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ABSTRACT
Analyzing Codon Usage and Coding Sequence Length Biases Across the Tree of Life

Justin B. Miller
Department of Biology, BYU
Doctor of Philosophy

Although codon usage bias has been shown to persist through non-random mutations and
selection, many avenues of research into the applications of codon usage bias have remained
unexplored. In this dissertation, we present several new applications of codon usage bias and
their practical uses in a phylogenetic construct. We first review the literature and provide
background into other software applications of codon usage bias in Chapter 1. In Chapter 2, we
show that in tetrapods, codon aversion in orthologs is phylogenetically conserved. We further
this analysis in Chapter 3 by exploring codon use and aversion across the Tree of Life, providing
frameworks for other researchers to analyze different species subsets. We present a novel
algorithm to recover species relationships using codon aversion, without regard to orthologous
relationships in Chapter 4. We present several other algorithms in Chapter 5 to also recover
species relationships using biases in codon pairing. Chapter 6 analyzes the relationship between
codon usage bias in viruses that infect humans and proteins found in tissues that they infect. In
Chapter 7, we present our discovery of a conservation in coding sequence lengths in orthologous
genes that allowed us to accurately recover orthologous gene relationships and reduce overall
ortholog identification runtime by over 96%. In Chapter 8 we discuss a novel algorithm for
extracting a ramp of slowly-translated codons located at the beginning of gene sequences,
allowing researchers to quickly identify translational bottlenecks. Finally, Chapter 9 touches on
future applications of codon usage bias in phylogenetics. This dissertation represents a major
vertical leap in phylogenetics by providing a framework and paradigm shift toward utilizing
codon usage and coding sequence length biases in future analyses.

Keywords: codon usage bias, codon aversion, codon pairing, JustOrthologs, ExtRamp,
phylogeny, tree of life, species relationships, phylogenetic systematics
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Abstract

Phylogenetic systematics is the study of historical and hierarchical relationships among genes,
individuals, populations, or taxa. Therefore, systematists uncover genetic or morphological traits
that accurately separate species or individuals based on homology. As genetic data has become
more widely accessible, various characteristics of DNA sequences have been used to establish
species relatedness. One avenue of research centers on analyzing codon usage bias. Codon usage
bias is based on a non-random distribution of synonymous codons between different species,
different genes within the same species, and different locations within the same gene. These
observations have led to two non-mutually exclusive hypotheses explaining codon usage bias:
non-random mutations occur within codons, and selection for certain codons exists. We review
codon usage bias as a phylogenetic character state, how it affects common phylogenomic

techniques, and its future in phylogenetic systematics.



Introduction

Phylogenies allow biologists to infer similar characteristics in closely related species and provide
an evolutionary framework for analyzing biological patterns (Soltis and Soltis, 2003).
Furthermore, phylogenies are statements of homology and organize shared structures or patterns
between species (Haszprunar, 1992). Originally, phylogenies were recovered using only
morphological data. However, with the increased availability of molecular data, a combined
approach in which morphology is combined with genetic markers is typically used in
phylogenetic analyses (Bertolani et al., 2014). Although genetic data allow researchers to quickly
analyze more species, it typically requires large amounts of data cleaning (e.g., alignment and
annotation) before it becomes useful. Some of the greatest difficulties in recovering phylogenetic

trees from molecular data are explored by Philippe et al. (2011).

Codon usage bias is present throughout molecular datasets. There are 61 canonical codons plus
three stop codons that form and regulate the creation of 20 amino acids and the stop signal (Crick
et al., 1961). Since there are more codons than amino acids, the term synonymous codon is used
to explain how multiple codons encode the same amino acid and were presumably identical in
function. However, it was soon noted that an unequal distribution of synonymous codons occurs
within species, especially within highly expressed genes, suggesting that synonymous codons
might play different roles in species fitness (Sharp and Li, 1986). Furthermore, an unequal
distribution of tRNA anticodons directly coupling codons was also revealed, which led to the
wobble hypothesis: tRNA anticodons do not need to latch onto all three codon nucleotides during
translation (Crick, 1966). It was also discovered that codon usage is highly associated with the

most abundant tRNA present in the cell (Post et al., 1979) and codon usage patterns affect gene



expression (Gutman and Hatfield, 1989). An early review of synonymous codon usage and

tRNA content was done by Ikemura (1985).

Overview of Common Phylogenomic Techniques

Homologous sequence comparisons are commonly used to identify species relationships.
Homologous characters are often identified by aligning orthologous genes and detecting
character state changes of amino acid residues across a tree topology. This multi-step process is
time-consuming and requires orthologous gene annotations. Non-homologous sequence
comparisons have also been explored in alignment-free methods and will be discussed in this

review.

Ortholog Identification

Orthologs are genes within two or more species that usually share the same function because
they are derived from the same ancestral gene in the most recent common ancestor of the
compared species (Koonin, 2005). In contrast, paralogs may share the same function, but can
arise from gene duplication or horizontal gene transfer. Paralogs are not under the same
evolutionary pressures and should not be compared in a direct positional alignment because these
comparisons are a poor indicator of phylogenetic relationships (Koonin, 2005). An evaluation of
ortholog identification techniques is presented by Tekaia (2016). Once an ortholog is identified,
phylogenetic studies typically require a multiple sequence alignment to align homologous
characters. Some common multiple sequence aligners are T-coffee (Magis et al., 2014),

MUSCLE (Edgar, 2004), CLUSTAL (Sievers and Higgins, 2014), CLUSTAL OMEGA (Sievers



and Higgins, 2018), and MAFFT (Katoh and Standley, 2014), and reviews of their capabilities

can be examined in Daugelaite et al. (2013) and Pais et al. (2014).

Current Phylogenetic Tree Recovery Techniques

Maximum Parsimony

Maximum parsimony assumes that each character is equally important in determining
phylogenetic relationships. Parsimony minimizes the number of homoplasious character state
changes to recover the relatedness of species. Proponents of parsimony point to its explanatory
power and ability to minimize ad hoc hypotheses (Farris, 2008). However, parsimony can be
misleading if unequal evolutionary rates between lineages exist because longer evolutionary
branches have a tendency to form monophyletic groups even if the species have different
phylogenetic histories (Felsenstein, 1978). PAUP (Wilgenbusch and Swofford, 2003) and TNT
(Goloboff et al., 2005) are two popular software packages for identifying phylogenies based on

parsimony.

Maximum Likelihood

As opposed to parsimony, maximum likelihood requires models of evolution that show the
probability of character state changes and can be used in the likelihood function. Maximum
likelihood calculates the probability of obtaining the data given the model and tree topology. One
of the main reasons that maximum likelihood estimates have gained traction in recent years is the
mathematical property of consistency, which states that as more data (phylogenetically
informative characters) are added, the likelihood function will converge to a single output (Wald,

1949; Rogers, 1997). Furthermore, maximum likelihood can take into account more complex



modelling of datasets, and the modelling has become more computationally tractable through
faster algorithmic design and faster computer processors (Paninski et al., 2004). However, in
exact opposition to maximum parsimony, maximum likelihood is more likely to separate highly
divergent species, leading to long branch repulsion (Siddall, 1998). MEGA X (Kumar et al.,
2018), RAXML (Stamatakis, 2014), IQ-TREE (Nguyen et al., 2015) and PHYLIP (Retief, 2000)

are commonly used to recover phylogenies using maximum likelihood.

Bayesian Inference

Bayesian phylogenetic estimates use posterior probabilities of a distribution of trees calculated
with Markov Chain Monte Carlo (MCMC) techniques to evaluate tree probabilities. Bayesian
inference adds statistical support to phylogenies and empirically produces more accurate trees in
simulations. However, Bayesian inference is highly sensitive to prior probabilities (Huelsenbeck
et al., 2002). How Bayesian techniques compare to other phylogenetic methods is addressed by
Yang and Rannala (2012). Popular Bayesian techniques are implemented in the programs

MrBayes (Ronquist et al., 2012; Ling et al., 2016) and BEAST2 (Bouckaert et al., 2014).

Distance-based and Alignment-free

Distance-based phylogenies, using techniques such as neighbor-joining (NJ), quickly produce
relatively good trees and are often used as a starting point for phylogenetic analyses using other
methods. NJ decomposes a star tree by taking the two closest taxa based on the number of
character changes between them, pairing them together, recalculating weights based on the
shortest distance between the paired species and all other species, and repeating this process until

all taxa are paired. Unfortunately, compressing the sequences into distances loses information



and reliable phylogenies are difficult to obtain from highly divergent sequences (Holder and
Lewis, 2003). Although distance-based methods are not as optimal for aligned sequences, they
have been frequently used when sequence alignments are not available, or in whole genome
comparisons. Since genome assembly and multiple sequence alignment affect phylogenies more
than the technique used to recover the phylogeny, alignment-free methods attempt to recover
shared phylogenetic history without an alignment by comparing basic characteristics of genomes
(i.e., GC content, k-mer counts, codon usages, etc.) (Chan et al., 2014). These techniques are still
being developed, and new software packages are constantly updated to recover more robust

trees.

Bootstrapping

Bootstrapping is a common technique to assess the robustness of a phylogeny by randomly
sampling characters with replacement and determining if the recovered phylogenetic tree
changes. Proponents of bootstrapping point to its ability to uncover the phylogenetic signal under
the noise of phylogenetically uninformative characters. Bootstrapping also has statistical
properties that allow a confidence value to be placed on clades (Sanderson, 1995). On the other
hand, critics of bootstrapping point to the statistical assumptions that are violated in DNA
characters because DNA characters cannot be considered independently and identically
distributed (Sanderson, 1995). Furthermore, a bootstrap proportion is generally unbiased but
highly imprecise, meaning the bootstrap number can give high confidence that the data support a

clade even if the clade is not real (Hillis and Bull, 1993).



Types of Codon Usage Bias

Codon usage bias has recently been used in phylogenomic studies with and without ortholog
annotations. Various types of codon usage bias are documented as either increasing and
decreasing gene expression (Quax et al., 2015). Characteristics of codon usage bias and their

biological importance follow.

Measuring Bias

Since unequal distributions of codons were discovered, several measurements of codon usage
preferences have been developed to facilitate the comparison of codon usages. Originally, the
Codon Adaptation Index determined if two species shared the same codon usage biases by
comparing the relative codon usage of the most commonly used codons within highly expressed
genes (Sharp and Li, 1986). Soon thereafter, the effective number of codons quantified the
difference in codon usage versus the expected usage if all synonymous codons were equally used
(Wright, 1990). Because of their simplicity, the effective number of codons and codon adaptation
index are still widely used techniques in measuring codon bias. However, those technique
oversimplify the dynamics of codon usage. The tRNA adaptation index (tAl) takes into account
the complex relationship between tRNA and codons by using tRNA copy number, gene length,
number of codons, and the preponderance of tRNA wobble to determine codon optimality (dos
Reis et al., 2003; dos Reis et al., 2004). Building on tAl, the normalized translational efficiency
(nTE) measurement balances tRNA supply and demand on codon usage and considers cellular
tRNA dynamics. A codon is considered “optimal” if the relative supply of its cognate tRNAs
exceeds the codon’s usage (Pechmann and Frydman, 2013). Unfortunately, tAl and nTE require

data that are not always available in a species or gene, thus limiting their use.



Biological Importance
Codon usage bias affects gene expression by both decreasing and increasing translational

efficiency (Quax et al., 2015). See Table 1 for different causes of codon usage biases.

Selection toward decreased translational efficiency

Occasionally, suboptimal codons are more beneficial to cells because they slow translation and
allow for more precise, deliberate gene translation. Codon usage bias affects mRNA secondary
structure so strongly that local mRNA secondary structure can be used to predict codon usage in
highly expressed genes (Trotta, 2013). Highly expressed genes also have a ramp of 30-50
slowly-translated, rare codons at the 5’ end of most protein coding sequences (Tuller et al., 2010)
that serves to evenly space ribosomes (Shah et al., 2013) and reduce mRNA secondary structure
(Goodman et al., 2013) at translation initiation. A comprehensive analysis of ramp sequences
from all domains of life, as well as a method to extract ramp sequences from individual genes is

presented in Chapter 8.

Suboptimal codons are also used in genes that are regulated by the cell cycle. Since tRNA
expression levels are highest during the G2 phase, suboptimal codon usage for genes expressed
during this phase is also highest. The G1 phase has the lowest tRNA expression, and genes
expressed during G1 have a tendency toward optimal codon usage (Frenkel-Morgenstern et al.,

2012).

Codon usage bias in various bacteria is also associated with species lifestyle (Carbone et al.,

2005; Botzman and Margalit, 2011). For cyanobacteria (photosynthetic bacteria), selection



toward sub-optimal codon usage produces the circadian clock conditionality, where the circadian
clock is expressed only under certain environmental conditions where cyanobacteria are not
intrinsically robust (Xu et al., 2013). Pathogenicity and habitat of Actinobacteria (High GC gram
positive bacteria important for soil systems) also influence codon usage, with aerobic species
varying significantly from anaerobic species, and pathogenic species varying significantly from
non-pathogenic species (Lal et al., 2016). In each case, codon usage explains bacterial adaptation

to their environment.

Selection toward increased translational efficiency

Highly expressed genes tend to use more optimal codons after the ramp sequence to increase
gene translation because optimal codons are translated faster (Quax et al., 2015). Faster
translation is due to decreased wobble interactions, increased optimal tRNA composition, and
decreased competition from synonymous codons within a gene (Brule and Grayhack, 2017).
Selective pressures for protein expression also act on mRNA sequences to optimize co-
translational folding within polypeptides in over 90% of high expression genes and about 80% of
low expression genes (Pechmann and Frydman, 2013). Furthermore, gene body methylation is
strongly correlated with codon bias, and appears to systematically replace CpG bearing codons,

potentially influencing optimal codon establishment (Dixon et al., 2016).

Recharging a tRNA while the ribosome is still attached to the mRNA strand is another strategy
used to increase translational efficiency and decrease overall resource utilization. Co-tRNA
codon pairing is when two non-identical codons that encode the same amino acid are located in

close proximity to each other in a gene; identical codon pairing is when identical codons are
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located in close proximity in a gene. Co-tRNA and identical codon pairing are mechanisms that a
cell uses to reuse a tRNA by recharging the tRNA with an amino acid before the tRNA diffuses,
and increases translational speed by approximately 30% (Cannarozzi et al., 2010). Although co-
tRNA codon pairing occurs more prominently in eukaryotes and identical codon pairing occurs
prominently in bacteria (Shao et al., 2012) and archaea (Zhang et al., 2013), more recent studies
suggest that both co-tRNA and identical codon pairing are phylogenetically conserved in all

domains of life (Chapter 5).

Background dinucleotide substitution biases from GC to AT and AT to GC often coincide with
shifts in optimal codons (Sun et al., 2017). Even under sustained selective pressure, GC content
at the third codon position is highly correlated with overall GC content in a gene, suggesting that
optimal codons are affected by overall GC content (Sun et al., 2017). In an analysis of 65
eukaryotes and prokaryotes, GC content accounted for 76.7% of amino acid variation (Li et al.,

2015).

Codon Usage Bias in Phylogenetic Systematics

As expected, random single nucleotide polymorphisms (SNPs) are less likely to occur in
conserved genomic regions because they can adversely affect fitness (Castle, 2011).
Furthermore, codon usage bias is less likely to be affected by SNPs than expected based on
genomic mutation rates (Castle, 2011). Many studies attempt to account for codon usage biases
in phylogenetic studies and determine how its usage is phylogenetically conserved. The results

from these studies are outlined below.
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Codon Usage in Maximum Likelihood

Limited codon substitution models have been used for decades in maximum likelihood estimates.
However, until recently a full 61 x 61 codon matrix was too computational intensive to apply to
more than a few species and genes (Anisimova and Kosiol, 2009). Somewhat surprisingly, after
a 61 x 61 codon matrix became computationally viable, it was determined that the full matrix is
not always optimal because models that use a fixed codon mutation rate for phylogenetic tree
reconstruction fit the data better than a variable codon substitution rate. The apparent variation in
codon substitution is actually caused by variable selection against amino acid substitutions in the
regions used to develop the model, specifically mitochondria, chloroplast, and hemagglutinin
proteins (Miyazawa, 2013). As expected, using codon models outperform a parsimony analysis
only when codon usage is highly skewed and is not affected by asymmetry in substitution rates

(approach validated using Drosophila) (Akashi et al., 2007).

Because full codon models are computationally intensive and do not always elucidate more
information than simpler models, common likelihood approaches use nonsynonymous to
synonymous mutation rate per site (dn/ds) instead of the complete codon model. If the codon
usage bias is strongly conserved, then ds will decrease and dn/ds will increase within a
population. The dn/ds ratio was used in Drosophila lineages, and helped determine that the
Notch locus had evolved to include suboptimal codons (Nielsen et al., 2007). Using 158
orthologous genes, maximum likelihood also detected a strong shift from suboptimal to optimal
codons in two lineages of Populus (Ingvarsson, 2008). Detecting the cause of such shifts in
codon usage is important for determining the biological significance of mutations. SCUMBLE

(Synonymous Codon Usage Bias Maximum Likelihood Estimation) uses a model inspired by
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statistical physics to identify different sources of codon bias including selection and mutation
(Kloster and Tang, 2008). SCUMBLE is also used as a filter to identify regions with insufficient
information for analysis. This technique helped determine that natural selection shaped codon
biases in Strongylocentrotus purpuratus (purple sea urchin) by limiting the analysis to only
regions with sufficient support (Kober and Pogson, 2013). Shifts in mutation and selection rates
are important for uncovering the evolutionary history of species and can be recovered using this

method.

Violations of Maximum Likelihood Statistical Properties in a Codon Model

Many of the assumptions of the statistical properties in maximum likelihood are violated by a
codon model. For instance, species are constrained to taxon-specific pools of tRNA and triplets
in coding sequences are not independent. Algorithms with statistical properties that require
character independence, such as maximum likelihood, violate that rule for genetic data
(Christianson, 2005). Furthermore, the codon model assumption of homogeneity of codon
composition leads to seriously biased phylogenetic estimations when that assumption is violated

(Inagaki and Roger, 2006).

Horizontal gene transfer is another important mechanism in evolution and complicates
phylogenetic analyses in bacteria because 81 = 15% of genes have been laterally transferred
among bacteria at some point in their evolutionary history (Dagan et al., 2008). Common
transposable elements in eukaryotes also arose from horizontal gene transfer, meaning >50% of
some mammalian genomes originally arose from horizontal gene transfer (Ivancevic et al.,

2018). Detecting horizontal gene transfer has been challenging, and codon bias is a poor
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indicator of horizontal transmission, normally underestimating the effects of lateral transfer
(Koski et al., 2001; Tuller, 2011; Friedman and Ely, 2012). However, codon composition is an
excellent indicator of whether a gene will become fixed in a species after a lateral transfer event
(Tuller, 2011). The concept of horizontal gene transfer not only complicates a general
phylogenetic analysis, but suggests that a standard bifurcating tree might not be the best choice
in analyses of bacteria or archaea (Koonin and Wolf, 2008). Although it is known that codons
(and DNA in general) do not strictly follow many of the assumptions of phylogenetic analyses,
the bifurcating tree is still the most widely used phylogenetic representation, and generally

depicts statements of homology even when some assumptions are violated.

Codon Usage in Viruses

Another purpose of phylogenies is to describe the pathogenicity of viruses and viral interactions
with their hosts. Bee-infecting viruses have strong correlations in their codon usages with their
hosts, and the infected insects’ codon usage similarity follows the insect phylogeny
(Chantawannakul and Cutler, 2008). Furthermore, human-host viruses tend to share the same
codon usage as proteins expressed in tissues that the viruses infect (Miller et al., 2017b). More
specifically, the key determinant in codon patterns within herpesviruses were the overall GC
content, GC content at the 3™ codon position, and gene length (Roychoudhury and Mukherjee,
2010). In contrast, mutation played a larger role in Zika viruses, with higher frequencies of A-
ending codons (Cristina et al., 2016). However, evidence of natural selection in Zika viruses also
suggest that they evolved host- and vector-specific codon usage patterns to successfully replicate
in various hosts and vectors (Butt et al., 2016). In hepatitis C, preferred codon usages did not

always match the phylogenetic histories of the viruses as determined by sequence similarity,
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indicating that codon usage might provide additional information not identified in common

phylogenomic approaches (Mortazavi et al., 2016).

Successful Implementations of Codon Usage Bias in Phylogenetics

Beyond analyzing pathogenicity, phylogenetic inferences using codon usage bias from all
domains of life have successfully uncovered several interesting biological principles. One study
found compositional differences in codon usage between monocots (flowering plants whose
seeds contain one embryonic leaf) and dicots (flowering plants whose seeds contains two
embryonic leaves), where monocots had lower DNA background compositional bias, but higher
codon usage bias than dicots (Camiolo et al., 2015). Another technique used a distance-based
clustering method of codon usage weighted by nucleotide base bias per position (i.e., the
frequency of a codon over the product of the frequency of the nucleotide at the first, second, and
third positions) to recover the phylogeny of closely related Ectocarpales (brown algae) (Das et
al., 2005). The phylogenetic signal of codon usage was not limited to nuclear DNA;
mitochondrial synonymous codon usage in plants was associated with intron number and

mirrored species evolution (Xu et al., 2015).

Creative attempts at analyzing codon usage have also proven fruitful. A binary representation of
codon aversion (i.e., creating a character matrix based on codons which are not used in an
ortholog) was able to successfully recover the phylogeny of various tetrapods, showing that
complete codon aversion is also conserved (Miller et al., 2017a). That study also found that stop
codon usage had the highest phylogenetic signal (Miller et al., 2017a), meaning a codon matrix

of 64 x 64 (the probability of all codons including the stop codons transitioning to all other
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codons) might be better than the traditional 61 x 61 codon matrix in a likelihood framework.
Codon aversion has also been used in an alignment-free context by comparing sets of codon
tuples found in a genome, where each tuple is a list of codons not used in a gene (Chapter 4). A
similar technique used codon pairing and codon pairs (i.e., the same codon being used within a
ribosomal window) and was phylogenetically informative in both alignment-free and parsimony

frameworks (Chapter 5).

Other studies map codon usage in a particular gene across a reference phylogeny. This technique
can produce meaningful representations of codon transitions across genes. Mapping the codon
usage bias of a gene tree to a species tree revealed purifying selection among the actin-
depolymerizing factor/cofilin (ADF/CFL) gene family (Roy-Zokan et al., 2015). This technique
also showed that codon usage is significantly correlated with gene age within metazoan genomes
(Prat et al., 2009). Codon aversion in all domains of life was also mapped to the Open Tree of
Life (OTL) (Hinchliff et al., 2015) and showed that codon aversion follows established species

relationships more closely than expected by random chance (Chapter 3).

Future Direction

Codon usage bias continues to be widely studied; however, its application in phylogenetic
studies remains limited. While some applications attempt to incorporate codon usage bias as a
novel character state in phylogenetics or in a maximum likelihood framework, many of the key
attributes of codon bias remain unexplored. For instance, although the ramp of slowly translated
codons has been identified, it is unknown if the ramp sequence is more or less phylogenetically

conserved than the rest of the gene sequence. Alignment-free comparisons similar to work shown
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in Chapter 4 can be conducted on the ramp sequence and the gene sequence excluding the ramp

sequence to determine the strength of its phylogenetic signal.

In addition, although it is known that tRNA supply and demand is not equal to codon usage, a
model does not currently exist to assess tRNA supply and demand and its effect in a maximum
likelihood analysis. Future codon analyses will necessitate more complete datasets with accurate
tRNA expression values in different tissues and species. A more robust dataset of tRNA
expression values would also facilitate codon model analyses. Also, since codons are used to
regulate gene translational efficiency, codon models might require gene expression data in

addition to the full (or reduced) codon matrix.

Codon usage bias is an exciting biological principle that has not been fully utilized in
phylogenetic systematics. Few likelihood methods use codon bias, and many aspects of the ramp
sequence, co-tRNA pairing, gene expression, and tRNA expression have yet to be explored.
Although codon usage bias has been shown to be phylogenetically conserved, many of the
biological principles surrounding codon usage bias have yet to be fully utilized. We propose that
more research into codon usage bias and its phylogenetic conservation will be beneficial to

future phylogenetic studies by providing researchers with more robust phylogenetic trees.
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Tables and Figures

Chapter 1 Tables

Table 1.1. Causes of Codon Usage Bias

Name Location/ Domain Description
Ramp 30-50 nucleotides | The ramp sequence consists of rare, slowly translated
Sequence downstream of | codons that increase ribosomal spacing, reduce mRNA
start codon secondary structure, and slow initial translation.
Co-tRNA More prominent | tRNA are recharged with amino acids for synonymous
pairing in eukaryotes. codon translation when synonymous codons are in
Phylogenetically | close proximity to each other. Recharging allows the
conserved in all tRNA to stay attached to the ribosome and
domains of life significantly increases translation efficiency.
Identical tRNA are recharged with amino acids for identical

Codon Pairing

All domains of
life

codon translation when identical codons are in close
proximity to each other. Recharging allows the tRNA
to stay attached to the ribosome and significantly
increases translation efficiency.

tRNA
competition

Eukarya, bacteria,
and archaea

Cognate, near-cognate, and non-cognate tRNA may
attempt to bind to an mRNA codon. If relatively few
cognate tRNA are available, translation will slow
because other tRNA attempt to bind to the same
codon. This process is essential for translation
elongation, efficiency, and accuracy.

GC Content

All domains of
life

Overall GC content in a gene is highly correlated with
GC content at the third codon position. GC content
influences over two-thirds of codon variation.
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Abstract

Although many studies have documented codon usage bias in different species, the importance
of codon usage in a phylogenetic framework remains largely unknown. We demonstrate that a
phylogenetic signal is present in the codon usage and non-usage biases of 17 717 orthologues
evaluated across 72 tetrapod species using a simple parsimony analysis of a binary matrix of
codon characters. Phylogenies estimated using stop codons were more congruent with previous
hypotheses than phylogenies based on any other single codon or a combination of codons.
Although each codon is present in every species, specific genes have different codon preferences
and may or may not use every possible codon. This observation allowed us to map the pattern of
codon usage and non-usage across the topology. These results suggest that codon usage is

phylogenetically conserved across shallow and deep levels within tetrapods.
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Introduction

Although 64 different codons exist, only 20 amino acids and a stop codon are encoded by these
codons (Crick, 1966). Synonymous codons encode the same amino acid (Crick, 1966); however,
their usage is typically not random. Codon usage bias refers to the nonrandom codon preference
observed in most species (Ikemura, 1985; Sharp and Li, 1986; Gutman and Hatfield, 1989;
Zhang et al., 2013). In addition to codon preferences, DNA triplet preferences also are
evolutionarily conserved in both intronic and exonic regions of plants, Escherichia coli and

Drosophila (Akashi et al., 2007; Yang, 2007; Xu et al., 2015).

Two nonmutually exclusive hypotheses attempt to explain the presence of codon usage bias: (i)
nonrandom mutations occur particularly at the third codon position, and (ii) selection for codon
bias persists (Hershberg and Petrov, 2008; Quax et al., 2015). An unequal expression of optimal
(directly complementing all three nucleotides) transfer RNA (tRNA) anticodons among tissues
and species, as well as an incomplete set of tRNAs in each species, leads to evolutionary
pressure for using certain codons, potentially explaining both hypotheses (Quax et al., 2015).
Suboptimal codons, in this instance, are defined as codons that bind to one or two tRNA
anticodon nucleotides, but do not form a traditional hydrogen bond with the other base(s). The
normalized translation efficiency (nTE) metric was introduced to account for different tRNA-
codon binding efficiencies by incorporating both the supply and demand rates of tRNA with the
suboptimal codons vying for each tRNA (Pechmann and Frydman, 2013). Other normalization
rates, such as the effective number of codons, also have been introduced and used to account for
codon variance (Wright, 1990). Interestingly, two competing studies report translational speed as

being either slower or faster for suboptimal codons, rendering the effects of codon usage bias on
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translational efficiency unresolved (Quax et al., 2015). Xu et al. (2013) suggests that suboptimal

codons might be preferential to some species for increased translational efficiency.

In this research, we sought to determine if complete codon aversion (i.e. if a species does not use
a codon within a gene) is conserved in some lineages. Furthermore, we assessed the use of codon
non-usage bias as a phylogenetic character, and compared the phylogenetic signal present for
each unused codon. As a test case, we analyzed 17 717 orthologues across 72 tetrapod species,
and compared our phylogenies to the Tree of Life project (Maddison et al., 2007; Hinchliff et al.,
2015). Our results suggest that codon non-usage bias is an informative phylogenetic character.

Surprisingly, stop codon non-usage displayed the most reliable phylogenetic signal of all codons.

Methodology

Data collection and processing

We extracted all coding sequences (CDS) from the annotated proteins in 72 tetrapods and an
outgroup representing Clupeocephata found in the National Center for Biotechnology
Information (NCBI) database using gene annotations found in General Feature Format 3 (GFF3)
files (Ostell and McEntyre, 2007; Pruitt et al., 2014; Tatusova et al., 2014; NCBI Resource
Coordinators, 2016). We downloaded all reference sequence data, including gene annotations,
from NCBI in September 2014. A reference genome is the average assembly of many individuals
in a species, and is continually updated to represent the most common nucleotides found in a
given species (Ostell and McEntyre, 2007). Because we are looking at the evolution of species
from which many individuals have been sequenced, the reference genome will most accurately

represent an “average individual” in a given species. We report the species taxonomy for all
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species used in this study in Table S1 (Ostell and McEntyre, 2007; Pruitt et al., 2014; Tatusova et
al., 2014; NCBI Resource Coordinators, 2016). Similar to Camiolo et al. (2015), when multiple
isoforms were annotated we used the longest isoform as representative for that gene. Next, we
removed any protein with an annotated exception (translational, unclassified transcription
discrepancy, suspected errors, etc.). These filters do not appear to change the overall coding
sequence data because they eliminated < 5% of the sequences. Based on standards established by
the Human Genome Organisation (HUGO) Gene Nomenclature Committee (HGNC), in which
they attempt to maintain the same GFF3 gene names between species when orthologues exist
(Gray et al., 2015), an uppercase and lowercase insensitive review of the gene names yielded 872
274 unique genes across all species. However, upon closer inspection, the majority of those
unique genes were CDS locations that were identified with an “LOC_” tag, and were present
only in one species. Because a phylogenetically informative character requires that species be
separable by that character, a filter was placed on all genes requiring that the genes be present in
at least three ingroup species, limiting the number of orthologues to 17 717 and the total number

of sequences to 473 685.

Codon usage matrix calculation

We created a binary-encoded matrix of 64 characters per gene—one for each codon. If a species
used a codon for a given orthologue, it was coded as “1” in the matrix; conversely, if a species
did not use a specific codon in an orthologue, then it was coded as “0” in the matrix. This

process was repeated for all species across all orthologues. This process is depicted in Figure 1.

33



Matrices were created for each gene and combined to form a super-matrix of all codons across
all orthologues for each of 72 species. We only included each gene once in the character matrix,
regardless of how many copies were present in an average individual. Parsimony-uninformative
characters were removed from the data set. We removed parsimony-uninformative characters by
first identifying and removing genes that were not present in at least three ingroup species. Next,
we removed characters for which a “0” and a “1” were not both present across the species that
had sequence data for the gene. We then eliminated species that did not have annotated data for
at least 5% of the informative characters and repeated the process of removing parsimony-
uninformative characters and eliminating species with < 5% of informative characters until no
changes were made to the data set. Seventy-two species and 473 685 characters across 17 717
orthologues passed all filters. Species that lacked an annotated orthologue were coded as missing
for that orthologue (See Table S1 for a list of missing data per species). Of the 72 species, there
were 13 birds, 11 even-toed ungulates, 8 rodents, 6 bony fishes, 6 primates, 5 bats, 5 carnivores,
5 other placentals, 3 turtles, 2 lizards, 2 odd-toed ungulates, 2 other vertebrates, 1 insectivore, 1
monotreme, 1 marsupial and 1 rabbit (see Table S1 for a complete taxonomy). In total, there

were 24 226 112 instances of 0/1 codon usage that were coded in the matrix for this analysis.

Phylogeny estimation

All trees were estimated using Tree Analysis Using New Technology (TNT) (Goloboff et al.,
2008). We allowed up to 5000 trees to be held using the mult and bbreak=tbr commands. The
resample command produced bootstrap support values. Although Bremer supports were also

calculated for each tree, due to the large number of characters used, all Bremer support values
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were very high, and are not included in the figures. The analysis was done as a pure parsimony

analysis that generally analyzed tens of millions of potential trees per run.

Results

We constructed a phylogeny based on codon nonusage of all 64 codons using TNT (Goloboff et
al., 2008). The maximum parsimony analysis produced a single most-parsimonious tree (Figure
2) with high average bootstrap support. Based on this phylogeny there appeared to be a strong
phylogenetic signal in nonusage of all 64 codons together. Thirty-eight clades were recovered
when compared with the Open Tree of Life project. Some of the main clades that were recovered
include: Euarchontoglires, Laurasiatheria, Boreoeutheria, Muroidea, Passeriformes and
Archelosauria. However, Rodentia was not correctly recovered, being polyphyletic in two
distinct clades. To determine whether or not we recovered clades just by chance or if there is
actually a phylogenetic signal, we generated ten random phylogenies through the web interface

developed by Alix et al. (2012), and we recovered an average of only 1.3 clades per random tree.

Because the original tree recovered from all codons (Figure 2) appeared to have a phylogenetic
signal, we wanted to determine if the phylogenetic signal is stronger in some codons compared to
others. We partitioned the character matrix into 64 character matrices (one for each codon) and
built a phylogeny for each of the 64 matrices (Figure S1). The number of clades in each of the 64
trees correctly corresponding to the Open Tree of Life project are shown in Table 1. The average
number of clades recovered using a single codon was 31.36. However, the stop codons TAG,
TAA and TGA recovered the most clades when compared with the Open Tree of Life at 41, 40,

and 39, respectively. We then combined all codons that encoded each of the 20 amino acids plus
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the stop codon, and we determined that the number of clades recovered by the stop codons is
considered a true outlier when compared with all other amino acids. We also divided the codons
into groups based on polarity and charge, and the stop codons again reported the highest
phylogenetic signal and were true outliers compared with the other groups (Table 1). Because the
stop codons displayed a significantly higher phylogenetic signal compared with the other codons,
we built a phylogeny encoding all three possible stop codons as a single multistate character (0 =
TAA, 1 =TGA, 2 = TAG) and the most-parsimonious tree (Figure 3) also had high average
bootstrap support. To determine if the phylogenetic signal would be lost when excluding the stop
codons, we removed all stop codon characters from the original matrix and estimated a new

phylogeny. The resulting tree was identical to that in Figure 2.

We observed that a higher number of genes was used to reconstruct phylogenies based on the
stop codons than for other codons (Table 1). To determine if the phylogenetic signal observed for
stop codons was due simply to differences in the number of characters available for phylogeny
reconstruction, we graphed the number of genes used in phylogeny reconstruction versus
phylogenetic signal (i.e. number of clades recovered). Trend lines (linear and exponential)
suggest that the signal measured by stop codons is in line with the predicted signal based on the
number of genes used. However, we note that TTC (green data point in Figure 4) has the highest
per character signal and possibly has a lower phylogenetic signal compared to the stop codons

because of low usage (2382 total genes compared to > 15 000 for each of the stop codons).

Next, we sought to determine if stop codons maintained a strong phylogenetic signal with fewer

data. We randomly sampled 2382 genes and reconstructed phylogenies 10 times based on stop
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codons alone (red points in Figure 5). Even with the reduced sample sizes, the stop codons still
demonstrated a stronger phylogenetic signal compared to other codons, recovering 37— 42

clades, with an average of 39 clades recovered.

Discussion

The recovered phylogenies in this work generally were congruent with the currently accepted
phylogeny from the Open Tree of Life project. Each of the clades congruent with the Open Tree
of Life is labelled on Figs 2 and 3. Interestingly, we recovered a bird phylogeny that was more
congruent with the phylogeny proposed by Jetz et al. (2012) than the Open Tree of Life. There is
also a debate regarding the correct placement of Tupaia chinensis (tree shrews) as a primate or a
rodent. The phylogeny we recovered using just the stop codons (Figure 3) supports the assertion
made by Xu et al. (2012) and Wu et al. (2013) that tree shrews could reasonably be considered a
primate based on their phylogenetic history, albeit with low nodal support. However, when we
used all codon nonusages to construct the phylogeny (Figure 2), Tupaia chinensis is depicted as a
sister taxon to Oryctolagus cuniculus (European rabbit) and Erinaceus europaeus (European
hedgehog) with high nodal support. This placement of the tree shrew most closely mimics the
phylogenetic placement proposed by Murphy et al. (2001), as well as the maximum likelihood
trees of third codon positions and all codons proposed by Lin et al. (2014). Although either tree
could be correct, we propose that because the phylogeny recovered from the stop codons in
Figure 3 is typically more congruent with the Open Tree of Life, successfully recovering 42
clades compared with 38 clades in Figure 2, the phylogeny recovered from stop codons should

be favored over the phylogeny recovered from all codons. Favoring the phylogeny in Figure 3
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lends support to the hypothesis that the tree shrew is more closely related to primates than

rodents.

We found that a codon’s usage within a given orthologue is sometimes constrained to a few
clades with limited use across other clades. We depicted this phenomenon in Figure 6 using three
codons as examples of a wider trend, and offer this explanation for why codon non-usage is
phylogenetically informative when given a sufficient number of annotated orthologues. For
example, in Figure 6 the codon ACG in the PPARG orthologue is present only within Rodentia,
CCC in the PLN orthologue is present primarily in Sauria, and GCT in PLN is present primarily

in Laurasiatheria.

Perhaps the most interesting aspect of this research is that a stronger phylogenetic signal was
discovered in the stop codons than the other codons. We show that the phylogenetic signal
present in codon usage is robust and is not affected by differences in the number of characters
used to recover the phylogeny. Although the trend lines in Figure 4 appear to show a potential
bias in recovering clades based solely on the number of genes used in the character matrix, when
we extracted random samples of characters to match the number of genes used in TTC, which
appeared to have the highest phylogenetic signal in Figure 4, the stop codons still recovered an
average of three more clades than TTC. Furthermore, by limiting the number of stop codon
characters from an average of 16 259 to 2382, the phylogenetic signal only decreased by

recovering one less clade (Figure 5).
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Additional research is needed to determine why the phylogenetic signal exists, but there are
several possible explanations. Unlike other codons, stop codons are recognized directly by
ribosomal protein release factors (Trotta, 2013), implying that unequally distributed tRNA
anticodons might not be the only reason for codon usage bias. Castle (2011) also suggests that
stop codons are more highly conserved than other codons. Another potential explanation is that
compared to other codons, stop codons are guaranteed to have only one instance of any of the
three stop codons. Although other codons are sometimes present in a binary manner (either
having only one instance or zero instances), the number of instances across all 73 taxa where this
occurs is quite low, ranging from 2 to 805 with an average of 196. Because 196 characters are
insufficient to accurately represent the phylogeny of 73 species, we were not able to test directly
if the higher phylogenetic signal was based on instances where the codon is either present with
one instance or absent. However, because each codon by itself displayed a high phylogenetic
signal, and the majority of codon instances had at least one species with more than one instance
of the codon, it is reasonable to expect that the main factor in the phylogenetic signal is complete

codon aversion as opposed to single codon instances.

We recognize limited taxon sampling due to the difficulty and expense of annotating species, and
it may be several years before a sufficient number of genes are annotated to make this
phylogenetic tree reconstruction method viable for more diverse taxa. We predict that as taxon
sampling increases, our tree will become more robust because this method recovers both shallow
and deep phylogenies of the species used. Future research should focus on the use and nonuse of
codons within orthologues to determine which orthologues contain the highest phylogenetic

signal, and in what ways codon usage might be integrated with other phylogenetic tree
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reconstruction methods. Because both shallow and deep phylogenies were recovered through
these simple parsimony analyses, we believe that continued research will provide us with
realistic weights that might be added to a codon’s use when incorporated in a Bayesian or
maximume-likelihood setting. Furthermore, the simplicity of our analysis has the potential to
identify conserved codons in genes and contribute to our knowledge of where phylogenetic

signals exist within orthologues.
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Tables and Figures

Chapter 2 Tables

Table 2.1. Sixty-four Phylogenetic Strict Consensus Trees Recovered Using TNT were
Created Using Just the Presence or Absence of a Single Codon

Codon/Amino 4 Clades # Total # Genes with # Genes With more
Acid/Property Recovered Genes - exactly one than one instance
Used instance of codon of codon

AAA 31 4908 67 4841
AAC 29 2612 75 2537
AAG 24 1057 33 1024
AAT 31 8449 183 8266
ACA 33 7553 140 7413
ACC 33 3697 61 3636
ACG 29 14056 403 13653
ACT 32 8790 128 8662
AGA 33 8445 178 8267
AGC 26 3275 80 3195
AGG 30 6177 134 6043
AGT 31 8720 217 8503
ATA 33 12380 641 11739
ATC 26 2705 72 2633
ATG 18 291 2 289
ATT 32 8263 203 8060
CAA 32 9416 203 9213
CAC 32 4576 130 4446
CAG 27 1040 21 1019
CAT 35 10187 312 9875
CCA 35 6615 126 6489
CCC 29 5116 95 5021
CCG 33 14803 481 14322
CCT 33 6019 102 5917
CGA 32 12874 543 12331
CGC 31 10253 354 9899
CGG 34 9936 366 9570
CGT 37 14558 741 13817
CTA 32 13654 356 13298
CTC 32 3528 92 3436
CTG 24 1271 25 1246
CTT 34 9295 138 9157
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GAA 31 4427 82 4345
GAC 30 1768 62 1706
GAG 21 993 25 968
GAT 32 5084 112 4972
GCA 34 6273 90 6183
GCC 23 2595 39 2556
GCG 28 15111 463 14648
GCT 26 4672 55 4617
GGA 30 5455 87 5368
GGC 30 3529 52 3477
GGG 29 5029 129 4900
GGT 33 8830 164 8666
GTA 31 13695 462 13233
GTC 34 4653 90 4563
GTG 29 1561 32 1529
GTT 34 9698 208 9490
TAA 40 16822 NA 16822
TAC 32 3707 154 3553
TAG 41 15017 NA 15017
TAT 33 9432 354 9078
TCA 34 9457 235 9222
TCC 34 4041 68 3973
TCG 31 15605 710 14895
TCT 35 7544 116 7428
TGA 39 16939 NA 16939
TGC 31 5761 177 5584
TGG 29 3229 219 3010
TGT 31 8738 303 8435
TTA 33 13502 805 12697
TTC 36 2382 69 2313
TTG 35 7699 123 7576
TTT 35 5918 159 5759
F 35.5

L 31.66666667

I 30.33333333

M 18

\4 32

S 31.83333333

P 325

T 31.75

A 27.75

Y 325

H 335

Q 29.5
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N 30
K 27.5
D 31
E 26
C 31
W 29
R 32.83333333
G 30.5
Nonpolar,
aliphatic R groups 28.375
Nonpolar,
aromatic R

32.33333333
groups
Polar, Uncharged
R groups 31.09722222
Positively charged
R groups 31.27777778
Negatively
charged R groups 8.5
STOP 40

Each of these trees was then scored based on the number of clades successfully recovered when
compared with the Open Tree of Life project. The outgroup was considered a single clade and
had to be correctly positioned with all fish included in the clade in order for it to be scored. All
other clades were scored as the most specific clade name without containing any member that
did not belong to that clade. We then averaged the number of clades successfully recovered
across all codons in each of the 20 amino acids plus the stop codon, as well as amino acids based
on specific properties. We found that the stop codons were outliers when compared with the
other amino acids, recovering on average 40 of 43 clades.
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Figure 2.1. Flowchart Demonstrating How the Character Matrix was Coded We started
with 45 234 orthologues in 72 tetrapods and outgroup fishes. First, we counted the number
of times each codon was used in each gene, in each species. Species that did not have
annotated data for a particular gene were denoted with an “X.” Next, we coded a binary
matrix, in which “1” means that the codon was present in an orthologue, and “0” means
that it was not present. Species for which data were not available received a “?” in that
field. Finally, we condensed the matrix to include only parsimony-informative characters,
which had two distinct phenotypes—thus, both a “1” and a “0” were present for the
character among the species with the given gene and at least three ingroup species had
sequence data for the gene. All other characters were removed from the analysis. These
steps were repeated for each gene in each species, and all the matrices were combined
into a single super matrix. After all steps, there were 473 685 parsimony-informative
characters across 17 717 orthologues.
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Figure 2.2. Most-parsimonious Tree Produced from TNT Using All 473 685 Codon Usage
Characters The character matrix was created for each codon as outlined in Figure 1. Average
bootstrap support for this tree is 94.1. Clades were labelled based on The Open Tree of Life
project by ensuring that each labelled clade contains a majority of potential species belonging to
that clade without including any species that do not belong to that clade.
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Figure 2.3. Most-parsimonious Tree Produced from TNT Using 48 778 Stop Codons The
character matrix was created for each codon as outlined in Figure 1. Average bootstrap support
for this tree is 85.6. Clades were labelled based on The Open Tree of Life project by ensuring
that each labelled clade contains a majority of potential species belonging to that clade without

including any species that do not belong to that clade.
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Figure 2.4. The Number of Genes with a Parsimony-informative Codon Plotted Against the
Number of Clades Successfully Recovered when Compared with the Open Tree of Life
Each point represents a different codon. The three red points represent the three stop codons, and
the green point represents Phenylalanine encoded by TTC. The linear and exponential trend lines
show that although the stop codons display the highest phylogenetic signal, it is in line with the
expectation based on the number of genes used to recover the phylogeny. Although TTC does
not display as high a phylogenetic signal as the stop codons, the low usage (2382 instances)
means that per character, TTC displays the highest phylogenetic signal.
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Figure 2.5. The Number of Genes with a Parsimony-informative Codon Plotted against the
Number of Clades Successfully Recovered when Compared with the Open Tree of Life
Each point represents a different codon. The ten red points represent ten random samples of 2382
instances of the stop codons. The green point represents Phenylalanine encoded by TTC. The ten
random phylogenies recovered an average of 39 clades with a range of 37—42. All random stop
codon phylogenies recovered more clades than the phylogeny recovered by TTC using the same
number of characters. We added jitter to the 10 red points to make them all visible.
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Figure 2.6. A Phylogeny Recovered from the Open Tree of Life Project (Hinchliff et al.,
2015) This tree was constructed using an R package named ROTL (Michonneau et al., 2016).
ROTL extracts the phylogeny from the Open Tree of Life, and then allows users to induce a
subtree from the larger phylogeny. The subtree that we induced contained all species in our
analysis, with the exception of Astyanax mexicanus, Myotis lucifugus and Stegastes partitus,
because those species’ phylogenies were not inducible by the software package. Three different
characters are mapped on this tree. The first character (red) shows all species that did not have
the codon ACG in the Peroxisome Proliferator-Activated Receptor Gamma (PPARG) gene. The
second character (purple) shows all species that did not have the CCC codon in the
Phosholamban (PLN) gene. The third character (green) shows all species that had at least one
GCT codon in the Phosholamban (PLN) gene. These genes were chosen because > 95% of the
species had annotated data for these genes, and the codons depict a conserved phylogenetic
component in a species’ use or nonuse of these particular codons.
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Abstract

Using parsimony, we analyzed codon usages across 12 337 species and 25 727 orthologous
genes to rank specific genes and codons according to their phylogenetic signal. We examined
each codon within each ortholog to determine the codon usage for each species. In total, 890 814
codons were parsimony informative. Next, we compared species that used a codon with species
that did not use the codon. We assessed each codon's congruence with species relationships
provided in the Open Tree of Life (OTL) and determined the statistical probability of observing
these results by random chance. We determined that 25 771 codons had no parallelisms or
reversals when mapped to the OTL. Codon usages from orthologous genes spanning many
species were 1 109x more likely to be congruent with species relationships in the OTL than
would be expected by random chance. Using the OTL as a reference, we show that codon usage
is phylogenetically conserved within orthologous genes in archaea, bacteria, plants, mammals,
and other vertebrates. We also show how to use our provided framework to test different tree
hypotheses by confirming the placement of turtles as sister taxa to archosaurs.

Availability: All scripts, a README, and necessary test files are freely available on GitHub at

https://github.com/ridgelab/codon_congruence

Key Words: codon aversion; tree of life; species classification; maximum likelihood;
parsimony; phylogeny.

Contact: perry.ridge@byu.edu

Supplementary Information: All supplemental files are available at Molecular Phylogenetics

and Evolution online

55


https://github.com/ridgelab/codon_congruence

Introduction

The genetic code is degenerate because 64 canonical codons encode 20 amino acids and the stop
codon, meaning multiple synonymous codons encode the same amino acid (Crick, 1970; Crick,
1966, 1968; Crick et al., 1961). Codon usage bias refers to the unequal distribution of
synonymous codons between species, genes, or locations within the same gene, and can be used
to regulate gene expression (Quax et al., 2015), suggesting that codon choice, even when
synonymous, has biological implications. Typically, more closely related species share more
similar patterns of codon usage and codon aversion (i.e., when a species does not use a codon
within an ortholog), and these patterns are phylogenetically conserved (Miller et al., 2017).
However, similar to other genetic characters (Rokas and Carroll, 2008), parallelism is present in
the usage or aversion to many codons, resulting in homoplasy. In codon data, homoplasy may
occur by parallelism, convergence, or reversal, resulting in identical character states that were
not directly inherited from the most recent common ancestor. The presence of homoplasy is the
greatest challenge in phylogenetic estimation, and nearly all characters, whether morphological

or molecular, display homoplasy of some form at some level (Sanderson and Hufford, 1996).

To limit the effects of contradictory signals from homoplasy, the commonly-used maximum
likelihood statistical method for estimating phylogenies approximates rates of evolution (e.g.,
transition and transversion ratios, evolutionary clock, evolutionary distance of species, etc.) and
tree topography (Felsenstein, 1981). The basis of maximum likelihood is the proportionality of
the likelihood function to the multinomial probability of observing the data given the tree and
model (Huelsenbeck and Crandall, 1997; Yang et al., 1994). Maximum likelihood also uses the

statistical property of consistency, which shows that as the number of data points approaches
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infinity, the maximum likelihood estimators will converge on the same estimate (Wald, 1949). In
contrast, parsimony does not use a model to recover phylogenies, which potentially limits the
consistency of the method (Felsenstein, 1978); however, ad hoc hypotheses of homoplasy are

also limited (Farris, 1983).

From a likelihood standpoint, a model of codon usage and codon aversion requires understanding
how codon usages change throughout evolutionary time. Since no models of codon aversion
evolution are currently available, we must first start with parsimony. From a parsimony
perspective, a tree hypothesis is meant to minimize the number of similarities left unexplained
(Farris, 2008). We aimed to determine the extent that codon usage and codon aversion within
orthologous genes is congruent with species relationships as presented in the Open Tree of Life

(OTL) (Hinchliff et al., 2015).

Encoding the codon matrix based on codon usage anywhere in the gene was first proposed by
Miller et al. (2017), and categorizes homology on a genic scale, instead of positional homology
from a multiple sequence alignment. Since this method characterizes codon usage with a binary
representation, it essentially determines if a species "chooses" to use a given codon within a
gene. Within genes, codon usage regulates gene expression in various ways. Using an equal
number of codons to the supply of cognate tRNA anticodons maintains optimal codon usage that
increases translational efficiency (Sharp and Li, 1987). Using multiple instances of the same
codon (identical codon pairing) or synonymous codons (co-tRNA codon pairing) within a
ribosomal window also increases translational efficiency and speed (Cannarozzi et al., 2010).

Furthermore, mRNA structural folding and differential protein production are affected by codon
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usage bias within a gene (Gingold et al., 2014; Pechmann and Frydman, 2013; Quax et al.,
2015). Therefore, codon aversion within a gene, although potentially not homologous at a given
position, is homologous on a genic level and can influence mRNA folding, protein production,
and tRNA translational efficiency. We show that this method is phylogenetically conserved

using 12 337 reference genomes across all domains of life.

Materials and Methods

Data Collection and Processing

All reference genomes were downloaded from the National Center for Biotechnology
Information (NCBI) (Coordinators, 2013; Pruitt et al., 2014; Pruitt et al., 2000; Tatusova et al.,
2014) in September, 2017 from ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/. A reference genome
represents the consensus genome for a species based on the most complete genome assemblies
(Pruitt et al., 2014). We extracted all coding sequence (CDS) data from the reference genomes,
and we assigned each of the 12 337 species to the following groups: 362 archaea, 11 227
bacteria, 214 fungi, 147 invertebrates, 105 mammals, 120 other vertebrates, 87 plants, and 75
protozoa based on species annotations in NCBI. Since viruses are not included in the OTL, they
were not included in our analysis. We recognize that several of these taxonomic groups do not
represent monophyletic clades, but we opted to keep the groups outlined in the NCBI database to
facilitate comparisons between studies that also use these annotations. We required that CDS
regions be annotated with a gene name from the HUGO Gene Nomenclature Committee
(HGNC) (Gray et al., 2015) to ensure that orthologous comparisons of codon usage were used.
Although we do not perform any formal analysis to verify the orthologous relationships proposed
by the HGNC, the HGNC standardizes various gene studies with gene annotations in SWISS-

PROT (UniProt Consortium, 2018), and facilitates ortholog comparisons between species.
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Next, we filtered the CDS regions to remove any annotated exceptions (e.g., translational
exceptions, unclassified transcription discrepancies, suspected errors, etc.). We used the longest
isoform of each gene when multiple isoforms were annotated in order to include all codons that
are used in the gene. We also included partial gene sequences where the orthologous relationship
was annotated in order to include as many orthologous gene comparisons as possible. Finally, we
required each ortholog to be present in at least four species to ensure that the codon usage could

be parsimony informative.

For each codon within each ortholog, we encoded its usage in a binary matrix (i.e., if the codon
was used, it was given a “1” and if it was not used, it was given a “0”). After all codons within
all orthologs for all species were included in the binary matrix, we filtered out parsimony
uninformative characters (i.e., when all species with an ortholog either used or did not use a
given codon). For each remaining codon, we divided the species sampled into two partitions
based on their character state for that codon: species that use a codon within an ortholog and

species that do not use that codon within the same ortholog. This process is depicted in Figure 1.

After encoding the binary matrix for each codon within each ortholog, we evaluated each
bipartition against the OTL to determine if parallelisms or reversals occurred. Parallelisms occur
when the same codon independently arises in different lineages not due to a common ancestor.
Reversals occur when a codon reverts back to an ancestral state (e.g., if a species uses a codon
that its most resent ancestor did not use, but the codon was used by a more distant ancestor). For
each orthologous gene and codon state in each bipartition, we report the number of gains, losses,

unknown gain/loss at the root node, number of species in the smaller partition, total species with
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that ortholog, percent of species in the smaller partition, and total number of gain/loss divided by
the number of species in the smaller partition (see Supplementary Tables 1-9). A codon was
classified as separating species according to taxonomic groups reported in the OTL if the smaller
group had at least two species and the total number of gain/loss and unknown gain/loss at the
root node equaled one. This process was used because a singular gain/loss event would indicate
that no reversals or parallelisms occurred for that codon character state and its state is unique to

that lineage.

Statistical Validation

Because autapomorphies are not parsimony informative, we required that the smaller partition
include at least two species before it was mapped to the OTL. We then determined where on the
OTL species gain or lose the usage of each codon character. Initially mapping the codon usage
from a single species to the OTL has a probability of 1.0 of mapping to a taxonomic group that is
congruent with the OTL because autapomorphies provide no evidence of species relationships. If
the remaining character-state distributions randomly separate the other species (i.e., the null
hypothesis), then we can use conditional probabilities to calculate the probability that a
monophyletic group of more than one species is obtained by random chance. In this case, the
probability that another species from the same taxonomic group as the first species would be
correctly added to the same taxonomic group as the first, or subsequent, species is given in
equation (1).

Equation 1:

number of species in a taxonomic group — number of species already assigned to that taxonomic group

total number of species not yet assigned to a taxonomic group
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Using conditional probability, we calculate the probability of correctly assigning all members of
a species partition to the taxonomic groups outlined in the OTL by random chance, using
Equation (2). In Equation (2) s=the number of species in the smaller taxonomic group, and =the
total number of species sampled. We start with s-1 and #-1 to account for the initial species that
was mapped to the phylogeny, which will always have a probability of 1.0 that it is correctly

placed in a monophyletic group.

Equation 2: (i:—i) (i:—i) () (t_;l)

This equation simplifies to equation (3).

S—1 -
Hi:l 3

Equation 3: — -
1 H§=115—5+1 J

A taxonomic distribution is defined as the number of species in the sets separated by the codon
character state (i.e., the number of species that use a given codon and the number of species that
do not use a given codon within an ortholog), without regard to the OTL. Using equation (3), we
calculated the expected number of significant character states for each taxonomic distribution
(e.g., if five species were sampled, with two species in the smaller group, then, using equation
(3), the probability that they were correctly divided by random chance is 0.25). We then
multiplied the probability of that taxonomic distribution correctly agreeing with the OTL by the
number of instances of that taxonomic distribution in our dataset (e.g., if 12 instances of five
species dividing into groups of two and three occurred in our dataset, then the expected number
of species partitions agreeing with the OTL taxonomic groups would be 0.25 * 12 =3). We
performed a chi square analysis for the taxonomic distributions using these expected values and

the observed values from our analysis.
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Random Permutations

The statistical validation gives a theoretical probability of obtaining these results by random
chance. However, it does not take into account the degree of homoplasy in the dataset or the
overall congruence within the homoplastic character states with respect to other trees than the
OTL. For these reasons, random permutations are needed to ensure that the probability of
character states mapping to random trees does not exceed the probability of the observed

character states mapping to the OTL.

Random permutations were conducted 100 times for each taxonomic group. Each permutation
maintained the tree structure as hypothesized in the OTL to not bias our results based on artificial
tree structures. We then randomized the distribution of the species in each taxonomic group,
creating 100 different species relationships using the same tree structure. Next, we conducted the
same statistical validation on each of these trees with randomly distributed species, as outlined
above. We calculated the number of permutations where the p-value of the mapped characters
was less than or equal to the observed p-value. Where random permutations obtained a smaller p-
value than the observed, we concluded that there was not support for codon usage as being more

congruent with the OTL than expected by random chance.

Visualizing Homology on the Tree of Life

We inferred the reference phylogenies from the OTL for each pre-defined taxonomic group
using tools available in the OTL documentation. We then mapped each character state to the
inferred subtree from the OTL and determined how many gains, losses, parallelisms, and

reversals occurred. The entire process of mapping character states from the original coding
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sequences to the phylogeny in Newick format is outlined in Figure 2. Visualizations of the

phylogenies were created using FigTree (http://tree.bio.ed.ac.uk/software/figtree/).

Dealing with Limitations in Ortholog Annotations

While the HGNC gene annotations often span hundreds of species, many genes are annotated in
fewer than 10 species, with the smaller species partition (i.e., species either using or not using a
codon in an ortholog) containing two or three species. These taxonomic distributions were also
included in the main analysis. However, the statistical probability (outlined above) of changes in
each codon's usage being congruent with the phylogeny outlined in the OTL for these groups
allows for many false positives. For instance, if an ortholog is annotated in four species, with two
species using a codon and two species not using that codon, the statistical probability of that
codon usage being congruent with the OTL by random chance is 0.33333. Across all species, 9
990 codons fall under this taxonomic distribution, meaning 3 330 of these codons are expected to
agree with the OTL by random chance. Although the observed congruence is much higher (4
915), we wanted to ensure that the signal was not simply due to missing ortholog annotations.
So, we excluded taxonomic distributions where the probability of obtaining congruence with the
OTL was less than one divided by the number of parsimony informative characters. By doing
this analysis, we limited the maximum total number of expected congruent codons to one, while
ensuring that all observed congruences were statistically unlikely to occur by random chance

(i.e., not due to missing data).
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Results

Statistical Test

We report the number of different taxonomic distributions, the number of codons with no
parallelisms or reversals on the OTL, the #-statistic for each group of species used in our analysis,
and the p-value in Table 1. All taxonomic distributions, expected values, and observed values for
each group of species are found in Supplementary Tables 10-18. All 64 codons had similar
proportions in the group of codons that mapped to a single gain/loss event on the OTL (z-
statistic=0.17907, p-value=1.0). The ratio of each codon to the total number of codons with a

single gain/loss event is depicted in Figure 3.

Permutations

Random permutations for each taxonomic group show that codon usages in archaea, bacteria,
plants, mammals, and other vertebrates are not likely to be congruent with the OTL by random
chance. The t-statistics for the codons with no parallelisms or reversals within these taxonomic
groups proposed by the OTL were orders of magnitude larger than the highest t-statistic obtained
by the random permutations. The largest difference occurred in other vertebrates, where the

observed t-statistic was 1.50814 x 10 and the highest ¢-statistic from random permutations was

1.16996 x 10°.

Although most taxonomic groups had observed #-statistics for codon usage that were much
greater than those #-statistics calculated from random permutations, fungi, invertebrates, and
protozoa did not. The #-statistic obtained for protozoa was within one order of magnitude of the

t-statistic of the most improbable random permutation. For fungi, 16% of random permutations
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had t-statistics greater than or equal to observed ¢-statistics from mapping codons to the OTL.
Permutations for invertebrates produced z-statistics greater than or equal to mapping codons to

the OTL 3% of the time.

Missing Ortholog Annotations

Table 2 shows the number of codons within each taxonomic group that have ortholog
annotations spanning many species and are unlikely to be completely congruent with the OTL by
random chance. Using the statistical validation outlined above, we set a cutoff of one divided by
the total number of parsimony informative codons. This ensured that if all codons had a
probability less than or equal to the cutoff, at most one codon will be completely congruent with
the OTL by random chance. However, as shown in column 4 of Table 2, the maximum number
of codons expected to be congruent with the OTL assuming each codon had the maximum
probability (i.e., column 3 divided by column 2) was always less than one. By dividing the
observed number of codons that agree with the OTL (column 5) by the maximum expected
number of codons agreeing with the OTL (column 4), we see a substantial difference in the
observed versus the expected in most taxonomic groups (column 5). No orthologs spanned a
sufficient number of species in fungi or protozoa to make this analysis possible for those
taxonomic groups. Furthermore, few orthologs were annotated across a sufficient number of
invertebrates to assess the quality of codon homology in that taxonomic group. The observed
number of codons congruent with the OTL in orthologs spanning many species of archaea,
bacteria, mammals, other vertebrates, all species, or plants were 37x, 42x, 641x, 985x, 1 109x,

and 1 795x larger than the expected values, respectively (column 6).
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Character States that are Completely Congruent with the OTL

We report the Newick formatted phylogeny from the OTL with all codons that have a singular
gain/loss mapped to the trees for each set of species (Supplementary Files 1-9), with the
respective character state files showing which codons were gained or lost (Supplementary Files
10-18). Visualizations of the codons that are completely congruent with fungi, invertebrates,

plants, protozoa, mammals, and other vertebrates are shown in Supplementary Figures 1-6.

Very Unlikely Character State Distributions

Of the 890 814 codon states analyzed, 25 771 codons had no homoplasy when mapped to the
OTL (see Table 1). We further explored a fraction of these character state changes by choosing a
subset of codon state changes with a p-value < 1 x 10"° of being congruent with the OTL by
random chance. Using this arbitrary threshold of 1 x 10%, 52 854 codon characters had
taxonomic distributions with a p-value < 1 x 10"*°, Of those characters, the usages of 12 codons
were completely congruent with species relationships in the OTL. In Table 3 we report the 12
codons with a p-value < 1 x 102, and for each codon we report the probability of the taxonomic

distribution, the name of the ortholog, and a short description of the species division.

Discussion

Using the species relationships reported in the OTL, we identified codons that, once lost or
gained, continued in the same character state to all leaf nodes. Two examples of stop codons that
persist through evolutionary time from deep nodes to shallow nodes are in the TNFAIP8 (Tumor

Necrosis Factor) and RHOA (encodes small GTPase) genes. Both genes play a role in tumor
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progression, and the specific stop codons used separate most mammals from other vertebrates.

Other codons with a singular gain/loss that occurs in deep nodes are outlined in Table 3.

Since each gain/loss event outlined in Table 3 has a probability of occurring by random chance
that is less than 1 x 102° and we studied only 5.2854 x 10* codons that could be congruent with
the OTL at that p-value threshold, if codon congruence with the OTL were due to random
chance, it would be highly unlikely to identify any groups congruent with the OTL. We
identified 12 codon usages that were congruent with taxonomic groups found in the OTL. In
contrast to the overall analysis where all codons were equally likely to be included as completely
congruent with the OTL, in these deep nodal comparisons, nine of the reported codons are stop
codons. Since nonsense or nonstop mutations often affect gene function and the stop codon
usage persists through time, it is not unreasonable to expect these orthologs to be crucial for
species fitness. These codons also lend support to deep species relationships for which these
codons map. In conjunction with other methods, codon usage can add support to proposed

species trees.

For instance, several controversial nodes were recently analyzed by Shen et al. (2017). In their
analysis, they concluded that turtles are the sister taxa to archosaurs (birds and crocodiles)
instead of being sister taxa to only crocodiles, and the OTL was updated to reflect this taxonomic
relationship. We evaluated this change to the OTL by determining the probability of each tree
(with turtles as sister taxa to archosaurs and with turtles as sister taxa to crocodiles) based on
codon usages. We used the other vertebrates taxonomic group and changed only the location of

turtles on the tree. We found that the probability of observed codon usages randomly mapping to
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the other vertebrates tree with turtles as sister taxa to crocodiles was 7.3306 x 10'® higher than
the probability of turtles being sister taxa to archosaurs. This analysis lends support to keeping
turtles as sister taxa to archosaurs on the OTL because the probability of the codons randomly
mapping to that tree is smaller than the probability of the codons randomly mapping to the other

tree.

We recognize a bias toward recovering shallow nodes using this method because many orthologs
are not yet annotated for all species. To overcome this bias, we looked at codon usages that were
statistically unlikely to be congruent with the OTL and found that across all species, codons were
1 109x more likely to be congruent with the OTL than expected by random chance. Of the 890
814 parsimony informative codons, 590 366 (66.27%) had ortholog annotations for at least 100
species, and 6 688 (25.95%) of the 25 771 codons that were congruent with the OTL taxonomic
relationships were from orthologs annotated in at least 100 species. Furthermore, 11 codons
whose usage was congruent with the OTL were identified from orthologous genes that were
annotated in more than 1 000 species. Identifying complete codon congruence with the OTL in
thousands of groups of at least 100 species shows that homology in codon usage can exist in
larger taxonomic groups. By performing random permutations of our dataset, we also show that
there is less congruence between the codons that were not congruent with the species
relationships in the OTL than with the original codon dataset. This analysis shows that although
the majority of codon usages do not have a singular gain/loss when mapped to the OTL, codon

usages are more likely to follow species relationships in the OTL than in a random phylogeny.

68



Although we do not have sufficient ortholog annotations to conclude codon congruence with the
OTL in fungi, invertebrates, or protozoa, this analysis shows that codon usage is maintained in
archaea, bacteria, plants, mammals, and other vertebrates. We also propose that the framework
that we provide for performing this analysis will reveal a phylogenetic signal in the other
taxonomic groups when more orthologs are annotated across those species. Looking forward, we
anticipate that codon usage will become another tool for evaluating different species trees,

similar to our evaluation of the placement of turtles on the OTL.
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Tables and Figures

Chapter 3 Tables

Table 3.1. The Probability of Codons Mapping to the OTL Tree Topology Due to Random
Chance Assuming No Phylogenetic Signal in Codon Usage

Taxonomic

Group

Number of
Different
Taxonomic

Number of
Codons
with no

Parallelisms

Distributions or Reversals

OTL

t-statistic

p-value

Best Random

Best Random

Number of
Random

Permutations

Permutation - Permutation p- with p-value is

statistic

value

less than or
equal to the
observed

IAll 62,416 25,771 4.12488x10% 0 1.77991x103 1.0 0
Archaea 2,320 925 8.28913x102° 0 2.93471x103 3.26479x10°7 0
Bacteria 58,368 6,639 1.53961x10"3 0 1.93163x103 1.0 0
Fungi 16 2,019 2.55445x10% 9.37392x10¢  5.99657x10% 4.19847x107!18 16
Invertebrates 182 124 2.78440x10% 4.34253x109 6.54011x10% 9.54888x107° 3
Plants 477 1,702 3.90146x10° 0 1.39101x103 1.89724x10° 0
Protozoa 21 2,449  2.14626x10° 0 6.80127x10% 3.53259x10713! 0
Mammals 2,162 10,029 1.32695x102%% 0| 4.04197x103 3.34856x1017 0
LA 2,770 11,877 1.50814x10% 0 1.16996x103 1.0 0
'Vertebrates

The first column shows the species divisions, with the first row being a combination of all
species. The second column shows the number of taxonomic distributions. The third column

shows the number of codon characters that completely follow species relationships shown in the
OTL. The fourth column shows the t-statistic obtained from performing a chi-square test on the
expected number of congruent characters versus the actual number of congruent characters, with
respect to the OTL. The fifth column shows the p-value of the data, obtained from the t-statistic
and the degrees of freedom from the number of different taxonomic distributions. The sixth
column is the best t-statistic obtained from 100 random permutations of the species while
maintaining the same tree structure. The seventh column is the p-value obtained from the highest
t-statistic from 100 random permutations of the species while maintaining the same tree structure
as the OTL. The eighth column shows the number of random permutations where the permutated
p-value is < the observed p-value.
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Table 3.2. Phylogenetic Signal in Orthologs Spanning Many Species

Maximum
Number of
Codons
Expected
to Agree

Number
Observed
Divided by
Maximum

Number of

Codons with Number of

Codons that
Agree with
the OTL

Maximum
Probability

Taxonomic
Group

Probabilities
Less Than

Maximum

with the

OTL

Expected

All 1.47453x10° 470784 | 0.69419 770 1109
Archaea 6.97058x10° 8 108 0.56517 21 37
Bacteria 7.29309x10 93740 | 0.68365 29 42
Fungi 1.02155x107° 0 0 0 0
Invertebrates | 1.07875x10 512 0.055232 0 0
Plants 1.63371x10° 1944 | 0.031759 57 1795
Protozoa 1.78508x107 0 0 0 0
Mammals | 2.64704x10° 247714 | 0.65571 420 641
gzlr‘f:brates 2.83905x10° 218 129 0.61928 610 985

The first column is the taxonomic group analyzed. The second column shows the maximum
probability of a codon being completely congruent with the OTL by random chance based on
one divided by the total number of parsimony informative characters within that taxonomic
group. The third column shows the number of codon characters with a probability less than or
equal to the second column. The fourth column shows the maximum number of codons expected
to agree with the OTL, assuming all codons in column three had the maximum probability shown
in the second column. The fourth column is the product of columns two and three. The fifth
column is the number of observed codons that agree with the OTL and have a probability of
being congruent with the OTL less than or equal to the maximum probability from the second
column. The sixth column is the quotient of the fifth and fourth columns, showing the magnitude
difference between the observed and expected codon congruence with the OTL.
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Table 3.3. Taxonomic Distributions with a p-value < 1x10-%°

Probability by

Ortholog
name

Description of bipartitions
random chance

2.47 x 10

TNFAIPS

TGA

91 mammals use TGA while 75 non-mammalian
vertebrates including Ornithorhynchus anatinus
(mammal) do not use TGA

1.22 x 104

RHOA

TAA

74 non-mammalian vertebrates and marsupials
use TAA while 85 mammals do not

2.04x 104

DSTN

AGA

58 species starting at alligators and birds do not
use AGA, while 103 mammals and other
vertebrates use AGA

2.03x 10%7

CD164

TAG

43 species starting at geckos, turtles, and birds,
use TAG. 113 mammals and other vertebrates do
not use TAG

1.55x 10°%

MSANTDI

GGC

29 bird species do not use GGC, while 123
mammals and other vertebrates do use GGC

3.22x10%

PARD6B

TGA

26 fish do not use TGA. 154 mammals and other
vertebrates do use TGA

2.42x 1028

SGK1

TAG

27 fish use TAG. 127 mammals and other
vertebrates do not use TAG

4.46 x 1028

GABRQ

TGA

32 other vertebrates, including Ornithorhynchus
anatinus, use TGA. 89 mammals and other
vertebrates do not use TGA.

717 x 1077

PNPO

AGT

24 birds do not use AGT. 141 other vertebrates
and mammals use AGT

2.03x 105

BCORLI1

TAG

23 fish use TAG. 132 mammals and other
vertebrates do not use TAG

6.44 x 10

FLRT2

TAA

21 small rodents use TAA. 157 mammals and
other vertebrates do not use TAA

6.44 x 10

FLRT2

TGA

21 small rodents do not use TGA. 157 mammals
and other vertebrates use TGA

The first column is the probability of the taxonomic distribution randomly separating the species
according to the OTL classifications. The second column is the name of the orthologous gene.
The third column is the codon. The fourth column is a short explanation of how the species were

separated.
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Chapter 3 Figures

Codmg Sequences from all species with
HGNC gene annotations for orthologs

Choose one ortholog

Discard fhe Is the orthol eg present in

thol:
e least four species?

Repeat for each

Yes annotated
ortholog

r
For each species. code for the

presence (1) or absence (0) of

gach of the 64 codons within

that ortholog. If the ortholog is

absent for a species, code it as
mlssmg

After all oﬂhologs
analyzed

1

Filter out parsimony
uninformative characters

Determine codon
usage congruence with
the Open Tree of Life

For each parsumony iniformative
codon, divide the species into
two groups based on usage.

| -

Figure 3.1. The Process for Encoding Codon Usage Codon characters are encoded as either
present (1) or absent (0) if they are used or not used in an ortholog, respectively.
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Open Tree of Life List of species
Online Repository i

Directory with FASTA files of
 DNA coding sequences for all |
species of interest

b

makeTable.py Induced subtree
of species

Character ™.

state table '
scoreCharactersOnTree.py

Table of
gain/loss
events

OTL phylogeny with
completely
mapCharsToRef.py_—ythomologous character
states labeled in
Newick format

Figure 3.2. Process for Mapping Completely Congruent Character States to the OTL
Starting with a directory where each species has a single FASTA file, a character state table is
made, which annotates binary codon usages for all species. This table is passed to an induced
subtree from the OTL and creates a table of codon usage transition events. From there, these
gains/losses are plotted to the OTL induced subtree, and the phylogeny is reported in Newick
format.
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Ratio of Codon Congruence with the Open Tree of Life by Codon

0.035
0.03
»
g
"
2 0.025
£
2 002
‘:'l..(._
[
Lo
o 0.015
S 0.0l
=
- Il I II |
0 -
CU YA O AU AUl P YU R UL DR CUD S U E<SUOE s ROREdUO R YUOECS RO REIROETUOE
2222500 CU0BBORREEZR2220 00 SO U R R A2 2 200U Cd0GUREEPER 422200 0U0EIBOEEREEE
’Z’-ﬁ*j;"g-f,J.-—‘.‘—‘.""'"-_'S;J.,-.,i':_;-;‘;,.,u'_,u_;j_—:u'5-_-_-;3“5;-_-::.:dj_ﬁ';...:‘_“s_t,,,_‘_tp-_'-—

Figure 3.3. The Ratio that Each Codon with a Usage Congruent to the OTL If all codons
were given equal weight, the null ratio would be 1.0 / 64 = 0.015625. Observed ratios do not
statistically vary from the null, meaning that if a codon usage is congruent with the species
relationships outlined in the OTL, it is equally likely for it to be any of the codons.
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Abstract

Common phylogenomic approaches for recovering phylogenies are often time-consuming and
require annotations for orthologous gene relationships that are not always available. In contrast,
alignment-free phylogenomic approaches typically use structure and oligomer frequencies to
calculate distances between species. Utilizing a novel alignment-free character state, we present
CAM, an alignment-free approach to recover phylogenies using differences in codon aversion
motifs (i.e., the set of unused codons within gene sets) between species. Synonymous codon
usage is non-random and differs between organisms, between genes, and even within a gene.
Many genes do not use all codons. We report a comprehensive analysis of codon aversion within
229 742 339 genes from 23 428 species across all kingdoms of life, and provide an alignment-
free framework for its use in a phylogenetic construct. For each species, we constructed a set of
tuples, where each tuple contains an ordered set of unused codons for a given gene. We define
the pairwise distance between two species, A and B, as one minus the number of direct overlaps
over the total possible overlaps. Total possible overlaps is the number of tuples in the set, for A
or B, containing the fewest tuples, and direct overlaps is the intersection of tuples in the two sets.
This approach allows us to calculate pairwise distances, even with substantial differences in the
number of genes for each species. Finally, we use neighbor-joining to recover phylogenies.
Using the Open Tree of Life and NCBI Taxonomy Database as expected phylogenies, our
approach compares well, recovering phylogenies that largely match expected trees and are
comparable to trees recovered using maximum likelihood and a k-mer based alignment-free
approach. However, our technique is much faster than maximum likelihood and more congruent

with the Open Tree of Life than the k-mer based approach.
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Availability: CAM, documentation, and test files are freely available on GitHub at

https://github.com/ridgelab/cam

Key Words: alignment-free phylogeny; codon aversion; tree of life; species classification;

maximum likelihood.
Contact: perry.ridge@byu.edu
Supplementary Information: Supplementary information are available at Molecular

Phylogenetics and Evolution online
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Introduction

Phylogenies allow biologists to analyze similar characters between species by providing an
evolutionary framework to infer homology (Haszprunar, 1992; Soltis and Soltis, 2003). Although
Next Generation Sequencing (NGS) facilitates placement of novel species on the Tree of Life,
many regions of the genome display contradictory phylogenetic signals (Philippe et al., 2011).
Furthermore, typical alignment-based phylogenetic methods require ortholog annotations to
recover the phylogeny, and assembled genes without orthologous pairs provide no information
for species relatedness using a traditional approach (Pais et al., 2014b). Annotating a genome
with orthologous relationships can often be costly and time-consuming, and some genes are
currently impossible to annotate (Yandell and Ence, 2012). As complete genomes of more non-
model organisms become available, correctly identifying orthologs will continue to impede the
correct identification of taxa relationships. Common errors in recovering phylogenies include
incorrect ortholog identification, erroneous alignments, and model violations for the
phylogenetic tree reconstruction method (Philippe et al., 2011). To address these issues,
alignment-free methods were developed to recover phylogenies based on oligomer frequency
and Chaos Theory across the whole genome, without being subject to potential errors in
orthology (Vinga and Almeida, 2003). These methods claim to recover phylogenetic
relationships even when genetic recombination renders an alignment impossible (Vinga and
Almeida, 2003). More recently, proteomes have been used to construct frequency profiles of
amino acids or DNA k-mers, which are then used to recover phylogenies (Jun et al., 2010a). In
our analysis, we limit our search space to coding sequences and compare the codon usages

between species, ignoring all gene name annotations.
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In the Central Dogma of biology, three consecutive nucleotides of coding DNA, called codons,
are used as a template for protein translation, where each codon encodes a single amino acid
(Crick, 1970). The genetic code is degenerate because 64 canonical codons are used to form 20
amino acids and the stop signal (Crick et al., 1961). Gene expression is fine-tuned, in part, by the
skewed occurrence of certain codons over others, called codon usage bias, because some codons
are translated more efficiently than others (Quax et al., 2015). Differences in codon translational
efficiencies are explained by unequal tRNA expression within different species and tissues,
limiting the supply of anticodons directly complementing the codons (Quax et al., 2015).
Complete codon aversion (i.e., when a codon is not used in a gene) can also be advantageous in

certain genes, and is phylogenetically conserved in orthologs (Miller et al., 2017a).

Our research explores the conservation of codon aversion and determines if codon aversion
motifs (i.e., sets of codons not used in a gene) are phylogenetically conserved. We present a
novel alignment-free algorithm, CAM, which we use to recover a phylogeny using the codon
aversion of 229 742 339 genes from 23 428 species across the Open Tree of Life (OTL)
(Hinchliff et al., 2015) and the NCBI taxonomy (Sayers et al., 2012; Sayers et al., 2011; Sayers
et al., 2010; Sayers et al., 2009). Our results suggest that codon aversion is conserved and can be

utilized to reconstruct phylogenetic trees without a sequence alignment.

Materials and Methods
Data Collection and Processing

We downloaded all coding sequences (CDS) from the National Center for Biotechnology

Information (NCBI) in September, 2017 (Pruitt et al., 2014; Pruitt et al., 2000; Wheeler et al.,
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2007). The CDS regions of the reference genomes were derived from the most common allele
from multiple samples of different individuals within each species (Pruitt et al., 2000; Wheeler et
al., 2007). When multiple transcript isoforms were annotated, we used the longest isoform in
order to include the most possible codons used in a gene. Additionally, we removed any
annotated exceptions from the gene dataset (i.e., translational exceptions, unclassified
transcription discrepancies, suspected errors, etc.). Most sequences do not have annotated
exceptions, and these filters removed fewer than 5% of sequences from each species. Partial gene
annotations were included in the analysis. Although not present in most species, some species
included large numbers of partial gene sequences, so we included partial gene sequences in the
main analysis (See Supplementary Figure 1 for the percentage of partial protein sequences in
each taxonomic group). We also compared the phylogenies recovered with and without partial

gene sequences to determine the robustness of this method to partial gene inclusion.

Data Analyzed

Our analysis included 23 428 species, which were divided into the following taxonomic groups
based on annotations within the NCBI database: 418 archaea, 15 068 bacteria, 234 fungi, 149
invertebrates, 89 plants, 75 protozoa, 107 mammalian vertebrates, 123 other vertebrates, and 7

233 viruses. Sixty-eight species are included in both bacteria and viruses.

Codon Aversion Motif Calculation
We define a codon aversion motif as an ordered set of codons that are not present in a gene. We
represent these codons as tuples so they can be added to an unordered set of unique codon motifs

for a species and compared using fast set operators (i.e., intersection) to find shared motifs
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between species. Although some tuples overlap within the same species, we use a strict
definition of a set, where only a single instance of each tuple is stored in the motif. We calculate
the pairwise distance between two species, A and B, by one minus the relative similarity of
codon aversion motifs between the species. The relative similarity of codon aversion motifs is
calculated by dividing the number of directly overlapping motifs between the two species by the
total number of possible overlapping motifs. We define directly overlapping motifs as the
intersection of tuples in the two sets. The total possible overlapping motifs is defined as the
number of tuples in the set, for A or B, containing the fewest tuples. This approach allows us to
calculate pairwise distances (with a maximum distance of one), where closely related species
have smaller distances than distantly related species, even when substantial differences in the
number of genes for each species exist. We also require that 5% of motifs between species
overlap to limit small genome bias (e.g., it would not be unusual if a species with five genes has
at least one codon usage motif that randomly overlaps with a motif from a species with 20 000
genes without directly inheriting 20% of its genes from the same most recent common ancestor).

This process is depicted in Figure 1.

The most common way to run CAM in Python 2.7 is using the following command, where
${DIR} is a directory with all compressed or uncompressed species FASTA files, one for each
species, and ${MATRIX} is the path to a distance matrix that will be created:

python cam.py -i ${DIR}/* > S${MATRIX}

After the distance matrix was created, we used a Biopython (Talevich et al., 2012)
implementation of neighbor-joining to recover the phylogenetic tree. Neighbor-joining was used

to combine the pairwise species distances because each pairwise distance represented a distance
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based on codon aversion motifs present in a species, not homologous locations of the codon
aversion motifs. We provide a python script, makeNewick.py, that calculates the phylogenetic
tree from the output matrix created by CAM using the following command:

python makeNewick.py -i ${MATRIX} -o S${OUTPUT}

All algorithms, with accompanying README and test files, are freely available from GitHub at:

https://github.com/ridgelab/cam.

Amino Acid Aversion Motifs

Similar to codon aversion motifs and the steps outlined in Figure 1, we also determined if amino
acid aversion is phylogenetically conserved in an alignment-free framework. First, we translated
the DNA/RNA sequences to protein sequences. Next, we made a tuple of unused amino acids
within that sequence, following each of the steps outlined in Figure 1 by substituting amino acids
for codons. This automated process is included in cam.py with usage details in the accompanying

README.

Summary of Options

Several additional options are available for cam.py that allow users greater flexibility to run
CAM and recover a distance matrix based on their preferences. An input FASTA file must be
provided either using a list (standard bash expansion) through the -1 option, or by providing the
name of a directory through the —1id option. Compressed files (gzip) are accepted and
automatically handled with the . gz file extension. By default, all processing cores are used by
CAM, although any number of cores can be specified by using the -t option. By default, the

output is written to standard out, although an output file path can be supplied by using the -o
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option. If memory constraints are an issue, the distance matrix can be calculated species-by-
species through the —w option; however, the header line will be written at the end of the file
instead of the beginning if this option is used. By default, DNA sequences are expected by CAM.
For convenience, we also provide the —rna flag if the FASTA files are RNA sequences and the
-a flag if they are protein sequences. If the user desires to run amino acid motifs from DNA or
RNA sequences, we also provide the —aa option which translates DNA or RNA (if the -rna
flag is set) to amino acids. Finally, by default species must share at least 5% of their usage motifs
to not be given the maximum distance (1.0). This option can be modified using the —p option,
although it is not recommended to change this option if the species have few genes because the

5% threshold prevents false positives from small genome bias.

Reference Phylogenies

In order to determine the accuracy of our phylogenetic trees, we compared them to reference
trees from both the OTL and the NCBI Taxonomy Browser. Although the NCBI Taxonomy
Browser is not considered a primary source for taxonomic phylogenetic information because it
gathers phylogenetic annotations from many sources, it provides useful information for our
analysis because it includes more species than the OTL. Both databases combine research from
various studies to construct a tree. We assessed the accuracy of trees reconstructed via codon

aversion by comparing our recovered trees to trees from each of these databases.

Extracting Phylogenies from the Open Tree of Life
We used the OTL documentation for programmatically inferring subtrees to develop a Python

2.7 program, getOTLtree.py, that retrieves subtrees from the OTL. Although other OTL parsers,

87



such as ROTL (Michonneau et al., 2015), are available, getOTLtree allows users to obtain a
subtree of any number of species from the OTL in a single step. Inferring subtrees from a set of
species requires accessing the OTL database twice: first to retrieve OTL Taxonomy Identifiers
(OTT 1ds) for each species, and second to retrieve the phylogenetic tree. getOTLtree does both
commands in a single step at runtime, prompting the user to manually select the correct domain
of life when duplicates are found in the OTL database (e.g., Nannospalax galili is listed as a
eukaryote [OTT id: 207281] and as a bacterium [OTT id: 5909124]). Furthermore, we account
for the OTL command, match names, which limits identical matching of species to 1 000 names,
by combining results from multiple queries of fewer than 1 000 species. This process makes
large-scale species analyses easier and takes only a few seconds to extract a phylogeny of 2 000
species on a single processing core. If each species is listed on a different line (or CSV or
Newick format) in a file called $ { INPUT}, the typical usage for extracting the tree from the
OTL is:

python getOTLtree.py -1 ${INPUT}

getOTLtree, accompanying test files, and a README with more detailed explanations of how to
run the program with different options are also available in the GitHub repository at
https://github.com/ridgelab/cam. A summary of the process behind getOTLtree is depicted in

Figure 2.

Extracting Phylogenies from the Open Tree of Life
The NCBI Taxonomy Browser

(https://www.ncbi.nlm.nih.gov/Taxonomy/CommonTree/wwwcmt.cgi) has many tools to enable

large queries of its database. We opted to include unranked taxa in our analysis to maximize the
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number of included species. We then downloaded the phylogeny in PHYLIP (Felsenstein, 1989)

format directly from the website, and we used the extracted phylogenies in our analyses.

Tree Comparison

We used the ete-compare module from the Environment for Tree Exploration toolkit (ETE3)
(Huerta-Cepas et al., 2010; Huerta-Cepas et al., 2016) to quantify the similarity between the tree
constructed using codon aversion and the corresponding reference trees from the OTL and the
NCBI taxonomy. The following command calculates edge similarity of an unrooted tree, where
${INPUT} is the path to the recovered tree and $ {REF} is the path to the reference tree from
the OTL or the NCBI taxonomy:

ete3 compare -t {INPUT} -r {REF} --unrooted

We selected the percentage of edge similarity (i.e., the number of branches in one tree that are
present in the other tree) to compute the topological distance between both trees. This metric was
selected based on the following criteria: capability to efficiently compare very large trees,
capability to compare unrooted trees (neighbor-joining is unrooted by definition (Saitou and Nei,
1987) and we wanted to account for potential variations at the root node in the reference tree),
and capability to compare trees with polytomies. Although several tree-comparison metrics exist,
many suffer from problems ranging from high computational cost to lack of robustness (Lin et
al., 2012). Advantages for using the percentage of edge similarity metric from the compare
method in ETE3 include: clarity in comparing the output as a percentage of congruent branches
between trees, optimization for large datasets, capability to compare unrooted trees, and
robustness to polytomies (Huerta-Cepas et al., 2016). The advantages and disadvantages of

several common tree comparison techniques are listed in Supplementary Table 1.
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Validation Using Maximum Likelihood

Since maximum likelihood (Felsenstein, 1981) has been widely used to construct the current
version of the OTL, there is a potential confirmation bias when comparing it to the OTL (i.e., it
is likely to have an artificially high percent overlap with the species relationships found in the
OTL since it was used to create the OTL). However, it is still widely used and should be
evaluated against our alignment-free technique. Using ortholog annotations approved by the
HUGO Gene Nomenclature Committee (HGNC) (Gray et al., 2015), we extracted the most
commonly used orthologs in each taxonomic group. Although we performed no formal tests for
orthology, in cases where duplicated genes with the same gene names existed (e.g., RPS4 in the
mitochondrion and rps4 in the chloroplast are both listed in Arabidopsis thaliana), both genes
were removed. After this filtering, we performed a multiple sequence alignment (MSA) on the
DNA sequences of each ortholog using the following CLUSTAL OMEGA (Sievers and Higgins,
2018) command:

clustalo -1 ${INPUT} > S${OUTPUT}

We used CLUSTAL OMEGA because it performed very well in full-length sequence
comparisons presented by Pais et al. (2014a), and we used full-length gene sequences in our
analyses. After each MSA was completed, we created a super-matrix by concatenating the
alignments from all orthologs for each species (if an ortholog was not annotated for a species, all
nucleotide characters for that ortholog were expressed as "-" for that species). After the super-
matrix was created, we used the following IQ-TREE (Nguyen et al., 2015) command to
automatically choose the correct model (Posada and Crandall, 1998) and perform maximum

likelihood to recover the phylogeny:

igtree -s S{INPUT} -m TEST -pre ${OUTPUT}
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The recovered phylogeny was then compared to the OTL and the NCBI Taxonomy using the

unrooted compare method from ETE3 to identify branch similarities.

Comparison with Traditional k-mer Approach

One alignment-free technique to recover phylogenies is to create a feature frequency profile
(FFP) which consists of counting the occurrences of different k-mers and comparing those
profiles between species (Jun et al., 2010b; Sims et al., 2009). Although FFP is often used on the
whole genome, it can also be used on the proteome (Jun et al., 2010b), which allowed us to do a
direct comparison of this approach using our dataset, which consists of all CDS regions. All
analyses were done using the step-by-step procedures outlined in the FFP software README.
Since the FFP software requires uncompressed data, we uncompressed all FASTA files before

conducting the analysis. Preprocessing time was not included in the comparison results.

We included all species FASTA files in a single directory $ { DIR}. If all species names are
shorter than 10 characters, they can be included in a single file called $ { SPECIES}. However,
if any species names are longer than 10 characters, then a list of numbers (IDs) can be substituted
for the species names. We used unique IDs for this step and then converted them back to species
names after the tree was recovered. We used the recommended command from the FFP

README (https://sourceforge.net/projects/ffp-phylogeny/files/Documentation/) to create the

distance matrix, $ {MATRIX}:
ffpry -1 5 ${DIR}/* | ffpcol | ffprwn | ffpjsd -p ${SPECIES} >

S{MATRIX}
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After the distance matrix was created in PHYLIP format, we used the same Biopython
implementation of the neighbor-joining algorithm that CAM used by specifying the Phlyip input
format option (-p) of makeNewick.py (provided in the GitHub repository for CAM):

python makeNewick.py -p -i ${MATRIX} -o ${OUTPUT}

After the Newick tree was recovered and the species IDs were converted back to species names,
we compared the recovered tree with the OTL and the NCBI taxonomy using the unrooted

compare method in ETE3.

Results

Since 64 codons exist, and each species typically uses only one of three possible stop codons and
the one start codon per gene, there are 61 degrees of freedom (64 — 2 unused stop codons — 1
start codon), allowing for 2°! possible motifs. We observed 54 336 494 (~2%6) motifs across all
genomes, with significant overlap between species (see Table 1). When including counts for
multiple occurrences of a motif within the same species, there are still more than 5x as many
completely unique motifs within that species as overlapping motifs in the same species (See
Supplementary Figures 2-11). We also note that not all codons have equal probabilities of being
present in a gene, and we show the frequency of codon aversion per codon within each
taxonomic group in Supplementary Figures 12-21. Although most genes use most codons, some
genes exclude significantly more codons than others. Across all species, the mean number of
codons not used within a sequence is 14.4819, with a standard deviation of 8.6881 codons. The
number of codons included in each codon motif is depicted in Supplementary Figures 22-31. In
Supplementary Figures 32-41, we also show that relatively few motifs are present in more than a

few genes.
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We show the number of species included in the phylogenies recovered by each algorithm in
Table 2. The alignment-free approaches (CAM, amino acid motifs, and FFP) each recovered a
tree for all 23 428 species. Insufficient ortholog annotations were available in bacterial species
for maximum likelihood to recover a tree for bacteria or all species. Maximum likelihood
recovered trees for relatively few fungi (25%), protozoa (32%), invertebrates (38%), and plants
(67%) because many of the species did not have ortholog annotations. The NCBI taxonomy
included the most species, only missing 2 archaea, 456 bacteria, and 188 viruses. Since the OTL
does not include viruses, it contains significantly fewer species, with the inferred phylogeny

containing only 12 337 species out of the possible 23 428 species.

We compared the recovered phylogeny from CAM with the reference phylogenies from the OTL
(Table 3) and the NCBI taxonomy (Table 4). Bacteria and viruses have the highest similarity
with these phylogenies (84-91%), and invertebrates have the lowest similarity (60-70%).
However, FFP had a lower similarity with the reference phylogenies than CAM in all taxonomic
groups except bacteria (1% more similar). Maximum likelihood recovered trees that were more
similar to the reference phylogenies in most taxonomic groups; however, CAM recovered more
congruent phylogenies in fungi (4% more similar) and protozoa (1% more similar). Our method
lends support to the NCBI taxonomy in every taxonomic group, with reported phylogenies being
3-13% more similar to the NCBI taxonomy than the OTL. We also ran the entire analysis
excluding partial protein sequences. Excluding partial genes had a minimal effect on the overall
percent overlap with the OTL (minus 2% to plus 5% similarity) and the NCBI taxonomy (minus

2% to plus 3% similarity).
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Tables 3 and 4 also show how well each of the other approaches compares with the OTL and the
NCBI taxonomy, respectively. In most instances, amino acid aversion motifs performed
comparable to codon aversion motifs when compared against the OTL and the NCBI taxonomy.
However, the percent overlap between the NCBI taxonomy and amino acid aversion motifs in
mammals, other vertebrates, and viruses was much lower than the percent overlap with CAM (9-
25% lower). The same trend exists when comparing the recovered trees with the OTL, with
amino acid motifs recovering 10-14% fewer species relationships than CAM. The other
taxonomic groups did not appear to vary significantly between the recovered trees using amino
acids or codons, with the difference between the two methods being -3% to +3% for the NCBI

taxonomy and -5% to +2% different for the OTL.

As expected, the NCBI taxonomy and the OTL are highly similar (Table 3), although 6-9% of
species relationships disagree outside of invertebrates, plants, and mammals. Although
maximum likelihood has been widely used to create the OTL, the alignment-free methods
recovered trees that were more congruent with the OTL and the NCBI Taxonomy than maximum
likelihood in fungi and protozoa. Feature frequency profiles of k-mers recovered more similar
trees to the reference phylogenies than CAM in all species (+1%) and bacteria (+1%). In all other
taxonomic groups, CAM recovers trees that are 1-25% more similar to the reference phylogenies

than FFP.

Table 5 shows the CPU runtime of each algorithm in hours. The alignment-free techniques had
significantly faster runtimes than the maximum likelihood approach. FFP always had the fastest

runtime. Runtime was always longer for amino acid motifs than CAM because the DNA

94



sequences were translated into protein sequences before being evaluated for amino acid usage. In
the smaller taxonomic groups outside of bacteria, each of the alignment-free methods computes
the phylogeny within minutes. Maximum likelihood required at least 2.5 hours of CPU time to

compute a tree for each taxonomic group.

Although the maximum likelihood analysis was not possible on bacteria or all species because
insufficient ortholog gene annotations exist to accurately compare the majority of the bacterial
species, it would have also been infeasible based on CPU runtime. As more species and
orthologs are included in the maximum likelihood analysis, the runtime increases exponentially.
The fastest iteration of maximum likelihood finished in 2.5 hours on 100 mammals, using 18
orthologous genes which were each present in at least 97 species. In contrast, CAM used all
genes in 107 mammals and finished in 0.2101 hours (12 minutes, 36 seconds). The slowest
iteration of maximum likelihood finished in 199.75 hours on 58 fungi using 648 orthologs which
were each annotated in at least five species. CAM again analyzed all genes, both annotated and

unannotated, across 234 fungi, finishing in 0.2167 hours (13 minutes).

In Table 6, we report the minimum number of species with an ortholog annotation, the number of
orthologs used, and the total number of characters in the super-matrix for each taxonomic group.
All orthologous genes with gene annotations spanning at least the number of species noted in
column 2 (minimum number of species with orthologs) were included in the analysis.
Differences in the minimum number of species with an ortholog are due to differences in the
breadth of gene annotations within a taxonomic group. For instance, few orthologous gene

annotations spanned more than five species in fungi, invertebrates, and protozoa; however, many
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orthologs were annotated in 100 vertebrate species. We did not filter the orthologs on any metric

besides the number of species with that gene annotation.

Discussion

The advent of Next Generation Sequencing (NGS) and RNA-seq enables researchers to quickly
and inexpensively sequence genomes faster than orthologous relationships and species
phylogenies can be annotated and examined. Although CAM requires genomes to be assembled
with CDS regions annotated, it does not require an alignment of the genes against other species,
nor does it require the time-consuming approaches of traditional methods such as maximum
likelihood. As opposed to k-mer based frequency profiles, CAM recovers more similar
phylogenies to the OTL and the NCBI Taxonomy in almost all instances. Furthermore, since we
combine individual codon aversion motifs from each gene to a set of motifs across the whole
species, we are able to allow for greater genetic diversity between species than multiple sequence
alignments, which are limited to sequence identity. Since CAM analyzes only the codons that are
not present in a gene, sequences that are very different could overlap if they are under the same

pressure to maintain the aversion to certain codons.

This technique is also robust to partial gene annotations. Including or excluding partial gene
sequences in the analysis had a minimal effect on the overall species relationships. Furthermore,
CAM appears to consistently recover accurate phylogenies for all domains of life. This
characteristic allows phylogenetic analyses to limit ad hoc hypotheses by using a character state
that spans all domains of life, instead of piecing together the phylogenetic signal from different

genes. Additionally, codon motifs can be used to examine coevolutionary forces between
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different domains, such as viruses and hosts. Since similarities in codon usages have previously
been identified between some viruses and their respective hosts (Chantawannakul and Cutler,
2008; Miller et al., 2017b), this technique could facilitate coevolutionary analyses by identifying
overlapping motifs in distantly related species, which can then be analyzed using traditional

techniques.

Although CAM does not recover the same phylogeny as the OTL or the NCBI taxonomy, the
recovered phylogenies have comparable percent branch similarities as phylogenies recovered
using traditional ortholog-based maximum likelihood estimates. For protozoa, the percent
similarity with the OTL and the NCBI taxonomy was only 1% different between maximum
likelihood and CAM. However, ortholog annotations were available for only 24 species, whereas
CAM recovered 75 species relationships. Species relationships recovered for archaea, mammals,
and other vertebrates were more similar to established phylogenies using maximum likelihood;
however, since traditional ortholog-based techniques were used to construct the current
representation of the OTL, it is expected that clades with well-documented orthologs should
recover very similar trees to the reference. Codon aversion motifs display a strong phylogenetic
signal in all domains of life, and the signal is similar to ortholog-based maximum likelihood in

fungi and protozoa.

The recovered phylogenies from CAM were more similar to the OTL and the NCBI taxonomy

than phylogenies recovered using feature frequency profiles in the following taxonomic groups:

fungi, invertebrates, plants, mammals, and other vertebrates. FFP and CAM recovered
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comparable trees from all other taxonomic groups. Although FFP CPU runtime was faster than

CAM, it was not as accurate in most instances.

Codon aversion motifs provide a basis for alignment-free methods to recover robust phylogenies
quickly and with sufficient resolution to account for future species discovery. In contrast to
maximum likelihood, most cladal relationships were recovered using CAM within minutes.
Furthermore, without relying on gene alignments, the recovered phylogeny is not dependent on
the accuracy of the aligner or ortholog annotations, which allows for a more universal technique
to compare distantly related species that might have incorrectly labeled genes or very divergent

gene sequences.

We understand that certain limitations to our study exist. For instance, while we have shown that
CAM successfully recovers most known species relationships and can be used in future
alignment-free analyses to recover comparable phylogenies to maximum likelihood, we do not
fully understand the biological mechanisms that govern the phylogenetic signal we identified.
Future research will examine the processes involved in maintaining this phylogenetic signal,
including the mechanism that maintains complete codon aversion within a gene. We also note
that alignment-free methods often appear as a "black box" to researchers who are accustomed to
homologous character analyses that allow for directly identifying nucleotide differences in
sequences. While CAM presents a paradigm shift, it has the potential to be as informative as
analyses of homologous character states. Since CAM is based in codon usages within each gene,
we propose that percent similarities in codon aversions between species represents similarities in

the mechanisms that maintain these codon usages. Although these mechanisms are presently not
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fully understood, we show that they are phylogenetically conserved and can be utilized using our

method.
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Tables and Figures

Chapter 4 Tables

Table 4.1. Unique Tuples in Each Taxonomic Group

Taxonomic Group Number of Number of  Average Number of Genes
Unique Motifs Genes with a Given Motif

All 54336494 | 229 742 339 4.228
Archaea 1 057 898 1903114 1.799
Bacteria 49 177 047 | 215 581 296 4.384
Fungi 904 513 2194 206 2.426
Invertebrates 951 901 2153 164 2.262
Plants 1 009 268 2510219 2.487
Protozoa 510 582 841 682 1.648
Mammals 732 868 2 004 675 2.735
Other
Vertebrates 806 510 2274 837 2.821
Viruses 234 768 303 129 1.291
Total 55385355 | 229766 322 4.149
(without all) ’
Total
(without all and 5159 447 14 161 043 2.745
without bacteria)

Unique tuples were calculated by adding all tuples of unused codons from all genes within each
species from a taxonomic group to a set, and then counting the number of elements in that set.
The All group includes all species in the same analysis. Total (without all) sums the number of
motifs and genes from each taxonomic group, calculated individually. Since most species in this
analysis are bacteria, Total (without all and without bacteria) summed the values from each
taxonomic group without including bacteria or all species combined. Note: 23 983 viral and

bacterial genes overlap and 1 048 861 motifs span different taxonomic groups (difference

between values in All and Total (without all).
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Table 4.2. Number of Species Included in Phylogenies

Amino
Taxonomi . Maximum BI
aG(I)'O:)lp ’ CAM Ac1.d FFP Lilielih(l)lod Tal)\jocnomy

Motifs
All 23 428 23 428 23 428 N/A 22 794 12 337
Archaea 418 418 418 418 416 362
Bacteria* 15 068 15 068 15 068 N/A 14 612 11227
Fungi 234 234 234 58 234 214
Invertebrates 149 149 149 57 149 147
Plants 89 89 89 60 89 87
Protozoa 75 75 75 24 75 75
Mammals 107 107 107 100 107 105
Ui 123 123 123 118 123 120
vertebrates
Viruses* 7233 7233 7233 N/A 7 045 N/A

For each algorithm, we report the number of species used to recover the phylogeny. “Note: Some
species are included in both bacteria and viruses.
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Table 4.3. Comparison to the OTL

Taxonomic CAM Amino Acid Maximum NCBI
Group Motifs Likelihood Taxonomy

All 82 84 83 N/A 95
Archaea 75 77 74 89 94
Bacteria 84 84 85 N/A 95
Fungi 69 67 67 65 91
Invertebrates 60 57 55 73 98
Plants 64 63 54 73 98
Protozoa 65 65 64 64 93
Mammals 77 63 52 93 99
Other

Vertebrates & = = ol =

Percent edge overlap of an unrooted tree comparison of each algorithm versus the established
phylogeny from the OTL for each taxonomic group. Maximum likelihood could not compute a
tree for bacteria or all species because insufficient ortholog annotations were available for the
majority of these species.
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Table 4.4. Comparison to the NCBI Taxonomy

Taxonomic Amino Acid Maximum
Group Motifs Likelihood
All 89 90 90 N/A
Archaea 81 84 80 92
Bacteria 91 90 91 N/A
Fungi 73 69 69 70
Invertebrates 70 68 65 78
Plants 71 70 61 79
Protozoa 72 71 72 73
Mammals 87 73 63 98
Other
Vertebrates % w 97 25
Viruses 90 65 91 N/A

Percent edge overlap of an unrooted tree comparison of each algorithm versus the established
phylogeny from the NCBI taxonomy for each taxonomic group. Maximum likelihood could not
compute a tree for bacteria, viruses, or all species because insufficient ortholog annotations were
available for the majority of these species.
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Table 4.5. CPU Runtime of Each Algorithm in Hours

. Amino Acid Maximum
Taxonomic Group CAM Motifs Likelihood
All 17.2794 20.2692 3.9072 N/A
Archaea 0.0667 0.1436 0.0408 161.5
Bacteria 14.6994 17.4458 3.7442 N/A
Fungi 0.0783 0.2167 0.0294 199.75
Invertebrates 0.0763 0.2126 0.0447 2.5
Plants 0.0781 0.2211 0.0383 6.0
Protozoa 0.0287 0.0833 0.0183 4.0
Mammals 0.0718 0.2101 0.0294 2.5
Other vertebrates 0.0872 0.2356 0.0322 6.75
Viruses 0.1028 0.1161 0.1019 N/A
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Table 4.6. Matrix Statistics for Maximum Likelihood Analysis

Minimum number Number of .
. . . . Characters in super-

Taxonomic Group of species with orthologs in super- .

. matrix
ortholog matrix

Archaea 95 45 62 442
Fungi 5 648 1403 618
Invertebrates 5 20 17 665
Plants 40 75 87 764
Protozoa 5 200 411 028
Mammals 97 18 24 767
Other vertebrates 108 28 30 900

The first column is the taxonomic group. The second column is the minimum number of species
which must include an ortholog annotation for it to be included in the matrix. The third column is
the number of orthologs with the minimum number of species annotations. The fourth column is
the number of nucleotide characters in the combined alignment of all orthologs included in the
analysis.
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Chapter 4 Figures

Calculate Distance Matrix Recover and Compare Phylogenies

Species 1 Species 2 g R
FASTA File FASTA File ) ( Bty Mat”")

Make tuples of unused Make tuples of unused
codons in each gene codons in each gene

Recover Phylogeny
Using Neighbor
Set of all Set of all Joining
Tuples in Tuples in
Genome Genome

e e Phylogeny from
Phylogeny from NOBI Taxonomy:

Intersect
the two
sets

Browser

Compute distance matrix
when at least 5% of tuples intersect ETE3 Compare
l Unrooted Trees

Distance =

1- (Direct Overlaps / Possible Overlaps)
Report percent overlap with
4 reference phylogeny

Figure 4.1. Flow Charts for Calculating the Distance Matrix and Comparing the Recovered
Phylogenies Calculate Distance Matrix: Start with two FASTA files of the DNA coding
sequences of two species. For each species, find the unused codons within each gene, alphabetize
them, and make those codons into a tuple. Add the tuple to an unordered set for that species. The
distance is calculated by dividing the number of tuples in the intersection of the two sets by the
minimum number of tuples in the two original sets.

Recover and Compare Phylogenies: From the distance matrix, use neighbor-joining to recover a
phylogeny. We do not use a model of evolution to compute distances because distance is a
function of the number of shared codon aversion motifs within a species. This technique allows a
fair comparison of diverse or unknown species. Using the compare method within the
Environment for Tree Exploration (ETE3), we then compare the unrooted tree with the OTL and
the NCBI taxonomy. Finally, we report the percentage of the phylogenies that overlap.
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Extract Open Tree of Life Reference Trees
Cutput OTL Tree

v\ ; Allow the user to
" Input a Newick or Extract names '\ Retrieve OTT ids . select the correct .\ Send OTT ids to \ in Newick format
4 text file / of species / / from OTLdatabase | / domainoflfewhen  / j  OTL database / alang with a list
/ L / / duplicate matches / | to retrieve tree / of species
A are found /ot t—J f not included

Remove OTT ids not found

Figure 4.2. Flow Chart Depicting the Process getOTLtree Takes to Infer a Subtree
Phylogeny from the OTL All steps are done with a single command at runtime.
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Abstract

Identical codon pairing and co-tRNA codon pairing increase translational efficiency within genes
when two codons that encode the same amino acid are located within a ribosomal window. By
examining identical and co-tRNA codon pairing independently and combined across 23 423
species, we determined that both pairing techniques are phylogenetically informative using either
an alignment-free or parsimony framework in all domains of life. We also determined that the
minimum optimal window size for conserved codon pairs is typically smaller than the length of a
ribosome. We thoroughly analyze codon pairing across various taxonomic groups. We
determined which codons are more likely to pair and we analyzed the frequencies of codon
pairings between species. The alignment-free method does not require orthologous gene
annotations and recovers species relationships that are more congruent with established
phylogenies than other alignment-free techniques in all instances. Parsimony recovers trees that
are more congruent with the established phylogenies than the alignment-free method in four out
of six taxonomic groups. Four taxonomic groups do not have sufficient ortholog annotations and
are excluded from the parsimony and/or maximum likelihood analyses. Using only codon
pairing, the alignment-free or parsimony-based approaches recover the most congruent trees
compared with the established phylogenies in six out of ten taxonomic groups. Since the
recovered phylogenies using only codon pairing largely match established phylogenies, we
propose that codon pairing biases are phylogenetically conserved and should be considered in
conjunction with current techniques in future phylogenomic studies.

Availability: All scripts used to recover and compare phylogenies, including documentation and

test files, are freely available on GitHub at https://github.com/ridgelab/codon_pairing.
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Introduction

Phylogenies allow biologists to infer similar characteristics of closely related species and
provide an evolutionary framework for analyzing biological patterns (Soltis and Soltis,
2003). Phylogenies are statements of homology, and represent a continuity of biological
information (Haszprunar, 1992). Although genetic data allow researchers to analyze more
species cheaper and faster than morphological features, molecular data typically require
data cleaning (e.g., alignment, annotation, and ortholog identification) before they
become useful (Philippe et al., 2011). After orthologs are identified, phylogenies can be
recovered through parsimony (Farris, 1983; Wilgenbusch and Swofford, 2003),
maximum likelihood (Felsenstein, 1981), Bayesian inference (Yang and Rannala, 2012),
or distance-based techniques such as neighbor-joining (Saitou and Nei, 1987).
Alignment-free techniques typically use Chaos Theory to calculate distances of basic
genomic features (e.g., GC content, oligomer frequency, etc.) that are then used to
recover the phylogeny (Vinga and Almeida, 2003; Chan et al., 2014). More recently,
other techniques limit the alignment-free search space to genic regions, constructing

profiles of amino acids or codon usages (Jun et al., 2010; Chapter 4) .

Codons are sequences of three consecutive nucleotides of coding DNA that are transcribed into
mRNA, mRNA is translated into amino acids, and amino acids form proteins (Crick, 1970). The
20 canonical amino acids are formed from 61 codons, with the other three codons encoding the
stop signal (Crick et al., 1961). Although multiple codons encode the same amino acid, an
unequal distribution of synonymous codons occurs within species, suggesting that synonymous

codons might play different roles in species fitness (Sharp and Li, 1986). An unequal distribution
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of tRNA anticodons directly coupling codons led to the wobble hypothesis: tRNA anticodons do
not need to latch onto all three codon nucleotides for translation (Crick, 1966). Codon usage is
also highly associated with the most abundant tRNA present in the cell (Post et al., 1979) and

codon usage patterns affect gene expression (Gutman and Hatfield, 1989).

Recharging a tRNA while the tRNA is still attached to the ribosome is used to increase
translational efficiency and decrease overall resource utilization. This process occurs
when codons encoding the same amino acid are located in close proximity to each other
on the mRNA strand (Cannarozzi et al., 2010). Co-tRNA codon pairing is when two non-
identical codons that use the same tRNA are near each other in a gene and the tRNA is
recharged to translate both codons before the ribosome diffuses. Similarly, identical
codon pairing occurs when identical codons are near each other in a gene and the tRNA is
recharged to translate both codons before the ribosome diffuses. Co-tRNA and identical
codon pairing conserve resources and increase translational speed by approximately 30%
(Cannarozzi et al., 2010). Co-tRNA codon pairing has previously been reported as more
prominent in eukaryotes, while identical codon pairing has been reported in eukaryotes,

bacteria (Shao et al., 2012), and archaea (Zhang et al., 2013).

We report codon pairing as a phylogenetic character state using both parsimony and
alignment-free techniques. Our results suggest that both identical codon pairing and co-
tRNA codon pairing are phylogenetically conserved and prominent in all domains of life.
We further show that combining the two techniques generally recovers more congruent

phylogenies compared with established phylogenies. Codon pairing recovers trees that
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are more congruent with the Open Tree of Life (OTL) (Hinchliff et al., 2015) and the
NCBI Taxonomy Browser (Sayers et al., 2009; Sayers et al., 2010; Sayers et al., 2011;
Sayers et al., 2012) than maximum likelihood trees recovered using IQ-TREE (Nguyen et

al., 2015) and other alignment-free methods in six out of ten taxonomic groups.

Materials and Methods

Data Collection and Processing

We downloaded all reference genomes and annotations from the National Center for
Biotechnology Information (NCBI) (Pruitt et al., 2000; Wheeler et al., 2007; Pruitt et al., 2014)
in September, 2017. Reference genomes were used because they represent the most commonly
accepted nucleotides in each species (Pruitt et al., 2000; Wheeler et al., 2007). We used the
coding sequences (CDS) from the longest isoform of each gene and we removed annotated
exceptions (i.e., translational exception, unclassified transcription discrepancy, suspected errors,
partial genes, etc.). A total of 23 423 species were divided into the following taxonomic groups
based on NCBI annotations, with some overlap between bacteria and viruses: 418 archaea, 15
063 bacteria, 234 fungi, 149 invertebrates, 89 plants, 75 protozoa, 107 mammalian vertebrates,
123 other vertebrates, and 7 233 viruses. While some of these taxonomic groups do not represent
monophyletic clades, we opted to maintain these species classifications to facilitate analyses

between different studies that use the NCBI annotations.

Accounting for Differences in Ribosomal Footprint
Estimates of the ribosome footprint vary drastically and can range from 15 nucleotides (5

codons) to about 45 nucleotides (15 codons) with a commonly accepted length of 28
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nucleotides (about nine codons) (Martens et al., 2015) . Since codon pairing requires at
least two codons, we examined pairing lengths (i.e., a sliding window) of 2-11 codons.
This technique allows for variations in the ribosomal footprint among different
taxonomic groups and can determine if codon pairing is dispersed throughout the

ribosomal footprint or is more phylogenetically conserved at a smaller window size.

Calculating Identical and co-tRNA Codon Pairing

For both the parsimony and alignment-free methods, we used a binary representation of codon
pairings, co-tRNA codon pairings, and combined identical and co-tRNA codon pairings (i.e., if a
codon paired within a gene, it was given a value of "1" regardless of the number of times the
pairing occurred). We determined which codons used identical codon pairing for each gene by
adding each codon that occurred multiple times within the sliding window to an ordered set of
codons for that gene. Similarly, we created an ordered sets of amino acids for co-tRNA codon
pairings for each gene by adding the amino acid product of the paired non-identical codons that
encode that amino acid to the ordered set. Since the combined approach uses both identical and
co-tRNA codon pairing, we calculated combined pairing by translating the gene sequence and
identifying amino acids that paired within the ribosome window, adding each paired amino acid

to the ordered set.

Alignment-free Codon Pairing Calculation
We present three alignment-free methods to calculate a distance matrix: 1) based on identical
codon pairing, 2) based on co-tRNA codon pairing, and 3) based on a combination of identical

and co-tRNA codon pairing. Although genes must be assembled, orthologous relationships are
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not required or used in the distance matrix calculation. Both methods use a binary (occurs or
does not occur) representation of codon pairing within a gene. First, if identical codon pairing
occurs anywhere within a gene, the codons are added to an ordered set. If co-tRNA codon
pairing or the combined approach is selected, then amino acids are added to an ordered set if they
occur within the ribosomal footprint anywhere in the gene. Next, the sets are converted to a tuple
(immutable list) so they can be added to a set for the entire species. This process is repeated for
each gene within a species until all gene pairings have been made into tuples and added to a set
for the species. We repeat this process for each species until all species have a set of tuples
representing the codons (or amino acids) that are pairing within a gene. Finally, we calculate the
distances between each species in a pairwise manner. This process is depicted in Figure 1.
Similar to the method used in Chapter 4, the pairwise distance between two species, A and B, is
calculated as one minus the relative similarity of the species. The relative similarity of the
species is the number of overlapping tuples between the sets of tuples in both species divided by
the total number of tuples in the species, A or B, with the fewest number of tuples. This ratio
must exceed 5% or else the species are assigned the maximum distance of 1.0. This filter limits
small genome bias (e.g., without this cutoff, if one gene from a virus with two genes has the
same codon pairing profile as a gene in a vertebrate with 20 000 genes, then the distance between
the virus and the vertebrate would be 0.5). This process allows us to calculate a distance, with a
maximum of 1.0, where more closely related species have a smaller distance to each other
because their genes utilize more similar codon pairings. We implemented

pairing distance.py in Python 3.5 to calculate the distance matrix based on the

alignment-free comparison of identical codon pairing or co-tRNA codon pairing outlined above.
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Summary of Alienment-free Options

We provide several additional options for pairing distance.py to give users greater
flexibility in their research. Input FASTA files can be provided either as a list (standard bash
expansion) with the -1 option, or included in a single directory with the —id option. The
program automatically handles gzipped compressed files with the . gz or . gzip file extension
or uncompressed data with any other file extension. The output distance matrix by default is
written to standard out, although an output file can be provided through the —o option. Although
all available processing cores are used by default to calculate the distance, this can be modified
with the —t option. RNA sequences can also be provided using the —rna flag. The -1 option
allows the user to specify an alternative codon table, with the standard codon table being used by
default. By default, the ribosome footprint is set to nine codons, although this option can be
modified using - £. In the same program, we also provide a flag, —c, to allow users to use co-
tRNA codon pairing instead of identical codon pairing and the -b flag to signify both identical
and co-tRNA codon pairing. These options are explained in more detail in the accompanying

README file found in the GitHub repository:

https://github.com/ridgelab/codon_pairing/tree/master/alignment_free.

Parsimony Analysis

We used ortholog annotations from the HUGO Gene Nomenclature Committee (HGNC) (Gray
et al., 2015), which unifies gene annotations across species and derives most gene annotations
from UniProt (UniProt Consortium, 2018) to determine homologous codon pairing characters.
We use Python 3.5 to implement parsimony pairing.py to create a character matrix of

parsimony-informative codon pairing usages from a multiple FASTA files containing gene
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sequences for each species. Each row in the matrix contains a record for a different species. Each
column in the matrix represents a parsimony-informative codon (or amino acid for co-tRNA
codon pairing) within a specific ortholog. For each species, each codon (or amino acid) in each
ortholog is labelled '0' if it does not pair within a ribosomal window, 'l" if it does pair, or '?" if the
ortholog annotation is not available for that species. To be parsimony informative, each included
ortholog was present in at least four species, each codon (or amino acid) paired in at least one
species, and each codon (or amino acid) did not pair in at least one species. We further required
all species to contain at least 5% of all the parsimony-informative codons (or amino acids) to
limit the effect of missing data. We create this character matrix and as a key file containing an
ordered list of each parsimony-informative codon (or amino acid) that was included in the matrix
in a single step at runtime (see Figure 2). The following command demonstrates typical usage for
identical codon pairing, where $ {DIR} is the path to a directory containing one FASTA file per
species, $ {MATRIX} is the path to the output matrix, and ${KEYS} is the path to the output
key file containing the ordered list of parsimony-informative codons.

python getPairingMatrix.py -id ${DIR} -o ${MATRIX} -oc S${KEYS}

Summary of Parsimony Options

We provide the same options in parsimony pairing.py as the alignment-free method,
with a few notable exceptions. In addition to the options described in the alignment-free section,
—oc optionally indicates the path to an output file containing the ordered parsimony-informative
codons included in the character matrix. Optionally, the —on option will use a numbering system
to create names for the species instead of using the names of the input files. This option is most

useful when file names are very long or do not correlate to the species names.
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Constructing Phylogenetic Trees Using Parsimony

We used Tree Analysis Using New Technology (TNT) (Goloboff et al., 2005) to recover
phylogenetic trees using parsimony. We selected TNT based on its ability to handle large
datasets and its fast tree-searching algorithms. We found up to the 100 most parsimonious trees,
saving multiple trees recovered using tree bisection reconnection (tbr) branch swapping (Kumar

et al., 2018).

Reference Phylogenies

We inferred subtrees from both the OTL and the NCBI Taxonomy Browser for each taxonomic
group. The OTL combines phylogenetic relationships reported in primary literature and contains
a web application programming interface (API) that allows for querying the OTL database.
Although the NCBI Taxonomy Browser gathers information from a variety of sources and is
therefore not considered a primary source for taxonomic relationships, it contains more species
than the OTL, and provides added insights into our analyses. We use both phylogenies as

reference trees to compare the alignment-free and parsimony trees obtained from codon pairing.

Open Tree of Life

We used getOTLtree.py from Chapter 4 to obtain reference trees for each taxonomic
group from the OTL in a single step at runtime. This program utilizes the OTL API to
programmatically query the OTL database to first obtain OTL taxonomy identifiers (OTT
ids) for each species, and then query the OTL database to retrieve the reference tree for
the species found. The program also allows users to select the correct domain of life

when multiple OTT ids are found for a species (e.g., Nannospalax galili is currently
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listed in the OTL database as both a eukaryote and a bacterium). The output file contains
the inferred reference tree from the OTL and a list of any species that the OTL did not
include in the tree. We ran this program using the following command, where
${INPUT} is a list of species, and $ {OUTPUT} is the output file:

python getOTLtree.py -1 ${INPUT} -o S${OUTPUT}

NCBI Taxonomy Browser

We used the NCBI taxonomy browser

(https://www.ncbi.nlm.nih.gov/Taxonomy/CommonTree/wwwcmt.cgi) to download the

taxonomical relationships in PHYLIP (Felsenstein, 1989) format. We included unranked taxa to

maximize the number of included species for each taxonomic group.

Tree Comparisons

We assessed the accuracy of our identical, co-tRNA, and combined codon pairing
algorithms by comparing the trees we recovered to the reference trees from the OTL and
the NCBI taxonomy. We determined the similarity between trees by using the ete-
compare module from the Environment for Tree Exploration toolkit (ETE3) (Huerta-
Cepas et al., 2016) , which computes the percentage of branch similarity between two
trees. A higher percentage of branch similarity indicates higher congruence between
trees. The branch similarity method has a relatively low computational cost for large
datasets and it allows for unrooted tree comparisons and comparisons of trees with
polytomies. For the parsimony analysis, if any taxonomic comparison produced more

than one equally parsimonious tree, we computed the percentage of edge similarity
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between each generated tree and the reference tree. We then reported the average percent

overlap of all comparisons.

Comparison with Maximum Likelihood

We used the same maximum likelihood validation results as previously reported in
Chapter 4. The ortholog-based maximum likelihood technique first compiled all ortholog
annotations from the HUGO Gene Nomenclature Committee (HGNC) (Gray et al., 2015)
and subsampled the most commonly used orthologs in each taxonomic group, where all
gene annotations must be unique within a given species. Next, they used CLUSTAL
OMEGA (Sievers and Higgins, 2018) to perform a multiple sequence alignment (MSA)
on each orthologous gene cluster. Finally, IQ-TREE (Nguyen et al., 2015) was used to
perform a maximum likelihood analysis on the combined MSA super-matrix from all
orthologs. ETE3 was used to compare the recovered phylogenies to the OTL and the
NCBI taxonomy. The methods presented in Chapter 4 excluded bacteria and viruses from

their analysis because of the lack of orthologs spanning a sufficient number of species.

Comparison with Feature Frequency Profiles

Comparisons were also done with a k-mer based alignment-free phylogenomic approach,
Feature Frequency Profiles (FFP) (Sims et al., 2009; Jun et al., 2010). The FFP method
works by counting shared k-mers between species, with more directly overlapping k-mer
counts being associated with closer species relatedness. Since we use the same dataset as
previously reported in Chapter 4, we also use their FFP validation set to compare the

congruence of FFP with the OTL and the NCBI taxonomy.
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Comparison with Codon Aversion Motifs

Codon aversion motifs (CAM) are sets of codons that are not used within genes (see
Chapter 4). They have also been used to recover phylogenies using alignment-free
techniques. Since our method using codon pairing is also a codon-based method, we
included CAM in our comparisons to determine if the phylogenetic signal is stronger in

codon use/aversion or codon pairing.

Results

We aimed to determine how phylogenies recovered using identical codon pairing and/or
co-tRNA pairing compare to classic methods (i.e., parsimony and maximum likelihood)
and other alignment-free methods. First, we determined the theoretical maximum number
of character states for each gene using codon pairing in order to determine the maximum
number of species we can differentiate using this technique. For identical codon pairing,
there are 61 possible pairing combinations (64 codons — 3 stop codons), meaning each
gene can separate a maximum of 2°' = 2.306 x 10'® species. For co-tRNA codon pairing,
there are 18 amino acids that use more than one codon, meaning there are 18 possible
pairing combinations. Using co-tRNA codon paring, each gene can separate a maximum
of 2!8 = 262,144 species. Using the combined approach, there are 20 possible pairing
combinations, one for each of the 20 amino acids. This approach allows each gene to
separate a maximum of 22° = 1,048,576 species. However, since genes are conserved
between species, closely related species share a higher number of codon pairings than
more distantly related species. We observed this overlap in codon pairings, with closely

related species often having smaller observed distances than distantly related species.
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Table 1 shows the number of species that were included in each analysis after the
preprocessing filters were applied (e.g., each species in the parsimony analysis included
at least 5% of the parsimony-informative characters). In total, we included 23 428
species, with each species generally containing thousands of genes. Supplementary
Tables 1-3 show the number of species that were included for each ribosomal window
size in the three parsimony analyses. The alignment-free methods included all species
because the method is not affected by missing orthologous gene annotations. The NCBI
taxonomy contains more taxonomic relationships than the OTL and the OTL does not
contain any viruses. Furthermore, the species trees vary between the OTL and the NCBI
taxonomy by 1-9%, with the mammal phylogenies being the most similar and the fungi
phylogenies being the least similar. Parsimony and maximum likelihood used similar
numbers of species in each analysis. A stricter filter was applied to the parsimony
analysis than the maximum likelihood analysis, which required the parsimony character
matrix to include at least 5% of the parsimony-informative characters. After that filter
was applied, we required that at least 5% of the total number of species be included in the
analysis (e.g., if 100 species were analyzed, at least 5 species must pass the preprocessing
step for the taxonomic group to be included). Applying this filter removed the results
from all species, bacteria, and viruses from both the parsimony and maximum likelihood

analyses. This filter also removed fungi from the parsimony analysis.

After filtering for parsimony-informative codons, we used parsimony to recover phylogenies
with the highest percent overlap based on codon pairings. The identical codon pairing parsimony

analysis was based on 794 (invertebrates) to 197 074 (mammals) parsimony-informative codons.
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The co-tRNA codon pairing analysis used 382 (invertebrates) to 94 018 (mammals) parsimony-
informative codons. The combined codon pairing analysis used 272 (invertebrates) to 72 029
(mammals) parsimony-informative codons. Supplementary Tables 4-6 show the number of

informative codons used for each parsimony analysis.

Figure 3 shows the percent overlap of the unrooted trees recovered using the six codon
pairing methods (three for parsimony and three for alignment-free) compared to the OTL.
For comparison, trees recovered from other alignment-free techniques (CAM and FFP)
and maximum likelihood are also compared to the OTL in Figure 3. Figure 4 shows

unrooted tree comparisons of the same algorithms compared to the NCBI taxonomy.

In four of the six taxonomic groups where enough species passed the parsimony filters,
the parsimony approach for codon pairing recovered phylogenies that were more
congruent with the OTL and the NCBI than the alignment-free approach. Parsimony also
tied the alignment-free codon pairing approach in protozoa. The only taxonomic group in
which the alignment-free method outperformed parsimony was for invertebrates, which
also had the fewest parsimony informative characters (See Supplementary Tables 4-6).
However, in the three taxonomic groups that were not recovered using maximum
likelihood or parsimony, the codon pairing alignment-free approach was more congruent
with the established phylogenies than FFP or CAM. The codon pairing alignment-free
approach was the most congruent with established phylogenies in all species, bacteria,
fungi, protozoa, and viruses. Maximum likelihood was the most congruent with the

established phylogenies in four taxonomic groups: archaea, invertebrates, mammals, and
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other vertebrates. In plants and protozoa, the codon pairing parsimony approach
recovered the most congruent phylogeny with the OTL and the NCBI taxonomy. In
archaea, maximum likelihood was the most congruent with the NCBI taxonomy and the

parsimony-based approach was the most congruent with the OTL.

Using at least one of the codon pairing techniques, recovered phylogenies were at least
80% congruent with species relationships proposed in the OTL and the NCBI Taxonomy
in each of the following taxonomic groups: all species, archaea, bacteria, mammals, and
viruses. The alignment-free codon pairing tree recovered over 80% of the unrooted
species relationships proposed in the NCBI Taxonomy for plants and other vertebrates.
However, the recovered trees were 70-80% congruent with the OTL for plants, and other
vertebrates. Recovered unrooted species relationships in fungi and protozoa were greater
than 69.2-77.7% identical to both the OTL and the NCBI Taxonomy. Invertebrates had
the lowest percent identity, with 65.6% of unrooted edges agreeing with the OTL and

74.8% of species relationships agreeing with the NCBI Taxonomy.

Supplementary Table 7 shows the optimal window sizes and the method (identical or co-
tRNA codon pairing) that recovered the most congruent tree with the established
phylogenies. We define the minimum optimal window size as the smallest window size
to recover the most congruent phylogeny when compared to the reference. Across all
taxonomic groups, the minimum optimal ribosome window size was relatively small.
Averaged for all minimum optimal window sizes that produced the highest congruence

with the OTL, parsimony had a mean minimum optimal window size of 4.000 with a
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sample standard deviation of 3.033. The alignment-free method had a mean minimum
optimal window size of 3.500 with a sample standard deviation of 1.509. Supplementary
Tables 8-19 show the percent edge overlap for identical, co-tRNA, and combined codon
pairing compared to the OTL and the NCBI taxonomy for both the alignment-free and
parsimony approaches at each ribosome window size from 2-11. For both the alignment-
free and parsimony approaches, combining co-tRNA codon pairing with identical codon
pairing produced the most congruent tree with the OTL and NCBI Taxonomy in the
following taxonomic groups: all species, archaea, bacteria, fungi, invertebrates, protozoa,
and viruses. For both methods, identical codon pairing was more congruent with the
reference phylogenies in mammals. Parsimony produced a more congruent tree for plants
using co-tRNA codon paring, while the alignment-free method preferred identical codon
pairing. Furthermore, the non-mammalian vertebrate trees were most congruent with the
reference phylogenies using identical codon pairing for the alignment-free method and

the combined method using parsimony.

We also compared the codon pairing motifs (i.e., an ordered set of codons that paired
within a gene) in each taxonomic group. For example, a gene that has identical codon
pairing for AAA and AAT would have a motif of {AAA, AAT}. We found that fewer
than 10% of codon pairing motifs were identified in multiple species in most taxonomic
groups (see Supplementary Figures 1-10). Bacteria had the most repeated codon pairing

motifs (13.7%) and fungi had the fewest repeated motifs (0.7%).
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We also determined the frequency of identical codon pairing in genes. We counted the
number of genes in a species that used identical codon pairing for each codon. We then
calculated the frequency of codon pairing for each codon by dividing the number of
genes using codon pairing for that codon by the total number of genes in each species.
We repeated this process for each codon, creating boxplots of codon pairing frequencies
across each taxonomic group (see Supplementary Figures 11-20). Bacteria, archaea,
protozoa, and viruses had very wide distributions of codon pairing frequencies. Fungi and
invertebrates had narrower distributions of codon pairing frequencies. Mammals, plants,
and other vertebrates had very narrow distributions of codon pairing frequencies. Narrow
distributions indicate less variability in codon pairing between species among those
taxonomic groups. Each taxonomic group has the same pattern of pairing usage (i.e., ifa
codon pairs frequently in one taxonomic group, it pairs frequently in other taxonomic
groups as well), although mammals have the least variation between species. Excluding
stop codons, codons encoding arginine are the least likely to pair (occurs in ~20-25% of
genes) and codons encoding asparagine and leucine are the most likely to pair (occurs in

~60-75% of genes), except leucine-encoding CTA, which pairs in ~20-25% of genes.

We further analyzed the number of codons that paired within each gene. We counted the
number of codon pairing motifs that included 1, 2, 3,..., 61 codons and report the
distribution for each taxonomic group in Supplementary Figures 21-30. In most
taxonomic groups, each motif contains ~10-40 codons. However, bacteria, archaea, and
viruses are more likely to have fewer codons in each motif, while vertebrates typically

have more codons in each motif.
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Finally, we quantified the frequency of repeated motifs. We counted the number of times
each motif was used in each taxonomic group. Supplementary Figures 31-40 show the
distribution of repeated motif frequencies in each taxonomic group. In most taxonomic
groups, most repeated motifs are repeated 1-20 times with a steep decreasing slope as the
motif is repeated more frequently. However, in archaea, the number of times a motif
repeats quickly decreases between 1-30 and then the slope increases until 61 before
sharply dropping to near zero. The scripts we used to create each supplementary figure

can be found at https://github.com/ridgelab/codon_pairing/supplementary graphs.

Discussion

Through our analyses, we show that both identical and co-tRNA codon pairing are
phylogenetically conserved across all domains of life. We further illustrate that
combining identical and co-tRNA codon pairing improves the concordance of recovered
phylogenies with the NCBI taxonomy and the OTL in the following taxonomic groups:
all species, archaea, bacteria, fungi, invertebrates, protozoa, and viruses. Using
parsimony, combining identical and co-tRNA codon pairing also improved the overall
concordance of the tree containing non-mammalian vertebrates. In mammals, identical
codon pairing had the strongest phylogenetic signal. The most congruent recovered
phylogenies for plants were split between only identical codon pairing using the
alignment-free method and only co-tRNA codon pairing for the parsimony approach.
This comprehensive analysis shows that codon pairing is a novel phylogenetic character

state and should be used in conjunction with other phylogenetic techniques in the future.
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We also provide tools for quickly analyzing thousands of species using our provided
framework. As opposed to common ortholog-based techniques that use sequence
divergence to recover phylogenies, identical and co-tRNA codon pairing analyze
sequence features that govern gene expression. Since gene expression plays a crucial role
in adaptive divergence and ecological speciation (Pavey et al., 2010) and codon pairing
affects gene expression, we propose that patterns in codon pairing originated from past
speciation events. In our analysis, we show that codon pairing alone can recover
phylogenies that are more congruent with the OTL and the NCBI Taxonomy than other

alignment-free or maximum likelihood approaches in many instances.

Our analysis of identical codon pairing found several instances of increased (or
decreased) codon pairing within certain codons and amino acids. In some instances,
codon pairing (or lack of codon pairing) might be due to protein structure instead of
translational efficiency. Arginine (Arg) is very positively charged and highly repulsive to
other like-charged amino acids. Although rarely pairing compared with other amino acid
residues, Arg pairing is essential to some protein-protein interactions and occurs more
frequently than expected by random chance (Lee et al., 2013). In protein folding, coiled-
coil interfaces often make asparagine (Asn)-Asn conformations that face away from the
hydrophobic core (Thomas et al., 2017). Our analysis of codon pairing confirms that Asn
pairing occurs much more frequently than Arg pairing. These interactions suggest that
Asn and Arg pairing conservation might be based on structure instead of codon
translational efficiency. In contrast, leucine zipper T cell receptors have the highest

expression values (Foley et al., 2017). Furthermore, the leucine zipper is a 60-80 amino
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acid protein domain that allows for faster gene expression, sequence-specific DNA-
binding, and dimerization (Ellenberger, 1994). Our results show that leucin-encoding
codons are among the most commonly paired codons. However, leucine-encoding CTA
pairs significantly less frequently than other leucine-encoding codons. Further
exploration into CTA interactions with other leucine-encoding codons may help

determine why CTA pairs much less frequently.

Although co-tRNA codon pairing is less prominent in prokaryotes than in eukaryotes
(Shao et al., 2012; Zhang et al., 2013; Quax et al., 2015), we show that identical codon
pairing and co-tRNA codon pairing are both phylogenetically conserved in all domains of
life. However, we also show that the most congruent vertebrate and plant phylogenies are
generally recovered using only identical codon pairing using the alignment-free method.
Similarly, the parsimony method recovered the most congruent mammal phylogeny using
only identical codon pairing. However, parsimony used only co-tRNA codon pairing in
plants and used the combined approach in non-mammalian vertebrates. We show that
although identical and co-tRNA codon pairing do not occur in equal frequencies, they are
both phylogenetically conserved. We also show that combining identical and co-tRNA
codon pairing recovers phylogenies that most support established phylogenies in seven

out of ten taxonomic groups.

Since many orthologous genes are not currently annotated, our alignment-free approach
allows researchers to quickly determine where new genomes fit on the OTL without first

verifying orthology. In taxonomic groups that include many recently sequenced genomes,
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such as bacteria, fungi, and viruses, the alignment-free approach can provide an accurate
method to quickly determine the taxonomic relationships of those species without first
annotating orthologs. Furthermore, vastly divergent species can be analyzed with a single
command at runtime, facilitating the analysis of thousands of species across various

taxonomic groups.

In taxonomic groups that have well-documented orthologous relationships, we show that
codon pairing recovers parsimony trees that are largely congruent with the OTL and the
NCBI taxonomy. Since maximum likelihood has been widely used to establish the
reference phylogenies that we used, it is unsurprising that in the most established
taxonomic groups, such as mammals and other vertebrates, maximum likelihood recovers
trees that are most congruent with the references. However, in plants and protozoa, the
parsimony analysis elucidates a phylogenetic signal in only codon pairing that is
sufficient to recover the most congruent trees with the OTL and the NCBI taxonomy.
Given the high degree of congruence between the reference phylogenies and the trees
recovered using only codon pairing, we propose that codon pairing should be considered

in future phylogenomic analyses.
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Tables and Figures

Chapter 5 Tables

Table S.1. Number of Species Passing Preprocessing Filters and Analyzed by Each

Algorithm
Taxonomic  Alignment-  Parsimony Maximum NCBI
Group free Likelihood = Taxonomy

All 23 428 0 0 22 794 12 337
Archaea 418 100 418 416 362
Bacteria* 15 068 0 0 14 612 11227
Fungi 234 0 58 234 214
Invertebrates 149 57 57 149 147
Plants 89 61 60 89 87
Protozoa 75 15 24 75 75
Mammals 107 97 100 107 105
Other 123 114 118 123 120
vertebrates

Viruses* 7233 0 0 7 045 0

The alignment-free methods include codon pairing, CAM, and FFP, and did not require any
preprocessing. Parsimony used a stricter preprocessing cutoff than maximum likelihood, and
therefore used fewer species. The NCBI taxonomy includes viruses and more species than the
OTL. Zero species passed the filters when fewer than 5% of the total species had sufficient
ortholog annotations to run the analysis.
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Chapter 5 Figures

Calculate Distance Matrix
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FASTA File FASTA File
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Figure 5.1. Process to Calculate the Distance Matrix Based on Identical Codon Pairing
Starting with the coding sequences of each gene in a species (FASTA file), codons that use
codon pairing within the ribosomal footprint are included in a tuple that is then added to a set for
that species. Sets of tuples are intersected to calculate the distance between species. These
distances are then added to a distance matrix that can be used to recover phylogenies. Similarly,
co-tRNA codon pairing and the combined methods are calculated by using sets of amino acid
tuples instead of codon tuples.
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Figure 5.2. Flow Chart for the Parsimony Analysis We start with input FASTA files, one for
each species. For each codon (or amino acid) within each ortholog, we assign a binary value of
'0', '1", or '?" depending on if codon pairing for that codon (or amino acid) occurs. We then
remove parsimony-uninformative characters. We then remove any species that do not contain at
least 5% of the parsimony informative codons and we conduct the analysis only if at least 5% of
the species pass the filter. Finally, we output the parsimony-informative character matrix for
each codon (or amino acid) pairing to be used in a TNT analysis and an optional list of
parsimony informative characters.
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Figure 5.3. Percent Edge Overlap for Comparisons of Each Algorithm Against the OTL The alignment-free and parsimony
codon pairing methods report the mean percent edge overlap with the OTL based on using different ribosome windows from 2-11.
Error bars are reported for the codon pairing methods, signifying one standard deviation from the mean. The other methods were
previously reported in Chapter 4 and are used for comparison.
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Figure 5.4. Percent Edge Overlap for Comparisons of Each Algorithm Against the NCBI Taxonomy The alignment-free and
parsimony codon pairing methods report the mean percent edge overlap with the NCBI taxonomy based on using different ribosome
windows from 2-11. Error bars are reported for the codon pairing methods, signifying one standard deviation from the mean. The
other methods were previously reported in Chapter 4 and are used for comparison.
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Abstract

It is well-documented that codon usage biases affect gene translational efficiency; however,
it is less known if viruses share their host’s codon usage motifs. We determined that human-
infecting viruses share similar codon usage biases as proteins that are expressed in tissues
the viruses infect. By performing 7,052,621 pairwise comparisons of genes from humans
versus genes from 113 viruses that infect humans, we determined which codon usage motifs
were most highly correlated. We found that 16 viruses averaged a significant correlation in
codon usage with over 500 human genes per viral gene, 58 viruses were highly correlated
with an average of at least 100 human genes per viral gene, and 37 viruses were
significantly correlated with an average of at least one human gene per viral gene at an alpha
level of 7.09 x (0.05 alpha / 7,052,621 comparisons). Only two viruses were not highly
correlated with an average of one human gene per viral gene. While relatively few of the
interactions were previously documented, the high statistical correlations suggest that
researchers may be able to determine which tissues a virus is most likely to infect by
analyzing codon usage biases.

Key Words: [codon usage bias, host, human, virus, virus-host interactions]
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Introduction

Amino acids are encoded by DNA triplets known as codons; however, since there are only
20 canonical amino acids and 64 possible codons, multiple codons encode a single amino
acid (Crick, 1968). The majority of amino acids are encoded by 2-6 different codons.
Despite multiple codons encoding a single amino acid, codon usage is not random in most
species (Ikemura, 1985, Sharp and Li, 1986, Gutman and Hatfield, 1989, Zhang et al.,
2013). Various species, including many plant species, E. coli and Drosophila, also
maintain DNA triplet preferences, or codon usage biases, over time in both intronic and

exonic regions (Akashi et al., 2007, Yang and Nielsen, 2008, Xu et al., 2015).

It is generally accepted that non-random mutations occur more frequently at the third
position in the codon, and codon bias persists through selection (Hershberg and Petrov,
2008, Quax et al., 2015). Numerous biological factors create evolutionary pressure to use
certain codons. First, an incomplete set of transfer RNAs (tRNAs) or unequal expression of
tRNA anticodons within a tissue or species creates pressure for codons with complementary
tRNAs available. Second, translational speed may either increase or decrease depending on
the codon used, creating pressure to select codons for which translational efficiency matches
the needs of the tissue/cell (i.e. suboptimal codons might be preferential to some species for
increased translational efficiency, while in other instances suboptimal codons might
decrease translational efficiency) (Quax et al., 2015, Xu et al., 2013). Finally, codon usage
bias primarily affects the translation of a gene and is a main determinant of gene expression

(Zhou et al., 2016).
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Recently, significant correlations for codon usage preferences between RNA viruses (e.g.
SBYV and KV) and their host, the honeybee, were reported (Chantawannakul and Cutler,
2008). They proposed that such similarities resulted from co-evolution, which typically
occurs in a leapfrog fashion (i.e. as the host evolves to combat the parasite, the parasite

evolves to adapt to the new conditions).

We aimed to determine whether the same relationship exists between human and viral genes
expressed in tissues targeted by the virus. We analyzed 19,482 human proteins, and
compared their codon usage biases against 113 viruses that infect human hosts. We found
significant correlations for many viral and human proteins, and where tissue information
was available, the top correlated human protein was frequently highly expressed in the

tissue type targeted by the virus.

Materials and Methods

Data Collection and Cleaning

We used gene annotations from the General Feature Format (GFF) and GFF3 files from the
National Center for Biotechnology Information (NCBI) to extract the reference viral and
human sequences (Pruitt et al., 2014, Tatusova et al., 2014, Wheeler et al., 2007). Since the
reference genome is intended to most accurately represent an average individual in a
species, we downloaded all reference sequence data, including the corresponding gene
annotations, from NCBI. Similar to the methods used by (Camiolo et al., 2015), when
multiple isoforms were annotated, the longest isoform was always chosen as the

representative isoform for that gene, and we removed all genes with any annotated
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translational exceptions (e.g., translational, unclassified transcription discrepancy, suspected
errors, etc.). These filters had only a minor effect on our data because they eliminated less
than 5% of the total sequences. All 19,482 sequence accession numbers can be found in the
NCBI database by downloading the complete genome annotations for Homo sapiens; the
accession numbers for each virus and their highest correlating genes are located in

Supplementary Table 1.

Codon Usage Correlation Values

To determine if there was a correlation between human and viral codon usage biases, we
performed a Pearson’s r correlation test with discrete codon usage counts by comparing total
codon usage counts in human and viral coding sequences (CDS). We used Pearson’s r
because it uses a product-moment correlation coefficient that is used to determine the
correlation between two variables with different units or different magnitudes (Hane et al.,
1993). Since gene lengths can vary greatly between genes, and genes do not contain all
codons, the assumptions for most statistical tools would not be adequately met using the raw
data. Furthermore, the high number of zero codon usage counts in some genes meant that a
percentage comparison of codon usages using a traditional t-test was unfeasible, even with a
transformation. We chose an implementation of Pearson’s r from the package SciPy in

Python version 2.7 because Pearson’s r is robust to variations in sequence sizes as well as

zero values. Using Pearson’s r, we graphed a linear regression and calculated the R2
coefficients of determination and p-values by plotting the discrete codon counts from each
gene within each virus against each human gene. Next, we ranked the correlation of codon

usage between viral and human genes from highest to lowest. We corrected for multiple
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tests using a Bonferroni correction; the significance threshold used was 7.09 x 1070

(0.05/7,052,621 total comparisons). We obtained the highest correlations when the viral and

human protein codon usage motifs were most similar.

Human Tissue Comparisons

We determined which proteins were expressed in each human tissue by querying each
highly correlated human protein against the Human Protein Atlas (Uhlen et al., 2005, Uhlen
et al., 2015). We checked the top correlating human proteins for each virus (113 total
proteins) to determine in which tissues they were most highly expressed. While many
proteins were expressed in low levels throughout the body, we were most concerned with

high expression areas, and only the high expression areas were compared in this study.

Results

Of the 113 viruses analyzed, we found that on average, each viral gene in 16 viruses was
significantly correlated with more than 500 human proteins (see Supplementary Table 2). Of
the remaining 97 viruses, 58 were significantly correlated with at least 100 human proteins

per viral gene, and 37 were significantly correlated with at least one human gene per viral

gene on average at a p-value < 7.09 x 1079, Only two viruses, Human papillomavirus type
90 (NC_004104) and Human gyrovirus type 1 (NC_015630) were not significantly

correlated with the codon usage of at least one human gene per viral gene, on average.

The viruses listed in Table 1 have the highest Pearson r correlation of all comparisons, with

their codon usages strongly correlating to their host codon usages (p-value < 10725 ). Four of
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the top 10 correlations in Table 1 belong to the group of 16 viruses that strongly correlate to
over 500 human proteins per viral gene on average, and the rest of them belong to the group
of 58 with significant correlations with at least 100 human genes significantly correlating to
each viral gene, on average. Overall, the average correlation of the 113 viruses with the top
hit from each virus was 83.1%, meaning about 83% of the codon usage bias in the virus also
existed in the human host protein. Each viral protein strongly correlated to an average of

303 human genes.

To demonstrate the strong correlations in codon usage bias, we plotted codon usage for
several representative viral proteins compared to the human protein with the strongest
correlation (see Figure 1).

Finally, we analyzed the correlations of codon usage biases for human proteins expressed in
tissues infected by a specific virus. With the exception of sexually transmitted diseases
(STDs), tissue information was incomplete for many viruses, and further exacerbating this
problem is that many human proteins expressed in a specific tissue were also expressed in
many other tissues. We report all known tissue information in Supplementary Table 3, and
in Table 2 list representative viruses with their highest correlating protein and affected

tissues.

Discussion

The high number of proteins significantly correlated with each virus suggests that humans
and human-host viruses share similar codon usage biases. For example, each of the 80
Human herpesvirus 4 (HHV-4, NC _009334) genes significantly correlated with 1 to 10,012

human genes with a median of 8,290 highly correlated human genes and an average of 1,036
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highly correlated human genes. HHV-4 was previously identified as having a similar codon
usage bias to its host cells (Roychoudhury and Mukherjee, 2010, Virgin et al., 2009), which
may provide insights into the efficient proliferation of HHV-4, since it can more readily
utilize host tRNA machinery in the tissue types it infects. Indeed, HHV-4 (commonly
known as mononucleosis or “the kissing disease”) is one of the most common viruses
known to infect humans, with almost 90% of adults having antibodies suggesting previous
HHV-4 infection (Virgin et al., 2009). Herpesviruses overtake host translational machinery
through virion host shutoff (vhs), which limits the expression of host mRNA (Smiley,
2004), and through the degradation of host mitochondrial DNA (Saffran et al., 2007),
although some herpesvirus strains act differently (Duguay et al., 2014). Our data suggest
that herpesvirus is able to co-opt the translational apparatus of the infected cell by closely
matching codon usage biases. The virus is able to use existing tRNAs in the cell, which are

not being used by the cell due to vhs.

Furthermore, viruses such as HPV-90 (NC 004104) and Human gyrovirus 1 (NC 015630)
with fewer correlating proteins typically occur less frequently in human populations.
Although limited data exist for the prevalence of HPV-90 in the general population, in
general it presents a very low risk to the general population (Schmitt et al., 2013, Quiroga-
Garza et al., 2013). Human gyrovirus 1, which is identical to the Chicken Anemia Virus, is
relatively rare and the effects of the virus still remain largely unknown, although it may

affect the apoptosis pathway (Sauvage et al., 2011, Chaabane et al., 2014).
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Human-host viruses appear to target tissues where the correlating human protein also has
high expression. Although many viruses analyzed were not clearly annotated as infecting a
particular human tissue, the viruses with documented tissue interactions were always highly
correlated with a protein that was highly expressed in that tissue. For instance, HPV-128
correlates most with the human protein TIGD4, which is mainly expressed in the genitalia.
In addition, other STDs were strongly correlated with proteins that were also mainly
expressed in genitalia (see Table 2, Supplementary Table 3). We note that viruses tend to
share the same codon usage biases as at least one protein that is highly expressed in the
disease targeted area, further emphasizing our conclusion that viral and host codon usage

biases are highly correlated.

Highly expressed genes have codon biases that utilize highly abundant tRNAs in order for
optimal translational and transcriptional speed (Zhou et al., 2016, Chantawannakul and
Cutler, 2008, Grosjean and Fiers, 1982, Morton, 1998, Morton and So, 2000, Merkl, 2003).
The Human Adenovirus E (NP_009115.2), which causes respiratory illness, has an 89.9%
codon usage correlation with the NISCH gene, which is mainly expressed in the bronchus.
Since NISCH is highly expressed in the tissues that the adenovirus normally infects, the
virus is able to take advantage of its codon usage bias similarities with the host proteins to

rapidly proliferate and infect additional hosts.

There are other possibilities for the observed shared codon usage biases. For example, co-
evolution may have contributed to the appearance of such strong codon bias correlations, in

which the host and the virus evolve at similar rates in order to either combat or maintain
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parasitic infection (Parrish et al., 2008). Since viruses have smaller genomes, they can

selectively evolve more rapidly toward being similar to a preferred host.

While co-evolution and the abundance of optimal tRNAs are thought to allow greater viral
spread, determining the exact cause of this correlation remains unexplored. Our extensive
analysis of codon usage determined that a strong correlation in codon usage bias exists
between human-host viruses and proteins expressed in the human tissues that they infect.

Future research should focus on the causes of these correlations.
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Tables and Figures

Chapter 6 Tables

Table 6.1. Top 10 Codon Usage Bias Correlations

Virus Virus Name Virus Protein Protein Correlation P-value

Accession Protein Accession Name %

Number Name Number
NC_009334 Human herpesvirus 4 BALFS5 NP_620124.1 RHOT2 93.6 8.64E-30
NC 007605 Human herpesvirus 4 (wild BALF5 NP _620124.1 RHOT2 93.5 1.36E-29
NC 000898 iman herpesvirus 6B U90 NP _112561.2 TEX15 93.1 6.40E-29
NC 014185 Human papillomavirus 121 El NP _940841.1 KBTBD3 92.8 2.53E-28
NC 001716 Human herpesvirus 7 IE1 NP _001073973.2 RBM44 92.8 3.03E-28
NC 016157 Human papillomavirus 126 Pos: 817-2640  NP_940841.1 KBTBD3 92.0 6.78E-27
NC 009333 Human herpesvirus 8 ORF75 NP_002891.1 RBP3 91.8 1.47E-26
NC 010329 Human papillomavirus 88 El NP _940841.1 KBTBD3 90.8 4.10E-25
NC 001806 Human herpesvirus 1 UL30 NP _055778.2 SBNO2 90.8 4.15E-25
NC_014955 Human papillomavirus 132 El NP _940841.1 KBTBD3 90.5 9.67E-25

Here we report the top-ten codon usage bias correlations (Pearson’s r values) between a
virus and a human protein with their respective p-values (all under 10°), demonstrating that
viruses and proteins in their host (humans) share high codon biases. Unnamed viral proteins
are designated by their position numbers in the following format— Pos: start position-stop

position.
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Table 6.2. A Selection of Viral Proteins and their Top Correlating Human Proteins, along
with the Human Protein’s Documented Area of Expression

Accession Number  Virus Name  Virus Correlating Human Protein’s Expression Location
NC_ 004500 HPV 92 El MSH4 Testis

NC 022095 HPV 179 L1 HLTF Testis

NC 014952 HPV 128 El TIGD4 Testis, vagina

NC 001691 HPV 50 El TEX15 Testis

NC 001405 HPV 18 L1 MRC2 Soft tissue, testis, endometrium
NC 001354 HPV 41 USP7 SLC12A2 Digestive tract, breast, placenta
NC _ 000898 HHV 6 U0 ELTDI1 Gallbladder, breast, smooth muscle
NC 019023 HPV 166 El OTOGL Cervix, testis

NC 009334 HHV 4 BALF5 SPTB Epididymis

NC 010329 HPV 88 E1l RADS51AP2 Seminal Vesicle, Fallopian Tube
NC 004500 HPV 92 El USP9Y Prostate

These results show that viral codon usage biases highly correlate with the codon usage
biases of human proteins that are found within tissues that the viruses are known to promote
symptomatic issues.

1