
University of Montana University of Montana 

ScholarWorks at University of Montana ScholarWorks at University of Montana 

Graduate Student Theses, Dissertations, & 
Professional Papers Graduate School 

2012 

Ecological Causes of Life History Variation Tested by Meta-Ecological Causes of Life History Variation Tested by Meta-

analysis, Comparison, and Experimental Approaches analysis, Comparison, and Experimental Approaches 

Daniel Croft Barton 
The University of Montana 

Follow this and additional works at: https://scholarworks.umt.edu/etd 

Let us know how access to this document benefits you. 

Recommended Citation Recommended Citation 
Barton, Daniel Croft, "Ecological Causes of Life History Variation Tested by Meta-analysis, Comparison, 
and Experimental Approaches" (2012). Graduate Student Theses, Dissertations, & Professional Papers. 
345. 
https://scholarworks.umt.edu/etd/345 

This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of 
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an 
authorized administrator of ScholarWorks at University of Montana. For more information, please contact 
scholarworks@mso.umt.edu. 

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F345&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/345?utm_source=scholarworks.umt.edu%2Fetd%2F345&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu


 

 

ECOLOGICAL CAUSES OF LIFE HISTORY VARIATION TESTED BY META-ANALYSIS,  
 

COMPARISON, AND EXPERIMENTAL APPROACHES 
 

By 
 

DANIEL CROFT BARTON 
 

B.S., The Evergreen State College, Olympia, Washington, 2001 
 

Dissertation 
 

presented in partial fulfillment of the requirements 
for the degree of 

Doctor of Philosophy 
in Biological Sciences, Organismal Biology and Ecology 

 
The University of Montana 

Missoula, MT 
 

May 2012 
 

Approved by: 
 

Sandy Ross, Associate Dean of the Graduate School 
Graduate School 

 
Dr. Thomas E. Martin, Chair 

Biological Sciences 
 

Dr. Fred W. Allendorf 
Biological Sciences 

 
Dr. Creagh W. Breuner 

Biological Sciences 
 

Dr. Douglas J. Emlen 
Biological Sciences 

 
Dr. Carol M. Vleck 

Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 
 
 

  



 

ii 

 

Barton, Daniel, PhD, Spring 2012   Biological Sciences 
 
Ecological Causes of Life History Variation 
 
Chairperson: Dr. Thomas E. Martin 
 
The ecological causes of life history variation among taxa and the arrangement of such variation 
along geographic gradients is enigmatic despite the proximity of life history traits to fitness and 
implications for understanding basic and applied population ecology.  One classic explanation 
for the arrangement of avian life histories along a ‘slow-fast’ gradient, where species at low 
latitudes have ‘slow’ life history traits (low fecundity and mortality) and species at high latitudes 
have ‘fast’ life history traits (high fecundity and mortality), is the increase in seasonality of 
resources with increasing latitude (Ashmole’s hypothesis).  Despite broad acceptance, this 
hypothesis has been supported only indirectly. I tested two key predictions of this hypothesis – 
that most mortality occurs in winter and that most mortality is caused by starvation – using meta-
analysis.  Surprisingly, in many populations, the season of greatest mortality was summer, and 
most mortality was caused by predation.  These results suggest alternative explanations for life 
history variation should remain under consideration despite support for Ashmole’s hypothesis. 

The relationship between provisioning behavior and offspring number was long recognized to 
integrate key life history tradeoffs between number and quality of offspring and between current 
and future reproductive success.  Studies of the response of parental provisioning behavior to 
brood size variation played a formative role in the development of life history theory. Yet, the 
inference of such experiments for explaining among-species differences has always been limited 
by lack of comparative context.  I expanded predictions of alternative ecological explanations 
(food limitation, nest predation, adult mortality) for life history variation to an among-species 
context and test these predictions using a comparative-experimental design across a broad range 
of bird species from three continents.  I found resource limitation and adult mortality risk interact 
to explain variation among species in responses to natural and experimental variation in brood 
size, with the degree of food limitation appearing to vary across a gradient of adult mortality risk.  
This result helps to explain the potentially conflicting results of previous studies and suggests a 
pluralistic approach to understanding what factors explain life history variation may be fruitful. 

Understanding variation among species in mortality rates may thus be pivotal to understanding 
ecological causes of life history variation. To this end, I compared differences in spatiotemporal 
variance in survival among three temperate-breeding species with differing migratory strategy.  I 
found that migratory behavior may be associated with reduced spatial variance in annual survival 
because resident species disperse less, reducing population connectivity.  I also found that 
migratory behavior is associated with increased temporal variance in survival, counter to 
expectations of general theory.  Given the potential importance of mortality risk in life history 
evolution, expanded geographic comparisons of annual and within-year patterns of variance in 
survival rates is likely key to understanding variation among species in life history traits. 
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Chapter 1: Introduction 2 

 3 

The expression of life history traits, or age-specific components of fecundity and 4 

mortality, determines the fitness of individuals and the growth rates of populations (Roff 2002).   5 

This deterministic relationship between life history traits, fitness, and population growth 6 

motivates a central role for life history theory in evolutionary ecology (Stearns 1992).  A widely 7 

recognized yet still poorly-explained pattern in the expression of life history traits is variation 8 

among populations or species in fecundity and mortality (Stearns 1992, Ricklefs 2000, Roff 9 

2002, Martin 2004).  This pattern is perhaps best described as a ‘slow-fast’ gradient, along which 10 

‘slow’ populations express low fecundity and low mortality, while ‘fast’ populations express 11 

high fecundity and mortality (Bennett and Owens 2002).  Despite the near-universality of this 12 

pattern in vertebrates (Dunham and Miles 1985, Gaillard et al. 1989, Clobert et al. 1998, Rochet 13 

et al. 2000) and its consequences for evolution (e.g. Stearns 1992), population ecology (e.g. 14 

Sæther and Bakke 2000), and conservation biology (e.g. Heppell 1998), our understanding of the 15 

causes of this pattern remains poor at best. 16 

Life history theory largely explains this broad pattern of variation among populations 17 

through tradeoffs between traits (Stearns 1989), ecological differences among populations that 18 

cause natural selection on life history traits (Roff 2002), and phylogenetic effects of shared 19 

evolutionary history on differences among species in expression of traits (Owens and Bennett 20 

1995).  Tradeoffs are invoked to explain why variation is constrained to occur along a slow-fast 21 

gradient despite persistent natural selection for increased fecundity and decreased mortality 22 

(Stearns 1989).  Yet, tradeoffs do not alone explain why some species are ‘fast’ and some are 23 

‘slow’ (Roff 2002).  Ecological differences among populations in resource availability (Lack 24 
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1947) or extrinsic mortality factors (Moreau 1944, Skutch 1949, Stearns 1992) are widely 25 

invoked to explain the positioning of species along this slow-fast gradient.  This line of reasoning 26 

is supported by geographic patterns in variation among species in life history traits (Jetz et al. 27 

2008).  Life history traits frequently covary strongly with latitude, suggesting that some 28 

ecological factor that also covaries with latitude is responsible (Hussell 1985).  In terrestrial 29 

birds, species that occur at high latitudes display ‘fast’ life history traits (high fecundity and 30 

mortality) while species that occur at low latitudes display ‘slow’ life history traits (low 31 

fecundity and mortality), independent of shared phylogenetic history (Martin et al. 2000, Martin 32 

and Ghalambor 2001, Jetz et al. 2008).  The recognition of the strength and enigmatic nature of 33 

this pattern in terrestrial birds (Moreau 1944, Lack 1947, Skutch 1949) drove the early 34 

development of general life history theory (Stearns 1992, Ricklefs 2000, Martin 2004) and 35 

remains an active area of research 60 years later. 36 

Despite enduring research interest in explaining the ecological factors responsible for 37 

latitudinal gradients in the life history variation of birds, numerous questions remain.  Several 38 

leading explanations for geographic patterns in life history variation invoke unvalidated 39 

assumptions and are supported only by relatively indirect evidence (Stearns 1992, Roff 2002).  In 40 

Chapter 2, I test two generally untested and unrecognized mechanistic predictions of Ashmole’s 41 

hypothesis (Ashmole 1961, 1963), a leading explanation for geographic variation in bird life 42 

histories.  This hypothesis is predicated on density-dependent mortality caused by geographic 43 

variation in the seasonal dynamics of resource availability (Ricklefs 1980, Jetz et al. 2008, 44 

Ricklefs 2010).  My results are contrary to two simple predictions of this hypothesis: first that 45 

most mortality should occur in seasons of low resources (i.e. winter) and second, that most 46 

mortality should be caused by starvation.  Instead, a diversity of terrestrial bird species appear to 47 
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commonly display greatest seasonal mortality rates in the summer, and the leading proximate 48 

cause of mortality is predation (Chapter 2).  This raises key questions about the validity of this 49 

hypothesis despite general acceptance (Jetz et al. 2008, Ricklefs 2010) based on more indirect 50 

forms of support (reviewed in Chapter 2) and suggests consideration of alternative explanations, 51 

or proposal of new explanations, for geographic patterns in life history variation. 52 

One classic context in which alternative ecological explanations for variation in the 53 

expression of life history traits have been tested is studies of the response of parental behaviors 54 

to natural or experimentally-induced variation in brood size (Nur 1984, Linden and Moller 1989, 55 

VanderWerf 1992).  While many of these experiments were designed to test explanations for 56 

differences among species in life history variation, their design has been limited to single 57 

species, making generalization to an among-species context uncertain (Martin 2004).  I expanded 58 

the predictions of this now-classic study design to an among-species context to allow tests for 59 

general ecological explanations for among-species variation in life history traits (Chapter 3).  I 60 

then tested these predictions using a combination of comparison (29 species) and comparative 61 

experiment (9 species) from 4 study sites on 3 continents (Chapter 3).  Species differed in the 62 

response of parental care, measured as provisioning rates, to natural and experimental variation 63 

in brood size, and the differences among species were explained by apparent food limitation and 64 

differences in adult mortality risk.  My results suggest that food limitation and adult mortality 65 

risk may interact to explain the observed geographic variation in bird life history traits, which 66 

helps resolve potentially conflicting results of previous studies (e.g. Golet et al. 1998) and 67 

emphasizes that pluralist approaches may be important to ultimately understanding what 68 

ecological factors play a role in life history evolution. 69 
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Given the potential importance of adult mortality risk in explaining geographic patterns 70 

in life history variation (Chapter 3) and the role that spatiotemporal variance in mortality risk 71 

may play in population growth (Tuljapurkar 1982) and life history evolution (Roff 2002), I 72 

examined how differences among species in dispersal behavior and migratory behavior may 73 

influence spatiotemporal variance in survival rates (Chapter 4).  I found that increasing dispersal 74 

among three species with differing migratory behavior (from residency to long-distance 75 

migration) was associated with increasing migratory distance and with reduced spatial variance 76 

in survival rates (Chapter 4).  Yet, temporal variance in survival was not related to migratory 77 

distance as previously predicted (Greenberg 1980).  Here, I have begun to address an important 78 

question raised by this dissertation that will likely be a productive target of future research: 79 

considering the potential importance of mortality rates in life history evolution, what explains 80 

geographic variation within and among species in mortality risk? 81 

My results suggest mortality risk is important in explaining geographic variation in life 82 

histories, yet we do not know why mortality risk varies geographically.  Is this variation driven 83 

by resource dynamics, predation risk, an interaction between the two, or some other ecological 84 

factor that may covary with latitude?  Do differences among species in other traits, such as 85 

migratory behavior, partly explain differences in mortality risk?  Do species with alternative life 86 

history strategies resolve life history tradeoffs, other than the tradeoff between number and 87 

quality of offspring I have compared among species here, differently?  While I have addressed 88 

the timing and proximate causes of mortality in published studies of wild bird populations 89 

(Chapter 2) and compared how three species differ in spatiotemporal variance in survival 90 

(Chapter 4), there is a clear paucity of such information for tropical bird species, and thus 91 
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understanding whether and how such patterns in mortality risk vary geographically remains an 92 

open question.   93 

 94 
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Chapter 2: Timing and proximate causes of mortality in wild bird populations: testing 154 

Ashmole’s hypothesis 155 

 156 

Daniel C. Barton and Thomas E. Martin 
157 

 158 

Abstract 159 

1.  Fecundity in birds is widely recognized to increase with latitude across diverse 160 

phylogenetic groups and regions, yet the causes of this variation remain enigmatic. 161 

2. Ashmole’s hypothesis is one of the most broadly accepted explanations for this pattern.  162 

This hypothesis suggests that increasing seasonality leads to increasing overwinter 163 

mortality due to resource scarcity during the lean season (e.g., winter) in higher latitude 164 

climates.  This mortality is then thought to yield increased per-capita resources for 165 

breeding that allow larger clutch sizes at high latitudes. Support for this hypothesis has 166 

been based on indirect tests, whereas the underlying mechanisms and assumptions remain 167 

poorly explored. 168 

3. We used a meta-analysis of over 150 published studies to test two underlying and critical 169 

assumptions of Ashmole’s hypothesis: first, that adult mortality is greatest during the 170 

season of greatest resource scarcity, and second, that most mortality is caused by 171 

starvation. 172 

4. We found that the lean season (winter) was generally not the season of greatest mortality.  173 

Instead, spring or summer was most frequently the season of greatest mortality. 174 

Moreover, monthly survival rates were not explained by monthly productivity, again 175 
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opposing predictions from Ashmole’s hypothesis.  Finally, predation, rather than 176 

starvation, was the most frequent proximate cause of mortality. 177 

5. Our results do not support the mechanistic predictions of Ashmole‘s hypothesis, and 178 

suggest alternative explanations of latitudinal variation in clutch size should remain under 179 

consideration.  Our meta-analysis also highlights a paucity of data available on the timing 180 

and causes of mortality in many bird populations, particularly tropical bird populations, 181 

despite the clear theoretical and empirical importance of such data. 182 

 183 

Key-words seasonal mortality, cause-specific mortality, life history, evolution, latitudinal 184 

gradient 185 

 186 

Introduction 187 

Explaining life history variation among species is a principle goal of evolutionary biology due to 188 

the importance of life history traits to fitness (Roff 2002) and population dynamics (Sæther & 189 

Bakke 2000).  A long-recognized yet enigmatic pattern in life history variation is the increase in 190 

fecundity (clutch size) among terrestrial species birds with increasing latitude (Moreau 1944; 191 

Lack 1947; Skutch 1949).  Replication of this pattern across diverse phylogenetic groups of birds 192 

on multiple continents suggests that an environmental factor that covaries with latitude is 193 

responsible (Martin 1996; Jetz, Sekercioglu & Böhning-Gaese 2008).  Alternative environmental 194 

factors proposed to explain this pattern include day length (Hussell 1985), food availability 195 

(Lack 1947), nest predation risk (Skutch 1949), adult mortality risk (Law 1979; Martin 2004), 196 

and seasonality of resources (Ashmole 1961, 1963). 197 
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Ashmole’s hypothesis is one of the most widely accepted explanations for latitudinal 198 

variation in clutch sizes of birds (Table 1).  Ashmole’s hypothesis explains clutch size variation 199 

as a function of varying seasonality in resource availability among latitudes.  Under this 200 

hypothesis, population sizes are thought to be limited by mortality caused by low levels of 201 

resources during the winter season, and reproduction (clutch size) is limited by per-capita 202 

resources available during the breeding season (Ashmole 1961, 1963; Ricklefs 1980; Martin 203 

1996; McNamara et al. 2008; Figure 1).   Through this mechanism, mortality from scarce 204 

resources during the lean season (i.e. winter) is argued to regulate population size at a level 205 

substantially below the summer carrying capacity at high latitudes.  The resulting increase in per-206 

capita resources for the breeding population thus explains the latitudinal increase in clutch sizes 207 

of terrestrial birds (Figure 1).   208 

Ashmole’s hypothesis has been supported via a diversity of tests (Table 1).  In particular, 209 

tests of the predicted correlation between degree of seasonality and fecundity (e.g. Ricklefs 210 

1980; Jetz, Sekercioglu & Böhning-Gaese 2008), high seasonal variability in population sizes 211 

(e.g. Ashmole 1961) and simulation-based modeling approaches (e.g. Griebeler & Böhning-212 

Gaese 2004; McNamara et al. 2008) are suggested to support this hypothesis of clutch size 213 

evolution (Table 1).  Yet, these tests have three important shortcomings. First, tests of the 214 

predicted correlation between variation in seasonality and clutch size are indirect in that they do 215 

not test the actual mechanism of the hypothesis.  Seasonality of resources as well as many other 216 

environmental factors all co-vary with latitude and thus a relationship between seasonality of 217 

resources and clutch size cannot be considered strong evidence for causation (Dunn & MacInnes 218 

1987; Hussell 1985; Koenig 1986).  Second, population sizes can vary extensively even when 219 

mortality is constant year-round if reproduction is seasonal (Fretwell 1972).  Thus, population 220 
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variation is not an appropriate means of testing this hypothesis.  Third, simulation-based 221 

modeling approaches have accepted at least one of the assumptions of Ashmole’s hypothesis (i.e. 222 

overwinter food limitation of population size) to be true a priori (e.g. Griebeler & Böhning-223 

Gaese 2004; McNamara et al. 2008).  While patterns predicted to result from Ashmole’s 224 

hypothesis are supported, other hypotheses also can explain these patterns (Martin 1996, 2004).  225 

Ultimately, direct tests of the assumptions and mechanism of Ashmole’s hypothesis are needed. 226 

Ashmole’s hypothesis makes two key assumptions regarding patterns of mortality in bird 227 

populations that have not been generally tested.  First, Ashmole’s hypothesis argues that 228 

mortality rates are highest during the season of lowest resource abundance (Figure 1; Ashmole 229 

1963; Ricklefs 1980; McNamara et al. 2008).  Second, Ashmole’s hypothesis assumes that the 230 

primary cause of mortality is starvation due to density-dependent resource scarcity during the 231 

lean season.  Despite an emerging emphasis on Ashmole’s hypothesis for explaining a major 232 

worldwide pattern in life history variation (Griebeler & Böhning-Gaese 2004; Jetz, Sekercioglu 233 

& Böhning-Gaese 2008; McNamara et al. 2008; Ricklefs 2010), the underlying assumptions and 234 

mechanistic basis of this hypothesis remain largely untested.  Given a diversity of alternative 235 

hypotheses, as well as the increasing acceptance of Ashmole’s hypothesis (Table 1), clear tests of 236 

these assumptions are critical to advancing our understanding of the ecological basis of 237 

geographic variation in life history strategies. 238 

We used literature data compiled from a comprehensive review and meta-analysis to test 239 

these two assumptions of Ashmole’s hypothesis across a diversity of species for the first time.  240 

First, we tested whether mortality rates of bird populations were lowest in winter by reviewing 241 

bird-banding and radio-telemetry studies that estimated seasonal mortality rates of bird 242 

populations year-round.  We further tested whether seasonal variation in resource productivity 243 
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predicted seasonal variation in mortality rates.  Second, we tested whether starvation was the 244 

primary cause of mortality in wild populations by performing a quantitative meta-analysis of 245 

studies which assigned known mortality causes to birds equipped with radio telemetry devices.  246 

Our results provide a broad characterization of the timing and sources of mortality in wild bird 247 

populations across diverse taxonomic groups. 248 

 249 

Methods 250 

Seasonal mortality rates of bird populations 251 

We reviewed the literature for studies of seasonal mortality rates of bird populations from year-252 

round mark-resight-recapture or radio-telemetry studies.  We searched the literature for ‘seasonal 253 

mortality birds’ and ‘seasonal survival birds’ using the Google Scholar and ISI-Thompson Web 254 

of Knowledge databases, and manually searched years 1990-2010 of Auk, Condor, Wilson 255 

Journal of Ornithology, Journal of Wildlife Management, Journal of Avian Biology, Journal of 256 

Field Ornithology, Ibis, Wildlife Society Bulletin, and Ardea.  We chose 1990 as the starting 257 

point of our manual searches because this year is near the beginning of an explosion in the 258 

number of published studies of survival using mark-recapture and radio-telemetry techniques in 259 

wildlife biology and ecology. We further supplemented our initial set of studies using forward- 260 

and backward-citations.  We only included peer-reviewed studies and Master’s theses or PhD 261 

dissertations in our review. 262 

Three criteria qualified a study for admission to our review and analysis.  First, studies 263 

had to report estimates of survival from at least two seasons representing an entire calendar year, 264 

and these seasons needed to represent at a minimum ‘spring/summer’ and ‘fall/winter’.  This 265 

criterion gave us our primary measure of the seasonality of survival rates – and allowed us to test 266 
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whether mortality was greatest during the season of predicted low resource abundance (i.e. fall 267 

and/or winter) or not.  Some studies reported survival from as few as two seasons while others 268 

reported survival rates for bi-weekly intervals for an entire year. Second, studies admitted were 269 

of natural variation in survival reported from populations in more or less natural settings.  We 270 

included estimates from hunted populations when estimates of survival in the absence of hunting 271 

were also reported or the relative ranks of seasonal survival were apparently unchanged by 272 

hunting (i.e. when hunting mortality was smaller than among-season differences in mortality).  273 

Third, we admitted studies of seasonal survival that used estimates of seasonal survival 274 

developed from a technique that could reasonably assume resighting probability was at or very 275 

near 1 (such as radio-telemetry; Pollock, Winterstein & Conroy 1989), intensive searches in 276 

closed or nearly-closed populations (e.g. Arcese et al. 1992), or a mark-recapture analysis that 277 

accounted for resighting probabilities of less than 1 (Lebreton et al. 1992).  This eliminated 278 

numerous band-recovery estimates of seasonal survival (e.g. Dobson 1987) because they are 279 

likely biased in several key ways, including seasonal bias in reporting probabilities, which 280 

compromise explicitly seasonal comparisons. 281 

We combined the results of these studies into a meta-analysis to test the first assumption 282 

of Ashmole’s hypothesis: that most mortality should occur in the winter.  We scored each study 283 

for whether most mortality occurred in fall/winter (defined as the season of lowest resource 284 

abundance in the few tropical studies included in the analysis), a season other than winter, or 285 

whether support was equivocal (i.e. if mortality was similar year-round, or in the subset of 286 

studies of migrant populations, if migration confounded seasonal variation). To provide another 287 

more highly conservative test of Ashmole’s hypothesis, we took all studies scored as equivocal 288 

and re-scored them as mortality highest in winter, because statistical power to detect differences 289 
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in survival rates among seasons may often be low.  Even though it is unlikely all studies with 290 

equivocal seasonality reflect highest mortality in winter, especially ‘equivocal’ studies reporting 291 

that migration may be the season of greatest mortality, taking this conservative approach allows 292 

examination of whether any support for Ashmole’s hypothesis exists in this dataset.  In the 293 

subset of studies of resident birds, we used logistic regression to test whether the probability that 294 

a study would report most mortality occurred in winter increased with latitude.   295 

To test the predicted positive relationship between resource productivity and survival 296 

rates, we extracted monthly survival rates from studies included in this review when possible.  297 

We used survival rates in this analysis because transformation to normality to achieve the 298 

assumptions of regression was achievable with survival, but not mortality, rates.  Monthly 299 

survival rates were extracted from studies by standardizing reported periodic tabular or graphical 300 

rates (using program DigitizeIt; I. Bormann, Germany 2006) to monthly rates.  We tested 301 

whether monthly productivity, as measured by actual evapotranspiration (Mather 1962, 1963a, 302 

1963b, 1963c, 1964a, 1964b, 1964c, 1965; Ricklefs 1980), predicted monthly variation in 303 

survival rates using simple linear regression of arc-sine transformed monthly survival rates on 304 

log-transformed monthly actual evapotranspiration.  We excluded year-round studies of 305 

migratory populations because it was often unclear which environment these populations 306 

occupied, and thus which values of monthly actual evapotranspiration the population 307 

experienced were ambiguous. 308 

Sources of mortality in wild bird populations 309 

We also reviewed the literature for studies that used radio-telemetry to assign mortality causes to 310 

wild bird populations.  We employed the same search strategy described above except we used 311 

the following search terms: ‘known fate birds’, ‘mortality cause birds’, and ‘mortality source 312 
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birds’.  Some studies located during our initial search for seasonal survival rates of bird 313 

populations included known fate data and thus were included in this meta-analysis as well. 314 

Studies were admitted to this review and analysis based on two criteria.  First, we only 315 

admitted studies that assigned fates (cause-specific mortality) to telemetered birds based on 316 

standardized criteria and that reported the exact numbers of birds assigned to each specific fate.  317 

These fates were our primary measure of the different causes of mortality in each bird 318 

population.  Second, we only admitted studies of wild bird populations in more or less natural 319 

settings; thus, we did not admit any introduction or re-introduction programs to our review.  For 320 

each study admitted, we collected and entered into a database: species, age class(es), season(s) 321 

studied, frequency of observation, total sample size of the study,  and fates assigned to different 322 

categories.  Ambiguous values were treated as missing values.  These data were then used in a 323 

quantitative meta-analysis. 324 

We conducted a meta-analysis of mortalities assigned to different causes to test the 325 

prediction of Ashmole’s hypothesis that the principle cause of mortality should be starvation.  A 326 

preliminary analysis (a simple summed proportion across all studies in the database) suggested 327 

predation was the major source of mortality, at least when summed across studies, which led us 328 

to design a conservative test of Ashmole’s hypothesis.  We summed the proportion of individuals 329 

assigned to two different fate categories (predation, and all other known causes including 330 

starvation, disease, and hunter kill) within each study.   We then used a random effects model 331 

(DerSimonian & Laird 1986) of the Freeman-Tukey double arcsine transformed data (Freeman 332 

& Tukey 1950) to generate a pooled across-study ‘incidence rate’ and 95% confidence intervals 333 

for the proportion of known mortality caused by predation.  We repeated this procedure for three 334 

different categories of studies.  First, and providing the most direct test of the assumptions of 335 
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Ashmole’s hypothesis, were studies of adults and adult/immature pools in winter.  We also 336 

repeated this procedure for studies of adults and adult/immature pools year-round in which the 337 

data were not clearly separable by season and for studies that did not fit clearly into any of the 338 

other two categories (we refer to these as ‘uncategorized’).  We generated within-study estimates 339 

of proportions and confidence intervals using the exact binomial method.   340 

Our meta-analysis thus tested whether a) studies found that most individuals died from 341 

predation or causes other than predation in winter, providing our direct, but conservative, test of 342 

Ashmole’s hypothesis, and b) whether studies that combined winter mortality with other 343 

seasonal mortality found that most individuals died from predation or causes other than 344 

predation, which provided a less direct test of Ashmole’s hypothesis.  The use of simple 345 

proportions of known or total mortality from predation (binomial estimator), rather than 346 

estimators that allow for unequal exposure to risk due to staggered entry of subjects into the 347 

population or right-censoring of data series, could introduce two biases into our results (Heisey 348 

& Fuller 1985).  First, the binomial estimator may underestimate mortality caused by mortality 349 

agents if there is staggered entry of subjects into the study population.  Second, if both survival 350 

rates and sample size vary seasonally, the season with the largest sample size will have an 351 

inappropriately large effect on the overall estimate of mortality rate (Heisey & Patterson 2006).   352 

These biases should not affect our tests of Ashmole’s hypothesis for two reasons. First, if 353 

we underestimate mortality caused by predation, we are providing an even more highly 354 

conservative test of the hypothesis.  Second, we divided our estimates of cause-specific mortality 355 

used in the meta-analysis into season/age categories (such as winter, the key test of Ashmole’s 356 

hypothesis) when possible.  We took this generally inclusive approach in our meta-analysis to 357 
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avoid excluding a very large proportion of studies that lacked sufficient information to calculate 358 

an estimator of cause-specific mortality other than the simple binomial estimator. 359 

One methodological concern identified a priori was that radio-telemetry studies may be 360 

biased towards mis-assignment of cases of starvation as predation due to postmortem scavenging 361 

by predators (Brand, Vowles & Keith 1975).  We tested whether scavenging may have biased the 362 

results of studies by testing whether studies that observed their subjects more often (daily vs. less 363 

often) were less likely to report cases of predation.  We matched studies by species, age class, 364 

and season (“study category”) that varied in check frequency according to their methodological 365 

descriptions.  We tested whether check frequency affected proportion of mortalities assigned to 366 

predation using a mixed-effect weighted regression model with a fixed effect of check frequency 367 

nested inside a random effect of study category.  We used each individual study as a sample unit 368 

with exact binomial proportion of individuals estimated to have died due to predation as the 369 

response variable, weighted by the random effect weight Wi (DerSimonian & Laird 1986). We 370 

used a t-test to assess the statistical significance of the fixed effect of interest, check frequency.  371 

Computer code used to conduct the analysis is available from DCB. 372 

 373 

Results 374 

Seasonal mortality of bird populations 375 

We obtained seasonal mortality estimates using radio-telemetry for 41 populations of 19 species, 376 

and using mark-recapture for 28 populations of 26 species (Table 2; see Appendix 1 in 377 

Supporting Information). Spring and summer were the most frequently reported season of 378 

greatest mortality (lowest survival) in radio-telemetry studies (Table 2).  This result did not 379 
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change even when ‘equivocal’ studies were re-categorized as mortality being greatest in winter, 380 

providing a highly conservative test (Table 2).  381 

Mark-recapture studies reported equivocal patterns of seasonality most frequently, but 382 

among studies that reported differences among seasons, spring and summer again were more 383 

frequently the season of greatest mortality than fall and winter (Table 2).  Assigning greatest 384 

mortality in fall and winter to the large number of ‘equivocal’ mark-recapture studies caused fall 385 

and winter to become the season of greatest mortality (Table 2).  Nonetheless, the pooled results 386 

across radio-telemetry and mark-recapture studies show that the most frequently reported season 387 

of highest mortality was during the spring or summer by a 2:1 margin, and that many studies 388 

showed no strong seasonal pattern (Table 2).   389 

We tested whether latitude predicted the season of greatest mortality within the subset of 390 

48 studies of resident bird populations in which hunting did not confound seasonal mortality 391 

(Appendix 1).  The probability that a study reported fall or winter as the season of greatest 392 

mortality was not predicted by the difference between maximum and minimum actual 393 

evapotranspiration (logistic regression: β = - 0.009, z = -0.994, 46 df, P = 0.32).  The probability 394 

that a study reported spring or summer as the season of greatest mortality also was not predicted 395 

by latitude (logistic regression: β = 0.009, z = 1.105, 46 df, P = 0.27).  In short, latitude did not 396 

predict season of greatest mortality.   397 

We tested the predicted positive relationship between monthly productivity and monthly 398 

survival based on monthly survival rates extracted from 40 resident bird populations.  The 399 

relationship between arc-sine transformed monthly survival rates and log-transformed actual 400 

evapotranspiration varied widely among populations (Table 3).  In 11 of the 40 populations 401 

examined, survival was significantly (P < 0.10) positively related to actual evapotranspiration as 402 
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predicted by Ashmole’s hypothesis.  However, survival was significantly negatively related to 403 

actual evapotranspiration in 8 of the 40 populations, and was not significantly related to actual 404 

evapotranspiration in the majority (21 of 40) of studies.  Thus, the positive relationship predicted 405 

by Ashmole’s hypothesis was not supported among the 19 studies with significant patterns, 406 

which showed approximately equal numbers of positive (11) and negative (8) relationships 407 

between actual evapotranspiration and survival. This predicted positive relationship was also not 408 

supported across all studies regardless of whether the regression was significant, which showed 409 

approximately equal numbers of positive (17) and negative (23) relationships between actual 410 

evapotranspiration and survival.  The proportion of populations showing a positive relationship 411 

between monthly actual evapotranspiration and survival did not differ between hunted (12 of 26 412 

positive) and unhunted (5 of 14 positive) populations (χ2 = 0.09, 1 df, P = 0.76; Table 3). 413 

Sources of mortality in wild bird populations 414 

Predation was by far the dominant cause of mortality across the studies included in our 415 

meta-analysis.  During winter, the random-effects pooled proportion of known mortality caused 416 

by predation was 0.62 (95% CI = 0.52 – 0.72; n = 40 populations of 20 species; Figure 2; see 417 

Appendix 2 in Supporting Information).  Predation caused the largest proportion of known 418 

mortality in 23 of these 40 populations (Figure 2; Appendix 2).  Among year-round studies of 419 

adult and juvenile mortality (studies that combined winter adult mortality with other seasons or 420 

age classes), the random-effects pooled proportion of known mortality caused by predation was 421 

0.78 (95% CI = 0.73 – 0.83; n = 39 populations of 18 species; Figure 3; Appendix 2).  Finally, 422 

for those cases that did not fit in any of the preceding categories, the random-effects pooled 423 

proportion of known mortality was 0.86 (95% CI = 0.76 – 0.94; n = 31 populations of 25 species; 424 



 

20 

 

Figure 4; Appendix 2).  In 27 of these 31 populations predation caused the greatest proportion of 425 

known mortality (Figure 4; Appendix 2).   426 

 Using a highly conservative approach where unknown mortality was assigned to non-427 

predation, the random-effects pooled proportion of all mortality was still 0.49 (95% CI = 0.39 – 428 

0.60) during winter; 0.67 (95% CI = 0.63 – 0.71) for adults and juveniles studied year-round; and 429 

0.82 (95% CI = 0.71 – 0.91) for studies not fitting the preceding categories.   430 

We tested whether studies that checked status of birds less frequently than daily affected 431 

assignment of mortality to predation using data from 27 studies of 9 species (Figure 5; Appendix 432 

2).  The fixed effect of check frequency was not significant in a weighted random-effects mixed 433 

model with a random effect of species (tcheck = -0.49, 16 df, P = 0.63).  Thus, in this subset of 27 434 

studies, check frequency was not associated with the estimated proportion of mortality due to 435 

predation.   436 

 437 

Discussion 438 

Ashmole’s hypothesis is widely accepted as an explanation for latitudinal variation in the clutch 439 

sizes of terrestrial birds (Table 1).  Our meta-analysis represents the first broad approach to 440 

testing key assumptions that form the mechanistic basis of this hypothesis (Figure 1).  We could 441 

not confirm that winter is the season of greatest mortality (Table 2) or that starvation from scarce 442 

resources is the principle cause of mortality for adults in winter (Figure 2) or in any other season 443 

(Figures 3, 4), despite the vast majority of studies of seasonal mortality in birds having been 444 

conducted at latitudes greater than 30 degrees (Appendix 1).  Furthermore, we did not find the 445 

predicted general positive relationship between seasonal survival rates and actual 446 
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evapotranspiration, and instead found that seasonal survival rates were as often negatively 447 

correlated with actual evapotranspiration as they were positively correlated (Table 3). 448 

Analyzing year-round radio telemetry studies and year-round mark-recapture studies, we 449 

found that the season of greatest mortality varied among species but that spring/summer was 450 

often the season of greatest mortality, rather than winter (Appendix 1; Table 2).  Similarly, 451 

Bergerud (1988), in a comprehensive review of northern grouse population data, concluded that 452 

density-dependent shortage of winter food and winter mortality did not create a winter 453 

population bottleneck and did not explain breeding population sizes.  We recognize that the 454 

sample of species represented in our sample of year-round radio telemetry and mark-recapture 455 

studies is not a fully representative subset of terrestrial bird diversity.  Year-round radio 456 

telemetry studies of survival can only be conducted with bird species large enough to carry 457 

transmitters with large and long-lived batteries (Appendix 1).  We suggest these methodological 458 

considerations resulted in our review of a large number of studies of populations in the order 459 

Galliformes (quail, grouse, turkeys) that are physically large and economically important 460 

because of hunting (Appendix 1).  Likewise, year-round mark-recapture studies are generally 461 

limited to populations which are easily observed or recaptured and have known distributions 462 

year-round.  These methodological issues probably resulted in the prior publication and our 463 

review of a large number of studies of Anseriformes (geese, ducks) and resident populations in 464 

the order Passeriformes (songbirds; Appendix 1).  Thus, our results on the seasonality of 465 

mortality represent a narrow subset of bird diversity, and we made no attempt to control for the 466 

influence of a phylogeny given this already taxonomically-biased sample.  Yet, Ashmole’s 467 

hypothesis was originally proposed to generally apply to all bird species across a range of 468 

ecological conditions, including marine birds and terrestrial birds (Ashmole 1961, 1963) and has 469 
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been broadly applied to explaining clutch size variation in a diversity of terrestrial bird species 470 

(Ricklefs 1980, Jetz, Sekercioglu & Böhning-Gaese 2008).  Therefore we consider our results on 471 

the seasonality of mortality as generally falsifying the assumption of greatest mortality in winter 472 

across terrestrial bird species, although some bird populations did show greatest mortality in 473 

winter (Table 2; Appendix 1). 474 

A positive relationship between seasonal survival rates and seasonal productivity is 475 

another implicit assumption of Ashmole’s hypothesis (Ashmole 1961, Ricklefs 1980).  Here we 476 

showed that the relationship between monthly survival rates and actual evapotranspiration, a 477 

measure of productivity, is highly variable among resident bird populations.  Some populations 478 

show a positive relationship, some populations show a negative relationship, and most show no 479 

significant relationship.  While this may again be the result of limited statistical power to detect 480 

such effects, even the non-significant relationships showed no hint of the positive relationship 481 

expected under Ashmole’s hypothesis (Table 3).  We take these results to indicate that resource 482 

abundance is not the driving factor in determining seasonal variation in survival (also see 483 

Bergerud 1988) across the diversity of high-latitude bird species represented in our meta-484 

analysis. 485 

This latter point was reinforced by our findings that the season of greatest mortality is not 486 

the lean fall/winter season, but most frequently summer, or alternatively, equivocal support for 487 

either.  While inability to identify the season of greatest mortality (i.e. equivocal studies) may 488 

simply result from low statistical power to detect differences among seasons, the positive result 489 

of greatest mortality in the summer in numerous bird populations (Appendix 1; Table 2) is 490 

surprising and is quite contrary to Ashmole’s hypothesis.  Potential explanations for this pattern 491 

are many, and include increased predation intensity in summer, predation costs of reproduction, 492 
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and possible carry-over effects from resource scarcity during winter.  The only potential 493 

explanation consistent with a role for population size limitation by winter resources in life 494 

history evolution is possible carry-over effects from winter (i.e., Norris et al. 2004).  Yet, such 495 

carry-over effects do not represent population limitation as predicted by Ashmole’s hypothesis 496 

and would require an expansion and complication of the mechanistic basis of Ashmole’s 497 

hypothesis.  We suggest examining all three of these potential explanations will be necessary to 498 

understand why mortality is frequently greatest in the summer.  499 

We found that starvation was clearly not the leading proximate cause of mortality in the 500 

majority of wild bird populations studied, contrary to the assumptions of Ashmole’s hypothesis.  501 

We instead found that predation was the most frequently reported cause of adult mortality in 502 

winter or in studies that combined adult winter mortality data with other seasons (Appendix 2; 503 

Figures 2-4).  Again, Bergerud (1988) came to the same conclusions in his analysis of northern 504 

grouse populations.  While our review and meta-analysis included only the subset of bird species 505 

that can carry radio-telemetry devices and are amenable to tracking using such technology, it 506 

includes a wide body size range and a wide range of phylogenetic diversity (Appendix 2).  Thus 507 

we consider our results generalizable – predation is likely the leading proximate source of 508 

mortality in free-living bird populations, as it is in the sessile eggs and nestlings of altricial birds 509 

(Martin 1995).  However, it is critical to consider that we only reviewed studies that assigned 510 

proximate sources of mortality.  Resource availability is theoretically proposed (McNamara & 511 

Houston 1990) and empirically demonstrated (Lima & Dill 1990; Cresswell & Whitfield 2008) 512 

to affect the predation risks accepted by birds and thus resource availability may still be the 513 

ultimate cause of much mortality in the bird populations studied.  Yet, again, we note that 514 
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mortality was not greatest during the lean season, so even if food is contributing to predation 515 

mortality, it is not working as predicted under Ashmole’s hypothesis.   516 

Our results suggest serious problems with the mechanistic basis of Ashmole’s hypothesis, 517 

despite its broad support from more indirect methods (Table 1).  The vast majority of populations 518 

included in our review and meta-analysis were temperate non-migratory species.  While the 519 

majority of mortality in migrant bird populations may occur during migration (Sillett & Holmes 520 

2002), the standing assumption for resident birds is that most mortality occurs during winter due 521 

to resource limitation (Ricklefs 1980).  Yet, we found in many populations that most mortality 522 

occurs during spring or summer due to predation.  Reconciling these results with current theory 523 

meant to explain life history variation and population regulation will require deeper 524 

consideration of the relationship between risk-taking and breeding, the potential role of extrinsic 525 

mortality in regulating populations of birds and its role in life history evolution, carry-over 526 

effects from conditions during one season to another, and the relationship between ultimate and 527 

proximate sources of mortality.  Furthermore, future empirical research on the timing and causes 528 

of mortality in wild bird populations resident at low latitudes will provide greater insights into 529 

mechanisms of population regulation and the potential validity of Ashmole’s hypothesis.  We 530 

also find that our results raise important questions about how and when bird populations are 531 

regulated – understanding the relative importance of food, predation, and disease in regulating 532 

population sizes and the season(s) in which regulation occurs is of paramount importance in 533 

understanding population biology, but we still know surprisingly little about these processes in 534 

birds – particularly in the tropics.   535 

 536 

 537 
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Table 1.  Studies reporting support for Ashmole’s hypothesis.  ‘AE’ stands for actual evapotranspiration.  ‘Support for Ashmole’s 649 

hypothesis’ indicates whether results were interpreted as either positive (+) or negative support (-). 650 

Study Study Species Main Result General Method 

Support 

for 

Ashmole’s 

Hypothesis 

Ashmole 1961 Parus major 

(from Gibb 1954) 

High seasonal variation in population size 

suggested high over-winter mortality 

Seasonal survey / census + 

Blondel 1985 3 Parus spp. Clutch size increased  with increasing 

seasonality of resource availability between 

mainland and island 

Interpopulation comparison + 

Dunn & MacInnes 

1985 

Branta 

canadensis in N. 

America 

Negative relationship between clutch size and 

latitude; unclear relationship between clutch 

size and productivity 

Interpopulation comparison - 

 

Dunn et al. 2000 Tachycineta 

bicolor (nc) in N. 

Positive relationship between summer 

productivity and clutch size after controlling for 

Interpopulation comparison + 
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America breeding density 

Evans et al. 2005 11 species in UK 

and New Zealand 

Clutch size of introduced species reduced in 

less seasonal environment (New Zealand) 

Compared clutch size 

between native and 

introduced range 

+ 

Griebeler, Caprano 

& Böhning-Gaese 

2010; Griebeler & 

Böhning-Gaese 

2004 

 Models predict increased clutch size with 

increased seasonality of resources assuming 

population size limited by winter resource 

abundance 

ecogenetic individual-based 

models 

+ 

Jetz et al. 2008 5,290 bird species 

worldwide 

Positive relationship between temperature 

seasonality and clutch size after controlling for 

other effects 

Interspecific comparison + 

Koenig 1984 Colaptes auratus 

in N. America 

Clutch size negatively correlated with winter 

AE 

Interspecific comparison + 

Koenig 1986 21 N. American 

species of Order 

Clutch size negatively correlated with winter 

AE 

Interspecific comparison + 
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Piciformes  

Lepage & Lloyd 

2004 

106 S. African 

bird species 

Clutch size increased with increasing 

seasonality of rainfall in arid regions 

Interspecific comparison + 

McNamara et al. 

2008 

 Model predicts increased clutch size with 

increasing seasonality assuming population size 

limited by winter resource abundance 

Simulation-based approach 

using individual-based 

models 

+ 

Møller 1984 Hirundo rustica 

and Delichon 

urbica 

Clutch size not related to winter AE or ratio 

between summer and winter AE 

Interpopulation comparison - 

Ricklefs 1980 13 breeding bird 

communities 

worldwide 

Mean clutch size negatively correlated with 

winter AE 

Compared mean clutch size 

among localities 

+ 

Yom-Tov, Christie 

& Iglesias 1994 

177 bird species 

in S. America 

Smaller clutch sizes in S. America related to 

possible reduced climatic variability in 

temperate S. Hemisphere 

Compared pattern of clutch 

size increase with latitude 

between N. America and S. 

America 

+ 
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Yom-Tov 1995 Bird species from 

5 regions 

worldwide 

Clutch size increased with increasing levels of 

competition from migrant species 

Compared clutch  size 

across regions  

+ 

Young 1994 Troglodytes 

aedon 

Clutch size negatively related to winter AE and 

positively to AE seasonality but not after 

controlling for latitude 

Interpopulation comparison + 

  651 
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Table 2. Season of greatest mortality and study methodology across 69 year-round studies of 652 

mortality in wild bird populations.  Spring/summer was the season of greatest mortality in radio-653 

telemetry studies (χ2 = 10.5, 2 df, P = 0.005) but not in capture-recapture studies (χ2 = 2.0, 2 df, 654 

P = 0.37).   Spring/summer was the season of greatest mortality pooled across study 655 

methodologies (χ2 = 6.0, 2 df, P = 0.050).  Data sources are shown in Appendix 1.  656 

Season of greatest mortality Radio-telemetry Capture-recapture Pooled 

Spring / summer 21 9 30 

Fall / winter 9 6 15 

Equivocal (no strong 

seasonal pattern; migration) 

6 12 18 

Confounded by hunting1 5 1 6 

Total 41 28 69 

1Not included in statistical tests – shown for comparison purposes only.  657 
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Table 3.  Relationship between monthly actual evapotranspiration (AE) and monthly survival 658 

rates in 39 wild bird populations.  The β and P-value are from a simple linear model of the effect 659 

of log-transformed AE on arc-sine transformed survival rates.  Populations in which there was a 660 

significant effect of AE on survival rates are shown in bold.  Hunted populations are denoted for 661 

comparison. Data sources are shown in Appendix 1. 662 

Species Study βAE P Hunted 

Anas fulvigula Bielefeld & Cox 2006 -0.05 0.42 Y 

Colinus virginianus Burger et al. 1995 0.02 < 0.01 Y 

Colinus virginianus Cox et al. 2004 0.09 < 0.01 Y 

Colinus virginianus Terhune et al. 2007 -0.02 < 0.01 Y 

Alectoris chukar Robinson et al. 2009 -0.03 0.05 Y 

Tetrao tetrix Angelstam 1984 -0.02 0.42 Y 

Tetrao tetrix Caizergues & Ellison 1997 0.01 0.64 Y 

Bonasa bonasia Montadert & Leonard 2003 -0.06 < 0.01 Y 

Bonasa umbellus Devers et al. 2007 0.02 0.03 Y 

Bonasa umbellus Thompson & Fritzell 1989 0.02 < 0.01 Y 

Bonasa umbellus Small et al. 1993 0.02 0.21 Y 

Dendragapus canadensis  Herzog 1979 -0.07 0.03 Y 

Lagopus lagopus Smith & Willebrad 1999 0.00 0.68 Y 

Centrocercus urophasianus Sika 2006 0.01 0.09 Y 

Tympanuchus pallidicinctus Hagen et al. 2007 0.01 0.60 Y 

Tympanuchus pallidicinctus Wolfe et al. 2007 -0.01 0.79  

Tympanuchus pallidicinctus Wolfe et al. 2007 -0.01 0.73  
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Meleagris gallopavo Palmer et al. 1993 -0.01 0.71 Y 

Meleagris gallopavo Wright et al. 1996 -0.01 0.08 Y 

Meleagris gallopavo Lehman et al. 2005 -0.01 0.80 Y 

Meleagris gallopavo Hubbard et al. 1999 -0.01 0.30 Y 

Meleagris gallopavo Kurzejeski et al. 1987 0.00 0.60 Y 

Meleagris gallopavo Nguyen et al. 2003 -0.01 0.46 Y 

Meleagris gallopavo Roberts et al. 1995 0.00 0.15 Y 

Meleagris gallopavo Spohr et al. 2004 -0.02 0.25 Y 

Meleagris gallopavo Vander Haegen et al. 1988 -0.01 0.49 Y 

Meleagris gallopavo Miller et al. 1998 -0.05 < 0.01 Y 

Melegaris gallopavo Vangilder & Kurzejeski 1995 0.00 0.70 Y 

Rostrhamus sociabilis Bennetts & Kitchen 1999 0.11 < 0.01  

Haematopus ostralegus dit Durrell 2007 -0.04 0.17  

Dryocopus pileatus Bull 2001 -0.02 0.12  

Petroica goodenovii Major & Gowing 2001 -0.30 0.08  

Sitta europea Nilsson 1982 0.04 0.03  

Parus atricapillus Smith 1967 -0.04 0.64  

Parus atricapillus Brittingham & Temple 1988 0.04 < 0.01  

Motacilla clara Piper 2002 -0.07 < 0.01  

Turdus merula Robinson et al. 2010 -0.02 0.56  

Sylvia boehmi Schaefer et al. 2006 0.01 0.27  

Sylvia lugens Schaefer et al. 2006 -0.13 0.17  

Melospiza melodia Arcese et al. 1992 0.09 0.01  



 

37 

 

Figure 1.  Graphical representation of Ashmole’s hypothesis.  Amplitude of seasonal variation in 663 

resource availability is thought to be greater at temperate than tropical latitudes.  Adult 664 

population sizes are thought to be regulated by resource availability minima that occur during the 665 

non-breeding season (i.e. winter) which are more severe in temperate regions.  Adults that 666 

survive to the summer resource availability maxima are thus thought to have more resources 667 

available for reproduction in temperate regions than tropical regions.  Adapted and expanded 668 

from Ricklefs (1980). 669 

 670 

Figure 2. Forest plot of the proportion of known mortalities due to predation in populations of 671 

adults in winter (n=40; references in Appendix 2).  Each entry represents a study and the exact 672 

binomial proportion of known mortalities due to predation is shown.  Box size corresponds to the 673 

magnitude of the random effects weight, Wi.  The random-effects pooled estimate for 674 

conservative and highly conservative tests (see Methods) is shown at bottom. 675 

 676 

Figure 3. Forest plot of the proportion of known mortalities due to predation in populations of 677 

mixed age classes studied year-round (n=39; references in Appendix 2).  Each entry represents a 678 

study and the exact binomial proportion of known mortalities due to predation is shown.  Box 679 

size corresponds to the magnitude of the random effects weight, Wi.  The random-effects pooled 680 

estimate for conservative and highly conservative models (see Methods) is shown at bottom. 681 

 682 

Figure 4. Forest plot of the proportion of known mortalities due to predation in populations that 683 

were not categorized as adults in winter, fledglings, or year-round studies (n = 31; Appendix 2).  684 

Each entry represents a study and the exact binomial proportion of known mortalities due to 685 
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predation is shown.  Box size corresponds to the magnitude of the random effects weight, Wi.  686 

The random-effects pooled estimate for conservative and highly conservative models (see 687 

Methods) is shown at bottom. 688 

 689 

Figure 5. Forest plot of the proportion of known mortalities in populations studied daily (open 690 

symbols; n=10) or less frequently (closed symbols; n=17), shown by species (references in 691 

Appendix 2).  Each entry represents a study and the exact binomial proportion of known 692 

mortalities due to predation is shown.  Box size corresponds to the magnitude of the random 693 

effects weight, Wi.  The random-effects pooled estimate for each group from a mixed model 694 

weighted by Wi  is shown at bottom. 695 

  696 
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Chapter 3: Causes of world-wide variation in parental provisioning behavior relative to 707 

offspring number 708 

 709 

Daniel C. Barton, Penn Lloyd, and Thomas E. Martin 
710 

 711 

Abstract 712 

Patterns of variation in reproductive strategies, such as the latitudinal increase in fecundity of 713 

terrestrial birds, are hypothesized to be caused by ecological factors such as resource limitation 714 

or age-specific extrinsic mortality.  Numerous classic tests of such hypotheses examined the 715 

responses of parents to natural or experimental variation in offspring number.  Yet, such studies 716 

often provided ambiguous tests because of their focus on single species and unnatural 717 

experimental designs that increased offspring number beyond the normal range of phenotypic 718 

variation.  We redressed these issues by comparing the responses of songbird parents to 719 

unmanipulated and manipulated variation in offspring number within normal ranges.  We 720 

examined among-species variation in the reaction norm between parental provisioning rate and 721 

variation in offspring number for a diversity of bird species on three continents.  This reaction 722 

norm integrates critical life history tradeoffs and alternative hypotheses predict differing within- 723 

and among-species patterns of variation.  First, variation in the slope of the reaction norm of per-724 

offspring provisioning to unmanipulated variation in brood size among 29 bird species was 725 

largely explained by variation in adult mortality rate.  However, the subset of species with high 726 

adult mortality appeared to adjust offspring number to parental provisioning capacity, as 727 

predicted by food limitation theory.  Second, we experimentally reduced broods by 728 

approximately half in 9 bird species with divergent life histories and found that reduced broods 729 

showed increased per-nestling provisioning and reduced total provisioning, consistent with food 730 
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limitation.  However, the magnitude of the decrease in total provisioning rate increased with 731 

decreasing adult mortality among species, suggesting that reproductive effort is differentially 732 

adjusted to reduced brood size based on adult mortality probability.  These results suggest that 733 

ecological factors thought to cause life history variation may interact and shift in importance 734 

across species and regions. 735 

 736 

Key-words life history, evolution, latitudinal gradient, reproductive effort, provisioning 737 

behavior, parental care, food limitation, nest predation, adult mortality 738 

 739 

Introduction 740 

Explaining variation in parental effort and offspring number is a fundamental goal of life history 741 

theory (Cody 1966, Roff 1992, Stearns 1992).  A widely-recognized yet poorly explained pattern 742 

in life history variation is the greater fecundity and parental effort of terrestrial bird species at 743 

higher latitudes (Lack 1947, Martin et al. 2000, Jetz et al. 2008).  Replication of this pattern 744 

across diverse radiations of terrestrial birds and across regions suggests an environmental factor 745 

that covaries with latitude is responsible, and almost all such explanations invoke either resource 746 

limitation (Lack 1947, 1954, Ricklefs 2010) or age-specific extrinsic mortality (Williams 1966, 747 

Law 1979, Michod 1979, Martin 2004).  A long-enduring context in which many of these 748 

explanations were originally proposed or tested were studies of the response of provisioning rate 749 

to natural or experimental variation in offspring number (Nur 1984, Saether 1984, Linden and 750 

Moller 1989, Golet et al. 1998, Martin 2004).   751 

Provisioning of offspring was central to such tests because it is thought to be sensitive to 752 

food availability (Martin 1995) and extrinsic mortality (Skutch 1949, Martin et al. 2000, 2011) 753 
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while encapsulating tradeoffs between offspring quality and number (Smith and Fretwell 1974) 754 

or between current and future reproduction (Williams 1966).  Larger brood sizes require more 755 

provisioning to maintain offspring quality (Lack 1947, Linden and Moller 1989), but such 756 

increased effort may come at the expense of energy, physiological stress, and intrinsic mortality 757 

for parents (Sanz and Tinbergen 1999, Nilsson 2002, Bonier et al. 2011).  Thus, the reaction 758 

norm of parental provisioning rate to brood size has long been thought to represent a key 759 

component of life histories and its shape has been proposed to reflect major alternative 760 

explanations for life history variation (Nur 1984, VanderWerf 1992, Conrad and Robertson 761 

1993).  Yet, past empirical tests of such explanations have provided only ambiguous support for 762 

any alternative (VanderWerf 1992, Martin 2004).  We suggest this ambiguity arises for two 763 

reasons.  First, past studies focused on measuring this reaction norm in single species mostly of a 764 

limited range of life history variation, which does not allow generalization to the broader 765 

observed range of life history variation (VanderWerf 1992, Conrad and Robertson 1993, Martin 766 

2004).  Second, many past studies focused on experimentally increasing brood size outside of 767 

natural ranges, which exposes parents to novel situations in which their responses are unlikely to 768 

be adaptive (Golet et al. 1998).  Thus, the design of previous studies may have yielded results 769 

both difficult to interpret and generalize. 770 

We attempted to redress these two issues and to provide a clear test of three major 771 

alternative explanations for latitudinal gradients in reproductive strategy: food limitation (Lack 772 

1947, 1954), nest predation risk (Skutch 1949, Martin et al. 2000), and adult mortality risk 773 

(Williams 1966, Law 1979, Michod 1979, Martin 2004).  We expand predictions of previous 774 

studies on single species to a comparative context to increase our ability to discriminate among 775 

alternatives and generalize our results.  We compare variation among species in the slope of the 776 
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reaction norm of per-nestling provisioning rate to offspring number based on unmanipulated in 777 

offspring number kept within natural limits (Fig. 1a).  The slope of this reaction norm is 778 

theoretically predicted to vary among species in alternative ways under the food limitation and 779 

adult mortality hypotheses (Nur 1984).  In addition, responses of provisioning rate to brood size 780 

may contrast for unmanipulated versus experimental variation.  We further develop contrasting 781 

predictions for both how per-offspring provisioning rate is expected to respond to manipulated 782 

brood size under each alternative hypothesis, and for how total provisioning rate (which reflects 783 

parental effort; Nilsson 2002) is expected to respond to manipulated brood size under each 784 

alternative.   785 

The food limitation hypothesis posits that, within and among species, parents adjust 786 

offspring number to available food resources (Lack 1954, Nur 1984, Pettifor et al. 1988) because 787 

natural selection favors the clutch size that maximizes the number of surviving offspring given 788 

available food resources (Lack 1947).  Over natural variation in brood size, the food limitation 789 

hypothesis thus predicts proportionate increase of provisioning with brood size within species 790 

(i.e. reaction norm slopes of 0; Fig. 1a).  When brood size is experimentally reduced, this 791 

hypothesis predicts parents will hold total provisioning rate relatively constant, because parents 792 

set provisioning effort to available food (Lack 1954, Pettifor et al. 1988).  As a consequence, per-793 

offspring provisioning rate would increase in reduced broods, which may increase offspring 794 

quality (Smith and Fretwell 1974). 795 

The nest predation hypothesis suggests that since visually-cuing predators may be 796 

attracted to nests by parental activity, high nest predation risk constrains total provisioning rate 797 

and brood size (Skutch 1949, Martin et al. 2000, 2011).  This hypothesis predicts that species 798 

with high nest predation risk should increasingly reduce per-offspring provisioning rates with 799 
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increasing brood size to minimize total provisioning rate and predation risk to offspring (Eggers 800 

et al. 2005).  Thus, the slope of the within-species reaction norm of per-offspring provisioning 801 

rate to natural variation in offspring number should be steeper in species higher nest predation 802 

risk (Fig. 1a).  Similarly, when brood size is experimentally reduced, total provisioning rate 803 

should decrease with decreased brood size and more strongly in species at higher risk of 804 

predation. 805 

The adult mortality hypothesis proposes species with lower adult mortality minimize 806 

costs to self during reproduction to maximize iteroparity, while species with high mortality 807 

maximize current reproductive effort (Williams 1966, Law 1979, Michod 1979, Ghalambor and 808 

Martin 2001).  Over natural variation in brood size, this hypothesis predicts that species with low 809 

adult mortality risk should show steeper negative slopes (i.e., larger decreases in per-nestling 810 

provisioning effort with increasing brood size) than species with high adult mortality risk (Fig. 811 

1a).  When brood size is experimentally reduced, species with low adult mortality risk are 812 

expected to decrease total provisioning rate more than species with high adult mortality risk.  813 

These predictions reflect that longer-lived species (i.e., those with low adult mortality) should 814 

reduce effort to minimize risk to iteroparity (Williams 1966; Ghalambor and Martin 2001).  815 

Conversely, species with high adult mortality should show little change in effort because 816 

probability of future breeding is low with high adult mortality (i.e. they have little iteroparity to 817 

preserve by reducing effort).  Thus, per-offspring provisioning rate is expected to increase in 818 

reduced broods of species with high adult mortality, potentially increasing offspring quality. 819 

We tested the predictions of these alternative hypotheses using a comparative-820 

experimental study of passerine birds.  We measured and compared responses of parents to 821 

natural variation in brood size among a wide diversity of bird species representing a wide array 822 
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of life history diversity at four study sites in North and South America and Africa.  We further 823 

conducted experimental reductions in brood size with a subset of bird species at two study sites 824 

in North and South America.   825 

 826 

Methods 827 

We compared responses of parents to natural variation in brood size among 29 different 828 

bird species (Fig. 2) from Arizona (34° N), South Africa (34° S), Argentina (28° S), and 829 

Venezuela (8° N), and to experimental reductions in brood size among 9 different bird species 830 

from Arizona and Venezuela (Fig. 2).  These study sites and further details of the natural history 831 

and life history traits of many of the species included in this study have also been described 832 

previously (e.g. Ghalambor and Martin 2001, Martin et al. 2006, Martin et al. 2011).    833 

We measured parental provisioning rate (trips/hr) and per-nestling provisioning rate 834 

(trips/hr/nstl) using videotaped observations of nests (4-8 h in length) during the nestling period 835 

in Arizona (1993-2006), South Africa (2000-2004), Argentina (1997-2000), and Venezuela 836 

(2000-2008).  During each year at each site, we located, monitored, and measured parental care 837 

at nests following standardized methodology (Martin and Geupel 1993, Martin et al. 2006).   838 

Offspring number was determined by direct observation of each nest, and nestling age was 839 

determined using observation of critical developmental transitions.   Provisioning rates generally 840 

increase with nestling age (Lyon et al. 1987; Martin et al. 2011), and we therefore divided 841 

nestlings into 3 age groups based on major developmental transitions: before, during, or after 842 

‘pin-break’, the emergence of flight feathers from feather sheaths.  Because ‘pin-break’ 843 

represents a major developmental transition in altricial birds near completion of musculoskeletal 844 
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development, we standardized our reported results to this age to allow comparisons among 845 

species with different nestling periods (Martin et al. 2011). 846 

We experimentally manipulated brood size in 9 bird species (Fig. 2) at the Venezuela 847 

(2005-2008) and Arizona (2007-2010) study sites.  To manipulate brood size, we removed 848 

approximately half the eggs in a complete clutch and replaced them with dummy eggs.  We also 849 

reduced brood size by inserting a thermocouple into a single egg in a clutch as part of another 850 

study conducted at the same study sites (e.g. Martin et al. 2007).  We removed dummy eggs or 851 

the egg containing the thermocouple at the time of hatching.  Experimentally reduced nests were 852 

filmed every other day following hatching until failed or fledged, and were matched with a 853 

within-season control nest with the same initial clutch size when possible. 854 

We estimated the slope of the relationship between per-offspring provisioning rate and 855 

offspring number using ANCOVA with per-offspring provisioning rate as the response variable, 856 

species and nestling age as factors, and species by nestling age and species by brood size 857 

interactions.  We used parameter estimates of the species by brood size interaction as species-858 

specific slopes of the relationship between per-offspring provisioning rate and offspring number 859 

while controlling for the effect of age.  We used the t-scores of the parameter estimates of the 860 

species by brood size interaction to test whether species-specific slopes differed from 0.   861 

We tested the effect of experimental brood size reductions on provisioning rates using 862 

two different ANOVA approaches.  First, we tested whether the natural log of total provisioning 863 

rate and the natural log of per-nestling provisioning rate at ‘pin break’ (± 1 day) differed between 864 

within-season matched-pair treatment (reduced) and control nests. We used an ANOVA design 865 

containing the treatment by species interaction (our test of whether response varied among 866 

species), species, and a blocking variable for pair.  Second, because not all reduced nests were 867 
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(or could be, in the case of odd-numbered clutch sizes) reduced by exactly half, we used an 868 

ANCOVA design containing an interaction between species and a covariate for the proportionate 869 

magnitude of treatment (range: 0-0.66), species, and a blocking variable for pair.  We then used 870 

this model to predict the response of each species to an average brood size reduction of 50% to 871 

standardize the magnitude of treatment for across species comparisons.   872 

We quantified offspring quality in manipulated (reduced) and control broods by 873 

measuring nestling mass, which is an important predictor of juvenile survival in altricial birds 874 

(Nur 1984, Golet et al. 1998).  We measured mass of all nestlings in a nest using a digital 875 

balance at ‘pin break’ age (± 1 day; see above).  We tested the effect of experimental brood size 876 

reductions on nestling mass and tarsus using an ANCOVA model containing effects of treatment 877 

by species interaction, age by species interaction, species, and a within-subject error term for 878 

nest (because observations of nestlings within each nest are not independent from each other).   879 

To determine nestling predation, we monitored nests following established protocols 880 

(Martin and Geupel 1993) to determine the number of days each nest was active and to assess 881 

success or failure.  We estimated daily predation risk during the nestling period using the 882 

Mayfield method (Mayfield 1975, Johnson 1979).  To determine adult mortality rates, we 883 

captured and individually marked adult birds using individual combinations of colored and 884 

numbered leg bands, and systematically recaptured and visually re-sighted marked adults 885 

throughout each study area each year.  Adult survival rates were estimated using Cormack-Jolly-886 

Seber or multistate mark-recapture models in Program MARK (Lebreton et al. 1992, White and 887 

Burnham 1999, Chapter 3).   We tested for predicted correlations between estimated reaction 888 

norm slopes and responses to brood size manipulations using Pearson’s correlation coefficient.  889 

We controlled for the effects of a phylogenetic hypothesis (Figure 2) on correlated evolution in 890 
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the continuous characters we measured (adult and nestling mortality rate, reaction norm slope) 891 

using phylogenetic independent contrasts (Felsenstein 1985) as implemented in the PDAP 892 

Package (Midford et al. 2009) for Program Mesquite (Maddison and Maddison 2011).   We used 893 

published phylogenetic hypotheses (Jønsson and Fjeldså 2006, Davis 2008) to develop our 894 

phylogenetic hypothesis (Figure 2). 895 

Results 896 

The relationship between per-nestling provisioning rate and natural variation in brood 897 

size varied significantly among species (Fig. 1b).  Estimates of reaction norm slopes of per-898 

offspring provisioning rate were negative for all 29 species examined and significantly less than 899 

0 for 16 species.  Slopes that did not differ from 0 could reflect low statistical power in some 900 

cases, but nevertheless, some species appear to adjust brood size proportionately to available 901 

food while others do not (Fig. 1b), lending mixed support to the food limitation hypothesis.  902 

Differences among species in reaction norm were not correlated with among-species differences 903 

in nest predation risk (Figure 3a), contrary to the prediction of the nest predation hypothesis.  904 

Differences among species in reaction norm slope were highly correlated with among-species 905 

differences in adult mortality rates (Figure 3b), supporting the prediction of the adult mortality 906 

hypothesis.  Neither of these correlations was affected by the potentially confounding influence 907 

of phylogeny (Figure 2, Appendix 3). 908 

We experimentally reduced brood size at 48 nests of 9 species that survived to ‘pin-909 

break’ age (many more were reduced and failed due to predation) matched with 48 control nests 910 

within year and season.  The natural log of total provisioning rate varied significantly among 911 

species, as did the response of the natural log of total provisioning rate to experimental reduction 912 

(Figure 4a).  The three tropical (Venezuela) species showed a significant reduction in total 913 
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provisioning rate in response to the brood reduction treatment while the six temperate (Arizona) 914 

species did not (Figure 4).  The natural log of per-nestling provisioning rate also varied 915 

significantly among species as did the response of natural log of per-nestling provisioning rate to 916 

experimental reduction (Figure 5a).  The 6 temperate species showed a significant increase in 917 

per-nestling provisioning rates in response to reductions (t-test from ANOVA, P < 0.05; Figure 918 

5a) while the 3 tropical species did not (t-test from ANOVA, P > 0.68; Figure 5a).  Reduced 919 

broods showed increased nestling mass at ‘pin break’ age in 4 of the 6 Arizona species (Figure 920 

5b) while data were not sufficient for tests of reduced brood size on nestling mass in Venezuela 921 

species. 922 

Magnitude of response of the natural log of total provisioning rate to brood size reduction 923 

varied from a -2.0% change (J. hyemalis) to a -50.5% change (B. tristriatus).  Because the 924 

magnitude of brood size manipulation varied among treatment-control pairs from -33% to -66% 925 

and among species from -35.2% to -57.1%, we used an ANCOVA approach to predict species 926 

responses to a standardized brood size reduction of 50%.  The slope of the relationship between 927 

brood size reduction magnitude and the natural log of provisioning rate varied significantly 928 

among species (Fspecies X magnitude 9, 39 = 6.9606, P < 0.001) and was significantly different than 0 in 929 

three species (t-test from ANCOVA, P < 0.01) and approached significance in two species (t-test 930 

from ANCOVA, 0.05 < P < 0.10).  The predicted responses of the natural log of provisioning 931 

rate to a 50% brood size reduction varied from -1.3% (P. chlorurs) to -50.5% (B. tristriatus; 932 

Figure 4b).  The predicted among-species responses to a 50% reduction from this ANCOVA 933 

approach and the estimated response of species to brood size reductions uncorrected for 934 

magnitude from ANOVA were highly correlated (N= 9, r = 0.99, P < 0.001). 935 
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The three tropical Venezuelan species with the lowest adult mortality, B. tristriatus, P. 936 

flavipes, and H. leucophrys, showed the only statistically significant (Figure 4a) and the largest  937 

(Figure 4b) reductions in total provisioning rate in response to brood size reduction.  Differences 938 

among species in percentage reduction of total provisioning rate were not correlated with among-939 

species differences in nest predation risk (N = 9, r < 0.2, P > 0.5), providing no support for the 940 

nest predation hypothesis.  Differences among species in percentage reduction of total 941 

provisioning rate were highly correlated with among-species differences in adult mortality risk 942 

(Figure 4b), supporting the adult mortality hypothesis.  This correlation was independent of 943 

phylogeny (Figure 2, Appendix 3). 944 

 945 

Discussion 946 

We found that a major prediction of food limitation theory – the apparent adjustment of 947 

brood size to parental provisioning capacity (Lack 1947, 1954) – was upheld in species with high 948 

adult mortality risk in both comparative (Figures 1b, 3b) and experimental (Figure 4) study 949 

designs.  Species with high adult mortality risk apparently proportionately adjusted brood size 950 

and provisioning rate over the range of unmanipulated variation (Figure 1b; Pettifor et al. 1988).  951 

Species with high adult mortality risk also continued to provision at a high rate when brood size 952 

was experimentally reduced (i.e. were relatively unresponsive to manipulation; Figure 4) and 953 

showed increased per-nestling provisioning rate in experimentally reduced broods.  Reduced 954 

broods in 4 of the 6 temperate species that showed increased per-nestling provisioning rate also 955 

showed increased nestling mass (Figure 4), suggesting benefits of increased per-offspring 956 

provisioning for offspring quality (Nur 1984; Pettifor et al. 1988). 957 
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However, species with low adult mortality risk showed alternative responses of 958 

provisioning rate to natural and experimental variation in brood size inconsistent with the 959 

predictions of the food limitation hypothesis.  Responses of parents to natural and experimental 960 

variation in brood size varied across a gradient of adult mortality risk (Figures 1b, 3b).  Species 961 

with high adult mortality appeared to show high parental effort across natural variation in brood 962 

size and maintained high parental effort when brood size was reduced.  In contrast, species with 963 

low adult mortality show reduced per-nestling provisioning rate with increasing natural brood 964 

size and reduced total provisioning rate (and similar per-nestling provisioning rate) with 965 

experimentally reduced brood size.  Surprisingly, we did not see evidence that nest predation risk 966 

affected the responses of parents to natural or experimental variation in brood size, despite the 967 

known effects of nest predation risk on mean provisioning rates in songbirds (Martin et al. 2000; 968 

Martin et al. 2011).   969 

Food limitation may thus appear highly important in constraining the expression of life 970 

history traits in some contexts – such as within north-temperate regions, where much previous 971 

research has been conducted (Martin 2004) – but not in others, such as across regions including 972 

the tropics.  Food limitation may similarly vary in importance for determining the outcome of 973 

life history microevolution (Walsh and Reznick 2008).  These results may help resolve the 974 

disconnect between studies that supported food limitation as an explanation for life history 975 

variation in birds (Lack 1954, VanderWerf 1992, Jetz et al. 2008, Ricklefs 2010) and other 976 

studies that suggest food limitation is an insufficient explanation for life history variation 977 

(Owens and Bennett 1995, Ferretti et al. 2005).   978 

Reviews of previous experimental brood size manipulation experiments have noted 979 

responses to brood size manipulation are highly variable among species (Linden and Moller 980 
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1989, VanderWerf 1992).  Explanations for such wide variation in responses are likely two-fold: 981 

first, many previous studies focused on experimental increases beyond the range of natural brood 982 

size variation which expose parents to novel situations in which their responses are unlikely to be 983 

adaptive (Golet et al. 1998).  Second, variation among species in responses is likely to be partly 984 

caused by differences among species in their life history traits (VanderWerf 1992).  Our study 985 

confirms this idea, and we show how life history variation – expressed as adult mortality rates – 986 

may explain among-species differences in response to brood size manipulations (Figures 4, 5) 987 

and further show how such among-species differences may be used to test alternative 988 

explanations for life history variation. 989 

We see three alternative explanations for variation among species in provisioning effort 990 

that is correlated with adult mortality rates, such as the results reported here.  First, variation 991 

among species in reproductive traits may be a consequence of extrinsic adult mortality risk as 992 

suggested by classic theory that suggests low extrinsic mortality favors reduced reproductive 993 

effort to preserve iteroparity (Williams 1966, Law 1979, Michod 1979, Martin 2004).  Second, 994 

seasonal resource availability dynamics may impose winter mortality and then provide high 995 

levels of food availability in the breeding season in temperate regions as predicted by Ashmole’s 996 

hypothesis (Ricklefs 2010).  Third, adult mortality rates may be a proximate consequence of 997 

variation in provisioning effort (Stearns 1992).  The second explanation is likely insufficient 998 

because terrestrial bird species do not generally show the patterns of mortality predicted by 999 

Ashmole’s hypothesis (Chapter 1).  Our results suggest that the third explanation is insufficient 1000 

because we found that longer-lived species adjust their reproductive effort, as measured by 1001 

provisioning rate, downwards in response to brood size reductions (Figure 4).  This result is not 1002 

expected if variation among species in adult mortality rates is simply a consequence of 1003 
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reproductive effort.  Thus, we suggest that variation among species in adult mortality risk may 1004 

explain variation in reproductive effort as measured by provisioning behavior or clutch size as 1005 

proposed by Williams (1966). 1006 

Our results suggest that adult mortality risk plays an over-arching role in determining 1007 

how species resolve critical tradeoffs between current and future reproduction and between 1008 

number and quality of offspring.  Yet, species with high adult mortality rate may resolve the 1009 

tradeoff between current and future reproduction in favor of maximizing current reproduction 1010 

and thus encounter the constraints of food limitation.  We suggest that food limitation shifts in 1011 

importance as an interacting function of adult mortality risk across geographic regions. 1012 
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Figure legends 1113 

Figure 1.  Among-species variation in reaction norms of per-offspring provisioning rate to 1114 

natural variation in offspring number.  a, Three potential reaction norms of per-offspring 1115 

provisioning rate to offspring number.  When the slope of this reaction norm is 0, parents 1116 

increase total provisioning rate proportionally with increased offspring number, resulting in 1117 

constant per-offspring provisioning.  When the slope of this reaction norm is less than 0, parents 1118 

increase total provisioning rate slower (less than proportional) with offspring number, thus per-1119 

offspring provisioning declines with increasing offspring number.  Food limitation theory 1120 

predicts slopes of 0 (e.g. line 1).  The nest predation alternative predicts steeper slopes in species 1121 

with higher nest predation (e.g. line 3 vs. line 2), while the adult mortality alternative predicts 1122 

steeper slopes in species with lower adult mortality. b, Estimated reaction norms of per-nestling 1123 

provisioning rate to natural variation in brood size for 29 passerine bird species from 4 study 1124 

sites (N = 1644 observations).  Slope varied significantly among species (Fspecies X brood size 29, 1529 = 1125 

9.74, P < 0.001).  The point estimate of all slopes is negative and for 16 is significantly different 1126 

from 0 (t-test from ANCOVA, P < 0.05).   1127 

 1128 

Figure 2.  Phylogeny, standard name, geographic site, and life history traits of 29 bird species 1129 

studied.  Annual adult mortality rate was estimated using Cormack-Jolly-Seber models of mark-1130 

resight-recapture data collected from the study sites.  Nestling predation risk was estimated for 1131 

each species using the Mayfield method based on large sample sizes from each species and study 1132 

site.  Reaction norm slopes are the slope of the linear relationship between per-nestling 1133 

provisioning rates and offspring number estimated by ANCOVA.  Slopes of reaction norms 1134 

significantly different from 0 (t-test from ANCOVA, P < 0.05) are shown in bold.  Phylogeny 1135 
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branches and species data are color-coded by geographic site.  Branches basal to multiple 1136 

geographic sites are shown in black.  Names of 7 of the 9 species for which brood size was 1137 

manipulated are starred, while two (Turdus migratorious, Poecile montanus) are not shown 1138 

because they were only included in the experimental portion of the study.  Phylogeny based on 1139 

the supertrees of Jønsson and Knud (2006) and Davis (2008). 1140 

 1141 

 Figure 3. Among-species variation in reaction norms of per-offspring provisioning rate to 1142 

natural variation in offspring number and relationship to ecological factors. a, Reaction norm 1143 

slope and daily nest mortality were not correlated among species (n= 29, Pearson correlation, r = 1144 

-0.03, P = 0.86) contrary to the nest predation hypothesis.  b,  Reaction norm slope (from Figure 1145 

1b) and annual adult mortality were highly correlated among species (n = 29, Pearson 1146 

correlation, r = 0.68, P < 0.001), supporting the adult mortality hypothesis. The reported 1147 

correlations were not strongly influenced by the potentially confounding effects of phylogeny 1148 

(Appendix 3). 1149 

 1150 

Figure 4. Among-species variation in responses of total provisioning rate to experimental brood 1151 

size reductions and relationship to adult mortality risk.  a, Species-specific total provisioning rate 1152 

in control and reduced broods (by about 50%) in 9 bird species in Arizona and Venezuela.  1153 

Closed symbols are control group means, and open symbols are reduction group means.  Sample 1154 

sizes (N = number of treatment-control pairs): J. hyemalis (7), O. celata (5), P. chlorurus (9), P. 1155 

montanus (4), T. aedon (4), T. migratorious (5), B. tristriatus (5), P. flavipes (5), H. leucophrys 1156 

(4).   Each species-specific treatment-control pair is connected and labeled by color.  1157 

Provisioning rate varied among species (Fspecies 8, 39 = 59.03, P < 0.001) and response of 1158 
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provisioning rate to reduction varied among species (Fspecies X treatment 9, 39 = 6.82, P < 0.001). 1159 

Significant reductions in provisioning rate in response to reductions were observed in 3 of 9 1160 

species (indicated by *; t-test from ANOVA, P < 0.01) and response approached significance in 1161 

2 of 9 species (indicated by †; t-test from ANOVA, 0.05 < P < 0.10). b,  Comparison of 1162 

predicted percent reduction in total provisioning rate in response to a standardized 50% brood 1163 

size reduction among species in relation to annual adult mortality (from ANCOVA).  Percent 1164 

reduction was significantly correlated with annual adult mortality rate (N = 9, Pearson 1165 

correlation, r = 0.906, P < 0.001), supporting the adult mortality hypothesis.  Significant 1166 

reductions are indicated by * (t-test from ANOVA, P < 0.01) and † (t-test from ANOVA, 0.05 < 1167 

P < 0.10). This result was independent of phylogenetic effects (Appendix 3). 1168 

 1169 

Figure 5.  Among species variation in responses of per-nestling provisioning rate and offspring 1170 

mass to experimental brood size reductions.  a, Species-specific per-nestling provisioning rate in 1171 

control and reduced broods (by about 50%) in 9 bird species in Arizona and Venezuela.  Closed 1172 

symbols are control group means, and open symbols are reduction group means.   Sample sizes 1173 

same as shown in Figure 4.  Each species-specific treatment-control pair is connected and 1174 

labeled by color.  Response of per-nestling provisioning rate to reduction varied among species 1175 

(Fspecies X treatment 9, 39 = 9.80, P < 0.001). Significant increases in per-nestling provisioning rate in 1176 

response to reductions were observed in 6 of 9 species (indicated by *; t-test from ANOVA, P < 1177 

0.01).  b, Species-specific nestling mass at ‘pin break’ in control and reduced (by about 50%) 1178 

broods of 6 bird species in Arizona.  Symbols as in panel a.  Sample sizes (treatment, control 1179 

nests): J. hyemalis (7,6), O. celata (5,9), P. chlorurus (8,10), P. montanus (3,4), T. aedon (3,6), 1180 

T. migratorious (4,4).    Response of nestling mass to brood size reduction varied among species 1181 
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(Fspecies X treatment 6, 51 = 6.81, P < 0.001).  Significant increases in nestling mass were observed in 3 1182 

of 6 species (indicated by *; t-test from ANOVA, P < 0.05) and approached significance in 1 of 6 1183 

species (indicated by †; t-test from ANOVA, 0.05 < P < 0.10). 1184 
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Chapter 4: Dispersal and spatiotemporal variance in survival in three passerine bird 1201 

species with differing migratory behavior 1202 

 1203 

Daniel C. Barton and Thomas E. Martin 
1204 

 1205 

Abstract 1206 

Variation among species in dispersal movements and seasonal migration are widely predicted to 1207 

hold major consequences for variation among species in population dynamics.  Spatiotemporal 1208 

variance in survival probability is an important determinant of population growth rate in 1209 

iteroparous organisms.  Spatial variance in survival is generally expected to decrease with 1210 

increasing dispersal, while seasonal migration is generally predicted to decrease temporal 1211 

variance in survival, yet tests of these predictions are lacking.  Further, seasonal migration may 1212 

increase propensity for dispersal, yet tests of this prediction are also generally lacking.  Using a 1213 

long-term (1993-2008) study of marked birds in Arizona and a multi-state mark-recapture 1214 

modeling framework, we describe variation in breeding dispersal movements among three 1215 

species of songbirds with differing migratory strategies.  We further tested whether spatial 1216 

variance in survival decreased with increasing dispersal movements, and whether temporal 1217 

variance was lower in more migratory species, as predicted by general theory.  We show that 1218 

dispersal movements were greatest in a long-distance migrant, moderate in a short-distance 1219 

migrant, and least in a resident songbird species.  We find reduced spatial variance in survival 1220 

rates in species with greater dispersal movements.  We find more complex differences in 1221 

temporal variation in survival rates among the three species, discuss potential explanations for 1222 

such differences, and compare with a larger published dataset of 19 additional species with 1223 



 

72 

 

differing migratory strategies.  Our results suggest that spatial variance in survival rates of 1224 

songbirds is, as predicted by theory, partly mediated by breeding dispersal, while temporal 1225 

variance in survival rates is not lower in migratory species, contrary to expectations.   1226 

 1227 

Key words: dispersal, spatial variance, temporal variance, survival, migration  1228 



 

73 

 

Introduction 1229 

Dispersal is a key biological phenomenon with diverse causes and important consequences for 1230 

ecological and evolutionary processes (Clobert et al. 2001).  Dispersal distances vary widely 1231 

among individuals and populations (Bowler and Benton 2005) with widely recognized 1232 

consequences for processes such as population dynamics (Kareiva et al. 1990, Daniels and 1233 

Walters 2000) and gene flow (Bohonak 1999).  Dispersal may influence the degree of 1234 

spatiotemporal variance in survival rates (Pienkowski and Evans 1985) in addition to causing 1235 

biased underestimates of survival rates through permanent emigration in open populations (e.g. 1236 

Cilimburg et al. 2002).  Survival rates and their variances are important deterministic 1237 

components of population growth rates (Tuljapurkar 1982, Saether and Bakke 2000, Clark and 1238 

Martin 2007) and are thus critical in the study of population ecology (Kareiva et al. 1990).  Yet, 1239 

the effects of differences among species in dispersal distances on spatiotemporal variance in 1240 

survival rates or on bias in survival rate estimates remain generally unknown.   1241 

The degree of spatiotemporal variance in population growth rate has important 1242 

consequences for long-term population growth rate (Tuljapurkar 1982) and probability of 1243 

population persistence in declining populations (Morris and Doak 2002).  Increased 1244 

spatiotemporal variance in survival rates generally decreases long-term population growth rates 1245 

and reduces probability of population persistence, particularly in iteroparous organisms (Gaillard 1246 

et al. 2000, Sibly and Hone 2002).  The two components of spatiotemporal variance, spatial 1247 

variance and temporal variance, are thought determined by alternative mechanisms.  Spatial 1248 

variance in demographic parameters is expected to be low when dispersal is relatively high 1249 

(effectively creating a single population) or when a high degree of environmental correlation 1250 

exists across space (causing subpopulations to have similar rates; Harrison 1991).  Conversely, 1251 



 

74 

 

spatial variance is expected to be high when dispersal is low or when a low degree of 1252 

environmental correlation exists across space.  Temporal variance in survival rates is thought to 1253 

be greater in populations that experience more variable climatic conditions during an annual 1254 

cycle, and in the case of birds, this is represented by species that remain resident at high latitude 1255 

compared with long-distance migrants (Greenberg 1980, Mönkkönen 1992).  Yet, tests of these 1256 

predictions are generally lacking.   1257 

Dispersal also causes biased underestimates of survival in open populations, because 1258 

permanent emigration is not separable from mortality (Lebreton et al. 1992). Increased 1259 

permanent emigration from finite study areas reduces apparent survival while true survival 1260 

remains unchanged and unknown (Cilimburg et al. 2002; Zimmerman et al. 2007).  Extending 1261 

this prediction to a comparative context, populations with reduced dispersal movements would 1262 

likely show reduced differences between apparent survival at a smaller spatial scale and a larger 1263 

spatial scale.  Conversely, populations with greater dispersal movements would likely show 1264 

larger differences between small and large spatial scale estimates (Zimmerman et al. 2007).  1265 

While permanent emigration is widely recognized to create biased underestimates of survival in 1266 

open populations, the degree to which variation among populations in dispersal impacts the size 1267 

of this bias remains mostly unexamined (Marshall et al. 2004). 1268 

We wished to test the influence of variation in dispersal behavior on spatial and temporal 1269 

variation in survival.  We a priori selected for comparison three bird species that differed in their 1270 

migratory behavior because migratory strategy is a potential predictor of among-species 1271 

differences in dispersal behavior (Paradis et al. 1998).  Bird species vary dramatically in their 1272 

seasonal migration strategies, ranging from the longest-distance movements known in animals to 1273 

resident species with limited home ranges (Alerstam 2001).  Migrants generally have greater 1274 
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mobility than resident bird species and experience an increased probability of chance events 1275 

during migration that may influence dispersal movement (Alerstam 2001).  Seasonal migrant 1276 

populations are therefore generally predicted to show greater dispersal movements than resident 1277 

populations, although tests are rare and have somewhat confounded migration with dispersal 1278 

(Paradis et al. 1998, Dawideit et al. 2009).  Understanding variation among bird species in 1279 

dispersal movements and whether this variation is related to migratory strategy thus also remains 1280 

an open question.  Nonetheless, migratory strategy was a reasonable basis of choosing species to 1281 

compare dispersal movements and consequences for spatiotemporal variation in survival rates. 1282 

 We conducted a 16-year mark-recapture-resight study of three passerine bird species with 1283 

differing migratory strategies.  We tested four predicted effects of differences among species in 1284 

migratory and dispersal behavior for population dynamics and survival estimates.  First, we 1285 

tested our assumption, suggested by a previous study (i.e. Paradis et al. 1998), that breeding 1286 

dispersal increased with migratory distance.  We improved upon previous designs for testing the 1287 

relationship between dispersal movements and migratory behavior (Paradis et al. 1998, Dawideit 1288 

et al. 2009) by using the same methodology for comparisons across species, and by using a live 1289 

encounters study of wild populations rather than a band-recovery study which may confound 1290 

dispersal and migration.  Second, we tested whether increased rates of breeding dispersal 1291 

reduced spatial variance in survival rates.  Third, we tested whether increased migratory distance 1292 

reduced temporal variance in survival rates.  We also compared our estimates of temporal 1293 

variance in survival rates with a published dataset of temporal variance in survival rates to test 1294 

whether migratory behavior predicted temporal variance in survival rates in a broader sample of 1295 

species.  Fourth, we tested whether variation among species in dispersal movements biased 1296 
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survival estimates differentially by testing whether the difference between small and large spatial 1297 

scale estimates of survival increased with increasing dispersal movements.  1298 

Methods 1299 

Study Site and Species 1300 

We conducted a long-term study of marked individual birds in Coconino County, 1301 

Arizona, USA from 1993-2008.  Details on the location, plant community, and breeding bird 1302 

community of this study site have been detailed previously (Martin 1998, 2001).  We marked, 1303 

recaptured, and resighted Mountain Chickadee (Poecile gambelli), Gray-headed Junco (Junco 1304 

hyemalis dorsalis), and Orange-crowned Warbler (Oreothylpis celata orestera).  Mountain 1305 

Chickadee is a year-round resident or altitudinal migrant (Dixon and Gilbert 1964).  Gray-headed 1306 

Junco is a short-distance migrant (Nolan et al. 1995).  Orange-crowned Warbler is a neotropical 1307 

migrant that winters from northern to southern Mexico (Sogge et al. 2010).  All three species are 1308 

songbirds (Order Passeriformes) of similar body size (approximately 10-20 g) that are territorial 1309 

and socially monogamous during the breeding season. 1310 

Our study area was sub-divided into five strata, each containing between two and six 1311 

study plots (20 study plots total).  Each stratum was a set of plots physically sub-divided from 1312 

other strata by either large canyons or a ridge and secondary road.  The centroids of strata varied 1313 

from 0.9-10.7 km in distance from each other, and the five strata varied from 47-107 ha in area.  1314 

Study plots were individual snow-melt drainages of mixed coniferous and deciduous vegetation 1315 

(Martin 1998, 2001).  We visited each plot to capture and mark birds from 6-10 times per season 1316 

during May-July of each year.   We captured birds using mist-nets and individually marked them 1317 

using unique combinations of colored plastic leg bands and a single unique U.S. Fish and 1318 

Wildlife Service numbered aluminum band.  Mist-netting effort was kept relatively constant 1319 
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across space and time from 1993-2008, using constant-effort mist-netting largely following the 1320 

Monitoring Avian Productivity and Survival (MAPS) protocol (DeSante et al. 1995), but also 1321 

allowing shifts of net positions among years.  In particular, each plot was sampled by 10-20 mist-1322 

nets, depending on plot size, for 6 hours per visit in each of the 6-10 visits per year.  We also 1323 

included targeted trapping of birds near nests located for other research purposes at the same 1324 

study area.  We concurrently conducted standardized nest-searching and monitoring at the same 1325 

study area.  This afforded an opportunity to resight individuals by one or more observers 1326 

approximately every other day during May-July in every year.  1327 

We created individual encounter histories representing the years and strata in which 1328 

individuals were encountered from our mist-netting and resighting data.  While some individuals 1329 

included in the study were originally marked as juveniles, our encounter histories only included 1330 

data collected from the age of first breeding on, and thus our dispersal and survival estimates are 1331 

limited to breeding adults.  It was occasionally impossible to assign the identity of a resighted 1332 

marked individual with certainty due to imperfect reading of band combinations in the field, and 1333 

such observations were excluded.  We split encounter histories into groups for analysis by 1334 

species and sex, except for Mountain Chickadee, which could not always be sexed reliably using 1335 

in-hand criteria during parts of the breeding season.  Our design thus consisted of a multi-state 1336 

mark-recapture model with five spatial strata and five species-sex groups (i.e. Orange-crowned 1337 

Warbler males, Orange-crowned Warbler females, Gray-headed Junco males, Gray-headed 1338 

Junco females, and Mountain Chickadee). 1339 

Estimating Breeding Dispersal 1340 

We used multistate mark-recapture models (White et al. 2006) to estimate annual 1341 

probabilities of survival (S), breeding dispersal characterized as transition probability between 1342 
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strata (ψ), and encounter probability (p, the probability of encountering animals known to be 1343 

alive and present in the study area).  We were specifically interested in testing whether ψ varied 1344 

among our five species-sex groups and thus developed our model set with this goal in mind.  We 1345 

modeled S and p as functions of strata and group, and modeled ψ as a function of group and a 1346 

linear function of distance between strata.  Our simplest model was thus one where S, ψ, and p 1347 

were constant among strata and groups (K or number of parameters = 3), while our most general 1348 

model contained interacting effects of strata and species and a within-species additive effect of 1349 

sex on S and p, and interacting effects of linear distance between strata and species and a within-1350 

species additive effect of sex on ψ (K = 42).  We were unable to evaluate temporal and spatial 1351 

variance in S, ψ, and p simultaneously due to a large number of inestimable parameters in a fully 1352 

time-varying model.   1353 

We used an information-theoretic approach to compare the relative support for alternative 1354 

models because we were interested in comparing the explanatory value of non-nested models 1355 

and specifically in comparing alternative models of ψ among groups (Burnham and Anderson 1356 

2002).  Parameters, likelihoods, and a sample size- and overdispersion-corrected derivation of 1357 

Akaike’s Information Criteria (QAICc) were estimated for alternative models using Program 1358 

MARK (White and Burnham 1999).   We estimated the overdispersion parameter, ĉ (the ratio of 1359 

observed variance to predicted model variance), using the median ĉ approach implemented in 1360 

Program MARK.  Because multistate models frequently exhibit likelihood functions with 1361 

multiple maxima, we further used Markov-chain Monte Carlo (MCMC) estimation in Program 1362 

MARK to generate posterior probability distributions of parameter estimates and evaluate 1363 

whether our models had converged upon global maximum-likelihood (ML) estimates.  We then 1364 
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used QAICc to compare relative support for alternative models in the context of our biological 1365 

question of interest, whether ψ varied among species-sex groups.   1366 

Multistate mark-recapture models as implemented in Program MARK make two 1367 

assumptions germane to our study.  First, our analysis assumes that survival from time i to time 1368 

i+1 does not depend upon the strata occupied by an individual in time i+1, and that mortality 1369 

occurs before movement.  Second, our analysis assumes that individuals move among strata at 1370 

the same time, which in this case is between breeding seasons.  We were unable to evaluate the 1371 

first assumption using our design, while the second assumption appears unlikely to be violated 1372 

because our marking and resighting was limited to the breeding season (May-July).  Almost all 1373 

movement among strata apparently occurred outside of the sampling period because observed 1374 

movements among strata within a breeding season were very rare. 1375 

Dispersal and Apparent Survival Differences Between Small and Large Spatial Scales 1376 

Our design involved an open population and a finite study area, and thus permanent emigration 1377 

from the entire study area was not separable from mortality (Lebreton et al. 1992).  However, we 1378 

were able to compare amongst groups the extent to which differential dispersal may bias 1379 

estimates of survival by comparing estimated survival at a smaller spatial scale (a single stratum) 1380 

with survival at a larger spatial scale (the entire study area; Marshall et al. 2004).  If we define Sr 1381 

as the apparent survival probability of individuals in stratum r and ψrr as the probability of an 1382 

individual transitioning from stratum r to stratum r, apparent survival (ϕ) within stratum r, ϕr, is 1383 

the product Sr
ψ

rr.  The parameter ϕr thus excludes individuals that transition to another strata. In 1384 

multistate models where strata are spatially based, such as ours, ϕr is the apparent survival at a 1385 

smaller spatial scale than Sr.  We will refer to this difference as Sr – ϕr.  We quantified the 1386 

magnitude of that difference to test the degree to which dispersal may differentially bias 1387 
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estimates of apparent survival in species with increased dispersal.  We used estimates of S and ψ 1388 

from the global multistate mark-recapture (described above; Ssp(sex)•st  psp(sex)•strata ψsp(sex)•dist) to 1389 

calculate the difference between ϕr and Sr because this model allowed S and ψ to vary freely 1390 

among strata.  We calculated Sr – ϕr for each stratum and species-sex grouping and then 1391 

calculated the arithmetic mean of Sr – ϕr within each species-sex grouping for comparison. 1392 

Estimating Spatial and Temporal Variance in Survival Rates 1393 

We estimated spatial and temporal variance in annual survival rates using a Bayesian 1394 

hierarchical modeling approach implemented in Program MARK version 6.1 (White et al. 2009) 1395 

that separates process and sampling variance in estimates of survival rates (Gould and Nichols 1396 

1988; Lukacs et al. 2008).  This modeling approach assumes that the logit-transformed survival 1397 

rate of each group g in stratum i or year t is a realization of a normally distributed random 1398 

variable (a ‘hyperdistribution’) with mean µ and standard deviation σ.  We estimated the 1399 

posterior probability distribution of parameters µ and σ using a Metropolis-Hastings Markov 1400 

chain Monte Carlo algorithm in Program MARK.  We used uninformative prior distributions for 1401 

µ (Normal (0,100)) and 1/σ2 (Gamma(0.001,0.001)).  We determined the number of tuning, burn-1402 

in, and posterior sampling iterations based upon inspection of preliminary chains of varying 1403 

length for signs of lack of convergence to an equilibrium distribution (McCarthy 2007).  We then 1404 

visually examined the posterior probability distribution for signs of non-convergence and used 1405 

the Gelman-Rubin statistic to quantitatively assess whether independent chains with alternative 1406 

starting values converged upon similar posterior distributions (Gelman and Rubin 1992).  To 1407 

estimate the posterior probability distribution of the spatial variance in survival rates, we 1408 

generated 25,000 samples of the posterior probability distribution after 5,000 ‘tuning’ samples 1409 

and 10,000 ‘burn-in’ samples following inspection of multiple preliminary chains.  To estimate 1410 
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the posterior probability distribution of temporal variance in survival rates, we generated 250,000 1411 

samples of the posterior probability distribution after 25,000 ‘tuning’ samples and 25,000 ‘burn-1412 

in’ samples. 1413 

We estimated spatial and temporal variance in survival separately due to the large 1414 

number of inestimable parameters in a fully time-dependent multistate model.  To estimate 1415 

spatial variance in survival rates, we used a multi-state mark-recapture model where S and p 1416 

varied among species and strata with an additive effect of sex, and where ψ varied as a function 1417 

of the interaction between species-sex group and linear distance between strata.  Thus, logit S of 1418 

strata i (N = 5 strata) was modeled as normally distributed with mean µS and variance σS, and the 1419 

distribution of logit p of strata i was modeled in the same fashion as µp and variance σp. To 1420 

estimate temporal variance in survival rates, we combined all strata and used a time-dependent 1421 

Cormack-Jolly-Seber model where ϕ and p varied among species with an additive effect of sex.  1422 

Thus, logit ϕ and p of interval t (N = 15 intervals) were modeled as normally distributed with 1423 

mean µϕ or µp and variance σϕ or σp.  Instead of explicitly testing whether parameters vary among 1424 

groups or strata (see Estimating Breeding Dispersal, above) this approach assumes that there is 1425 

variance and focuses on estimating the magnitude of spatial or temporal process variance (the 1426 

hyperdistribution parameter σ).  We report the posterior probability distributions of µ and σ of 1427 

these hyperdistributions and compare them among species-sex groups to test the prediction that 1428 

spatial variance and temporal variance decrease with increasing dispersal movement and 1429 

migratory distance. 1430 

Results 1431 

Breeding Dispersal 1432 
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We marked 604 adult Orange-crowned Warbler (291 male, 313 female), 1066 adult 1433 

Gray-headed Junco (539 male, 527 female), and 455 adult Mountain Chickadee during the 1434 

course of the study, and this sample of individuals was used in all reported analyses.  Multi-state 1435 

mark-recapture models that included differences among species and sex in breeding dispersal 1436 

probability, ψ, were strongly supported by QAICc (Table 1).  Comparisons of QAICc among 1437 

models showed model selection uncertainty among models including an effect of species and sex 1438 

on the intercept and slope of the relationship between ψ and distance (ψspecies•sex•distance and 1439 

ψspecies(sex)•distance), a model including only an effect of species and sex on the intercept 1440 

(ψspecies(sex)+distance), and a model including an effect of species but not sex on the intercept 1441 

(ψspecies+distance).  Median ĉ was estimated from the global model as 1.186, which suggested 1442 

appropriate model fit and a lack of significant overdispersion.  We graphically present model-1443 

averaged estimates from these top 4 models, which represented 98.1% of the QAICc weight 1444 

(Figures 1 and 2).  Estimates of the intercept of the ψ-distance function, averaged across sexes, 1445 

were greatest for Orange-crowned Warbler and least for Mountain Chickadee, with Gray-headed 1446 

Junco intermediate, and slopes differed among species (Figure 1).  Estimates of the intercept of 1447 

the ψ-distance function were greater in females than males in both Orange-crowned Warbler and 1448 

Gray-headed Junco (Figure 2).   1449 

Apparent Survival Differences Between Small and Large Spatial Scales 1450 

Survival in stratum r (Sr) is greater than stratum-specific survival ignoring individuals 1451 

that moved to other strata (ϕr) if dispersal among strata (ψrx) is greater than 0 by definition, and 1452 

we estimated ψrx  > 0 for all three species in this study (Figures 1, 2).  This difference, Sr - ϕr, 1453 

thus varied among species-sex groups as a result of variation in ψrx among species-sex groups.  1454 

Orange-crowned Warblers showed the largest values of Sr - ϕr (males: average 0.040, range 1455 
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0.038-0.042; females: average 0.108, range 0.102-0.111), with Gray-headed Juncos intermediate 1456 

(males: average 0.038, range 0.036-0.045; females: average 0.067, range 0.063-0.079) and 1457 

Mountain Chickadees the least (average 0.023, range 0.018-0.030).    1458 

Spatiotemporal Variance in Survival Rates 1459 

Posterior probability distributions of mean (µ) and spatial process variance (σ) of strata 1460 

survival rates (S) from our Bayesian multistate modeling approach differed by sex and species 1461 

(Table 2).  Mean survival rate (S) was greater in males than females in Orange-crowned Warbler 1462 

and Gray-headed Junco, although the difference between sexes was greater in the warbler than 1463 

the junco (Table 2).  Mean survival rate, averaged across sexes, was relatively greatest in 1464 

Orange-crowned Warbler, similar in Gray-headed Junco, and least in Mountain Chickadee 1465 

(Table 2).  Spatial process variance did not vary in the same order; it was relatively greatest in 1466 

Mountain Chickadee, moderate in Orange-crowned Warbler, and least in Gray-headed Junco, but 1467 

the magnitude of these differences was small (Table 2). 1468 

Posterior probability distributions of mean (µ) and temporal process variance (σ) of 1469 

annual survival rates (ϕ) from our Cormack-Jolly-Seber modeling approach differed by sex and 1470 

species (Table 3).  Mean survival rate (ϕ) was greater in male than female Orange-crowned 1471 

Warblers and Gray-headed Juncos (Table 3).  Mean survival rate, averaged across sexes, was 1472 

greatest in Orange-crowned Warbler, moderate in Gray-headed Junco, and least in Mountain 1473 

Chickadee (Table 3).  Temporal variance, averaged by species, was greatest in Mountain 1474 

Chickadee, moderate in Orange-crowned Warbler, and least in Gray-headed Junco (Table 3).  1475 

Temporal process variance was marginally greater in female than male Orange-crowned 1476 

Warblers (Table 3).   1477 

 1478 
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Discussion 1479 

The suggestion that more highly migratory species are generally more mobile and thus 1480 

may be more dispersal-prone (Paradis et al. 1998, Alerstam 2001), which served as our initial 1481 

assumption for choosing species, was supported.  As predicted, Orange-crowned Warbler, the 1482 

most highly migratory of the three species examined, showed the greatest probability of breeding 1483 

dispersal, while Mountain Chickadee, the year-round resident, showed the lowest probability of 1484 

dispersal, with Gray-headed Junco intermediate (Figure 1).  Females showed greater probability 1485 

of breeding dispersal in both Orange-crowned Warbler and Gray-headed Junco, and indeed, 1486 

differences among species in dispersal were partly driven by higher probabilities of breeding 1487 

dispersal in females (Figure 2).  Female-biased breeding dispersal is already widely recognized 1488 

as the dominant pattern in birds (Greenwood 1980, Greenwood and Harvey 1982, Clobert et al. 1489 

2001; but see Öst et al. 2011).  Given our small sample size of three species, we do not make a 1490 

strong case for a causal connection between migratory behavior and dispersal, except to note that 1491 

the correlation exists, and variation among species in dispersal allowed us to test the effects of 1492 

interspecific variation in dispersal on spatiotemporal variance in survival. 1493 

We explored the extent to which the observed differences among species in dispersal (ψ) 1494 

affected the differences between apparent survival estimates of each strata including individuals 1495 

that dispersed to other strata (Sr) and strata-specific rates excluding such dispersal (ϕr).  An 1496 

increase in the difference Sr - ϕr with increasing ψ is unremarkable because it is expected by 1497 

definition.  However, the magnitude of the differences in Sr - ϕr is indicative of the relative 1498 

degree of bias in S.  We found that average Sr - ϕr was small in Mountain Chickadee (0.023), 1499 

which showed the lowest dispersal movements (Fig. 1) while average Sr - ϕr was relatively large 1500 

in Orange-crowned Warbler females (0.108), which showed the greatest dispersal (Figs. 1, 2). 1501 
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Thus, we suggest that the difference between true survival and apparent survival may diverge 1502 

quite rapidly with increasing dispersal movements, particularly in migrant species.  Our strata 1503 

were all > 47 ha in size, yet we still observed somewhat large Sr - ϕr in female Orange-crowned 1504 

Warbler and Gray-headed Junco.  Thus further confirms small study areas underestimate survival 1505 

in migrant species that display high breeding dispersal (Cilimburg et al. 2002), and that this bias 1506 

may be larger in females (Marshall et al. 2004) which generally show greater dispersal in birds 1507 

(Greenwood 1980).  Our results further show how the relative degree of this bias may vary 1508 

among species with alternative dispersal behavior. 1509 

Variation in dispersal movement can affect the way populations respond to a dynamic 1510 

environment, through the effects of dispersal on spatial variance in demographic parameters 1511 

including population size, reproduction, and survival rates (Clobert et al. 2001).  We found small 1512 

differences among species in the spatial variance of survival rates (Table 2), which is jointly 1513 

determined by dispersal movements and environmental correlation across space (Morris and 1514 

Doak 2002).  In interpreting our results, we make the explicit assumption that the degree of 1515 

environmental correlation is very high and similar for the three species examined, which is not 1516 

unreasonable as the three species were examined at the same sites in the same years in a small 1517 

geographic area (<12 km at its widest point).  Thus, differences observed among species in 1518 

spatial variance are caused by differences in dispersal movement.  In the case of the species 1519 

studied here, spatial variance in survival rates decreased with increasing breeding dispersal, as 1520 

predicted by general metapopulation theory (Bowler and Benton 2005).  The observed 1521 

differences in spatial variance of survival rates were small relative to mean survival rates.  1522 

Nonetheless, such differences in the variance of demographic parameters may have large effects 1523 
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on population growth rates (e.g. Schorcht et al. 2009) depending upon the elasticity of the 1524 

demographic parameter in question (Saether and Bakke 2000, Clark and Martin 2007). 1525 

We found fairly large temporal variation in survival rates, as well as large differences 1526 

among species in temporal variation in survival rates (Table 3).  Temporal process variance in 1527 

demographic parameters is theoretically predicted to decrease with increasing parameter 1528 

elasticity because natural selection is thought to canalize variance in traits with large effects on 1529 

fitness (Pfister 1998; Gaillard et al. 2000). This prediction has been increasingly supported 1530 

across a broad range of taxa including birds (Schmutz 2009), but temporal variance is also 1531 

predicted to increase with increasing environmental variability (Greenberg 1980, Monkkonen 1532 

1992).  Species resident at higher latitudes in temperate regions are thought to be exposed to 1533 

higher degrees of environmental variability than migratory species that retreat to more equatorial 1534 

latitudes during the winter, and thus the high-latitude residents may show greater temporal 1535 

variation in survival rates.  We found, instead, that Orange-crowned Warbler, the longest-1536 

distance migrant, showed the greatest temporal variance, with the high-latitude resident 1537 

Mountain Chickadee intermediate, and Gray-headed Junco showing the least temporal variance.  1538 

Temporal variance in survival rates can be caused by numerous stochastic and deterministic 1539 

ecological processes, such as random weather events (Jonzen et al. 2002) or deterministic 1540 

density-dependence in survival (Ekman 1984).  In the case of migratory species, stochastic 1541 

weather-driven processes occurring on the wintering grounds or in stopover habitat may have 1542 

significant effects on demographic parameters including survival rates (Sillett et al. 2000, Sillett 1543 

and Holmes 2002).  Further, our study measured apparent survival, as is the case with all studies 1544 

of open marked populations, and thus temporal variance in apparent survival could also reflect 1545 
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temporally variable long-distance dispersal not measurable by our study.  We are unable to test 1546 

this alternative using our dataset of three species.   1547 

We compared our results post-hoc with 19 previously published studies of songbird 1548 

(Order Passeriformes) temporal survival variance reviewed by Schmutz (2009).  We tested 1549 

whether temporal variance in survival rates differed between 14 migrant and 8 resident species 1550 

and found no difference (Figure 3).  Thus, while migratory strategy may be predicted to play a 1551 

role in determining the degree of temporal variation in survival rates, we are unable to support 1552 

this prediction with either our results or by combining our results with previously published 1553 

results. 1554 

We tested three predictions regarding the relationship between dispersal, migratory 1555 

strategy, and population dynamics.  Given the importance of dispersal behavior in numerous 1556 

ecological and evolutionary processes, including population responses to anthropogenic 1557 

disturbances such as climate change (Thomas et al. 2004) and fragmentation (Cushman 2006), 1558 

our results suggest that population response to disturbances may depend on migratory strategy 1559 

assuming that dispersal increases with migratory distance (Paradis et al. 1998, Fig. 1).  Further, 1560 

increasing dispersal appeared to decrease spatial variance in survival rates among species.  1561 

Spatial variance in survival rates is an important component in many metapopulation models 1562 

(Harrison 1991; Morris and Doak 2002), and this again suggest that intrinsic differences among 1563 

populations in migratory behavior may strongly impact population biology.  1564 

We found that temporal variance in survival rates differed among species, yet was not 1565 

predicted by differences among species in migratory behavior.  Examining a larger dataset of 1566 

temporal variance estimates of songbirds assembled by Schmutz (2009) suggested that temporal 1567 

variance in apparent survival rates is not predicted by differences among populations in 1568 
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migratory behavior.  Overall, our results thus suggest that differences among populations in 1569 

dispersal behavior may be linked to migratory behavior and strongly impact key processes such 1570 

as spatial variance in survival rates, yet may not be linked to temporal variance in survival rates 1571 

as previously proposed.  Dispersal and spatiotemporal variance in survival rates are critical 1572 

elements of population dynamics, and thus consideration of a species’ migratory strategy may be 1573 

important in understanding and predicting population responses to natural and anthropogenic 1574 

disturbances.  1575 
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Table 1.  Model selection criteria for alternative multi-state mark-recapture models of the effects 1714 

of species (sp), sex, and strata (st) on survival (S) and recapture probability (p) and of the effects 1715 

of species, sex, and distance between strata (dist) on movement probability (ψ).  Models are 1716 

shown in descending order by QAICc.  The 10 models with lowest QAICc are shown with the 1717 

most general global model and most reduced model for comparison (in italics).  The top four 1718 

models, representing 98.1% of QAICc weight, are in bold.   1719 

 Model  QAICc1 ∆QAICc2 Weight3 ℓ
4 K

5 Deviance 

Ssp(sex)  psp(sex)+st ψsp(sex)+dist 3483.30 0 0.550 1 20 1883.5 

Ssp(sex)  psp(sex)+st ψ sp(sex)•dist 3484.44 1.134 0.312 0.567 22 1880.5 

Ssp(sex)  psp(sex)+st ψ sp•sex•dist 3487.50 4.20 0.067 0.123 24 1879.5 

Ssp(sex)  psp(sex)+st ψ sp+dist 3487.99 4.70 0.053 0.096 18 1892.2 

Ssp(sex)  psp(sex)•strata ψ sp(sex)•dist 3491.28 7.98 0.010 0.019 30 1870.9 

Ssp(sex)+st  psp(sex)+st ψ sp(sex)•dist 3491.79 8.49 0.008 0.014 26 1879.7 

Ssp(sex)+st  psp(sex)•strata ψ sp(sex)•dist 3498.64 15.34 0 0.001 34 1870.0 

Ssp(sex)  psp(sex)+st ψ sp·dist 3498.80 15.50 0 0 19 1901.0 

Ssp(sex)+st  psp(sex) ψ sp(sex)•dist 3499.9 16.62 0 0 22 1896.0 

Ssp(sex)  psp(sex) ψsp(sex)+dist 3501.00 17.70 0 0 16 1909.3 

Ssp(sex)•st  psp(sex)•strata ψ sp(sex)•dist 3510.86 27.56 0 0 42 1865.7 

S.  p. ψ. 3585.99 102.69 0 0 3 2020.6 

 
1720 

1QAICc = -2*log likelihood/c-hat + 2K +2K(k+1)/(n-ess-K-1) where n-ess is effective sample 1721 

size. 1722 

2 ∆QAICc = QAICc of model – QAICc of lowest model 1723 
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3 e(-1/2* ∆QAICc of model i) / ∑(-1/2 ∆QAICc) 1724 

4Model likelihood 1725 

5Number of parameters 1726 

  1727 
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Table 2.  Posterior probability distribution mean and standard deviation (SD) for annual survival 1728 

(µ) and spatial process variation in annual survival (σ) for three species of birds, estimated from 1729 

a hierarchical Bayes multi-state mark-recapture model.  Orange-crowned Warbler (ocwa) and 1730 

Gray-headed Junco (ghju) are shown split by sex and overall, while Mountain Chickadee (moch) 1731 

was not separated by sex. 1732 

µ σ 

mean SD mean SD 

ocwa  0.5667 0.0360 0.0279 0.0247 

   ocwa m 0.6023 0.0353 0.0278 0.0245 

   ocwa f 0.5302 0.0364 0.0281 0.0246 

ghju 0.5556 0.0300 0.0325 0.0317 

   ghju m 0.5657 0.0299 0.0317 0.0316 

   ghju f 0.5454 0.0302 0.0329 0.0316 

moch 0.5106 0.0467 0.0440 0.0402 

  
1733 
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Table 3.  Posterior probability distribution mean and standard deviation (SD) for annual survival 1734 

(µ) and temporal process variation in annual survival (σ) for three species of birds, estimated 1735 

from a hierarchical Bayes Cormack-Jolly-Seber model. Orange-crowned Warbler (ocwa) and 1736 

Gray-headed Junco (ghju) are shown split by sex and averaged, while Mountain Chickadee 1737 

(moch) was not separated by sex. 1738 

µ σ 

mean SD mean SD 

ocwa 0.5945 0.0580 0.1728 0.0535 

   ocwa m 0.6406 0.0553 0.1650 0.0514 

   ocwa f 0.5467 0.0597 0.1778 0.0551 

ghju 0.5589 0.0349 0.0580 0.0444 

   ghju m 0.5764 0.0345 0.0575 0.0439 

   ghju f 0.5411 0.0352 0.0585 0.0449 

moch 0.5440 0.0682 0.1399 0.1011 

   1739 
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Figure 1.  Model-averaged maximum likelihood estimates and 95% confidence intervals of the 1740 

relationship between breeding dispersal probability (ψ) and distance between strata for three 1741 

species of passerine bird: Orange-crowned Warbler (ocwa), Gray-headed Junco (ghju), and 1742 

Mountain Chickadee (moch).   1743 

 1744 

Figure 2. Model-averaged maximum likelihood estimates and 95% confidence intervals of the 1745 

relationship between breeding dispersal probability (ψ) and distance between strata by sex for 1746 

two species of passerine bird: Orange-crowned Warbler (ocwa, panel A), Gray-headed Junco 1747 

(ghju, panel B).  1748 

 1749 

Figure 3.  Comparison of estimates of the temporal process coefficient of variation (CV) in 1750 

annual survival rates of 22 populations of migrant and resident passerine birds. Sample size 1751 

(number of studies) is shown above each box.   Data from this study (Table 3) and Schmutz 1752 

(2009).  1753 
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Appendix 1. Species, season of greatest mortality and data sources used in meta-analyses of 1760 

seasonal mortality rates (Chapter 2, Tables 2 and 3). 1761 

 1762 

species 

season of greatest 

mortality 

(Table 2) study 

monthly 

mortality 

rate 

analysis 

(Table 3) method 

Tetrao tetrix summer Angelstam 1984 y T 

Melospiza melodia winter Arcese et al. 1992 y MR 

Rostrhamus sociabilis winter Bennetts & Kitchen 1999 y T 

Anas fulvigula winter Bielefeld and Cox 2006 y T 

Parus atricapillus winter 

Brittingham & Temple 

1988 y MR 

Alectoris rufa summer Buenestado et al. 2009 T 

Dryocopus pileatus equivocal Bull 2001 y T 

Colinus virginianus 

confounded by 

hunting Burger et al. 1995 y T 

Tetrao tetrix summer 

Caizergues & Ellison 

1997 y T 

Protonotaria citrea equivocal* Calvert et al. 2010 MR 

Seiurus 

noveboracensis equivocal* Calvert et al. 2010 MR 
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Branta hrota summer* Clausen et al. 2001 MR 

Centrocercus 

urophasianus summer Connelly et al. 2000 T 

Serinus serinus winter Conroy et al. 2002 MR 

Colinus virginianus 

confounded by 

hunting Cox et al. 2004 y T 

Bonasa umbellus 

confounded by 

hunting Devers et al. 2007 y T 

Haematopus 

ostralegus summer dit Durrell 2007 y MR 

Parus montanus equivocal Ekman & Askenmo 1986 MR 

Parus cristatus equivocal Ekman & Askenmo 1986 MR 

Strix occidentalis winter Ganey et al. 2005 T 

Chen caerulescens 

atlantica equivocal* Gauthier et al. 2001 MR 

Tympanuchus 

pallidicinctus summer Hagen et al. 2007 y T 

Dendragapus 

canadensis franklinii summer Herzog 1979 y T 

Meleagris gallopavo 

silvestris summer Hubbard et al. 1999 y T 

Chen canagica summer* Hupp et al. 2007 T 

Branta canadensis equivocal* Hupp et al. 2010 T 
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Dendroica cerulea equivocal* Jones et al. 2004 MR 

Meleagris gallopavo 

intermedia equivocal 

Keegan & Crawford 

1999 T 

Meleagris gallopavo 

silvestris summer Kurzejeski et al. 1987 y T 

Parus montanus equivocal Lahti et al. 1998 MR 

Meleagris gallopavo 

merriami summer Lehman et al. 2005 y T 

Anser 

brachyrhynchus 

confounded by 

hunting* Madsen et al. 2002 MR 

Petroica goodenovii summer Major & Gowing 2001 y MR 

Meleagris gallopavo 

silvestris summer Miller et al. 1998 y T 

Bonasa bonasia winter 

Montadert & Leonard 

2003 y T 

Pyrrhula murina equivocal Monticelli et al. 2009 MR 

Centrocercus 

urophasianus equivocal Moynahan et al. 2006 T 

Meleagris gallopavo 

silvestris summer Nguyen et al. 2003 y T 

Sitta europea winter Nilsson 1982 y MR 

Somateria spectabilis equivocal Oppel & Powell 2010 T 

Meleagris gallopavo confounded by Pack et al. 1999 T 
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silvestris hunting 

Meleagris gallopavo summer Palmer et al. 1993 y T 

Motacilla clara summer Piper 2002 y MR 

Anser anser equivocal* Pistorius et al. 2006 MR 

Meleagris gallopavo 

silvestris summer Roberts et al. 1995 y T 

Alectoris chukar winter Robinson et al. 2009 y T 

Turdus merula summer Robinson et al. 2010 y MR 

Alophoixus pallidus summer 

Sankamethawee et al. 

2011 MR 

Sylvia boehmi summer Schaefer et al. 2006 y MR 

Sylvia lugens winter Schaefer et al. 2006 y MR 

Anser albifrons 

frontalis equivocal* Schmutz & Ely 1999 MR 

Centrocercus 

urophasianus summer Sika 2006 y T 

Dendroica 

caerulescens equivocal* Sillett & Holmes 2002 MR 

Lichenostomus 

melanops equivocal Smales et al. 2009 MR 

Bonasa umbellus 

confounded by 

hunting Small et al. 1993 T 

Bonasa umbellus summer Small et al. 1993 MR 
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Lagopus lagopus winter 

Smith & Willebrand 

1999 y T 

Parus atricapillus winter Smith 1967 y MR 

Tetrao tetrix winter Spidso et al. 1997 T 

Meleagris gallopavo 

silvestris summer Spohr et al. 2004 y T 

Strix aluco equivocal Sunde et al. 2003 T 

Colinus virginianus winter Terhune et al. 2007 y T 

Bonasa umbellus winter 

Thompson & Fritzell 

1989 y T 

Meleagris gallopavo 

silvestris summer 

Vander Haegen et al. 

1988 y T 

Melegaris gallopavo summer 

Vangilder & Kurzejeski 

1995 y T 

Branta bernicula 

nigricans summer* Ward et al. 1997 MR 

Tympanuchus 

pallidicinctus summer Wolfe et al. 2007 y T 

Tympanuchus 

pallidicinctus summer Wolfe et al. 2007 y T 

Meleagris gallopavo summer Wright et al. 1996 y T 

*Migrant species excluded from some analyses (see Methods and Results). 1763 

 1764 
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Appendix 3.  Phylogenetic analyses of the relationships between ecological factors and reaction 2202 

norms of feeding rate to offspring number (Chapter 3). 2203 

Figure 1.  Phylogenetic independent contrasts of daily nest mortality and reaction norm slope 2204 

were not significantly correlated (Pearson correlation, r = -0.085, P = 0.67). 2205 

 2206 

Figure 2.  Phylogenetic independent contrasts of annual adult mortality and reaction norm slope 2207 

were significantly correlated (Pearson correlation, r = 0.617, P < 0.001).  The line shown is the 2208 

regression through the origin. 2209 

 2210 

Figure 3.  Phylogenetic independent contrasts of annual adult mortality and percentage change in 2211 

provisioning rate in response to brood size reduction were significantly correlated (Pearson 2212 

correlation, r = 0.938, P < 0.001).  The line shown is the regression through the origin. 2213 
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