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ABSTRACT

Model Development and Application of Molecular Simulations for
the Study of Proton Transfer in Bulk Water and for the
Prediction of Dipole Moments of Organic Compounds

Abhishek Asthana
Department of Chemical Engineering, BYU

Doctor of Philosophy

The present work demonstrates the application of molecular simulations (MD) in two dif-
ferent areas: proton transport in bulk water and estimation of the dipole moment of polar
organic compounds. In both areas, relatively few successful and robust methodologies exist.

In the first part, a new polarizable water model is developed for MD simulations of the
proton transport process. The model was parametrized from a combination of quantum
chemical calculations and experimental water properties. The model was implemented in
MD simulation studies of liquid water at room temperature, as well as with excess protons.
For pure water the model gave good agreement with experimental properties. The proton
transport rate for a single excess proton also gave a good match with the experimental value.
The water model was further extended to include chloride ions. At 0.2 M concentration the
resulting density and structure agreed well with experiment, and the proton transport rate
was found to be slightly reduced. The model was further extended to include multiple excess
protons.

For the second part of the project, an open source ab initio MD program, SIESTA, was
used to perform simulations of several organic compounds which potentially have multiple
stable conformations, to determine their average dipole moments. A series of methods was
developed. The most robust method involved modifications to the SIESTA code and statis-
tical analysis of the resulting configurations, in order to more accurately predict the average
dipole moment. The resulting dipole moments were in good agreement with the experimental
values for cases in which experimental values were reliable. Based on this study, a general
method to estimate the average dipole moment of any compound is proposed.

Keywords: molecular dynamics, water model, proton transfer, ab initio, dipole moment,
conformational isomers
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Chapter 1

Introduction

1.1 Motivation

Molecular dynamics (MD) simulations have been used in the last few decades to study mul-

tiple processes of industrial importance. What makes them so useful is that they enable an

atomic-level analysis of a system and allow for the calculation of thermodynamic, transport,

and dielectric properties based on how the dynamics of the entities of the system evolve in

time. The present work illustrates the application of MD simulations in two areas. Firstly,

MD simulations have been used to perform an in-depth investigation into the proton trans-

port process in bulk water to better understand the solvation and dynamics of the excess

protons during the process. Secondly, MD simulations have been applied to improve exist-

ing predictions and estimations of dipole moments of polar organic compounds by sampling

multiple accessible conformations.

1.1.1 Proton transport in bulk water

Proton transfer (PT) in aqueous media plays an important role in fundamental biological

and chemical processes including bio-energetics, cell signaling, and acid base chemistry. The

PT process also accompanies numerous complex chemical reactions of industrial importance.

These reactions are generally heterogeneous and involve multiple electrons transferred be-

tween the solution and the catalyst surface. An elementary step involves one or no electron

being transferred, so there are multiple elementary steps and numerous intermediates for a
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typical electrochemical reaction. This makes the experimental observation of the reaction

mechanism difficult. In addition, there are other factors in an electrochemical environment,

like the presence of an electric double layer that influences a surface reaction and further

hinders an accurate experimental analysis. Theoretical methods to study PT and the sub-

sequent complicated reactions provide useful insight into studying these phenomena.

Our particular interest in studying PT in aqueous solutions comes from the fact that

a realistic depiction of PT is a necessary precursor to the analysis of the oxygen reduction

reaction (ORR) [1] that takes place on the cathode of low-temperature fuel cells. The slow

kinetics of the ORR is responsible for the low efficiency of fuel cells. The ORR is a 4-electron

reduction which suggests complex surface phenomenon with multiple elementary reactions.

Gattrell and MacDougal [2] suggested that the first step of the ORR is the rate limiting. In

spite of the immense importance of this reaction, it is still not understood well.

Diffusion of protons through bulk water occurs via two mechanisms: vehicular diffusion

and structural diffusion. Vehicular diffusion involves the diffusion of a hydronium ion, as a

whole, through liquid water. Structural diffusion on the other hand, as shown in Fig. 1.1(a),

involves cleavage of covalent bonds, as a proton is transferred through a network of water

molecules. This mechanism of PT is referred to as the Grotthuss mechanism. Most of the

diffusivity of PT in bulk water is due to the Grotthuss mechanism and is much faster than

vehicular diffusion. Thus, when compared to the diffusivity of other small cations ( like K+,

Na+, and NH+
4 ), a proton has abnormally high diffusivity.

In liquid water, the solvation of an excess proton is idealized by two forms: Eigen ([

H3O(H2O)3 ]+) [3] and Zundel ([ H(H2O)2 ]+) [4] cations. As shown in Fig. 1.1(b) and

(c), in an Eigen cation, a hydronium ion is coordinated with 3 water molecules and in a

Zundel cation, a hydronium ion is coordinated with one water molecule. In the presence of

excess protons in bulk water, both Eigen and Zundel states are observed, and the Grotthuss

mechanism involves an interconversion between these two solvation structures. The finer

details of the hopping and transport mechanism is still debated, however [5].

2



(a)

(b)

(c)

Figure 1.1: (a) PT via Grotthuss mechanism (b) The Eigen cation (c) The Zundel cation

Multiple experimental studies have been performed in order to better understand the sol-

vation of protons and the mechanism of PT. After the discovery of Eigen and Zundel cations,

mono-protonated water clusters ([H(H2O)n]+) , were studied using vibrational predissocia-

tion spectroscopy [6–9], in an attempt to determine the relative occurrence of the Zundel

and Eigen ions. NMR spectroscopy studies [10–18] were employed in order to determine the

activation energy and rate constants for the PT reaction. Interconversion between Zundel

and Eigen structures has also been observed experimentally [19]. Despite these extensive
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experimental studies, doubt still remains on the relative population of the Zundel and Eigen

cations [20, 21]. Also, the rate-limiting step of PT needs further investigation [22–24]. A

detailed simulation study of PT, that accurately models bulk water behavior and adequately

represents the PT reaction, can provide an additional insight into the PT mechanism, and

help us understand the factors affecting the process better.

Studying electrochemical phenomena is aided by the development of a robust force-field

for water that captures the electrostatics of the system accurately and responds realistically

to the electrochemical environment. In addition, the force-field must also allow for bond

breaking and forming. Existing force-fields for the atomic-level computer simulation of re-

active systems either do not capture the bulk behavior accurately, or do not handle multiple

excess protons, or are not transferable enough to be extended to heterogeneous reactions.

The purpose of this work is to develop a force-field to simulate large systems with multiple

excess protons, which captures the essential physics of the electrochemical system, and can

be easily extended to heterogeneous reactions.

1.1.2 Estimation of dipole moments

The dipole moment of a molecule is a measure of separation of positive and negative charges

and hence, a measure of the system polarity and the strength of the electric field a molecule

may exert on its neighbors. Even non-polar molecules can have an induced dipole when

placed in an electric field. Dipole moments result from non-uniform distributions of charges

on the various atoms, which manifests as electron density being shared unequally between

the constituent atoms. In the presence of an external field, these dipoles tend to align in

order to attain a minimum energy configuration.

The dipole moment is one of the defining characteristics of a molecule. It has a large effect

on the properties of fluids, as interactions between dipoles on different molecules contribute

significantly to the intermolecular interactions in dense systems. Also, the dipole moment

lies at the heart of multiple experimental methodologies to study system characteristics like
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vibrational dynamics and conformational equilibrium [25]. The dipole moment is also used

in prediction of dielectric constant [26], which is an important property for understanding

solvation of ions and response to external electric fields. The dipole moment has also been

used in several studies as an important parameter to determine molecular structure, bond

angles, and resonance [27, 28]. Thus, the dipole moment of a molecule is an important

property to know and hence it is desirable to accurately calculate or predict it for various

compounds of interest.

The existing experimental techniques for determination of dipole moments can be divided

into two categories. The first category of techniques is based on estimating dipole moments

using measured dielectric constants. These techniques include the method postulated by

Debye [29, 30] with modifications and improvements by Onsager [31] and others [32–36]. This

category of technique is used to determine dipole moments in vapors and dilute solutions

of polar substances in non-polar solvents. Although this method has been successfully used

to predict approximate values of dipole moments of numerous molecules, it is less accurate

for highly polar compounds and for compounds that have strong intermolecular interactions,

like hydrogen bonds in the case of alcohols and water.

The second category of experimental techniques for determination of dipole moments

is based on microwave spectroscopy and molecular beams [37, 38]. The accuracy of the

microwave spectroscopy method, which is based on the Stark effect [39], depends upon the

measurement of electric field strength, which entails the measurement of effective spacing

between the electrodes. The spacing cannot be determined easily and hence the capability

of this method are limited. The molecular beam method, which is similar in principle to the

microwave spectroscopy method, offers the highest inherent accuracy of any known method

of dipole moment determination. Unfortunately, the range of molecules that this method

can be applied to is very limited - mostly, due to inherent complexities in more structured

molecules, this method can only be applied to simple molecules, like diatomics and a few

triatomics.
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Due to the above mentioned limitations of experimental techniques, we use theoretical

methods for calculation of dipole moments. The theoretical method involves calculation of

accurate electronic structure around the atoms of a molecule, which gives an accurate picture

of the charge distribution in the molecule, thus enabling us to calculate an accurate dipole

moment.

Traditionally, the theoretical estimation of dipole moments of compounds has been based

on optimized geometries of molecules, meaning a single conformation believed to be the

ground state. However, at room temperature, many molecules will access multiple con-

formations that each have different dipole moments. Thus, we investigated the possibility

of improving these estimations by considering time-averaged geometries instead of just the

optimized geometry. In order to do this, we used first principle MD or ab initio MD simula-

tions (AIMD), which enable the calculation of accurate electronic densities around moieties

of a molecule, which are then used to calculate the dipole moment. Various polar organic

compounds with different functional groups were included in the study for a comprehensive

analysis.

1.2 Scope of Work

As stated previously, this work demonstrates the application of MD simulation in two fields:

PT studies and dipole moment prediction. A comprehensive analysis of the PT process

constitutes the bulk of the present work, and the remainder focuses on application of AIMD

simulations for dipole moment calculations.

1.2.1 PT studies

A novel force field methodology has been developed that allows for the simulation of large

systems with multiple excess protons. The philosophy behind the present work was to start

from a polarizable charge density description on molecules that ensures reasonably accurate
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electrostatics in diverse environments, and let the reactions take place naturally under the

influence of appropriate stimuli.

The force field for water proposed here treats hydrogen and oxygen as separate entities

that can associate to form molecules or dissociate in the presence of a stimulus (like an excess

proton nearby). This approach enables us to describe the molecule in terms of flexible pair

potentials, and thus the molecule can undergo changes in its geometry and dipole moment

in the presence of solutes, surfaces, and variations in electric field.

In our model, diffuse and point charges are combined (see Fig. 2.2) with an Ewald (lattice)

sum for an accurate description of short and long-range electrostatic forces. Short-range

electrostatics are more accurately described by the use of diffuse charges, which lead to

damped Coulombic interactions. This is especially important for intramolecular interactions

on the order of 0.1 nm. The diffuse charge density, as described in the next section, is

polarizable and contains charge, dipole, and quadrupole components. Bond making and

breaking, including electron transport, occurs naturally under the framework of a consistent

set of rules.

The model was implemented into the MD framework and was validated via reproduction

of bulk water properties. A thorough analysis was then performed for a system representing

liquid water with a single excess proton. The methodology was then extended to study

bulk water systems with multiple excess protons, and the dynamics and solvation of the

protons were studied. The model was then further extended to include counterions in our

simulations, and the effect of their presence on the PT process was studied. The Model can

be easily extended to study surface reactions too, but these analyses were beyond the scope

of the project.

1.2.2 Dipole moment predictions

A new methodology was developed in order to predict dipole moments of various compounds.

SIESTA [40], a free open source AIMD program, was used to perform these calculations. The
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aim of the endeavor was to find the dipole moment based on time-averaged geometries, or,

to calculate dipole via inclusion of various conformations of the same compound.

As a first step, certain polar organic molecules were selected. Using the SIESTA AIMD

code, the evolution of geometry of these molecules was studied and these geometries were

used to calculate dipole moment based on partial charges assigned in accordance with a

charge assignment scheme. This study was performed for tributylphosphate (TBP). As

the next step, the SIESTA code was modified to calculate dipole moment based on the

actual electronic structure on the atoms of the molecules. In addition to TBP, this study

is performed for four more molecules: 1,2-dichloroethane (DCE), 1,2-dinitrioethane (DNE),

1,2-ethanediol (EDL), and 1,1,1,2-tetrafluoroethane (TFE). The method was then validated

for select conformations generated by our simulations by comparing the dipole moment

values calculated for the same using computational chemistry software. Where available, the

comparison was also made to experimental values of dipole moments.

1.3 Outline

The remainder of this document is organized as follows.

Background. Chapter 2 is a brief description of the existing methods used to study

reactive systems in aqueous media. Also, a description of recent advances in development of

new reactive force-field for water has been included.

Properties of bulk water and Preliminary PT studies.Chapter 3 describes the development

of a force-field model for simulation of bulk water. Different aspects of the water model and

its implementation to perform MD simulation are discussed in detail and the properties

obtained from the simulations are reported.

PT with multiple protons and counterion. Chapter 4 explains the extension of the water

model to studying PT process in bulk water, with one excess proton. The extension of model
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to include multiple excess protons and counterions is also discussed and the results of the

simulation are reported.

Dipole Moment studies. Chapter 5 gives a detailed description of the methodology used

to estimate the average dipole moment of various polar organic compounds. The simulation

tools and the statistical-mechanical analyses used to develop the method are also described

in detail.

Conclusions. Chapter 6 presents the conclusions drawn from this work as well as some

possible future extensions and applications of the model and methods developed in the study.
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Chapter 2

Background

2.1 Molecular Dynamics Simulation

Molecular Dynamics (MD) is a category of computer simulation in which constituent particles

of the system are allowed to interact for a particular time under Newtonian laws of motion.

This method has been used for decades to predict thermophysical properties of gases and

condensed matter, to understand and analyze atomic level phenomena and processes such

as the solvation of an ion in aqueous solution and diffusion of ions near a surface.

It is beyond the scope of the present work to explain all aspects of the MD simulation

technique required to write a computer program to simulate bulk liquid systems. Neverthe-

less, several key concepts will be introduced in this chapter as a basis on which following

chapters will elaborate. Specifically, the concepts introduced here briefly explain what the

boundary conditions of the simulation are; the level of detail of the phenomenon being stud-

ied that is accessible to us via classical and AIMD simulations; how the forces and potentials

in classical MD and AIMD simulations are calculated; and how these forces are used in the

equations of motion used to advance the dynamics of system in time. Additional details can

be obtained from standardized texts and other sources [41, 42]. In addition, Appendix A

contains the code that was used for this research, which may be examined for programming

details.

In the MD simulation technique, we simulate a collection of particles bouncing around

in a box called the “unit cell”. These particles may be atoms, molecules, ions, or clusters of
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these, and the particles may be modeled as one entity or may be split into discrete centers,

which are called “sites”. The general algorithm of MD technique entails the definition of a

functional form of a potential for the system which is used to interact with the sites of a

system. The forces thus calculated from these interactions are used to obtain new positions

and velocities of the constituent sites, in accordance with Newton’s second law. Thus, the

problem breaks down into the solution of 3N coupled second-order ordinary differential

equations (ODEs), where N is the number of sites, and the ODEs that must be solved have

the form:

fi =− δU

δri
= mi

δ2ri
δt2

(2.1)

where fi,mi, ri are respectively the force, mass, and position vector of the site i, t is the

time, and U is the potential energy of the system, which is equal to the sum total of all the

interaction energies of the constituent species.

2.1.1 Initial and boundary conditions

Unless the initial setting of the constituent sites of a system are in an improbably high

energy configuration (which may cause a simulation to crash), MD is generally insensitive to

initial conditions. Since there are 6N degrees of freedom (3N position and 3N momenta),

where N is of order of hundreds, the system is sufficiently random that a trajectory of

several picoseconds is sufficient to equilibrate the system and make it forget the starting

configuration. Thus, any configuration (provided unnatural overlap between the atoms is

avoided), may be used as a starting configuration. The simulation properties, however,

should only be recorded after the system is well equilibrated, that is, when the potential

energy of the system converges to (or oscillates about) a long-term equilibrium value.

Periodic boundary conditions (PBCs) are used at the faces of the unit cell as the boundary

condition. PBCs minimize wall effects and are preferable for obtaining bulk properties.
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Figure 2.1: 2-dimensional representation of periodic boundary conditions [43]

Nevertheless, the cell length still needs to be large enough to capture the important short-

range heterogeneties, typically around 2 nm for liquid simulations of small molecules.

PBCs are often used to simulate large systems by modeling a small part that is far from

its edge. To simulate bulk behavior, each of the unit cell is surrounded with copies of itself,

as shown in Fig. 2.1.

The centrally placed unit cell is surrounded by its exact images in all directions, so that

the sites in that unit cell interact with sites in that unit cell, as well as the sites in the

surrounding image cells. In addition, as indicated by arrows in Fig. 2.1, when a molecule

wanders off outside a face of the unit cell, it is replaced by one of its images moving into the

unit cell at the opposite face. In this way, a relatively small number of sites in a unit cell

can imitate the bulk behavior.

2.1.2 Representation of system and the level of detail

The functional form of a force field model, which enables the calculation of U and f i(Eq. 2.1),

encapsulates the physics of the system. The more accurately the model captures the physics

of the system, the more realistically it represents the system at the atomic and the sub-

atomic level. There are different ways to incorporate the physical details of a system into
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the MD framework. These methods enable us either to represent the physical phenomena

with an approximate formulation, or to include additional detail of the electronic structure

around the atoms into the MD framework.

A realistic description of a system is very desirable but it can lead to an excessively

computationally intensive force-field. For example, in AIMD simulations, the MD framework

can be used in conjunction with quantum mechanics to find the accurate electronic cloud

structure for all constituent sites of a system, at each step of MD. This kind of accuracy is

desirable when one is studying chemical reactions because this method incorporates a better

representation of electronic behavior and allows covalent bonds to be made and broken. Also,

when a detailed analysis of electric or magnetic moments needs to be performed, an accurate

description of electron cloud structure can help provide valuable insight. Such calculations,

although very accurate, are computationally very expensive and do not allow us to access

larger length-scales and longer time-scales. In fact, the AIMD studies are generally limited

to simulating small systems (<100 atoms) for shorter periods of time (a few picoseconds).

As an alternative to AIMD, one can study a system using classical MD simulations,

where one defines a pair-potential describing the interaction energy of the system. These

pair potentials can be simplified or complicated, depending upon how much of the physics

of the system we are able to incorporate. The classical MD simulations with simplified pair-

potentials allow us to access larger systems and longer time-scales, but, traditionally, they

do not allow for bonds to break or form, and contain little information about the electronic

structure. For applications where electronic density is important, like when studying large

reactive systems, we need to be able to include, in the force-field model, a realistic description

of physical phenomenon occurring during the reactive event. For this purpose, the pair-

potential expressions are modified, which results in a more complex expression for interaction

of sites of the system.
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2.1.3 Forces and potentials in classical MD

In classical MD, force on a site i equals the negative gradient of potential energy of the unit

cell with respect to the position of particle i, and is calculated in accordance with Eq. 2.1.

The potential of the unit cell in classical MD is taken to be the total of pairwise interactions

between unique pairs of sites and images of the site:

U =
∑
i

∑
j 6=i

uij(rij) (2.2)

where i and j range from 1 to N . uij(r) is a spherically symmetric potential function and rij

is the minimum image distance, or the distance between site i and the nearest site or image

j. The pairwise interactions are spherically truncated, at some value of r. For a cubic unit

cell of length L, the pairwise interactions are truncated at rc = L/2. An Ewald sum is used

for long-range Coulombic interactions, as is discussed in Chapter 3.

Traditionally, a simplified pairwise potential, such as Lennard-Jones (LJ) potential [44],

along with Coulombic point charges (due to the charges placed on the sites of system)

are used to approximate the interaction between a pair of sites. The pairwise potential

used in the present study has diffuse and point charges combined (see Fig. 2.2) with an

Ewald (lattice) sum for an accurate description of short and long-range electrostatic forces.

Short-range electrostatics are more accurately described by the use of diffuse charges, which

lead to damped Coulombic interactions. This is especially important for intramolecular

interactions on the order of 0.1 nm. The diffuse charge density, as described in Chapter 3,

is polarizable and contains charge, dipole, and quadrupole components. Bond making and

breaking, including electron transport, occurs naturally under the framework of a consistent

set of rules.

Many methods are available in the literature for the incorporation of “many-body” effects

in the formulation of inter-atomic potentials [45–48]. These methods attempt to approximate

15



Figure 2.2: Illustration of generalized charge distribution around each atomic site.

the many-body effects by including more than two atoms/sites in the formulation of poten-

tials, like the Axilrod-Teller three-body potential [49]. It is to be noted that Coulomb’s law is

always true and the interaction energy between charges in any system can still be described

by pairwise interactions between sites. However, the presence of other atoms/molecules

changes the distribution of electronic charge. So, if a model is able to correctly mimic the

changes in charge distribution, then the model, in effect, can approximate the effect of the

presence of other atoms/molecules. In the present work, the pairwise model allows for vari-

ation in shape, size, and magnitude of charge density, thus allowing for changes in charge

distribution due to the presence of other atoms/molecules. Hence the model should capture

the most significant aspects of the many-body effects.

The pairwise potentials are parametrized in advance by ab initio calculations, empirical

adjustments, or a combination of the two. Parametrization of the components of the pairwise

potentials is discussed in detail in Chapter 3.

2.1.4 Forces and potentials in AIMD

In classical simulations, a single potential energy surface (PES) is represented in the force

field. This PES corresponds to the ground state configuration of the system. In excited states,
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chemical reactions, or when studying electric or magnetic dipole or multipole moments, a

more accurate representation of electron density is needed. In such cases, the electronic

structure can be obtained from first principles by using a quantum chemistry method, such

as Density Functional Theory (DFT). This class of simulations, where potential energy of a

system is calculated on the fly (that is, accurate electronic structure is determined at every

MD step to calculate the potential energy), is called the AIMD simulation. The following

development defines relevant equations and terms, and illustrates various techniques used to

obtain the correct electronic structure around the sites of system, in an AIMD simulation.

2.1.4.1 The Schrödinger equation

The determination of accurate electronic structure entails the solution of the time indepen-

dent Schrödinger equation:

ĤΨ = EΨ (2.3)

Here, Ĥ is the system Hamiltonian, E is the total energy of the system, and Ψ is the

wavefunction describing the stationary electronic state, implying that the Ψ is independent

of time. The wavefunction Ψ that satisfies Eq. 2.3 is a probability amplitude in quantum

mechanics describing the quantum state of a particle and how it behaves. The quantity |Ψ|2

corresponds to the probability density of finding a particle in a given place, if the particle’s

position is measured. The Hamiltonian operator Ĥ can be split into kinetic and potential

energy operators:

Ĥ = T̂ + V̂ = − ~2

2m
∇2 + V (r) (2.4)

where m is the particle’s mass, V is its potential energy, ∇2 is the Laplacian, and ~ is the

reduced Plank’s constant. Eq. 2.4 is true for a single particle. If there are N particles in a

system, the corresponding equation for system Hamiltonian becomes:
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Ĥ =
N∑
i=1

− ~2

2mi

∇2
i + V (r1, r2, ...,rN) (2.5)

where ∇2
i is the Laplacian operator specific to the particle i, mi is the mass of particle

i, and the potential energy V is now a function of spatial positions of all N particles. It

is to be noted here that under the Born–Oppenheimer approximation [50], the nuclei of

the molecules/atoms are seen as fixed, generating a static external potential in which the

electrons are moving. This approximation is justified because nuclei are much heavier than

electrons, and hence move much slower. Thus, the Eq. 2.3 is only solved for the electrons of

the system.

2.1.4.2 Solution of the Schrödinger equation

In an N electron system, the wavefunction Ψ that satisfies Eq. 2.3 (with the Hamiltonian

given by Eq. 2.5), is the true wavefunction of the electrons and E the energy of the sys-

tem, which may be in ground state or excited state. The potential energy V in Eq. 2.5

includes the potential energy of electrons moving in a constant external field of nuclei and

the electron-electron interaction energy. While the interaction between nuclei and electrons

is separable into simpler single particle equations, the electron-electron coulomb interaction

is not separable, which makes the solution of the Schrödinger equation complicated for a

system with more than one electron.

The electron-electron Coulombic interaction may be split into two parts: electron ex-

change and electron correlation. The electron exchange is due to the Pauli’s exclusion prin-

ciple, which states that no two electrons with the same spin may occupy the same quantum

state. To understand the correlation term, imagine that for simplicity of computation, the

instantaneous electron-electron repulsion was replaced by the repulsion of each electron with

an average electron charge cloud. This approach for solving the Schrödinger equation was

proposed in 1927 and is known as the Hartree approach. Although this approach ensures

that individual position vectors of each electron do not need to be considered, it introduces
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an error in the calculated wavefunction and energy. The error is energy, that is, the difference

between the energy using Hartree approach and the exact energy of the system is called the

total correlation energy.

The Hartree approach did not consider any electron exchange or correlation. The method

was improved by Fock, who proposed using Slater determinants [51] for the expansion of the

wavefunctions, enabling the inclusion of antisymmetry (Pauli’s exclusion principle). The

Hartree-Fock (HF) method was thus formulated and it included electron exchange but no

electron correlation was considered. Numerous post-Hartree-Fock methods, like configura-

tion interaction (CI) [52, 53], coupled cluster (CC) [54], Møller–Plesset perturbation theory

(MP2, MP3, MP4) [55, 56], were developed in an attempt to improve on the HF method by

including electron correlation, but the problem with these methods is that they require huge

amount of computational effort, which makes it virtually impossible to apply them efficiently

to larger, more complex systems. This is where DFT provides an appealing alternative as

it enables the inclusion of electron exchange and correlation inexpensively, when compared

to the existing methods. The basic idea behind DFT is that the electron-electron coulomb

interaction is divided into the Hartree term (where electron-electron repulsion is replaced by

electron - electron cloud repulsion) and an exchange-correlation functional, which is a func-

tion of spatially dependent electron density and includes the many particle interactions. This

reduces the many-body problem, which depends on individual position vectors of electrons,

into a single-body problem which depends on electron density.

2.1.4.3 The DFT method

The DFT method came into existence after the Hohenberg-Kohn (H-K) theorems [57] were

postulated. The first H–K theorem demonstrates that the ground state properties of a

many-electron system are uniquely determined by an electron density that depends on only

3 spatial coordinates. This theorem makes possible the reduction of many-body functions of

3N variables into a functions of only 3 variables. The second H–K theorem defines an energy
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functional for the system and proves that the correct ground state electron density minimizes

this energy functional. These two theorems lead to the development of the Kohn-Sham DFT

(KS-DFT) framework.

Under the KS-DFT framework, a system of N interacting particles is converted into a

fictitious system of non-interacting particles that generate the same electron density as any

given system of interacting particles. The particles are assumed to move in a local effective

potential, which is called the Kohn-Sham potential. This approach enables us to break the

many-particle Schrödinger equation into N equations for the non-interacting particles:

(
− ~2

2m
∇2 + veff(r)

)
φi(r) = εiφi(r) (2.6)

Here, veff (r) is the Kohn-Sham potential, φi(r) is the wavefunction of the non-interacting

electron i, and εi is the corresponding energy. Total energy of the system of N interacting

particles is the sum of the Eigen values εi, and the electron density for the system is given

by:

ρ(r) =
N∑
i=1

|φi(r)|2 (2.7)

The Kohn-Sham potential veff (r) in Eq. 2.6 is formulated as:

veff(r) = e2

ˆ
ρ(r′)

ρ(r− r′)
dr′ + VXC(r) (2.8)

The VXC(r) term, called the exchange-correlation potential, attempts to account for the

many-particle interactions, and is the only unknown of this method. In different versions of

DFT, this term is approximated as a simple or complex function of local density, ρ(r). For

example, in local density approximation (LDA), VXC(r) is only a function of ρ(r), while in

generalized gradient approximation (GGA), VXC(r) is a function of ρ(r) local density as well

as the gradient of ρ(r) at r.

20



Once we have selected a particular form for VXC(r), since it is a function of ρ(r), we

start with an initial guess for ρ(r), calculate veff (r), and then solve the Eq. 2.6 for φi(r),

for the N electrons, and calculate the new ρ(r) using Eq. 2.7, and loop over until we find a

self-consistent solution.

After the solution of the Schrödinger equation under the KS-DFT framework, the poten-

tial energy of the electrons of the system is obtained. This is then added to the potential

energy for the nuclei-nuclei interactions (which are treated classically) to obtain the net po-

tential energy of the system. It is to be noted here that although AIMD methodology uses

several approximations, these are mostly based on theoretical considerations. The classical

MD potentials, that are empirically fitted to ab initio data, contain some information about

the approximate electronic structure, but classical MD simulations in no way have the access

to the level of detail that AIMD has, such as density of electronic states or other electronic

properties.

2.1.5 Equations of motion

The second-order ODE Eq. 2.1 is solved using the fourth-order Gear predictor-corrector

scheme. Gear’s predictor-corrector method is a high-order integrator. The basic idea behind

the scheme is to use information about the position and its first n derivatives (n = 4 here) at

time t to arrive at a prediction for position and its first n derivatives at time t+ ∆t. Forces

(or accelerations) are then calculated at the predicted positions, and then the predicted

accelerations are adjusted in accordance with the actual accelerations calculated. In addition,

we use the observed discrepancy between the predicted and the actual values to improve

future predictions for position and its derivatives. Several coefficients are used in order to

obtain corrected values of position and its derivatives. These constants are such that they

yield an optimal compromise between the accuracy and stability of the algorithm and they

are different for first and second order ODEs.
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The above procedure is for the solution of Newton’s equations of motion in the micro-

canonical (NVE) ensemble. In practice, there is usually the need to perform MD simulations

under specified conditions of temperature and/or pressure. Thus, in the literature there exist

a variety of methodologies for performing MD simulations under isochoric-isothermal (NVT)

or isobaric-isothermal (NPT) conditions. Simulation in other ensembles entails a reformula-

tion of the Hamiltonian equations of motion to include the constraints of constant T and/or

P. Among them the most widely used is the Nosé-Hoover method [58, 59].

In the NVT ensemble, the average temperature is regulated by a fluctuating heat bath,

called the ’thermostat’. When simulating in NPT ensemble, we need additional methodology

to regulate the pressure to keep the average pressure at the desired value. The mechanism

to regulate pressure is called the ’barostat’. For these purposes, the new equations used to

describe the dynamics of the system are:

r̈i =
fi
mi

− ζ ṙi (2.9)

ε̇ =
P − 〈P 〉
QP

(2.10)

V̇ = 3εV (2.11)

ζ̇ =
T − 〈T 〉
QT

(2.12)

Here V is the unit cell volume, P and T are the instantaneous pressure and temperature,

ε is the rate of strain or dilation of the unit cell, and ζ is a relative heat removal. Both ε

and ζ have the units of time−1. QP and QT are feedback constants for the barostat and the

thermostat, respectively, and these were obtained by trial and error. The values of these

feedback constants is given in Chapter 3, along with the other simulation details.
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A fourth-order Gear predictor-corrector scheme is used to a integrate the equations of

motion listed above.

2.2 Method Selection

The present work exemplifies the utility of MD simulation in studying complex systems at

the atomic and sub-atomic levels. While a classical force-field has been used to study the

PT process, an AIMD methodology is utilized to perform the dipole moment analysis.

A classical force-field for studying the PT process was used because in order to mimic

bulk liquid behavior, we needed to study larger systems, and for better sampling, we needed

to access larger timescales. In addition, for future application of the method to the study

the ORR, effects of the electrochemical double layer, solvent, catalyst defects, and control

of electrode potential need to be incorporated. While these effects can be approximated

roughly in an AIMD simulation, more molecules and a longer duration are required to have

our simulation more representative of the actual system.

While calculating the dipole moments of polar organic molecules based on time-averaged

geometries, an accurate representation of the electronic structure was needed for an accurate

calculation. This is the case because dipoles are especially sensitive to geometry variations

and the distribution of electronic charge. Hence, we need to sample multiple conformations

of the molecule whose dipole moment is to be studied. AIMD is used for this purpose. Since

there is no time component involved and only multiple conformations are to be sampled,

other sampling methods, like the Metropolis algorithm (Monte Carlo) could work as well.

But for this study we use AIMD because the scheme ensures that molecules automatically

access multiple conformations as the system evolves in time. Hence AIMD is used over other

sampling methods more for convenience than for any other reason. Another advantage of

using AIMD versus a scheme like Monte-carlo is that the wavefunctions for electrons do not
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need to be calculated from scratch for every step because the wavefunctions from previous

step can be used as initial guesses.

Section 2.3 describes the prior research pertaining to PT in the condensed phase. Section

2.4 gives a brief background on calculation/prediction of dipole moments.

2.3 Proton Transfer Studies

Simulation of the proton transfer (PT) reaction is not a trivial task because there are numer-

ous electrochemical environmental factors that have an effect on the PT reaction, some of

which are mentioned here. First, the solvation structure of an excess proton affects its trans-

port properties, and simulations should adequately reproduce the structure for an accurate

analysis. Second, polarizability must be captured precisely, since the variations in charge

density have a pronounced effect on transport of excess protons. Third, for an accurate

description of the interactions of a proton with the solvent and the counterion, a sufficient

number of particles should be included in the simulation. Fourth, due to small energy barri-

ers and small reaction energies, the reaction rate constants are very sensitive to the energy

differences. The analysis is further complicated by the ability of proton to display quantum

effects like tunneling, and some way of accounting for it must be included in the model.

2.3.1 AIMD studies of PT

Tuckerman and coworkers [60] have studied PT using Car-Parinello MD (CPMD) [61] to

simulate 32 water molecules with one excess proton. From this study, they propose that

proton diffusion occurs through the interchange between two species: the Eigen cation H9O+
4

and the Zundel cation H5O+
2 and the rate limiting step is the cleavage of the second solvation

shell of H3O+ species. These results were confirmed by Marx et al. [62], who used a combined

path-integral MD (PIMD) [63] and CPMD approach to study the same system. They also
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report a considerable delocalization tendency of excess charge over a few hydrogen bonds,

owing to quantum fluctuations.

Several other ab initio methods have been used [60, 64–68] to study the PT mechanism,

but all these studies are limited to simulating small clusters of water (∼ 32 molecules) for a

short duration (∼ 10 ps), because of computational limitations. While they are informative,

it is unclear whether the simulations have adequately captured bulk water behavior and

solvation effects. We need to be able to access larger time scales and much bigger systems

in order to get reliable statistics on kinetic, transport, and interfacial properties.

2.3.2 Classical MD to simulate PT

To treat larger systems and to access longer timescales, a methodology is required to en-

able classical MD simulations to study the PT process. Several groups have addressed this

problem and the rest of this sub-section focuses on various force-field models that different

groups have proposed.

2.3.2.1 Voth’s MS-EVB model

The multistate empirical valence bond (MS-EVB) model was developed by Voth and cowork-

ers [69] and is based on the EVB method proposed by Warshel et al. [70] The underlying

principle of the EVB method is that the energy of the system is modeled using a super-

position of covalent-bonding states as shown in Fig. 2.3. In each of the states, the nuclei

are in the same positions and the network of covalent bonds are changed. By varying the

weighting coefficients of the states, covalent bonds can be made and broken in a continuous

energy-conserving way.

The original version of the model, MS-EVB1, gave a good match to gas and bulk water

properties, but in order to match these properties, the authors introduced a charge scaling

parameter which reduced the net charge on the hydronium ion by about 25%. For an accurate

representation of the system, this parameter was removed in the later version of the method
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Figure 2.3: Illustration of superimposed states for the EVB method for Zundel ion

(MS-EVB2) by making some changes to the functional form of the potential. The MS-

EVB algorithm first identifies the possible EVB states near the excess protons, and then a

system Hamiltonian matrix is formed in accordance with particular formulations of pairwise

interaction potential. The model parameters were derived by reproducing ab initio data for

gas phase cluster geometries and formation energies [69]. The model reproduced some bulk

water properties accurately and evidence of the Grotthuss mechanism was observed. The

diffusivity of the excess proton was too low by about 50%.

MS-EVB3 [71], an improvement on MS-EVB2, was proposed by Wu et al. in 2008. In this

new scheme, the underlying water model used in MS-EVB1 and MS-EVB2 was replaced by

the SPC/Fw model, which gave a better match to liquid water properties, and also provided

a more accurate description of the solvation structure and diffusion dynamics of the excess

protons, although the reported diffusivity of the excess proton was still too low by about

50%.

The more recent simulations based on the MS-EVB methodology include up to 250 water

molecules and up to 8 excess protons. This model has been demonstrated to work in numer-

ous biological and chemical systems [72–76] and it provides a good representation of bulk

transport of protons but it is not clear how this model would be extended to new chemistries

including surface reactions. Specifically, it is not known how the superposition-of-states

principle will be extended when a solid catalyst surface is present.
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2.3.2.2 ReaxFF model

ReaxFF is a reactive force field developed by Goddard and coworkers [77]. It is based on

bond-order potentials and is capable of simulating bond breaking and formation within the

classical MD framework. Originally, the ReaxFF model was developed for hydrocarbons,

but it has been applied successfully to a large number of chemical systems, such as organic

reactions [78], thermal decompositions of polymers [79], reactions of energetic materials [80],

catalytic formation of carbon nanotubes [81], dissociation of H2 on Pt surfaces [82], and

catalysis and ion transport in fuel cells [83].

The method is based on bond-order-bond-energy correlation. The bond orders are calcu-

lated on the basis of inter-atomic distance. The correct bond order is enforced using energy

penalties for over-coordination and under-coordination of atoms. Charge is allowed to trans-

fer between the sites using the Electronegativity Equalization method [84]. Charges and

bond orders are updated every time step. The total energy of the system is the sum total of

contributions of energies for bond distance, lone pair, over-coordination, under-coordination,

valence interactions, energy penalty, conjugation, torsion, hydrogen bonding, van der Waals,

and coulomb interaction, with each term having its own individual formulation and param-

eters. The model is parametrized by fitting it to experimental and quantum mechanical

data.

Rahaman et al. [85] used the ReaxFF model to simulate PT in the glycine-water sys-

tem. The force field parameters were optimized to reproduce the quantum mechanically

derived energies of a lone glycine molecule, glycine-water dimer, and glycine-(water)2 com-

plexes.Their simulations included 213 water molecules and 1 excess proton. A crude but

inexpensive method of “sliding restraint” was used to compare energy barriers for direct

(water-free) and water-assisted (with one or two water molecules) proton transfer. The acti-

vation energy barrier for the direct mechanism was found to be a few kcal/mol higher than

the water-mediated mechanisms.Water assisted PT event was found to have a lower energy

barrier and hence a more likely event. Thus the results suggested that the proton transfer
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reaction is most likely mediated by a single water molecule. The transport properties could

not be calculated because the PT event was crudely forced to occur (without correction for

the perturbation), and with insufficient sampling of the PT events.

Although the ReaxFF method has been applied to study numerous reactive systems, its

inherent complexity and numerous parameters limit its transferability. In addition, a huge

amount of ab initio data is required to parametrize the model.

2.3.2.3 Keffer’s model

Keffer and coworkers [86] recently proposed a novel reactive algorithm for simulation of

PT in aqueous systems. In their work, a transition state for PT obtained from ab initio

data is mapped onto a set of geometric and energetic triggers to describe the structural

diffusion of the proton. The geometric triggers include the distance between donor and

acceptor oxygen being less than a particular cut-off, distance between the donor oxygen and

transferring proton being greater than equilibrium O-H bond distance, the angle formed

between donor and acceptor oxygen and the transferring proton being nearly linear, and the

angle formed between transferring proton, acceptor oxygen and other hydrogens of water

being near equilibrium angles of a hydronium ion. Another geometric trigger requires that

the hydronium ion be coordinated with three other water molecules, thus forming an Eigen

cation. The sole energetic trigger requires the proton to have sufficient energy to overcome the

barrier associated with the PT reaction. The functional form of these triggers was selected

and the parameters were adjusted to reproduce experimental values of the rate constant and

activation energy for the PT reaction. In the course of their simulations, whenever these

triggers are satisfied, an instantaneous reaction reaction takes place, and the proton hops

over to the acceptor oxygen.

After the PT event, the system was equilibrated so that energetically and structurally,

the system remains unaffected. To elaborate, it is needed to adjust molecular positions

because the O-O radial distribution function (RDF) for H2O− H2O is different than that for
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H3O+ −H2O. For example, the first peak in the O(H2O)-O(H2O) RDF is at 2.8 Å, whereas

the first peak in the O(H3O+)-O(H2O) is at 2.55 Å. Thus a local equilibration was needed

to be performed. An objective function, as a function of interatomic distances and the kind

of pair (O-O, O-H, O-H∗), was defined, and the fix was performed for the one hydronium

and one water molecule involved in the PT reaction, and the first solvation shell of water

molecules around the reacting pair. The model was applied to study PT in bulk water and

PT in dilute acid (HCl) solutions. For PT in bulk water, the model provided a good fit for the

values for rate constant, activation energy, and heat of the PT reaction, and they confirmed

that most of the proton diffusivity was due to structural diffusion (Grotthuss mechanism).

In presence of the Cl−counterion, they found that the environment of an Eigen ion was

disrupted both structurally and energetically, reducing the probability of the occurrence of

PT event.

Although this approach was used successfully to study PT in bulk and dilute acid so-

lutions, it is not immediately clear how the concept of triggers would need to be modified

when other species, like a solid catalyst, are present in the system.

2.3.2.4 The central force model

Bresme and coworkers proposed a force field [87], which is based on classical interatomic

potentials following the pioneering ideas of Stillinger et. al. [88]. In this approach, one

considers the oxygen and hydrogen species to be unbonded sites, held together in the water

geometry with soft potentials. For the three pairs in bulk water system (O-O, O-H, H-H), one

defines three pairwise potentials, whose parameters are tuned in order to reproduce the right

water geometry and dipole moments, and the right frequencies of bond vibrations. Bresme

and coworkers demonstrated the functionality for bulk water, by comparing to experimental

transport, structural, and thermodynamic properties. Their simulations include 256 water

molecules and the run time was 1.5 ns.
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A similar concept, in combination with recursive fitting of radial distribution functions,

was recently used by Hoffmann and coworkers to simulate bulk water and PT through hy-

drated Nafion membrane [89]. They observed multiple PT events in their simulation but the

self diffusion coefficient of proton was too low by about 40%. Their simulations include 216

water molecules and the run time was 0.8 ns.

Both Bresme and Hoffmann observed the significant presence of anomalous autoionized

water (H3O+ and OH− ions) in their simulations. In particular, Bresme and coworkers

observed only 85% neat water, and Hoffman and coworkers observed only 90% neat water.

This is an undesirable effect and for a more accurate representation of system, the population

of these extraneous species must be negligible. In the present work, like the central force

model, there are no rigid bonds forming the hydrogen and oxygen sites into water molecules.

Like Bresme’s and Hoffman’s model, the model used in this work uses pairwise potentials

to hold the oxygen and hydrogen sites together, but it was ensured (with the help of a

three-body term in the interatomic potential) that the water molecules would not break up

spontaneously in a bulk water simulation.

2.3.2.5 Summary

The existing models to simulate reactions in bulk phase are either too expensive, non-

transferable, or physically inaccurate. A robust and polarizable model that captures the

essential physics of the system accurately is needed. A force field that can describe a few

key test cases with a minimum number of adjustable parameters is more likely to meet these

requirements because such a force field ensures that we are not empirically fitting data and

overtuning it to a particular system. In Chapter 3 we propose a model intended to simulate

multiple reactive systems with different chemical species.
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2.4 Dipole Moment Studies

Listed in this section are various theories and methods that have been used for the estimation

of molecular dipole moments.

2.4.1 Microwave spectroscopy

When a polar molecule is placed in an external electric field of magnitude E, the rotational

energy levels of the molecule are split through the Stark effect. The Stark splitting can

be adequately defined by second-order perturbation theory and the correction ∆W to the

rotational energy is given by:

∆W = (A+BM2)E2 (2.13)

Here M is the magnetic quantum number, which ranges from −L to L, where L is related

to the total angular momentum of an orbital in absence of an external field. The coeffi-

cients, A and B depend upon the components of dipole moments and can be determined

experimentally, since the energy level separations can be easily calculated from the analysis

of the microwave spectrum. It is therefore possible to extract the dipole components from

experimentally determined A and B coefficients. When degenerate levels exist, a first order

Stark effect occurs which is of the form:

∆W = ±CME (2.14)

The coefficient C is proportional to the dipole components and can be readily calculated. The

first and second-order Stark perturbation terms, in many cases, permit the determination of

dipole moment with a reasonable accuracy. Higher order terms may be considered if more

accuracy is desired. A sample used for this method does not need to be pure and when

two or more rotational isomers are present, their moments may be measured individually.
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Also, since separate components of the dipole moment vector are determined, information is

available on the orientation of the moment relative to the molecular framework.

In spite of all the advantages of the microwave method, there are several difficulties

associated with it. In many spectra, a competing perturbation due to nuclear quadrupole

hyperfine structure [39] may be present which may be comparable to the Stark effect and

makes the analysis of data complicated. Another difficulty arises when the Stark effect of all

accessible transitions are not sensitive to one of the components of dipole moments, making

the determination of that component, and hence the magnitude of total dipole moment,

inaccurate. Also, the accuracy of the the determined dipole moment depends upon the

measurement of electric field, which entails the measurement of the effective spacing between

electrodes, which may not be so easily determined.

2.4.2 Molecular beam electric resonance

This method is similar in principle to the microwave method because it also makes use of

the Stark effect of rotational transitions, but in this method, the measurement is carried out

on a molecular beam. In a molecular beam, the spectral line-widths are much smaller and

the accuracy with which the Stark splittings can be measured is greatly improved. Also, the

apparatus for this method can be designed so that the electric field is more uniform and can

be measured accurately. Due to these reasons, the molecular beam method offers the highest

inherent accuracy of any known method of dipole moment determination.

The main limitation of this method is that due to the multiple states involved in the

case of more structured molecules, the molecular beam method can be applied to simple

molecules only, mostly monatomic and diatomic (and a very few triatomic) molecules.

2.4.3 Determination of dipole moment from dielectric constant

The foundation of this method was laid down by Debye [30], when he proposed a general

equation interrelating dipole moment and the dielectric constant:
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ε− 1

ε+ 2

M

ρm
=

4πNA

3

(
α0 +

µ2

3kBT

)
(2.15)

where the left hand side of the equation is the molar polarization, ρm is the mass density,

M is the molecular weight, NA is the Avogadro’s number, kB is the Boltzmann’s constant,

T is the temperature, and α0 is the polarizability by distortion [90] and µ2/(3kBT ) is the

polarizability by orientation.

Although Eq. 2.15 holds true for a wide variety of gases and vapors, it is less accurate for

pure liquids and for gases and vapors in which strong intermolecular forces occur. In order

to improve the accuracy of this method, modifications to the Debye equations were proposed

by Onsager [31], which were later generalized by Kirkwood et al. [33]. These corrections

enable good agreement between the dipole moment values calculated for normal liquids

with the values obtained from vapor phase measurements [91]. Several other correlations

for determining dipole moment from dielectric measurements are available in the literature

[92–94].

The methods mentioned above provide some improvement on predictions of dipole mo-

ment for polar fluids, but the overall reliability of these methods is low. One reason for

these poor predictions can be that the orientation-polarization effects are not being fully

accounted for in these formulations. These orientation-polarization effects are particularly

prominent in polar systems, as is the case with strongly hydrogen-bonded liquids like water

and alcohols. Interestingly, even for a well-studied molecule like water, there is not a reliable

experimental value of the liquid dipole moment.

2.4.4 Ab initio determination of dipole moments

It is possible to calculate the exact gas-phase dipole moment for a particular conformation

of a molecule using computational chemistry software. For any given conformation, first

the electronic structure around the sites of a molecule is determined and then based on this
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electronic structure, the dipole moment of the molecule is estimated. Multiple [95–97] studies

of dipole moment estimation have been conducted using ab initio methods at different levels

of theory [98] and basis sets [98].

In general, when calculating the dipole moment, the geometry of the molecule being

studied is optimized and for the obtained optimized geometry, the electronic structure cal-

culations are performed. Thus, only a single conformation is usually considered in such

studies. However, at room temperature, many molecules will access multiple conformations

that each have different dipole moments. With MD, multiple conformations can be accessed

in a single simulation. Thus, in the present work, AIMD simulations have been used in order

to calculate the time-averaged dipole moment of various molecules. The details of the AIMD

simulations, including molecules studied, tools used, type of simulations performed along

with the results obtained are presented in Chapter 5.
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Chapter 3

Bulk Water Simulations

3.1 Introduction

In this chapter, we develop the force field methodology that has been used in the present

work for simulation of the PT process. We also present results for liquid water simulations

using the developed force field. A detailed description of application of the model to the

simulation of excess protons in bulk water is presented in Chapter 4.

When attempting to simulate a reactive system, there are certain physical phenomena

that must be captured or reproduced. Firstly, the short- and long-range electrostatic interac-

tions must be modeled accurately. In dense systems, the Hamiltonian used to represent the

system must adequately represent the short-range Coulombic interactions between the sites

of the molecules. These short-range interactions need to be spherically truncated at some

reasonable cut-off distance in the interest of saving computational effort. However, if we sim-

ply truncate the interactions and completely ignore the long-range interactions, there can

be pronounced errors in structure, thermodynamics, and particularly electrostatic properties

[99]. Thus, while modeling bulk liquids, the long-range interactions should be factored in

accurately and preferably in a way that the computational time is not increased significantly.

In our model, diffuse and point charges are combined with an Ewald (lattice) sum for an

accurate description of short- and long-range electrostatic forces. Short-range electrostatics

are more accurately described by the use of diffuse charges, which lead to damped Coulombic
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interactions. This is especially important for intramolecular interactions on the order of 0.1

nm.

Another desired aspect of a model for bulk liquid simulations is polarizability. Polariz-

ability is the measure of change in a molecule’s electronic density (specifically, the valence

charge density) in response to an applied electric field, or changes in the electrostatic envi-

ronment. The determination of accurate electronic structure is beyond the scope of classical

MD. However, the model used for MD simulation of a dense polar system must be capable

of reproducing the changes in overall charge density in response to external stimuli. In the

present work, this is accomplished by allowing the diffuse charge density to vary in mag-

nitude and shape whenever there is a change in the electrochemical environment around a

particular site.

The ultimate purpose of the force-field developed in this work is to study reactions and

for doing so, the model must allow for bond breaking and formation. A couple of decades

ago, force-fields used in classical MD simulations did not allow for cleavage and re-formation

of covalent bonds, and one had to turn to AIMD simulations to study reactions. Over the

last two decades, several force-fields have been proposed to extend classical MD to reactive

systems. A detailed account of these force-fields was presented in Chapter 2. In the current

work, as mentioned previously, a methodology similar to the CFF (see Chapter 2) has been

used. In our simulations, hydrogen and oxygen as separate entities that can associate to

form molecules or dissociate in presence of a stimulus (like an excess proton nearby). This

approach enables us to describe the molecule in terms of flexible pair potentials, and thus the

molecule can undergo changes in its geometry and dipole moment in the presence of solutes,

surfaces, and variations in electric field. The Bond making and breaking, including electron

transport, occurs naturally under the framework of a consistent set of rules.

Transferability is a desired quality in any force-field, as it ensures that the model will

still work when some new species are introduced in the simulation and/or the model is

applied to studying a new system. A lot of force-fields, including ReaxFF [77], use numerous
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parameters in different parts of the potential terms (see Chapter 2). This makes the model

not only hard to parametrize, but also limits its applicability to a new system. It is desirable

to have minimal adjustable parameters because this ensures the model is not overtuned to a

particular system and is general enough to be applied to other systems. In our model, there

are only two major adjustable parameters.

Although the model was developed in context of bulk water, our intention was to develop

a general model applicable to many systems including solid catalyst surfaces and polymer

membranes. The original aim of this project was to study the oxygen reduction reaction that

occurs on the cathode of fuel cells, which would have entailed the inclusion of a platinum

catalyst surface and a nafion polymer exchange membrane [100]. Due to the inherent compli-

cations involved in implementing the model into the MD framework, we could not reach the

point where we can test the model in systems involving catalyst and membranes. Nonethe-

less, we were able to test its functionality in systems involving multiple excess protons and

counterions, as is demonstrated in Chapter 4.

The following sections describe the model and its application to MD simulations of bulk

water. The results for bulk water simulations are discussed in Section 3.4.

3.2 Model Description

Described here is a classical model that includes submodels for Coulombic potential, central-

force potential, and van der Waals potential. The net potential energy is the sum total of

these three components, and the interatomic forces are the negative gradient of the total

potential energy. The submodels are intended to use a minimum of adjustable interaction

parameters per site, which can be regressed from ab initio calculations as discussed in the

section 3.4.
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3.2.1 Coulombic submodel

As shown in Fig. 2.2, each atomic site i is modeled with a positive Coulombic point charge

(qci) and a negative diffuse charge (qvi ), so that the total charge is qi = qci+q
v
i . Table 3.1

lists the values of qci and qvi used in the water model. Note that the qvi for hydrogen is

set to zero. This was done to reduce computational cost, since putting diffuse charge on

hydrogen sites did not make a significant difference in our results. For simplicity, the model

employs Gaussian-based charge densities. The combined core and valence charge distribution

is described as:

ρi(r) = qci δ(r) + qvi
(1 +

√
2γibi·r)2

1 + b2
i

γ3
i π
−3/2exp(−γ2

i r
2) (3.1)

where r is a vector from the site center, and γi is a charge inverse-width parameter. Here, qci

is a fixed quantity, while qvi varies during the course of a simulation. Dimensionless adjustable

vector bi determines the amount of “p-character” or dipole [101] in the valence charge and is

determined on-the-fly during a simulation, using dynamical equations.

Using this charge density expression, the Coulomb overlap integrals were evaluated for

different interactions, like core to core (c-c), core to valence (c-v), and valence to valence

(v-v). The Coulombic potential energy of the system includes all these interactions, and is

formulated as:

U =
1

2

∑
i,j

qviC
vv
ij q

v
j +

∑
i,j

qviC
cv
ij q

c
j +

1

2

∑
i,j

qciC
cc
ij q

c
j +

∑
i

qvi φ
0
i + Uext (3.2)

where Cvv
ij contains interaction integrals for v-v, Ccv

ij for c-v, and Ccc
ij for c-c. These interaction

integrals are formulated as follows
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Cij = γij



2√
π

1+
7
3
b2i +

49
60
b4i

(1+b2i )2
if i = j

f0(sij) + 1
(1+b2i )(1+b2j )

{[
2∆ij(1 + b2

j) if i 6= j

+2∆ji(1 + b2
i ) + 2Dij − 1

2
(b2
i + b2

j)− b2
i b

2
j

]
f1(sij)

+
[
∆2
ij(1 + b2

j) + ∆2
ji(1 + b2

i ) + 4∆ij∆ji + ∆ij(2Dij − b2
j)

+∆ji(2Dij − b2
i ) + 1

2
D2
ij + 1

4
b2
i b

2
j

]
f2(sij)

+
[
2∆ij∆ji(∆ij + ∆ji +Dij)− 1

2
(∆2

ijb
2
j + ∆2

jib
2
i )
]
f3(sij)

+∆2
ij∆

2
ji f4(sij)

}

(3.3)

C∗ij = γi


2√
π

1+ 5
6
b2i

1+b2i
if i = j

f0(s∗ij) + 1
1+b2i

[
(2∆∗ij − 1

2
b2
i ) f1(s∗ij) + (∆∗ij)

2f2(s∗ij)
]

if i 6= j

(3.4)

C∗∗ij =


0

r−1
ij

if i = j

if i 6= j

. (3.5)

The above expressions for i 6= j make use of a number of auxiliary variables: ∆ij =

gijbi ·sij, ∆ji = gjibj ·sji = −gjibj ·sij, ∆∗ij =
√

2bi ·s∗ij, and Dij = gijgjibi ·bj. Furthermore,

gij =
√

2(γij/γi), sij = γijrij, and s∗ij = γirij. Vector rij = rj − ri is the displacement vector

between sites i and j and has magnitude rij. The mixed-charge inverse width is given

byγij = (γ−2
i + γ−2

j )−1/2 .Variable sij is a dimensionless site-site distance that is scaled by

the size of the diffuse charge widths and is used in additional formulas below. A series of

functions is used in Eq. 3.10 and Eq. 3.11 where:

f0(s) = erf(s)/s (3.6)

This function is commonly used in Coulombic simulations with an Ewald lattice sum. The

higher-order functions (k > 0) are obtained recursively,
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fk(s) = −dfk−1

d(s2)
=

1

2s2

[
(2k − 1) fk−1(s)− 2√

π
exp(−s2)

]
(3.7)

In Eq. 3.2 φ0
i is the site base potential, a parameter that allows the Coulombic model to be

corrected for short-range and quantum effects that are otherwise neglected. It is given by

φ0
i =
|qe|γi
1 + b2

i

[
−1

4
a0γi(3 + 5b2

i ) +
1√
2π

1 + 7
3
b2
i + 49

60
b4
i

1 + b2
i

+ λi(b
∗
i · bi − 1

2
b2
i )

]
. (3.8)

where a0 is the Bohr radius and |qe| is the magnitude of the electron charge. The first term in

the square brackets is a quantum kinetic energy term; the second term is a correction for the

previous inclusion in U of valence electrons interacting with themselves (through Cvv
ii ). The

last term in the square brackets is an empirical correction to bias the ground state site dipole

pi in the direction of b∗i , with λi being an adjustable dipole-strength parameter. Vector b∗i

is oriented relative to the locations of the nearest neighbors (in this case, nearest hydrogens

about each oxygen):

b∗i =
∑
j 6=i


s−1
ij sij if sij ≤ 1.74

s−1
ij sij exp (11.4(sij − 1.74)2) if sij > 1.74

(3.9)

This piecewise expression is designed to smoothly adjust the dipole whenever an excess

proton is approaching or leaving an oxygen site.

Some of the above expressions needed to calculate the energy U are fairly complicated and

nonlinear and contain terms up to fourth order in bi, which would have led to an expensive

force-field. So the following expressions, truncated at second order in bi are used. This is

reasonable because b values are small.
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Cvv
ij = γij



2√
π
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b2
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]
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+
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∆2
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ji + 4∆ij∆ji

]
f2(sij)

(3.10)

Ccv
ij = γi


2√
π

[
1− 1

6
b2
i

]
if i = j

f0(s∗ij) + (2∆∗ij − 1
2
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(3.11)

Ccc
ij =


0 if i = j

r−1
ij if i 6= j

(3.12)

φ0
i = |qe|γi

[
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a0γi(1 + 2

3
b2
i ) +

1√
2π

(1 + 1
3
b2
i ) + λi(b

∗
i · bi − 1

2
b2
i )

]
(3.13)

Simplified long-range forms of Cij and C∗ij where i 6= j are obtained by taking the limit

sij →∞ in the above expressions. In general they may be used in place of the more expensive

short-range expressions when sij ≥ 4.5. The results are

CLR
ij =

1

rij
+

√
2

r2
ij

[
γ−1
i bi · r̂ij − γ−1

j bj · r̂ij
]
− 2

r3
ij

γ−1
i γ−1

j [3(bi · r̂ij)(bj · r̂ij)− bi · bj] (3.14)

+
1

2r3
ij

{
γ−2
i

[
3(bi · r̂ij)2 − b2

i

]
+ γ−2

j

[
3(bj · r̂ij)2 − b2

j

]}
and

C∗LRij =
1

rij
+

√
2

r2
ij

γ−1
i bi · r̂ij +

1

2r3
ij

γ−2
i

[
3(bi · r̂ij)2 − b2

i

]
, (3.15)

where r̂ij = rij/rij is a unit vector. These expressions naturally include all electrostatic

interactions that scale as r−1 to r−3, namely charge-charge (r−1), charge-dipole (r−2), dipole-

dipole (r−3), and charge-quadrupole (r−3) interactions.
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In a simulation we need to calculate forces on particles (ri), charge shapes (bi), and

charges (qvi ). These forces are then used in the equations of motion that govern the dynamics

of the system. In the following discussion, the formulations of the three kinds of forces is

presented.

3.2.1.1 Force on particles

The basic definition of the force on particle, Fi, is

Fi = −∂U
∂ri

=
∑
j 6=i

(Fvv
ij + Fvc

ij + Fcv
ij + Fcc

ij + Fφ0
ij ) + Fext

i , (3.16)

which requires that we get the position derivatives (gradients) of Cij, C
∗
ij, C

∗∗
ij , and φ0

i . These

are given below. The force between a valence charge and another valence charge is:

Fvv
ij = qvi

∂Cij
∂rij

qvj = −2γ2
ijq

v
i q
v
j {(sij + gjibj − gijbi) f1(sij)

+
[
(2∆ij + 2∆ji + 2Dij − 1

2
b2
i − 1

2
b2
j) sij

]
f2(sij)

+ [(∆ji + 2∆ij) gjibj − (∆ij + 2∆ji) gijbi] f2(sij)

+(∆2
ij + ∆2

ji + 4∆ij∆ji) sij f3(sij)
}

(3.17)

The force between a valence charge and a core charge is given by:

Fvc
ij = qvi

∂C∗ij
∂rij

qcj = −2γ2
i q
v
i q
c
j

{
(s∗ij −

√
2bi) f1(s∗ij)

+
[
(2∆∗ij − 1

2
b2
i ) s∗ij −∆∗ij

√
2bi

]
f2(s∗ij)

+(∆∗ij)
2s∗ij f3(s∗ij)

}
(3.18)

and
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Fcv
ij = qvj

∂C∗ji
∂rij

qci = 2γ2
j q
c
i q
v
j

{
(s∗ji −

√
2bj) f1(s∗ji)[

(2∆∗ji − 1
2
b2
j) s∗ji −∆∗ji

√
2bj

]
f2(s∗ji) +(∆∗ji)

2s∗ji f3(s∗ji)
}

(3.19)

The force between a core charge and another core charge is given by:

Fcc
ij = qci

∂C∗∗ij
∂rij

qcj = −qci qcjr−3
ij rij . (3.20)

The Force due to the distortion of b-values is given by:

Fφ0
ij =

∂Uφ0

∂rij
= |qe|γijqvi e−s

2
ij s−1

ij

{
γiλi

[
bi − (2 + s−2

ij )(bi · sij) sij
]

− γjλj
[
bj − (2 + s−2

ij )(bj · sij) sij
]}
. (3.21)

and

Fext
i = −∂Uext/∂ri . (3.22)

Recall that ∆ij = gijbi · sij, ∆ji = −gjibj · sij, ∆∗ij =
√

2bi · s∗ij, ∆∗ji =
√

2bj · s∗ji, Dij =

gijgjibi · bj, gij =
√

2(γij/γi), sij = γijrij, s∗ij = γirij, s∗ji = γjrji = −γjrij, and rij = rj − ri.

As before, in the case where sij ≥ 4.5 we can use long-range expressions in place of functions

f0, f1, etc., which allows more compact (and easier to compute) interactions.
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3.2.1.2 Force on charge-shapes

The force, Fb
i on charge shapes (bi) is given bythe following expressions. The force on

b-values due to interactions between two valence charges is given by:

Si = −1

2

∑
k

∑
j

∂Ckj
∂bi

qvkq
v
j = −1

2

∂Cii
∂bi

(qvi )
2 −

∑
j 6=i

∂Cij
∂bi

qvi q
v
j

= − 2

3
√
π
γii(q

v
i )

2 bi

− qvi
∑
j 6=i

qvj γijgi [(2sij + 2gjbj − gibi) f1(sij) + 2(∆i + 2∆j)sij f2(sij)]

= −2
√

2qvi γ
−1
i

∑
j 6=i

qvj γ
2
ijf1(sij) sij

+

{[
− 2

3
√
π
γii (q

v
i )

2 + 2qvi γ
−2
i

∑
j 6=i

qvj γ
3
ijf1(sij)

]
I− 4qvi γ

−2
i

∑
j 6=i

qvj γ
3
ijf2(sij) sijs

T
ij

}
bi

+ 4qvi γ
−1
i

∑
j 6=i

qvj γ
−1
j γ3

ij

[
−f1(sij) I + 2f2(sij) sijs

T
ij

]
bj (3.23)

The force on b-values due to interactions between a valence charge and a core charge is given

by:

S∗i =−
∑
k

∑
j

∂C∗kj
∂bi

qvkq
c
j = −∂C

∗
ii

∂bi
qvi q

c
i −

∑
j 6=i

∂C∗ij
∂bi

qvi q
c
j

=
4

3
√
π
γiq

v
i q
c
i bi (3.24)

− 2γiq
v
i

∑
j 6=i

qcj

[(√
2s∗ij − 1

2
bi

)
f1(s∗ij) +

√
2∆∗i s

∗
ij f2(s∗ij)

]
=− 2

√
2γiq

v
i

∑
j 6=i

qcjf1(s∗ij) s∗ij

+

{
2γiq

v
i

[
2

3
√
π
qci +

∑
j 6=i

qcjf1(s∗ij)

]
I− 4γiq

v
i

∑
j 6=i

qcjf2(s∗ij) s∗ijs
∗T
ij

}
bi (3.25)

The force on b-values due to distortion in b-values is given by:
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Sφi =−
∑
k

∂φ0
k

∂bi
qvk = −2qvi bi

∂φ0
i

∂b2
i

(3.26)

=qvi |qe|γi
[(
a0γi −

2

3
√

2π

)
bi − λ1

ib
∗
i

]

and

Fb,ext
i = −∂Uext/∂bi . (3.27)

3.2.1.3 Force on charge

The forces on charges (f qi ) is given by:

f qi = −φi = − ∂U
∂qvi

= −

(∑
j

Cijq
v
j +

∑
j

C∗ijq
c
j + φ0

i + φext
i

)
(3.28)

It is to be noted that the derivative of U with respect to valence charge constitutes the

chemical potential (φi) for valence charge at each site. As will be discussed in the next

chapter, the difference in chemical potential of valence charges on oxygen sites forms the

basis of electron transfer that accompanies the PT process.

To summarize, there are three main adjustable Coulombic parameters per site: qci , γi, and

λi. Variables qvi and bi are determined from charge conservation and energy minimization

principles and so these are not independent model parameters. In the case of hydrogen sites,

qvi = bi = 0 and this simplifies the model somewhat. The choice of site parameters allows

the charge distribution for each site to be tuned so that the model can mimic molecular

charge distribution and polarizability. The flexibility of the model combined with a physical

basis will allows reasonable transferability of parameters between similar molecules, and

makes the model more robust in heterogeneous electrochemical environments. This has been

demonstrated to some extent in Chapter 4.

45



3.2.2 Central-force submodel

Further quantum effects such as electron correlation and exchange are treated classically. The

oxygen and hydrogen ions are held together with pairwise short-range interaction potentials

[88] between OH and HH pairs, which are formulated as:

UCFM
OH (r) = D1OH exp (2aOH (reOH − r))−D2OH exp (aOH (reOH − r)) (3.29)

UCFM
HH (r) = DHH

(
(1− exp (−aHH (reHH − r)))2 − 1

)
(3.30)

where, reOH and reHH are the respective bond lengths. Values of the fixed parameters used

in Eq. 3.29 and Eq. 3.30 are listed in Table 3.1. These expressions and parameter values

were chosen so as to reproduce the correct water geometry. Although it is of some value to

get the right vibrational frequencies for the OH and HH bonds, we found that when this was

attempted, we failed to get 100% neat water in our bulk simulations. This was one of the

drawbacks of the models proposed by Bresme and coworkers, and Hoffmann and coworkers.

The parameters were therefore adjusted so that water molecules would not break up, even

though we did not match the experimental frequencies. The CFM potentials are plotted in

Fig. 3.1. In addition to the CFM potentials, we also use a three-body potential in order to

better control the HOH angle. This 3-body potential has the following functional form:

Uang
HOH = Aang exp

(
−βangr

2
OH1 − βangr

2
OH2

)
(rOH1 · rOH2 − rOH1rOH2 cos (θ)) (3.31)

H1and H2 are the two nearest hydrogen neighbors to the oxygen. Values of the fixed param-

eters used are listed in Table 3.1. These parameters (see Table 3.1) were chosen so that the

HOH angle for the water molecules in our simulations was around 109◦ and to get the right

pair distribution functions, similar to the SPC/E water model [102].
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(a)

(b)

Figure 3.1: Comparison of pair potentials (a) OH pair (b) HH pair, used in model vs. the
pairwise potentials used by Bresme and coworkers [87], and Stillinger et al. [88].

The net force on particles will be the sum total of forces due to pairwise OH and HH

potentials and the HOH three body potential:

FO = −
(
∂UCFM

OH

∂rO

+
∂Uang

HOH

∂rO

)
(3.32)

FH = −
(
∂UCFM

OH

∂rH

+
∂UCFM

HH

∂rH

+
∂Uang

HOH

∂rH

)
(3.33)

3.2.3 Van der Waals potential

The extension to a many-molecule system is achieved by incorporation of a van der Waals

(vdW) potential, in this case exponential-6 Buckingham, between each pair of oxygens:
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UvdW
OO = LOO

[
6θ6η−7 exp(η − θsOO)− (sOO)−6

]
(3.34)

Such interactions have their origins in electron exchange and correlation and are not wholly

independent from electrostatic interactions. From quantum mechanics, we know that the

attractive correlation energy between two sites is approximated by the London formula [103]:

u12 = −3

2
α1α2

u1u2

u1 + u2

r−6
12 (3.35)

where α1and α2 are the site polarizabilities of sites 1 and 2 respectively, and u1 and u2 are

the respective energies to promote an electron from an s to a p orbital. These values can be

derived from our Coulombic submodel, and in particular qci and γi parameters (e.g. Eq. 3.71

below), which means that independent parameters do not need to be derived at least for

the attractive part of the vdW potential. LOO is a fixed parameter that depends on oxygen

site Coulombic parameters (given in Table 3.1). The shape of the repulsive part of the vdW

potential is controlled by dimensionless parameters θ and η (also given in Table 3.1). The

above expression (Eq. 3.35) has been tested (Fig. 3.2) by comparing to ab initio results for

molecular dimers.

If one wants to compare the exp-6 dispersion potential to an approximating Lennard-

Jones potential, the corresponding energy and distance parameters are

σOO = 2−1/6ηθ−1γ−1
OO (3.36)

εOO = (η − 6)η−7θ6LOO (3.37)

The force on particle due to the vdW potential is given by the negative gradient of the

vdW:

FO = −
(
∂UvdW

OO

∂rO

)
(3.38)
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Table 3.1: List of model parameter values.

Parameter Value

qcO 1.02 |e|
γO 14.47 nm−1

qcH 0.4238 |e|
γH ∞ nm−1

λO 0.1584
D1OH 300 kJ/mol
D2OH 315 kJ/mol
aOH 88.0 nm−1

reOH 0.102 nm
DHH 5 kJ/mol
aHH 50.0 nm−1

reHH 0.161 nm
Aang 1500 kJ/mol
βang 15.0 nm−1

θset 107◦

LOO 1600 kJ/mol
θ 4.25
η 16.0

3.3 Ewald Sum

The Ewald sum is an efficient way to handle long-range Coulombic interactions in a periodic

system [104]. The basis for the Ewald sum is to temporarily replace each site charge-shape

function ρi with one that has the same long-range interaction behavior. The cell potential

due to the modified charge density is obtained from Poisson’s equation, and is solved as a

Fourier series in reciprocal space. If the replacement function ρri is smoother or more diffuse

than the original ρi, it can more accurately be described by a Fourier series, leading to less

computational expense. In a typical simulation, this means replacing point charges with

Gaussian diffuse charges of the same magnitude. The Fourier series calculates smoothly

varying long-range interactions accurately, but is less accurate for short-range interactions,

due to finite truncation of the series as well as the fact that the original charge-shape function
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has been modified. Therefore, a short-range (real-space) interaction between sites must be

made to get the correct total potential of the cell.

In the present case, the traditional Ewald sum must be modified to account for the

nonstandard original charge-shape functions. The criterion we use is that ρri and ρi should

have the same total charge magnitude, dipole moment, and modified quadrupole moment.

As in a conventional Ewald sum, ρri is based around a Gaussian charge distribution. We

additionally add terms to generate dipoles and quadrupoles akin to ρi (Eq. 2.2). The result

is:

ρri (r) =

[
qci + qvi

(
1 + 2

√
2γ−1

i α2
Ebi · r

)2
]

(2π−1α2
E)3/2 exp(−2α2

Er
2) (3.39)

Here αE is the Ewald convergence parameter. It is analogous to γi but smaller in magnitude.

In our Ewald framework the Coulombic potential of the system includes three pieces:

Ucoul = U s + U c + U r (3.40)

where, U s (the short-range potential) and U c (the correction potential) are both calculated

in real space. The short-range potential is based on the full Coulombic interaction between

sites in which pair distance rij is less than cutoff rcut:

U s =
1

2

rij<rcut∑
i,j

qviC
vv
ij q

v
j +

rij<rcut∑
i,j

qviC
cv
ij q

c
j +

1

2

rij<rcut∑
i,j

qciC
cc
ij q

c
j +

∑
i

qvi φ
0
i (3.41)

The reciprocal potential is designed to account for all long-range interactions (rij > rcut),

including interactions between sites in the central cell and sites in the surrounding image

cells. Using Fourier transforms, the interaction between two sites i and j can be expressed

as:
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urij(rij) =

ˆ ˆ
ρri (r1)

1

|r1 − r2 − rij|
ρrj(r2) dr1 dr2

=
1

V

∑
h

ρ̂ri (h)
4π

h2
ρ̂rj(−h) eih·rij (3.42)

The first line of the equation is the real-space expression for the Coulomb energy between

two distributed charges at centers ri and rj , where distribution functions ρri and ρrj are

given relative to the respective centers. The second line of the equation is the corresponding

Fourier series representation of the pair energy, obtained by the convolution theorem and

Fourier transforms of functions such as:

ρ̂ri (h) =

ˆ
ρri (r) e−ih·rdr (3.43)

Exponential quantity i is the imaginary number. Vector h is a reciprocal-lattice or wave

vector and for a cubic unit cell is given by:

h = 2πL−1n (3.44)

where vector n is composed of three independent integers: n1, n2, and n3. In Eq. 3.42 the

sum over h excludes h = 0, but otherwise includes all possible values of n1, n2, and n3. In

practice, one truncates the sum to h < hcut, based on the diminishing magnitude of terms

as h = |h| increases.

The reciprocal potential of the system is obtained by a double sum over the potentials

between all pairs of sites in the system. The double sum can be rearranged as follows

U r =
1

2

∑
i

∑
j

urij =
2π

V

∑
h 6=0

1

h2

[∑
i

ρ̂ri (h) e−ih·ri

][∑
j

ρ̂rj(−h) eih·rj

]
+ U r

0 (3.45)
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where U r
0 accounts for the missing term (h = 0) in the sum. Through a combination of

system-charge neutrality and the so-called tinfoil boundary condition, we can take U r
0 = 0.

The reciprocal-space sum in principal could describe all Coulombic interactions in the

system if ρri = ρi; however, this would not be computationally efficient. Thus, the charge

density used is instead as given in Eq. 3.40. The Fourier transform of the site charge density

in Eq. 3.40 is:

ρ̂ri (h) =
[
qi − ih · pi + 1

6

(
4α2

EI− h hT
)

: Q∗i
]

exp[−h2/(8α2
E)] (3.46)

where pi is given by Eq. 3.68 , I is the identity matrix of order 3, and Q∗i is given by

Q∗i =
3qvi
γ2
i

bib
T
i (3.47)

This expression can then be substituted into Eq. 3.45, with the provision that we omit

from the products the dipole-quadrupole and quadrupole-quadrupole interactions. This is

done to be consistent with the simplified Coulombic overlap integrals in Eq. 3.10. This

omission is fine as long as a corresponding change is made to U c. Following some natural

cancellation of imaginary terms and other algebra, we get

U r =
1

2

∑
h 6=0

Γ(h)uh(h) (3.48)
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The Eq. 3.48 gives us the expression for reciprocal energy of the system. This equation uses

some auxiliary functions that are listed below:

Γ(h) =
4π

V
h−2 exp[−h2/(4α2)] (3.49)

uh(h) = χ0c

[
χ0c − 2h · χ1s + (4α2I− h hT) : χ2c

]
+ (h · χ1s)

2 (3.50)

+ χ0s

[
χ0s + 2h · χ1c + (4α2I− h hT) : χ2s

]
+ (h · χ1c)

2

χ0c(h) =
∑
j

(qvj + qcj) cos(h · rj) (3.51)

χ0s(h) =
∑
j

(qvj + qcj) sin(h · rj) (3.52)

χ1c(h) =
∑
j

pj cos(h · rj) (3.53)

χ1s(h) =
∑
j

pj sin(h · rj) (3.54)

χ2c(h) = 1
3

∑
j

Q∗j cos(h · rj) (3.55)

χ2s(h) = 1
3

∑
j

Q∗j sin(h · rj) (3.56)

Note that uh accounts for the charge-charge, charge-dipole, dipole-dipole, and charge-quadrupole

interactions.

The correction potential in Eq. 3.40 is given by:

U c =
1

2

rij<rcut∑
i,j

qviC
vv′

ij q
v
j +

rij<rcut∑
i,j

qviC
cv′

ij q
c
j +

1

2

rij<rcut∑
i,j

qciC
cc′

ij q
c
j (3.57)

The correction terms is needed because U r (reciprocal potential) of necessity includes all site

pairs in the system, whereas the short-range term U s already includes the full interaction

between a subset of the pairs, namely those where rij < rcut. U c therefore removes this

spurious partial double counting of pair interactions.

The correction terms (Cvv′
ij , Cvc′

ij , Ccc′
ij ) of Eq. 3.57 can be derived from the first line of

Eq. 3.42 and correspond to the real-space version of the interaction between modified charges
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ρr. Because Eq. 3.39 is has a similar functional form to Eq. 3.1, the modified Cij values in

Eq. 3.57 can be derived from the original expressions of Cvv
ij , Ccv

ij , and Ccc
ij by sequentially

replacing γi ←
√

2αE, γij ← αE, and b
′
i ←
√

2γiαibi in Eqs. 3.10–3.12, and are as follows:

Cvv′

ij = α



2√
π

(1 + 1
3
b
′2
i ) if i = j

f0(s′ij) +
[
2∆′ij + 2∆′ji + 2D′ij − 1

2
(b

′2
i + b

′2
j )
]
f1(s′ij) if i 6= j

+
[
∆

′2
ij + ∆

′2
ji + 4∆′ij∆

′
ji

]
f2(s′ij)

(3.58)

Ccv′

ij = α


2√
π

(1− 1
6
b
′2
i ) if i = j

f0(s′ij) + (2∆′ij − 1
2
b
′2
i ) f1(s′ij) + (∆

′
ij)

2 f2(s′ij) if i 6= j

(3.59)

Ccc′

ij = α


2√
π

if i = j

f0(s′ij) if i 6= j

(3.60)

The correction potential is applied in real space between the same set of pairs as the short-

range potential Us. Taken together, Ur − Uc fully cancels out any interactions between ρr

for rij < rcut and thus only includes long-range pair interactions and need not be calculated

as frequently as Us. This is the basis for a multiple-time step scheme used with this model,

which is described in section (3.4.2).

To calculate the reciprocal forces on charge, particles, and charge shape, we use the

following formulations. The reciprocal force on charges is given by:
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Fqr
i =

∂U r

∂qvi

=
∑
h6=0

Γ(h)
[
(χc1i + χc2i ) cos(h · ri) + (χs1i + χs2i ) sin(h · ri)

]
(3.61)

The reciprocal forces on position is given by:

Fr
i = −∂U

r

∂ri

=
∑
h6=0

Γ(h) h
{

[χc1i (qvi + qci ) + χc2i q
v
i ] sin(h · ri)− [χs1i (qvi + qci ) + χs2i q

v
i ] cos(h · ri)

}
(3.62)

The reciprocal forces on b-values is given by:

Fbr

i = −∂U
r

∂bi

= −
∑
h6=0

Γ(h) qvi

{[
(h · χ1c + χ0s)

√
2γ−1

i h + χ0cγ
−2
i (4α2bi − (h · bi) h)

]
cos(h · ri)

(3.63)

+
[
(h · χ1s − χ0c)

√
2γ−1

i h + χ0sγ
−2
i (4α2bi − (h · bi) h)

]
sin(h · ri)

}

where,

χc1i (h) = χ0c − h · χ1s + 1
2
(4α2I− h hT) : χ2c (3.64)

χs1i (h) = χ0s + h · χ1c + 1
2
(4α2I− h hT) : χ2s (3.65)
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χc2i (h) = (h · χ1c + χ0s)
√

2γ−1
i h · bi + 1

2
χ0cγ

−2
i [4α2b2

i − (h · bi)2] (3.66)

χs2i (h) = (h · χ1s − χ0c)
√

2γ−1
i h · bi + 1

2
χ0sγ

−2
i [4α2b2

i − (h · bi)2] (3.67)

3.4 Results and Discussion

3.4.1 Pairwise model parametrization

The parameters of the model were adjusted to reproduce lone water polarizability, dipole

moment, and the quadrupole moment, in addition to other properties.

The three mentioned properties can be calculated in terms of model parameters. The

model dipole moment for each site due to the point dipole bi, is given by:

pi =

√
2qvi
γi

bi (3.68)

For each site,pi is the dipole contribution from the sp-hybrid character of valence charge.

To this is added the contribution from the gross separation of charge. Thus, the total dipole

moment of water molecule is given by:

ptot =
∑
i

pi +
∑
i

(ri − rcm) (qvi + qci ) (3.69)

where rcm is effectively the location of the central oxygen and the summations are over all

atoms associated with a single water.

The quadrupole moment for our charge distribution model for a site i in terms of the

model parameters, is given by:

Qi =
3qvi
γ2
i

(
bib

T
i +

1

2
I

)
(3.70)
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Note this differs slightly from Q∗i defined above. An analytical expression for the electronic

polarizability for a single site, αi can also be derived in terms of model parameters:

αi =
−qvi

γ3
[
− 1

3
√

2π
(qvi + |qe|) + 2

3
√
π
qci + 1

2
a0γi|qe|

] (3.71)

For a water molecule, Qtot
i = QO and αtot = αO because qvi = 0 for the hydrogen sites. This

expression for α also neglects polarizability due to bond stretching and angle variations.

Since this was an under-constrained problem, meaning that the number of properties

being matched were less than the number of parameters, we looked at some additional prop-

erties. The present model has the ability to predict charge distribution and energies for the

cationic and anionic forms of a molecule, which allows for the prediction of electron affin-

ity and ionization energy. For parametrization, these properties were also matched. The

model parameters are listed in Table 3.1. For the listed parameters, the corresponding elec-

tron affinity is -30 kJ/mol and the ionization potential was 1175 kJ/mol. The experimental

values of these quantities are -16 kJ/mol and 1216 kJ/mol respectively [105, 106].

The potential energy scan (PES) of two approaching water molecules was also studied,

and was also considered during the parametrization process. The two water molecules were

allowed to approach towards each other in different orientations and the corresponding PES

was plotted. Fig. 3.2 shows the PESs as predicted by model vs the ab initio PES. Fig. 3.2(a)

shows the most important path of approach of two water molecules and the model under-

predicts the attraction for this route. It is to be noted that the model is capable of exactly

matching the ab initio data, but when we used parameters corresponding to this case in

our MD simulations, the resulting bulk-water density was high and the heat of vaporization

was also off. Since our aim was to develop a model that works well in all systems ranging

from gas-phase to bulk liquid, we decided to put in additional repulsion, which led to minor

mismatch between the model-predicted and ab initio PES, for this route.
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The parameter space was thoroughly explored prior to settling on the given set of pa-

rameters. It was observed that two different types of sets of parameters gave good matches

for the properties used for parametrizing the model. The characteristic difference between

the two sets was the relative amount of contribution the two components (gross-charge sep-

aration and point dipole ) make to the net dipole moment (which is the sum total of the

two components). The relative amounts of contribution of each component can be varied

by varying the parameters of the model. Among the two sets of parameters, one resulted

in a higher contribution to dipole moment from the gross charge separation and the other

resulted in a higher contribution to dipole moment from the point dipole. The latter case

resulted in higher b-values. The underlying assumption of the model was that the b-values

are small (see Section 3.2.1), which enabled us to neglect the higher order terms in Eq. 3.3

and Eq. 3.4. Hence, the latter case was an unfavorable one and this was confirmed when

the model was used in the MD framework. The resulting structure of water obtained from

the MD simulation was incorrect and the b-value did not seem to be converged. Thus, we

selected the parameter set that resulted in a larger contribution to dipole moment from the

gross charge separation.

3.4.2 Simulation details

A previously described MD simulation code [107] was modified to incorporate the new water

model (see Appendix C). 256 oxygen pseudo ions and 512 hydrogen pseudo ions were simu-

lated in a box at constant pressure simulations and at 298 K temperature. Periodic boundary

conditions (PBCs) were used. The simulations were performed employing a multiple time

step algorithm, with a time step of 0.1 fs, and secondary time step of 8 fs. The cutoffs used

in this method for primary and secondary neighbors were, respectively, 0.65 nm and half the

box length (L = 2 nm). The temperature of system was kept constant using a Noose-Hover

thermostat, and the same was used for charge- and dipole-dynamics (T = 5 K). Long range
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Figure 3.2: Water-Dimer potential energy scans. The water molecules are approached in dif-
ferent relative orientations and the model energy is matched with the corresponding ab initio
energy. The ab initio calculations were performed at MP2/6-311(++)G (3df,2pd).

Coulombic interactions were handled using the Ewald summation method. A typical run

involved 0.05− 0.1 ns for equilibration, and 0.5− 1 ns of production.

In our molecular dynamics simulations, since we do not have any rigid bonds, we needed

a way to keep track of the hydrogen pseudo-ions that associate with the oxygen pseudo-ions

to form water molecules. To this end, we employed a neighborhood list to keep track of

the hydrogen neighbors that an oxygen ion is associated with. This list was updated every

0.2 fs. Another neighbor list exclusively kept track of the nearest oxygen neighbor of each

species, and the information was used to exchange charge between species whenever needed

(as described in section 4). This list was also updated every 0.2 fs.

In order to save time, our MD code uses a multiple-time step scheme, which is based on

the fact that the long range forces do not need to be updated as frequently as the short range

force. The code uses a multiple time scale method as follows: the shortest range forces (of

order of intramolecular distance) are updated every time step (0.1 fs), other short range forces

(< 0.6 nm distance) are updated every other time step (0.2 fs), and the long-range forces (>
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0.6 nm) are updated every 8 fs. Also, to save time, the vdW and central force potentials and

forces were completely tabulated, along with some parts of Coulombic potentials.

The feedback constants associated with the barostat and thermostat (see Section 2.1.5)

are respectively: QP = 0.7M/L and QT = 0.01L2M/NkB, where M is the total mass of the

particle, and L is the cell length and kB is Boltzmann’s constant. For solving the equations

of motion for the valence charges (qv) and the charge-shapes (bi), we assign some fictitious

masses to the respective degree of freedom. These masses were chosen to be as small as

possible, so charges will rapidly equilibrate, without requiring an inordinately small time

step to maintain stability. These masses were mq = 108kBT q(δt/|qe|)2 and mb = 3.2, where

δt is the time step, and T q = 5 K is the set point for the charge “temperature.”

3.4.3 Structural and thermodynamic properties of bulk water

In order to assess the liquid structure resulting from our water model, first we examined

the pair correlation functions or the radial distribution functions (RDFs) for all three atom

pairs in our bulk water simulations (OO,OH, and HH). Fig. 3.3 shows the RDFs for the

three pairs plotted against the experimentally obtained RDFs. For the OO pair, the first

peak represents the first coordination shell of a water molecule. In good agreement with the

experimental OO RDF first peak, it is located at 0.28 nm. The first OH peak is located at

0.1 nm, and it represents the hydrogen that is bonded to oxygen, while the first HH peak

represents the other hydrogen that belongs to the same molecule, and is located at 0.16 nm.

In the case of all three pairs, the model curves show modestly greater structuring than the

experimental curves, as shown by the first-neighbor peak heights and the dips between the

first and second neighbor shells. Furthermore, the model peaks corresponding to the second

shell of water neighbors are slightly displaced to greater distances. This evidence suggests

that the neighboring water molecules are “locked in” a little tighter than they should be.

This causes the molecules in bulk to not move as freely as they would in a real system.
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Figure 3.3: Model pair correlation function vs. experimental for Oxygen-Oxygen, Oxygen-
Hydrogen, and Hydrogen-Hydrogen pairs

While the model RDFs are reasonably accurate, we nevertheless made multiple attempts

to remedy this overstructuring effect by weakening the strength of interactions between

atoms, including the CFM potential between oxygen and hydrogen. Such changes always

caused problems with bulk water density or with anomalous autoionization of water, in

which adjacent water molecules would spontaneously split into H3O+ and OH− species. To

our knowledge, all other models based on CFM have similar problems in matching the ex-

perimental RDFs. Because we considered the presence of autoionised water a significant

misrepresentation of the actual liquid water system, we settled on the current set of interac-

tions, even if they did not match the experimental RDFs as well as some other water models

do.

Additional structural analysis was done by observing how the geometry of water molecules

changes in course of a long simulation. As described previously, an oxygen atom, and its two

nearest hydrogen neighbors were considered to constitute a water molecule. Over time, we

kept track of the geometry of this water molecule, and found that the average bond length

of the OH bond was 0.1002 nm and the average bond angle was 110.61◦. In a gas-phase

61



simulation, the average bond length was around the same, while the average bond angle was

around 114◦. This increase in bond angle is consistent with experimental observation that

the HOH angle in gas-phase is greater than in liquid phase [108]. The SPC/E model has a

fixed bond length of 0.1 nm, and a fixed bond angle of 109.47◦.

The Density of water calculated by our NPT MD simulations was 0.996 g/cm3, which is

in excellent agreement with the experimental value of 0.997 g/cm3. The value obtained for

bulk modulus (given by the correlation between pressure and volume fluctuation) from our

simulations was 2.06× 109 Pa , which was in good agreement with its experimental value of

2.2 × 109 Pa. Precise prediction of these properties, along with the fact that we have 100%

neat water (no auto-ionization), RDFs that are in decent agreement to the experimental

values, and close to the right geometry for the water molecules, give an indication of the

quality of the simulated liquid structure.

3.4.4 Transport properties of bulk water

Since our aim is to study proton transport, it was important to us to study how well the

model is doing in terms of prediction of dynamic properties of bulk water. The transport

properties we looked into were self-diffusion coefficient and viscosity. Ionic conductivity of

the system in presence of excess proton will be studied as a part of a detailed PT study, to

be published at a future date.

For calculating these transport properties, we used the Green-Kubo approach, which

relates the value of the time derivative of a mechanical variable at a specific time, designated

as time zero, to its value at some later time. Fig. 3.4 shows the velocity correlation function

(VACF) for oxygen sites, which is the integrand in the formula used to calculate the self-

diffusion coefficient (DO) in our MD simulation. The diffusivity is given by:

DO =

ˆ ∞
0

〈vO(t) · vO(0)〉dt (3.72)
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The VACF tells us how strongly the velocity of particle is at time t, to what its value

was at a previous time t = 0. Note that at t = 0, the VACF is a high because no time

has elapsed and the velocities are identical. As time proceeds the value of the VACF in

Fig. 3.4, expectedly, decreases as the correlation decays. This is because the particle under-

goes collisions with other particles which change the direction and magnitude of its velocity

from what it was originally. Also as would be expected for any dense fluid, the correlation

becomes negative, because due to numerous and rapid collisions with other atoms/ions, ve-

locity reversal takes place. After a long time, the VACF decays to zero as the velocities

become uncorrelated.

The self-diffusion coefficient is an important property to be matched, because it is solely

responsible for vehicular diffusion. The vehicular diffusion of water is expected to be around

the same as a hydronium ion, so if the self-diffusion coefficient is low, it leads to a lower

PT rate prediction because the PT rate is the sum of vehicular and structural diffusion. As

shown in Table 3.2, our model underpredicts the diffusion coefficient by almost 30%. This

may be a consequence of an overly structured OO RDF, as described in previous section. The

molecules do not have sufficient freedom to move around, which leads to a lower self-diffusion

coefficient. Hoffmann and Bresme have also reported a lower self-diffusion coefficient and

our model does a better job than these two models.

For viscosity (η), the shear stress auto correlation (SACF) function, shown in Fig. 3.4

was used. SACF is the integrand in the Green-Kubo formula for η :

η =

ˆ ∞
0

V

kBT
〈Pxy(t) · Pxy(0)〉dt (3.73)

Here V is the average cell volume, T is the temperature, and kB is the Boltzmann con-

stant. As is consistent with an over-structured OO RDF, and a low self-diffusion coefficient,

the viscosity predicted by the simulation is over-predicted by about 11%. It is to be noted

here that, within the current framework, it is possible to improve the prediction of transport

properties if we relax the constraint of achieving the exactly right density. Specifically, if we
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(a)

(b)

Figure 3.4: (a) The velocity auto-correlation function, used to calculate self-diffusion coeffi-
cient (b) The shear stress auto-correlation function, used to calculate viscosity

let the density be too low by 2.7%, we can increase the self-diffusion coefficient to around

1.9×10−5cm2/s and the viscosity to around 0.91 cP.

3.4.5 Dielectric properties

The relative dielectric constant ε of a material is the ratio of material’s polarization response

to that for a vacuum. It is an important measure of the accuracy of a model, but its

calculation can be quite difficult due to its dependence on the fluctuations of the net system

dipole moment (M). ε is given by:

ε = ε∞ +
4π

3kBTV

[
〈M2〉 − 〈M〉2

]
(3.74)

This formula expresses the fact that the dielectric constant is proportional to the variance

of the cell dipole moment. The value of ε generated this way converges slowly, and getting

a reliable value generally requires much longer simulation times than for thermodynamic
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properties. Here ε∞ is the infinite-frequency dielectric constant. The experimental value of

ε∞ = 1.79 [109] was used.

Since there are no rigid bonds in our simulations, the use of PBCs complicates the

calculation of dipole moment. That is to say, if one or both of the constituent hydrogens of a

water molecule are on the opposite side of the box from the oxygen, a standard calculation of

cell dipole moment would include an anomalously large dipole contribution from this water

molecule. In order to correct for this, PBCs were modified so that the constituent hydrogens

of a water molecule get transferred to the other side upon crossing a cell boundary only

when the central oxygen is also transferred. Thus the hydrogens remain with their associated

oxygen at all times, and the anomalous dipole moment is eliminated.

As listed in Table 3.2, the dielectric constant of water is under-predicted by about 7%.

The average molecular dipole moment in bulk water for our model is also a good match with

experiment, though there is considerable uncertainty on the experimental liquid dipole value

[110]. Dielectric constant and molecular dipole moment are tightly coupled properties, and

yet many popular water models are not able to simultaneously match both properties to the

same degree as our model does. As a polarizable model, our model by design also matches

the gas-phase value of water dipole, 1.85 Debye [110].

3.5 Conclusion

We have developed a water model that captures reasonably accurate electrostatic interac-

tions, both at short and long distances. Molecule polarizability is implemented by the use

of fluctuating charges, as well as fluctuating dipoles. This model was parametrized, as much

as it was possible, from the ab initio data, and was then implemented into MD simulation.

Novel time saving techniques like a modified Ewald sum specific to diffused charges and dif-

fused dipoles and use of multiple neighborhood lists, were applied in MD simulation to make

the code efficient. The model correctly avoids any significant amount of autoionization of
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Table 3.2: Properties of liquid water models and experiments at ambient temperature

Model T ρ −U vap P D ν µ ε

Exp[111–116] 298 0.997 9.92 0.00 2.30 0.89 2.6 78.3
Our Model 298 0.996 9.86 0.00 1.56 0.99 2.72 72.4

Hoffman CFM[89] 298 1.00 1.42
Bresme CFM[87] 298 0.997 10.82 0.12 1.45 1.98 77

MSEVB[69] 298 1.00 2.9 2.7
ST2[117] 298 0.997 8.69 0.62 2.9 2.35 69

SPC[118–120] 298 0.963 9.01 -0.00 3.3 0.40 2.27 68
SPC/E[102, 120] 298 0.998 9.89 -0.08 2.14 0.73 2.35 67
TIP4P[121, 122] 298 1.002 10.10 0.00 2.8 0.49 2.18 53

The properties listed in the table are: temperature T (K), density ρ (gm/cc), vaporization
energy U vap(KJ/mol), pressure P (Kbar), self-diffusion coefficient D (×105 cm2/s), viscosity
ν (cP), dipole moment µ (Debye), and relative dielectric constant ε. Blank entries indicate
no results provided in original sources.

water molecules, a problem found in other water models based on the central force potentials

that allow bond formation and breaking.

Simulated bulk water properties were in reasonable agreement with the experimental val-

ues. The density predicted by the simulations matched almost exactly with the experimental

value. The diffusion coefficient was low, which was in accordance with the over-structured

RDF. The dielectric properties were also in good agreement with the experimental values.

The water model described here constitutes the basic framework of the methodology

to study reactive systems. In the next chapter, the model’s application to simulate PT is

demonstrated.
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Chapter 4

MD Simulations of Proton Transfer

4.1 Introduction

In this chapter is given a description of the implementation of proton transfer (PT) into

the water model that was developed in the previous chapter. The basic concepts involved

in modeling of the PT process are discussed in detail and the approach that is used in this

work to realistically model the PT process is explained. For a more realistic description of

an actual aqueous electrolyte, the model is then extended to include multiple excess protons

coupled to chloride counterions.

To simulate PT in bulk water, it is essential that the force-field used to model the process

must be able to accurately capture polarization, solvent effects, and the energy barriers for

the PT reaction. In addition, since the model is to be used in a classical MD framework

which does not allow for bond breaking and formation, the model must enable cleavage of

covalent bonds under a consistent set of rules. All of these phenomena and characteristics

of the bulk water system must be accurately represented under the additional constraint

of getting the right thermodynamic and transport properties. Also, the quantum nature of

protons must be incorporated in the model in some way.

Although incorporation of all these effects in a single force-field is a daunting task, there

are ways to reproduce some the desired characteristics of the bulk water system using meth-

ods based on classical physics only. These methods entail a realistic representation of the

system using a firm (and sometimes complicated) mathematical framework to accurately
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depict various effects and phenomena. For example, polarizability may be captured reason-

ably well via a better description of charges and allowing for the charges to fluctuate. In

the present work this was accomplished via the use of Gaussian-based charge densities with

inherent dipole and quadrupole moments, and allowing the point dipoles placed on oxygen

sites to fluctuate (see Chapter 3). Not only did our model capture the polarizability well, it

also gave reasonably good matches for structural, thermodynamic, and transport properties

of bulk water.

Solvent effects on the PT process may be incorporated intrinsically or extrinsically in

the system Hamiltonian. In the present work, all interactions were dealt with intrinsically.

Due to the small mass of a proton, some quantum effects also become prominent. Quantum

tunneling (QT) is one such effect that may play an important role in the PT reaction. QT

refers to the quantum mechanical phenomenon where a particle tunnels through a barrier that

it classically could not surmount. In a classical MD simulation, QT may be approximated

by using an effective energy barrier that is less than the true energy barrier for the PT

reaction. A related quantum effect that may play an important role is delocalization of

the proton. Delocalization refers to the wave-like character of the proton, such that the

protonic charge is distributed over multiple locations. For instance, the thermal de Broglie

wavelength for a proton at 298 K is 0.101 nm, which is significant. This could lead to a

proton being simultaneously linked to multiple oxygens in the hydrogen bonded network

during the PT event. There is no direct way to account for this in classical MD, but it may

be approximated by reducing the PT reaction energy barrier and possibly making diffuse

the proton core charge density. In the present chapter, we will demonstrate that our model

represents the barrier heights of the PT reaction in the gas phase adequately well. Inclusion

of a factor in the interaction energy between sites (see Eq 3.2) and minor changes to the

model parameters to adjust the PT rate was our way of reducing the PT reaction energy

barrier and incorporating the quantum effects.
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The most significant challenge in modeling PT is allowing for bonds to break and form

in classical MD simulations. Various groups have addressed this problem and have proposed

different ways of dealing with breaking and formation of covalent bonds. A detailed account

of such force fields was presented in Chapter 2. Only the core concepts involved in oxygen-

hydrogen covalent bond cleavage and formation will be briefly compared and contrasted

here.

Voth and coworkers [69], in their MS-EVB force-field, allow the breaking and formation

of bonds based on a weighted superposition of most probable bonding states. The nuclei

remain at the same position and the weights on different states are varied to simulate bond

breaking and formation. Most probable bonding states were selected based on the distance

between a hydronium ion and the water molecules and the number of water molecules in the

first coordination shell.

Goddard and coworkers’ ReaxFF model [77] uses interatomic distances to calculate bond

order and correlates it to bond energy. Change in bond-orders is then used to simulate

breaking and formation of covalent bonds, which is reflected in change in system energy

via the correlation. Over- and under-coordination is penalized to keep the representation

physically accurate.

Keffer and coworkers model for the PT reaction [86] entails the satisfaction of geometric

and energetic triggers before a PT event can take place. Once the proton has transferred,

the methodology requires local equilibration of the molecules in the vicinity of the donor

and acceptor pair. The drawbacks of these methods, as discussed in Chapter 2, lie either in

extension to new chemistries (inclusion of different species in the system, like a solid catalyst),

parametrization (huge amount of ab initio data required), or computational expense.

The bond breaking and formation in the present work is accomplished by the use of a

central force formalism, which eschews rigid bonds and holds the atoms of a molecule in the

right geometry by the use of soft potentials. Such a framework allows the bonds to break
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and form naturally. Such a description is a more realistic representation of an actual system

and the approach ensures that the PT process occurs under a consistent set of rules.

A problem that arises while transferring a proton between oxygens is that the process

should involve a net charge transfer of +1|e| but most water models (current work included)

do not have a total charge of +1|e| on a proton or hydrogen site. So a mechanism is

required that ensures the right amount of charge is exchanged between the accepting water

molecule (which becomes a hydronium after accepting a proton) and the donating water

molecule (which was a hydronium). Specifically, at the same time as the PT, we transfer

electronic charge between the two oxygens involved, such that the net charge transferred is

1|e|. However, in the MD framework we cannot suddenly and/or manually alter the charge

on the oxygen sites, as it leads to instabilities. Thus, there must be a natural physical

methodology for charge transfer. The methodology used in this work transfers charge based

on differences in electrochemical potential and distance between the two oxygen sites.

In an actual bulk water system, the protons will be accompanied by the presence of

an anion or a counterion (thus making the system a dilute acid solution). Thus a realistic

simulation of the system must include a counterion. Some models choose to ignore it while

others consider it as a non-polarizable negatively charged entity. In the current work, a

counterion is included in the simulation and it is allowed to polarize to allow a more accurate

description of the actual system.

In the following sections, first, a description of the charge transfer process accompanying

the PT process is given. Next, we discuss how the model potential energy surface (PES)

compares with ab initio PES for PT between two water molecules. Then, we discuss the

implementation of the model into the MD framework in order to study PT in bulk water,

with a single excess proton. The methodology is then extended to studying PT with a single

excess proton and a counterion. Lastly, we discuss the application of model for studying PT

with multiple excess protons.
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4.2 Charge Transfer Accompanying the PT Reaction

As mentioned above, since there are no rigid bonds binding the O and the H sites, the PT

occurs naturally whenever the electrochemical environment around the sites, in vicinity of

excess protons, is favorable. As mentioned previously, the PT event needs to be accompanied

by the electronic charge transfer process, because the PT event must involve a net charge

transfer of +1|e|, and since qcH = 0.4238|e| (see Table 4.2), a net electronic charge−0.5762|e|

must flow from the proton acceptor oxygen to the proton donor oxygen (see Fig. 4.1). To

model this electronic charge transfer, we use electrostatic driving forces underlying our model.

Each site has associated with it a chemical potential for charge, ϕi, which is simply the

derivative of the potential energy U , with respect to the valence charge on the site, qvi :

ϕi =
δU

δqvi
=
∑
j

Cvv
ij q

v
j +

∑
j

Ccv
ij q

c
j + φ0

i (4.1)

This chemical potential is the spatially weighted average of the electric potential field about

site i, with weight given by the Gaussian distribution in Eq. 3.1. This quantity encapsulates

the electrostatic environment around the site i, and whenever there is an excess proton in the

vicinity of a site, this is reflected in the ϕi value. Electrostatic potential ϕi is the appropriate

driving force for charge transfer between any adjacent sites, in this case nearest oxygens

involved in the PT. The charge flow rate (q̇vi ) is modulated by the following expression:

q̇vi = − ϕi − ϕj
AR exp (sOO)

+
qv∗i − qvi

τc
(4.2)

The denominator of the first term on the right is a distance-dependent resistance for the flow

of charge. AR is a constant pre-exponential factor and sOO = γOOrOO is the dimensionless

distance between the two O sites (i and j) involved in the valence charge transfer.

Although this approach, in a general way, ensures that the charge flows in the right

direction when a PT event is taking place (or is about to take place), it does not ensure that

a net charge of exactly +1|e| will be transferred, which can create problems over long time
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Figure 4.1: Proton transfer event accompanied by effective electron transfer from acceptor
to donor oxygen site

scales. In order to fix this problem, we included a second term in Eq. 4.2 that is an indirect

mechanism to slowly correct the net charge transferred. In particular, the oxygen site valence

charges asymptotically approach their design values of ofqv∗i = −1.2914|e| for a hydronium ion

and qv∗i = −1.8676|e| for a neutral water molecule. The parameters were adjusted empirically

in order to get numerically stable and reasonable rates of charge transfer:AR = 30 J ps
mol |e|2 and

τc = 300 ps.

4.3 PES of PT in Zundel ion

Fig. 4.2 shows the potential energy scan of transfer of a proton moving between two isolated

water molecules, with the proton moving along the line joining the two oxygens. In the

Figure, rOO is the distance at which the two oxygens and held at as proton moves from one

to the other. In absence of any external field, we get a symmetric double-minimum curve.

The barrier height of the symmetric PT event depends upon the distance between the two

oxygen atoms. With our model, we have reproduced the barrier height for PT at different

O-O distances and, as shown in Table 4.1, it was in good agreement with the ab initio data.

When an electric field is applied along the PT axis, as shown in Fig 4.2, the curves

distort and shift so as to make the state where proton is with the acceptor oxygen as more

stable. This shows that the model responds to an external electric field, and during the PT

event, the proton chooses to be with that water molecule around which the electrochemical
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(a)

(b)

Figure 4.2: Potential energy surface for proton transfer along the axis joining the two oxygen
sites (a) Symmetric case, (b) Electric field applied along the PT axis.

environment is more favorable. This characteristic of the model is important because in the

bulk phase, the excess proton is under the influence of strong electric fields, and it will follow

a PES that must be accurate for the PT mechanism.

4.4 MD Simulations with One Excess Proton

4.4.1 Preliminary studies

The PT scheme was implemented in an MD simulation. 256 water molecules were simulated

in a 2 nm box with one excess proton. The simulations were set-up in a similar manner as the

bulk water simulations, and were run for 16 ns of production time, after 1 ns of equilibration.

The subsequent results from the MD simulations were encouraging. The density and RDFs
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Table 4.1: Model predicted activation energy vs. ab initio activation

OO Distance (nm) Ab initio Activation Energy (kJ/mol) Model Activation Energy (kJ/mol)

0.25 0 0
0.26 5 6
0.28 28 30
0.30 67 71

for the three atom pairs, expectedly, did not change in the presence of an excess proton.

Next, we examined the geometry of hydronium ions during the course of the simulation.

The average OH bond lengths were found to be 0.101 nm, and the HOH bond angle was

113◦. For comparison, in a gas phase simulation of an isolated zundel ion, these values were

0.101 nm and 116◦, respectively. In the course of our MD simulation, multiple PT events

including numerous barrier-recrossing events were observed. The preliminary estimate of PT

rate in the bulk simulation was 0.15 ps−1, determined by dividing the number of PT events

by the total simulation time. This rate is roughly a factor of 5 lower than the experimental

value [123].

4.4.2 Further analysis of PT

4.4.2.1 Diffusion coefficient of excess protons

The method to calculate PT rate in bulk simulations in our preliminary studies was based

on gross average of the number of PT events observed. A systematic method to study

the diffusion of a proton, via both the structural and vehicular diffusion, was required for

a detailed analysis. In order to accomplish this, we used a modified Green-Kubo (GK)

approach. In the GK approach, as described in Section 3.4.4, a velocity correlation function

(V CF ) needs to be calculated in order to calculate the diffusion constant of a species. For

this purpose, we need to keep track of the velocity of the excess protons at various time

intervals. In an MD simulation for the PT process, it is difficult to keep track of the excess

proton, because once a proton attaches to a water molecule to form a hydronium ion, all
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three hydrogen atoms are now equivalent and any one of them can be transferred to an

acceptor oxygen when a PT event occurs.

In order to get around this problem, instead of keeping track of the excess proton, we keep

track of the oxygen that has the excess proton on it (that is, the oxygen of the hydronium ion).

When a PT event occurs and the proton transfers over to the other oxygen, we start tracking

the newly formed hydronium ion. There is a step change in the V CF because of the PT

event, but the GK method is robust enough to handle discontinuous displacements because

it integrates over the V CF curve. The following equations delineate the methodology:

V CF = 〈vrel
Pr(t) · vrel

Pr(0)〉 (4.3)

where,

vrel
Pr(t) = vhydr

O (t) +
∆rdon−acc

∆t
(4.4)

here, vrel
Pr(t) is the corrected velocity of oxygen associated with the excess proton at time t,

vhydr
O (t) is the velocity of the oxygen which forms the hydronium ion at time t, and ∆rdon−acc

is the distance between the donor and the acceptor oxygen atoms in a PT event. It is to

be noted that ∆rdon−accis accumulated over time before it is used in averaging. ∆t is the

sampling interval.

If a proton transfers back to its old (previously donor) oxygen, the recrossing event will

register as a negative of previous displacement, bringing the net sum of ∆rdon−acc contri-

butions to zero. Hence, if a proton transfers back and forth between two oxygen, only the

net displacement will be considered. With each recrossing event, a step change will be in-

troduced in the V CF , and as stated previously, the GK method can handle step changes.

Using the above V CF we calculate the diffusion constant in the same manner as we did in

Section 3.4.4.
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4.4.2.2 Results and discussion

With this modification to the methodology, we again simulated 256 water molecules with

one excess proton. Reader is referred to Appendix C for the MD code. The simulations

were set-up in a similar manner as previous simulations. After 16 ns of production time, the

thermodynamic properties of the system were, as expectedly, found to be the same as the

bulk water. The structural properties did not change either.

The V CF obtained from the simulation is shown in Fig 4.3. The PT rate based on the

V CF data was found to be 8.07×10−5 cm2/s, which was 13% lower than the experimentally

observed PT rate of 9.3×10−5 cm2/s. The contribution of vehicular diffusion (VD) to PT rate

was 1.60×10−5 cm2/s and the contribution of structural diffusion (SD) was 6.47×10−5 cm2/s.

The VD contribution was approximately the same as the diffusion contant for water. This is

expected because, since the mass of a water molecule and a hydronium ion is almost equal,

they are expected to diffuse at almost the same rate. As mentioned in Section 3.4.4, this

value is 30% too low, when compared to the experimental value of water diffusion constant.

The VD contribution, although consitent with the bulk water simulation results, is thus low.

The experimental value of SD, obtained by substracting the total diffusion constant and

the VD of water, is about 7.0 × 10−5 cm2/s. The contribution of SD obtained from the

simulations was only about 7.5 % too low, indicating that the simulations are able to mimic

bond breaking and formation with adequate accuracy. Also, this indicates that the height

of energy barriers for the PT reaction between a hydronium ion and the water molecule are

accurately represented by the model.

The net rate of proton transfer obtained by compared to Voth and coworker’s using the

MS-EVB model was 50% too low. With only 13% error in the PT rate, our model matches

the experimental value pretty well, although, the contribution of the VD is underpredicted.

Since the PT event is a rare phenomenon, we do not get adequate sampling to obtain a

smoothly converging VCF curve. This is the reason behind the anamolous dip in the VCF

curve at 1.4 ps, whereas one one normally expect a V CF curve to converge asymtotically
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Figure 4.3: The velocity auto-correlation function, used to calculate the proton transfer rate

to zero at long times. Multiple proton transport events seem to be occuring near that time

period. This sampling error is somewhat mitigated upon calculation of the running integral.

4.5 Inclusion of Counterion

One of the objectives of current study was to study the PT process in dilute acid solutions.

Hydrochloric acid (HCl) was chosen for the current study. In accordance with the central-

force methodology that has been used to describe the water molecules in our simulation, the

HCl molecule also does not have a rigid bond. Hydrogen and chloride ion were treated like

separate unbonded species and were held together with soft pairwise potentials.

An easy way to treat the chloride ion in a bulk MD simulation of PT is to consider

it non-polarizable, but we decided that a polarizable chloride ion will be a more accurate

representation of the actual system. So, a chloride ion in the simulation interacts interacts
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with other species via Coulombic and vdW interactions, and also, it has the ability to

polarize in response to the external stimuli. A detailed discussion of modeling of chloride

ion is presented in the following discussion.

4.5.1 Model for chloride ion

In order to model a chloride ion, the description of charge density on the chloride ion site

was kept the same as the other sites in the simulation. A positive core charge qcCl and the

inverse charge-width parameter γCl were used as site parameters. The chloride site has a

valence charge density of magnitude qvCl and a point dipole bCl. The chloride site interacts

with other sites in the system in accordance with the same Coulombic interaction potentials

as described in Section 3.2.1.

A central force formulation is used to describe close-range interactions between Cl−and

H+ionic species. For the sake of consistency, the functional form of these interaction poten-

tials were kept the same as those between oxygen and hydrogen species. The potential for

the Cl− − H+pair is given as:

UCFM
ClH (r) = D1ClH exp (2aClH (reClH − r))−D2ClH exp (aClH (reClH − r)) (4.5)

4.5.2 Results and discussion

4.5.2.1 Chloride ion model parametrization

As one would expect, the interaction between chloride ions and other species, particularly

hydrogen, must not be too weak nor too strong. In order to parametrize the model, we

first fitted the qcCl and γCl parameters in order to reproduce 10% of experimental gaseous

Cl−ion polarizability . Ideally we would have liked to fit it to a higher fraction of gaseous

ion polarizability, but when we did that, the chloride ion over-polarized when energy scans

of the ion were performed with other species (H2O and H3O+). Once we had the qcCl and γCl
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Figure 4.4: A comparison of ab initio PES and model PES for Cl− − H2O (a-c) and Cl− −
H3O+ (d,e) pairs. The orientation of water, hydronium ion, and the lone chloride ion for
different routes are shown next to the respective energy scan.

parameters, other parameters were adjusted to reproduce the energy scan data of Cl−− H2O

and Cl− − H3O+ pairs. The ab initio data generated for comparison was at MP2/6-311+G

(3df,2pd). Fig 4.4 compares the model PES and ab initio PES for the two scans. The

selected set of parameters, listed in Table 4.2, gave good agreement between the model and

ab initio data. Minor disagreements were allowed in order to match various other scan data

as described in the following discussion.

In addition to comparing the PESs for the two pairs, we also compared the PESs for

the cases when a proton is transferred between a hydronium ion and a chloride ion and also

between water and a chloride ion. This was done in order to determine how likely it was for

a chloride ion to accept/take a hydrogen from water and an excess proton from a hydronium

ion. If the chloride ion is able to break water molecules and hydronium ions by accepting a

proton, then it may have significantly undesirable effects on structural, thermodynamic and

transport properties of the bulk system and also on the PT process.

Fig. 4.5 compares the PESs for PT scans for the two cases. Fig 4.5(b) shows that both

the model and ab initio data predict that a chloride taking a hydrogen from water will be a
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Figure 4.5: A comparison of ab initio PES and model PES when (a) the excess proton is
pulled from hydronium ion to chloride ion (b) a hydrogen atom is pulled from the water
molecule to the chloride ion. In both cases r is the distance between oxygen and transferring
hydrogen. The orientations of the constituent species are indicated in the respective pictures.

very unlikely event. This is so because the corresponding configuration of a system where a

chloride ion is associated with hydrogen is an extremely high energy one. For the selected set

of parameters, the model and ab initio data for this case are in good agreement, except the

short-range repulsion for oxygen and hydrogen and chloride ion (i.e. short range repulsion

for the model is stiffer). Since the two pairs of species do not actually access the states

where they are so close (<0.07 nm), the steep repulsion should not have any affect on bulk

properties.

For the case of the PES for PT between a hydronium ion and a chloride ion, as shown in

Fig 4.5(a), the ab initio data predict that when a proton is near a chloride ion, the system

is more stable. This does not appear to be correct for aqueous systems because when HCl

is added to water, it strongly dissociates. This discrepancy is likely due to the polarization

of oxygen and chloride ion that takes place in the bulk liquid. Also, our preliminary MD

simulations indicated that we needed to destabilize the configuration where hydrogen and

chloride are strongly associated. Hence we decided to tune our model parameters so that the

state where the proton in closer to chloride ion is less favorable (has higher energy) than what

is predicted by the ab initio data. Although this choice results in a disagreement between

the model and ab initio data (for this one case only), the corresponding model parameters

enabled a better description of interactions in the bulk phase.
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Table 4.2: List of parameter values for chloride ion.

Parameter Value

qcCl 1.02 |e|
γCl 1.352 nm−1

λCl 0
D1ClH 200 kJ/mol
D2ClH 0 kJ/mol
aClH 35 nm−1

reClH 0.125 nm
LClO 1760 kJ/mol
θClO 4.25
ηClO 17.3

4.5.2.2 Simulation details

No new modifications to the MD code were required for the inclusion of the chloride ion.

256 oxygen pseudo ions, 513 hydrogen pseudo ions and a single chloride ion were simulated

in a box at constant pressure simulations and at 298 K temperature. The time step used

was the same as that used for bulk water simulations and simulations of PT in bulk with

one excess proton (0.1 fs). Long range Coulombic interactions were handled using the Ewald

summation method. A typical run involved 0.1 ns for equilibration, and 1 ns of production.

4.5.2.3 Structural and thermodynamic properties

In the presence of a single counterion, the radial distribution functions of O-O, O-H, and

H-H pairs were unaltered and were found to be same as shown in Fig. 3.3. The density

of the system was also unchanged (0.996 g/cc). The O-Cl and H-Cl RDF is shown in

Fig. 4.6. The first and the second peaks of the O-Cl RDF are at around 3 nm and 5 nm,

respectively, which indicates a good match to the experimental RDF data. Also, there is no

overstructuring which indicates the interactions between oxygen and chloride ion are being

represented correctly. The model H-Cl RDF, on the other hand, although has the first and the

second peaks at the right distances, the curve is more structured than the experiment RDF.
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Figure 4.6: Model pair correlation function vs. experimental for (a) oxygen-chloride ion,
and (b) hydrogen-chloride ion pairs.

This indicates increased attraction with the chloride ion. We have weakened the attraction

between hydrogen and chloride ion from ab initio results, but the two species still seem to

be too strongly bound. This increased attraction resulted in a low diffusion coefficient of

the excess proton and hence led to a decreased PT rate in presence of the chloride ion.

The PT rate in this case was found to be 6.02 × 10−5 cm2/s, with VD contribution being

1.6× 10−5 cm2/s and the SD contribution being 4.5× 10−5 cm2/s.

4.6 Extension to Multiple Excess Protons

By design, our force-field is capable of handling multiple excess protons. No change in

formulation/methodology was required to extend the model to incorporate multiple excess

protons. Up to 6 excess protons were included in this study, corresponding to maximum
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concentration of about 1 M. The time step, equilibration time, and production time were all

kept the same as before.

For this system, the structure pertaining to O-O, O-H, and H-H pairs was unchanged

and was found to be same as shown in Fig. 3.3. The density of the system was also un-

changed (0.996 g/cc). The proton conductivity from the V ACF data was found to be

7.94 × 10−5 cm2/s, with VD contribution being 1.6 × 10−5 cm2/s and the SD contribution

being 6.4× 10−5 cm2/s.

4.7 Conclusion

The water model was extended to include excess protons. In order to simulate PT, first

a robust charge transfer scheme was developed to ensure that the right amount of charge

is exchanged between the donor and the acceptor oxygens during the PT event. Second,

the ab initio PES for proton transport between two water molecules was reproduced using

our model and the two data, pertaining to the PT reaction energy barrier, were in good

agreement. The model was then used in the MD framework and the PT rate found from

preliminary studies, which was determined by simply counting the PT events, was found to

be too low by a factor of 5.

More sophisticated techniques were used in order to better estimate the rate of proton

transport. These involved using a Green-Kubo approach and determining the PT rate via

diffusion of a proton. The PT rate from this approach was found to be 8.07 × 10−5 cm2/s,

which was 13% too low, though the contribution of structural diffusion calculated from sim-

ulations gave a good agreement with the experimental value. The model was then extended

to include chloride ions for a better representation of an electrolytic system. The model pa-

rameters for the chloride ion were determined by reproducing ab initio data of energy scans

for chloride-water and chloride-hydronium ion pairs and also by reproducing PES of proton

transport between these two pairs. The functional form of the interaction potentials were
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unchanged. The MD simulations for the system yielded the right density and structure of

the system. The proton conductivity was found to be 6.02 × 10−5 cm2/s. The method was

then extended to include multiple excess protons in the system. The proton conductivity for

this case was 7.94× 10−5 cm2/s.
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Chapter 5

Dipole Moment Determination

5.1 Introduction

In Chapter 2, we discussed the experimental and theoretical techniques used to determine

or estimate the dipole moment of various molecules. As stated earlier, previous theoret-

ical methods of dipole moment determination involve the evaluation for only the ground

state (lowest energy) configuration of the molecule only. Considering only the ground state

electronic configuration can be inadequate when determining dipole moments, because even

at room temperature a molecule may access multiple conformations that each have different

dipole moments. Thus, considering multiple conformations and evaluating the average dipole

moment from all of these conformations (that are accessible to a molecule) can improve the

prediction. The MD method can be a useful tool when multiple configurations need to be

accessed.

Multiple conformations can also be accessed by manually rotating the molecules around

a dihedral angle or otherwise perturbing the geometry. Dipole moment calculations can be

performed on each such geometry using computational chemistry software like Gaussian. The

average dipole moment may then be calculated by a weighted average of dipole moments thus

obtained, with the weights depending upon the energy of that particular configuration. For

example, these states may be weighted using a Boltzmann weighting factor or probability:

pi = exp

(
− Ei
kBT

)
(5.1)
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where Ei is the energy of a particular probed geometry and T is the temperature of interest.

This approach has two drawbacks. First, for large molecules having branched structures

and multiple dihedral angles, it becomes difficult and cumbersome to include all the possible

structures in the analysis. Second, such calculations do involve the averages of dipole moment

over multiple geometries but completely ignore the entropic contribution of each state.

Even though a particular state may be energetically favorable, it may not be as likely

because it may not be favored entropically. In order to account for this entropic contribution,

the probability, wi, of occurrence of a state i of energy Ei is given by:

wi = g(Ei) exp

(
− Ei

kBT

)
(5.2)

where g(Ei) is a temperature-independent quantity known as the density of states that

corrects the weighting factors (probabilities) for entropic contributions.

The sampling in MD and MC simulations naturally accounts for the entropy effect. An

advantage of using MC simulations over MD simulations is that in MC simulations, if there

are energy barriers between conformations, they are easily crossed due to the inherent ran-

domness involved in the MC sampling. But since the scheme is to be used with an ab initio

methodology, which requires the calculation of electronic structure at each step, a downside

to using an MC scheme is that it can be enormously expensive, because at every step of

the simulation, the electronic structure is needed to be calculated from the beginning. As

mentioned in Chapter 2, the MD scheme is advantageous because at every step, the elec-

tronic structure can be calculated by minor perturbations of the electronic structure from

the previous step. In the interest of inclusion of entropy-based sampling and also saving the

computational effort, we decided to use the MD scheme.

Attempting to study multiple conformations using MD simulations is not a new concept

and is frequently used in studying proteins. Specifically, how proteins change their confor-

mations over a period of time and how they fold have attracted special attention over the last
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few decades [124]. These studies find application in high-performance drug discovery [125].

MD method provides a useful insight in understanding how the structure of proteins evolves

in time and the MD simulations are used to examine the energetics and mechanisms of con-

formational change. In these simulations, individual trajectories of different time lengths are

generated to sample conformational distribution.

The idea of including multiple conformations in prediction of the dipole moment, while

ensuring that the electronic structure is correct for the respective geometry at each MD

time step, is novel and to our knowledge this area of study is relatively unexplored. In the

present work, AIMD simulations have been used in order to estimate the dipole moment

of molecules that have conformational isomers. The AIMD methodology was explained in

Chapter 2. Determination of accurate electronic structure at each step ensures that the

dipole moment of the molecule is calculated correctly. The net dipole moment is calculated

by averaging the dipole moments of the different configurations that a molecule attains as it

evolves in time.

The main objective of the work developed in this chapter is to develop a general method

for the estimation of average dipole moment of any compound. Towards this end, through

preliminary studies, we developed an“approximate method”for dipole moment determination

using an open source AIMD code, SIESTA (Spanish Initiative for Electronic Simulations

with Thousands of Atoms). The approximate method was used to study tributylphosphate

(TBP) molecule. TBP was selected because the experimental value of its dipole moment

was known. It was also one of the compounds thoroughly studied in the theoretical dipole

moment studies by Liu et al. [26]. Certain crude assumptions were made in the approximate

method, which made the method less reliable. The results obtained from this preliminary

study also indicated that we needed to refine the methodology for better dipole moment

predictions.

The method was then refined by making certain modifications to the SIESTA code and the

subsequent analysis to develop an “exact method” for average dipole moment determination.
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Along with TBP, the compounds used for this study were: 1,2-dichloroethane (DCE), 1,2-

dinitrioethane (DNE), 1,2-ethanediol (EDL), and 1,1,1,2-tetrafluoroethane (TFE). These

compounds were selected because they have only one dihedral angle and are easy to analyze.

After running simulations of these compounds with the modified SIESTA code, the resulting

distributions of dipole were analyzed and a general procedure for calculation of average dipole

moment was developed based on the findings.

In the present chapter, first a detailed discussion about the SIESTA AIMD code is pre-

sented. Next, the approximate method is discussed and the results obtained are presented.

Next, the refinements on the approximate method are discussed and various aspects of the

exact method are discussed in detail. A comprehensive analysis of the dipole moment dis-

tributions is also presented. Lastly, based on our studies, a general method to calculate the

average dipole moment of any molecule is presented.

5.2 The SIESTA AIMD Code

The SIESTA AIMD code was used in this work to calculate dipole average dipole moment of

various compounds. SIESTA is a software implementation for performing electronic structure

calculations and ab initio molecular dynamics simulations of molecules. SIESTA is a fully

self-consistent DFT method that predicts the physical properties of a collection of atoms. In

the present study, as will be demonstrated in this chapter, the SIESTA code has been used

to study the time evolution of dipole moments of various polar organic compounds. Before

going over the implementation details, we will outline here some important aspects of the

SIESTA program.

5.2.1 Pseudopotentials

The use of pseudopotentials [126] is an approximation to simplify the description of com-

plicated systems. Specifically, a pseudopotential is an attempt to replace the complicated
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effects of the motion of the core (i.e. non-valence) electrons of an atom and its nucleus with

an effective potential, or pseudopotential, so that the Schrödinger equation contains a mod-

ified effective potential term instead of the normal Coulombic potential term for these core

electrons. So, in this approach only the chemically active valence electrons are dealt with

explicitly, while the core electrons are ’frozen’, being considered together with the nuclei as

rigid non-polarizable ion cores.

’Norm-conserving’ pseudopotentials [127] enforce the condition that, outside of a cutoff

radius, the norm (functional form) of each pseudo-wavefunction be identical to its corre-

sponding all-electron wavefunction. Norm-conserving pseudopotentials are derived from an

atomic reference state, requiring that the pseudo- and all-electron valence eigenstates have

the same energies and amplitude (and thus density) outside a chosen core cutoff radius.

SIESTA uses pseudopotentials to represent the electron-ion interaction.

The norm-conserving pseudopotentials used as input for the SIESTA program were gen-

erated using the ATOM program [128]. These generated pseudopotentials were verified by

comparison to the pseudopotentials generated by the Octopus pseudopotential generator

[129].

5.2.2 Basis set

A basis set is a set of functions that are used to create molecular orbitals. A molecular

orbital is expressed as a linear combination of atomic orbitals, so, if φi is an atomic orbital,

the molecular orbital ψ will be given by:

ψ =
K∑
i=1

ciφi (5.3)

where ci is the coefficient denoting the weight of each of the K atomic orbitals. The more

atomic orbitals we use to describe the molecular orbital (that is larger the basis set size),

the more accurately we are able to describe the molecular orbital, but the cost is greater

89



too. There are two types of formulations for the atomic orbitals that are used: Slater

type orbitals (STOs) and Gaussian type orbitals (GTOs). STOs have radial and spherical

components and they resemble the hydrogen orbitals. Originally, STOs were used as repre-

sentations for atomic orbitals. GTOs, as the name suggests, resemble a Gaussian function in

form. Choosing the GTO form of function leads to mathematical simplification and reduces

computational effort, and thus is extensively used in almost all computational chemistry

software.

SIESTA uses numerical atomic orbitals (NAOs) [130], which differ from traditional rep-

resentations of atomic orbitals. They are represented numerically on radial grids rather than

analytically. While this makes calculations more time consuming, many of the required ra-

dial integrations can be performed beforehand and tabulated. NAOs have the advantage

that they can be designed with any shape without extra computational cost, and can easily

be localized to avoid expensive long-range interactions, thus achieving better scaling.

5.2.3 Exchange and correlation

The details of exchange and correlation effects were presented in Chapter 2. As men-

tioned earlier, these effects are in general non-local and cannot be readily accounted for

in independent-particle formulations, and in DFT they are approximated on the basis of

an explicit exchange-correlation term (see Section 2.1.4.3). SIESTA allows for LDA and

GGA approximations. In the present work, for simplicity, we have used the local density

approximation (LDA).

5.2.4 SIESTA AIMD simulations

Isochoric-isothermal (NVT) simulations were run for a single molecule of the compounds

being studied. The temperatures in the simulations varied from 300 K to 1500 K. Higher

temperature runs were included in the study to enable access to unlikely configurations.

Further justification of studying the molecules at higher temperatures will be given in the
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following subsections. A Nosé-Hover thermostat was used to control the temperature. The

time step used for the MD simulations was 0.3 fs. Such a small time step was chosen (as

opposed to the recommended 1 fs time step) so that the fast motion of the hydrogen atoms

in the system can be treated with accuracy. The run time varied from 30 ps to 100 ps.

The input configuration of the molecule of the compounds being studied were gener-

ated by optimizing the geometry of molecules at a low level of theory and small basis set.

HF/STO-3G was used for all geometry optimization calculations. Such cheap calculations

were performed because it was not desired to start the AIMD simulation with a configura-

tion that was already near the absolute energy minima, because the intention was to explore

multiple configurations in a single run. In some cases, where molecules are known to exist in

two conformations (like cis and trans isomers of 1,2-dichloroethane), geometry optimization

was performed for each of these conformations and separate simulations were run for each.

SIESTA uses periodic boundary conditions, so each simulation cell is surrounded by its own

replica in all directions.

SIESTA routinely outputs potential energy, total energy, temperature, pressure, atomic

positions, and velocities at every MD time step. Also, the SIESTA code provides the in-

formation about the total charge density, electrostatic and total potentials, local density

of states, and other information about the electronic structure. These data can be used

for multiple analyses for any compound. We used the output data in two ways to perform

the dipole moment studies on the selected compounds, which led to the development of the

approximate method and the exact method.

5.3 Preliminary Study (Approximate Method)

The original SIESTA code does not output dipole moment at every time step. For the

purposes of preliminary studies, no changes to the original SIESTA code were made. For

the determination of dipole moment at each MD step, we used atomic positions (which
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were readily available from the simulation output) and the charge density on various atoms.

Without performing any detailed electronic charge density analysis or attempting to use

any electronic structure data, we estimated the dipole moment by assigning partial charges

to various atomic sites.The Merz-Singh-Kollman (MSK) scheme [131] was used to assign

partial charges to the atoms of a molecule. In the MSK scheme, atomic charges are fitted to

reproduce the molecular electrostatic potential at a number of points around the molecule.

Unlike the charges predicted by the Mulliken scheme [132], the MSK charges do not depend

upon the level of theory and basis set used to generate them, and hence the MSK scheme

is more robust. A few studies have shown that in robustness, the MSK charge assignment

scheme even surpasses other popular schemes like ChelpG [133]. The MSK charge assignment

calculations were performed using Gaussian at HF level of theory and STO-3G basis set,

only for the optimized geometry of the molecule. The inherent crude assumption of this

preliminary analysis was that the charge densities on atoms do not change significantly as a

molecules evolves in time. Thus, the partial atomic charges (calculated for only the optimized

geometry) and the atomic positions from each MD step from SIESTA were used to calculate

the approximate dipole moments.

Since the method development was still in its preliminary stages, we needed to test it on

a compound for which the experimental dipole moment was known and which would help

demonstrate the functionality of the methodology for a complex structure with numerous

functional groups. Thus, the compound selected for this study was tributylphosphate (TBP).

The experimental value of the dipole moment for the compound was known and for our study,

TBP is an adequately complicated molecule with 3 butyl chains, along with 4 polar oxygen

and phosphorus atoms. As mentioned previously, it is also one of the molecules that was

thoroughly studied by Liu at al. [26]. The structure of TBP is shown in Fig 5.1.

Only a short amount of time (≈30 ps) can be simulated using AIMD simulations, thus, it

is not feasible to include all configurations that a real molecule may have access to at room

temperature. There are energy barriers that a simulated molecule at room temperature may
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Figure 5.1: Structure of Tributylphosphate (TBP)

never cross for the time of the simulation and hence the states on the other side of the

barrier may never get sampled. Thus, we ran the simulations of the TBP molecule at 5

different temperatures, ranging from 300 K to 1600 K, in order to facilitate barrier crossing

and sampling multiple states. The results of simulations at all five temperatures for TBP

are presented below.

5.3.1 Results and discussion

NVT simulations of TBP were run for 30 ps at 0.3 fs time step at 300 K, 600 K, 900 K,

1200 K, and 1600 K. The total run time for all five temperatures was 61 CPU-days. As stated

earlier, the dipole moment at each step was calculated using geometries from the output of

the SIESTA code and charges preassigned via MSK scheme. The average dipole moment

of the molecule was calculated by averages of the approximate dipole moment calculated at

each step. The resulting dipole distribution and average dipoles at different temperatures

are plotted below.

At 300 K, the average dipole moment calculated from the simulation was around 2.5 D,

which was 19% lower than the experimental value (3.08 D). The result was encouraging as we

based our calculations on charges that were assigned based on the optimized geometry only.

We hypothesized that the calculation of accurate charge density (electronic structure) at each

MD step should give us a better match with the experimental values. The average dipole

moments at higher temperatures, as shown in Fig 5.2(b), seem to converge to a constant

value, instead of increasing monotonically, which is expected.
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Fig 5.2(a) shows the distribution of dipole moments at various temperatures. For the

300 K simulations, the dipole distribution curve is biased significantly towards the low dipole

moment values, while for higher temperature runs, the curve is shifted towards higher dipole

moment values, indicating that higher temperature runs are able to access higher dipole

moment configurations of the TBP molecule. This fact is also evident when we look at the

potential energy vs. dipole moment curves (Fig 5.2(c)). Although there is a significant shift in

the dipole moment distribution curves when we go from 300 K to 600 K, the distributions do

not shift much beyond that for higher temperatures. But the higher temperature curves have

longer tails and are very slightly biased towards higher dipole moment values. This, along

with what we observe from Fig 5.2(c), indicates that although there is a significant overlap in

the phase space sampled by the low and high temperature runs, higher temperature runs do

occasionally access conformations that low temperature runs (especially 300 K temperature

run) is unable to access. This proves that there is some value in studying high temperature

simulations.

Based on what we learned from this study, we concluded that an improvement in method-

ology is required pertaining to both the way we calculate the dipole moments and the way we

factor in the results of higher temperature runs in our estimation of average dipole moment

at room temperature.
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(a)

(b)

(c)

Figure 5.2: Results from preliminary work on TBP molecule. (a) Dipole distribution at
various temperatures, (b) Average dipole vs. temperature (c) Potential energy vs. dipole
trajectory at different temperatures. In every case, dipoles are estimates based on constant
partial charges assigned to atoms.
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5.4 Detailed Study (Exact Method)

Based on the results obtained from our preliminary studies, we concluded that refinements

were needed in order to develop an improved method for the estimation of dipole moments.

The improvements that we incorporated are summarized in the following list.

1. Calculation of exact dipole moment at every step: In the approximate method, we

use less information than is available from the AIMD simulation. We only use the

atomic positions as the molecule evolves in time under the effect of accurate interatomic

forces. The SIESTA code, by default, does not have the option of calculating the dipole

moment at every step. However, sufficient information is available to do that. Hence

we modified the SIESTA code (written in Fortran-95) to calculate the dipole moment

at every step using the accurate electronic charge density that is already available.

2. More freedom for motion of molecules: SIESTA, by default, allows a 10% spatial

latitude in each of the three coordinate directions for allowing the molecules to rotate.

That is to say, the code calculates the maximum distance between nuclei for each

direction in the input file and multiplies the distance by 1.1 to get the box length in

that direction. In order to make different conformations of a molecule more accessible,

we increased the box-size to 1.5 times the box length that would just contain a molecule,

in each direction.

3. More accurate representation of the gas phase: As discussed in detail in Chapter 2,

periodic boundaries cause atoms in the simulation box to interact with their own images

in order to simulate bulk behavior. SIESTA code also has PBCs which is problematic

when we are attempting to study a gas-phase system. Increasing the box size reduces

the interactions between the atoms and their images. Thus, increasing the box size (as

described above) also helped us reduce the effect of PBCs and enabled us to study a

molecule in the gas phase, without elaborate modifications to the SIESTA code.
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4. Using higher-temperature runs more effectively: For some molecules, simulations at

300 K may not sample all accessible conformations of the molecule, since the energy

barriers between various conformations may not be crossed in the simulation timescale.

The higher temperature runs, on account of having more kinetic energy to cross over

the energy barriers, have a higher likelihood of accessing different conformations of the

molecule being studied. We thus explore a method to extrapolate higher-temperature

results to room temperature. This theory and application of this statistical mechanics

method is discussed in Sec 5.4.2.

5. More robust ways of validation: Dipole calculations for a few select configurations (that

a molecule attains in the course of the AIMD simulation) were duplicated in order to

validate the dipole moments we get as SIESTA output. In accordance with the analyses

of computational chemistry methods to calculate dipole moment conducted by Liu et

al. [26], the ab initio calculations at B3LYP level of theory and 6-311+G (3df,2p) basis

set were performed to validate dipole moments.

As mentioned previously, the modified SIESTA code was then used to study five compounds:

DCE, DNE, EDL, TFE, and TBP. For the smaller symmetric molecules (DCE, DNE, EDL)

(Fig. 5.3(a)), simulations were run for both cis and trans isomers. For TFE, due to asymme-

try, there are no cis and trans isomers. The two geometries used for the simulation of TFE

differ in dihedral angle by 180 degrees (Fig 5.3(b)). NVT simulations of these five compounds

were run at 300 K. The details of simulations, including the input geometries, computer run

time, the time simulated, and the equilibration period are included in Table 5.1.

The distributions of dipole moments obtained from these simulations are analyzed and

the overlap is determined based on a method we developed. This method is explained below

in Section 5.4.1. If the overlap is not adequate because of poor sampling, we need to do

higher temperature runs as well. The present work is exploratory, so in anticipation of this

potential problem, we performed additional simulations at 500 K, 700 K, 900 K, and 1200 K.

From each of these runs, dipole moment values are determined at the temperature of run and
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Table 5.1: Simulation Details: A list of compounds studied with the exact method, along
with the corresponding number of starting conformations (or geometries), computer run

time in CPU days, simulated run time in ps, and the equilibration time in ps

Compounds # starting geometries Comp. time (CPU-days) Sim. time (ps) Eq. time (ps)

TBP 1 (Fig 5.1) 61 30 30
DCE 2 (Fig 5.3(a)) 35 100 30
DNE 2 (Fig 5.3(a)) 40 100 30
EDL 2 (Fig 5.3(a)) 37 100 30
TFE 2 (Fig 5.3(b)) 36 100 30

Figure 5.3: Structures of DCE ((a), X=Cl), EDL ((a), X=OH), DNE ((a), X=NO2), and
TFE (b)

then extrapolated back to 298 K using a method we developed. This extrapolation method

is described in Section 5.4.2. The results of the SIESTA runs at different temperatures and

subsequent analysis are presented in Section 5.4.3.

5.4.1 Quantifying the overlap

Although for the molecules studied, it was possible to visually determine if there is a good

overlap between different simulations, to make the method robust and to eliminate guesswork,

we used a modified version of a statistical test called the two-sample Kolmogorov-Smirnov

(KS) test [134]. The KS test determines if two data-sets overlap significantly. One advantage

of using this test is that it makes no assumption about the distribution of data, unlike the t

-test, which assumes a normal distribution.
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Figure 5.4: Cumulative dipole moment distributions for cis and trans simulations of DCE at
300 K

The first step in the KS method is to generate cumulative dipole distributions Wα for

each simulation α.

Wα(dj) =
∑
di≤dj

wαi ,

where di and dj values span the same binned dipole values recorded in the simulations. Also,

it is assumed that probabilities wαi for each simulation are normalized such that 0 ≤ Wα ≤ 1.

In order to compare two simulations, distributions W1 and W2 are put on the same plot

as shown for example in Fig. 5.4. Then we calculate the KS statistic DKS, given by the

maximum vertical difference between the distributions at any binned dj value:

DKS = max (|W1(dj)−W2(dj)|) (5.4)

If we were to use the regular KS test, then for a 95% confidence interval, the two distributions

are consistent if DKS ≤ 0.001. However, for our case we do not need the simulated distribu-

tions to be exactly identical with 95% confidence. Thus, based on the simulations run so far,

we propose that adequate overlap between the two simulations corresponds to DKS ≤ 0.25.

If this degree of agreement is not achieved, this is likely caused by poor sampling. To remedy

poor sampling, simulations can be run for longer times, or if this is not likely to improve the

results, then additional simulations at higher temperatures must be performed.
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5.4.2 Extrapolation method

The extrapolation method used in this study to extrapolate dipole moments calculated at

high temperatures to lower temperature is similar to the expanded ensemble density of

states (EXEDOS) method developed by Pablo and coworkers [135–137]. From the results

obtained from the simulations, first we generate dipole moment and energy distributions. The

probability of a state depends upon the time it spends in a particular energy state, which

can be readily determined from simulation results. This probability of occurrence of a state

depends upon energetic and entropic contributions in accordance with Eq. 5.2. The inherent

assumption of this extrapolation method is that the density of states g(Ei) is temperature-

independent. Thus, when extrapolating the probability from higher temperature Tx to lower

temperature T0 (298 K in all cases here), the probability values, w0
i , are given by:

w0
i = wxi exp

[
Ei

kB

(
1

Tx

− 1

T0

)]
(5.5)

where wxi are the probabilities of the state with energy Ei and dipole di at temperature

Tx. Using these rescaled or extrapolated probabilities, we then calculate the average dipole

moment at the new temperature using:

〈d〉0 =

∑
iw

0
i di∑

iw
0
i

(5.6)

5.4.3 SIESTA results and analyses

The average dipole moments calculated form our simulations and the errors are listed in

Table 5.2. For all cases except DCE, the simulations were run at 300 K and data were

extrapolated back to 298 K. For DCE, the simulations were run at 500 K and extrapolated

back to 298 K. The extrapolation method is explained in Section 5.4.2. Neglecting systematic

errors of both methods and focusing only on the random or sampling errors, the experimental

values and simulation values are within the range of calculated average dipole moment values
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for DCE, EDL, and TBP. The aim of the current study was to develop a robust and self-

consistent method for dipole moment prediction. To that end, the agreement between the

predicted values from simulations and experimental values is acceptable. Nevertheless, the

uncertainties in the simulations could be reduced by running the simulations longer.

The molecule-average dipoles in Table 5.2 come from 2 runs for each molecule except

TBP. The average dipole moment for each run is extrapolated to the desired temperature

(in this case 298 K) using Eq. 5.5. This value for each run is considered an independent

sample. To get the average value for the molecule, we do a weighted average of the two (or

more) runs as follows.

〈d〉 =

∑
α 〈d〉

0
αNα∑

αNα

(5.7)

where 〈d〉0α is the run-average dipole extrapolated to T0 and Nα is the number of time steps

in run α. The standard deviation of the mean, in the case of two samples, is

σ〈d〉 =

√
N1N2

N1 +N2

∣∣〈d〉01 − 〈d〉02∣∣ (5.8)

To convert the standard deviation to an error value, it must be scaled by a t-table value,

which in the case of two samples and 90% confidence is 3.06. The errors on the molecule

average dipoles reported in Table 5.2 are based on two samples (cis and trans simulations)

and 90% confidence interval.

Even though the agreement between simulation and experiment in Table 5.2 appears

adequate, there are some unquantified uncertainties with the experimental values. In the

case of the TFE molecule, three different values of dipole moment have been reported by

three different groups (see Table 5.2). In addition, for DCE a value of 1.44 Debye was

reported by McClellan et al. [138], which was later modified by them to 2.94 Debye (the

value reported in Table 5.2). For the case of DNE, a gas-phase experimental value could

not be found. The experimental value listed in the table was determined in benzene solvent.

For some molecules, like nitroethane, the experimental value of dipole moment determined
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Table 5.2: Comparison of experimental and calculated values of average dipole moment at
temperatures around 300 K

Compounds Expt. Avg. Dip. (Debye) Calc. Avg. Dip. (Debye)

DCE 2.94 [138] 3.06 ± 1.14
EDL 2.52 [139] 2.94 ±1.00
DNE 4.45 [140] 3.56± 0.52
TFE 0.32 [141],0.62 [142], 2.06 [143] 1.31±0.47
TBP 3.08 [144] 3.19

in the gas phase (3.29 Debye) differs from that in liquid phase (3.60 Debye) [139]. This may

also have contributed to the significant mismatch between the experimental and simulation

values.

For the purposes of validation, the dipole moment values of initial geometries used as

an input were calculated using SIESTA (run for just 1 step) and compared to the dipole

moment values obtained from Gaussian at B3LYP/6-311+G (3df,2p). The results are listed

in Table 5.3. For the sake of comparison, also shown in the table is the Gaussian values

for the dipole moment values obtained at LSDA/STO-3G (Gaussian-II) and at LSDA/3-

21+G (Gaussian-III). For reference, a water molecule was also included in this validation

step. As can be seen from the table, for non-zero dipole moments, SIESTA underpredicts

the dipole moment for the compounds studied, relative to Gaussian data (at B3LYP/6-

311+G (3df,2p)). Fig 5.5 shows that the discrepancy between Gaussian- (at B3LYP/6-

311+G (3df,2p)) and SIESTA-predicted dipole moments follows a definite trend and likely

can be attributed to some systematic error. It is to be noted that if we try to fix the the

average dipole moment values obtained from our simulations based on this systematic offset,

it takes the values further away form experimental values. Also, in a single case (DCE cis)

we decreased the energy cut-off (or error) for the orbitals by a factor of 10 from the default

value. We observed that this increases the SIESTA dipole moment value for DCE cis from

1.79 D to 2.45 D, making it closer to the Gaussian-I value. This suggests another fruitful

avenue for improvement would be to decrease the default energy cut-off in SIESTA.
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Table 5.3: Comparison of SIESTA calculated dipole moments for respective conformations
with Gaussian values for the two input geometries of DCE, EDL, DNE, TFE, and for TBP

and water.

Calculated Dipole Moment (Debye)
Compound Gaussian-I Gaussian-II Gaussian-III SIESTA

DCE 2.76 (c), 0.00 (t) 3.22 (c), 0.00 (t) 3.31 (c), 0.00 (t) 1.79 (c), 0.00 (t)
EDL 2.55 (c),0.00 (t) 2.00 (c),0.00 (t) 3.32 (c),0.00 (t) 1.97 (c), 0.00 (t)
DNE 4.96 (c), 0.00 (t) 3.92 (c), 0.00 (t) 5.86 (c), 0.00 (t) 4.04 (c), 0.00 (t)
TFE 2.21 (1), 2.21 (2) 0.93 (1), 0.93 (2) 2.62 (1), 2.62 (2) 1.36 (1), 1.36 (2)
TBP 4.38 2.34 4.33 3.70
Water 1.85 1.70 2.67 1.40

Figure 5.5: Systematic offset between Gaussian-I (at B3LYP/6-311+G (3df,2p)) and SIESTA
dipole moment values

Another interesting observation from Tables 5.2 and 5.3 are that the SIESTA molecule-

average dipole (Table 5.2) is not simply a weighted average of the dipoles of the starting cis

and trans conformations (Table 5.3). It is obvious that the MD simulations are sampling from

conformations with larger dipole moments than would be expected from ground-state-type

cis and trans conformations. This is confirmed in Fig. 5.6 below.

The systematic error may be due to the underlying DFT method and basis set used

to calculate the electronic structure, or the cutoff value used for truncation of orbitals. In

the present simulations, the DFT method used with SIESTA simulations was LDA and the

basis set consisted of NAOs (see Section 5.2.2), which when compared to the B3LYP level of

theory and a large basis set used for the Gaussian data, will lead to a less accurate electronic
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structure calculation. SIESTA does not do a B3LYP level of theory and traditional Gaussian

based orbitals as these lead to a very expensive calculation. Also, large cutoff values for

orbitals can be expensive. It is of some value to mix and match some of the available options

in DFT methods, choice of orbital size and orbital cutoff values to find an optimum set of

these three that will give better matches to the Gaussian dipole moment. However, such an

analysis is beyond the scope of the present work.

The distributions of dipole moments for different molecules are shown in Fig. 5.6. It is

evident from the Fig. 5.6(a-i) that the cis and trans simulations of the DCE molecule cover

different regions of phase space. The cis simulation has a distinct peak near 1.8 Debye, which

corresponds to additional sampling of the initial cis geometry (see Table 5.3). Likewise,

the trans simulation samples mostly near its initial trans geometry (zero dipole). Thus,

it seems that there is not a significant overlap between the dipole moment distributions

from these two simulations, which, as mentioned previously, may give unreliable value of

the average dipole moment. The DKS value for these two distributions was calculated to

quantify the overlap and, as listed in Table 5.4, it was greater than 0.25, which, according to

the discussion in Section 5.4.1, also indicated a poor overlap. When we consider the energy

distributions from the two simulations, we find that there is some overlap between the two

distributions. This indicates that there are more than one low-energy state in the system,

each having a different dipole and needing to be considered in the molecule-average dipole

moment. However, DCE simulations at 300 K do not sample all these relevant states as

there are significant energy barriers between them. In order to get around this problem,

the dipole probability distribution of a higher-temperature run was chosen. Fig. 5.6(a-ii)

shows the dipole moment distribution at 500 K and there is an improved overlap between

the distributions from the two runs, as expected. The calculated DKS value in this case

was less than 0.25, which indicates reasonable overlap. Hence, this distribution was used to

estimate the average dipole moment using a procedure described in the Subsection 5.4.2.
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Table 5.4: DKS values for DCE, DNE, EDL, and TFE dipole distributions at two
temperatures. For DCE, the higher temperature run was required.

Compounds DKSat 300 K DKS at 500 K

DCE 0.3638 0.2274 (required)
EDL 0.1783 0.3670 (not required)
DNE 0.1764 0.1623 (not required)
TFE 0.08951 0.0756 (not required)

The DNE simulations (Fig 5.6(b)) with trans starting configuration distinctly samples in

two states, depicted by the two peaks in its distribution. The cis simulation on the other

hand, only samples one state but since there seems to be a significant overlap between the

two in the region of the most likely conformation, the values are expected to be reliable. The

calculated DKS value less than 0.25, and hence the overlap was considered adequate. Fig. 5.6

(c) and (d) show dipole moment distributions for EDL, and TFE respectively, each at 300 K.

The DKS values for the two cases indicated adequate overlap between the distributions from

two simulations, and thus the dipole moments calculated from 300 K runs are reliable.

5.6(e) shows the dipole moment distribution for TBP at 300 K. Although the TBP simu-

lation samples dipole moments of around 2.0 Debye for about 40% of the time, it does sample

higher dipole moments too, which is indicated by the distribution being biased towards higher

dipole moment values. This results in a average dipole moment of about 3.2 Debye.

It is to be noted that at 500 K, for EDL, the overlap is worse than it was for 300 K

(see Table 5.4). Thus, going to higher temperature does not significantly improve overlap

between the two distributions in every case.

5.5 The General Procedure

Based on the analyses of the five compounds studied, a general procedure to calculate average

dipole moments was developed. The procedure is shown in Fig 5.7. For any molecule to be

studied, we start with the selection of two or more different geometries. If it is a symmetric
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Figure 5.6: Dipole moment distributions for 300 K for trans (t) and cis (c) starting config-
urations of (a) DCE (b) DNE (c) EDL, two starting geometries (1 and 2) of (d) TFE, and
(e) TBP

molecule with a single dihedral, we study the cis and trans conformations and if it is an

asymmetric molecule, we perturb the geometry by rotating the groups along the dihedral.

If it is a large molecule with multiple functional groups and multiple dihedral angles, then

the positions of alkyl branches and functional groups may be slightly altered to produce new

geometries. All the geometries must be optimized to generate a reasonable starting point

(recommended level of theory and basis set: HF/STO-3G). These optimized geometries are

then used as input to the SIESTA program.
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Figure 5.7: Procedure to determine the average dipole moment

Once the input geometry files, along with the pseudopotentials files (5.2.1), are ready for

the molecules, NVT simulations of the selected geometries are performed with a Nosé-Hover

thermostat. The time step should be kept small (recommended: 0.33 fs) and all simulations

must be equilibrated (recommended: 20-30 ps). The production time for the simulations

must be as large as possible. Due to computational limitations, we did not go beyond 100 fs

run time, but for better results, it is advisable to run the simulations longer.

After running the simulations for the desired production time using the modified SIESTA

code, dipole and energy probability distributions are determined from the SIESTA output

files listing dipole and energy at each time step. Appendix A contains the modified subrou-

tines and makefile of the SIESTA code required for this work. In addition, a special-purpose

code was written for interpreting the dipole and energy output files and generating the prob-

ability distributions and temperature-extrapolated dipole moments.This code is included in

the Appendix B. Once we have the distributions, we determine if there is a significant overlap

between different simulations of the same molecule, by calculating the DKS value for that

107



molecule and compare it to a standard KS-statistic value (as described in Subsection 5.4.1).

If there is a reasonable overlap, then we simply calculate the average dipole moment and

uncertainty in accordance with Eq. 5.7.

If the overlap between the dipole distributions is not significant, then it may be due

to inadequate run time or there may be sampling issues. In order to differentiate between

the two, we need to analyze the energy surfaces of the molecule. Fig. 5.8 gives a pictorial

representation of the energy surface cases for a system with two states. If the different

states of the molecule differ in energy only slightly, and the energy barrier is low, then the

simulations are expected to sample those states adequately and a decent overlap is expected

(see case 1 in Figs 5.8 and 5.7). In our study, DNE, EDL, and TFE simulations were of case

1 type.

The systems that are simulated may not overlap either because the other metastable

states, being of high energy, are improbable at low temperature (see case 2 in Figs 5.8 and

5.7). Lack of overlap in this case indicates that the state is so improbable that it need not

be considered in calculation of average dipole moment.

What qualifies as a “hard case” (case 3 in Figs. 5.7 and 5.8) is when two or more states

of almost equal probability (that is, almost equal energy), are separated by a high energy

barrier, making it unlikely for any 300 K simulation to adequately sample all such states.

For such systems, one must run the molecule at higher temperatures so that it may have

sufficient kinetic energy to cross barriers and sample all significant conformational states.

To distinguish between cases 2 and 3, we generate energy probability distributions from the

two simulations. The degree of overlap can be quantified by calculating a DKS
E statistic for

these energy probability distributions, just as we did previously for the dipole distributions.

If there is a modest degree of overlap (DKS
E < 0.95) then the molecule qualifies as a hard

case and we must resort to higher temperature runs. In our study, DCE simulations were

the one example of case 3 type. Once we have rerun the simulations as needed, the system
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Figure 5.8: Diagrammatic representation of energy versus dipole (the reaction coordinate)
for three cases for a molecule with two conformational states I and II.

should either have overlapping dipole distributions (case 1) or only one relevant distribution

(case 2), and reliable molecule-average dipoles can be obtained.

5.6 Conclusion

The aim of the present study was to develop a general and reliable method to calculate

average dipole moment of polar organic compounds with conformational degrees of freedom.

In preliminary studies, SIESTA AIMD code was used without any modifications and the

molecule dipole moment was estimated with the crude assumption that the local charge

density on the sites remains unchanged during the course of simulation. The TBP molecule

was studied using this method and the subsequent dipole moment distributions and the

average dipole moment obtained gave encouraging results, but we judged that a modification

in methodology would increase the accuracy of the method.

The SIESTA code was modified and was used to study TBP and four additional polar

organic compounds. To get reliable values, simulations with different starting conformations

of a given molecule must show some overlap in sampled states. This is indicated by a D

statistic from KS theory and also by the calculated standard error of the average dipole

moment for the combined simulations. If a low-temperature set of simulations do not have

sufficient overlap, the reason may be that either the less-sampled states are improbable or
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the energy barriers between almost degenerate states cannot be crossed. If latter is the case,

then simulations at high temperature need to be performed to enable energy-barrier crossings

and better sampling. To facilitate this, a method was also developed for extrapolating the

dipole moment values from higher temperature runs to room temperature.

The dipole moments obtained from the simulations gave a good match with experimental

values for three of the five compounds. Reasons for the mismatch between simulation and

experimental dipole moments can be: the experimental values are inaccurately determined

or biased, the simulations do not have adequate sampling of phase space, the simulations

have biased dipole values due to limitations in quantum chemical methods, or a combination

of these reasons. It is axiomatic that longer and more sophisticated DFT calculations and

more accurate experiments will lead to better agreement, but it remains to be determined

how much effort this will require. However, at the present level of effort, the dipole moments

generated by theory and experiment differed, on average, by 8 % for DCE, EDL, and TBP

molecules. The other two cases (TFE and DNE) likely have problems with the experimental

results.

The method developed in the present study has two potential uses. First, it can be used

in prediction of dipole moment for compounds whose experimental values are not available.

Second, this method can be used as a tool for evaluating the quality of the experimental

values. If the simulations appear to have adequate sampling for a molecule and there is still

a disagreement between theory and experiment, then this suggests that the experiment could

be problematic and should be revisited.
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Chapter 6

Conclusion

6.1 Proton Transport Studies

6.1.1 Summary of results

Not many robust and polarizable force-field models are available in the literature that can

simulate reactions. Here we have developed a polarizable water model, that includes multi-

body effects, and that treats reactions naturally. The water model we developed has the

potential of competing with more expensive (MS-EVB) or less physically-accurate Keffer’s

model. The model captures reasonably accurate electrostatic interactions, both at short and

long interatomic distances, and allows for proton transfer to occur naturally when dictated

by electrostatic forces, without an additional set of rules. Molecule polarizability is imple-

mented by the use of fluctuating site dipoles, as well as fluctuating charges. This model

was parametrized, as much as possible, from the ab initio data, and was then implemented

into an MD simulation. Novel time-saving techniques like a modified Ewald sum specific

to diffuse charges and diffuse dipoles and use of multiple neighborhood lists, were applied

in MD simulation to make the code efficient. The model correctly avoids any significant

amount of autoionization of water molecules, a problem found in other water models based

on the central force potentials that allow bond formation and breaking.

Although the model was developed in the context of bulk water, we have attempted

to make a model that can be easily extended to heterogeneous systems that include solid

catalyst surfaces and polymer membranes. Also, since bond breaking and formation occurs
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naturally in our simulations it is our hope that it can be used to study liquid-state chemical

reactions. Not only the model can be used to study transport, thermodynamic, and structural

properties of a reactive system, it can be used to calculate reaction rates and effects of other

species in the system, such as a solvent. For instance, under the NEMD framework, the

model could be used to study the change in conductance of an electrolyte with varying

electric fields.

Several quantum effects, like tunneling and delocalization of protons may be important

and are not accounted for directly in our simulations. These effects have been included

indirectly in our potential energy function and by empirically lowering the PT reaction

energy barrier. In the classical MD framework, a more detailed treatment was not possible.

In spite of this approximation, the results were encouraging.

Simulated bulk water properties were in reasonable agreement with the experimental

values and evidence of PT events were found in an MD simulation containing one excess

proton. The preliminary PT rate, calculated with some crude assumptions, appeared to be

too low by a factor of 5. Several modifications to the methodology were made to calculate

the true PT rate. The refined method resulted in the PT rate that was 8.07 × 10−5 cm2/s,

which was off and too low by 13%. The method was then extended to include a counterion

in our MD simulations. The structural and transport properties of the system gave good

agreement with the experimental data, and the resulting PT rate was 6.02 × 10−5 cm2/s.

The method was also extended to include multiple excess protons.

6.1.2 Future work

6.1.2.1 Study of ORR

As mentioned previously, the ultimate aim of this study is to develop a robust and polarizable

model for studying the oxygen reduction reaction (ORR) that occurs on the cathode of

fuel cells. The water model developed in this work has been partially demonstrated to

be transferable by verifying its functionality when different chemical species (counterions,
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multiple protons) are added. The next step towards fulfilling the ultimate objective of the

study will be to include a polymer membrane in the simulation. As a model for polymer

membrane, a hydrated Nafion membrane may be selected. Multiple Nafion monomers may

be included along with oxygen and hydrogen species. The molecular interactions between

the sites of the Nafion, and the hydrogen and oxygen species of the simulation will still be

given by the formulations in Section 3.2, and no new theoretical development is needed.

The simulations with the Nafion membrane would be used for studying the relative rate

of PT via three mechanisms: bulk transport (vehicular diffusion), Grotthuss mechanism

(structural diffusion), and sulphonate-assisted PT (due to the polymer membrane). The

results for proton conductivity may be compared with the experimental results of Doyle et

al. [145, 146]. Once satisfactory results are obtained for PT in presence of Nafion membrane,

the next step would be to add a platinum catalyst to the system. Pt(1,1,1) surface may be

used for this purpose.

To study the ORR, first, in order to speed up the events of interest for better sampling,

one would need to use a sampling technique, like transition path sampling (TPS) [147]. Sec-

ond, candidate mechanisms for the ORR would need to be selected and the energy surfaces

of these would be individually studied. Third, effect of solvation would be studied on the

reaction pathways and energy barriers for the four elementary steps of ORR. The rate de-

termining step would be identified by this study. Lastly, the effect of electrode potential and

electrochemical double layer on the energy barriers would be studied. With these studies, an

attempt to identify the factors that make the RDS of ORR slow may be determined. The

results may be compared to an ab intio study of ORR by Sha et al. [148].

6.1.2.2 Other applications of the model

Besides demonstrating the simulation of proton transport in this work, several novel concepts

have been introduced that are useful in the development of a force-field that intends to go

beyond what traditional classical force-fields can do. First, the water model developed in this

113



work uses a small number of parameters to capture the essential physics of the system, which,

as demonstrated in Chapter 4, helps making the model transferable. The transferability

can be further tested by the application of model to reactive systems studied by Voth’s

MS-EVB and Goddard’s ReaxFF (see Section 2.3.2). Second, the concept of central-force

enables simulation of reactions while keeping the integrity of nonreacting molecules intact.

Third, the weak vdW interactions between sites on different molecules are inter-related with

the Coulombic interactions and do not need to be determined independently. Fourth, a

novel Ewald sum, specific to a system of fluctuating charge and fluctuating point dipoles

is implemented, along with some other time saving algorithms. These concepts have much

broader application than just simulation of reactions. The application of these concepts

enables one to study charged and reacting systems at the molecular level more efficiently,

which can provide additional insight into simulated physical, chemical, or biological nanoscale

phenomena.

6.2 Dipole Moment Studies

6.2.1 Summary of results

A method was developed to estimate the dipole moment of polar organic compounds. An

open source AIMD code SIESTA was used in order to simulate several organic molecules.

The molecule-average dipole moment was determined by analysis of the simulated dipole

moment distributions, with careful attention to possible sources of error. A general method

was then developed to estimate the dipole moment of any compound with conformational

degrees of freedom. The major advantage of this method is that it involves the determination

of reasonably accurate electronic structure via solution of the Schrödinger equation, which

leads to better estimations of dipole moment.

One drawback of the method is that the determination of electronic structure at each

MD step is a computationally demanding process and this makes the method very expensive.
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Thus, for large molecules, the simulated run time cannot be more than a few hundred

picoseconds, which may result in inadequate sampling. However, we have developed some

robust methods to circumvent the problem of poor sampling. Careful analyses of the dipole

distributions along with using data from higher temperatures provides a reasonably good

estimate for the average dipole moment.

First an approximate method was developed which did not fully utilize all the available

data from SIESTA output and was based on certain assumptions. The results obtained were

encouraging but prompted improvements. The method was hence refined, pertaining to both

the SIESTA program used to run simulations and subsequent analyses of dipole and energy

distributions. The study was performed for for five polar organic compounds: TBP and four

compounds with a single dihedral angle. The results for all compounds studied were within

the range of experimental values except for DNE.

6.2.2 Future work

Due to time and computational limitations, in our studies the SIESTA AIMD code could not

be run for more than about one week, which translated to around 100 ps simulated time for

smaller molecules and only 30 ps for TBP. The sampling would improve if the simulations

could be run longer and this should be the first thing to try in order to continue these studies.

Next, better DFT methods and larger basis set for orbitals may be used to improve dipole

moment predictions. With SIESTA, it is possible to use more sophisticated DFT methods,

like PBE [149], RPBE [150], and LYP [151]. Also, it is possible to use multiple-zeta basis

sets [152] with SIESTA, allowing larger orbitals and better representation of polarizability.

Utilizing these options will increase the computation time, but can lead to a more accurate

electronic structure calculation, and hence and an accurate dipole moment calculation. Of

course, in some cases the easier method inadvertently benefits from cancellation of errors,

and the more expensive method does not immediately lead to improved accuracy. These

tests could be performed on the same five compounds that were used in the present study.
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One of the major challenges faced in this study was that the SIESTA code could not be

run in parallel, that is, simultaneously on multiple processors. If the SIESTA could be run

on parallel processors, the efficiency would increase greatly and one would have access to

higher time scales. This is also one of the prospective improvements that could be made to

the study. To this end, a system administrator for the supercomputer center at BYU was

consulted regarding this problem. He said there were some problems with the library that

the SIESTA code depends on, and a solution was not obtained as part of the present project.

Once an optimum DFT-method and basis set size is selected, the method that is developed

here could be used to estimate average dipole moment of any compound. The general

procedure presented in Chapter 5, including the statistical tests, may need to be refined as

one studies dipole moments of other compounds.
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Appendix A

Modifications to the SIESTA Code

A.1 Modifications for calculation of dipole moment

• Following lines were added to the siesta analysis.F code:

1. At the beginning of the code:

...
...

...
...

...
...

...
...

...
...

CONTAINS

...
...

...
...

...
...

...
...

...
...

use m dipol

use parallel, only: IOnode

2. At line number 260:

! Print electric dipole

if (shape .ne. ’bulk’) then

if (IOnode) then

write(6,’(/,a,3f12.6)’) ’siesta: Electric dipole (a.u.) =’, dipol

write(6,’(a,3f12.6)’) ’siesta: Electric dipole (Debye) =’, (dipol(ix)/Debye,ix=1,3)

endif

if (cml p) then
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call cmlAddProperty(xf=mainXML, value=dipol/Debye, title=’Electric dipole’,

dictref=’siesta:dipol’, units=’siestaUnits:Debye’)

endif !cml p

endif

• Following line must be added to MAKEFILE to enable compilation: write subs.o:

m dipol.o, parallel.o

A.2 Modifications for altering the box size

The automatic cell.f code was modified. The new code that is used instead of the original

version is:

C*****************automatic cell.f**********************

subroutine automatic cell(ucell,scell,na u,xa,isa,charnet)

use precision, only: dp

use atmfuncs, only: rcut

use parallel, only: IONode

use units, only: Ang

implicit none

real(dp), dimension(3,3), intent(inout) :: ucell

real(dp), dimension(3,3), intent(inout) :: scell

integer, intent(in) :: na u

real(dp), dimension(3,*), intent(in) :: xa

integer, dimension(*), intent(in) :: isa

real(dp), intent(in) :: charnet

integer :: ix, ia, is, iv

real(dp) :: rc, xmin, xmax

ucell(1:3,1:3) = 0.0 dp
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scell(1:3,1:3) = 0.0 dp

do ix = 1,3

xmin = huge(1. dp)

xmax = -xmin

do ia = 1,na u

is = isa(ia)

rc = rcut(is,0)

xmin = min( xmin, xa(ix,ia)-rc )

xmax = max( xmax, xa(ix,ia)+rc )

enddo

C Use a 50% margin for atomic movements

ucell(ix,ix) = 1.50 dp * (xmax - xmin)

scell(ix,ix) = ucell(ix,ix)

enddo

C build cubic cell if system is charged

if (charnet .ne. 0.0 dp) then

xmax = -huge(1. dp)

do ix = 1,3

if (ucell(ix,ix) .gt. xmax)

xmax = ucell(ix,ix)

enddo

do ix = 1,3

ucell(ix,ix) = xmax

scell(ix,ix) = xmax

enddo

endif

C
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if (IOnode) then

write(6,’(/,a,3(/,a,3f12.6))’) . ’siesta: Automatic unit cell vectors (Ang):’, . (’siesta:’,

(ucell(ix,iv)/Ang,ix=1,3), iv =1,3)

endif

C

end subroutine automatic cell
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Appendix B

Analysis of Distributions

Included here is the computer program that is used for the analysis of the dipole moment

and energy distributions and extrapolation of dipole moment from a higher temperature to

lower temperature.

*23456789012345678901234567890123456789012345678901234567890123456789012

c Code to make histograms of energy and dipole from SIESTA run

c

PROGRAM histogram

integer Ebinmax,Dbinmax

parameter (Ebinmax = 1000, Dbinmax = 50)

real*8 Trun,Tsamp,T298,Esamp,EKS,Eref,Dsamp,kB

real*8 Er,Elo,Ehi,Dlo,Dhi

integer samp,maxsamp,step

integer Ebin,Ebinlo,Ebinhi,Dbin,Dbinlo,Dbinhi

real*8 hist1(Ebinmax,Dbinmax),hist2(Ebinmax,Dbinmax)

real*8 hist3(Ebinmax,Dbinmax),hist4(Ebinmax,Dbinmax)

real*8 tot1E(Ebinmax),tot2E(Ebinmax),tot3E(Ebinmax)

real*8 tot4E(Ebinmax),tot1D(Dbinmax),tot2D(Dbinmax)

real*8 tot3D(Dbinmax),tot4D(Dbinmax)

real*8 Ecenter(Ebinmax),Dcenter(Dbinmax)

real*8 Tavg,Davg,Eavg,D298I(2),D298A(2)
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character*25 Efile,Dfile,Ofile

c

c Run temperature should be average temperature of this run.

c Reference energy should be same for all runs of this molecule

c and should be approximately a weighted average energy.

Trun = 300.00 !K

Eref = -4205.70 !eV

T298 = 298.00 !K

c

c input files and output file

Efile = ”energies-tbp.MDE”

Dfile = ”dip-tbp.csv”

Ofile = ”histogram-tbp.csv”

c

c histogram limits for rescaled energies = (E-Eref)/kB (in Kelvin)

Elo = -15000.

Ehi = 15000.

c

c histogram limits for dipoles (in Debye)

Dlo = 0.

Dhi = 20.

c

c boltzmann constant in eV/K

kB = 8.6173323E-5

c

c max possible number of samples (timesteps) from SIESTA runs

maxsamp = 1000000
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c

c reset histograms and get bin centers for energy and dipole

do Ebin = 1, Ebinmax

Ecenter(Ebin) = Elo + (Ehi-Elo)*(Ebin-0.5)/Ebinmax

tot1E(Ebin) = 0.d0

tot2E(Ebin) = 0.d0

tot3E(Ebin) = 0.d0

tot4E(Ebin) = 0.d0

do Dbin = 1, Dbinmax

hist1(Ebin,Dbin) = 0.d0

hist2(Ebin,Dbin) = 0.d0

hist3(Ebin,Dbin) = 0.d0

hist4(Ebin,Dbin) = 0.d0

enddo

enddo

do Dbin = 1, Dbinmax

Dcenter(Dbin) = Dlo + (Dhi-Dlo)*(Dbin-0.5)/Dbinmax

tot1D(Dbin) = 0.d0

tot2D(Dbin) = 0.d0

tot3D(Dbin) = 0.d0

tot4D(Dbin) = 0.d0

enddo

Tavg = 0.d0

Eavg = 0.d0

Davg = 0.d0

D298I(1) = 0.d0

D298I(2) = 0.d0
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D298A(1) = 0.d0

D298A(2) = 0.d0

c

c read in energies, temperatures, and dipoles from SIESTA output

c file and python-generated dipole file

c

open(15,file=Efile)

rewind(15)

read(15,*)

open(16,file=Dfile)

rewind(16)

ccc read(16,*)

c

do samp = 1, maxsamp

c

c read and validate sample from energy file

read(15,FMT=*,end=100) step, Tsamp, EKS, Esamp

if (step.ne.samp) write(6,*)

1 ’problem with energy file data, step=’,step

c

c read and validate sample from dipole file

read(16,FMT=*,end=100) step, Dsamp

if (step.ne.samp-1) write(6,*)

1 ’problem with dipole file data, step=’,step

c

c generate rescaled energies

Er = (Esamp-Eref)/kB
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c convert energy values to bin number

Ebin = int((Er - Elo)/(Ehi - Elo)*(Ebinmax-1)) + 1

c check if energy bin index is exceeded

if (Ebin .lt. 1) then

write(6,*)’Elo too large, Er=’,Er

Ebin = 1

elseif (Ebin .gt. Ebinmax) then

write(6,*)’Ehi too small, Er=’,Er

Ebin = Ebinmax

endif

c convert dipole values to bin number

Dbin = int((Dsamp - Dlo)/(Dhi - Dlo)*(Dbinmax-1)) + 1

c check if dipole bin index is exceeded

if (Dbin .lt. 1) then

write(6,*)’Dlo too large, Dbin=’,Dbin

Dbin = 1

elseif (Dbin .gt. Dbinmax) then

write(6,*)’Dhi too small, Dbin=’,Dbin

Dbin = Dbinmax

endif

c increment bins, using different temperature options

hist1(Ebin,Dbin) = hist1(Ebin,Dbin) + 1.

hist2(Ebin,Dbin) = hist2(Ebin,Dbin) + exp(Er/Tsamp-Er/T298)

hist3(Ebin,Dbin) = hist3(Ebin,Dbin) + exp(Er/Trun-Er/T298)

hist4(Ebin,Dbin) = hist4(Ebin,Dbin) + exp(Er/Tsamp)

c run averages

Tavg = Tavg + Tsamp
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Eavg = Eavg + Esamp

Davg = Davg + Dsamp

D298I(1) = D298I(1) + Dsamp*exp(Er/Tsamp-Er/T298)

D298I(2) = D298I(2) + exp(Er/Tsamp-Er/T298)

D298A(1) = D298A(1) + Dsamp*exp(Er/Trun-Er/T298)

D298A(2) = D298A(2) + exp(Er/Trun-Er/T298)

enddo

write(6,*) ’maxsamp not large enough’

goto 200

100 maxsamp = samp - 1

write(6,*) ’end of energy or dipole file, maxsamp=’,maxsamp

200 close(15)

close(16)

c

c find nonzero ranges of histograms, and normalize

Ebinlo = Ebinmax

Ebinhi = 1

Dbinlo = Dbinmax

Dbinhi = 1

do Ebin = 1, Ebinmax

do Dbin = 1, Dbinmax

if (hist1(Ebin,Dbin).gt.0.d0) then

c adjust ranges up or down if nonzero number of samples

if (Ebinlo.gt.Ebin) Ebinlo = Ebin

if (Ebinhi.lt.Ebin) Ebinhi = Ebin

if (Dbinlo.gt.Dbin) Dbinlo = Dbin

if (Dbinhi.lt.Dbin) Dbinhi = Dbin
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c normalize histograms

hist1(Ebin,Dbin) = hist1(Ebin,Dbin)/maxsamp

hist2(Ebin,Dbin) = hist2(Ebin,Dbin)/maxsamp

hist3(Ebin,Dbin) = hist3(Ebin,Dbin)/maxsamp

hist4(Ebin,Dbin) = hist4(Ebin,Dbin)/maxsamp

c accumulate 1D projections of histograms

tot1E(Ebin) = tot1E(Ebin) + hist1(Ebin,Dbin)

tot2E(Ebin) = tot2E(Ebin) + hist2(Ebin,Dbin)

tot3E(Ebin) = tot3E(Ebin) + hist3(Ebin,Dbin)

tot4E(Ebin) = tot4E(Ebin) + hist4(Ebin,Dbin)

tot1D(Dbin) = tot1D(Dbin) + hist1(Ebin,Dbin)

tot2D(Dbin) = tot2D(Dbin) + hist2(Ebin,Dbin)

tot3D(Dbin) = tot3D(Dbin) + hist3(Ebin,Dbin)

tot4D(Dbin) = tot4D(Dbin) + hist4(Ebin,Dbin)

endif

enddo

enddo

c accumulate run averages

Tavg = Tavg/maxsamp

Eavg = Eavg/maxsamp

Davg = Davg/maxsamp

D298I(1) = D298I(1)/D298I(2)

D298A(1) = D298A(1)/D298A(2)

c

c output file with probabilities over nonzero range

open(17,file=Ofile)

write(17,*) ’probability histograms from SIESTA run’
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write(17,*) ’input files:
”
’,Efile

write(17,*) ’
”
’,Dfile

write(17,*)

write(17,*) ’samples =,’,maxsamp

write(17,*) ’Trun =,’,Trun,’,K, setpoint’

write(17,*) ’Tavg =,’,Tavg,’,K, average from run’

write(17,*) ’Eref =,’,Eref,’,eV, ref energy for molecule’

write(17,*) ’Eavg =,’,Eavg,’,eV, average from run’

write(17,*)

write(17,*) ’Davg =,’,Davg,’,D, average from run’

write(17,*) ’D298-I =,’,D298I(1),’,D, extrapolation to’,

1 ’ 298K using instant T’

write(17,*) ’D298-A =,’,D298A(1),’,D, extrapolation to’,

1 ’ 298K using average T’

write(17,*)

write(17,*)’All energies below rescaled by (E-Eref)/kB’,

1 ’ and have units Kelvin’

write(17,*) ’kB =,’,kB,’,eV/K’

write(17,*)

write(17,*)’Matrix 1: original phase-space probability’

write(17,*)’,Dipole (Debye)’

write(17,’(A6,300(A1,ES14.7E3))’)’Energy’,

1 (’,’,Dcenter(Dbin),Dbin=Dbinlo,Dbinhi)

do Ebin = Ebinlo, Ebinhi

write(17,’(F8.0,300(A1,ES14.7E3))’) Ecenter(Ebin),

1 (’,’,hist1(Ebin,Dbin),Dbin=Dbinlo,Dbinhi)

enddo
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write(17,*)

write(17,*)

write(17,*)’Matrix 2: 298K extrapolated phase-space ’,

1 ’probability - intantaneous T’

write(17,*)’,Dipole (Debye)’

write(17,’(A6,300(A1,F8.5))’)’Energy’,

1 (’,’,Dcenter(Dbin),Dbin=Dbinlo,Dbinhi)

do Ebin = Ebinlo, Ebinhi

write(17,’(F8.0,300(A1,ES14.7E3))’) Ecenter(Ebin),

1 (’,’,hist2(Ebin,Dbin),Dbin=Dbinlo,Dbinhi)

enddo

write(17,*)

write(17,*)

write(17,*)’Matrix 3: 298K extrapolated phase-space ’,

1 ’probability - average T’

write(17,*)’,Dipole (Debye)’

write(17,’(A6,300(A1,F8.5))’)’Energy’,

1 (’,’,Dcenter(Dbin),Dbin=Dbinlo,Dbinhi)

do Ebin = Ebinlo, Ebinhi

write(17,’(F8.0,300(A1,ES14.7E3))’) Ecenter(Ebin),

1 (’,’,hist3(Ebin,Dbin),Dbin=Dbinlo,Dbinhi)

enddo

write(17,*)

write(17,*)

write(17,*)’Matrix 4: Density of states - instantaneous T’

write(17,*)’,Dipole (Debye)’

write(17,’(A6,300(A1,F8.5))’)’Energy’,
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1 (’,’,Dcenter(Dbin),Dbin=Dbinlo,Dbinhi)

do Ebin = Ebinlo, Ebinhi

write(17,’(F8.0,300(A1,ES14.7E3))’) Ecenter(Ebin),

1 (’,’,hist4(Ebin,Dbin),Dbin=Dbinlo,Dbinhi)

enddo

write(17,*)

write(17,*)

write(17,*) ’1-D projections / summations of above Matrices’

write(17,*)

write(17,*) ’,Matrix1,Matrix2,Matrix3,Matrix4’

write(17,*) ’Energy,runT,insT298,avgT298,DOS’

do Ebin = Ebinlo, Ebinhi

write(17,’(F8.0,300(A1,ES14.7E3))’) Ecenter(Ebin),

1 ’,’,tot1E(Ebin),’,’,tot2E(Ebin),

2 ’,’,tot3E(Ebin),’,’,tot4E(Ebin)

enddo

write(17,*)

write(17,*)

write(17,*) ’,Matrix1,Matrix2,Matrix3,Matrix4’

write(17,*) ’Dipole,runT,insT298,avgT298,DOS’

do Dbin = Dbinlo, Dbinhi

write(17,’(F8.5,300(A1,ES14.7E3))’) Dcenter(Dbin),

1 ’,’,tot1D(Dbin),’,’,tot2D(Dbin),

2 ’,’,tot3D(Dbin),’,’,tot4D(Dbin)

enddo

close(17)

c

138



stop

end
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Appendix C

The MD Code for Proton Transfer

To obtain the MD code used in this work, please visit the following digital archive at the

BYU Harold B. Lee Library:

http : //hdl .lib.byu.edu/1877/2944

Two sets of files are included there. The first one includes the MD code and the input files

for the bulk water simulations. The second set includes the MD code and input files for

bulk water simulations with one excess proton and one counterion. In addition, the second

set includes a python script that is used to calculate the proton diffusion constant from the

information contained in two output files.
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