be addressed with the TMD method. This was attributed

as the main cause for under prediction of viscosity for a given molecular model which

worsened as density increased. The most straightforward method to deal with shear-rate

dependence is to extrapolate to zero-shear in a manner similar to NEMD simulations, al-

though adding an extrapolation procedure adds to the complexity of the method.

For molecules with strong hydrogen bonding and Coulombic interactions, the TMD

method agreed much better at dense state points. The two smallest and most polar molecules,

water and methanol, were most accurately modeled for the liquid state. Isobutane and n-

butane results agreed with literature values at low densities but exhibited problems at higher

densities. The larger n-hexane and hexanol were reasonably modeled for low densities but

showed larger errors at higher densities.

Future work on the TMD method should focus on adequacy of the method at high den-

sities. Incorporation of a shear-rate dependence into the analytic solution of the method

should be explored and its effect on the response curve evaluated. More extensive sim-

ulations should be preformed to resolve the relaxation time parameters λ and λ2. The

parameters should show systematic trends which can only be seen with additional sim-

ulation effort. Due to the significance shear-rate effects, the impact of polar interaction

upon shear-rate dependence through Coulombic charges for dense liquids should also be

characterized.
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Results of the simulations performed in this work have led to insights into the transient

responses seen in momentum transport. The degree of non-Newtonian behavior has been

characterized and shown to be important on the length and time scales simulated. Further

study of the effect of molecular structure on the non-Newtonian behavior of molecules has

the potential of greatly increasing the understanding of momentum processes. The potential

exists for improving current theories of the dependence of viscous or rheological behavior

and the efficacy of current analytical methods.
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Appendix A

Laplace Transform

The Laplace Transform is defined as

L { f (t)}=
Z

∞

0
f (t)e−stdt = F(s) . (A.1)

The Laplace Transform is frequently used in signal analysis and control theory. Applica-

tion of the Laplace Transform frequently relies on tables to get the transform of an equation

which is then rearranged and applicable table entries are used to find the inverse trans-

form. Actual direct application of the integral is rarely used in finding the transform and if

tractable even more infrequently used to find the inverse transform. The effectiveness of ap-

plying the Laplace Transform to find a solution is primarily determined by the availability

of pre-computed transforms.

A table of one-sided Laplace transforms is found in Figure A.1.

105



Table A.1: Laplace transform of commonly used functions

f (t) L { f (t)}
f ′(t) sF(s)− f (0−)

f (n)(t) snF(s)− sn−1 f (0−)−·· ·− f (n−1)(0−)
eat F(s−a)

e−αt 1
s+α

(1− e−αt) α

s(s+α)
sin(ωt) ω

s2+ω2

cos(ωt) s
s2+ω2

eαt sin(ωt) ω

(s−α)2+ω2

eαt cos(ωt) s−α

(s−α)2+ω2

e−at [Bcos(ωt)+
(C−aB

ω
sin(ωt)

)] Bs+C
(s+a)2+ω2
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Appendix B

Equivalent Temporal Response
Expressions

The functional form of φ(t) for a Maxwell or Jeffreys constitutive equation is

φ(t) =
1
2

[A− exp(−B+t/2λ)+A+ exp(−B−t/2λ)] (B.1)

with appropriate sub expressions for A+, A−, B+ and B−. For both the Maxwell and Jef-

freys constitutive equations A+, A−, B+ and B− are either all real or all complex. When all

variables are real, the behavior of φ(t) is the sum of two exponentials. When all variables

are complex, the behavior of φ(t) is a decaying exponential. An alternate form of φ(t) con-

venient when the response is a decaying exponential can be found by expressing A+, A−,

B+ and B− as complex variables,

A± = c ± di (B.2)

B± = (−2λ)(p ± qi) . (B.3)

Using Euler’s formula

ex+iy = ex (cosy+ isiny) , (B.4)
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Equation B.1 can be rewritten as

φ(t) =
1
2

[
(c−di)e(p+qi)t +(c+di)e(p−qi)t

]
=

1
2
[
(c−di)ep t (cosqt + isinqt)+(c+di)ep t (cosqt− isinqt)

]
=

1
2

ep t [2ccosqt−2di2 sinqt
]

= ep t (ccosqt +d sinqt) .

(B.5)

B.1 Maxwell Response

Comparing Equations B.2 and B.3 to Equations 5.33 and 5.34, the values of c, d, p, and

q for the Maxwell solution are

c = 1 (B.6)

d =
−1√

4aλ−1
(B.7)

p =
(
− 1

2λ

)
(B.8)

q =
(
− 1

2λ

)√
4aλ−1 (B.9)

allowing φ(t) to be written as

φ(t) = e−
1

2λ
t
(

cos
(

1
2λ

√
4aλ−1 t

)
+

1√
4aλ−1

sin
(

1
2λ

√
4aλ−1 t

))
.

(B.10)

B.2 Jeffreys Response

Comparing Equations B.2 and B.3 to Equations 5.37 and 5.38, the values of c, d, p, and

q for the Jeffreys solution are

c = 1 (B.11)
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d =
aλ2−1√

4aλ−1−2aλ2−a2λ2
2

(B.12)

p =
(
− 1

2λ

)
(1+aλ2) (B.13)

q =
(
− 1

2λ

)√
4aλ−1−2aλ2−a2λ2

2 (B.14)

allowing φ(t) to be written as

φ(t) = e−
1+aλ2

2λ
t

cos
(

1
2λ

√
4aλ−1−2aλ2−a2λ2

2 t
)

+
1−aλ2√

4aλ−1−2aλ2−a2λ2
2

sin
(

1
2λ

√
4aλ−1−2aλ2−a2λ2

2 t
) .

(B.15)

B.3 Sinusoidal Oscillations

When the temporal response contains oscillations, the alternate expressions derived

above are more convenient when analyzing the behavior of the response. Because the

frequency of the sin and cos terms are equal, the weighted sum will be a cosine wave of

the same frequency. The magnitude of the wave is given by
√

c2 +d2 and the phase shift is

arctan(d/c) for d ≥ 0 or arctan(d/c)+π for d < 0.

For the Maxwell fluid the magnitude is

√
4aλ

4aλ−1
(B.16)

and the phase shift is

arctan
(

−1√
4aλ−1

)
. (B.17)
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For the Jeffreys fluid the magnitude is

√
4aλ−4aλ2

4aλ−1−2aλ2−a2λ2
2

(B.18)

and the phase shift is

arctan

 aλ2−1√
4aλ−1−2aλ2−a2λ2

2

 . (B.19)

The effect of λ2 is to decrease the magnitude of any oscillations and increase the phase

shift of the curve to the left. With a plain exponential type decay, λ2 increases the speed of

attenuation.

When oscillations are large, increasing λ2 quickly reduces the magnitude of the oscil-

lations with only a slight phase shift. As λ2 increases, the phase shift pushes the response

to the left.

It is possible that the same approximate response curve is obtained by increasing λ and

λ2 in proportion such that their influence offsets each other.

B.4 Parameter Estimation by Visual Inspection for the Maxwell
Response

Fitting parameters can be approximated by visual inspection of responses of φ(t) for

the solution of a Maxwell fluid. Observed responses are divided into those which have a

minimum below zero and those which do not have a minimum below zero.

If a minimum below zero is observed, then a and λ can be reliably estimated. The

response is only expected to dip below zero if aλ is less than 0.25. The minimum value of

φ, φmin, is observed and the corresponding time, tmin, are noted and related to the product

aλ by

aλ = 0.25+
(

π

2ln(−φmin)

)2

, aλ > 0.25 (B.20)
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The value for λ is then found from

λ =
tmin

2π

√
4aλ−1, aλ > 0.25 . (B.21)

From the known product aλ and λ, a is calculated.

If a minimum below zero is not observed, then the value of a can be approximated by

observing the time at which the response has decayed by two-thirds. From

φ =
1
3

,at ≈ 1.1, aλ < 0.25 (B.22)

the value a is approximated by dividing 1.1 by the time at which φ is one-third its original

value. The value λ can also be estimated. If the time at which the decay has decayed by 10

percent is noted and divided by the time that it took to decay by two-thirds, then the ratio r

can be used to estimate aλ from

aλ≈−0.1859+3.0930r−16.8233r2 +49.875r3, 0.96 < r < 0.2323, aλ < 0.25 .

(B.23)

From the known a and product aλ, λ is calculated. It should be noted that the uncertainty

of λ will be considerably greater than that of a.
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Appendix C

Non-Linear Regression
of Time-Series Data

Application of a least squares fit to an arbitrary function can be done if the Jacobian can

be evaluated, sufficient data is available and good initial parameter values are chosen. The

Jacobian is a matrix consisting of width p and length n where p is the number of parameters

being regressed and n is the number of data points used in the regression. The columns

contain the derivative of the function f being fit with respect to the fitting parameters. Each

row contains the derivatives evaluated for the specific state of the data point. Each element

of the Jacobian is evaluate as Ji, j = ∂ fi
∂x j

where fi is the value of the function associated with

row i and x j is a fitting parameter associated with column j.

Functional forms used in the non-linear regression for the evaluation of the Jacobian

are presented for the solutions of the temporal response corresponding to the Newtonian,

Maxwell and Jeffreys constitutive equations.

C.0.1 Newtonian Constitutive Model

The solution of the temporal response for the boundary value problem as applied in the

TMD method for a Newtonian constitutive equation is

φ(t) = exp

[
−η

ρ

(
2π

L

)2

t

]
(C.1)
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To improve the fit, a pre-exponential factor A is added to the functional form. The function

used in the regression is

f = Aexp

[
−η

ρ

(
2π

L

)2

t

]
(C.2)

The parameters fit in a regression are A and η. The pertinent derivatives with respect to

these parameters are found as follows.

∂ f
∂A

= exp

[
−η

ρ

(
2π

L

)2

t

]
∂ f
∂η

=− t
ρ

(
2π

L

)2

Aexp

[
−η

ρ

(
2π

L

)2

t

] (C.3)

These derivatives are used in the evaluation of the Jacobian.

C.0.2 Maxwell Constitutive Model

The solution of the temporal response for the boundary value problem as applied in the

TMD method for a Maxwell constitutive equation is

φ(t) =
1
2

[A− exp(−B+t/2λ)+A+ exp(−B−t/2λ)] (C.4)

where

A± = 1± (1−4aλ)−1/2 B± = 1± (1−4aλ)1/2 a =
η0

ρ

(
2π

L

)2

(C.5)

Allowing the fitting function f to equal φ(t), we will take the derivatives of this function
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with respect to η and λ. First some preliminary derivatives are taken

∂

∂a

[
(1−4aλ)−1/2

]
=
(
−1

2

)
(1−4aλ)−3/2 (−4λ) = 2λΩ

−3

∂

∂λ

[
(1−4aλ)−1/2

]
=
(
−1

2

)
(1−4aλ)−3/2 (−4a) = 2aΩ

−3

∂

∂a

[
(1−4aλ)1/2

]
=
(

1
2

)
(1−4aλ)−1/2 (−4λ) =−2λΩ

−1

∂

∂λ

[
(1−4aλ)1/2

]
=
(

1
2

)
(1−4aλ)−1/2 (−4a) =−2aΩ

−1

(C.6)

where Ω =
√

1−4aλ. Using the above derivatives and allowing ep = e−
1

2λ
t[1+Ω] and en =

e−
1

2λ
t[1−Ω], another preliminary derivative is found to be

∂ f
∂a

=
f0

2
{[
−2λΩ

−3]+ [1−Ω
−1][tΩ−1]}ep

+
f0

2
{[

2λΩ
−3]+ [1+Ω

−1][−tΩ−1]}en .

(C.7)

The Jacobian elements are

∂ f
∂η

=
∂ f
∂a
· ∂a

∂η
=− t

ρ

(
2π

L

)2

· ∂ f
∂a

(C.8)

∂ f
∂λ

=
f0

2

{[
−2aΩ

−3]+ [1−Ω
−1][− t

2
[1+Ω]−aλtΩ−1

]}
ep

+
f0

2

{[
2aΩ

−3]+ [1+Ω
−1][− t

2
[1−Ω]+aλtΩ−1

]}
en .

(C.9)

With rearrangement the final Jacobian elements are

∂ f
∂η

=− t
ρ

(
2π

L

)2 f0

2
{
−2λΩ

−3 + t ·Ω−1− t ·Ω−2}ep

− t
ρ

(
2π

L

)2 f0

2
{

2λΩ
−3− t ·Ω−1− t ·Ω−2}en

(C.10)
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∂ f
∂λ

=
f0

2

{
2aΩ

−3 +
a
b

t(Ω−2−Ω
−1)+

1
2

t ·Ω−1− 1
2

t ·Ω
}

ep

+
f0

2

{
−2aΩ

−3 +aλt(Ω−2 +Ω
−1)− 1

2
t ·Ω−1 +

1
2

t ·Ω
}

en .

(C.11)

C.0.3 Jeffreys Constitutive Model

The fitting function used for the Jeffreys model is Equation 5.36. The derivative of

this function will be taken with respect to a, λ1 and then λ2. If we redefine Ω as Ω =√
1+2aλ2 +a2λ2

2−4aλ1, then the preliminary derivatives are

∂

∂a

[
Ω
−1]=

(
−1

2

)(
1+2aλ2 +a2

λ
2
2−4aλ1

)−3/2 (
2λ2 +2aλ

2
2−4λ1

)
=−

(
λ2 +aλ

2
2−2λ1

)
Ω
−3

∂

∂λ1

[
Ω
−1]=

(
−1

2

)(
1+2aλ2 +a2

λ
2
2−4aλ1

)−3/2
(−4a)

= 2aΩ
−3

∂

∂λ2

[
Ω
−1]=

(
−1

2

)(
1+2aλ2 +a2

λ
2
2−4aλ1

)−3/2 (
2a+2a2

λ2
)

=−
(
a+a2

λ2
)

Ω
−3
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Using the above derivatives and redefining ep and en as ep = e−
1

2λ1
t[1+ac+Ω] and en =
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where C1 = 2aλ2
2−2λ1 and C2 = 2aλ1λ2 +λ2−2λ1−a2λ3
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where C1 = 2a(1−aλ2) and C2 = 1−2aλ1−a2λ2
2.
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where C1 = 1−a2λ2
2 and C2 = 2aλ2.
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