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ABSTRACT

The Structure and Stability of Alpha-helical, Orthogonal-bundle

Proteins on Surfaces

Shuai Wei

Department of Chemical Engineering

Master of Science

The interaction of proteins with surfaces is a major problem involved in protein mi-
croarrays. Understanding protein/surface interactions is key to improving the performance
of protein microarrays, but current understanding of the behavior of proteins on surfaces is
lacking. Prevailing theories on the subject, which suggest that proteins should be stabilized
when tethered to surfaces, do not explain the experimentally observed fact that proteins
are often denatured on surfaces. In an attempt to develop some predictive capabilities
with respect to protein/surface interactions, it was asked in previous works if the stabiliza-
tion/destabilization of proteins on surfaces could be correlated to secondary structure and
found that no link existed. However, further investigation has revealed that proteins with
similar tertiary structure show predictable stabilization patterns. In this research, it is re-
ported how five, alpha-helical, orthogonal-bundle proteins behave on the surface compared
to the bulk. By measuring stabilization using melting temperatures and the Gibbs energies
of folding, it is shown that the stability of proteins tethered to surfaces can be correlated to
the shape of the loop region where the tether is placed and the free rotation ability of the
part of proteins near surfaces. It is also shown that any destabilization that occurs because
of the surface is an enthalpic effect and that surfaces always stabilize proteins entropically.
Furthermore, the entropical stabilization effect comes from unfolded states of the tethered
protein, while the enthalpical destabilization effect is from the folded states of protein. A
further analysis of surface induced change of folding mechanism is also studied with a multi-
state protein 7LZM in this research. The result showed that by tethering a protein on a
surface, the melting temperature of part of the protein changed, which leads to a miss of
state.
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1 PROTEIN FOLDING AND STABILITY ON PROTEIN MICROARRAYS

1.1 Introduction

A protein microarray is a high-throughput diagnostic device that can perform thousands of

biological assays in parallel. This technology is developing as a powerful tool for proteomics

and clinical applications in recent years since the emergence of the two papers by Macbeath

and Schreiber[1] and Zhu et al.[2] in the beginning of this century. It is created by depositing

proteins onto a solid substrate with a different type of protein located at each addressable

point on the “chip” to facilitate identification. With proper fluorescent labeling, the technol-

ogy can identify proteins in serum, determine concentrations, screen drug candidates, detect

protein/ligand interactions, or ascertain function. [3, 4, 5, 6]

While protein arrays have great potential in both research and clinical settings, the

technology is currently limited by poor performance.[7] It is difficult to obtain reproducible,

quantitative results. As such, regulatory agencies are reluctant to approve, and end-users

are reluctant to use, the technology in its current state.

The key to any protein array is to deposit protein on the surface in a way that

preserves function. There are basically two different techniques through which proteins are

deposited on surfaces. The molecule can either adsorb non-covalently to the substrate or

can be tethered to the surface by covalent linkage. The main challenge using either method

is that proteins can change conformation when bound or adsorbed to a surface[8, 9, 10].

Since protein structure leads directly to protein function, transformations that do occur

prevent the proteins on the surface from producing the desired outcome. Covalent tethering

is emerging as the favored method to create protein arrays, as conformation changes are

more pronounced for adsorbed proteins, but significant challenges remain. The difficulty

is that no method exists to predict à priori how a particular tethered protein will behave.
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Thus rational design of protein arrays is not possible and ad hoc choices must be made about

variables such as the location of the tether site on the protein or the type of surface to use.

Although many researches have been involved in understanding what affects protein

behaviors on a chip in experimental and simulational method, there is still little known

about the underlying biophysics. The lack of capabilities in predicting protein stabilities

and obtaining protein structures are hurdles obstructing researchers from understanding

protein behavior in presence of a surface. Simulational researches could be better choices

because protein structures are available to observe and compare during simulations. Also,

interesting properties of proteins on surfaces such as thermodynamic values, conformations,

and stabilities are measurable, which provide us tools to evaluate theories in predicting

protein behaviors on surfaces. Details about protein microarrays, previous experimental un-

derstanding and simulation and theoretical understanding are shown in the following section

“Background”. Analyses about simulation efficiency and details of properties calculations

are discussed in chapter 2.

A coarse-grain model by Karanicolas and Brooks [11, 12, 13, 14, 15] is used in this

research, which has been proven to be able to reproduce protein folding mechanisms and

has the required simulation efficiency. Since previous results showed that proteins could be

stabilized or destabilized on surfaces and protein stabilities can not be correlated to their

secondary structure motifs, a hypothesis is stated as protein stabilities on surfaces could be

correlated to their tertiary structure motifs. Five proteins, from the alpha-helical, orthogonal

bundle motif, are simulated in this work to test the hypothesis.

The results in this work show, for the first time, that protein stability on surfaces can

be correlated to tertiary structural motif for alpha-helical, orthogonal-bundle proteins. The

important factors to consider when selecting a tether site are the shape of the loop region and

the volume available for the protein to rotate on the surface. For loop regions that have large

rotation volumes, sites can always be found which stabilize the protein. A thermodynamic

analysis shows that proteins are always stabilized entropically when tethered to a surface

and that any destabilization is an enthalpic effect. Taken as a whole, the results offer

hope for rational prediction of protein surface interactions and a rigorous thermodynamic
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understanding of the origins of stabilization/destabilization of surface. Simulation details

and data analyses are shown in chapter 3.

Further research on a multi-states protein 7LZM revealed that the melting tempera-

ture of some of its parts could be changed when it is tethered to a surface. The change of

melting temperature of some parts of the protein, affects the number of folding metastates,

which leads to the change of folding mechanism. Details of simulation in the multi-states

protein are talked about in chapter 4.

1.2 Background

1.2.1 Protein Microarray

According to a nomenclature proposed by Kodadek [16], there are two basic kinds of protein

microarrays. They could either be employed for studies of native protein activities (Figure

1.1) or serve as an analytical tool of monitoring protein levels in a given biological sample

(Figure 1.2), both in massively parallel fashions. In the first application, native ligands are

arrayed in defined spots, and fluorescently labeled proteins in solution are tested through

the array. Spots that ’light up’ would be due to binding of the labeled protein. In the other

procedure, one specific kind of ligand is arrayed on the chip, then levels of corresponding

proteins in solution could be detected according to the binding level.

Figure 1.1: Protein microarray for studies of native proteins activities

Several platforms have been developed for measuring different parameters from a

minute amount of sample.[7] Protein arrays have the potential to be applied in basic research,

drug target discovery and validation, drug development, and clinical diagnostics. The first

3



Figure 1.2: Protein microarray for monitoring protein levels

high-density antibody microarrays were studied by Haab et al.[17]; they were used to test

whether a linear relationship could be detected between an antibody and antigen pair in an

array format. Soen et al.[18] have fabricated one analytical microarray using peptide-MHC

complexes to detect and characterize antigen-specific T-cell populations. Hsu et al.[19] have

built up a lectin chip with 21 lectins for use in profiling the surface lipopolysaccharides in

cacterial cells. The lectins were able to capture the bacterial cells onto the chip while labeled

E.coli cells were incubated.

Despite being studied for several years, researchers are still far from being confident

about protein arrays’ performance. For example, results from antibody arrays are not always

conclusive due to different arraying technologies.[20] Some antibodies have been shown to be

active in standard assaying techniques such as ELISA, while the activity can not be measured

on surfaces.[21] Also, signal intensities can vary as much as 43% on the same chip[22].

Moreover, since antibody arrays are the most advanced of the technologies[6], and antibody

structure is fairly similar across the entire class of molecules, arraying other proteins, such as

cytokines[20, 23, 24, 25], is even more challenging. In short, despite the promise of protein

arrays as a clinical tool to improve quality of life, current technology cannot produce arrays

that perform to levels commensurate for use in clinical settings.[20, 6, 26, 27, 28]

Thus, before protein microarrays become the mainstream tool for biological applica-

tions, some bottleneck problems need to be solved.[29] A major challenge of creating a protein

microarray is that proteins always denature when deposited on the chip due to the effect

from the surface [6, 8, 9, 10]. Since protein structures lead to protein functions, such trans-

formation will prevent proteins from performing their desired roles. Since protein/surface
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interactions are very important in processes like protein microarrays, many studies, either

experimental or simulational, have been done to figure out what affect protein stabilities on

the surface.

Nevertheless, there is still little known about the underlying biophysics, and prevailing

theories have been shown to break down under careful scientic testing. Moreover, current

ability to control and manipulate protein adsorption and function on surfaces is limited

because current models cannot yet predict the behaviors of proteins at interfaces. Because

maintaining protein stability on surfaces is essential to array function, several researchers

have been involved in studying protein/surface interactions. These are described in the next

section.

1.2.2 Experimental Understanding

Researchers have studied the behavior of polypeptides at interfaces for decades.[9] One major

hurdle of implementing experimental studies for protein/ surface interactions on protein

microarrays is the lack of a method to predict protein stabilities on surfaces. Generally two

regimes of control are desired, the prevention of non-specific protein adsorption, and the

precise placement of the proteins on the surface in a manner that preserves functionality. It

is often necessary to combine both of them at the same time.

There are many kinds of methods for binding proteins on surfaces.[6, 30] The simplist

one is the surface adsorption, which has been used in the standard enzyme-linked immunosor-

bent assay (ELISA) and Westen blot for many years. It is generally mediated by electrostatic

charges[17] or hydrophobic interactions [31]. Despite its simplicity, the main drawbacks of

this method are the possibility of denaturating proteins and non-specific protein adsorption

on the surface. [6] Covalent binding of proteins to substrate surfaces is a more efficient and

robust approach.[32] The surfaces usually carry reactive groups, such as epoxides, aldehy-

des, succinimidyl esters or isothiocyanates, which react with nucleophilic groups (e.g., amino,

thiol or hydrocyl groups) of amino acid residues. Covalent immobilization via random at-

tachment also tends to denature arrayed proteins. Researchers have also developed a method
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of affinity interaction by specific tags, which provides a means of immobilizing proteins in a

defined orientation on a tag-capture surface, often retaining full protein activity.[2]

Perhaps the most popular technology to control protein/surface interactions are self-

assembled-monolayers (SAMs) of proteins, which are effective at preventing non-specific ad-

sorption as well as directing desired protein placement on the surface.[33, 34] However, their

inherent instability prevents their effective use outside of the research setting, particularly

their use in medical diagnostics which require an extended shelf life.[35] Polymer coated sur-

faces, usually PEG-based, are used extensively to prevent fouling of surfaces and to control

protein placement on the surface through appropriate functionalization of the polymer.

Despite the success of SAMs, polymers, and other coatings on surfaces, predicting

protein behavior on surfaces, remains difficult. A striking example is the fact that some

antibodies, which have a high degree of similarity from one molecule to the next, are active

in solution but not on surfaces while others are not affected by the substrate.[21]

The other hurdle obstructing us from obtaining more experimental knowledge of pro-

tein surfaces interactions is that it is hard to determine protein structures. Typical techniques

for obtaining structures of proteins such as NMR and X-ray crystallography, are not adapt-

able to surface-bound proteins. Some techniques, such as surface plasmon resonance (SPR),

dual-polarisation interferometry (DPI), ellipsometry, circular dichroism spectroscopy (CD),

and FTIR can be used to provide a gross estimate of protein structure but cannot provide

mechanistic understanding or atomic-level structural resolutions.[36] Because of this, rela-

tively little is known about how to predict the behavior of a protein on a surface a priori,

or how to control the function of absorbed molecules.

1.2.3 Theoretical and Simulation Understanding

Since experimental methods cannot provide enough information, several groups have done

simulations and theoretical work to understand protein/ surface interactions, both with

atomistic and coarse-grain methods.

Some groups have implemented atomistic simulations of proteins on surfaces. For

example, Latour and coworkers have investigated both model peptides [37] and biologically
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relevant proteins, such as fibrinogen[38], using SAMs with many different functionalizations

using an all-atom representation. In each study, they report both agreement and conflict

between simulation and experiment. Jiang [39] also showed conflict with experimental results

in energies of adsorption and monolayer structure. Kubiak et al. [40] atomistically simulated

Egg-white Lysozyme in three different systems, and found that lysozyme has a preferred

orientation for absorption to surfaces. However, they also reported that the time scale in

this simulation is still too short for the protein to unfold on the surface. Due to computational

limitations, all-atom models are restricted to probing global orientation or local structural

changes, which fails to meet our need for protein properties in large time and space scales.

To calculate protein stability, the protein must fold and unfold many times during

the simulation to get histigrams of energy and density of states. To achieve the necessary

sampling time scale, researchers have removed degrees of freedom by using coarse-grain

approaches, fixing configurations in space, and removing solvent molecules.[41, 42, 43, 44,

45, 46, 47] For example, Sun et al. [41] employed an implicit solvation in simulations to

decide the orientation of proteins when absorbed to surfaces. Zhou et al. developed a united-

residue model to study the adsorption and orientation of two antibodies on surfaces with

Monte Carlo simulations. Carlsson et al. [45] reported a study about lysozyme adsorption to

charged surfaces by Monte Carlo simulation. The lysozyme in his simulation was modeled

as a large hard sphere and each of 32 charged amino acids is represented by a small charged

site on the surface of the sphere.

The thermodynamic perspective explaining the influence of the surface on the stability

of proteins, theorized by Dill et al. [42, 48], predicts that proteins are always stabilized when

tethered to short-ranged, repulsive surfaces. The reason is summarized in Figure 1.3. As

depicted, the number of unfolded conformations available to tethered peptides is less than

in the bulk, because configurations are confined by the surface. This decreases the entropy

of unfolded protein on surfaces which destabilizes the unfolded state, favoring the folding

process. Assuming that the enthalpy of folding is approximately the same on and off the

surface, a decrease in the entropic cost of folding decreases the Gibbs energy of folding for

the tethered protein relative to the bulk protein resulting in stabilization of the proteins. In
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|∆S|           <    |∆S|surface                             bulk

|∆H|           ≈    |∆H|

|∆G|           >    |∆G|
surface                              bulk

surface                              bulk

conformation 
prohibited
by surface

Figure 1.3: Dill’s Theory behind the stabilizing influence of the surface on tethered proteins

short, the theory shows that the entropic cost of folding is greater in the bulk case than the

on the surface because unfolded bulk peptides have more entropy to lose than the surface

proteins. A decrease in the entropic cost results in a more negative value of ∆Gf .

Although Dill’s theory is one of the most widely cited theories, some simulations pro-

vide different results. In one example, work by Friedel et al.[49, 50] showed simulations of a

four-strand, beta-barrel protein both in the bulk and on surfaces with different tethering sites

in outer loop regions. The results show that the protein could be stabilized or destabilized on

the surface depending on the tethering site. Results also showed that if the tethering is done

to a site on the interior of the molecule, the protein is always destabilized. One more recent

work by Zhuang et al.[51] also shows similar variation of protein stability when tethering

the src-SH3 protein on surfaces with different sites. Similar results were seen in prior work

by Knotts et al.[52] done on the all-alpha, three-helix-bundle protein from Staphylococcus

aureus. In this study both the mechanical and thermal stabilities of the peptide were reduced

when the protein was tethered to the surface.
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Recent work by Knotts et al.[53] showed a study of four proteins: protein A, 434

repressor, SH3, and Protein G, which have different secondary or tertiary structure mo-

tifs. All four proteins were simulated both in the bulk and on an inert surfaces with N-

and C- termini, and the thermal stability of the proteins was probed using configurational-

temperature-density-of-states simulations. The work showed that proteins could be stabilized

or destabilized on surfaces. Also, it was shown that only all-alpha proteins displayed the

surface-induced destabilization, while the proteins with beta-content displayed only stabi-

lization. This is consistant with results from Zhuang et al.[51]. Another important result

from the work by Knotts et al.[53] is that the stability cannot be correlated to secondary

structures, because protein A and 434 repressor, which are both all-α peptides, displayed

different behaviors. Furthermore, as the results for protein A suggested, the same protein

can behave differently on surfaces depending on different tethering sites.

Previous studies show that there are successful methods to study protein stability in

inhomogeneous systems, and additional work on more proteins is required for understanding

and predicting protein stabilities on surfaces.

1.3 Summary

Although researchers realize the importance of understanding protein stability on surfaces,

there is still a lack of convincing theory for predicting protein behavior on surfaces. Even

though methods for binding proteins to surfaces in predetermined manners have been devel-

oped, and there are some successful instances of binding proteins with conserved stabilities,

experimental understanding is limited by the difficulty in producing protein structures on

surfaces. Again, there are no theories guiding how to tether a protein to a surface and keep

its function.

Simulation methods provide a better means of exploring this topic. Atomistic sim-

ulations have shown to be ineffective in rendering protein folding information due to their

large computational requirement. Some coarse-grain models have been proven to provide

results that are consistant with experiments. With these methods, a lot of research work

has been done. Results show that proteins could be stabilized or destabilized on surfaces,
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which conflicts with Dill’s theory, and that the folding mechanism could be changed if the

tethering site is in an structured part of the transition area[51]. Moreover, protein stabilities

can not be correlated to their secondary structure motifs. Since protein structure leads to

protein function, a deeper study and analysis of protein stabilities on surfaces with respect

to their tertiary structure is needed.
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2 EFFICIENTLY SIMULATING PROTEIN FOLDING: REPLICA

EXCHANGE

In this chapter, general simulation tools and thermodynamic calculation methods are intro-

duced. After that, the replica exchange simulation method is also discussed in the context

of rugged energy landscapes. To meet the simulation speed requirement, message passing

interface (MPI) is used and results are validated.

2.1 General Approach and Thermodynamic Quantities Calculation

2.1.1 General Approach

In this work, Brooks’ Go-like model[11, 12, 13], which is a suitable method for predicting

protein folding properties, is used. This model extends earlier ones by introducing different

energy scales to describe non-bonded interactions between side chains, hydrogen bonding

in regular secondary structure, and sequence-dependent virtual dihedral potentials to keep

proteins in appropriate conformations. The resulting energy surface can mimic that of the

real protein more closely than earlier models, which employed fewer energy scales or targeted

specific encoding of the backbone structure with virtual dihedral potentials. [11, 12, 13, 14,

15] This model has been shown to give good agreement between simulation and experimental

folding studies.[12]

To compare the effect of the surface on protein stability, certain proteins discussed

below were simulated in the bulk and tethered to the surface in several locations: at both

the N- and C- termini and in each of the loop/turn regions connecting secondary structural

elements. In each case, the melting temperature (Tm), Gibbs energy of folding (∆Gf ),

enthalpy of folding (∆Hf), and entropy of folding (T∆Sf) were calculated. In addition,

some order parameters were calculated for analysis of the correlation of protein structures
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and stabilities on surfaces. Also, the fraction of each secondary structure that was folded

was measured for analysis of the folding mechanism.

To make the comparison easier, T ∗

m was defined, which is the melting point of the

protein in bulk. By definition, Tm/T ∗

m = 1 for the protein in the bulk. If Tm/T ∗

m < 1, the

protein is destabilized by the surface at the tether location indicated. If Tm/T ∗

m > 1, the

protein is stabilized. Also, ∆∆G = ∆G − ∆G∗ was defined, in which, ∆G∗ is the Gibbs

energy of the protein at T ∗

m in bulk. Then, if ∆∆G is negative, the protein is stabilized by

tethering. If the value of ∆∆G is positive, the surface has a destabilizing influence. Since

all ∆G∗ are 0 by definition, ∆∆G as talked above, should be equal to ∆G.

2.1.2 Thermodynamic Quantities Calculation

The metrics used to quantify stability were calculated from simulation using standard meth-

ods from statistical mechanics. The melting point is the temperature of the peak in the heat

capacity curve. The heat capacity, C, is related to the fluctuations of the potential energy

of the system according to

C(T ) =
〈U2〉T − 〈U〉2T

RT 2
(2.1)

where R is the gas constant, T is the temperature, and the <>’s denote the average of the

corresponding quantities. The average of any arbitrary quantity, X, can be found from

X(T ) = 〈X〉T =

∑

U

X(U)Ω(U)e−βU

∑

U

Ω(U)e−βU
. (2.2)

The key quantity needed to evaluate Equation 2.2 is the density of states, Ω(U), which

is calculated using the Weighted Histogram Analysis Method (WHAM) [54] on the data

obtained from replica exchange simulations.

Each of the proteins investigated fold through a two-state mechanism. For two-state

folders, the Gibbs energy of folding is calculated from

∆Gf = Gfolded − Gunfolded = −kBT ln

(

Pf

1 − Pf

)

, (2.3)

12



where Pf is the probability of the folded state at temperature T. The values of Pf are deter-

mined by classifying the configurations sampled throughout the simulation into “folded” and

“unfolded” ensembles based upon the instantaneous fractional nativeness, q. The fractional

nativeness is the ratio of the number of native contacts formed at a particular instance to

the total number of native contacts possible. A protein is considered folded if q > q(Tm)

where Tm is the melting temperature of the protein. This treatment yields ∆Gf = 0 for

the protein at its melting temperature–a relationship which must be true by definition as

mentioned above.

The enthalpy change ∆Hf associated with the folding is calculated as the difference

of the potential energy between the folded and unfolded states. (Strictly, H = U + PV , but

the changes in the PV term are assumed to be negligible as has been done previously[55].)

The change in entropy is then obtained from T∆S = ∆H − ∆G.

2.2 Replica Exchange

One of the key challenges in the computer simulation of proteins at the atomic level is

the sampling of conformational space. Many commonly used sampling protocols, such as

Monte Carlo (MC) and molecular dynamics (MD), usually get trapped in local minima

in rugged energy landscapes, because they cannot cross high free-energy barriers between

conformational states. Replica exchange (RE), also known as parallel tempering, provides

an efficient sampling method to solve that problem using a series of replicas of a system

of interest. Each replica is typically in the canonical ensemble, and usually each replica is

at a different temperature. [56, 57] To accomplish barrier crossings, replicas at different

temperatures exchange complete configurations, which is also called “swaps”. Periodically,

coordinates are exchanged by using a Metropolis criterion that ensures that at any given

temperature a canonical distribution is realized. Swaps were attempted every 2,000 steps

and accepted with probability: Figure 2.1 shows how replica exchange works on a single

processor.

To get the thermodynamic information, a lot of samples are needed. Even with

WHAM, it is still needed to sample about 24 replicas in different temperatures to cover the
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Processor/core 1

Replica 1 Replica nReplica 2

Figure 2.1: Replica exchange simulation

temperature range of interest. Since it is needed to sample both folded and unfolded states

many times, a large time scale is also needed. Furthermore, for statistical consideration,

many simulations need to be run to get an accurate expectation value. To fulfill those

requirements, a large amount of computational time is required. 6 peptides are in use, and 8

simualtions of different sites are needed for each peptides on average. Also, it is expected to

get 6 copies for each simulation to get an average value. It takes 11 days on average to run

one single simulation. Even if all simulations ran without any error, 8.7 years are needed.

2.3 MPI

Fortunately, besides more sampling efficiency brought by the method itself, the RE simu-

lation is also easy to employ in highly efficiency parallel computation with large clusters

of CPU. That means, MD simulations run for each replica on an individual processor in

parallel. That means, the need of computational time can be tranfered into the need of

computational resources. In this case, it is not required to force one computer to run all 24

replicas for a long time, because it is easy to assign each replica to different processors, as

shown in Figure 2.2. The only problem is how to implement replica swapping as described in

RE simulation. In certain steps, swaps are proposed between replicas, which are on different

processors in this case. To realize that, the MPI is refered, which is introduced as follows.

The Message Passing Interface (MPI) [58, 59], is a specification for an application

programming interface (API) that allows many computers to communicate with one another.
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Processor/core 1 Processor/core nProcessor/core2

Replica 1 Replica nReplica 2

Figure 2.2: Replica exchange with MPI

This feature is just what needed in parallel simulation of RE. With proper design in MPI,

replicas can be simulated on each processor with MD, and exchange their coordinates in

certain iterations as expected. How does that help this research? If calculated in ideal

condition, only 1/24 of the 8.7 years, which is 132 days, is required. That is more than

acceptable if the script can be writen out in a couple of months, and leaving enough time to

analyze data.

It took one month to write the script for replica exchange. After that, it took about

half a month to make it work with the group scripts and get it to run on the supercomputer.

Simulations of RE on a single processor were already available in our group scripts, including

MD simulations of many replicas, and the swap algorithm. Therefore, what is needed to do

is to assign each replica into an individual computer, and write the swap algorithm using

MPI to combine processors. First, replicas are assigned to different processors by using

submission files in multi-processor format. After that, a function of swapping is developed

in MPI, and the script is written in the C++ programming language. In each 2,000 iterations,

every processor calls the function of swapping, to send or receive a swapping request. If the

request is accepted by the metropolis criterion, two processors exchange their coordinates.

If not, they just keep their own replicas and continue to run MD simulation until the next

swapping call.

The detail of MPI programming for replica exchange is shown as Appendix A.
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2.3.1 Performance of the MPI Scripts

To validate the MPI scripts for the replica exchange, 3WRP was taken as an example by

comparing the predicted melting temperatures with and without MPI. The melting tem-

peratures of protein 3WRP are measured as 303.57 ± 0.78K with MPI and 304.62 ± 1.01K

without MPI. The data are very close to each other, with only 0.34% difference. Further-

more, the data are consistant with very little flucturation. For all other proteins, we get the

similar accuracy and consistancy with MPI.

Since results are very accurate, the next thing that is needed is to know how much

time could be saved with MPI in simualtions. Originally, running the RE simulation on a

single processor takes 10.98 days. With the assistance of MPI and faster new processors in

the BYU Supercomputer Lab, it just took 7.55 hours for the same job. Now to calculate the

total time needed, using 8 hours as the average for each simulation. It reduced to 96 days

with MPI from 8.7 years without it.

To summerize, using MPI speeds up simulations very much, and gives consistantly

accurate results. Furthermore, it saved tons of time for debugging simulations. Also, much

more data than needed could be obtained just to make results more convincing.
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3 THE STRUCTURE AND STABILITY OF ALPHA-HELICAL,

ORTHOGONAL-BUNDLE PROTEINS ON SURFACES

In this chapter, the details of the hypothesis in this research is stated. To test this hypothesis,

five chosen Alpha-helical, Orthogonal-bundle proteins are simulated. Also, thermodynamic

quantities are calculated and further discussion are shown based on the melting temperature

results. After that, an analysis of thermodynamic quantities in more detail is implemented.

3.1 Hypothesis

Previous studies[49, 50, 52] demonstrated the fact that tethering must be done in the outer

loop regions of proteins, and the secondary structure is not a good predictor of proteins

stability on surfaces, it is predicted that if proteins are tethered in outer loop regions only,

and if all proteins are chosen from the same tertiary structure motif, they may display similar

behaviors on the surface. Specifically, efforts are concentrated on alpha-helical, orthogonal-

bundle proteins.

Alpha-helical, orthogonal-bundle are terms from CATH classification method, which

groups proteins based on their structure motifs. Protein research progress instigates cate-

gorization of structurally related proteins. As a result, structure-based classifications, such

CATH, can be effective at identifying unanticipated relationships in known structures and

in optimal cases function can also be assigned. Analysis of the structural families generated

by CATH reveals the prominent features of protein structure space.[60, 61]

CATH is a hierarchical classification of protein domain structures, which clusters

proteins at four major levels: Class (C), Architecture (A), Topology (T) and Homologous

superfamily (H)[60, 61]. The Class (C-level) is determined according to the secondary struc-

ture (alpha helix or beta sheet) composition and packing within the structure. Typically,
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there are three majors in the Class level: Mainly-Alpha, Mainly-Beta, and Alpha/Beta. Un-

der the Class level (C-level), is the Architecture (A-level) level, which describes the overall

shape of the domain structure as determined by the orientations of the secondary structures.

Under the Mainly-Alpha class, there are different architectures like the up-down bundle,

orthogonal bundle, alpha/alpha barrel, and horseshoe. They represent different A-levels just

because of their various orientational organization (or shape) of the alpha helices. We ac-

knowledge that this type of protein comprises only a small fraction of all available proteins.

This type is chosen as a starting point because of their simplicity and size.

In this research, folding properties on surfaces of a group of proteins within the same

tertiary family are going to be summerized, furthermore, a priori how proteins behave on a

surface based on their structure classification or structure motifs are tried to be predicted.

The work proposed here is based upon these findings. Formally, the hypothesis of the re-

search work is that all peptides classified as orthogonal bundle, alpha-helical motifs, will

behave similarily on a surface. All-alpha proteins are chosen because this particular struc-

tural motif is present in large proportions in antibody-binding proteinsan important class

of proteins involved in protein/surface interactions. We also have extensive experience in

simulation of all-alpha proteins. The orthogonal-bundle architecture was chosen because it

is believed such proteins will behave more consistently across this architecture than other

options. This is because orthogonal-bundle proteins are more sphere-like than proteins in

other architectures. In summary, all-alpha, orthogonal-bundle proteins are important from

a biotechnology standpoint and are expected to give consistent results, providing a useful

starting point for discovery.

3.2 Method

3.2.1 Proteins

Five different proteins were used to test the hypothesis. These were identified with the

CATH classification method[60, 61]. Each of the five proteins have the same class, mainly

alpha, and the same architecture, orthogonal bundle. The five proteins, shown in Figure 3.1,
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are the N-terminal domain of phage 434 repressor (PDB ID: 1R69), cytochrome C-552 from

Nitrosomonas europaea (1A56), retinoblastoma tumor suppressor (1AD6), cytochrome C6

(1A2S), and myoglobin (5MBN). The size of each protein ranges from 64 to 163 residues.

Figure 3.1: Schematic representation of the five alpha-helical, orthogonal-bundle proteins:
A. 1R69, B. 1A56, C. 1AD6, D. 1A2S, E. 5MBN

Orthogonal-bundle proteins were chosen as they provide a convenient starting place

to investigate the behavior of families of proteins on the surface. This family of proteins

are composed of α-helices connected by loop regions. The helices lie at approximately 90◦

with respect to each other. By comparison, all-alpha, up-down bundles (a family of proteins

with the same CATH class but different architecture) are composed of α-helices which lie

in a roughly parallel orientation resulting in an elongated structure rather than a globular

structure. The globular nature of orthogonal-bundle proteins is such that the loop regions

are found on the exterior of the molecule, a condition that has been shown to be necessary

to maintain the native structure of the protein when tethered to the surface [50, 51].

For computational efficiency, a coarse-grain model is used to represent the proteins.

The specific implementation is the Gō-like model of Karanicolas and Brooks [11, 12, 13, 14,
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15]. In this formalism, each residue is represented by one site placed at the Cα position.

The model extends earlier Gō-like models by introducing different energy scales to describe

hydrogen bonding between side chains, and sequence-dependent dihedral potentials. Previ-

ous models employed fewer energy scales and set dihedral parameters based upon the PDB

structure and not the sequence. As such, the resulting energy surface mimics that of real

proteins more closely than earlier models. Moreover, the model has been shown to give good

agreement with experimental folding studies [12, 13, 14, 15, 62]. Input files were generated

using the MMTSB website http://www.mmtsb.org.

Table 3.1 contains a residue-level, structural analysis of the five proteins used in the

study. The residues comprising each helix and loop are listed. The categorization of each

residue as either ”loop” or ”helix” was performed with VMD [63] which uses the STRIDE

algorithm [64]. The number of helices among the proteins ranges from 4 to 9. The lengths

listed are the distance between the first and last residue for each structural element. For

example, the length of Helix 1 of 1R69 is 16.3005 Å which is the distance between residues

2-13.

3.2.2 Experimental Design

To compare the effect of the surface on protein stability, the five proteins mentioned above

were simulated in the bulk (no surface) and tethered to the surface at several locations in

each of the loop regions identified in Table 3.1. In each case, the melting temperature (Tm),

Gibbs energy of folding (∆Gf), enthalpy of folding (∆Hf ), and entropy of folding (T∆Sf)

were determined. In addition, order parameters such as the fraction of native contacts formed

and the radius of gyration were calculated to analyze the correlation between structures and

stabilities.

Comparing the stability of tethered proteins to bulk proteins is done using Tm and

∆Gf for each case. For the melting temperatures, results are presented with the temperatures

scaled by the melting temperature of the protein in bulk (Tm/T ∗

m). If this scaled temperature

is less than 1, the protein is destabilized by the surface. If the scaled temperature is greater

than 1, the protein is stabilized by the surface. Comparing Gibbs energies of folding in
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Table 3.1: Residue-level secondary structure analysis of five α-helical, orthogonal-bundle proteins

1R69
Coil 1 Helix 1 Loop 1 Helix 2 Loop 2 Helix 3 Loop 3 Helix 4 Loop 4 Helix 5 Coil 2

Sites 1 2-13 14-16 17-24 25-27 28-36 37-43 44-52 53-55 56-61 62-63
Length 0 16.3005 6.8399 10.4675 7.1107 12.5014 15.0222 12.3014 7.148 8.5078 3.8104

1A56
Helix 1 Loop 1 Helix 2 Loop 2 Helix 3 Loop 3 Helix 4 Loop 4 Helix 5 Coil 1

Sites 1-8 9 10-13 14-24 25-32 33-37 38-48 49-66 67-80 81
Length 10.5426 0 5.9274 4.6505 10.8597 7.0102 14.0612 16.0364 19.5559 0

1AD6
Coil 1 Helix 1 Loop 1 Helix 2 Loop 2 Helix 3 Loop 3 Helix 4 Loop 4 Helix 5 Loop 5

Sites 1-6 7-14 15-20 21-29 30-33 34-57 58-60 61-91 92-96 97-101 102
Length 14.6039 10.9725 9.8860 12.2118 5.2275 33.3364 6.7516 44.6546 10.948 5.8727 0

Helix 6 Loop 6 Helix 7 Loop 7 Helix 8 Loop 8 Helix 9 Coil 2
Sites 103-120 121-137 138-144 145-147 148-161 162-166 167-183 184-185

Length 25.5257 12.3804 10.3599 6.7828 20.2056 9.4146 24.1438 3.7462
1A2S

Coil 1 Helix 1 Loop 1 Helix 2 Loop 2 Helix 3 Loop 3 Helix 4 Coil 2
Sites 1-3 4-19 20-33 34-40 41-46 47-55 56-69 70-86 87-89

Length 7.2506 16.4795 12.0588 9.5048 9.0018 12.4227 12.7552 24.2138 5.4674
5MBN

Coil 1 Helix 1 Loop 1 Helix 2 Loop 2 3-10-Helix 1 Loop 3 Helix 3 Loop 4 Helix 4 Loop 5
Sites 1-3 4-18 19-20 21-35 36 37-42 43-51 52-57 58 59-77 78-81

Length 6.3033 20.6028 3.7954 21.0518 0 9.6629 15.3579 8.5878 0 27.1246 5.1646
Helix 5 Loop 6 Helix 6 3-10-Helix 2 Loop 7 Helix 7 Coil 2

Sites 82-96 97-100 101-119 120-122 123-124 125-149 150-153
Length 20.9421 9.3471 27.1248 5.074 3.8155 36.1229 9.1842
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different environments is commonly done by defining the quantity ∆∆G. For the present

purposes, ∆∆G = ∆Gsurface
f − ∆Gbulk

f which is the difference between the Gibbs energy of

folding on the surface and in the bulk. As Gibbs energy of folding is a temperature-dependent

property, the data presented later are tabulated at the melting temperature of the protein

in the bulk. At this temperature, ∆Gbulk
f = 0 by definition and ∆∆G = ∆Gsurface

f . The

double-∆ notation is therefore dropped and Gibbs energies are reported as simply ∆Gf .

For tethered proteins, if ∆Gf < 0, the protein is stabilized, and if ∆Gf > 0, the protein is

destabilized. Also, the lower (more negative) the value of ∆G is, the more stable the protein.

3.2.3 Simulation Protocols

To prevent the simulation from becoming trapped in local energy minima, simulations were

performed using the replica exchange (RE) algorithm [57, 65]. Twenty-four replicas were

used for each protein, and the canonical ensemble was generated using the Nosé-Hoover-

Chain [66, 67, 68] integration method with 3 thermostats of mass 10−26 kg Å2. The time

step was 1 fs, and each simulation contained 10 million steps of equilibrium followed by

30 million steps of production. Swaps were attempted every 2000 steps and accepted with

probability:

Pacc(swap) = min {1, exp(−∆β∆U)} (3.1)

where β = 1

kBT
, kB is Boltzmann’s constant, U is the potential energy of the system. Tem-

perature increment between adjacent boxes ranged from 2.5 to 10 degrees. The smaller

increments were used close to the melting temperature and the larger increment farther

away.

3.2.4 Order Parameters

In order to correlate the stability of the protein to different patterns in the structure of

the molecule, several order parameters were defined. Order parameter selection is a trial-

and-error process, and several parameters were calculated to describe protein stability as

a function of measurable variables. The lengths reported in Table 3.1 were one type of

parameter tried. Others included the number of residues in the loop segment, the lengths
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of the helices adjacent to the tether point, the angle formed by adjacent helices, the free

rotation volume and the free rotation angle.

Vector 1 Vector 2

Angle

5.8A

Center

Figure 3.2: Order parameters defined as (a) angle and length (b) free rotation volume

The last four parameters are described in Figure 3.2 and Figure 3.3.

The length of a helix is the distance between the first and last sites comprising the

helix as found in Table 3.1. To define the angle made by adjacent helices, a vector is defined

for each helix. Each vector extends away from the tether point and is formed between the

two points within the helix that are farthest away from each other but lie on the same side

of the structure. Choosing sites on the same side of the helix creates a vector that is parallel

to the vector running directly through the middle of the helix. With the two vectors defined,

the angle between the helices is found from definition of the dot product.

For the first three investigated order parameters: 1) the angle formed by consecutive

helices, 2) the distance between the consecutive helices, and 3) the presence/absence of

β-turns in the loop regions, no correlation was found between stabilization/destabilization
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and these parameters. For example, it was hypothesized that if the protein was tethered in

a loop region where the adjoining helices made an acute angle that the protein would be

stabilized. However, this does not explain results where two sites in the same loop show

different behavior such as site 41 of 1A2S, which was destabilized, and site 46, which was

stabilized (See Figure 3.5). It was also thought that stability is related to the number of

residues in the loop region as a longer loop was expected to allow the protein more flexibility

to accommodate surface interactions without disrupting the positions of the helices forming

the bundle. For example, all the tethering sites in Loop 3 (18 residues in length) of 1A56

showed stability. In fact, all the sites in loop regions with more than 10 residues resulted

in stability that was equal to or greater than that found in the bulk. However, for loops

less than 10 residues in length, varied behavior was seen. For example, site 15 (destabilized)

and site 25 (stabilized) of 1R69, are found in separate loops of 3 residues in length but have

different stability.

Actually, these order parameters were tried when fewer tether sites were tested. After

failures of distinguishing loop regions by using these order parameters, simulations of more

tether sites were implemented to clarify the trend. Finally, two kinds of differences between

tether sites were realized: the difference between tether sites in the same loop region and

the difference between loop regions. As shown below, tether site positions in three kind of

loop region shapes were used to distinguish tether sites in the same loop, and the rotational

volume or angle were tried to tell the differences between loop regions.

As shown below, the ability of the protein to vibrate and rotate on the surface is

important in stability. The volume fraction available for rotation (VFAFR), the metric used

to follow this phenomenon, is seen in Panel b of Figure 3.2. The VFAFR is protein and

tether site specific and is calculated by first defining a cylinder which contains the portion

of the protein which can interact with the surface. The axis of the cylinder line connects the

tethering point and the mass center of the protein. The length of the cylinder, l, is 70% of

the length of the center line (about one third of the diameter of the protein) plus 5.8 Å (the

length of the tethering bond). The radius of the cylinder if found by first identifying all the

atoms that lie between two planes placed perpendicular to the cylinder axis at the ends of
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the cylinder. The distance between each of these atoms and the cylinder axis is calculated

and the radius (r) of the cylinder is taken to be the largest of these values.

To calculate the VFAFR, the volume of the residues found within the cylinder must

be subtracted from the volume of the cylinder. The volume of the cylinder is Vc = πr2l.

The volume of each of the residues found within the cylinder is calculated using Voroni

tessellations on the full atomic coordinates using the software PROVAT [69]. The protein

volume, Vp, is the sum of the residue volumes. Then the VFAFR per atom is then given by

V FAFR =
Vc − Vp

Vc

. (3.2)

As observed, small rotation angles are always formed by those atoms far from the

center line which cross the mass center of the protein and the tethering site, and they

are the limitation for the rotation of proteins. Therefore, the average free rotation angles

formed by those atoms that are far from the center line could be an acceptable metric that

distinguish site 145 from others. The free rotation angle is defined (in orange in Figure 3.3)

as the compliment angle of the one that is formed by a ray through one site on the protein

and a ray through the mass center, both of which are across at the tethering site. More

serious consideration of the calculation of free rotation angles were discussed in the following

result section.

3.3 Results and Discussion

3.3.1 Melting Temperatures

As mentioned in the previous section, stabilities of tethered and bulk proteins are compared

to prove the hypothesis. The stabilities are related to the heat capacity and native contacts as

previously described. Figure 3.4 shows Cv, Q, and Rg as a function of temperature for 1R69.

(The other four proteins studied show similar behavior in Cv, Q, and Rg, but the results

are not shown for conciseness.) A single, sharp peak is present in the heat capacity (panel

(a)). The location of this peak is the melting temperature of the protein. The fractional

nativeness and radius of gyration, panels (b) and (c), display a sigmoidal shape indicating an
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Figure 3.3: Defination of the free rotation angle for proteins

abrupt transition from the folded to the unfolded state. The inflection point in each of these

curves occurs at the melting temperature obtained from the heat capacity curve in panel (a).

The fact that the heat capacity curve displays only one peak, and the melting temperature

identified by Cv coincides with the transition temperature of the order parameters Q and

Rg, indicates 1R69 follows a two-state folding model. As such, our assumption of two state

folding to calculate ∆Gf is reasonable.

The calculated melting temperature for 1R69 is 49.13◦C. Ku et al.[70] estimated the

melting temperature for this protein to be between 30◦C and 90◦C using different experi-

mental techniques. Therefore, the melting temperature calculated for 1R69 with this model

is reasonable.

Figure 3.5 shows a summary of the melting temperatures of all the proteins in the

bulk and tethered to the surface at multiple locations. The value reported on the ordinate

is Tm/T ∗

m where Tm is the melting temperature on the surface when tethered at the site

indicated on the abscissa and T ∗

m is the melting temperature of the protein in bulk. The

proteins were tethered to the surface in the each of the loop regions joining adjacent helical
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Figure 3.4: Heat capacity (panel a), fractional nativeness (panel b), and radius of gyration
(panel c) as a function of temperature for 1R69

segments. The results are grouped by alternating colors. Adjacent bars of the same color

indicate that each of the listed tether sites are found in the same loop region. For example,

tether sites 27, 30, and 32 are found in Loop 1, sites 41 and 46 in Loop 2, and sites 64, 66,

and 68 in Loop 3 of 1A2S. The bulk value is designated by the letter “B”.
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Figure 3.5: Scaled melting temperatures of 1R69, 1A56, 1AD6, 1A2S, and 5MBN in the bulk
and tethered to the surface in various locations

The melting temperatures show a large amount of variability according to which site

is tethered. Tethering the protein resulted in stabilities which were approximately equal to

or greater than the bulk for 31 of the 42 (74%) cases. Included in these 31 are situations,

such as site 24 of 1A56, where the error bars are such that the scaled melting temperature

cannot be shown to be statistically different than the value of 1.

3.3.2 Analysis of Hypothesis

The hypothesis of this work was that all-alpha, orthogonal bundle proteins, when tethered to

the surface only in the loop regions adjoining adjacent helices, will be stabilized compared to

the bulk value. At first glace, the data in Figure 3.5 indicate that the hypothesis is incorrect.

However, a careful examination of the data reveal an interesting pattern. In 18 of the 19

loop regions investigated, tethering sites can be found which stabilize the protein on the

surface. The only exception is the loop formed by sites 145 to 147 of 1AD6. In this region,

no site could be found which stabilized the protein. In general, however, it appears that

loop-region sites can be found that result in stabilization of tethered all-alpha, orthogonal

bundle proteins. The next section examines in more detail why certain tethering sites result

in stabilization while others do not.
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3.3.3 Categorization of Tethering Sites and Rotational Order Parameters

Previous theoretical work has shown that stabilization of proteins on surfaces is related to

how the tethering site affects both the entropy and enthalpy of the protein [52, 49, 50, 53]

as well the degree to which the tethered site disrupts the transition state along the folding

pathway [51]. The difficulty with applying this knowledge in a predictive manner is that

either the folding pathway must be known or experiments or simulations have to be performed

to ascertain the mechanism. It would be ideal if design heuristics could be developed which

when applied to the crystal structure of the protein of interest would result in a list of

tethering sites that would maintain the stability of the protein on the surface. In this

section, several geometric order parameters, and their ability to predict the stability of

orthogonal-bundle proteins on surfaces, are described.

The first order parameters investigated were: 1) the angle formed by consecutive

helices, 2) the distance between the consecutive helices, 3) the number of residues comprising

the loop region, and 4) the presence/absence of β-turns in the loop regions. However,

no correlation was found between stabilization/destabilization and these parameters for all

instances. For example, it was hypothesized that if the protein was tethered in a loop

region where the adjoining helices made an acute angle that the protein would be stabilized.

However, this does not explain results where two sites in the same loop show different

behavior such as site 41 of 1A2S, which was destabilized, and site 46, which was stabilized

(See Figure 3.5). It was also thought that stability is related to the number of residues in

the loop region as a longer loop would be expected to allow the protein more flexibility to

accommodate surface interactions without disrupting the positions of the helices forming the

bundle. For example, all the tethering sites in Loop 3 (18 residues in length) of 1A56 showed

stability. In fact, all the sites in loop regions with more than 10 residues resulted in stability

that was equal to or greater than that found in the bulk. However, for loops less than 10

residues in length, varied behavior was seen. For example, site 15 (destabilized) and site 25

(stabilized) of 1R69, are found in separate loops of 3 residues in length but have different

stability.
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Further examination revealed that for short loops, loops less than 10 residues in

length, the local structure of the loop must be taken into account. Figure 3.6 shows the

different classifications of loop regions. Panel (A) is the long loop just described. In this

type of loop, stabilization occurs as long as the tether site is not next to one of the helices.

Panel (B) shows a U-shaped loop. If a loop is composed of less than 10 residues, but the

tether is placed in a U-shaped loop, then the protein is stabilized. This is the case for Loops

1 and of 1AD6 and Loop 2 of 5MBN. Panel (C) shows a W-shaped loop. For this type the

placement of the tether is important. If the tether is placed in the “concave up” portion of

the loop, the protein will be stabilized on the surface. If the tether is place in the “concave

down” portion of the loop, the protein will be destabilized on the surface.

(A) Long Loop

(B) U-shaped Loop

(C) W-shaped Loop

Figure 3.6: Samples of shapes for loop regions: (A) Long loop, (B) U-shaped loop, (C)
W-shaped loop

The “loop structure” discussion just described accounts for all of the stability patterns

except one. Loop 4 of 1AD6, consisting of sites 145-147, forms a W-shape, but stabilization

does not occur when tethered to any of sites involved. Analysis of this anomaly reveals

another factor affecting the stability of proteins on surfaces, and the idea is depicted in

Figure 3.7. The protein is 1AD6. Panel (a) shows the protein tethered at site 57, panel

(b) at site 163, and panel (c) at site 145. For each configuration, the shaded region shows

30



the volume available for the protein to rotate and vibrate on the surface. Notice that the

protein tethered at site 57 forms a V-shape which allows the protein a large amount of

volume to rotate an vibrate with respect to the surface. The opposite is true for tethering

at site 145. In this configuration, the three helices nearest the surface form a flat base which

severely restricts the ability of the protein to rotate and vibrate on the surface. Tethering at

site 163 gives the protein a hybrid shape between the two extremes just described. In this

configuration, one side of the molecule forms a flat foundation, but the other portion has a

V-shape. For each of these sites, the protein is tethered in either a U-loop or the concave-up

region of a W-loop and would expected to be stabilized; however, site 145 is destabilized.

(a) (b) (c)

Figure 3.7: Free volume available for rotation for 1AD6 according to tether site. Panel (a):
site 57, Panel (b) site 163, and Panel (c) site 145

The origins of the destabilization lies in the restriction of the movement of the protein.

At a given temperature, the bond, angle, dihedral and rotational vibrations of the protein

seek to populate a characteristic distribution of frequencies. For the protein as a whole

(relative to the surface), the amplitudes of these motions are commensurate to the size of

the protein meaning that they are large compared the motions of the atoms relative to

each other. For tether site 145, the whole-protein vibrations are severely inhibited. In

order to populate the desired rotational/vibrational states, the protein unfolded at a lower

temperature than would be expected and once unfolded can rotate and vibrate with ease.

Evidence to the fact that the vibrations increase for tethering configurations which

restrict rotational movement is found in Table 3.2. Listed are the vibrational entropies, at
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240 K and 440 K, for tethering 1AD6 at sites 57, 163, and 145 (See Figure 3.7). The values

were calculated assuming a quasi-harmonic approximation [71] using the Wordom analysis

package [71]. The lower temperature, 240 K, is below the melting temperature of the protein.

The higher temperature, 440 K, is above the melting temperature. At 440 K, the entropies

are very similar indicating that the unfolded state of the protein, regardless of tether site,

partitions energy into vibrations in roughly equal amounts. At the lower temperature, the

vibrational entropy increases as the volume available for rotation decreases. Specifically,

the flat base produced by tethering at site 145, which restricts the rotational ability of the

protein, has the most vibrational entropy. Site 57, which produces a V-shape with the largest

amount of rotational ability, has the least amount of vibrational entropy. The mixed, flat-V

shape created by tethering at site 163, which has an intermediate ability to rotate relative

to the surface, has an intermediate amount of vibrational entropy.

Table 3.2: Vibrational entropy of 1AD6 for various tether sites

Site
Svib (kJ mol-1 K-1)

240 K 440 K
57 6.89 ± 0.04 18.039 ± 0.005
163 7.78 ± 0.21 18.080 ± 0.001
145 9.63 ± 0.02 18.030 ± 0.001

For the present purposes, the easiest way to determine if the tether site has adequate

rotation volume without performing a simulation is to view the protein in a molecular viewer

such as VMD. Sites which could be problematic can quickly be discerned using such an

approach. Several attempts were made to quantify the ability of the protein to vibrate on

the surface, but determining a simple, quantifiable metric which delineates between the types

of shapes pictured in Figure 3.7 is difficult. Any averaging of angles or distances, which is

usually required for simple metrics, reduces ability to distinguish the difference between site

163 [Panel (b)] and site 145 [Panel (c)]. More sophisticated metrics were investigated as

follows.
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Free Rotation Volume

Since the lack of free rotation volume of site 145 is believed to be the major reason why

protein is destabilized on surfaces, the first metric for quantifying this difference is the

measurement of the fraction of free rotation volume. However, the site 145 showed about

78% of fraction of free rotation volume, which is not consistent to the observation. The

reason for the failure of this method is stated as follows. When the fraction of free rotation

volumes was calculated, the radius and the height of the cylinder are various in each case.

The radius is the largest distance between the atom and the axis, while the height is 0.7

times of length between tethering site and the mass center, plus 5.8 Å. However, with site

145 tethered, some long strands of the protein spread away from the axis enlarge the radius

extraordinarily. A lot of volumes of the same or higher height as atoms are also counted in

the free rotation volume, but actually, they should not be. The free rotation volume in our

consideration should be the part shown in the figure, near the surface.

Free Rotation Angle

The free rotation angle could be a better metric for describing the difference between the

site 145 on 1AD6 to all others than the free rotation volume metric. The result in Table 3.3

as the column of “Angle from site” showed a lowest value of free rotation angle of site 145

on protein 1AD6. However, the value of site 163, a site with which the protein tethered

and showed partially flat bottom and partially V-shape bottom, is also high. Even though

these two sites are distinguishable somehow, the sensitivity of this metric is not quite well.

Also, if the definition of the free rotation angle is considered more seriously, the limitation

of rotation of a protein is closely but not accurately from those sites that are far from the

center line, but the lines through each two of those sites. This angle, which is shown in red

in the Figure 3.3, is larger than that formed by site.
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Table 3.3: Order parameters for protein rotation

Protein Location
VFAFR Angle from Angle from

(%) site (◦) center (◦)

1R69

Site 14
81.05 36.74 53.48

Site 15

Site 25
76.43 43.22 66.96

Site 26

Site 38
77.17 27.64 52.90

Site 39

Site 53
64.13 40.84 64.50

Site 55

1A56

Site 19

81.82 41.65 58.34Site 20

Site 24

Site 33
80.60 36.39 53.96

Site 36

Site 59

67.88 41.25 58.02Site 60

Site 65

5MBN

Site 46
79.61 52.17 67.10

Site 50

Site 78

75.56 39.89 57.65Site 80

Site 81

Site 98
77.34 34.51 52.85

Site 99

Site 122
74.52 34.80 53.11

Site 123

34



Table 3.3: Continued

Protein Location
VFAFR Angle from Angle from

(%) site (◦) center (◦)

1AD6

Site 30
85.48 50.61 70.09

Site 31

Site 57
72.08 41.82 62.77

Site 58

Site 125
97.71 50.60 68.47

Site 127

Site 145
78.51 14.95 37.09

Site 146

Site 163
81.56 19.72 48.00

Site 165

1A2S

Site 27

84.35 47.32 64.58Site 30

Site 32

Site 41
76.54 28.55 48.47

Site 46

Site 64

79.28 50.77 66.06Site 66

Site 68

The closer of two sites, the similar of angles formed by their center point to angles

formed by the two sites could be. The further of two sites, the smaller of the angle formed

by their center point than angles formed by those two sites could be. That is, if sites spread

evenly in all directions as in case of site 145 tethered the average of free rotation angles is

larger but in a small range than the average of angles formed by sites. However, in the case

of site 163 tethered, the bottom of the protein is more flat in some direction than the other,

those sites that are far from the center line crowded in two ends. Thus, sites in different
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ends could be very far from each other, and then the free rotation angle by their center point

could be much larger than both of those angles form by the two sites. The result shown in

the column of “Angle from center” in Table 3.3 proved the analysis shown above. The site

145 has the least free rotation angle (37.09◦), and the next least one the site 163, which has

a value of 48.00◦. The good sensitivity of this method can be seen. To make this metric as a

criterion, the cutoff is needed to be measured from a larger amount of data of different sites.

Though the above analysis concerning tethering loops and vibration/rotation on the

surface involves only five proteins, the consistency and logic is such that the following heuris-

tics for designing protein-surface interactions of alpha-helical, orthogonal-bundle proteins are

presented. It is recognized that these are preliminary and are based upon a limited data

set, but formalization provides a starting point for future investigations. Moreover, for a

field where little is known, these heuristics provide a first step towards rational design of

protein/surface interactions.

1. Long Loops: Tethering in loop regions of greater than 10 residues in length will result

in stabilization of the protein on the surface.

2. “U-shaped” loops Tethering in U-shaped loop regions of less than 10 residues in length

will result in stabilization if the protein can vibrate freely on the surface.

3. “W-shaped” loops

(a) Tethering in ”concave-up” regions will result in stabilization if the protein can

vibrate freely on the surface.

(b) Destabilized for tethering in ”concave-down” regions.

3.3.4 Thermodynamic Analysis

The influence of the surface on the stability of proteins can be explained in terms of common

thermodynamic properties. For stable proteins, ∆Gf = ∆Hf − T∆Sf < 0. In other words,

the more stable the protein, the more negative the value of ∆Gf or the greater the value of

|∆Gf |. As theory from Dill et al. [42, 48] stated before, proteins are always stabilized when
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tethered to short-ranged, repulsive surfaces, because the entropic cost of folding is greater

in the bulk case than the on the surface.

The results in Figure 3.5 indicate that proteins are not always stabilized when tethered

to surfaces as would be expected from the theory just explained. Prior work has shown that

the entropic portion of the argument is valid, namely that the entropic cost of folding for

tethered proteins is less than in the bulk [52, 50, 53], so any destabilization must be an

enthalpic effect. One of the assumptions upon which the theory is based is that ∆Hf is the

same on and off the surface. The validity of this assumption is now addressed.

Table 3.4 shows a summary of ∆Gf , ∆Hf , and T∆Sf for each protein in the bulk and

tethered to the surface at the same sites depicted in Figure 3.5. For reference, the type of

loop for each site is also listed. The temperature in each case is the melting temperature of

the protein in the bulk. As such, ∆Gf = 0 for each protein in the bulk. Comparing the ∆Gf

values with the corresponding Tm/T ∗

m values of Figure 3.5 shows that the data are consistent.

Tethering sites which result in an increase in the melting temperature of the protein on the

surface compared to the bulk have negative values for ∆Gf . Similarly, sites which result in

melting temperatures that are less than the bulk value have positive values for ∆Gf . As Tm

and ∆Gf are calculated in two, distinct and independent ways, the agreement between the

two values attests to the reliability of the results.
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Table 3.4: Thermodynamic quantities of proteins

Protein Location
∆Gf ∆Hf T∆Sf

Shape
(kJ/mol) (kJ/mol) (kJ/mol)

1R69

Bulk 0.0 −236.8 ± 1.7 −236.8 ± 1.7 -

Site 14 −13.7 ± 0.8 −228.0 ± 4.3 −214.3 ± 4.0 W

Site 15 13.7 ± 0.7 −191.1 ± 4.2 −204.8 ± 3.8 W

Site 25 −10.0 ± 1.8 −232.5 ± 1.1 −222.5 ± 1.7 W

Site 26 16.0 ± 0.6 −176.6 ± 5.1 −192.6 ± 4.8 W

Site 38 −9.5 ± 1.4 −227.9 ± 2.1 −218.4 ± 2.5 W

Site 39 17.3 ± 0.5 −166.8 ± 4.0 −184.1 ± 4.4 W

Site 53 −10.7 ± 1.6 −227.5 ± 1.3 −216.9 ± 0.7 W

Site 55 −14.6 ± 2.4 −225.8 ± 3.0 −211.2 ± 4.8 W

1A56

Bulk 0.0 −105.1 ± 1.7 −105.0 ± 1.9 -

Site 19 −2.6 ± 1.1 −96.9 ± 5.6 −94.2 ± 4.7 Long

Site 20 −4.3 ± 0.4 −93.6 ± 2.3 −89.4 ± 2.1 Long

Site 24 0.5 ± 0.7 −88.2 ± 3.2 −88.7 ± 3.8 Long

Site 33 1.2 ± 0.4 −77.2 ± 2.4 −78.4 ± 2.4 W

Site 36 −2.9 ± 0.4 −93.9 ± 4.2 −91.0 ± 3.8 W

Site 59 −4.1 ± 0.5 −97.8 ± 3.7 −93.7 ± 3.6 Long

Site 60 −0.8 ± 0.7 −86.7 ± 4.5 −85.9 ± 4.1 Long

Site 65 −2.4 ± 0.6 −99.2 ± 2.6 −96.8 ± 2.1 Long

1AD6

Bulk 0.0 −502.8 ± 6.9 −502.2 ± 6.6 -

Site 30 −9.3 ± 1.5 −494.3 ± 13.8 −485.0 ± 14.3 U

Site 31 −11.9 ± 2.2 −489.9 ± 9.8 −478.0 ± 9.8 U

Site 57 −6.5 ± 1.0 −466.7 ± 13.4 −460.2 ± 13.7 U

Site 58 −0.7 ± 2.4 −432.1 ± 37.7 −431.4 ± 36.0 U

Site 125 −8.2 ± 2.5 −487.9 ± 18.9 −479.7 ± 16.5 Long

Site 127 −13.0 ± 1.4 −494.1 ± 8.1 −481.1 ± 9.4 Long
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Table 3.4: Continued

1AD6

Site 145 30.2 ± 0.8 −282.2 ± 10.9 −312.4 ± 10.3 W

Site 146 40.0 ± 0.7 −262.0 ± 11.51 −302.0 ± 12.1 W

Site 163 −10.1 ± 1.9 −497.0 ± 24.7 −487.0 ± 25.6 W

Site 165 28.4 ± 1.8 −264.6 ± 13.0 −293.0 ± 12.9 W

1A2S

Bulk 0.0 −128.2 ± 1.7 −128.2 ± 2.0 -

Site 27 −4.4 ± 0.7 −125.5 ± 3.2 −121.1 ± 3.2 Long

Site 30 −0.5 ± 0.7 −112.0 ± 4.6 −111.6 ± 5.0 Long

Site 32 1.0 ± 0.6 −105.7 ± 1.6 −106.7 ± 1.2 Long

Site 41 1.0 ± 0.5 −107.4 ± 2.0 −108.4 ± 2.3 W

Site 46 −4.5 ± 1.0 −131.7 ± 3.4 −127.3 ± 4.0 W

Site 64 −0.4 ± 0.5 −125.4 ± 1.2 −125.0 ± 1.4 Long

Site 66 −0.9 ± 0.3 −112.2 ± 1.8 −111.2 ± 1.6 Long

Site 68 1.3 ± 0.4 −120.4 ± 4.3 −121.7 ± 3.9 Long

5MBN

Bulk 0.0 −577.1 ± 11.5 −577.0 ± 11.6 -

Site 46 11.5 ± 1.1 −468.2 ± 7.4 −479.7 ± 8.0 W

Site 50 −6.7 ± 2.9 −553.3 ± 16.6 −546.6 ± 16.0 W

Site 78 −14.9 ± 2.8 −517.8 ± 25.2 −502.8 ± 27.8 U

Site 80 −8.4 ± 3.4 −516.6 ± 11.7 −508.2 ± 14.9 U

Site 81 −10.3 ± 2.4 −533.9 ± 14.0 −523.6 ± 16.1 U

Site 98 −5.3 ± 5.0 −529.4 ± 22.2 −524.1 ± 27.1 W

Site 99 17.5 ± 0.2 −456.5 ± 10.4 −474.0 ± 10.3 W

Site 122 −12.3 ± 2.0 −545.7 ± 16.5 −533.4 ± 18.2 W

Site 123 2.9 ± 1.9 −504.0 ± 13.3 −506.8 ± 12.9 W

As reported in the Table, all the surface-tethered proteins studied in this work have

T∆Sf values that are statistically equal to or larger than (less negative) the bulk values.

This agrees with the theory as a reduction in the loss of entropy causes a decrease in ∆Gf ,

indicating stabilization. For tethering sites that stabilize the protein on the surface, the
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value for ∆Hf is approximately equal in the bulk and on the surface. For sites that result

in destabilization, the ∆Hf value is greater (less negative) on the surface than in the bulk.

Thus, in the limit that ∆Hf is equal on and off the surface (the situation described by the

theory), stabilization occurs. Away from this limit, destabilization occurs.

Further analysis provides additional insights. In general, the change in enthalpy

upon folding is related to both the enthalpy of the folded state and the unfolded state

(∆Hf = Hfolded−Hunfolded). Figure 3.8 shows the influence of the surface on the folded-state

and unfolded-state enthalpies for 1R69 at T = T ∗. Depicted is the difference between the

enthalpy on the surface and in the bulk for both folded and unfolded protein. Specifically,

δHfolded ≡ Hsurface

folded
− Hbulk

folded
and δHunfolded ≡ Hsurface

unfolded
− Hbulk

unfolded
. The symbol δ is used

in place of ∆ to prevent confusion with the change that occurs upon folding (∆) with the

difference between the value on and off the surface (δ). If Hsurface

folded
≈ Hbulk

folded
then δHfolded ≈ 0

and similarly for the unfolded values. If the surface stabilizes the state (either folded or

unfolded), the corresponding δ-value will be negative. If the surface destabilizes the state,

the corresponding δ-value will be positive. For convenience, the corresponding values of ∆Gf

are also shown on the figure.
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Figure 3.8: Influence of surface on the enthalpy of the folded and unfolded state of 1R69 at
T = T ∗
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Figure 3.8 is evidence that tethering configurations which result in destabilization of

the protein are caused by the effects of the surface on the folded state of the protein. In

each case, the data show that the enthalpy of the unfolded state on the surface is less (more

favorable) than the enthalpy of the unfolded state in the bulk. The reason is straightforward.

In the bulk, when proteins are unfolded, the entropy drives the system to sample configu-

rations with little structure. The enthalpy drives the system to fold to increase hydrogen

bonding and reduce hydrophobic/hydrophilic contacts in favor of hydrophobic/hydrophobic

and hydrophilic/hydrophilic contacts. Enthalpically-favorable contacts can only form as the

distance between complimentary sites decreases. When the protein is on the surface, the

average distance between sites of the unfolded protein is reduced which causes a reduction

of the enthalpy.

In contrast to the unfolded state, the surface affects the folding state in ways that do

not always stabilize the protein. For sites that result in stabilization, δHfolded < 0 suggesting

that the surface improves the ability of the protein to make favorable contacts. The degree of

stabilization is similar to that seen for the unfolded state, and the result is that ∆Hsurface

f ≈

∆Hbulk

f as previously described (see Table 3.4). For destabilized configurations, δHfolded >

0 meaning that the surface inhibits the formation of favorable contacts. The extent of

destabilization of the folded state is so great that ∆Hsurface

f > ∆Hbulk

f .

The above analysis improves current understanding of protein/surface interactions

significantly and provides the most complete picture to date of the the thermodynamics

involved. To summarize the findings, entropy works to stabilize tethered proteins on the

surface as expected from theory. Unexpectedly, proteins will be stabilized or destabilized

depending upon the interaction of the folded state of the protein with the surface. Said

another way, the surface affects the unfolded state entropically but affects the folded state

enthalpically. Sites in long loops or in U-shaped and the concave-up regions of W-shaped loop

which have adequate free rotation volume, allow the folded state of the protein to exists on

the surface as is does in the bulk and the result is entropic stabilization. Sites in the concave-

down region of W-shaped loops and those which restrict rotation and vibration, inhibit the

ability of the protein to exist in its native state and the result is enthalpic destabilization.
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3.4 Summary

The results in this work show, for the first time, that protein stability on surfaces can be

correlated to tertiary structural elements for alpha-helical, orthogonal bundle proteins. The

important factors to consider when selecting a tether site are the shape of the loop region and

the volume available for the protein to rotate on the surface. For loop regions that have large

rotation volumes, sites can always be found which stabilize the protein. A thermodynamic

analysis shows that proteins are always stabilized entropically when tethered to surface and

that any destabilization is an enthalpic effect. Taken as a whole, the results offer hope for

rational design of protein surface interactions and a rigorous thermodynamic understanding

of the origins of stabilization/destabilization of surface.

Future efforts are needed to fully understand the implications of the results found

in this work. The next major step is to investigate other classes of tertiary structure to

determine if correlations between tether site and stability can be found. Moreover, additional

work is needed to further characterize the amount of rotation/vibration volume needed by a

protein to remain stable on the surface. Though preliminary, the results presented provide

the needed starting point for these future investigations.
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4 SURFACE INDUCED CHANGES TO FOLDING MECHANISM

As introduced before, when a tethering is done to a site involved in an intermediate state, the

folding mechanism could be changed. To understand how surfaces change folding mechanism

of alpha-helical, orthogonal-bundle proteins, a multi-metastates protein 7LZM is introduced.

Thermodynamic analyses are also accomplished for this protein, and the structures are com-

pared in different temperatures on and off the surface.

4.1 Introduction

Proteins with a small number of residues are always two-state folders, which means every part

of the protein melts at the same temperature. However, some proteins may have multiple

state configurations along the temperature domain, which means, different parts of a protein

melt at different temperatures. Between each melting temperature, there is a metastable

intermediate state.

In this part of work, the surface effect on the stability and folding mechanism of

multistate proteins is talked.

4.2 Methods

We focus on a peptide, Enterobacteria phage t4 (7LZM), which has two intermediate states

in bulk. The structue is shown in Figure 4.1. To compare the change of melting temperature

of each part, this protein is simulated in the bulk (no surface) and tethered to a surface at

each loop region. By categorizing native contacts of each secondary structure in 7LZM, the

change of intermediate states or even the folding mechanism can be analyzed.

Considering computational efficiency, the Go-like model of Karanicolas and Brooks

[11, 12, 13, 14, 15] is used. Input files were generated from the MMTSB:www.mmtsb.org.
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Figure 4.1: Native conformation of protein 7LZM

This protein model extends earlier Go models by introducing different energy scales to de-

scribe hydrogen bonding between side chains and sequence-dependent virtual dihedral po-

tentials to keep proteins in appropriate conformations. The resulting energy surface can

mimic that of the real protein more closely than earlier models, which employed fewer en-

ergy scales or targeted specific encoding of the backbone structure with virtual dihedral

potentials.[11, 12, 13, 14, 15] This model has been shown to give good agreement between

simulation and experimental folding studies.

To prevent the simulation from becoming trapped in local energy minima,[72] simu-

lations were performed using the replica exchange (RE) algorithm [56, 57]. For each protein,

24 replicas were used. The canonical ensemble was generated using the Nose Hoover Chain

[66, 67, 68] integration method, with 3 thermostats of mass 10−26kg · Å2. The time step was

1fs, and each simulation contained 10 million steps of equilibrium followed by 30 million

steps of production. Temperature steps between boxes range from 2.5 to 10 degrees accross

the temperature range.
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Figure 4.2: The heat capacity curve in temperature domain of protein 7LZM (a) in the bulk
and (b) on the surface

4.3 Results

As shown in Figure 4.2(a), there are three peaks along the heat capacity curve for a tem-

perature range of the protein in bulk. As shown in figure 4.2(b), the heat capacity curve

of 7LZM tethered to a surface with the residue site number of 91 has one peak less than

in bulk. That is, the metastate conformations are different when it is tethered on a surface

at that site. Also, the position of the high peak changes when the protein is tethered to

the surface at that site. Based on that investigation, it was hypothesized that the folding

mechanism of 7LZM is changed on a surface.
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Figure 4.3: Conformations of protein 7LZM in the bulk in different temperatures: (A) 190
K; (B) 280 K; (C) 320 K; (D) 380 K

Figure 4.4: Conformations of protein 7LZM on the surface in different temperatures: (A)
190 K; (B) 280 K; (C) 380 K

To validate this hypothesis, it is recorded and compared that comformations of each

state for proteins in bulk and on surfaces in Figure 4.3 and 4.4. Comparing these two

figures, it was found that proteins are folded at the lowest temperature (190K) both in the

bulk and on the surface and unfolded, or melted, at the highest temperatures(380K) in both

conditions. Also, the metastate of the protein on the surface at 280K (Figure 4.4(B)) is

similar in shape to the first metastate (Figure 4.3(B)) in the bulk at the same temperature.

The most important characteristic of these two metastates is that the upper part of the

protein still keeps a “ring” shape. That means, at 280K, all tertiary structures in the upper

part have melted, but the contacts formed by the ending sections of the ring and the lower

part of protein are still stable.
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The protein on the surface lacks of the second kind of metastate (at 320K) as in

bulk. At this temperature, the upper ring of the protein in the bulk opens, as shown in

Figure 4.3(C). However, such a transformation of the protein does not show up on the

surface. Furthermore, since conformation at (380K) are the same as shown above, it is

obvious that some native contacts melted at the same higher temperature as the remaining

parts. The change of the melting temperature lead to the disappearance of one metastate

when the protein is tethered to the surface. In other words, tethering 7LZM to the surface

at this site, changes the mechanism of folding by raising the melting point of some parts.

Table 4.1: Categorization and lengths of parts for 7LZM

7LZM
Coil 1 Helix 1 Coil 2 Beta 1 Turn 1 Coil 3 Beta 2 Turn 2

Sites 1-2 3-11 12-13 14-19 20-23 24 25-28 29-30
Beta 3 Coil 4 Helix 2 Coil 5 Turn 3 Coil 6 Helix 3 Coil 7

Sites 31-34 35-38 39-50 51-53 54-56 57-59 60-80 81-82
Helix 4 Coil 8 Helix 5 Coil 9 Helix 6 Coil 10 Helix 7 Coil 11

Sites 83-90 91-92 93-106 107 108-113 114 115-123 124-125
Helix 8 Coil 12 Helix 9 Coil 13 Helix 10 Coil 14 Helix 11 Coil 15

Sites 126-134 135-136 137-141 142 143-155 156-158 159-161 162

To get explicit evidence to describe this change, native contacts for each part of the

protein along the temperature range are monitered. First, parts of the protein as in Table 4.1

were categorized, and then the native contacts of each pair of segments in a temperature

range were recorded. The categorization is based on secondary structure motifs like α helix,

β sheets, and coils/ turnings between them.

The solid line Figure 4.5 is the curve of native contacts between Turn 3 (site 54-56) and

Coil 6 (site 57-59) along a temperature range, and the dashed line is its scaled derivative. As

shown in this figure, the number of native contacts decrease as the temperature increased,

which means the two coordinated parts melt. The temperature of the peak point in the

derivitive curve is the melting point of this small section in the protein.

All of the derivative lines were plotted in the same figure for both in bulk and on the

surface in Figure 4.6 and 4.7. There are three peaks of the protein in bulk and two peaks

on the surface, which is consistant with the melting temperature results. That means there
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Figure 4.5: Native contacts and the derivative curve for Turn 3 and Coil 6
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Figure 4.6: The derivative curve of all native contacts of 7LZM in bulk.

must be three groups of native contacts, while each group of native contacts breaks at a

given temperature. Then those native contacts were grouped based on their peak positions.

Also groups of native contacts were got according to their heat capacity peak position, as

shown in Table 4.2. In this table, there are three groups of the protein in the bulk, and two

groups on the surface. That is consistant with the melting temperature results and shapes

of metastates shown above. Also, there is little difference in group I in both conditions.
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Figure 4.7: The derivative curve of all native contacts of 7LZM on surface with site 91
tethered

The group II of the protein on the surface is the combination of group II and group III of

the protein in the bulk. It is a proof to the prediction that the folding mechanism of the

protein on the surface changes due to the change in melting temperature of a small part

of the protein. That part, as shown in Table 4.2 Group II of protein in the bulk, is the

connection between the ring and the lower part of the protein, as shown in Figure 4.3(B)

and Figure 4.4(B). The melting of this part of the protein provided the conformation change

as shown from Figure 4.3(B) to 4.3(C).

4.4 Summary

7LZM, a multi-states protein, changes the melting temperature of some of its parts when

it is tethered to a surface. Also, through the comparison of the conformation shape in the

bulk and on the surface, it was found out that one metastate disappeared on surfaces with

site 91 tethered. That is because the melting temperature of the second group of native

contacts increased and the heat capacity peaks merge with one another. The change of

melting temperature of some parts of a protein, affects the number of metastates, which

leads to the change of folding mechanism.
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Table 4.2: Groups in melting temperatures for 7LZM

7LZM in the Bulk

GROUP I

H1-C2 H1-T2 C2-B2 C2-T2 C2-H3 B1-B1 B1-C3
B1-B2 B1-T2 B1-B3 B1-H2 B1-T3 B1-C6 B1-H3
T1-T1 T1-B2 T1-H9 T1-C13 C3-B3 C3-C4 B2-T2
B2-B3 B2-C4 B2-H2 B2-C6 B2-H3 T2-H3 B3-H2
B3-H3 C4-H2 H2-H2 H2-C5 H2-T3 H2-C6 H2-H3
C5-C6 C5-H3 T3-C6 C6-H3

GROUP II
C1-H1 C1-C14 C1-H11 C1-C15 H1-H1 H1-H3 H1-H5
H1-H10 H1-C14 H1-H11 H5-H11 H10-H11 H11-C15

GROUP III

H3-H3 H3-C7 H3-H4 H3-H5 H3-H6 C7-H4 C7-H6
H4-H4 H4-C8 H4-H5 H4-H6 H4-H7 C8-H5 C8-H8
C8-H10 H5-H5 H5-C9 H5-H6 H5-C10 H5-H7 H5-H8
H5-H9 H5-C13 H5-H10 H5-C14 C9-H6 H6-H6 H6-C10
H6-H7 C10-H7 C10-H8 C10-C12 C10-H9 H7-H7 H7-C11
H7-H8 H7-H10 C11-H8 H8-H8 H8-C12 H8-H9 H8-H10
C12-H9 H9-H9 H9-C13 H9-H10 C13-H10 H10-H10 H10-C14

7LZM on the Surface

GROUP I

H1-T2 C2-B2 C2-T2 B1-B1 B1-C3 B1-B2 B1-T2
B1-B3 B1-H2 B1-T3 B1-C6 B1-H3 T1-T1 T1-C3
T1-B2 T1-H9 T1-C13 C3-B3 C3-C4 B2-T2 B2-B3
B2-C4 B2-H2 B2-C6 B2-H3 T2-H3 B3-H2 B3-H3
C4-H2 H2-H2 H2-C5 H2-T3 H2-C6 H2-H3 C5-C6
C5-H3 T3-C6 C6-H3

GROUP II

C1-H1 C1-C14 C1-H11 C1-C15 H1-H1 H1-C2 H1-H3
H1-H5 H1-H10 H1-C14 H1-H11 C2-H3 B3-C4 H3-H3
H3-C7 H3-H4 H3-H5 H3-H6 C7-H4 C7-H6 H4-H4
H4-C8 H4-H5 H4-H6 H4-H7 C8-H5 C8-H8 C8-H10
H5-H5 H5-C9 H5-H6 H5-C10 H5-H7 H5-H8 H5-H9
H5-C13 H5-H10 H5-C14 H5-H11 C9-H6 H6-H6 H6-C10
H6-H7 C10-H7 C10-H8 C10-C12 C10-H9 H7-H7 H7-C11
H7-H8 H7-H10 C11-H8 H8-H8 H8-C12 H8-H9 H8-H10
C12-H9 H9-H9 H9-C13 H9-H10 C13-H10 H10-H10 H10-C14
H10-H11 C14-H11 C14-C15 H11-C15
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5 CONCLUSION

The stability of protein changes when they are tethered on surfaces. For α-helical, two-

folded state orthogonal bundle proteins, predictable stabilization patterns can be found. If a

protein is tethered with a loop that have large free rotation volume, at least one stabilizing

site can be found in the loop region. The position of the stabilizing site is correlated to the

shape of the loop.

5.1 Summary

The stability of protein changes when they are tethered on surfaces. For α-helical, two-

folded state orthogonal bundle proteins, predictable stabilization patterns can be found. If a

protein is tethered with a loop that have large free rotation volume, at least one stabilizing

site can be found in the loop region. The position of the stabilizing site is correlated to the

shape of the loop.

In a long loop, it is not easy to find a site where the protein tethered on a surface that

distabilizes the protein, until sites which are very near to the neighbour helix are tested. For

a u-shape loop, most sites in the loop region behave in a stabilizing way. For a w-shape loop,

the outer sites are always stabilizing sites for a protein, while the inner ones always perform

destabilization. In another word, if the tethering site bends out of the protein molecule bulk,

the protein is always stabilized, while if the tethering site bend into the protein molecule

bulk, the protein is destabilized. Tethering with sites at the outer position provides more

space for protein rotation, thus more stabilization than with sites bend into the protein.

Since the entropy part always helps to stabilize the protein on surfaces, Dill’s theory

is right when enthalpy does not change. However, the enthalpy part changes in several cases,

and always in a destabilization direction, which is not the same as assumed in Dill’s theory.
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For a multi-states protein, like 7LZM, the melting temperature of some parts changes

when it is tethered on the surface. Also, through the comparison of the conformation shape as

in the bulk and on the surface, it is noticed that one metastate disappeared on surfaces with

site 91 tethered. That is because the melting temperature of second group of native contacts

increased to the temperature of the remaining part. The change in melting temperature of

some parts of the protein, leads to the change of metastates, which results in the change of

folding mechanism.

5.2 Future Work

To investigate more truth about protein/surface interaction, it is needed to simulate proteins

from other tertiary structure motifs. According to the CATH classification method, several

secondary and tertiary structure motifs shown in table 5.1 are waiting for further study.

Take up-down bundle as an example, based on the conclusion from this work, proteins in

up-down bundle tertiary structure should be stabilized on surfaces if a convex site is chosen

to tether with, due to the large free rotation angle of each loop region. That is because, in

these proteins, strands are in the up and down directions which forms acute angles.

Table 5.1: Protein structure motifs for further study

Secondary Tertiary

Mainly α

Up-down Bundle
Alpha Horseshoe
Alpha solenoid

Alpha/alpha barrel

Mainly β

Ribbon
Single Sheet
Beta Barrel

Roll

Mixed α − β
2-Layer Sandwich
Apha-Beta Barrel
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A DETAIL OF PARALLEL CODING

In the following script, swap requests are proposed from certain processors (odd or even

ones) to their upper neighbor processors. For example, if there are 8 processors (p1 to p8),

swap requests are initially proposed from odd processor, p1, p3, p5, and p7, to their upper

neighbors p2, p4, p6, and p8. And then, in a certain number of steps, swap requests are

proposed from even processors, p2, p4 and p6, to p3, p5, and p7. Since processor p8 does

not have an upper neighbor processor, it does not propose such a swap request.

if(mpi.my_rank!=mpi.p-1 && flag ==1)//flag=1 mean the box is sending a request to rank+1

{...

MPI_Send(&swap_request,sizeof(swap_request),MPI_CHAR,mpi.my_rank+1,1,MPI_COMM_WORLD);

...}

At the same time, some processors must receive those requests information from

their lower neighbors, and then determine if they will accept the deal or not, based on the

Metropolis criterion. The following scripts show how that works.

else if(mpi.my_rank!=0 && flag==0)//flag 0 means the box is receiving a request from rank-1

{...

MPI_Recv(&swap_request,sizeof(swap_request),MPI_CHAR,mpi.my_rank-1,1,MPI_COMM_WORLD,&status);

double accep_crit = exp(delta_beta*delta_energy);

if(accep_crit > ran2()){//Swap is accepted

swap_accept.accept = 1;

...}

...}

In the script above, ’MPI-Send’ and ’MPI-Recv’ are MPI functions for sending and

receiving information from each other, based on their ranks, which are their processor num-

bers). They are effective in the range of 24 processors, which are defined in the ’MPI-COMM-

WORLD’.

After the scprits above finish their job, the acceptance decision is made and sent back

to the requesting processors. If requests are accepted, processors work on changing their

replicas, while if not, they will keep running their own replicas. The commands used are just

the same ones as shown above for swapping requests. After each swap, requesting processors

are changed between odd and even ranks by changing flags. Therefore, each processor can

communicate to both upper and lower neighbor processors. The whole function script is

shown as follows.
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#ifdef MPI

#include "defines.h"

void nblist (int);

double ran2 (void);

#ifdef STATUS

void curr_status (int,int);

#endif

int swap_box_mpi(int flag)

{

int k = 0;

MPI_Status status;

#ifdef STATUS

curr_status(k,5);

#endif

if(mpi.my_rank!=mpi.p-1 && flag ==1)//flag=1 mean the box is sending a request to rank+1

{

struct msg_swap_request swap_request;

swap_request.potens = en[k].potens;

swap_request.kT = sim.kT[k];

struct msg_swap_accept swap_accept;

MPI_Send(&swap_request,sizeof(swap_request),MPI_CHAR,mpi.my_rank+1,1,MPI_COMM_WORLD);

MPI_Recv(&swap_accept, sizeof(swap_accept), MPI_CHAR,mpi.my_rank+1,2,MPI_COMM_WORLD,&status);

if(swap_accept.accept==0){

return 0;

}

else if (swap_accept.accept==1){

for(int i =0; i< box[k].boxns; i++){

atom_temp[k][i] = atom[k][i]; /* Back up coordinates of box k */

atnopbc_temp[k][i] = atnopbc[k][i]; /* Back up coordinates of box k */

ff_temp[k][i] = ff[k][i];

vv_temp[k][i] = vv[k][i];

}

en_temp[k] = en[k];

#ifdef PRESSURE

pvir_temp[k] = pvir[k];

#endif

MPI_Recv(atom[k], box[k].boxns * sizeof(struct atoms),MPI_CHAR,mpi.my_rank+1,3,MPI_COMM_WORLD,&status);

MPI_Recv(atnopbc[k],box[k].boxns * sizeof(struct atoms),MPI_CHAR,mpi.my_rank+1,4,MPI_COMM_WORLD,&status);

MPI_Recv(ff[k], box[k].boxns * sizeof(struct veloc),MPI_CHAR,mpi.my_rank+1,5,MPI_COMM_WORLD,&status);

MPI_Recv(vv[k], box[k].boxns * sizeof(struct veloc),MPI_CHAR,mpi.my_rank+2,6,MPI_COMM_WORLD,&status);

MPI_Recv(&en[k], sizeof(struct energy),MPI_CHAR,mpi.my_rank+1,11,MPI_COMM_WORLD,&status);

#ifdef PRESSURE

MPI_Recv(&pvir[k], sizeof(struct virial),MPI_CHAR,mpi.my_rank+1,13,MPI_COMM_WORLD,&status);

#endif

for(int i=0; i< box[k].boxns; i++){

vv[k][i].x /= swap_accept.scale;

vv[k][i].y /= swap_accept.scale;

vv[k][i].z /= swap_accept.scale;

uu[k][i] = vv[k][i];

}

MPI_Send(atom_temp[k], box[k].boxns * sizeof(struct atoms),MPI_CHAR,mpi.my_rank+1, 7,MPI_COMM_WORLD);

MPI_Send(atnopbc_temp[k],box[k].boxns * sizeof(struct atoms),MPI_CHAR,mpi.my_rank+1, 8,MPI_COMM_WORLD);

MPI_Send(ff_temp[k], box[k].boxns * sizeof(struct veloc),MPI_CHAR,mpi.my_rank+1, 9,MPI_COMM_WORLD);

MPI_Send(vv_temp[k], box[k].boxns * sizeof(struct veloc),MPI_CHAR,mpi.my_rank+1,10,MPI_COMM_WORLD);

MPI_Send(&en_temp[k], sizeof(struct energy),MPI_CHAR,mpi.my_rank+1,12,MPI_COMM_WORLD);

#ifdef PRESSURE

MPI_Send(&pvir[k], sizeof(struct virial),MPI_CHAR,mpi.my_rank+1,14,MPI_COMM_WORLD,&status);

#endif
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#ifdef NLIST

nblist(k);

#endif

return 1;

}// if swap accepted then for the sending box

}// end of mpi.rank !=p-1

else if(mpi.my_rank!=0 && flag==0)//flag 0 means the box is receiving a request from rank-1

{

struct msg_swap_request swap_request;

struct msg_swap_accept swap_accept;

MPI_Recv(&swap_request,sizeof(swap_request),MPI_CHAR,mpi.my_rank-1,1,MPI_COMM_WORLD,&status);

double e2 = swap_request.potens;

double delta_energy = e2 - en[k].potens;

double T2 = swap_request.kT;

double delta_beta = 1.0/T2-1.0/ sim.kT[k];

double accep_crit = exp(delta_beta*delta_energy);

if(accep_crit > ran2()){//Swap is accepted

swap_accept.accept = 1;

swap_accept.scale = sqrt(sim.kT[k]/T2);

MPI_Send(&swap_accept,sizeof(swap_accept), MPI_CHAR,mpi.my_rank-1,2,MPI_COMM_WORLD);

MPI_Send(atom[k], box[k].boxns * sizeof(struct atoms),MPI_CHAR,mpi.my_rank-1,3,MPI_COMM_WORLD);

MPI_Send(atnopbc[k],box[k].boxns * sizeof(struct atoms),MPI_CHAR,mpi.my_rank-1,4,MPI_COMM_WORLD);

MPI_Send(ff[k], box[k].boxns * sizeof(struct veloc),MPI_CHAR,mpi.my_rank-1,5,MPI_COMM_WORLD);

MPI_Send(vv[k], box[k].boxns * sizeof(struct veloc),MPI_CHAR,mpi.my_rank-1,6,MPI_COMM_WORLD);

MPI_Send(&en[k], sizeof(struct energy),MPI_CHAR,mpi.my_rank-1,11,MPI_COMM_WORLD);

#ifdef PRESSURE

MPI_Send(&pvir[k], sizeof(struct virial),MPI_CHAR,mpi.my_rank-1,13,MPI_COMM_WORLD,&status);

#endif

MPI_Recv(atom[k], box[k].boxns * sizeof(struct atoms),MPI_CHAR,mpi.my_rank-1, 7,MPI_COMM_WORLD,&status);

MPI_Recv(atnopbc[k],box[k].boxns * sizeof(struct atoms),MPI_CHAR,mpi.my_rank-1, 8,MPI_COMM_WORLD,&status);

MPI_Recv(ff[k], box[k].boxns * sizeof(struct veloc),MPI_CHAR,mpi.my_rank-1, 9,MPI_COMM_WORLD,&status);

MPI_Recv(vv[k], box[k].boxns * sizeof(struct veloc),MPI_CHAR,mpi.my_rank-1,10,MPI_COMM_WORLD,&status);

MPI_Recv(&en[k], sizeof(struct energy),MPI_CHAR,mpi.my_rank-1,12,MPI_COMM_WORLD,&status);

#ifdef PRESSURE

MPI_Recv(&pvir[k], sizeof(struct virial),MPI_CHAR,mpi.my_rank-1,14,MPI_COMM_WORLD,&status);

#endif

for(int i=0; i< box[k].boxns; i++){

vv[k][i].x *= swap_accept.scale;

vv[k][i].y *= swap_accept.scale;

vv[k][i].z *= swap_accept.scale;

uu[k][i] = vv[k][i];

}

#ifdef NLIST

nblist(k);

#endif

return 1;

}//end of accept for receiving box

else { //swap is rejected

swap_accept.accept=0;

swap_accept.potens=e2;// e2 belongs to myrank-1

MPI_Send(&swap_accept,sizeof(swap_accept), MPI_CHAR,mpi.my_rank-1,2,MPI_COMM_WORLD);

return 0;

}// end of reject for receiving box

}// end of rank!=0 loop

return 2;

}

#endif

}
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