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H I G H L I G H T S

• We have analyzed the chemical composition of 1852 fingerprints from 463 donors.

• Significant changes in fingerprint chemical components were found.• Classification model developed for donor gender, with 77.9% accuracy.

• Classification model developed for donor smoking habit, with 90.4% accuracy.
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A B S T R A C T

Fingerprints are widely used in forensic science for individualization purposes. However, not every fingermark
found at a crime scene is suitable for comparison, for instance due to distortion of ridge detail, or when the
reference fingerprint is not in the database. To still retrieve information from these fingermarks, several studies
have been initiated into the chemical composition of fingermarks, which is believed to be influenced by several
donor traits. Yet, it is still unclear what donor information can be retrieved from the composition of one’s
fingerprint, mainly because of limited sample sizes and the focus on analytical method development. It this
paper, we analyzed the chemical composition of 1852 fingerprints, donated by 463 donors during the Dutch
music festival Lowlands in 2016. In a targeted approach we compared amino acid and lipid profiles obtained
from different types of fingerprints. We found a large inter-variability in both amino acid and lipid content, and
significant differences in L-(iso)leucine, L-phenylalanine and palmitoleic acid levels between male and female
donors. In an untargeted approach we used full-scan MS data to generate classification models to predict gender
(77.9% accuracy) and smoking habit (90.4% accuracy) of fingerprint donors. In the latter, putatively, nicotine
and cotinine are used as predictors.

1. Introduction

For over 100 years, fingermarks have been used for individualiza-
tion purposes. Even today, fingerprint evidence is widely used in for-
ensic science. A fingerprint originates from contact between a bare
fingertip and a surface and mainly consists of eccrine and sebaceous
excretion [1]. Because the excretory glands are only located on the
friction ridges and not in the furrows, the excretion can be left behind
on the surface in the distinctive fingerprint pattern. Comparison be-
tween a fingermark found at a crime scene and a reference fingerprint
can lead to individualizing the perpetrator. However, not every

fingermark found at a crime scene can be used for individualization
purposes. It may be the case that the reference fingerprint is not in the
database, or that the fingermark is of poor quality in terms of ridge
detail, for example due to distortion of the fingerprint pattern. There-
fore, there is great interest among forensic investigators in techniques
that can still retrieve basic donor information from these kinds of fin-
gerprints.
Several studies have been carried out into the chemical composition

of fingerprints. In particular, common metabolites such as amino acids
and fatty acids have been investigated. Gas chromatography coupled to
mass spectrometry (GC-MS) was used in numerous studies both to study
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amino acid and fatty acid profiles from fingerprints [2–4]. Besides GC-
MS, multiple other analytical techniques have been used in studies into
the amino acid profiles of fingerprints. Capillary Electrophoresis (CE)
and (Ultra) High Performance Liquid Chromatography ((U)HPLC),
coupled to a mass spectrometer as detector, are examples of techniques
that have been successfully applied to separate and quantify amino
acids retrieved from fingerprints [5–7]. Several mass spectrometry
imaging approaches, often using Matrix Assisted Laser Desorption Io-
nization (MALDI), have been used to investigate the composition of
fingerprints as well [8–11]. A major drive behind the research into the
chemical composition of fingerprints is that eccrine or sebaceous ex-
cretion is likely to be influenced by several donor factors, such as the
change in the composition of sebaceous excretion before and after
puberty, and thus donor information may be derived from fingerprint
residue [12,13]. The chemical composition of a fingerprint has been
reported to be influenced by a wide variety of donor traits [1,14]. Ex-
tensive research has shown the influence of key donor factors, such as
age and gender [9,15–18]. The presence of exogeneous compounds has
been investigated as well, and is reported to provide information about
an individual’s lifestyle [19,20]. Additionally, illicit drugs and their
metabolites have been detected in fingerprints using various surface
mass spectrometry approaches [21,22]. Despite the numerous studies
into the chemical composition of fingerprints, due to the limited sample
sizes and the emphasis on method development, it is yet unclear which
questions the analysis of the chemical composition can answer in
practice. The aim of this study is to unravel what the analysis of the
chemical composition of fingerprints can reveal about the donor, by
analyzing the relation between fingerprint composition (natural, ec-
crine and sebaceous) and the characteristics of a large set of donors. To
be able to categorize donors based on their fingerprint composition, the
influence of common donor factors, such as gender, age, diet, smoking
habit and (medicinal) drug use needs to be analyzed.
In this study, we analyzed the chemical composition of 1852 fin-

gerprints, donated by 463 donors (179 male, 280 female and 4 un-
known, ranging from 18 to 63 years old, median age of 26) on the Dutch
music festival Lowlands in 2016. In a targeted metabolomics approach,
we analyzed the amino acid profiles of 926 fingerprints (463 natural
and 463 eccrine) using LC-MS and quantified the fatty acid, squalene
and cholesterol content in the other 926 fingerprints (463 natural and
463 sebaceous) using GC-MS. We used permutation tests to find sig-
nificant differences in amino acid and lipid abundances. In an un-
targeted approach, we used the full-scan MS data from the analyzed
fingerprints to generate conditional inference trees [23] as classifica-
tion models to predict two forensic relevant donor traits: gender and
smoking habit of fingerprint donors.

2. Material and methods

2.1. Solvents and solutions

The 21 amino acids L-alanine (98%), L-lysine (97%), L-leucine
(98%), L-glutamic acid (99%), L-glutamine (99%), L-tyrosine hydro-
chloride monohydrate (98%), L-histidine hydrochloride monohydrate
(98%), L-ornithine hydrochloride monohydrate (99%), hydroxy-L-pro-
line (99%), L-asparagine (98%), L-threonine (98%), L-isoleucine (98%),
L-serine (99%), L-methionine (98%), L-tryptophan (98%), L-valine
(98%), L-phenylalanine (98%), L-arginine hydrochloride (98%), L-cy-
stine (98%), L-aspartic acid (98%) and L-proline (99%) were purchased
at Sigma-Aldrich (Zwijndrecht, the Netherlands). Isotope labelled in-
ternal standard (IS) amino acids L-glutamic acid D5 (98.5 atom % D), L-
glutamine D5 (98.8 atom % D), L-histidine hydrochloride monohydrate
D3 (98.4 atom % D), L-threonine D2 (98.8 atom % D), L-serine D7 (98.6
atom % D), DL-cystine D6 (99.5 atom % D), hydroxy-L-proline D3 (99.2
atom % D), DL-valine D8 (99.1 atom % D) and L-ornithine D6 hydro-
chloride (99.1 atom % D) were purchased at CDN isotopes (Pointe-
Claire, Canada). L-aspartic acid D3 (98 atom % D), L-lysine D4 (98 atom

% D), L-leucine D10 (98 atom % D), L-phenylalanine D5 (98 atom % D)
and L-asparagine D8 (97 atom % D) were purchased at Sigma-Aldrich
(Zwijndrecht, the Netherlands). L-tyrosine D2 (98 atom % D), L-trypto-
phan D5 (97 atom % D) and L-methionine D3 (98 atom % D) were
purchased at Isotec (Zwijndrecht, the Netherlands). L-isoleucine 13C6
(99%) 15N (99%), L-alanine 13C3 (97–99%) D4 (97–99%)15N (97–99%),
L-arginine hydrochloride D7 (98%)15N4 (98%), L-proline 13C5 (99%)15N
(99%) were purchased at Cambridge Isotope Laboratories (Tewksbury,
MA, USA). UPLC-grade acetonitrile (ACN), methanol (MeOH) and
formic acid were purchased at Biosolve (Valkenswaard, the
Netherlands). Docosane (analytical standard), squalene (99%), choles-
terol (99%), caprylic acid (99%), capric acid (98%), lauric acid
(99.5%), myristoleic acid (99%), myristic acid (99%), pentadecanoic
acid (99%), palmitoleic acid (98.5%), palmitic acid (99%), heptadeca-
noic acid (98%), linoleic acid (99%), oleic acid (99%), stearic acid
(98.5%), nonadecylic acid (99%), arachidic acid (99%) chloroform
(99.9%) and chlorotrimethylsilane (99%) were purchased from Sigma
Aldrich (Zwijndrecht, the Netherlands). Individual amino acid and in-
dividual isotopically labelled amino acid (IS) stock solutions of
100–500mg/L, depending on their solubility, were prepared in MeOH
containing 5% (v/v) formic acid using a volumetric flask and were
stored at −20 °C. An amino acid stock solution of 2mg/L of each of the
21 amino acids was prepared from the individual stocks using a volu-
metric flask and stored at −20 °C. Similarly, an IS mixture of 2mg/L of
each of the 21 IS amino acids was prepared using a volumetric flask
from the individual IS stocks and stored at −20 °C. Individual fatty
acid, squalene and cholesterol stock solutions of 500–2000mg/L, de-
pending on their solubility, were prepared in MeOH using a volumetric
flask and were stored at −20 °C. A lipid stock solution of 500mg/L of
each of the fatty acids, squalene and cholesterol was prepared from the
individual stocks using a volumetric flask, evaporated under nitrogen
flow, reconstituted in MeOH, and then stored at −20 °C. Extraction
solvent for amino acid analysis was prepared as MeOH containing 5%
(v/v) formic acid and 0.01mg/L IS amino acids. Extraction solvent for
lipid analysis was prepared as MeOH solvent containing 1.5 mg/L
docosane (IS).

2.2. Fingerprint collection and processing

Fingerprints were donated by volunteers at Lowlands Science 2016.
The material was gathered in a non-invasive manner and did not in-
fringe on any privacy of the donors; fingerprints were purposely do-
nated in a light smearing motion to minimize the number of in-
dividualizing characteristics. All experiments were carried out
following institutional guidelines and relevant laws. Ethical approval
was obtained before executing the experiment. All participants were
18 years or older, gave informed consent and received a debriefing form
after participating in the experiment. All participants (4 6 3) donated
two natural fingerprints, one eccrine fingerprint and one sebaceous
fingerprint. Participants were asked to rub their hands together to
create homogeneity and donate two fingerprints with their index finger
on 2.5 by 5 cm aluminum foil sheets. The participants then transferred
the sheets to two 15mL conical tubes. To one of the tubes 2mL MeOH
containing 5% (v/v) formic acid and 0.01mg/L IS amino acids was
added by means of a dispenser. To the other, 2 mL MeOH containing
1.5 mg/L docosane was added by means of a dispenser. Both samples
were mixed using a vortex mixer for 30 seconds. The participants were
then asked to wash their hands thoroughly with soap, dry them with
paper and then put on nitrile gloves. The participants then filled out a
digital questionnaire consisting of 31 questions regarding general donor
factors and habits such as age, gender, diet, smoking habit and (illicit)
drug use (questionnaire can be found in supplementary material). After
completing the questionnaire, the participants were asked to remove
their gloves, rub their hands together to create homogeneity and donate
one fingerprint with their index finger on a 2.5 by 5 cm aluminum foil
sheet. Then, participants were asked to donate a sebaceous fingerprint
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by grooming their foreheads before donating the last fingerprint. The
aluminum sheets were transferred by the donors to 15mL conical tubes
and, by means of a dispenser, to eccrine fingerprint 2mL MeOH con-
taining 5% (v/v) formic acid and 0.01mg/L IS amino acids was added,
while to the sebaceous fingerprint 2mL MeOH containing 1.5 mg/L
docosane was added. Both samples were mixed using a vortex mixer for
30 seconds. After collection, all samples were stored at 4 °C for the first
72 hours, then at −20 °C until analysis.

2.3. UPLC-MS

For each donor, one natural and one eccrine fingerprint were ana-
lyzed using UPLC-MS. The fingerprints were first brought to room
temperature and subsequently mixed using a vortex mixer for 30 sec-
onds. Then, the aluminum foil sheets were removed using clean twee-
zers. Samples were then evaporated under nitrogen flow and subse-
quently reconstituted in 50 μL MeOH containing 5% (v/v) formic acid
and transferred to an injection vial. UPLC-MS was executed as described
previously [6]. Liquid chromatography was carried out using a 150mm
UPLC ethylene bridged hybrid (BEH) amide column (Waters, Milford,
MA, USA) and an Aqcuity I-class UPLC autosampler and binary solvent
pump (Waters, Milford, MA, USA). The flow rate was set at 0.500mL/
min. Column eluent was sprayed into the ion source of the time-of-flight
MS by electrospray ionization (ESI). The solvents used for UPLC were
(A) 0.4% formic acid in acetonitrile (ACN) and (B) 0.4% formic acid in
ultrapure water (purified deionized water, to attain a sensitivity of 18
MΩ-cm at 25 °C). The gradient used was 95% A for 3min, followed by a
linear gradient from 5 to 50% B in 19min and then 1min of 50% B.
Finally, the column was reconditioned for 2min with 95% A (run time
totaling to 25min). For each analysis 2.5 μL of sample solution was
injected. Samples were analyzed on an accurate mass TOF with a dual
ESI (Agilent 6220, Santa Clara, CA, USA). The system was operated in
the positive ion mode. MS spectra from m/z 40–1200 were acquired at a
resolution of 7500 at m/z 400 at a rate of 1 spectrum per second. The
capillary voltage was set at 3.5 kV, the source gas temperature at 325 °C
and a drying gas flow of 5 L/min was used. The nebulizer pressure used
was 30 psig, while fragmentor, skimmer and octapole 1 RF voltages
were set at 160, 65 and 250 V, respectively. MS full scan data were
acquired with Agilent Mass Hunter Data Acquisition software (version
B.04.00) and data were processed using Agilent Mass Hunter Qualita-
tive Analysis software (version B.05.00) and Quantitative Analysis
software (version B.05.00). To quantify amino acid content, a calibra-
tion series was prepared ranging from 0.10 to 1.60mg/L per amino
acid. If amino acid quantification results were outside the calibration
range, samples were diluted and reanalyzed. Amino acid quantification
results were used for the targeted data analysis, while the full scan LC-
MS data was used in for an untargeted approach.

2.4. GC-MS

Lipid components were extracted and quantified in a two-step
method as proposed by Cadd et al. [4]. For each donor, the fatty acid,
cholesterol and squalene profile from one natural and one sebaceous
fingerprint were determined. The fingerprints were first heated to room
temperature and subsequently mixed using a vortex mixer for 30 sec-
onds. The sample solution was then transferred to a 10mL glass tube
and 100 μL chlorotrimethylsilane was added. The aluminum foil sheet
was transferred to a new 10mL glass tube and 2mL of chloroform was
added and subsequently mixed using a vortex mixer for 60 seconds.
Then, the chloroform sample solution was transferred to the tube al-
ready containing the methanol and chlorotrimethylsilane sample solu-
tion and subsequently samples were evaporated under nitrogen flow.
After reconstitution in 50 μL of chloroform, samples were transferred to
injection vials (with 50 μL inserts). Analyses were carried out on a GC-
MS HP6890/5973 (Agilent Santa Clara, CA, USA). An HP-5MS column
was used for separation (30m length, 0.25mm internal diameter, film

thickness 0.25 μm). Aliquots of 5 μL were injected onto the column in
split mode (1/20) using an auto sampler and a 4.5 min solvent delay.
The temperature of the liner was held at 250 °C and helium was used as
a carrier gas. The column temperature was held at 80 °C for 1.0 min and
heated to 230 °C at a rate of 10 °C/min. Then, the column was heated to
310 °C at a rate of 4 °C/min and this temperature was held constant for
8min. A calibration series was prepared using the lipid stock solution in
concentrations of 0, 0.01, 0.02, 0.05, 0.1 and 0.2 g/L and was processed
in the same way as the fingerprints deposited on aluminum foil. If lipid
quantification results were outside the calibration range, samples were
diluted and reanalyzed. Lipid quantification results were used for the
targeted data analysis, while the GC-MS data were used in for an un-
targeted approach.

2.5. Data analysis

Data was analyzed with R (version 3.4.2) using R studio (Version
1.1.456). R was chosen because of the wide availability of packages for
preprocessing, visualization and machine learning approaches.
Additionally, as it is open source software, it is available to others in the
field. In the data analysis, both a targeted metabolomics approach and
an untargeted profiling approach were implemented. Both the quanti-
tative data of the targeted metabolites as well as the raw LC-MS and GC-
MS data will be made publicly available within 6months after pub-
lication (reserved doi: https://doi.org//10.4121/uuid:0611ccbb-1e5a-
4bf4-b6da-abc115ca0c98).

2.5.1. Targeted metabolomics
The quantified amino acid and lipids were analyzed in a targeted

metabolomics approach. The targeted metabolites were regarded as a
sub composition of the fingerprint residue, as not all fingerprint com-
ponents were quantified, and the analytes of interest are thus a sub
composition of a larger, unknown, composition. Therefore, a compo-
sitional data analysis approach was used, as described by Aitchison
[24], which is based on the additive log-ratio transformation (alr):

=x x
x

x
x

x
x

alr( ) ln , ln , , ln
D D

D

D

1 2 1

(1)

where each part xj of the composition is transformed to a log-ratio with
common divisor xD. L-threonine and palmitic acid yielded the lowest
total variation (data not shown) and were chosen as reference part (xD)
for the eccrine and sebaceous compositions, respectively. To deal with
missing values in the targeted metabolites, the following transformation
was used, denoted genlog:

= +x x d cgenlog( ) ln( ) (2)

where

=c mint(ln( ))

=d ec

in which m is the smallest non-zero value in a vector and int(x) a
function that drops all digits after the decimal point. The subtraction of
the constant c from each element after log transformation ensures that
the lowest value in a vector remains zero. The alr transformation from
Eq. (1) adapted to Eq. (2) leads to the function that has been used to
transform the targeted metabolite values:
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=
+ =
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x
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ln( ) if min( ) 0
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To reduce the number of missing values, the number of variables
was reduced by applying a modified 80% rule [25]. This meant a
variable was included if at least 80% of the values is non-zero in the
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samples of any class. Permutation tests were executed as statistical tests
to find significant differences in targeted alr transformed amino acids or
lipids. The Agresti–Coull interval is used as an approximate binomial
confidence interval [26].

2.5.2. Untargeted analyte profiling
We analyzed the data in an untargeted profiling approach using the

XCMS package [27–29]. LC-MS data files were converted to mzXML
using MSconvert [30]. GCMS data files were converted to CDF using
openChrom [31]. Peak picking and retention time correction were
optimized using the IPO package, using 10 randomly selected datafiles
[32]. Analyte difference reports were subsequently generated for the
following classes; type of fingerprint, gender and smoking (every day
and past 24 hours). Peak areas were normalized using the total sum of
peak areas per sample. Classification models were generated using the
caret package [33]. 30 features were preselected with minimum re-
dundancy and maximum relevance using the mRMRe package, using
Spearman's rho as a measure of the correlation between the features in
the dataset [34]. The data was subsequently preprocessed using the
Yeo-Johnson transformation. Conditional inference random forests
(cforest) were used as classification models, using the party package
[35–37]. The data were randomly divided in train and test sets (75%
and 25%, respectively). Classification accuracy was evaluated by gen-
erating confusion matrices using the caret package [33]. Variable im-
portance was evaluated using the varImp function (caret package), to
find the most important predictors of the generated classification
models. P-values associated with fold changes were calculated using t-
tests. Features were putatively annotated using the online METLIN mass
spectral metabolite database [38].

3. Results

3.1. Targeted metabolomics

In total, 463 participants donated 4 fingerprints (2 natural, 1 eccrine
and 1 sebaceous fingerprint), resulting in the analysis of 1852 finger-
prints. Using LC-MS, the amino acid profiles of one of the natural and
the eccrine fingerprint of each donor was determined. Using GC-MS, the
lipid profile of the remaining natural and sebaceous fingerprints was
determined. Fig. 1 shows the distribution of the total amino acid and
lipid content for the different types of collected fingerprints. Clearly,
the variability in total amino acid is large, ranging from below 100 ng
to above 10 µg per fingerprint. The amino acid content was generally
higher in the natural fingerprints when compared to the eccrine fin-
gerprints (5.4 fold on average, p-value 3.48E-04). This might be

explained by the fact that the participants washed their hands and only
wore gloves for a limited time before donating the eccrine fingerprint.
The variability in total lipid content shows a similar pattern, ranging
from 100 ng up to 100 µg per natural fingerprint. The lipid content is
higher in the sebaceous fingerprints (5.9 fold on average, p-value
2.32E-11), ranging from about 1 µg to over 100 µg per fingerprint.
Subsequently, multiple permutation tests (104 permutations per test

and α=0.05) were performed to identify potential metabolic markers
using the additive log-ratio transformed metabolite concentrations (Fig
S1). Table 1 displays the significant results between donor classes if
found significant in both types of fingerprint samples (natural and ec-
crine/sebaceous). The rationale behind this is that changes found in
both types of fingerprints are more likely to be a result of metabolic
changes. Additionally, as the variation in fingerprint composition is
large, the data from the eccrine and sebaceous fingerprints can be used
to confirm findings from the natural prints. We do, however, also report
significant differences, which might be of forensic relevance, found
only in natural fingerprints. It must be noted that the fact that many
donor traits did not lead to any significant findings in the targeted
amino acid or lipid compounds, is possibly related to unbalanced
sample sizes. This was the case for many of the questions regarding to
medicinal drug use. Similarly, in case of donor age, over 90% of the
participants was in the age range of 18 to 40 years.
Gender differences were found in L-(iso-)leucine and L-phenylala-

nine concentrations, which were found to be higher in men in both the
natural and eccrine fingerprints (35.2% and 13.4% in case of L-pheny-
lalanine, 13.3% and 7.9% for L-(iso)leucine). These findings are in line
with previous findings in studies on amino acid serum levels, where six
out of six studies that included both men and women also found sig-
nificantly higher isoleucine levels in men, and five out of six for phe-
nylalanine [39]. In comparison, Huynh et al. reported higher levels of L-
phenylalanine in females compared to male fingerprint donors [40]. In
case of the lipid compounds, palmitoleic acid was the only compound
found to significantly differ between male and female donors in both
the natural and sebaceous fingerprints. Palmitoleic acid was found to be
21.6% higher on average in natural fingerprints donated by male do-
nors. In case of the sebaceous fingerprints, the palmitoleic acid content
was 13.5% higher in case of male donors. Alanine concentrations were
found to be 18.6% (natural) and 5.0% (eccrine) higher on average for
donors who reported to have used cannabis in the last 24 hours. Donors
that reported to have consumed >15 units of alcohol in the 24 hours
prior to donating their fingerprint, showed higher proline concentra-
tions than those that consumed no alcohol, 1–5 or 6–10 units. Acute
alcohol administration is known to cause decreased utilization of pro-
line, which would explain an increased secretion in heavy drinkers
(>15 units) compared to other classes [41].
Previous studies have shown the ability to successfully detect illicit

drugs and/or their metabolites in fingerprints of drug users using either
DESI, LESA or MALDI-MS [21,22,42]. Moreover, the detection of cer-
tain drugs of abuse in fingerprints after contact has also been shown to
be possible using techniques such as SIMS and Raman spectroscopy
[43,44]. In this study, we investigated possible indirect effects of drugs
use on the chemical composition (i.e. changes in amino acid or lipid
profile). As mentioned before, only in the case of usage of cannabis and
alcohol, a small but significant change in certain metabolite levels in
both the eccrine as well as natural fingerprints was detected. Only in
the natural fingerprints of donors who indicated to have used MDMA in
the past 24 hours, we found tryptophan to be 38.5% higher compared to
donors who did not use MDMA. Previous studies have shown that
MDMA inhibits tryptophan hydroxylase activity [45–47]. This could
possibly explain the higher abundance of tryptophan in donors that
used MDMA. In the eccrine fingerprints no significant difference was
found. Similarly, significant differences were found in L-asparagine le-
vels in only the natural fingerprints from donors who indicated to have
consumed diet soda in the past 24 hours and people who consumed
regular soda or no soda at all. L-asparagine levels were 27.2% and
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Fig. 1. The distribution of total amino acid and lipid content (ng) in the natural,
eccrine and the sebaceous fingerprints, calculated as sum of all quantified
amino acids (LC-MS) or lipid compounds (GC-MS).
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26.0% higher in natural fingerprints from donors that drank diet soda,
compared to those who did not drink soda or drank regular soda, re-
spectively. After ingestion, the artificial sweetener aspartame is hy-
drolyzed into L-tryptophan and L-aspartic acid, since it is the methyl
ester of the dipeptide of these amino acid [48]. To our knowledge, no
relation between increased levels of L-asparagine and aspartame has
been reported previously, although it is well known that L-asparagine
can be readily synthesized from L-aspartate by asparagine synthetase
[49].
Since data were acquired in full scan mode, we subsequently in-

vestigated potential metabolic markers based on the full scan data in an
untargeted approach.

3.2. Untargeted profiling

We aimed to develop classification models for forensic relevant
donor factors such as gender, age, diet, smoking habit and (medicinal)
drug use. Based on our data and the corresponding sample sizes, we
selected donor gender and smoking habit to develop classification
models. Conditional random forests were used as models, as they allow
for easy interpretation of variable importance. As a proof of principle,
models were generated based on the LC-MS and GC-MS data for the
different types of collected fingerprints (i.e. natural vs eccrine for LC-
MS, natural vs sebaceous for GC-MS). For these classification models,
30 features (normalized peak intensities) were preselected (using the
mRMRe package, Table S1). In case of the LC-MS data, the model was
able to predict the fingerprint type (natural or eccrine) with 95.3%
accuracy (CI: 91.7%−97.6%, Table 2).
The most important predictor, turned out to be m/z 147.0760, pu-

tatively annotated as the amino acid L-glutamine. Table 3 presents the
putative annotations of other predictors used in this model (see Figs S2
and S3 for volcano plot and abundance data). Most of these compounds
showed higher normalized intensity in the natural samples, in line with
the data from the targeted approach. Among these putatively annotated
compounds was urea, a well-known component of eccrine excretion
[18,50,51]. Next to the amino acids L-glutamine and L-arginine, which
were found to be higher in the natural samples, several putatively an-
notated amino acid degradation products such as urocanic acid, pyr-
oglutamic acid and 4-methylene-L-glutamine were found to be higher in
the natural fingerprints. The possible increased abundance of amino
acid degradation products in natural fingerprints can be explained by

the fact that the eccrine fingerprints only contained fresh excretion and
thus no amino acid degradation products yet.
The increased normalized intensity of L-glutamine and L-arginine in

natural fingerprints might be caused by slower excretion of these amino
acids. Interestingly, three m/z values putatively annotated to small
peptides were included in the model, of which two were higher in the
eccrine fingerprints. It could be hypothesized that these small peptides
are excreted by eccrine glands, but are readily hydrolyzed. The higher
abundance of one of the peptides in the natural fingerprints however,
does not support this hypothesis. These peptides are likely to be hy-
drolysis products from larger peptides or proteins. Further analysis of
the data reveals the possible annotation of additional short peptides
(<5 amino acids, Table S2) which were found in the full scan data.
These were not included in the classification model.
When constructing the classification model for fingerprint type with

the GC-MS data, the resulting accuracy was slightly lower: 86.8% (CI:
81.8% − 90.9%, confusion matrix in Table S3, 30 preselected features
in Table S1). The model is mainly driven by the three most important
predictors in this model m/z: 96.10, 137.20 and 203.20 (volcano plot
and the normalized peak intensity of these predictors as well as the
other predictors used in this model are displayed in Fig S4 and S5).
Table 4 summarizes the putative fragments and their sources. All m/z
values used in the classification were found to be higher in normalized
intensity in the sebaceous fingerprints compared to the natural finger-
prints. Mong et al. previously found unsaturated fatty acids to decrease
faster in time compared to saturated fatty acids [52]. Similarly, squa-
lene is known to degrade relatively fast in fingerprints, hence has been a
compound of interest in fingerprint age estimation studies [2,53]. These
findings are confirmed by the importance of squalene and mono-
unsaturated fatty acids in this classification model. Additionally, all
lipid compounds in the sebaceous fingerprints are more abundant
compared to the internal standard (docosane) than is the case in the
natural fingerprints, resulting in higher normalized peak intensities.
Then, we aimed to build a classification model to predict donor

gender, using only 30 preselected features (Table S1), based on the full
scan LC-MS data from the collected natural fingerprints. The accuracy
of this model, based on the test set, was found to be 77.9% (CI:
69.1%−85.1%, Table 5). Interestingly, the sensitivity for males is sig-
nificantly lower than for females (65.9% compared to 85.5%, respec-
tively).
Among the most important predictors were m/z 284.0988 and m/z

169.0361, putatively annotated as guanosine and uric acid, respectively
(Table 6, volcano plot Fig. S6). Moreover, other m/z values in-
corporated in the classification model possibly correspond to guanine,
uric acid and guanosine, all degradation products of guanosine mono-
phosphate (GMP) (pathway depicted in Fig. S7). The normalized peak
intensities of the used predictors are depicted in Fig. 2. Further analysis
of the data reveals that a compound putatively annotated as xanthine
also significantly differs between males and females, but that this
compound played no role in the classification model. Possibly, quan-
titative information from xanthine is redundant since guanine and uric

Table 1
Fold change in additive log-ratio transformed targeted amino acids (LC-MS) and lipids (GC-MS), if found significant in both natural and eccrine or sebaceous
fingerprint. Significant differences were found in gender, cannabis usage and alcohol consumption classes. Under classes is specified: M=male, F= female in case of
gender; Yes= used cannabis in past 24 h, No=not used cannabis in past 24 h in case of cannabis usage, and in case of response variable alcohol: the number of
alcoholic consumptions consumed in the past 24 h. P-values were calculated using the Agresti–Coull interval as an approximate binomial confidence interval.

Response Variable Class 1 Class 2 Explanatory variable Higher in class Fold change natural p-value Fold change eccrine/ sebaceous p-value

Gender M F L-phenylalanine 1 1.352 0.0003 1.134 0.0010
M F L-(iso-)leucine 1 1.133 0.0357 1.079 0.0045
M F Palmitoleic acid 1 1.216 0.0096 1.135 0.0121

Cannabis Yes No L-alanine 1 1.186 0.0128 1.050 0.0163
Alcohol >15 0 L-proline 1 1.767 0.0002 1.119 0.0455

>15 1–5 L-proline 1 1.408 0.0005 1.094 0.0332
>15 6–10 L-proline 1 1.223 0.0049 1.109 0.0056

Table 2
Confusion matrix of cforest classification model for fingerprint type based on
LC-MS data with an overall 95.3% accuracy (CI: 91.7%−97.6%).

Reference

Prediction Natural Eccrine
Natural 112 6
Eccrine 5 110
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acid are already incorporated. Although the compounds putatively
annotated as products from GMP catabolism are included in the clas-
sification model for gender, there is, to our knowledge, no previous
record of concentrations of GMP or related products in fingerprints.
Studies into the concentration of cGMP and guanosine in nasal mucus
and human brain tissue, respectively, found significant higher con-
centrations in females compared to males [54,55].
The m/z 166.0865 (detected in 175 out of 179 males and in 271 out

of 280 females), even though not used in the classification model, is
worth mentioning, as it corresponds to the [M+H]+ of L-phenylalanine
([M+H]+ of 166.0863) and was found to be 32% higher in males than
females, which is in line with the fold change found in the targeted
approach (35%, Table 1). No significant changes in L-(iso)leucine levels
were found using this approach. Similarly, a classification model to
predict gender was built using 30 predictors for the eccrine fingerprints.
In this case the accuracy decreased to 71.7% (CI: 62.4%−79.8%,
confusion matrix in Table S4, 30 preselected features in Table S1).
Putatively annotated products from GMP catabolism were not included
in this model, although some changes in uric acid and guanine were
seen (respective 1.77- and 2.06-fold increase in males, data not shown).
Subsequently, we aimed to develop the corresponding classification

models for gender based on the GC-MS data. The model based on the
natural fingerprints had an overall accuracy of 68.1% (CI:
58.7%−76.6%, confusion matrix in Table S5, 30 preselected features in
Table S1). When the model was built based on sebaceous fingerprints,
the accuracy decreased even further to 64.6% (CI: 55.0%−73.4%,
confusion matrix in Table S6, 30 preselected features in Table S1). The
low accuracy might be due to the large variation in sebaceous finger-
print content, which was also seen in the targeted approach.
Next, models were generated in attempting to classify smokers

versus non-smokers, using only 30 preselected features. Based on the
LC-MS data from the natural fingerprints, the generated model was able
to achieve a 90.4% accuracy (CI: 83.4%−95.1%, Table 7). The most
important predictor was m/z 163.1225, putatively annotated as nico-
tine ([M+H] + of 163.1230, Table 8). The second and third most im-
portant predictors were m/z 177.1024 and m/z 96.0444, respectively.
The m/z 177.1024 possibly corresponds to cotinine ([M+H] + of
177.1022), the main degradation product of nicotine, which has been
detected in fingerprints in previous studies [56,57]. The m/z 96.0444

matches with hydroxypyridine ([M+H] + of 96.0444). Although hy-
droxypyridine itself is not a direct degradation product of nicotine in
humans, the pyridine pathway is a well-known microbial degradation
route of nicotine, forming 2,5-dihydroxypyridine [58–60]. Putative
hydroxypyridine, nicotine and cotinine levels were, respectively, 2.76-,
11.74- and 5.70-fold higher on average in fingerprints from smokers
compared to those of non-smokers (Fig. 3, volcano plot Fig. S8). Pre-
diction of smokers versus non-smokers was also attempted with the
eccrine fingerprints and resulted in similar accuracy (90.2%, CI: 83.1%
− 95.0%, confusion matrix in Table S7, 30 preselected features in Table
S1, volcano plot Fig. S9). In this model, only the m/z annotated as ni-
cotine is incorporated, which was 6.80-fold high in smokers compared
to non-smokers (Fig. 3). The absence of cotinine might be a result of the
lower concentrations in the eccrine fingerprints. Hydroxypyridine,
might be absent because it possibly is a microbial degradation product,

Table 3
Features used in the classification model for fingerprint type based on the LC-MS data, their putative annotation, relative mass error (in ppm) and fold change. P-
values were calculated using t-tests.

Experimental m/z Putative annotation Δppm Higher in Fold change p-value

61.0398 Urea 3.26 Natural 2.82 4.94E-47
139.0498 Urocanic acid 2.88 Natural 6.30 3.73E-24
147.0760 L-glutamine 2.72 Natural 6.85 6.26E-44
152.0316 Pyroglutamic acid 1.31 Natural 4.75 4.32E-31
159.0758 4-methylene-L-glutamine 3.77 Natural 11.08 1.25E-18
175.1176 L-arginine 7.99 Natural 10.21 2.11E-21
362.1559 Tripeptide combination of Val-Glu-Asp or Asp-Leu/Ile-Asp 0.28 Natural 6.99 3.14E-47
465.2483 Tetrapeptide: Lys-Lys-Ser-Cys 1.50 Eccrine 3.56 1.36E-52
663.3338 Tetrapeptide: Arg-Arg-Phe-Tyr [M+Na]+ 0.15 Eccrine 3.00 3.51E-30

Table 4
Features used in the classification model for fingerprint type based on GC-MS data, their putative source and fold change. P-values were calculated using t-tests.

Experimental m/z Putative fragment Fragment from Higher in Fold change p-value

79.10 C6H5+ 2H Squalene, Cholesterol Sebaceous 6.11 5.06E-45
87.10 C4H9OCH2,

C3H7O-C]O, C4H9CHOH, C3H7OCHCH3
FAMES* Sebaceous 7.86 3.09E-41

93.10 C7H9 Squalene, Cholesterol Sebaceous 8.98 2.79E-50
96.10 C7H12 FAMES* (mono-unsaturated) Sebaceous 7.16 1.13E-46
137.20 C10H17 Squalene Sebaceous 11.75 1.45E-49
203.20 C15H23 Squalene Sebaceous 11.29 3.86E-52

* Fatty acid methyl esters.

Table 5
Confusion matrix of cforest classification model for donor gender based on
LC-MS data of the natural fingerprints with an overall 77.9% accuracy (CI:
69.1%−85.1%).

Reference

Prediction Male Female
Male 29 10
Female 15 59

Table 6
Features used in the classification model for gender based on natural fingerprint
LC-MS data, their putative annotation, relative mass error (in ppm) and fold
change. P-values were calculated using t-tests.

Experimental m/z Putative annotation Δppm Higher in Fold
change

p-value

152.0565 Guanine 1.32 Male 1.48 4.53E-04
169.0361 Uric acid 2.96 Male 1.61 8.52E-05
284.0988 Guanosine 0.35 Male 2.57 2.30E-03
153.0410 Xanthine* 1.96 Male 1.55 5.89E-03
166.0865 L-phenylalanine* 1.20 Male 1.32 9.87E-03

* Not used in classification model.
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and thus is not excreted directly by the eccrine glands.
We then generated the classification model to differentiate between

donors who smoked in the past 24 hours and donors who did not smoke
in the past 24 hours. Interestingly, the percentage of participants that
indicated to have smoked in the past 24 hours was 36%, compared to
28% that indicated to smoke on an everyday basis. In case of the natural
fingerprints, this resulted in an accuracy of 87.7% (CI: 80.3% − 93.1%,
confusion matrix in Table S8, 30 preselected features in Table S1,
abundance data and feature fold changes in Fig. S10 and Table S10).
Again, the m/z values likely corresponding to nicotine, cotinine and
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Fig. 2. . Boxplots of the features used in the model to predict gender based on natural fingerprint LC-MS data. From left to right putatively annotated compounds:
guanine (m/z 152.0565), xanthine (m/z 153.0410), L-phenylalanine (m/z 166.0865), uric acid (m/z 169.0361) and guanosine (m/z 284.0988).

Table 7
Confusion matrix of cforest classification model for everyday smoking habit of
donors, based on LC-MS data of the natural fingerprints with an overall 90.4%
accuracy (CI: 83.4% − 95.1%).

Reference

Prediction Non-smoker Smoker
Non-smoker 76 6
Smoker 5 27

Table 8
Features used in the classification model for everyday smoking based on LC-MS data, their putative annotation, relative mass error (in ppm) and fold change. P-values
were calculated using t-tests.

Experimental m/z Putative annotation Δ ppm Higher in Fold change natural p-value Fold change eccrine p-value

96.0444 Hydroxypyridine 0 Smoker 2.76 8.53E-03 n.f. –
163.1225 Nicotine 3.07 Smoker 11.74 1.66E-10 6.80 1.29E-12
177.1024 Cotinine 1.13 Smoker 5.70 2.16E-05 n.f. –
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hydroxypyridine are incorporated in this model, as was to be expected
(respective 11.07-, 4.07- and 2.50-fold increase). This model has
slightly lower accuracy as the model constructed for everyday smokers,
mainly because of an increased false negative rate (i.e. predicting a
smoker as non-smoker). This might indicate that it takes some time
before the fingerprint composition is influenced by smoking, and pu-
tative levels of nicotine, cotinine and hydroxypyridine are not suffi-
ciently high in fingerprints by occasionally smoking. This trend was
also seen in case of eccrine fingerprints (accuracy of 87.6%, CI: 80.1%
− 93.1%, confusion matrix in Table S9, 30 preselected features in Table
S1, abundance data and feature fold changes in Fig. S10 and Table S10),
where only the m/z value likely corresponding to nicotine was included
in the model (6.33-fold increase). Both these models show large simi-
larity with the everyday-smoking models, since participants who smoke
every day are likely to have smoked in the past 24 hours.
In the natural fingerprints of participants that indicated to have

used cosmetic or personal care products such as make-up, sunscreen or
hair gel, several exogenous compounds were putatively annotated,

although classification models to predict the contact with such com-
pounds could not be constructed successfully (Fig. S11 and Table S11).
Among the putatively annotated compounds were ensulizole (sunscreen
agent, change not significant), panthenol (moisturizer in cosmetic and
personal care products), glycerol (humectant and lubricant in phar-
maceutical and personal care products) and dimethylethanolamine
(DMEA, used in skin care products, change not significant). Next to
DMEA, the related compound choline was putatively annotated as well.

4. Discussion

From a forensic point of view, insight into potentially distinguishing
properties of fingermarks is needed to increase the chances of in-
dividualizing or categorizing perpetrators. Previous research indicated
differences in the chemical composition of fingermark residue, but
advanced knowledge was still missing. The primary objective of this
study was to identify differences in the composition of fingermark re-
sidue in relation to certain donor conditions. Various distinguishing
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Fig. 3. Boxplots of the features used in the model to predict everyday smoking habit based on LC-MS data (both natural and eccrine). From left to right putative
annotation: hydroxypyridine (m/z 96.0444) in natural fingerprints, nicotine (m/z 163.1225) in natural fingerprints, cotinine (m/z 177.1024) in natural fingerprints
and nicotine (m/z 163.1225) in eccrine fingerprints.
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compounds have been found in eccrine, sebaceous and natural finger-
prints. The inter-variability in both natural and eccrine or sebaceous
fingerprint residue was found to be large. It must be noted that de-
position pressure was not controlled in this study. Recent work by
Dorakumbura et al. showed that the percentage difference of squalene
from deposits from two hands varies between 4 and 100%, when de-
position pressure is not controlled [61]. This partly explains the large
inter-variability found in our study. The intra-variability of many
compounds remains largely unknown, but clearly could be significant
as well if no consistent deposition force is used. Since we analyzed only
a single fingerprint per donor per analysis method (LC-MS or GC-MS)
and fingerprint type (natural/ eccrine/ sebaceous), the intra-donor
variability was not considered in this study, and thus remains uncertain
what implications this has on the results. Moreover, since natural fin-
germarks can be subject to numerous external factors, we cannot verify
that the markers found are a result of metabolic changes. Nevertheless,
these samples mirror fingermarks as they are mainly found in practice,
and therefore of most interest to forensic professionals. It must also be
noted that it remains uncertain if the detected potential markers would
survive prior enhancement of fingermarks, as fingerprints constituents
were directly dissolved in this study. Further research should focus on
the compatibility of analytical techniques with common fingermark
detection techniques, such as cyanoacrylate fuming. Alternatively, the
development of extraction techniques that leave the fingermark ridge
pattern unmarked, such as the use of hydrogels [62], could potentially
overcome this problem as well.
In the targeted approach, compounds were found that could serve as

potential metabolic marker for gender, cannabis usage and alcohol
consumption. We are aware of the fact that the proposed generalized
logarithm we used in this approach to circumvent the zero-value pro-
blem in log-ratios might affect inference as well. Nevertheless, we as-
sume this did not have any major implications, as it tends to preserve
the original order of magnitudes – and it seems a more appropriate
method than the commonly used ’half minimum imputation’.
Alternative approaches for censored data are described by Helsel [63].
Additionally, some conditions have highly unbalanced sample sizes.
These included fairly unique traits, such as use of drugs, for which re-
search ethics committees generally have strict rules. Therefore, in spite
of the unbalanced sample sizes, we took these conditions into con-
sideration. It remains uncertain if this had implications on the permu-
tation tests.
In the untargeted approach, we developed classification models

based on the full scan MS-data to retrieve information about donor
traits based on fingerprint composition. Accurate prediction of donor
gender and smoking habit, would be valuable information to forensic
investigators, as it would enable significant reduction of the suspect
population. In case of the model to predict smoking habit, m/z values
corresponding to nicotine and cotinine were the most important pre-
dictors. Classification accuracy might improve further by setting en-
vironmental cutoff levels, as was proposed by Ismail et al. for cocaine
and heroin [64]. These could potentially correct for detection of nico-
tine or cotinine which results from environmental contamination, such
as passive smoking. It must be noted that the suggested putative an-
notations of the m/z values incorporated in the classification models
can only be considered to be level 2 or 3 metabolite identifications, as
defined by the 2007 metabolomics standards initiative [65]. They
should serve as targets for further research, in which higher levels of
annotations of these predictors should be achieved. Moreover, the
quantitative analyses in this approach are based on the peak intensity
normalized to the total peak sum, which is arguable. The fact that the
relative change in L-phenylalanine was similar to the internal standard
corrected targeted approach is an indication that this approach is valid.
We found several putative exogenous compounds originating from

cosmetic and personal care products, in line with previous findings
from Bouslimani et al. and Hinners et al. [19,20]. We were, however,
unsuccessful in constructing accurate classification models based on

these compounds. This is likely a result of grouping different personal
care and cosmetics products together in the questionnaire, while these
compounds may be specific to one class of products. Analysis of these
exogenous compounds on a more specific fingerprint-to-fingerprint
basis, as was executed in the aforementioned studies, might be more
suitable.
In this study, many donor traits, such as the (medicinal) drug use

and donor age, did not yield significant changes in targeted metabolite
levels and were neither successfully predicted in the untargeted ap-
proach. In many of these cases, sample sizes were highly unbalanced.
Future studies with larger, more balanced sample sizes, should be
executed to investigate the feasibility of deriving information about
these donor traits from fingerprint composition. The fact that smoking
habit could be predicted with relative high accuracy based on this da-
taset is a promising lead for the development of classification models
for similar stimulants based on fingerprint chemical composition.

5. Conclusion

We successfully collected a database of chemical profiles from 1852
fingerprints, donated by 463 donors. We found a large inter-variability
in all analyzed types in fingerprints. Total amino acid levels were found
to range from below 100 ng to 10 µg. The variability in total lipid
content ranged from 100 ng up to 100 µg in natural fingerprints, while
the lipid ranging from about 1 µg to over 100 µg in sebaceous finger-
prints. In a targeted metabolomics approach, we found L-phenylalanine,
L-(iso)-leucine and palmitoleic acid to differ significantly between male
and female donors. Moreover, L-alanine levels were found to differ for
donors who indicated to have used cannabis while L-proline levels
differed for donors that consumed a large amount (>15 units) of al-
cohol. The targeted amino acid and lipid compounds alone were,
however, insufficient to successfully derive donor information from
fingerprint composition.
In an untargeted approach, we constructed classification models for

fingerprint type, gender and smoking habit. Based on the full-scan data,
models could accurately discriminate between the fingerprint type
(95.3% and 86.8% accuracy for LC- and GC-MS, respectively). Gender
could only be predicted with moderate accuracy based on natural fin-
gerprints analyzed by LC-MS (77.9%). Surprisingly, putatively anno-
tated metabolites from the GMP degradation pathway serve as pre-
dictors in this model, which pose as interesting targets for further
research. Everyday smoking habit was accurately predicted in both
natural and eccrine fingerprints (90.4% and 90.2% accuracy, respec-
tively). Smoking habits in the past 24-hours could be predicted with
slightly lower accuracy. In these models, m/z values corresponding to
nicotine and cotinine were the most important predictors. The results
presented in this paper are promising leads for further investigations
into retrieving donor information from the chemical composition of
fingerprints. Further analysis is needed to validate the potential meta-
bolic markers found.
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