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Peptides are recognized as being highly selective, potent and relatively safe as potential therapeutics.
Peptides isolated from the venom of different animals satisfy most of these criteria with the possible
exception of safety, but when isolated as single compounds and used at appropriate concentrations,
venom-derived peptides can become useful drugs. Although the number of venom-derived peptides that
have successfully progressed to the clinic is currently limited, the prospects for venom-derived peptides
look very optimistic. As proteomic and transcriptomic approaches continue to identify new sequences,
the potential of venom-derived peptides to find applications as therapeutics, cosmetics and insecticides
grows accordingly.
� 2017 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Animals evolved venom for both protection and predation. The
diversity of animals employing this strategy for survival encom-
passes nearly all of the different phyla in the animal kingdom,
including annelids (bearded fireworm), cnidarians (sea anemones,
jellyfish and hydra), echinoderms (sea urchins and starfish), mol-
lusks (cone snails and octopuses), arthropods (spiders, ants, cen-
tipedes, bees, wasps, scorpions, mosquitos, and ticks) and
vertebrates (fish, frogs, snakes, lizards, birds and mammals).
Venom is delivered to the predator or the prey via a stinger, fang,
stinging cell, barb, pincer, proboscis or spine. Venom composition
varies from animal to animal, but most venoms are a heteroge-
neous mixture of inorganic salts, low molecular weight organic
molecules, peptides (2–10 kDa) and enzymes (>10 kDa).1 This mix-
ture provides the animal with a multipronged approach to immo-
bilizing and/or killing the prey or predator.

Since ancient times, mankind has recognized that venomous
creatures are extremely dangerous and potentially fatal to victims
who are stung or bitten. As humans are quite creative in producing
improved weapons, it did not take long for ancient peoples to
develop a deadly tactic and dip their projectiles in venoms from
different animals. As recorded in 326 B.C.E., Alexander the Great’s
army encountered arrows dipped in Russel’s viper (Daboia russelii)
venom in India, as evidenced by the symptoms that were recorded
of his dying soldiers.2 One of the first recorded medical uses of
venom was described by Appian, the Roman historian of Greek ori-
gin, in 37 B.C.E., when Mithradates suffered a grievous sword
wound to his thigh; as he was near death, his Scythian doctor
administered a small amount of steppe viper venom (Vipera ursinii)
to stop the profuse bleeding and saved his life.3

Venoms from snakes, toads, spiders and scorpions have been
used for millennia in many traditional remedies and medicines
for treating a variety of ailments such as arthritis, cancers, and gas-
trointestinal issues, to name just a few. Most of these traditional
medicines used small doses of whole venoms to accomplish their
therapeutic goals. It was not until the late 20th century that mod-
ern medicine adopted a more systematic and rigorous approach to
utilising venoms as therapeutic agents. 4

2. Harnessing the potential benefits of venom

Most drug discovery efforts begin with some form of screening
of chemical compound libraries, many of which also contain a vari-
ety of natural products. The rationale is that nature has developed
a veritable cornucopia of molecular scaffolds that offer nearly infi-
nite possibilities for finding a potential lead. Coupling this with our
knowledge of animals and plants that have been found to produce
toxins, poisons or potential remedies can help focus our search for
a potential lead molecule.

As noted above, most venoms are a complex mixture of compo-
nents, including peptides, proteins and enzymes. As technology
improved over the past century, it became easier and easier to ana-
lyze venoms and to separate and fully characterize the individual
peptides and proteins. Classical chromatography methods were
replaced with HPLC methods in the 1980’s to obtain pure samples
that were subsequently sequenced using Edman degradation or
faster and more powerful mass-spectroscopic techniques5

(Fig. 1). Many of the more interesting peptides are highly
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Fig. 1. A typical workflow for isolation and screening of peptides and other bioactive compounds from a venomous animal such as the black mamba (Dendroaspis polylepis).

M.W. Pennington et al. / Bioorganic & Medicinal Chemistry 26 (2018) 2738–2758 2739
structured owing to the presence of multiple disulfide bonds.6,7

With improvements in NMR instrumentation, three-dimensional
solution structures of these molecules have been obtained fairly
quickly since the early 1990’s, although the quality continues to
improve with access to modern spectrometers and isotopic
labelling.8 All of these technological improvements made it feasi-
ble to gain insight into how each venom component acted on its
potential target (Fig. 1).

Venomics, which involves the global study of venom and venom
glands, targeting comprehensive characterization of the whole
toxin profile of a venomous animal by means of genomics, tran-
scriptomics, proteomics and bioinformatics studies, has signifi-
cantly advanced the number of peptides available for screening
and lead development.9–11 This integrative approach has been
made possible by the rapid evolution of DNA, RNA and protein
sequencing techniques, as well as databases and computing algo-
rithms. Even micro-components are detected using this approach,
which would otherwise be missed during conventional peptide
isolation methods (Fig. 1).

Functional activity assays have also advanced during the same
period. Early assays often involved intracerebroventricular (ICV)
injection of isolated fractions into mice followed by observation
of their activity, as shown in Fig. 2,5 and this remains an informa-
tive approach.12 More recently, heterologous expression in oocytes
or mammalian cells microinjected with cDNA coding for specific
ion channels has become a standard tool to determine the speci-
ficity of ion channel blocking molecules.13 Development of fluoro-
metric or colorimetric substrate-based assays became useful for
measuring inhibitors of blood-clotting enzymes.14 Other assay
innovations, such as the fluorescence imaging plate reader
(FLIPR)15 and surface plasmon resonance,16 have significantly
accelerated lead molecule identification and development.

This review covers peptide drugs and related products that have
originated from animal venoms. Perhaps the most commercially
successful toxins to be developed to date are the botulinum toxins
A and B, although these are in fact proteins from prokaryotic
sources that are beyond the scope of this review, which is focussed
on peptides (of fewer than 70 amino acid residues). The initial
examples are well-established drugs that have been used widely
in the clinic. This is followed by a summary of several clinical can-
didates that ultimately failed or were abandoned during clinical
development. We then describe peptides that are either in clinical
development or very close to moving into the clinic. Finally, we
exemplify other interesting applications of peptides in cosmetics
and crop protection.
3. Approved venom-derived drugs

3.1. ACE inhibitors: captopril

In the 1970’s, the blockbuster angiotensin converting enzyme
(ACE) inhibitor captopril (Fig. 3) was developed based on bradyki-
nin-potentiating peptides (BPF) isolated from the venom of
Bothrops jararaca, a pit viper endemic to southeastern South Amer-
ica.17 The discovery of bradykinin in 1949 by Rocha e Silva et al.18

came from studying cases of patients bitten by B. jararaca. This dis-
covery began our understanding of the kallikrein-kinin system and
the role that ACE plays in the physiology of blood circulation,
which was unraveled over nearly four decades.19 These BPF pep-
tides were later determined to be short Pro-rich peptides (the first
to be sequenced being Pyr-Lys-Trp-Ala-Pro-OH),20 which act by
blocking the processing and generation of angiotensin-II by
somatic ACE.21 The Squibb Institute for Medical Research took on
the challenge on the advice of their consultant, John Vane, to target
ACE as a means of controlling blood pressure regulation. The BPF
peptides helped elucidate one of the key structural requirements
for inhibiting this Zn-metalloprotease. They were believed to act
as competitive substrates/inhibitors with the pharmacophore
sequence Phe-Ala-Pro.22–24 However, these BPF peptides, such as



Fig. 2. RP-HPLC chromatogram of Conus geographus venom demonstrating the multitude of compounds and their activities following intracerebroventricular (ICV) injection
into mice. Inset: initial fractionation of the venom by size-exclusion chromatography. From Olivera et al.5 Reproduced with permission from AAAS.

Fig. 3. Chemical structure of captopril.
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SQ-20881 (a nonapeptide: Pyr-Trp-Pro-Arg-Pro-Gln-Ile-Pro-Pro-
OH), were not effective by oral administration and consequently
were not developed directly.25 Instead, structure-based screening
of small organic molecules commenced that used the key binding
requirements to inhibit related Zn-metalloproteases such as car-
boxypeptidase A: a proline residue coupled with a coordinating
residue such as a carboxylate. After screening more than 1800
compounds, 1-((2s)-3-mercapto-2-methylpropionyl)-l-proline
(captopril) (Fig. 3) was found to be more than 1000-fold more
potent than D-2-methylsuccinyl-Pro-OH. This potent inhibition
was facilitated by positioning the Pro residue in the substrate bind-
ing pocket of ACE coupled with a thiol moiety to coordinate with
the active site Zn.26 With the commercial success of captopril,
the foundation was laid for the concept of venoms to drugs.

3.2. Antiplatelet drugs: eptifibatide and tirofiban

Unimpeded blood circulation is required for survival of all ver-
tebrates. When an injury occurs to a blood vessel, hemostasis or
the spontaneous stopping of blood loss occurs as a result of the
interplay of vasoconstriction, platelet activation and aggregation,
blood coagulation and fibrinolysis.27 Following vascular injury, pla-
telets immediately begin to adhere to the exposed sub-endothelial
tissue by way of the exposed collagen, fibronectin and von Wille-
brand factor binding to the surface integrin receptors (a2b1,
a5b1) and glycoprotein IIb-IX on the platelets. Additional activa-
tion of platelets by ADP, thrombin and thromboxane A2 released
at the wound site stimulates aggregation between the platelet
integrin aIIbb3 (also known as glycoprotein GPIIB-IIIa) and fibrino-
gen, ultimately forming a platelet thrombus to stop bleeding.28

The disintegrins are a family of disulfide-rich mini-proteins iso-
lated from viperid snake venoms. Disintegrins block platelet aggre-
gation by binding to the aIIbb3 receptor, which prevents
fibrinogen binding.29,30 The drugs Aggrestat� (tirofiban, Merck &
Co.) and Integrilin� (eptifibatide, Cor Therapeutics, now part of
Millennium Pharmaceuticals) (Fig. 4) were developed based upon
echistatin from the saw-scaled viper, Echis carinatus, and barbourin
from the southeastern pygmy rattlesnake, Sistrusus miliarius bar-
bouiri. Both of these mini-proteins mimic the key Arg-Gly-Asp or
Lys-Gly-Asp sequence, which is responsible for binding to the
aIIbb3 receptor. Tirofiban was designed based on the spacing of
the side chains of the RGD pharmacophore in echistatin,31–33

whereas eptifibatide is a small cyclic disulfide-constrained peptide
containing the key Lys-Gly-Asp pharmacophore from barbourin.34

It eventuates that the substitution of Lys for Arg in the key RGD
pharmacophore of barbourin increases the specificity for aIIbb3.
Both of these drugs have been instrumental in reducing the risk
of death and/or myocardial infarction in patients with unstable
angina or non-ST segment elevation myocardial infarction.35

3.3. Thrombin inhibitors: lepirudin and bivalirudin

For centuries, blood-letting was used as a treatment for various
medical ailments, based on an ancient practice of medicine in



Fig. 4. Chemical structures of eptifibatide (left) and tirofiban (right).
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which bodily fluids or humors needed to stay in balance. Thus,
patients were treated by removing excess fluid via bleeding from
a vein. One form of medical blood-letting utilizing leeches became
popular in Europe (especially in France) in the nineteenth cen-
tury.36 Live leeches placed on a patient would adhere to the
patient’s body and begin sucking blood. The leeches would become
engorged with the ‘‘excess” blood and would subsequently be
removed from the patient, at which point his or her humors would
be balanced.

The leech-mediated therapy led to an understanding of how
this animal could continue to suck a patient’s blood without it
coagulating at the site of the wound.37 With the use of improved
biochemical techniques, the saliva from the medical leech was sep-
arated and a protein called hirudin was isolated in the 1950’s.38,39

Hirudin is an extremely potent inhibitor of the blood-clotting
enzyme thrombin,40 which is responsible for cleaving fibrinogen
to fibrin in the final step in forming a blood clot. Hirudin binds only
to the activated form of thrombin and not the zymogen
prothrombin.

The primary structure of this 65-residue mini-protein with
three disulfide bonds was finally determined in 1976 (Fig. 5).41

Interestingly, the protein has a post-translational modification of
a sulfated Tyr at position 63. The solution structure is characterized
by an N-terminal compactly folded domain stabilized by three
intramolecular disulfide bonds and an extended disordered C-ter-
minal domain.43 The N-terminal residues 1–3 bind at the active
site region, forming a parallel b-sheet with residues 214–217 of
thrombin, with the NH of Ile1 forming a hydrogen bond with the
catalytic Ser195 oxygen atom. The extended conformation of the
C-terminal domain makes numerous electrostatic interactions
with an anionic binding exosite on thrombin.42,44

Hirudin itself has been developed as an injectable drug named
Refludan� (lepirudin). This peptide, which is produced by recombi-
nant methods, has two minor changes from native hirudin: Ile1 to
Leu and no sulfation of Tyr63. Refludan� had been utilized in cases
where heparins are contraindicated because of thrombocytopenia.
Lepirudin was withdrawn from the market by Bayer in 2012,45

reportedly as a result of a third-party production site discontinuing
manufacture of the recombinant product.

Hirulog� (bivalirudin) (Fig. 6) is a 20-residue linear peptide that
was designed based on hirudin. This peptide incorporates the key
N-terminal residues (H-D-Phe-Pro-Arg-Pro) and C-terminal
domain (Asn-Gly-Asp-Phe-Glu-Glu-Ile-Pro-Glu-Tyr-Leu) of hirudin
connected by a tetra-Gly spacer. It also incorporates an N-terminal

D-Phe to improve binding and inhibit degradation.46 It inhibits both
circulating and clot-bound thrombin, while also inhibiting throm-
bin-mediated platelet activation and aggregation.47 Bivalirudin
was approved in 2000 for use as an anticoagulant in patients with
unstable angina undergoing percutaneous transluminal coronary
angioplasty. Bivalirudin in conjunction with a glycoprotein GPIIb/
IIIa inhibitor (eptifibatide or tirofiban) is also provisionally
approved for use as an anticoagulant in patients undergoing percu-
taneous coronary intervention (PCI). Bivalirudin is indicated for
patients with, or at risk of, heparin-induced thrombocytopenia
undergoing PCI.

3.4. Chronic pain: ziconotide

There are more than 700 species of cone snails around the
world.48 Several human encounters with cone snails have resulted
in fatalities, primarily in Australia and the South Pacific. In partic-
ular, cone snails from the genus Conus, such as C. geographus, C. tex-
tile, C. tulipa, C. magus, C. marmoreus, C. aulicus, C. catus and C.
pennaceus, can be considered particularly dangerous.49 Cone snails
have evolved a sophisticated hunting strategy whereby they use a
harpoon to lance their prey and deliver a potent venom to immo-
bilize and/or kill the prey.7,50 Human encounters with these snails
usually occur when someone picks up a live cone snail and places it
in their pocket, whereupon the cone snail defensively harpoons the
person and injects its venom, sometimes with lethal consequences.
The most dangerous cone snail to humans is C. geographus.5

Early work on the venom of C. geographus was conducted by
Alan Kohn from Australia, who first observed that these snails
hunted fish,51 and followed up by Bob Endean and co-workers,
who began to characterize the pharmacology of the venom.52

Spence and co-workers fractionated C. geographus venom and char-
acterized three neurotoxic components by conventional ion
exchange chromatography followed by gel permeation in the
1970’s.53 Purified homogeneous peptides were finally obtained
and sequenced in the early 1980’s by Gray et al.54 for the a cono-
toxins, which target nicotinic acetylcholine receptors (nAChR), and
Sato et al.55 and Cruz et al.56 for l-conotoxins, which primarily tar-
get voltage-gated sodium channels (NaV) in muscle. In the 1980’s,
Olivera’s group at University of Utah used HPLC to separate the
venom into different fractions, then injected these fractions into
mice and observed their behavior (Fig. 2).5,57 The venom was made
up of a complex mixture of disulfide-rich peptides (�8–30 resi-
dues), henceforth known as conotoxins. Bioassays of these cono-
toxins induced a variety of conditions such as severe tremors,
shaking, paralysis, scratching and death.5

The x-conotoxins, which all originate from fish-hunting cone
snails, were characterized shortly after the a- and m-conotoxins.
These peptides were called ‘‘shaker” toxins owing to the persistent
tremors they invoked upon intracerebral injection in mice. The x-
conotoxins are typically 24–30 residues long and contain three
intramolecular disulfide bonds.5,11 They target voltage-activated



Fig. 5. Binding of hirudin to thrombin, with the key hydrophobic pocket binding residues in green and the anionic pocket binding residues in red.41 Its 3D structure bound to
thrombin (pdb id 4HTC)42 is also shown as molecular surfaces. Hirudin is shown in lightblue, thrombin in light grey and the green and red residues are coloured as in the
cartoon (although some are obscured because of their proximity to thrombin). The N- and C-termini of hirudin are labelled. Structural images in this and other figures were
created in PyMOL (https://www.pymol.org/).

Fig. 6. The amino acid sequence of bivalirudin. f = D-phenylalanine.
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calcium (CaV) channels. The first to be isolated was x-conotoxin
GVIA from C. geographus.58,59 Subsequently, x-conotoxins have
been isolated from many other species, including C. magus and C.
catus (Fig. 7).60,61 Selectivity differences among these peptides
led to x-conotoxins MVIIA and CVID being developed as N-type
Ca channel blockers.

In a quest for alternatives to opioid-based pain management
that avoid the highly addictive nature of the opiates, the CaV chan-
nel was identified as a potential target owing to its involvement in
neurotransmitter release. There are six pharmacologically distinct
CaV channel subtypes, of which the N-type (CaV2.2), T-type
(CaV3) and P/Q-type (CaV2.1) are considered optimal targets for
the treatment of pain. The localization of the N-type CaV channels
in the dorsal horn region of the spine helps convey nociceptive sig-
nals from the peripheral nervous system to the central nervous
system. Inhibition of the nociceptive pain signal in animals has
been demonstrated in clinically relevant pain relief models.67 Thus,
at Neurex (now part of Elan Pharmaceuticals), x-conotoxin MVIIA
(SNX-111) was tested as a therapeutic agent that acted by blocking
the N-type CaV found in the spine. Development of this as a drug
required specialized intrathecal infusion using a subdermal pump.
This peptide progressed through clinical trials and was renamed
ziconotide (Prialt�), which was approved for the treatment of
intractable pain in 2004.68 Dose limiting side-effects observed in
patients restrict this drug to cases of intractable pain. A second,
even more selective x-conotoxin, CVID, was also being developed
by Xenome as AM-336 or leconotide. This peptide failed in clinical
trials as a result of side-effects encountered in the patient pool
upon intrathecal administration.69

http://4HTC
https://www.pymol.org/


Fig. 7. Amino acid sequences and 3D structures of x-conotoxin GVIA (pdb id 2CCO),62 x-conotoxin-MVIIA (pdb id 1OMG)63 and x-conotoxin CVID, with disulfide bonds
indicated. Backbones are shown in lightblue (x-GVIA) and wheat (x-MVIIA) and disulfides in orange. The view of x- GVIA highlights the ICK structure created by the peptide
backbone and the three disulfide bridges.64,65 The view of x-MVIIA highlights Lys2 and Tyr13, which have been shown to have a role in CaV channel binding.66 b-sheets have
not been flattened in the graphics program. The structures are shown approximately to scale but have not been aligned.
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3.5. Type 2 diabetes: exenatide

Type 2 diabetes is a major global public health crisis, with the
World Health Organization estimating that more than 300 million
people worldwide suffer with this disease.70,71 Obesity and associ-
ated insulin resistance are key contributors to its rising prevalence.
Also associated with the disease are impaired or reduced insulin
secretion and lower B-cell levels. Complications from diabetes
manifest themselves as increased mortality rates from conditions
such as coronary heart disease, stroke and peripheral vascular
disease.72

Drugs to treat type 2 diabetes include biguanides (metformin)
and sulphonylureas (glibenclamide, tolbutamide), which have
been used for many years. Only recently have new drugs emerged
such as meglitinide analogs (repaglinide, nateglinide), which stim-
ulate insulin secretion in a similar manner to the sulfonylureas.73

In addition, the thiazolidinediones (rosiglitazone, pioglitazone)
are agonists of the nuclear PPAR-c receptor, which cause a greater
increase in insulin sensitivity. Also emerging are incretin pathway
agonists such as glucagon-like peptide 1 (GLP-1) and glucose-
Fig. 8. The amino acid sequences of exendin-3,77 exendin-4,78 G
dependent insulinotropic peptide, also known as gastric inhibitory
peptide (GIP), shown in Fig. 8. GIP is a 42-residue peptide derived
from a 153-residue precursor and GLP-1 is a 29-residue peptide
corresponding to residues 7–36 from proglucagon. These two pep-
tide hormones are secreted by intestinal L-cells and K-cells, respec-
tively, in response to orally administered glucose; they act on their
G-protein-coupled receptors (GPCR) to cause an increase in intra-
cellular cAMP, which amplifies glucose-induced insulin secre-
tion.74 These peptides have very short plasma half-lives (�2 min)
owing to their rapid degradation by dipeptidyl peptidase IV
(DPPIV), which cleaves the N-terminal His-Ala dipeptide and inac-
tivates these peptides. Inhibitors of DPPIV (sitagliptin, saxagliptin
and vildagliptin) prevent the hydrolysis of this dipeptide from
GIP and GLP-1, resulting in lower blood glucose and glucagon
levels, which causes insulin secretion and slows or decreases gas-
tric emptying.75,76

The Gila monster (Heloderma suspectum), one of the very few
venomous lizards in the world, originates from New Mexico and
Arizona in the USA. Reports of deaths from the late 1800’s in cases
of envenomation by Gila monsters were as overblown as most of
LP-1 (7–36)79 and gastric inhibitory polypeptide (human).80

http://2CCO
http://1OMG
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the Wild West gunfights of that same period. The venom from
these animals is produced by submandibular glands in the lower
jaw and oozes onto grooved teeth and into the victim by chewing
motion rather than through a hollow sharp fang such as in
snakes.81 Isolation of the venom and subsequent separation using
conventional and HPLC-based methods led to the identification of
numerous enzymes (hyaluronidases, phospholipases, phosphodi-
esterases, and proteases).81 The most lethal component, gilatoxin,
is a serine protease similar to other snake-derived thrombin-like
proteases.82 One of the most interesting groups of products iso-
lated from the venom are the exendins.77,78 These peptides all have
high sequence homology to GLP-1 (Fig. 8). In exendin-4, there is a
substitution of Gly for Ala at position 2, which enhances protease
resistance, especially to DPP-IV;83,84 as a result, exendin-4 has a
serum half-life in vivo of 2.4 h versus 2 min for GLP-1. Exendin-4
was developed by Amylin Pharmaceuticals as the drug Byetta�

(exenatide) and was approved for treatment of type 2 diabetes in
2005.72 Improvements in stability and delivery systems have
resulted in two FDA-approved Byetta-derived products: Bydureon�

(exenatide extended release) (Astra Zeneca), a once-a-week
administration, and Adlyxin� or Lyxumia�, once-a-day administra-
tion (lixisenatide) (Sanofi).85 Currently, another slow-release exe-
natide product (subdermal mini-osmotic pump for 90 days),
ITCA-650, is being developed by Intarcia Pharmaceuticals. Intarcia
submitted a new drug application (NDA) with the FDA in Novem-
ber 2016, which was accepted in February 2017 (http://www.
intarcia.com/pipeline-technology/itca-650.html).

In 2008, some side-effects led to an FDA-mandated warning
that Byetta may increase the possibility of pancreatitis. Also, in
2010 Bydureon� received a Black Box warning for a possible
increase in risk for thyroid cancer similar to that of a related
GLP-1 type drug Victoza� (liraglutide).

3.6. Prokaryotic toxins for gastrointestinal conditions: linaclotide and
plecanatide

Certain strains of bacteria such as enterotoxigenic Escherichia coli
secrete short disulfide-rich peptides that are highly stable to ther-
maldenaturation.86 Thesepeptides typically contain14–18 residues
and three intramolecular disulfide bonds (Fig. 9). These ‘‘heat-
stable” enterotoxins are the leading cause of acute infant’s and trav-
eler’s diarrhea.87 These peptides are a close mimic of uroguanylin,
the naturally-occurring hormone in animals (Fig. 9), which is a 16-
residue peptide containing two intramolecular disulfide bonds.88

Both of these peptides are highly specific agonists of the GPCR 2C
in the large intestine, activation of which leads to an increase in
intracellular cGMP that in turn results in chloride, bicarbonate and
water release into the lumen of the large intestine byway of the cys-
tic fibrosis transmembrane conductance regulatorCFTR ion channel.
When not carefully controlled, this results in diarrhea.89

Two drugs have been developed that target the 2C receptor in the
lumen of the large intestine. The first to market was an analog of
heat-stable enterotoxin named Linzess� (linaclotide) in 2012
(Fig. 9), which was developed by Ironwood Labs and Forrest Labs
and was one of the first peptides developed with an oral applica-
tion.92,93 Owing to the highly stable compact structure, the peptide
successfully survivespassage through thegutwithonly a single resi-
due being clipped from the C-terminus. As the site of action is GPCRs
in the lumen of the large intestine, the drug requires no adsorption
into the blood stream and oral administration is possible.90,94

The second drug to market (in 2017) was Trulance� (pleca-
natide) from Synergy Pharmaceuticals. This drug is a uroguanylin
analog with Asp3 replaced by Glu (Fig. 9).95,96 This substitution
helps to slow the thermodynamically-controlled interconversion
of two topoisomers, which occurs naturally with this peptide
(Fig. 9). The topoisomers result from a conformational change in
the peptide at acidic pH, the A topoisomer being active and the B
isomer inactive.91 As a result, plecanatide is also marketed to the
same constipation market as it has fewer cases of severe diarrhea
owing to the spontaneous inactivation to the B topoisomer, which
is accelerated at physiological temperature and thereby reduces
the major side-effect of linaclotide, which is diarrhea.97
4. Peptide toxins discontinued in clinical trials

4.1. a-Conotoxin Vc1.1: pain

nAChRs are members of the Cys-loop ligand-gated ion channels,
which participate in rapid synaptic transmission and mediate a
range of neurophysiological functions.98,99 They have been impli-
cated in many nervous system diseases and disorders, including
Parkinson’s disease, Alzheimer’s disease, schizophrenia, neuro-
pathic pain, memory loss, and stress mediation. As such, nAChRs
have emerged as important potential targets for pharmaceutical
development.100 nAChR subtypes are homo- or hetero-pentamers
of a1�10, b1�4, c, d, or e subunits that are expressed in various
regions of the nervous system.101 The a9a10 nAChR subtype is a
hetero-pentamer comprising two a9 and three a10 subunits
((a9)2(a10)3).102 The a9a10 nAChR involvement in analgesia sug-
gests that it might also be expressed in the brain and/or in the
peripheral nervous system and is a potential target for the treat-
ment of pain.103

a-Conotoxins are a large conotoxin family that specifically tar-
gets nAChR subtypes.7,11,50 Most a-conotoxins have a similar
three-dimensional structure, comprising a small helical segment
stabilized by two disulfide bonds.104,105 The loops between the
cystine residues and the number of residues in these loops are used
to subclassify a-conotoxins.106 Vc1.1 is a 16-residue a-conotoxin
(Fig. 10), originally isolated from the venom of Conus victoriae, that
has potent analgesic activity and shows potential as a novel drug
lead for the treatment of neuropathic pain.107–109 Vc1.1 contains
four residues in the first loop and seven in the second, and thus
belongs to the 4/7 loop family.

a-Conotoxin Vc1.1 was taken into clinical trials as ACV1 by Mel-
bourne-based Metabolic Pharmaceuticals Ltd. for the treatment of
neuropathic pain. ACV1 was safe and well tolerated at all adminis-
tered doses in the first human study (Phase 1), completed in
November 2005. ACV1 was tested in several well-established ani-
mal pain models and showed efficacy in relieving the characteristic
pain symptoms of neuropathy, allodynia and hyperalgesia. How-
ever, in 2007 ACV1 failed in Phase 2a trails owing to a lack of effi-
cacy in humans. Apparently, the human a9a10 nAChR did not have
the same sensitivity to ACV1 as its counterpart in the rat models
used in the preclinical stage of development.111,112

More recently, backbone cyclization of Vc1.1 improved its sta-
bility, further enhancing its potential as a drug.113 Cyclized Vc1.1
is active when administered orally to reduce mechanical allodynia
in animal models of neuropathic pain.113 Two potential modes of
action of Vc1.1 have been identified: (1) inhibiting the CaV2.2
channel by activating the GABAB receptor,105,114 and (2) inhibiting
the a9a10 nAChR subtype.103 Both of these receptors could be
involved in the observed analgesia, but further studies are needed
to fully understand the analgesic activity of Vc1.1 at the molecular
level.105 As discussed below (Section 6.2), targeting the a9a10
nAChR for treatment of pain with a-conotoxin RgIA is still an area
of active clinical development at Kineta Inc.115
4.2. v-Conotoxin-MrIA: pain

As described above, pain therapy is truly in need of non-addic-
tive alternatives to opioid-based drugs. Since neuronal pathways

http://www.intarcia.com/pipeline-technology/itca-650.html
http://www.intarcia.com/pipeline-technology/itca-650.html


Fig. 9. The amino acid sequences of enterotoxin STp (E. coli), linaclotide and plecanatide, with disulfide bonds indicated. The solution structure of linaclotide was reported by
Busby et al.90 but there is no pdb deposition. The structure of uroguanylin A (pdb id 1UYA) is shown on the left. Superposition of the topoisomers of uroguanylin A (lightblue
backbone, orange disulfides) and B (pdb id 1UYB)91 (cyan backbone, yellow disulfides), aligned over the backbone heavy atoms, is shown on the right.

Fig. 10. Amino acid sequence of a-conotoxin Vc1.1, with disulfide bonds indicated,
and its 3D structure (pdb id 2H8S).110 Backbone bluewhite, disulfides orange, other
side chains wheat.
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controlled by ion channels propagate pain signals to the brain,
selective blockers or modulators of such channels are promising
candidates for development. Fortuitously, fish-, worm- and mol-
lusk-hunting cone snails produce venoms with hundreds of small
peptides that block nearly all of the major ion channels (Na+, K+

and Ca2+) as well as specific receptors such as nAChR and nora-
drenaline transporters.

In 2000, McIntosh et al.116 identified a novel hydroxy-Pro-con-
taining 13-residue conotoxin from C. marmoreus with a 1–4/2–3
disulfide pattern (also known as the ribbon form), quite different
from the 1–3/2–4 disulfide pattern found in the a-conotoxins that
block nACh receptors (Fig. 11). This peptide was designated
v-MrIA or Mr10a. The target of v-MrIA is the noradrenaline
(norepinephrine (NE)) transporter (NET), where it acts as a non-
competitive or allosteric modulator.117,118 Noradrenaline, which
accumulates in chemical synapses, is removed by the action of
NET. As noradrenaline magnifies the intensity of descending pain
inhibition, inhibitors of spinal NET, such as v-MrIA, are potential
clinical leads in the management of pain. A stabilized analog with
Pyr at the N-terminus was developed as Xen2174 by the Australian
company Xenome.119 Xen2174 shows good selectivity relative to
other monoamine neurotransmitter transports such as serotonin
and dopamine.118,119 Unfortunately, despite showing early encour-
aging results in Phase 1 trials, Xen2174 was found to have dose-
limiting toxicity issues in humans and was discontinued (Groen-
eveld, 2013; cited in4)
4.3. Contulakin-G: pain

Another pain pathway involves the 13-residue neuropeptide
neurotensin (NT). NT (Fig. 12) is found throughout the central
nervous system (hypothalamus and amygdala) and functions as a
neurotransmitter in dopaminergic neurons as well as in enteroen-
docrine cells of the small intestine.121,122 The NT receptor is a
GPCR. The pleiotropic actions of NT are apparent from its involve-
ment in Parkinson’s disease, nociception, cancer blood pressure
and other conditions123,124 Modifications of NT have led to a vari-
ety of interesting compounds, including anti-nociceptives125 and
some anti-convulsants126 among others.

Predatory cone snails have evolved venom components with
highly homologous sequences to NT. Contulakin-G, isolated from
C. geographus, is a 16-residue peptide with an N-terminal Pyr, as
in NT, as well a Thr-O-linked disaccharide at position 10
(Fig. 12)127 This peptide has been shown to be a NT receptor ago-
nist for all three subtypes with fM potency.126,127 PK-PD studies
showed the peptide to be remarkably stable in serum with a
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Fig. 11. Amino acid sequence of Xen2174, with disulfide bonds indicated, and its solution structure (pdb id 2EW4).120 Z = pyroglutamic acid. Backbone bluewhite, disulfides
orange, other sidechains violetpurple. b-sheets have not been flattened in the graphics program.

Fig. 12. Amino acid sequences of C. geographus contulakin-G and human neurotensin. Z = pyroglutamate. The Thr residue in contulakin-G contains the O-linked disaccharide
b-D-Galp-(1? 3)-a-D-GalpNAc-(1?).
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half-life of several hours, which is unusual for a short linear pep-
tide.128 Contulakin-G was taken into clinical trials by Cognetix in
Salt Lake City as CGX-1160 for patients with neuropathic pain from
spinal cord injury or post-operative pain,129 and received orphan
drug status in 2005. However, it was discontinued by Cognetix,
at which point Cognetix was liquidated. More recently, CGX-1160
was tested in a Phase 1a trial in humans and was found to be gen-
erally well tolerated when administered intrathecally at doses up
to 1 mg/h. Peak analgesia occurred after the peak intrathecal con-
centration. It was noted in this study that the effect of the drug was
best achieved when the compound was able to circulate in the
cerebral spinal fluid following IT administration. 130 However, the
FDA put a hold on further studies with CGX-1160 in man because
of safety concerns arising from animal toxicity studies.
4.4. Conantokin-G: pain, epilepsy

One of the more unusual families of peptides isolated from cone
snail venom consists of linear peptides with a high proportion of
the post-translationally modified amino acid c-carboxy-glutatamic
acid (Gla). The first peptide characterised was conantokin-G from
C. geographus,131 which has 5 Gla residues in its 17-residue
sequence (Fig. 13). This peptide was named the ‘‘sleeper” peptide
as it induces a sleep-like state in mice under two weeks old, but
causes a hyperactive state in older mice when injected ICV. The
peptide is highly helical in the presence of Ca2+ and all of its
Ca2+-binding Gla residues cluster on the same face of the helix.132

Its site of action was determined to be the NMDA receptor,133 with
which two residues in particular at the N-terminus of the peptide,
Gly and Glu, engage. Further studies with conantokin-G using
cloned subtypes of the NMDA receptor showed that it was selec-
tive for the NR2B subtype.134 Cognetix advanced conantokin-G into
clinical development as CGX-1007 for treatment of intractable epi-
lepsy via intrathecal administration, pain and as a potential neuro-
protectant in ischemic stroke.135 CGX-1007 progressed through
Phase 1 trials but was discontinued at Phase 2.
4.5. Cenderitide: cardiovascular diseases

Atrial natriuretic peptide (ANP) was discovered in the early
1980s.136 It was observed that rat atrial extracts contained a factor
that increased salt and urine output in the kidneys. Subsequently,
the substance was purified from the heart by several groups and
named ANF (atrial natriuretic factor) or ANP.137 ANP is a 28-residue
peptide containing a 17-residue disulfide-constrained ring (C7-
C23) in the middle of the molecule that is characteristic of all the
related natriuretic peptides (Fig. 14). ANP is closely related to brain
natriuretic peptide (BNP) and C-type natriuretic peptide (CNP),
which share a similar structure.

ANP is a potent vasodilator hormone secreted by heart muscle
cells (atrial myocytes) in response to elevated blood volume. It is
involved in the homeostatic control of body water, sodium, potas-
sium and fat, reducing the water, sodium, and adipose loads on the
circulatory system, and thereby reducing blood pressure. With
regard to its effect on sodium in the kidney, ANP has exactly the
opposite function to aldosterone, secreted by the zona glomeru-
losa; specifically, aldosterone stimulates sodium retention and
ANP stimulates sodium loss.138
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Fig. 13. Amino acid sequence of conantokin-G. c = gamma-carboxy-L-glutamic acid.

Fig. 14. Amino acid sequence of C-type natriuretic peptide (CNP) and a chimeric natriuretic peptide, CD-NP (cenderitide), made up of CNP (in red) and the C-terminus of
Dendroaspis natriuretic peptide (DNP) in green.
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As snakes and lizards produce venoms that contain a plethora of
components to incapacitate or immobilize prey or predators, it is
no surprise that they contain natriuretic peptides, which cause
hypotensive effects that contribute significantly to a rapid loss of
consciousness in envenomated animals.139,140 One of the first rep-
tilian natriuretic peptides discovered was from venom glands of
the eastern green mamba, Dendroaspis angusticeps (DNP).141 DNP
is a potent natriuretic and diuretic peptide which is similar to
ANP and BNP and caused an increase in urinary and plasma
cGMP.141,142 In canine models, DNP decreases blood pressure, left
ventricular end diastolic pressure, stroke volume and left ventricu-
lar afterload; the latter appears to be due to a reduction in preload
rather than arterial vasodilatation.143 DNP was also found to have
greater stability to neutral endopeptidease 24.11, which is the pri-
mary inactivator of the natriuretic peptides, compared to ANP, BNP
or CNP, as a consequence of the elongation of both the N- and C-
terminus.144 This enhanced stability and high potency observed
with DNP has stimulated screening of other reptilian venoms for
novel natriuretic peptides.139

Cenderitide (CD-NP) (Fig. 14), a chimeric natriuretic peptide cre-
ated by fusing the 22-residue structure of CNP with the 15-residue
carboxyl terminus of DNP, was recently assessed in clinical trials for
heart failure This novel peptidewas engineered to uniquely co-acti-
vate the two particulate guanylyl cyclase (pGC) receptors (pGC-A
and pGC-B) so as to take advantage of distinct receptor-mediated
actions through cGMP.144 In recent studies, cenderitide activated
pGC-A, but less effectively than ANP, and was closely equivalent
to CNP in activating pGC-B. In vivo CD-NP, like ANP, BNP, and
DNP, but unlike CNP, possesses renal-enhancing actions through
pGC-A/cGMP activation. Specifically, cenderitide is a 200-fold
greater activator of pGC-A than CNP and 5-fold less potent activator
of GC-B.145 Cenderitide had only 50% potency in activating pGC-A
and 40-fold greater GC-B-activation when compared with ANP. In
contrast, CNP has potent anti-fibrotic properties through pGC-B
activation and cGMP generation without renal-enhancing actions.
In 2015, a Phase 2 dose-ranging study was completed in 14 patients
with stable, chronic heart failure through subcutaneous infusion.
This was an open-label trial that assessed the safety, tolerability
and pharmacodynamic response to increasing dose levels of cen-
deritide. The drug was well-tolerated and there were no significant
adverse events. Capricor, located in Beverly Hills, California,
recently completed an additional study to further assess the safety,
tolerability, pharmacokinetic profile and pharmacodynamic
response to increasing dose levels of cenderitide in patients with
stable heart failure withmoderate renal impairment. Following this
additional study, clinical development by Capricor was terminated
in early 2017 (http://irdirect.net/prviewer/release/id/2342502).

5. Venom-derived peptides currently in clinical development

5.1. Chlorotoxin: tumor imaging

Perhaps one of the most dreaded diseases in human history is
cancer. The first written record of cancer occurs in an ancient Egypt
papyrus document from around 1600 BCE.146–148 Hippocrates
around 400 BCE was the first to use the Greek word for crab, karki-
nos, to describe the appearance of the veins forming the feet of the
tumor, appearing like those of a crab.149 Celsus in �50 AD trans-
lated karkinos into Latin and thus was born the word cancer for
the disease as it is currently known.146,147 The ideas of Galen
(131–201 CE) in the second century AD regarding the uses of
purgatives were the basis for the primary treatment for cancer
for more than 1000 years.146,147 Sometimes these purgatives
involved the use of venoms from snakes and scorpions according
to local traditions.146–148 It would take two millennia for research
to ultimately catch up with why certain venoms may have had
beneficial properties.

While screening venom of the death stalker scorpion, Leiurus
quinquestriatus hebraeus, a toxin was isolated that had the property
of blocking chloride channels.150 This peptide, named chlorotoxin,
contains 36 residues and four disulfide bonds (Fig. 15).151 It is one
of the dominant peptides in the venom in terms of concentration
and was the first high-affinity chloride channel-blocking peptide.

One of the unique properties of chlorotoxin is that it also binds
with high affinity to glioma cells153 via matrix metalloprotease
MMP-2 subtypes that are upregulated on the surfaces of glioma
and other cancer cells but are not normally present.154 As a result,
chlorotoxin has been undergoing development as both a potential
therapeutic delivery peptide for radiochemical treatment of
malignant cells as well as an in vivo diagnostic tool for cancers.
The biotech company Transmolecular (Birmingham, Alabama) took
an I131-labeled chlorotoxin (TM-601) into clinical trials for
recurrent high grade glioma (https://clinicaltrials.gov/ct2/show/
NCT00040573) in 2003 and for malignant melanoma in 2008
(https://clinicaltrials.gov/ct2/show/NCT00733798). Results of the
Phase 1 and 2 trials for glioma showed that intracavitary adminis-
tration was well tolerated, with no dose-limiting toxicities
observed. I131-TM-601 bound to the tumor periphery and demon-
strated long-term retention at the tumor with minimal uptake in
any other organ system. Unbound peptide was eliminated from
the body within 24 to 48 h. Only minor adverse events were
reported during the 22 days of administration. At day 180, four
patients had radiographically stable disease, and one had a partial
response. Two of these patients further improved and were with-
out evidence of disease for more than 30 months.155

Blaze Biotech (Seattle) coupled a cyanine dye (Cy5.5) to chloro-
toxin (BLZ-100; Tumor Paint�; tozuleristide) and used this analog
as an imaging agent for cancer cells. Cy5.5 is a fluorescent dye that
emits photons in the near infrared spectrum, enabling visualization
in the operating room using infrared glasses. This fluorescent pep-
tide improves surgeons’ ability to remove all of the cancerous cells
without injuring the surrounding healthy tissue. Studies in mouse
models have shown that tozuleristide can visualize tumors with as
few as 2000 cancer cells, making it 500 times more sensitive than
MRI methods.156 Treated animals exhibited no neurologic or
behavioral deficits, and postmortem studies revealed no evidence
of neuropathy.157 Results of the preclinical trials demonstrate both
the safety and superior imaging properties of this chlorotoxin
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Fig. 15. Amino acid sequence indicating disulfide pairings and 3D structure of chlorotoxin (pdb id 1CHL).152 Backbone is shown in lightblue and disulfides in orange. b-sheets
have not been flattened in the graphics program.
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analog.158 Tozuleristide is currently ongoing Phase 1 clinical stud-
ies in pediatric brain cancer and breast cancer, and has completed
Phase 1 testing in skin cancer and adult brain cancer.

5.2. ShK: autoimmune diseases

Voltage-gated K+ (KV) channels were found in T lymphocytes in
1984.159,160 KV1.3 is directly involved in the activation of a sub-set
of T cells known as effector memory T (TEM) cells as it sets the
membrane potential during activation by allowing K+ efflux to
counterbalance the influx of Ca2+ through CRAC channels. As the
KV1.3-mediated efflux is required for activation of these TEM cells,
blocking these channels prevents their activation. TEM cells are
key mediators of autoimmune diseases and are therefore an attrac-
tive target for drug development.161

Charybdotoxin, from venom of the death stalker scorpion Leiu-
rus quinquestriatus hebraeus (Fig. 16), was first discovered as an
inhibitor of Ca2+-activated K+ channels162 but is also active against
KV1.3.163 Additional screening of a number of other scorpion spe-
cies led to the discovery of margatoxin in the Central American
bark scorpion, Centruroides margaritatus, which was more than
20-fold more potent than charybdotoxin against KV1.3 (Ki 50 pM)
and did not affect Ca2+-activated K+ channels.164 Each of these tox-
ins adopted a fold consisting of a short a-helix and a three-
stranded antiparallel b-sheet,163,165 and has a key Lys that inserts
into the pore of the KV1.3 channel to achieve blockade.166,167 Mar-
gatoxin (Fig. 16) was taken into preclinical development by Merck
and Co and shown to be effective in a mini-pig model of delayed-
type hypersensitivity (DTH).168 Merck subsequently moved into
developing a small molecule drug, correolide, which was also effec-
tive in DTH models169 before ultimately abandoning KV1.3 as a
target.

At about the same time as these discoveries of KV-blocking pep-
tides from scorpion venoms, a novel peptide was isolated and the
sequenced from the Caribbean sun anemone, Stichodactyla
helianthus.174 This 35-residue peptide, ShK, was shown to be a
potent competitive inhibitor of a-dendrotoxin binding to rat brain
synaptosomes and blocked K+ current in dorsal root ganglion cells.
The primary structure showed no homology to the KV-blocking
toxins from scorpions (Fig. 16). The disulfide bonding pattern175

and solution structure170 were also very different from the scor-
pion ab fold. However, the two key pharmacophore residues in
ShK, Lys22 and Tyr23, are spatially conserved in an arrangement
common to KV-channel blocking peptides from widely different
species.173 ShK has a very high affinity (Ki � 10 pM) for KV1.3 chan-
nels but also displays high pM affinity for KV1.1, KV1.4 and KV1.6,
which are present in brain and cardiac tissues.176,177 Thus, selectiv-
ity improvements were necessary to transform this peptide into a
viable KV1.3-targeted therapeutic.178

Following an extensive structure-activity relationship (SAR)
program,177,179,180 ShK-186 (Fig. 16) was developed, which had a
100-fold improvement in selectivity for KV1.3 over KV1.1, KV1.4
and KV1.6.181 Models of human autoimmune diseases such as mul-
tiple sclerosis and rheumatoid arthritis have been shown to be
ameliorated by ShK and its analogs,182,183 and preclinical testing
of ShK-186 produced favorable results in both rats and mon-
keys.184 Intriguingly, ShK-186 was found to have a long half-life
at the site of injection, resulting in sustained high pM levels in
plasma and minimizing the need for improving its pharmacoki-
netic properties.184 An IND was filed by Kineta and approved by
the FDA in 2012. ShK-186 has been allocated the generic name
dalazatide, and completed Phase 1a and 1b trials in 2016. The
results of the Phase 1b trial for psoriasis were reported recently,
and showed that dalazatide was well tolerated, without serious
adverse events, and reduced psoriatic skin lesions.185 It is posi-
tioned to begin Phase 2a trails at the time of writing. Dalazatide
is being advanced as a treatment for multiple autoimmune
diseases, including inclusion body myositis, lupus, ANCA vasculitis,
multiple sclerosis, psoriasis, psoriatic arthritis, rheumatoid
arthritis, type 1 diabetes, inflammatory bowel diseases, and
asthma.163,186

Both Janssen and Amgen embarked on Kv1.3 programs utilizing
KV1.3-selective peptide toxins. Amgen utilized an optimized ShK
peptide conjugated to a high molecular weight polyethyleneglycol
(PEG) to increase plasma half-life and showed cytokine reduction
in cynomolgus monkeys.187 Janssen evaluated a KV1.3-selective
scorpion toxin OsK1 fused to an antibody Fc domain or human
serum albumin to extend plasma half-life.188
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Fig. 16. Amino acid sequences of ShK, ShK-186, charybdotoxin and margatoxin, with the three disulfide bonds indicated. Aeea = 2 aminoethoxy-ethoxyacetic acid,
Z = pyroglutamic acid and pY = phosphor-Tyr. Structures of ShK (pdb id 1ROO),170 margatoxin (pdb id 1MTX)171 and charybdotoxin (pdb id 2CRD)172 are shown, with
backbones in lightblue and disulfides in orange. b-sheets have not been flattened in the graphics program. The side chains of the Lys and Tyr that constitute the functional
dyad173 in each peptide are shown in blue and magenta, respectively. Note that this dyad is displayed on a helical scaffold in ShK but a b-sheet in charybdotoxin and
margatoxin.
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5.3. Shrew peptide SOR-C13: cancer

The transient receptor potential vanilloid calcium channel sub-
type six (TRPV6) is found predominantly in non-excitable tissues,
mainly the intestinal tract, where it is responsible for capturing
calcium at the apical membrane of enterocytes to begin the process
of transcellular shuttling into the body. While the greatest levels of
TRPV6 are in the gut, it has been variably reported in kidney, pan-
creas, prostate, salivary gland, placenta, and breast. TRPV6 is con-
stitutively active and about 100-fold more selective for the apical
entry of calcium over monovalent cations. Early studies of TRPV6
(named CaT1 or EaCa1 at that time) showed that the channel
was significantly over-expressed in several cancers compared to
corresponding normal tissues.189 As such, TRPV6 was implicated
in tumor development and progression.190 TRPV6 is over-
expressed in carcinomas of ovary and other cancer such as breast,
colon, prostate and thyroid,191 and TRPV6 mRNA is elevated in var-
ious tumor cell lines, including those of colon, human leukemia
and prostate, making it an attractive potential diagnostic and ther-
apeutic target.192,193 In prostate cancer, TRPV6 mRNA levels are
positively correlated to tumor progression and aggressiveness as
indicated by Gleason score, pathological stage and extra-prostatic
metastases.192 Indeed, TRPV6-positive prostate tumors have a poor
prognosis owing to their propensity to invade surrounding
tissues.194

The northern Short-tailed shrew (Blarina brevicauda), found in
eastern North America, is one of the very few mammals that pos-
sess venom. The venom is secreted in the animal’s saliva from
the submaxillary and sublingual glands and is used to subdue
insect prey. One toxic component is a 253-residue serine protease
with kallikrein-like activity named blarina toxin.195 In addition, the
venom contains a 54-residue paralytic peptide containing three
disulfide bonds named soricidin (Fig. 17).196 This peptide blocks
Ca2+ uptake via TRPV6. C-terminal truncations of soricidin (SOR-
C27 and SOR-C13), while not being paralytic, have been shown
to block Ca2+ uptake by ovarian cancer cells via inhibition of
TRPV6.197 Indeed, SOR-C13 inhibits TRPV6 with an IC50 of
14 nM,198 and was effective in inhibition of tumors in xenograft
models of ovarian and breast cancer. Studies with fluorescently-
tagged SOR-C13 showed rapid uptake by ovarian xenograft tumors
with signals becoming visible in 20–30 min, maximizing at about
1 h and remaining for at least 72 h.198

An open-label, dose escalation Phase 1 study of SOR-C13 in 23
patients with advanced tumors of epithelial origin was conducted
recently. Primary objectives were to assess safety, tolerability and
pharmacokinetics,199 and secondary goals were to assess pharma-
codynamics and efficacy. No drug-related serious adverse events
occurred. Some minor Grade 2 and Grade 3 dose-related toxicities
were observed such as hypocalcemia and atrial fibrillation in about
one quarter of the patients. One Grade 3 treatment-emergent
adverse event, urticaria, was definitely related to SOR-C13. The
maximum tolerated dose was not established. Stable disease sug-
gested antitumor activity.199
6. Venom-derived peptides currently in preclinical
development

6.1. NaV1.7 blockers: pain

The 1.7 subtype of the voltage-gated sodium channels (NaV) has
emerged as one of the hottest drug targets for channel blockers or
modulators over the past decade. Mutations that lead to a loss of
function in SCN9A, the gene encoding NaV1.7, cause congenital
insensitivity to pain with anosmia as the only other sensory deficit,
whereas mutations resulting in a gain-of-function are involved in
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Fig. 17. Amino acid sequences of soricidin, SOR-C27 and SOR-C13. The disulfide bonds for soricidin have not been reported but are known to be present from mass spectral
data.
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episodes of extreme spain (erythromelalgia and paroxysmal
extreme pain disorder), often triggered by non-noxious stim-
uli.200,201 Thus, selective inhibitors of NaV1.7 are potential leads
for future analgesic development. Unfortunately, non-specific
blockade of other NaV subtypes (1.1, 1.2, 1.4, 1.5 and 1.6)202 has
the potential to lead to substantial side-effects, including seizures,
arrhythmias and impaired motor function.

Small disulfide-rich peptides that inhibit NaV1.7 have been iso-
lated from the venom of several species of tarantulas. The first of
these to be reported was protoxin-II from the Peruvian green vel-
vet tarantula, Thrixopelma pruriens,203 which is a 30-residue pep-
tide containing three disulfide bonds (Fig. 18). This adopts an ICK
motif structure, where one disulfide bond threads a loop formed
by the other two disulfide bonds and the peptide backbone to form
a knot-like structure.64,65 ProTx-II inhibits both tetrodotoxin-sensi-
tive and tetrodotoxin-resistant voltage-gated sodium channels.
ProTx-II inhibits activation by shifting the voltage-dependence of
channel activation to more positive potentials. ProTx-II blocks
NaV1.7 with an IC50 value of around 300 pM, and NaV1.2, 1.5 and
1.6 with IC50 values of 41, 79 and 26 nM, respectively.203

One of the best-studied venom peptide inhibitors of NaV1.7 is
the 35-residue huwentoxin IV, isolated from the venom of the Chi-
nese bird-eating spider Selenocosmia huwena (Fig. 18).205 This 35-
residue peptide, which also adopts an ICK fold, completely inhibits
Nav1.7 with an IC50 of �26 nM.208 Detailed characterization of the
toxin-channel interaction revealed that the peptide binds to one of
the four voltage sensor domains (VSD) of the channel,208,209 which
is in contrast to small molecule drugs such as local anesthetics that
bind to the central pore region.210 The channel pore is more highly
conserved among the different NaV1 subtypes compared to the
VSD, making the VSD an attractive target for development of selec-
tive therapeutics, and small molecules that target the VSD are
being developed.211,212

Another novel peptide, l-theraphotoxin-Pn3a, isolated from
venom of the tarantula Pamphobeteus nigricolor, potently inhibits
NaV1.7 (IC50 0.9 nM) with at least 40–1000-fold selectivity over
all other Nav subtypes. Despite on-target activity in small-diame-
ter dorsal root ganglia, spinal slices, and in a mouse model of pain
induced by NaV1.7 activation, l–TRTX-Pn3a alone displayed no
analgesic activity in formalin-, carrageenan- or FCA-induced pain
in rodents when administered systemically. However, when
administered with sub-therapeutic doses of opioids or the
enkephalinase inhibitor, thiorphan, l–TRTX-Pn3a produced pro-
found analgesia. These results suggest that in these inflammatory
models, acute administration of peripherally restricted NaV1.7
inhibitors may produce analgesia only when administered in com-
bination with an opioid.213

NaV channels contain four homologous but non-identical VSDs
that control the gating of the channel. Each VSD consists of four
transmembrane helical segments (S1-S4) connected via intra and
extra-cellular loops. VSDs of domains II and IV (VSDII and VSDIV)
have been shown to be excellent potential targets as they control
channel opening and inactivation, respectively. HwTx-IV specifi-
cally binds to acidic residues in the S1-S2 and S3-S4 loops of VSDII;
thus, rat NaV1.2 and 1.3 and human NaV1.7, which all possess E818
in S3-S4, are sensitive to HvTX-IV, whereas NaV1.4 and 1.5, missing
an acidic residue in this same position, are insensitive to HwTx-
IV.208,209 The pharmacophore of HwTX-IV was identified through
extensive SAR studies, which showed that residues Trp30 and
Lys32 are required for NaV1.7 activity, whereas substitutions at
the N- and C-terminal regions of the peptide were found to
improve affinity for NaV1.7 without improvement against
NaV1.5.214,215 This led to Medimmune’s development of a triple
mutant of HwTx-IV (E1G, E4G, Y33W) which is one of the most
potent blockers of NaV1.7 reported to date (IC50 � 0.5 nM).215 A
recent report on the structure of this tri-substituted analog
revealed that the fold is the same as that of the parent HwTX-IV
peptide and that NaV isoforms 1.1, 1.2, 1.3, 1.6 and 1.7 are sensitive
to this analog whilst isoforms 1.4, 1.5 and 1.8 are not.216

In another program at Pfizer, potent and selective blockers of
NaV1.7 with improved therapeutic properties were generated from
ceratotoxin-1 (CcoTx1) (Fig. 18),217 an inhibitor of neuronal
sodium channels isolated from venom of the tarantula Ceratogyrus
cornuatus. A combination of directed evolution, saturation mutage-
nesis, structure-activity relationship, and chemical modification
studies was pursued to create potent and selective peptide inhibi-
tors of NaV1.7.207 Several of these peptides are highly potent (IC50

2.5 nM against Nav1.7) and selective (selectivity improvements of
80-fold and 20-fold over the closely-related NaV1.2 and 1.6 chan-
nels, respectively, and IC50 on skeletal (NaV1.4) and cardiac
(NaV1.5) channels >3000 nM).

Amgen identified and characterized GpTx-1, a known antago-
nist of TTX-sensitive sodium channels,218 from venom of the taran-
tula Grammostola porter.206 GpTx-1 was first reported as a CaV
channel blocker after isolation from venom of the closely-related
Chilean tarantula, Grammostola rosea, and named GTx1-15.219 It
was later identified in the venom of the Chilean copper tarantula,
Paraphysa scrofa (Phrixotrichus auratus).220 On the basis of its
potency and desirable Nav subtype selectivity profile, GpTx-1
was developed as a lead to target Nav1.7. Murray et al.206 described
a significant peptide medicinal chemistry approach to probe
GpTx-1 structure-activity relationships and engineered analogs
with high potency and selectivity for NaV1.7. The analog [Ala5,
Phe6,Leu26,Arg28]GpTx-1 was found to be exceptionally potent
and selective, with an IC50 of 1.6 nM against NaV1.7, >1000-fold
selectivity against NaV1.4, and >6000-fold selectivity against
NaV1.5. Synthesis and folding of this analog proceeded smoothly,
indicating that it would be amenable to scaled-up chemical
production.

Janssen recently published on their program of optimizing
ProTX-II via directed evolution.221 Using ProTX-II as a scaffold,
the engineered peptide JNJ63955918, with improved NaV1.7 selec-
tivity and in vivo tolerability, was developed. This analog has an N-
terminal H-Gly-Pro addition, as well as the substitutions W7Q and
W30L. JNJ63955918 induces a pharmacological insensitivity to
pain that fully recapitulates the NaV1.7-null phenotype.221



Fig. 19. Amino acid sequence of RgIA and RgIA4 (KCP-400), with the two disulfide
bonds indicated. Cit = citrulline. The structure of Rg1A (pdb id 2JUT)225 is shown
with the backbone in lightblue and disulfides in orange. The side chains of Asp5,
Pro6 and Arg7, which are thought to interact with the (+) face of the a9a10
receptor,225 are coloured red, purple and marine, respectively, and that of Arg9,
which may interact with the complementary face of the receptor, is shown in
darkblue.

Fig. 18. Amino acid sequences and structures of spider-derived NaV1.7 blockers protoxin-II (pdb id 2N9T),204 huwentoxin-IV (pdb id 1MB6),205, GpTx-1 (solution structure
shown in Murray et al.,206 but no pdb assigned), ceratotoxin (pdb id 5EMP of complex with NaV1.7)207 and l–TRTX-Pn3a, with three disulfide bonds indicated in the classic
ICK pattern.
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Peptide engineering programs at several institutions and com-
panies as described above have optimized the potencies and selec-
tivities of various venom-derived leads as inhibitors of NaV1.7. The
larger footprint of these tarantula-derived peptides207 compared to
small molecule drugs,212 is thought to provide an enhanced oppor-
tunity for development of more selective ligands. Peptides are
therefore considered the optimal compromise between small
molecules and larger proteins such as antibodies, with their supe-
rior selectivity and reasonable production costs.222 Interestingly,
many of these efforts utilize recombinant methods to generate
their peptides, such that the potential lead would be classified as
a biologic.207,216,221

6.2. a-conotoxin RgIA: pain

Originally isolated from Conus regius, a-conotoxin RgIA is a 13-
residue two intramolecular disulfide peptide (Fig. 19).223 As
described above, a-conotoxin antagonists of a9a10 nAChRs have
been proposed as potential analgesics for the treatment of neuro-
pathic pain.103,224 However, a-conotoxin Vc1.1 (Section 4.1)
proved to be at least two orders of magnitude less potent on
human than rodent nAChRs, limiting its translational applica-
tion.112 Furthermore, an alternative proposal that Vc1.1 achieves
its therapeutic effects by acting as an agonist of GABAB receptors
has caused uncertainty as to whether a9a10 nAChR blockade is
the therapeutically relevant mechanism.114 To address these
issues, SAR studies of Rg1A were undertaken by Kineta Inc. in col-
laboration with researchers at the University of Utah, Salt Lake
City, leading to the development of RgIA4 (KCP-400), a peptide that
exhibits high potency for both human and rodent a9a10 nAChRs,
and was at least 1000-fold more selective for a9a10 nAChRs over

http://2JUT
http://2N9T
http://1MB6
http://5EMP
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all other molecular targets tested, including opioid and GABAB

receptors.115 A daily subcutaneous dose of RgIA4 prevented
chemotherapy-induced neuropathic pain in rats. In wild-type mice,
oxaliplatin treatment produced cold allodynia that could be pre-
vented by RgIA4. Additionally, in a9 knock-out mice, chemother-
apy-induced development of cold allodynia was attenuated and
the milder, temporary cold allodynia was not relieved by RgIA4.
These results clearly establish blockade of a9-containing nAChRs
as the basis for the efficacy of RgIA4, and that a9-containing
nAChRs are a valid target for prevention of chronic cancer
chemotherapy-induced neuropathic pain.115
6.3. HsTX1[R14A]: autoimmune diseases

HsTX1, which was originally discovered from the venom of the
scorpion Heterometrus spinnifer,226 is a 34-residue peptide with an
unusual fourth disulfide bond (Fig. 20). It is a potent blocker of
KV1.3 channels226 and relatively selective versus KV1.1.227 As
described above, KV1.3 blockers have emerged as excellent leads
for treating autoimmune disorders.186 Recently, an analog of
HsTX1 was designed in silico with even greater selectivity for
KV1.3 over KV1.1.228 Complexes of the peptide with KV1.3 and
KV1.1 were created using docking and molecular dynamics simula-
tions, then umbrella sampling calculations were performed to con-
struct the potential of mean force of the ligand and calculate the
binding free energy for the most stable configuration. This
approach predicted that substitution of Arg14 with Ala or other
small hydrophobic residues would yield a 2 kcal/mol gain in the
Kv1.3/Kv1.1 selectivity free energy relative to the wild-type pep-
tide. Functional assays confirmed the predicted selectivity gain
for HsTX1[R14A] and HsTX1[R14Abu], with an affinity for Kv1.3
in the low pM range and a selectivity of more than 2000-fold for
Kv1.3 over Kv1.1.228 Remarkably, the synthetic yield for this
four-disulfide variant was one of the most efficient ever observed.

The administration of this peptide via the buccal mucosa232 and
lung233 has been investigated, with both routes proving to be effec-
tive in delivering plasma levels of the peptide well above those
required for effective therapy. Moreover, an N-terminally PEGy-
Fig. 20. Amino acid sequence of HsTX1[R14A] with four disulfide bonds indicated. The
disulfides in orange, and the b-sheets not flattened. The side chains of Lys23 and Tyr 21 a
that the N-terminus is oriented away from the KV1.3 channel binding surface, which faci
lated version of HsTX1[R14A] was effective in a model of inflam-
matory arthritis, with a single subcutaneous dose of PEG-HsTX1
[R14A] reducing inflammation in pristane-induced arthritis for a
longer period of time than the non-PEGylated HsTX1[R14A].231

PEG-HsTX1[R14A] has the additional advantages of reduced non-
specific adsorption to inert surfaces and enhanced circulating
half-life.231

In order to assess the biodistribution of this peptide, it was con-
jugated with the chelator NOTA and radiolabelled with 64Cu. [64Cu]
Cu-NOTA-HsTX1[R14A] was synthesized in high radiochemical
purity and yield.230 The biodistribution and positron emission
tomography studies after intravenous and subcutaneous injections
showed similar patterns and kinetics. The peptide was rapidly dis-
tributed, showed low accumulation in most of the organs and tis-
sues, and demonstrated highmolecular stability in vitro and in vivo.
The most prominent accumulation occurred in the epiphyseal
plates of trabecular bones. The high stability and bioavailability,
low normal-tissue uptake and accumulation in regions of up-regu-
lated KV channels both in vitro and in vivo demonstrate that HsTX1
[R14A] represents a valuable lead for conditions treatable by block-
ade of this channel. The pharmacokinetics shows that both intra-
venous and subcutaneous applications are viable routes for the
delivery of this potent peptide.230

As is inevitably the case in reviews of this type, other examples
of venom-derived peptides that are currently in development may
have been missed owing to a lack of either published results or
company press releases. In future instalments of this venoms-to-
drugs compilation, these examples will be included.
7. Cosmetic applications of venom-derived peptides

Peptide applications in cosmetic products have been wide-
spread over the past two decades. With no FDA regulation, sub-
stantiated claims are typically scarce. Some of these peptides
(SNAP-8 and SNAP-25, N-terminal peptides derived from SNAP25)
mimic SNAP25, which is one of the four components that forms the
SNARE complex.234 SNARE complexes form on the surface of vesi-
cles containing ACh to bind to the neuromuscular synapse and
structure of HsTX1 (pdb id 1QUZ)229 is shown with the backbone in lightblue, the
re shown in marine and magenta, respectively, and that of Arg14 in darkblue. Note
litates conjugation of this position with tags230 or PEG231 without loss of selectivity.

http://1QUZ
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release their neurotransmitter cargo into the synapse allowing the
electrical impulse from the nerve to the muscle to be propagated.
These peptides are reported to penetrate through the epidermal
and dermal layers. This allows the peptides to act as competitive
substrates to prevent SNAP25 from forming and preventing neuro-
muscular signal propagation, thereby eliminating wrinkles caused
by over-stimulated neurons.235
7.1. Waglerin-1

Waglerin-1 is a 22-residue peptide toxin isolated from the
Southeast Asian Temple Viper or Wagler’s pit viper snake Tropi-
dolaemus wagleri (Fig. 21).236 Two similar peptides, Waglerin-2
and -3, were isolated from the same snake species. Waglerin-1
selectively blocks the nAChRe subunit with an IC50 of 50 nM and
is a potent blocker of muscle nAChR. Waglerin-1 is also a modula-
tor of GABAA receptors, with potentiating and suppressing effects.
Its LD50 value is 0.33 mg/kg.237 A tri-peptide mimetic peptide, SYN-
AKETm (H-b-Ala-Pro-Dab-NHBzl x 2 AcOH), has been designed from
waglerin-1 by Pentapharm Ltd.238 It is reported to act as a nAChR-
blocking peptide with a similar mechanism to botulinum toxin-A
(BoToxTm), which cleaves SNAP-25.239
7.2. m-CnIIIC

More recently, a neuromuscular blocking l-conotoxin (l-
CnCIIIC, Fig. 22) was isolated and characterized from C. consors.240

This peptide, which blocks the NaV1.4 channel found in skeletal
muscle, has been developed as a non-prescription alternative to
Fig. 21. The amino acid sequence of wagler

Fig. 22. Amino acid sequence of m-CnIIIC with three disulfide bonds indicated. Z = pyrogl
wheat, disulfides in orange and the side chains of residues found to be important for activ
purple, Arg16 blue, Asp17 red, His18 violet.
botulinum toxin by Atheris Labs and marketed as Activen (XEP-
018). When applied as a 1% w/v topical cream, this product is
claimed to reduce fine-line wrinkles by 80% for 12–18 h after appli-
cation (http://www.activen.ch/?page=products).
8. Agricultural applications of venom-derived peptides

As the human population grows at a rate of nearly 80 million
per year, the population is expected to surpass 9 billion around
2050.243 The global agricultural system will be pushed to its limit
and beyond in order feed this population. The population explosion
from 1960 (2.4 billion) to 2000 (6.4 billion) required a doubling of
grain and a tripling of livestock production.244 Grain and plant pro-
duction to meet this demand was only possible following the
invention and development of the Haber-Bosch process, immedi-
ately prior to and duringWorld War I, which increased the produc-
tion of ammonium from nitrogen gas needed for fertilizers.245 The
impact of synthetic chemical fertilizers allowed for the population
explosion from 1920 to the present. The only practical way to
achieve the future increases in production necessary to meet the
increasing demand for food will be improvements in crop yields
via genetically modified plants with increased crop yields as well
as reduction in pest-mediated losses via insecticides or geneti-
cally-enhanced resistance.244

Insect pest are responsible for most of the reductions in crop
yields around the world apart from those caused by extreme
weather conditions. Controlling these pests (�1000 insect species)
and the damage they cause to world crop production (estimated
10–14% reduction)246 has been a major effort of several agricultural
in-1, with the disulfide bond indicated.

utamic acid. The solution structure (pdb id 2YEN)240 is shown with the backbone in
ity in the related m-conotoxin m-KIIIA241,242 coloured as follows: Lys13 marine, Trp14

http://www.activen.ch/?page=products
http://2YEN


Fig. 23. Amino acid sequence of x-HXTX-Hv2a.
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chemical companies over the past century.247Moreover, controlling
insect-borne and other arthropod-transmitted pathogens is a seri-
ous world-wide challenge for both humans and livestock, which
are susceptible to diseases carried by these pests, which are primar-
ily insects.244

Chemical insecticides have been the dominant control method
used to reduce crop damage. Most chemical insecticides target a
very small subset of ion channel targets.248 Unfortunately, the
common use of these insecticides has resulted in the development
of resistance to these chemicals much like the overuse of antibi-
otics for treatment of bacterial infections.249 Despite the increasing
use of biological control methods, chemical insecticides remain the
dominant method for controlling insect pests in both the agricul-
tural and public health arenas. There is growing interest in the
potential of insecticidal peptides derived from the venom of insect
predators such as scorpions250 and spiders251 as an alternative to
these synthetic chemicals.

Starting in the mid-1990’s, genetically modified (GM) crops rev-
olutionized global crop production. Insect-resistant GM crops,
mainly corn and cotton, carrying an insecticidal protein (known
as d-endotoxin or Bt) from the bacterium Bacillus thuringiensis, dra-
matically reduced insecticide use and improved crop yields.252

Overuse of GM plants constitutively expressing Bt will ultimately
result in resistance, which has already been observed in some
cases.253 The development of GM plants containing other insectici-
dal peptides such as spider toxins would help mitigate this
problem.

The most advanced of these insecticidal peptides for agricul-
tural uses comes from the Australian Blue Mountains funnel web
spider, Hadronyche versuta.254 A published example of an insectici-
dal peptide toxin from this spider is x-HXTX-Hv2a, which is a 37-
residue disulfide-rich peptide (Fig. 23) and another member of the
ICK-motif class of toxins. x-HXTX-Hv2a is a potent blocker of
insect CaV channels, with a nearly 10,000-fold selectivity for insect
over vertebrate CaV channels. The company Vestaron, originally
named Venomix, has developed a related peptide that inhibits
CaV and KCa channels in insects. Their first product, Spear-TTm

(GS-x/j-Hxtx-Hv1a), was launched in early 2017.255 This product
is made via a fermentation process in the yeast Kluyveromyces lactis
to produce the correctly-folded peptide at a competitive cost to
other commercial pesticides. The peptide can be applied via a spray
method and kills with high selectivity upon contact. Fortuitously,
this peptide is not toxic to beneficial insect species such as bees.256

Moreover, the peptide is highly stable to thermal denaturation and
organic solvents, as well as to biological digestive processes,
because of its highly stable ICK fold,257 which allows for field appli-
cations in summer conditions with no loss of activity.

Another application of this lead peptide has been in the devel-
opment of GM plants, which possess a vector engineered into the
plant to express potent insecticidal peptides, much like Bt, that
would be constitutively expressed in the plant tissue.258,259 These
GM crops could be grown with vectors producing both Bt and
the CaV channel-blocking peptide to enhance their effectiveness
and potentially reduce the development of resistance in a principle
known as pyramid stacking.260,261

9. Conclusions

This review summarizes the current status of many of the
venom-derived peptide products that are currently on the market,
under development or discontinued. As new peptides of venom
origin are identified and characterized, this field will continue to
grow. Moreover, as the efficiency and cost of both commercial syn-
thesis and recombinant expression of peptides continue to
improve, it is likely that more of these complex peptides will be
developed further. We have attempted to summarize the current
state of the field, but there are undoubtedly other developments
underway that are not covered here and that promise to further
advance the applications of venom-derived peptides.
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