
Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2007-10-27

Intersection Algorithms Based On Geometric
Intervals
Nicholas Stewart North
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
North, Nicholas Stewart, "Intersection Algorithms Based On Geometric Intervals" (2007). All Theses and Dissertations. 1207.
https://scholarsarchive.byu.edu/etd/1207

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F1207&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F1207&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F1207&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F1207&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F1207&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F1207&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/1207?utm_source=scholarsarchive.byu.edu%2Fetd%2F1207&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

INTERSECTION ALGORITHMS BASED ON

GEOMETRIC INTERVALS

by

Nicholas S. North

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computer Science

Brigham Young University

December 2007

Copyright c© 2007 Nicholas S. North

All Rights Reserved

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Nicholas S. North

This thesis has been read by each member of the following graduate committee and
by majority vote has been found to be satisfactory.

Date Thomas W. Sederberg, Chair

Date Dan Ventura

Date Kevin D. Seppi

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the thesis of Nicholas
S. North in its final form and have found that (1) its format, citations, and bibli-
ographical style are consistent and acceptable and fulfill university and department
style requirements; (2) its illustrative materials including figures, tables, and charts
are in place; and (3) the final manuscript is satisfactory to the graduate committee
and is ready for submission to the university library.

Date Thomas W. Sederberg
Chair, Graduate Committee

Accepted for the
Department Parris K. Egbert

Graduate Coordinator

Accepted for the
College Thomas W. Sederberg

Associate Dean, College of Physical and Mathematical
Sciences

ABSTRACT

INTERSECTION ALGORITHMS BASED ON

GEOMETRIC INTERVALS

Nicholas S. North

Department of Computer Science

Master of Science

This thesis introduces new algorithms for solving curve/curve and ray/surface

intersections. These algorithms introduce the concept of a geometric interval to ex-

tend the technique of Bézier clipping. A geometric interval is used to tightly bound

a curve or surface or to contain a point on a curve or surface. Our algorithms retain

the desirable characteristics of the Bézier clipping technique such as ease of imple-

mentation and the guarantee that all intersections over a given interval will be found.

However, these new algorithms generally exhibit cubic convergence, improving on the

observed quadratic convergence rate of Bézier clipping. This is achieved without sig-

nificantly increasing computational complexity at each iteration. Timing tests show

that the geometric interval algorithm is generally about 40-60% faster than Bézier

clipping for curve/curve intersections. Ray tracing tests suggest that the geometric

interval method is faster than the Bézier clipping technique by at least 25% when

finding ray/surface intersections.

ACKNOWLEDGMENTS

This work would not have been possible without the advice and support of

my thesis advisor, Dr. Thomas W. Sederberg. His constant encouragement, insight

and advice were instrumental in directing this research to its final goal. I would like

to thank Dr. Sederberg and the other members of my thesis committee, Dr. Dan

Ventura and Dr. Kevin D. Seppi, for their advice and assistance as I completed this

document.

I would also like to thank my wife Tamsin for all of the patience, encourage-

ment, love and support that she has shown me at all times. She has never expressed

any doubt in my ability to complete any aspect of this project. Her understanding

and companionship has contributed as much to this work as any insight that I may

have had on my own.

Finally, I would like to acknowledge the divine inspiration and guidance of our

Heavenly Father and express gratitude for the influence that it has been on everyone

involved in this work.

Contents

List of Figures viii

List of Tables ix

1 Introduction 1

1.1 Free-form Curves and Surfaces . 1

1.2 Intersections . 2

1.3 Interval Arithmetic . 3

1.4 Geometric Intervals . 4

1.5 Fat Lines . 5

1.6 Solving for Intersections . 6

1.7 Overview . 9

2 Background 11

2.1 Interval Arithmetic . 11

2.1.1 Vectors . 13

2.1.2 Polynomials . 14

2.1.3 Overestimation . 15

2.2 Bézier Curves . 15

2.2.1 The de Casteljau Algorithm 18

2.2.2 Rational Curves . 20

2.2.3 Derivatives . 22

2.3 Bézier Surface Patches . 23

vii

2.3.1 The de Casteljau Algorithm 24

2.3.2 Rational Surfaces . 26

2.3.3 Derivatives . 27

2.4 Interval Bézier Curves . 27

2.5 Hybrid Curves and Surfaces . 28

3 Curve/curve Intersection 33

3.1 Previous Work . 33

3.2 The GeoClip Curve/curve Intersection Algorithm 36

3.2.1 Geometric Intervals . 37

3.2.2 Fat Lines . 39

3.2.3 Geometric Interval Clipping 40

3.2.4 Iterating . 44

3.2.5 Multiple Intersections . 47

3.3 Timing Comparisons . 48

3.4 Observations and Conclusions . 51

4 Ray/surface Intersection 53

4.1 Previous Work . 53

4.2 The GeoClip Ray/surface Intersection Algorithm 55

4.2.1 Projection to R2 . 55

4.2.2 Geometric Intervals . 57

4.2.3 Geometric Interval Clipping 59

4.2.4 Iterating . 63

4.2.5 Multiple Intersections . 66

4.3 Timing Comparisons . 66

4.4 Observations and Conclusions . 72

viii

5 Conclusions and Future Directions 75

5.1 Summary of Results . 75

5.2 Future Directions . 76

Bibliography 77

ix

List of Figures

1.1 Objects created using free-form curves. 1

1.2 Single and multiple intersection of free-form curves. 2

1.3 A Bézier curve and an interval vector, [P′], bounding the derivative. . 3

1.4 Comparison of [P] and [P(t)] with the geometric intervals [P]g and

[P(t)]g. 5

1.5 A fat line is a pair of parallel lines enclosing a curve. 6

1.6 Clipping nonintersecting regions using geometric intervals and fat lines. 7

2.1 Interval vectors in IR2 are axis-aligned rectangular areas. 14

2.2 A cubic Bézier curve and its control polygon. 16

2.3 Linear, quadratic and cubic Bernstein polynomials Bn
i (t) for t ∈ [0, 1]. 17

2.4 A Bézier curve is completely contained within its convex hull. 17

2.5 The de Casteljau algorithm repeatedly interpolates control points. . . 19

2.6 Curve subdivision using intermediate points from Figure 2.5. 19

2.7 A rational Bézier curve with weights wi = 1 except w1. 20

2.8 Rational Bézier curves make it possible to represent conic sections. . . 21

2.9 Hodographs define the derivative at each point along the curve. . . . 22

2.10 A degree 3× 2 polynomial Bézier patch. 23

2.11 Evaluation of P(.5, .5) using the de Casteljau algorithm. 25

2.12 Subdivision of a Bézier patch using the de Casteljau algorithm. . . . 25

2.13 Rational Bézier patches arranged to form a cylinder. 26

2.14 A quadratic interval Bernstein polynomial. 28

x

2.15 A cubic Bézier curve expressed as a hybrid quadratic curve. 30

3.1 A fat line LP which bounds a quartic curve P(t) by enclosing all Pi. . 35

3.2 [P]g represented as the surface Q(s, t) and hybrid curve P̂(t). 39

3.3 Intersection of the Geometric interval [P]g and the fat line LQ. 40

3.4 P(t) 6= Q(u) when [δ̂](t) < δmin or [δ̂](t) > δmax. 42

3.5 Intersection of the Geometric interval [Q]g and the fat line LP(1) 45

3.6 Q(u) 6= P(t) when [δ̂](u) < δmin or [δ̂](u) > δmax. 45

3.7 Two intersections between curves P and Q. 47

3.8 Each intersection is isolated after splitting curve P in half. 47

4.1 Bézier patch P, the projection of P̃. 57

4.2 Application of Theorems 4.1 and 4.2 to a projected surface patch P(s, t). 58

4.3 In this example, [δ̂s
0] = [δ̂s

0,0, δ̂
s
0,2], [δ̂s

1] = [δ̂s
1,1,0, δ̂

s
1,3,0] and [δ̂s

2] = [δ̂s
2,3, δ̂

s
2,1]. 61

4.4 [δ̂s](s) crosses the s axis at s ∈ [0.26647, 0.40186]. 62

4.5 P(s, t) is clipped to s ∈ [0.26647, 0.40186] during the first clipping step. 63

4.6 The t clipping values are found by solving for the roots of [δ̂t](t). . . . 64

4.7 Convergence to 0. 65

4.8 Utah teapot rendering. 68

4.9 Time taken to calculate primary ray intersections with visible patches. 69

4.10 A patch from the teapot’s knob, oriented to have multiple intersections. 70

4.11 Time taken to calculate primary ray intersections with the knob patch. 70

4.12 Time taken to calculate primary ray intersections with a body patch. 71

xi

List of Tables

1.1 Convergence of intersection intervals for curves in Figure 1.6. 8

3.1 Convergence of intersection intervals for curves in Figure 3.3. 46

3.2 Relative computation times for polynomial Bézier curve intersection. 49

3.3 Relative computation times for rational Bézier curve intersection. . . 49

3.4 Relative computation time for cubic Bézier curves, by data set. 50

3.5 Relative computation time for cubic Bézier curves, by intersection count. 51

4.1 Relative computation times for randomly generated bicubic patches. . 67

4.2 Relative ray/surface intersection computation times. 72

xii

Chapter 1

Introduction

1.1 Free-form Curves and Surfaces

When an artist creates an illustration or, perhaps, designs a scalable font using a

computer, it is highly likely that the software the artist uses will employ free-form

curves. Similarly, free-form surfaces enable artists and engineers to produce three-

dimensional objects accurately and efficiently using the computer. Free-form curves

and surfaces have precise mathematical representations and yet they are generally

easy for an artist or engineer to manipulate. The objects in Figure 1.1 were created

using a popular type of free-form curve known as a Bézier curve.

(a) A simple circle. (b) Font glyph for the letter a.

Figure 1.1: Objects created using free-form curves.

Many algorithms have been developed to make manipulating free-form curves

and surfaces more practical and efficient. This paper introduces the concept of a

1

geometric interval and algorithms which exploit the properties of geometric intervals

for finding curve/curve and ray/surface intersections efficiently.

1.2 Intersections

P(t) = Q(u)

(a) Simple intersection.

P(t) = Q(u)

(b) Multiple intersections.

Figure 1.2: Single and multiple intersection of free-form curves.

The intersection of two curves is the set of points where the curves meet, as

illustrated in Figure 1.2. Two curves may have no points of intersection, a single

common point (Figure 1.2a), or multiple common points (Figure 1.2b). Determining

if two curves intersect and identifying all points of intersection is a fundamental

requirement of many algorithms that utilize free-form curves.

Ray/surface intersection is a fundamental operation used in ray tracing. Ray

tracing models the interaction of light with objects in an artificial scene. Modeling

light allows the computer to create images of the scene for entertainment, product

design or other purposes. Calculating ray/surface intersections quickly is key to

making this process efficient.

2

1.3 Interval Arithmetic

The intersection algorithms presented in this paper are based on improvements to

interval arithmetic techniques. Interval analysis is a mature field developed as a

method of bounding uncertainty and computational error in calculations. Robust

means of isolating roots in algebraic functions (for example [9, 17]) and of finding

intersections (see [30]) have been developed using interval methods. The fundamentals

of interval arithmetic are more fully explored in Section 2.1.

An interval is a simply a range of numbers defined by an upper and lower

bound. For example, interval [a, b] denotes the set {x | a ≤ x ≤ b}. We also use

the notation [x] to indicate that the quantity x is an interval. Intervals allow for

calculations to be performed when the precise value of a variable is uncertain, but a

bound on the possible values can be obtained. The rules governing such calculations

define an interval arithmetic.

P0

P1 P2

P3

x

y

(a) P, a simple cubic Bézier curve.

x

y

P′(t)

[P′]

(b) Bound on the derivative.

Figure 1.3: A Bézier curve and an interval vector, [P′], bounding the derivative.

The chief disadvantage of using standard intervals is the tendency towards

overestimation. For example, consider the Bézier curve in Figure 1.3a, given by

P(t) =
(
x(t), y(t)

)
= (P3 − 3P2 + 3P1 −P0)t

3 + 3(P2 − 2P1 + P0)t
2 + 3(P1 −P0)t + P0,

(1.1)

3

where P0 = (0, 0), P1 = (1, 2), P2 = (3, 2) and P3 = (5, 1). Differentiating, we have

P′(t) =
(
x′(t), y′(t)

)
= 3(P3 − 3P2 + 3P1 −P0)t

2 + 6(P2 − 2P1 + P0)t + 3(P1 −P0).

(1.2)

We can use interval arithmetic to determine bounds on the x and y components of

this derivative function for all values of [t] = [0, 1]. Doing this gives us the solution

x′ ∈ [3, 9] and y′ ∈ [−6, 6]. [P′] = ([x′], [y′]) is the axis-aligned rectangle shown in

Figure 1.3b. While it is clear that P′(t) ∈ [P′], as intended, [P′] is a rather large

bound of P′(t).

1.4 Geometric Intervals

Interval equations are easy to evaluate, but the resulting axis-aligned rectangular

regions are generally loose bounds. Much tighter bounds can be found, but there is

a tradeoff between evaluation cost and bounding efficiency. To provide a bound that

very tight, but computationally much simpler than working directly with the curve

or surface, we introduce the concept of a geometric interval. A geometric interval is

a two- or three-dimensional region that is relatively easy to evaluate, but provides a

tighter bound than axis-aligned rectangles.

For example, consider the Bézier curve in Figure 1.3a again. Using standard

interval arithmetic, we can find a bound for this curve simply by evaluating P(t)

over the interval [t] = [0, 1]. For our example curve, this yields the interval vector

[P] = ([0, 0], [6, 6]), the rectangular region in Figure 1.4a. For comparison, the darker

curved region in Figure 1.4a depicts one possible geometric interval bound for the

same curve, designated [P]g. A complete discussion of this geometric interval is

found in Section 3.2.

4

x

y

[P]

[P]g

(a) The interval [P] (rectangle) bounds the curve
P loosely. In contrast, the geometric interval [P]g
(curved area) is a much tighter bound for P.

x

y

[P(.2)]

[P(.2)]g

[P(.7)]

[P(.7)]g

(b) Geometric intervals [P(.2)]g and [P(.7)]g
(very small curves) are much tighter than the in-
terval bounds [P(.2)] and [P(.7)] (rectangles).

Figure 1.4: Comparison of [P] and [P(t)] with the geometric intervals [P]g and [P(t)]g.

One way that interval arithmetic can be used to compute the intersection of

two curves is to invoke the first-order Taylor expansion P(t) ∈ P0 + [P′]t. We may

evaluate this expression more easily than evaluating the curve directly. The result

is an interval vector which contains the point P(t), as illustrated by the rectangular

regions in Figure 1.4b. Intersecting the Taylor expansions of two curves is a simple

way to identify parameter intervals where the curves may overlap.

Geometric intervals may also be used to bound any point P(t) along the curve.

A particularly tight geometric interval for this application is [P(t)]g, a curve that lies

along [P]g at t. Figure 1.4b illustrates the small curves [P(0.2)]g and [P(0.7)]g, which

contain the points P(0.2) and P(0.7), respectively.

1.5 Fat Lines

To solve for curve/curve intersections we also use another curve bounding technique:

fat lines. A fat line, introduced in [27], is simply a pair of parallel lines that lie on

5

either side of the curve, enclosing the curve within. Geometric intervals are used

to determine parameter ranges where a curve overlaps a fat line, thereby identifying

regions that potentially contain intersections.

x

y

LP

Figure 1.5: A fat line is a pair of parallel lines enclosing a curve.

Figure 1.5 shows a fat line, designated LP, which bounds the curve P. Al-

though any pair of parallel lines enclosing a curve is a fat line, [27] outlines a simple

scheme for finding tight fat lines for Bézier curves. This method requires nothing

more than examining the control points of the curve.

1.6 Solving for Intersections

We now present a brief overview of the curve/curve intersection process to illustrate

how geometric intervals and fat lines are used to isolate intersections. The intersection

of the curves P(t) and Q(u), shown in Figure 1.6a, will be used as an example to

drive the discussion of the algorithm. In this example, the two curves have a single

intersection P(t∗) = Q(u∗).

First, a fat line LQ for the curve Q is found. The geometric interval for curve

P is then used to determine the parameter interval [t0, t1] where [P]g overlaps LQ:

[t0, t1] ⊇ {t | [P(t)]g ∩ LQ 6= ∅}. (1.3)

6

x

y

P

Q

(a) Curves P and Q, to be intersected.

x

y

P(.547) P(.761)

[P]g

(b) Calculate [t0, t1], where [P]g overlaps LQ.

x

y

Q(.327)

Q(.392)

[Q]g

(c) Calculate [u0, u1], where [Q]g overlaps LP(1) .

x

y

P(1)

Q(1)

(d) New curves, P(1) and Q(1), after clipping.

Figure 1.6: Clipping nonintersecting regions using geometric intervals and fat lines.

This process is illustrated in Figure 1.6b. Since P(t) 6= Q(u) for t /∈ [t0, t1] and

u ∈ [0, 1], we may clip away portions of curve P for which t /∈ [t0, t1], retaining the

segment P(1) where an intersection may still occur. Calculating [t0, t1] is the heart of

the algorithm and is explained in detail in Chapter 3.

Next, the process is reversed. We find the fat line LP(1) for the curve segment

P(1). Then we calculate the parameter range [u0, u1] corresponding to the overlap

7

of [Q]g and LP(1) , as shown in Figure 1.6c. We then extract the subcurve Q(1), the

segment of Q spanning [u0, u1], where an intersection may occur. The subcurves P(1)

and Q(1) are shown in Figure 1.6d.

These steps assure that any intersection P(t) = Q(u) must take place along

the curve segments covered by the subcurves P(1) and Q(1). Note that, in subsequent

iterations, P(i+1) and Q(i+1) can be approximated more accurately with a geometric

interval or a fat line than P(i) and Q(i). Due to a rapid improvement in approximation

accuracy, our intersection algorithm generally exhibits cubic convergence.

i P Intersection Interval [ti0, t
i
1] Width of [ti0, t

i
1]

0 [0, 1] 1.0000000× 100

1 [0.547013139706567, 0.761355820929153] 2.1434268× 10−1

2 [0.626365384338657, 0.627118468877733] 7.5308454× 10−4

3 [0.626551181798084, 0.626551181835295] 3.7211234× 10−11

(a) Refinement of the interval [t0, t1] which bounds potential intersections on P.

i Q Intersection Interval [ui
0, u

i
1] Width of [ui

0, u
i
1]

0 [0, 1] 1.0000000× 100

1 [0.326756310053875, 0.392066137230932] 6.5309827× 10−2

2 [0.369959987612443, 0.369975295646327] 1.5308034× 10−5

3 [0.369965211165735, 0.369965211165736] 2.2204460× 10−16

(b) Refinement of the interval [u0, u1] which bounds potential intersections on Q.

Table 1.1: Convergence of intersection intervals for curves in Figure 1.6.

The interval [ti0, t
i
1] converges to the parameter value of the intersection on

curve P as i → ∞. Likewise, [ui
0, u

i
1] always contains the intersection on Q and

narrows until the intersection parameter is found. Table 1.1 shows the values of

these intervals for each iteration of the intersection process. Table 1.1a illustrates the

progress of [ti0, t
i
1] on curve P while Table 1.1b shows [ui

0, u
i
1] on curve Q. Note that

the third column of these tables contains the width of the parameter interval. The

width of [ti0, t
i
1] is simply the difference ti1 − ti0. The width is useful for gauging how

tightly an interval has bounded a quantity by showing which digit first accounts for

8

the difference between the upper and lower bound. The interval widths show that the

number of matching digits approximately triples with each iteration. By the fourth

iteration, t∗ and u∗ have been approximated with over 16 digits of accuracy.

1.7 Overview

Geometric intervals provide an elegant basis for the curve/curve intersection algorithm

outlined here. The concept of a geometric interval also leads to a unique method for

finding intersections between a ray and a surface. In the ray/surface algorithm, a

geometric interval is constructed for the surface, enabling us to simplify the search for

intersections. This thesis details both of these geometric interval-based intersection

algorithms.

Chapter 2 contains an introduction to the background material that serves as

the theoretical foundations for this research. This chapter includes a discussion of

interval arithmetic, Bézier curves, Bézier surfaces, interval Bézier curves and hybrid

curves. Chapter 3 outlines the developement of the curve/curve intersection algo-

rithm, beginning with an overview of previous work on finding intersections between

planar curves. Chapter 4, on ray/surface intersections, follows a similar progression,

starting with a discussion of current ray/surface intersection algorithms and then

documenting the development of the geometric interval method. Chapter 5 concludes

with remarks on the effectiveness of geometric intervals for finding intersections as

well as a discussion of future directions to be explored.

9

10

Chapter 2

Background

This chapter introduces the mathematical foundations on which geometric in-

tervals are based, including interval arithmetic, Bézier curves, Bézier surfaces, interval

Bézier curves and hybrid curves. Each of these concepts plays an important role in

understanding the curve/curve and ray/surface intersection algorithms.

2.1 Interval Arithmetic

Standard interval arithmetic techniques form the framework for the geometric in-

terval methods developed in this thesis. For a more thorough discussion of interval

arithmetic see Ramon E. Moore’s Interval Analysis [17].

A scalar interval is a closed set of real values. Intervals are written [a,b], where

[a, b] = {x | a ≤ x ≤ b}. (2.1)

We define IR to be the set of all real scalar intervals.

Intervals can be thought of as numbers for which the exact value is uncertain.

Viewed in this way, we can define the standard arithmetic operations for intervals.

These operations form an interval arithmetic. If ∗ is one of the binary arithmetic

operations in {+,−, ·, /} and we apply ∗ to the intervals [a, b] and [c, d], the result is

[a, b] ∗ [c, d] = {x ∗ y | x ∈ [a, b], y ∈ [c, d]}. (2.2)

11

Equivalently, we define the following in terms of the endpoints a, b, c and d:

[a, b] + [c, d] = [a + c, b + d] (2.3)

[a, b]− [c, d] = [a− d, b− c] (2.4)

[a, b] · [c, d] = [min(ac, ad, bc, bd), max(ac, ad, bc, bd)] (2.5)

[a, b] / [c, d] =



[a, b] · [1/d, 1/c] if 0 /∈ [c, d],

[−∞, a/c] if 0 ≤ a < b and c < d = 0,

[a/d, +∞] if 0 ≤ a < b and c = 0 < d,

{[−∞, a/c] ∪ [a/d, +∞]} if 0 ≤ a < b and c < 0 < d,

[−∞, b/d] if a < b ≤ 0 and c = 0 < d,

[b/c, +∞] if a < b ≤ 0 and c < d = 0,

{[−∞, b/d] ∪ [b/c, +∞]} if a < b ≤ 0 and c < 0 < d,

[−∞, +∞] if a ≤ 0 ≤ b and c ≤ 0 ≤ d,

∅ if 0 /∈ [a, b] and c = d = 0.

(2.6)

The cases of Equation 2.6 are required to handle division by zero (see [10, 21]).

Note that when c < 0 < d the result may be the union of two intervals. Representing

this set as [−∞, +∞], the tightest interval containing the set, ensures that division

always yields a single interval. This is the convention which we have chosen to follow.

Any real number a is equivalent to the interval [a, a]. This is useful as it

enables us to mix intervals and real valued operands in Equation 2.2. For example,

we can write a + [c, d] = [a + c, a + d]. To distinguish a real variable from its interval

counterpart, we use the notation [x] to denote that the variable x is an interval.

It follows directly from Equation 2.3 and Equation 2.5 that interval addition

and multiplication are commutative and associative. That is,

[u] + ([v] + [w]) = ([u] + [v]) + [w] [u] + [v] = [v] + [u] (2.7)

[u] · ([v] · [w]) = ([u] · [v]) · [w] [u] · [v] = [v] · [u] (2.8)

12

However, interval multiplication is only subdistributive over addition:

[u] · ([v] + [w]) ⊆ [u][v] + [u][w]. (2.9)

A notable exception to this occurs when [u] degenerates to a real scalar value u. In

this case, for any u, [v] and [w], the following holds

u · ([v] + [w]) = u[v] + u[w]. (2.10)

For convenience, we will usually omit the dot indicating multiplication, preferring the

simpler notation [u][v] ≡ [u] · [v].

It is often useful to speak of the width of an interval when discussing how

tightly an interval bounds some unknown quantity. Likewise, it is common to refer to

a real value that is midway between the endpoints of an interval, called the midpoint.

The width w([x]) and midpoint m([x]) of an interval [x] = [a, b] are defined as

w([a, b]) = b− a, m([a, b]) =
a + b

2
. (2.11)

2.1.1 Vectors

Vectors can also be made up of interval components. An n-dimensional interval

vector [V] ∈ IRn has elements [v1], . . . , [vn], whose component [vi] is an interval

bound in dimension i. This can be conceptualized as an axis-aligned hyperrectangle

of dimension n. The width and midpoint of an interval vector are defined as

w([V]) = (w([v1]), . . . , w([vn])), (2.12)

m([V]) = (m([v1]), . . . ,m([vn])). (2.13)

13

x

y

2 7

3

7

[V]

(a) The interval vector [V] = ([2, 7], [3, 7]).

x

y

[V]

m([V])

(b) [V] contains its midpoint vector m([V]).

Figure 2.1: Interval vectors in IR2 are axis-aligned rectangular areas.

Figure 2.1a illustrates the vector [V] = ([2, 7], [3, 7]). This vector contains all

vectors (x, y) where x ∈ [2, 7] and y ∈ [3, 7]. The midpoint of this interval vector is

m([V]) = (4.5, 5), as shown in Figure 2.1b.

2.1.2 Polynomials

The coefficients and/or variables of a polynomial can be intervals. For example, Equa-

tion 1.2 in Section 1.3 was evaluated using the interval [t] = [0, 1] to find an interval

vector bounding the derivative of a Bézier curve. Evaluating this polynomial required

nothing more than following the rules of addition and multiplication as defined above.

However, we first factored this polynomial using the well known Horner’s scheme [11]

to obtain

P′([t]) = (3(P3 − 3P2 + 3P1 −P0)[t] + 6(P2 − 2P1 + P0))[t] + 3(P1 −P0). (2.14)

The use of Horner’s rule to factor interval polynomials before evaluation is common

as it tends to reduce overestimation (see [6, 18]).

14

2.1.3 Overestimation

Whenever interval arithmetic is used with polynomials the result generally will be

overly conservative. The two main sources of this overestimation are the the depen-

dency problem and the fact that interval vectors bound each dimension independently.

The dependency problem arises whenever interval arithmetic decorrelates intervals

that are actually identical. That is, a seemingly simple operation such as [u]2 is

calculated as

[u]2 = [u] · [u] = {x · y | x ∈ [u], y ∈ [u]} (2.15)

and, therefore, the two instances of [u] are treated as if they were independent.

Moore [17] shows that overestimation may occur when evaluating any expression

for which interval variables occur more than once.

Another type of overestimation occurs due to the fact that interval vectors are

only capable of bounding each dimension independently, resulting in an axis-aligned

rectangular bound. As a result, the true solution set of an expression which is oblique

and thin would be contained in an area much larger than necessary.

A third type of overestimation arises in computer software when floating point

numbers are used for interval bounds. Floating point numbers are limited in precision

and require rounding when a real number cannot be exactly represented. However,

rounded interval arithmetic can be properly implemented with the aid of standard

floating point hardware [10]. Tracking floating point rounding errors results in over-

estimation that is small compared to the other sources of overestimation.

2.2 Bézier Curves

Our curve/curve intersection algorithm is based on Bézier curves. See [5] for details

of Bézier curves, including material outside the scope of this paper.

15

Bézier curves are expressed in terms of the Bernstein polynomial basis func-

tions

Bn
i (t) =

(
n

i

)
(1− t)n−iti, 0 ≤ i ≤ n. (2.16)

A degree n Bézier curve P is defined as

P(t) =
n∑

i=0

PiB
n
i (t), t ∈ [0, 1]. (2.17)

P0

P1 P2

P3

x

y

Figure 2.2: A cubic Bézier curve and its control polygon.

The vector coefficients Pi = (xi, yi) are the Bézier control points. For example,

the cubic Bézier curve in Figure 2.2 has control points P0 = (0, 0), P1 = (1, 2),

P2 = (3, 2) and P3 = (5, 1). The control points, connected in order, form what is

referred to as the Bézier polygon or control polygon of the curve segment. This control

polygon approximates the shape of the curve, a property that makes Bézier curves

intuitive to use in an interactive environment.

A point P(t) on a Bézier curve is a weighted average of its control points,

with the influence of each control point varying with t. Bn
i (t) defines the influence of

control point Pi on the curve for a given parameter value.

16

t

B (t)0
1 B (t)1

1

1

1

(a) Bernstein polynomials B1
i .

t

B (t)0
2

B (t)1
2

B (t)2
2

1

1

(b) Bernstein polynomials B2
i .

t

B (t)0
3

B (t)1
3 B (t)2

3

B (t)3
3

1

1

(c) Bernstein polynomials B3
i .

Figure 2.3: Linear, quadratic and cubic Bernstein polynomials Bn
i (t) for t ∈ [0, 1].

Bernstein basis functions for degree n ∈ {1, 2, 3} are illustrated in Figure 2.3.

Some important properties of these basis functions include:

• Partition of unity:
n∑

i=0

Bn
i (t) ≡ 1, (2.18)

• Positivity: Bn
i (t) ≥ 0, t ∈ [0, 1], (2.19)

• Recursion: Bn
i (t) = (1− t)Bn−1

i (t) + tBn−1
i−1 (t). (2.20)

Partition of unity ensures that the relationship between the Bézier control points

Pi and the curve remain constant under affine transformations. This means that

operations such as translation, rotation or scaling on the control points will result in

the curve being translated, rotated or scaled in exactly the same manner.

P0

P1 P2

P3

x

y

Figure 2.4: A Bézier curve is completely contained within its convex hull.

17

Partition of unity and positivity guarantee that point P(t), t ∈ [0, 1] can be

expressed as a convex combination of the Bézier control points. Therefore, the entire

curve lies completely within the convex hull formed by the points Pi. The convex

hull of the set of points {Pi} is the smallest convex set containing {Pi}. The shaded

region of Figure 2.4 is an example of a convex hull. The convex hull property of

Bézier curves is often exploited in algorithms to bound the location of the curve.

The property of recursion enables us to express Bn
i (t) using linear interpolation

of the Bernstein polynomials Bn−1
i−1 (t) and Bn−1

i (t), each of which are degree n − 1.

Each of these can then be expressed using Bernstein polynomials of degree n − 2.

Since B0
i (t) ≡ 1, any Bernstein polynomial can be constructed through repeated

linear interpolation.

2.2.1 The de Casteljau Algorithm

The decomposition of Bernstein basis functions through repeated linear interpolation

leads directly to the de Casteljau algorithm [8] for the evaluation of Bézier curves.

The de Casteljau algorithm defines a set of intermediate points

Pn
i (t) = (1− t)Pn−1

i−1 + tPn−1
i , (2.21)

where P0
i = Pi. These intermediate points are shown in Figure 2.5a for n = 3.

Through recursive application of Equation 2.21, we obtain a single point Pn
n

which is equivalent to P(t). This process of repeated linear interpolation is illustrated

for a cubic curve in Figure 2.5b. This is not the most computationally efficient

method to evaluate P(t) for higher values of n. However, the de Casteljau algorithm

is a numerically stable method to evaluate points on a curve as well as an important

theoretical basis for the study of Bézier curves.

18

P
0

0
P

0

1
P

0

2
P

0

3

P
1

1
P

1

2
P

1

3

P
2

2
P

2

3

P
3

3

(a) Intermediate points.

P0
0

P1
0 P2

0

P3
0

P1
1

P2
1

P3
1

P2
2

P3
2

P3
3

x

y

(b) Evaluation of P(0.4) = P3
3 using the de Casteljau algorithm.

Figure 2.5: The de Casteljau algorithm repeatedly interpolates control points.

Besides evaluation of points on the curve, the de Casteljau algorithm can

also be used to find the Bézier control points for a portion of a curve. A point

P(t) subdivides a curve into two segments, corresponding to the parameter intervals

[0, t] and [t, 1]. The control polygon for the first segment is made up of auxiliary

points P0
0,P

1
1, . . . ,P

n
n from the de Casteljau scheme. The first curve segment from

Figure 2.5b is shown in Figure 2.6a. Similarly, points Pn
n,P

n−1
n , . . . ,P0

n define the

control polygon for the second subcurve, as shown in Figure 2.6b.

P0
0

P1
1

P2
2

P3
3

x

y

(a) Segment one, formed from points Pi
i, i ≤ n.

P3
0

P3
1

P3
2

P3
3

x

y

(b) Segment two, formed from points Pi
n, i ≤ n.

Figure 2.6: Curve subdivision using intermediate points from Figure 2.5.

It is possible to chain Bézier curves together into a so-called composite Bézier

curve. For example, the two curve segments in Figure 2.6 meet smoothly at point

P3
3, forming a composite curve that could be continued by appending a new curve at

point P0
0 or P0

3. There are simple rules for determining the continuity of the composite

19

curve where segments meet, a fact that has helped to drive the popularity of Bézier

curves. See [5] for more information on composite Bézier curves.

2.2.2 Rational Curves

The Bézier curves discussed so far are called polynomial Bézier curves. This is to

distinguish them from rational Bézier curves, which include a nonnegative weight wi

associated with each control point Pi. Weights are used to adjust the shape of the

curve, as shown in Figure 2.7.

P0

P1 P2

P3

w1=
0

w1=
0.3

w1=
1

w1=
3

x

y

Figure 2.7: A rational Bézier curve with weights wi = 1 except w1.

Each weight wi scales the basis function Bn
i (t) that controls the influence of

control point Pi. A rational Bézier curve is expressed as

P(t) =

∑n
i=0 PiwiB

n
i (t)∑n

i=0 wiBn
i (t)

. (2.22)

Rational curves were first introduced into the field of computer-aided geometric

design by Steven A. Coons [7]. Rational Bézier curves are a more flexible representa-

tion since they encompass polynomial curves (by setting wi = 1 for i = 0, . . . , n) and

make it possible to represent conic sections. For example, Figure 2.8a is a composite

Bézier curve made up of three rational quadratic Bézier segments. For comparison,

Figure 2.8b shows the corresponding composite curve made up of polynomial Bézier

20

segments. With the exception of parabolas, conic sections can only be approximated

with polynomial Bézier curves.

P0
w0=1

P1 w1=0.5

P2
w2=1

(a) Circle composed of rational Bézier curves.

P0

P1

P2

(b) Composite polynomial Bézier curve.

Figure 2.8: Rational Bézier curves make it possible to represent conic sections.

The added generality of rational curves does, however, carry a computational

cost. Many algorithms, such as the de Casteljau algorithm, can be implemented by

treating the numerator and denominator of Equation 2.22 as if they were independent

curves [5]. Equivalently, the control points Pi in Rd can be mapped to homogeneous

coordinates (wiPi, wi) in Rd+1. The algorithm is then applied to these coordinates

and the resulting control points (wjPj, wj) are projected back to Rd by dividing

out the weight: Pj = 1
wj

(wjPi, wj). Homogeneous coordinates simplify the process

by packing the weight with position, allowing both to be computed with a single

application of the algorithm.

Some algorithms cannot be adapted as readily to the rational Bézier case. For

example, finding the derivative of a polynomial Bézier curve is a fairly simple process,

as described in the next section. The derivative of a rational Bézier curve cannot be

computed directly using the same procedure.

21

2.2.3 Derivatives

The first derivative of a degree n polynomial Bézier curve can be expressed as a degree

n− 1 polynomial Bézier curve with control points

Di = n(Pi+1 −Pi). (2.23)

The resulting derivative curve is called a hodograph. The vector P′(0.5) is shown as

the tangent vector at P(0.5) of the Bézier curve in Figure 2.9a. The same vector is

shown in Figure 2.9b as a vector from the origin to the hodograph point D(0.5) =

P′(0.5). The control points for this curve are D0 = 3(P1 − P0), D1 = 3(P2 − P1) and

D2 = 3(P3 − P2).

P0

P1 P2

P3

x

y

(a) Derivative of a Bézier curve at t = 0.5.

D0

D1

D2

x

y

(b) Hodograph of (a).

Figure 2.9: Hodographs define the derivative at each point along the curve.

Higher derivatives can be obtained by repeating this process on the hodograph

curve. Each differentiation step produces a new curve that is one degree lower than

the prior curve.

Constructing a hodograph using this process is valid only for polynomial Bézier

curves. The hodograph of a rational Bézier curve must instead be expressed as a

degree 2n rational Bézier curve.

22

2.3 Bézier Surface Patches

A degree n×m polynomial tensor product Bézier surface patch is defined by

P(s, t) =
n∑

i=0

m∑
j=0

Pi,jB
n
i (s)Bm

j (t), (2.24)

where s and t range over the unit parameter square: s ∈ [0, 1], t ∈ [0, 1]. Note that

the blending function for each control point Pi,j is the product of two Bernstein basis

functions Bn
i (s)Bm

j (t), one for each of the parametric parameters s and t.

P0,0

P1,0

P2,0

P3,0

P0,1

P1,1

P2,1
P3,1

P0,2

P1,2

P2,2

P3,2

Figure 2.10: A degree 3× 2 polynomial Bézier patch.

Figure 2.10 illustrates a degree 3×2 Bézier patch defined by an array of control

points Pi,j arranged in an (n + 1) × (m + 1) grid. This grid is called the Bézier net

or control grid. The four corner control points, P0,0, Pn,0, P0,m and Pn,m, are always

on the surface, just as the first and last Bézier curve control points lie on the curve.

In fact, the edges of the patch are Bézier curves. For example, if we set t = 0 in

23

Equation 2.24, we obtain

P(s, 0) =
n∑

i=0

m∑
j=0

Pi,jB
n
i (s)Bm

j (0) =
n∑

i=0

Pi,0B
n
i (s) (2.25)

since Bm
0 (0) = 1 and Bm

j (0) = 0 for j > 0. This is simply a Bézier curve defined by

the n control points Pi,0. The same process can be repeated for s = 0, s = 1 and

t = 1 to show that each edge of a Bézier patch corresponds to a Bézier curve.

Since Bézier patches are defined using the Bernstein basis functions Bn
i (s) and

Bm
j (t) they share many properties with Bézier curves, including:

• Partition of unity:
n∑

i=0

m∑
j=0

Bn
i (s)Bm

j (t) ≡ 1, (2.26)

• Positivity: Bn
i (s)Bm

j (t) ≥ 0, s ∈ [0, 1], t ∈ [0, 1], (2.27)

• Recursion:

Bn
i (s)Bm

j (t)

= (1− s)Bn−1
i (s)Bm

j (t) + sBn−1
i−1 (s)Bm

j (t)

= (1− t)Bn
i (s)Bm−1

j (t) + tBn
i (s)Bm−1

j−1 (t)

(2.28)

As before, partition of unity ensures that the relationship between the surface and

its control points is affinely invariant. With the positivity property, partition of

unity also guarantees that each point on the surface can be expressed as a convex

combination of control points and, therefore, a Bézier patch lies within the convex

hull of its control polygon.

2.3.1 The de Casteljau Algorithm

The property of recursion enables us to apply the de Casteljau algorithm to the

control grid to evaluate P(s, t) or to subdivide the patch (see Section 2.2.1).

To evaluate a point on the surface, the de Casteljau algorithm is first applied

successively to the n + 1 control points of each row, resulting in m + 1 evaluated

24

points. These points are the control vertices of an s iso-parameter curve, a Bézier

curve on the surface corresponding to a constant s parameter value. This curve is

then evaluated at t using the de Casteljau algorithm to obtain P(s, t). Alternatively,

we could first evaluate each column to obtain a t iso-parameter curve which we would

then evaluate at s. This process is illustrated in Figure 2.11.

P(.5,.5)

Figure 2.11: Evaluation of P(.5, .5) using the de Casteljau algorithm.

(a) Segment one, spanning t ∈ [0.5, 1]. (b) Segment two, spanning t ∈ [0, 0.5].

Figure 2.12: Subdivision of a Bézier patch using the de Casteljau algorithm.

25

A patch can be subdivided at some parameter value s by using the de Casteljau

algorithm to subdivide each row of the control polygon as if it were a degree n curve.

The result is two new surfaces, dividing the s parameter into the intervals [0, s] and

[s, 1]. Subdivision in the t parameter direction is accomplished by applying the de

Casteljau algorithm to each column. Figure 2.12 shows the surface from Figure 2.10

split at t = 0.5. Repeated subdivision makes it possible to extract a Bézier subpatch

from the original surface for an arbitrary parameter region ([s0, s1], [t0, t1]).

2.3.2 Rational Surfaces

Figure 2.13: Rational Bézier patches arranged to form a cylinder.

As with Bézier curves, it is also possible to associate weights with the control

points to attain greater flexibility in defining shape. Doing so forms a rational Bézier

patch, which is expressed as

P(s, t) =

∑n
i=0

∑m
j=0 Pi,jwi,jB

n
i (s)Bm

j (t)∑n
i=0

∑m
j=0 wi,jBn

i (s)Bm
j (t)

. (2.29)

The benefits of rational Bézier patches are the same as those of rational curves

(see Section 2.2.2). Without rational surfaces it would only be possible to approximate

26

shapes like cones, spheres or cylinders (such as the one in Figure 2.13) using Bézier

surface patches.

2.3.3 Derivatives

Partial derivatives of Bézier surface patches are found by applying the techniques

presented in Section 2.2.3 to each row or column of the surface. For example, to find

the s hodograph surface Ps(s, t), corresponding to the first partial in s, we find the

hodograph of each row in the Bézier net. Pt(s, t) consists of the hodograph of each

column of the control polygon.

Mixed partials are found by constructing the hodograph for one parameter

direction followed by the other. For example, the mixed partial Pst(s, t) can be

found as the t partial of Ps(s, t) or as the s partial of Pt(s, t). Of course, higher

derivatives can be found by repeated application of the hodograph rules: Pss(s, t) is

the s hodograph of Ps(s, t).

Derivatives of rational surfaces are more problematic, as with rational Bézier

curves. See [22] for a discussion on finding derivatives of rational Bézier patches.

2.4 Interval Bézier Curves

The concept of the interval Bézier curve was introduced by Sederberg and Farouki [25],

where an interval Bézier curve was used to retain error bounds from an approximation

process. An interval Bézier curve simply uses interval vectors for control points and

is evaluated using standard interval arithmetic.

Interval Bézier curves will be used in this thesis in a simplified form. A Bézier

curve may be used to represent a polynomial in the Bernstein basis by restricting

each control point to a single scalar. When this is done, the curve is known as an

explicit Bézier curve or a Bernstein polynomial. An interval Bernstein polynomial

27

is, therefore, a polynomial in the Bernstein basis with interval coefficients. Interval

Bernstein polynomials are also discussed in [25].

t
0 1

Figure 2.14: A quadratic interval Bernstein polynomial.

For example, the Bernstein polynomial in Figure 2.14 has interval coefficients,

as indicated by the vertical bars at each control point. As with all Bernstein polyno-

mials the control points are evenly distributed in s between 0 and 1. The polynomial

is bounded by an upper and lower curve, found using the upper and lower extremes

of each coefficient, respectively. The roots of this interval polynomial are themselves

intervals, with each root being defined by the roots of the bounding curves.

2.5 Hybrid Curves and Surfaces

We refer to any curve or surface that is allowed to have a moving control point as a

hybrid curve or surface. A moving control point is a control vertex with a variable

location defined by some other curve or surface. The equation which defines the

moving control point shares one or more parameters with the hybrid. For example, a

hybrid Bézier curve P̂(t) could have a moving control point P̂1(t) which is the point

at t on the Bézier curve defining the path of the moving control point.

28

Ball [1] originated the idea of using moving control points to approximate

curves. He formulated a rational cubic curve as a quadratic Bézier curve by setting

the middle control point in motion. Later, Sederberg and Kakimoto [26] expanded

on this idea, using hybrid polynomial Bézier curves to approximate rational Bézier

curves.

As an illustration, we will now construct a simple hybrid curve. We will derive

a quadratic hybrid curve with a single moving control point that is equivalent to a

cubic polynomial Bézier curve. To find the path that the moving control point follows,

we start with the equation of a cubic polynomial Bézier curve:

P(t) = P0B
3
0(t) + P1B

3
1(t) + P2B

3
2(t) + P3B

3
2(t). (2.30)

Expanding the Bernstein polynomials B3
i (t) we obtain

P(t) = P0(1− t)3 + 3P1(1− t)2t + 3P2(1− t)t2 + P3t
3. (2.31)

We then rewrite the first and last terms by applying

P0(1− t)3 = P0(1− t)2 −P0(1− t)2t, (2.32)

P3t
3 = P3t

2 −P3(1− t)t2, (2.33)

which allows us to rewrite the cubic curve equation using the quadratic Bernstein

basis functions B2
0(t) = (1 − t)2 and B2

2(t) = t2 for the first and last control point.

We then group everything else to find the moving control point:

P(t) = P0(1− t)2 + (3P1 −P0)(1− t)2t + (3P2 −P3)(1− t)t2 + P3t
2

= P0(1− t)2 + [(3P1 −P0)(1− t) + (3P2 −P3)t](1− t)t + P3t
2

= P0B
2
0(t) +

[
(3P1 −P0)

2
(1− t) +

(3P2 −P3)

2
t

]
B2

1(t) + P3B
2
2(t).

(2.34)

29

We may therefore express the cubic Bézier curve P as a hybrid quadratic curve P̂

with control points

P̂0 = P0, P̂1(t) =
(3P1 −P0)

2
(1− t) +

(3P2 −P3)

2
t and P̂2 = P3. (2.35)

This hybrid curve is shown in Figure 2.15.

P̂0 = P0

P̂2 = P3

P̂1(t) = (3P1 -P0)(1 - t) + (3P2 -P3)t
2 2

P1 P2

P̂(0.5)

x

y

Figure 2.15: A cubic Bézier curve expressed as a hybrid quadratic curve.

To evaluate a point on a hybrid curve, we first determine the location of all

moving control points given the parameter value t. This is done by evaluating the

expressions which control their position using t. Once the moving control points have

been fixed, the hybrid curve can be evaluated as if it were a standard curve. For

example, to evaluate P̂(t) for t = 0.5 we must first evaluate P̂1(0.5) and then use the

resulting point to evaluate P̂(0.5), as shown in Figure 2.15.

The simplest way to create a hybrid curve is to use algebraic manipulation,

as shown. Using the same principles we can express any Bézier curve using many

different configurations of moving control points. It is also possible to reformulate a

Bézier surface patch as a hybrid surface with one or more moving control points.

The geometry of hybrid curves and surfaces lends valuable insight into the

properties of the curve or surface being represented. For example, the curve P̂ in

30

Figure 2.15 would be a true quadratic Bézier curve if the moving control point P̂1(t)

were to degenerate to a single point. The size of a moving control point can therefore

be viewed as a measure of how well P, the original cubic curve, can be represented

by a quadratic curve. Hybrid curves and surfaces, and the properties of the curves

and surfaces they represent, play an important role in the development of geometric

interval methods.

31

32

Chapter 3

Curve/curve Intersection

This chapter presents an algorithm, referred to as GeoClip, for calculating

points of intersection between two planar Bézier curves. A core feature of GeoClip

is the application of geometric intervals to streamline the task of processing curve

geometry. GeoClip builds upon an algorithm which we will call BezClip [27], a

popular and efficient algorithm that exhibits quadratic convergence.

BezClip takes advantage of the convex hull property of Bézier curves to

identify curve regions that may contain intersections and therefore merit further in-

vestigation. The chief advantage of the geometric interval approach over BezClip is

the ability to more accurately identify regions of interest. The result is an algorithm

that is as robust as BezClip, but which exhibits cubic convergence.

Section 3.1 reviews several predominant approaches to the curve/curve inter-

section problem, including BezClip. Some of these algorithms form the basis for

evaluating the performance of our technique. In Section 3.2, our algorithm, Geo-

Clip, is presented in detail. Timing comparisons are provided in Section 3.3. Finally,

Section 3.4 is devoted to observations and conclusions.

3.1 Previous Work

What follows is a brief overview of prominent curve/curve intersection algorithms,

labeled Subdiv [14], KopInt [13], Impl [28] and BezClip [27].

33

Subdiv [14] takes advantage of the convex hull property of Bézier curves. If

the convex hulls of the two curves overlap, the curves may intersect. In this case the

curves are subdivided using the de Casteljau algorithm. The process then contin-

ues recursively, subdividing curve segments with overlapping convex hulls until the

remaining curve segments are sufficiently small to be declared intersection points.

The Subdiv algorithm is simple, but not problem free. For example, Subdiv com-

monly reports the same intersection multiple times, convergence is only linear, and

computing the convex hull can be expensive so approximations are usually preferred,

increasing the number of iterations required.

KopInt [13] employs a binary subdivision scheme, much like Subdiv. How-

ever, in the KopInt scheme the curves are first preprocessed by locating the pa-

rameter values corresponding to all horizontal and vertical tangents. The curve is

then split into intervals which may only have these horizontal and vertical tangent

points as end points, if at all. Any two points within such an interval are sufficient to

define an axis-aligned bounding box which contains the curve segment between the

points. Bounding boxes are defined for all intervals and tested against the bounding

boxes for another curve. Intervals for overlapping bounding boxes are subdivided

by evaluating the midpoints of the intervals, creating two new bounding boxes for

each interval. The process repeats until points of intersection have been satisfactorily

approximated. The power of this method lies in the fact that only a single point on

the curve must be evaluated to subdivide an interval, a O(n) operation that is much

less expensive than the O(n2) de Casteljau algorithm. While this makes the KopInt

algorithm faster than Subdiv, the rate of convergence is still only linear.

Impl [24, 28] is an algebraic approach to finding curve/curve intersections.

One curve’s parametric equation is implicitized : converted from the parametric form

x = x(t), y = y(t) to an implicit equation of the form f(x, y) = 0. The other curve’s

parametric equations x(u) and y(u) are substituted into the implicit equation to form

34

the polynomial f(x(u), y(u)) = g(u), which has roots at all values of u for which an

intersection point exists. Intersection locations are found by applying the u values

to the parametric curve equation. If desired, parameter values for the implicitized

curve can be found with an inversion equation which maps (x, y) locations on the

implicit curve back to the corresponding parameter value t of the original parametric

curve. The speed of Impl depends heavily on the quality of the root finder used to

solve g(t) = 0. Although Impl is very fast for low degree curves, it is generally too

inefficient and numerically unstable to be practical for curves of above degree five.

BezClip [27] builds on the convex hull property and ideas from interval anal-

ysis to solve the curve/curve intersection problem. However, instead of using the

convex hull directly, as is done in Subdiv, BezClip uses a simple geometric con-

struction called a fat line. A fat line is the region between a pair of parallel lines

which contains a Bézier curve. The method presented in [27] for constructing a fat

line involves first forming a line L passing through P0 and Pn, the first and last con-

trol points of the curve. The boundaries of the fat line are then chosen such that they

are parallel to L and contain the curve between them. This can be done by ensuring

that all control points are included, as shown in Figure 3.1.

x

y

LP
L

Figure 3.1: A fat line LP which bounds a quartic curve P(t) by enclosing all Pi.

35

Given a fat line LP for curve P(t), a Bernstein polynomial curve representing

the distance from LP to another curve, Q(u), is calculated. The convex hull of this

polynomial is then used to calculate an interval [u0, u1] defining the parameter range

where Q(u) overlaps LP. Outside of this range there can be no overlap between the

curves and, therefore, P(t) 6= Q(u). The curve Q is clipped, or subdivided, using

the de Casteljau algorithm such that it spans only the region of interest, [u0, u1].

The process is then reversed by finding the fat line LQ containing Q and calculating

the interval [t0, t1] where P(t) overlaps LQ. Each curve is iteratively refined until all

intersection points have been identified to within tolerance.

BezClip uses the de Casteljau algorithm to perform clipping at each iteration,

so the per-iteration complexity is similar to Subdiv. However, BezClip exhibits

quadratic convergence since it discards segments of each curve more intelligently

and is therefore significantly faster than Subdiv. Speed tests in [27] indicate that

BezClip is always faster than Subdiv and generally faster than Impl for curves of

degree higher than four.

Another notable algorithm is the algebraic pruning technique of [15]. This

algorithm transforms curve/curve intersection into an eigenvalue problem. Algebraic

pruning is competitive with BezClip for simple intersections but is significantly

slower for more complicated cases.

3.2 The GeoClip Curve/curve Intersection Algorithm

GeoClip is essentially an extension to BezClip. The general process of clipping

away nonintersecting curve segments remains intact. Fat lines are also retained as a

mechanism for bounding Bézier curves. Our key contribution is the introduction of

geometric intervals to improve calculation of the parameter interval [t0, t1] where a

curve P(t) overlaps a fat line L.

36

3.2.1 Geometric Intervals

We employ hybrid Bézier curves (see Section 2.5) to formulate the geometric interval

for an arbitrary Bézier curve P(t), which we designate [P]g. Our goal is to transform

all curves P(t) of degree d ≥ 2 into a quadratic hybrid curve with a single moving

control point and fixed end points. Once our curve is in quadratic form, we will be

able to efficiently calculate the overlap interval of [P]g and a fat line.

Section 2.5 contains a derivation of this transformation for a cubic Bézier

curve. What follows is a derivation of the hybrid curve transformation for all curves.

Theorem 3.1. Given a Bézier curve P(t) of degree d ≥ 2, with control points Pi,

there exists an equivalent quadratic hybrid curve P̂ with fixed control points P̂0 = P0

and P̂2 = Pd and a moving control point P̂1(t). The moving control point P̂1(t) is

itself a Bézier curve of degree d− 2 with control points:

P̂1,i−1 =
aiP0 + biPi + ciPd

ai + bi + ci

, (3.1)

where ai = (d− i)(1− (d− i)), bi = d(d− 1), ci = i(1− i) and i ∈ {1, . . . , d− 1}.

Proof. The diagonal curve P(t) = Q(t, t) of a degree m× n Bézier surface Q(s, t) is

a degree m + n Bézier curve with control points

Pi =
1(

m+n
i

) ∑
j+k=i

(
m

j

)(
n

k

)
Qj,k. (3.2)

If we set m = 2 then j ∈ {0, 1, 2} and (j, k) ∈ {(0, i), (1, i − 1), (2, i − 2)}. We may

therefore expand the summation and rearrange terms to obtain

(
n + 2

i

)
Pi =

(
2

0

)(
n

i

)
Q0,i +

(
2

1

)(
n

i− 1

)
Q1,i−1 +

(
2

2

)(
n

i− 2

)
Q2,i−2. (3.3)

37

If the control points Pi of a degree d = n + 2 diagonal curve P(t) are known, we may

set all Q0,i = P0 and all Q2,i−2 = Pd. This allows us to solve for the control points

Q1,i−1 of Q(s, t), for which P(t) is the diagonal curve:

(
d

i

)
Pi =

(
d− 2

i

)
P0 + 2

(
d− 2

i− 1

)
Q1,i−1 +

(
d− 2

i− 2

)
Pd, (3.4)

Q1,i−1 =
1

2
(

d−2
i−1

) [(d

i

)
Pi −

(
d− 2

i

)
P0 −

(
d− 2

i− 2

)
Pd

]

=
(d− i)(1− (d− i))

2i(d− i)
P0 +

d(d− 1)

2i(d− i)
Pi +

i(1− i)

2i(d− i)
Pd,

(3.5)

for i ∈ {1, . . . , d− 1}. Setting ai = (d− i)(1− (d− i)), bi = d(d− 1) and ci = i(1− i),

and observing that ai + bi + ci = 2i(d− i), we have

Q1,i−1 =
aiP0 + biPi + ciPd

ai + bi + ci

. (3.6)

Since Q0,k has been collapsed to P0, and since Q2,k has been set to Pd, we may

therefore evaluate the s = t diagonal curve of Q(s, t) using the following formula:

Q(t, t) = (1− t)2P0 + 2t(1− t)P̂1(t) + t2Pd, (3.7)

where P̂1(t) is a degree d−2 Bézier curve made up of the control points P̂1,i−1 = Q1,i−1

for i ∈ {1, . . . , d− 1}. This is simply a quadratic hybrid Bézier curve with a moving

control point P̂1(t) and fixed control points P0 and Pd.

In the proof for Theorem 3.1, the Bézier curve P(t) is equated to the diagonal

curve of a Bézier surface Q(s, t) as an intermediate step. We then derive a hybrid

Bézier curve P̂(t), which is equivalent to the diagonal curve P(t), from the control

points of Q(s, t). While it is possible to avoid Q(s, t) and derive P̂(t) algebraically,

using only the control points of P(t), it is often convenient to think of the Bézier

curve P(t) as the diagonal curve of the surface Q(s, t). For example, the the surface

38

patch forms a natural bounding area for the Bézier curve, as shown in Figure 3.2a.

Figure 3.2b illustrates the equivalent hybrid curve P̂(t), evaluated at t = 0.5.

x

y

Q(s,t)

(a) Q(s, t) encloses the curve since P(t) = Q(t, t).

x

y

P̂0

P̂1,0

P̂1,1

P̂2

P1 P2

P̂(0.5)

(b) Hybrid curve P̂(t), evaluated at t = 0.5.

Figure 3.2: [P]g represented as the surface Q(s, t) and hybrid curve P̂(t).

3.2.2 Fat Lines

Fat lines, which we borrow from the BezClip algorithm, are another means of bound-

ing a Bézier curve. We briefly review their construction here.

The line L passes through the end points P0 and Pd of a degree d Bézier curve

P(t). If we represent L with the implicit equation

δ(x, y) = ax + by + c = 0, (3.8)

then δ(x, y) is the signed distance from L to any point (x, y) scaled by
√

a2 + b2. We

define the fat line containing the curve P(t) and its control points as

LP = {(x, y) | δ(x, y) ∈ [δmin, δmax]}, (3.9)

where [δmin, δmax] = [min
0≤i≤d

δ(Pi), max
0≤i≤d

δ(Pi)]. (3.10)

A fat line defined in this manner is the region of space between the two lines parallel

to L which most tightly enclose the Bézier curve control points. By the convex hull

39

property, this region bounds P(t). For example, Figure 3.1 shows a fat line which

bounds a quartic Bézier curve. Methods for obtaining tighter bounds for polynomial

quadratic and cubic curves are presented in [27].

3.2.3 Geometric Interval Clipping

The two polynomial cubic Bézier curves P(t) and Q(u) in Figure 3.3a are shown in

Figure 3.3b bounded by a geometric interval, designated [P]g, and the fat line labeled

LQ, respectively. In this section we discuss how to identify intervals of t for which

P(t) lies outside of LQ. These intervals correspond to regions of P(t) which cannot

intersect Q(u).

x

y

P

Q

(a) Curves P and Q, to be intersected.

x

y

[P]g

LQ

(b) Geometric interval [P]g and fat line LQ.

Figure 3.3: Intersection of the Geometric interval [P]g and the fat line LQ.

[P]g is defined by the parametric equation for the hybrid Bézier curve P̂(t):

P̂(t) = (1− t)2P̂0 + 2t(1− t)P̂1(t) + t2P̂2, (3.11)

40

where P̂0, P̂1(t) and P̂2 are defined as in Theorem 3.1. We may measure the signed,

scaled distance from L to P̂(t) by substituting Equation 3.11 into Equation 3.8:

δ̂(t) = (1− t)2δ̂0 + 2t(1− t)δ̂1(t) + t2δ̂2, δ̂i = δ(P̂i). (3.12)

Note that P̂1(t) is the moving control point of the hybrid curve. δ̂1(t) is found by

applying Equation 3.8 to the control points of P̂1(t) from Theorem 3.1:

δ̂1(t) = δ(P̂1(t)) =
d−2∑
j=0

δ(P̂1,j)B
d−2
j (t), (3.13)

where Bd−2
j (t) is the Bernstein basis function (see Equation 2.16).

δ̂(t) is a quadratic polynomial in the Bernstein basis. It is also a hybrid poly-

nomial since δ̂1(t) is a function of t. Defining [δ̂1] as the interval containing the

coefficients δ(P̂1,j) of δ̂1(t), we bound δ̂(t) by an interval Bernstein polynomial:

[δ̂](t) = (1− t)2δ̂0 + 2t(1− t)[δ̂1] + t2δ̂2, (3.14)

[δ̂1] = [δ̂1,min, δ̂1,max] = [min
0≤j≤d−2

δ(P̂1,j), max
0≤j≤d−2

δ(P̂1,j)]. (3.15)

Interval Bernstein polynomials (see Section 2.4) provide a convenient way to handle

the variability of the moving control point δ̂1(t). Geometrically, [δ̂](t) is a bound on

the signed, scaled distance of P(t) to L. The lower and upper bounds of [δ̂](t) are

defined by the quadratic Bernstein polynomials

δ̂min(t) = (1− t)2δ̂0 + 2t(1− t)δ̂1,min + t2δ̂2, (3.16)

δ̂max(t) = (1− t)2δ̂0 + 2t(1− t)δ̂1,max + t2δ̂2. (3.17)

The intervals of t for which P(t) lies outside of LQ correspond to regions where

[δ̂](t) ∩ [δmin, δmax] = ∅. The end points for these intervals are made up of t = 0

41

(if δ0 ∈ [δmin, δmax]), t = 1 (if δ2 ∈ [δmin, δmax]) and the values t ∈ [0, 1] for which

δ̂min(t) and δ̂max(t) cross δmin and δmax, corresponding to the roots of the equations

δ̂min(t) = δmin, δ̂min(t) = δmax,

δ̂max(t) = δmin, δ̂max(t) = δmax.

(3.18)

Since δ̂min(t) and δ̂max(t) are quadratic, we may solve for these roots directly by using

the quadratic formula. In practice, we have found that pseudo-conversion from the

Bernstein basis to the power basis [20], combined with a numerically stable quadratic

equation solver [4], is an efficient method to obtain a high quality result.

t0

6

δ

δmin

δmax

δ̂0 = 24

[δ̂1] = [7,9]

δ̂2 = -8

[δ̂](t)

t = 0.54701
t = 0.76136

(a) [δ̂](t) crossing [δmin, δmax] = [0, 6].

x

y

P(0.54701) P(0.76136)

[P]g

LQ

(b) P(t) for t ∈ [0.54701, 0.76136] is retained.

Figure 3.4: P(t) 6= Q(u) when [δ̂](t) < δmin or [δ̂](t) > δmax.

Figure 3.4a illustrates the arrangment of [δ̂](t) and [δmin, δmax] corresponding

to Figure 3.3b. In this example, δ̂min(0.54701) = δmax and δ̂max(0.76136) = δmin. We

can be certain that P(t) 6= Q(u) for t < 0.54701 and for t > 0.76136. This step of the

GeoClip algorithm ends by subdividing the curve P(t) twice using the de Casteljau

algorithm, clipping all portions of the curve away which lie outside the parameter

interval [0.54701, 0.76136]. Figure 3.4b shows the clipping points.

42

Rational Curves

Up to this point we have assumed that P is a polynomial Bézier curve. One of the

original purposes of hybrid curves was to approximate a rational curve using a hybrid

polynomial curve [26]. It is possible, therefore, to use a polynomial hybrid curve to

represent a rational curve P. However, it is likely that our clipping bounds will be

narrower if we handle rational curves directly. We now derive the rational case.

If P is rational, Equation 3.11 becomes

P̂(t) =
(1− t)2ŵ0P̂0 + 2t(1− t)ŵ1(t)P̂1(t) + t2ŵ2P̂2

(1− t)2ŵ0 + 2t(1− t)ŵ1(t) + t2ŵ2

(3.19)

where P̂0, P̂1(t) and P̂2 and their corresponding weights ŵ0, ŵ1(t) and ŵ2 are defined

by applying Theorem 3.1 to the control points and weights of a rational curve P. As

with BezClip, when P is rational we cannot represent the intersection of P̂(t) and

LQ as {(x, y) = P̂(t) | δ̂(t) ∈ [δmin, δmax]}. Instead, we have

{(x, y) = P̂(t) | 0 ∈ [δ̂(t, δmin), δ̂(t, δmax)]}, (3.20)

where δ̂(t, δmin) = 0 and δ̂(t, δmax) = 0 define the intersection between P̂(t) and

the lines bounding LQ. We derive δ̂(t, α), where α ∈ {δmin, δmax}, by substituting

Equation 3.19 into Equation 3.8 and clearing the denominator:

δ̂(t, α) = (1− t)2δ̂0(α)+2t(1− t)δ̂1(t, α)+ t2δ̂2(α), δ̂i(α) = ŵi(δ(P̂i)−α). (3.21)

Note that δ̂(t, α) is polynomial since we were able to clear the denominator.

Therefore, the fact that P is rational does not add much complexity to the GeoClip

algorithm. In fact, the only significant added complexity is a side effect of clearing

the denominator: a rational curve P must be clipped independently against each of

the boundary lines of LQ.

43

Although this process is essentially the same as previously outlined, we briefly

review it here with proper substitutions for the rational case. Bounding δ̂(t, α) with

an interval Bernstein polynomial, Equations 3.14 and 3.15 become

[δ̂](t, α) = (1− t)2δ̂0(α) + 2t(1− t)[δ̂1(α)] + t2δ̂2(α), (3.22)

[δ̂1(α)] = [min
0≤j≤d−2

ŵ1,j(δ(P̂1,j)− α), max
0≤j≤d−2

ŵ1,j(δ(P̂1,j)− α)]. (3.23)

As with Equations 3.16 and 3.17, we derive bounding polynomials from [δ̂](t, α):

δ̂min(t, α) = (1− t)2δ̂0(α) + 2t(1− t)δ̂1,min(α) + t2δ̂2(α), (3.24)

δ̂max(t, α) = (1− t)2δ̂0(α) + 2t(1− t)δ̂1,max(α) + t2δ̂2(α). (3.25)

The intersection of these bounding polynomials with the boundary lines of LQ, defined

by α ∈ {δmin, δmax}, correspond to the roots of the equations

δ̂min(t, δmin) = 0, δ̂min(t, δmax) = 0,

δ̂max(t, δmin) = 0, δ̂max(t, δmax) = 0.

(3.26)

These roots, restricted to the parameter range t ∈ [0, 1], along with the end points

t = 0 and t = 1, are sufficient to define the intervals over which P̂(t) intersects LQ.

3.2.4 Iterating

We have shown how to use the geometric interval clipping technique to clip away

regions where two curves are guaranteed not to intersect. In our example, it was

determined that P(t) did not intersect Q(u) outside the interval t ∈ [0.54701, 0.76136].

Figure 3.5a illustrates curves P and Q from Figure 3.3 after the first clipping step

of GeoClip. P(1) is the portion of curve P remaining after subdivision. The next

44

step is to determine where curve Q overlaps P(1). We now address the process of

iteratively applying geometric interval clipping to further isolate intersections.

x

y

P(1)

Q

(a) Curves P(1) and Q, to be intersected.

x

y
[Q]g

LP(1)

(b) Geometric interval [Q]g and fat line LP(1) .

Figure 3.5: Intersection of the Geometric interval [Q]g and the fat line LP(1) .

u0

1

δ

δmin

δmax

δ̂0 = -1.79830

[δ̂1] = [-0.16665, 0.58971]

δ̂2 = 5.20402

[δ̂](u)

u = 0.32676
u = 0.39207

(a) [δ̂](u) crossing [δmin, δmax] = [0, 0.05588].

x

y

Q(0.32676)

Q(0.39207)

[Q]g

LP(1)

(b) Q(u) for u ∈ [0.32676, 0.39207] is retained.

Figure 3.6: Q(u) 6= P(t) when [δ̂](u) < δmin or [δ̂](u) > δmax.

45

To determine the regions of Q(u) which are safe to clip, we begin by forming

a geometric interval [Q]g to bound curve Q and a fat line LP(1) to enclose P(1), as

shown in Figure 3.5b. We may now apply the geometric interval clipping technique

to determine the overlap of [Q]g and LP(1) .

Figure 3.6a shows that interval Bernstein polynomial [δ̂](u) which represents

the signed, scaled distance from LP(1) to [Q]g. The overlap of [δ̂](u) with the interval

δ = [δmin, δmax] is calculated and it is determined that Q(u) may be safely clipped

for u < 0.32676 and u > 0.39207. A subcurve Q(1) is formed by subdividing Q(u) to

remove these regions. The clipping points Q(0.32676) and Q(0.39207), which clearly

lie on either side of the fat line LP(1) , are shown in Figure 3.6b.

i P Intersection Interval [ti0, t
i
1] Width of [ti0, t

i
1]

0 [0, 1] 1.0000000× 100

1 [0.547013139706567, 0.761355820929153] 2.1434268× 10−1

2 [0.626365384338657, 0.627118468877733] 7.5308454× 10−4

3 [0.626551181798084, 0.626551181835295] 3.7211234× 10−11

(a) Refinement of the interval [t0, t1] which bounds potential intersections on P.

i Q Intersection Interval [ui
0, u

i
1] Width of [ui

0, u
i
1]

0 [0, 1] 1.0000000× 100

1 [0.326756310053875, 0.392066137230932] 6.5309827× 10−2

2 [0.369959987612443, 0.369975295646327] 1.5308034× 10−5

3 [0.369965211165735, 0.369965211165736] 2.2204460× 10−16

(b) Refinement of the interval [u0, u1] which bounds potential intersections on Q.

Table 3.1: Convergence of intersection intervals for curves in Figure 3.3.

The process continues by clipping P(1)(t) against Q(1)(u), and so on. The

details of subsequent iterations are shown in Table 3.1. In this example, the two

curves have a single intersection, P(t∗) = Q(u∗). For each iteration i shown in

Table 3.1, t∗ ∈ [ti0, t
i
1] and u∗ ∈ [ui

0, u
i
1]. By the fourth iteration using the GeoClip

technique, the parameter values of the intersection point have been approximated

with over 16 digits of accuracy.

46

3.2.5 Multiple Intersections

So far we have only discussed the details of applying the geometric interval clipping

technique to locate a single point of intersection between two Bézier curves. To

complete our discussion of the GeoClip algorithm, we will now show how to isolate

multiple intersections.

x

y

P

Q

Figure 3.7: Two intersections between curves P and Q.

Figure 3.7 illustrates curves P and Q which intersect at two points. To help

isolate these intersections, so that there is only one intersection between subcurves, we

will use a modification of the heuristic employed by BezClip. The BezClip heuristic

states that if the remaining parameter interval of either curve is not reduced by at

least 20% during the clipping procedure, the curve with largest remaining interval

is split in half. We then independently intersect each of the two curve halves with

the curve which was not subdivided. Application of this rule allows BezClip and

GeoClip to reliably locate all intersections. Figure 3.8 shows how subdividing one

curve can isolate multiple intersections.

x

y Q
P (1)

x

y Q
P (2)

Figure 3.8: Each intersection is isolated after splitting curve P in half.

47

Experience has shown that a modest reduction in execution time is possible by

using the following modified heuristic. Instead of checking the interval reduction of

both curves and then, if necessary, subdividing the curve with the largest remaining

interval, we split a curve as soon as it is determined that interval reduction will not

exceed our threshold. This accelerates the intersection process by allowing the next

clipping step to be performed against the shortest possible curve segment. Addition-

ally, when using this approach, our experiments suggest that it is best to divide a

curve in half when less than 30% of a curve’s parameter length is removed by the

clipping step, rather than 20% as with the original heuristic.

3.3 Timing Comparisons

An implementation of the GeoClip algorithm has been compared to implementa-

tions of the BezClip and Impl algorithms. The BezClip algorithm was chosen for

comparison due to the fact that GeoClip aims to improve BezClip by extending

the algorithm with geometric intervals. Impl was chosen because it appears to be

the fastest curve/curve intersection algorithm for low-degree Bézier curves [27, 28].

Note that Impl requires that we identify any degree-elevated curve, such as

a quadratic curve that has been represented as a cubic, and degree-reduce the curve

before performing implicitization. Rather than taking this extra step, special care

was taken to eliminate such curves before testing was performed. Also, timing results

for Impl are omitted for curves of degree higher than five. For high-degree curves,

Impl is clearly the slowest of the three algorithms and tremendous care must be taken

to minimize numerical instability, rendering Impl impractical.

Algorithms such as Subdiv and KopInt were not used for testing. Other

sources [27] have shown that these algorithms are slower than BezClip. The algebraic

pruning technique [15] was not included as its performance is reportedly comparable

to BezClip in simple cases.

48

The first set of tests was designed to give an indication of how the Impl,

BezClip and GeoClip algorithms perform relative to each other when applied to

curves of various degree. Sets of 1,000 curves were generated by randomly selecting

control points in the unit square. Then all intersections between every combination

of curves in the set were calculated using the available algorithms. This process was

repeated at least three times for each degree and the results were averaged together.

Relative execution times for these tests are reported in Table 3.2.

Degree 2 3 4 5 6 7 8 9 10

Impl 1.00 1.00 1.35 3.42 n/a n/a n/a n/a n/a

BezClip 2.12 1.66 1.43 1.44 1.46 1.49 1.53 1.58 1.62

GeoClip 1.17 1.12 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 3.2: Relative computation times for polynomial Bézier curve intersection.

While it is clear that timing results can change somewhat due to many factors,

such as implementation details, optimizations, compilers and the host machine, these

results convey the general relative performance of each algorithm. One implemen-

tation detail that should be noted is the use of the Bcom polynomial root-finding

algorithm from [29] for finding roots in the Impl algorithm. All tests were run on a

1.33 GHz Apple PowerBook G4. Intersections were computed to 14 digits of accuracy

using double-precision arithmetic.

Degree 2 3 4 5 6 7 8 9 10

Impl 1.00 1.00 1.26 2.89 n/a n/a n/a n/a n/a

BezClip 2.78 1.98 1.52 1.51 1.50 1.48 1.50 1.51 1.51

GeoClip 1.39 1.21 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 3.3: Relative computation times for rational Bézier curve intersection.

Table 3.2 indicates that GeoClip is at least 30% faster than Impl and Bez-

Clip for degree four and higher. While GeoClip is significantly faster than BezClip

for all degrees, the Impl algorithm is still faster for degrees two and three. Table 3.3

shows similar results for rational curves. Sets of rational Bézier curves were generated

49

in the same manner as before, with weights being randomly chosen in the interval

[0, 10] for each control point. Note that in both Table 3.2 and Table 3.3 Impl could

not be applied to curves of degree six and higher.

Randomly generated curves are useful for giving a good, overall feel for the

performance of these algorithms without making many assumptions about the form

the curves will take. However, we would expect that curves designed for use by people

would have lower curvature, rarely self-intersect and, being simpler, intersect other

curves in fewer places when compared to automatically generated curves. While

GeoClip is competitive with Impl for quadratic and cubic curves, we have also

tested intersection performance using polynomial cubic curves created by hand to see

if we can expect any improvement when applying GeoClip to real-world data.

Table 3.4 shows relative execution times for calculating all intersections be-

tween sets of 5,000 human-designed cubic polynomial Bézier curves. These curves

were extracted from the glyph definitions of 36 standard PostScript fonts, including

some fonts that contain symbols and icons. The curves were then normalized by

centering them within the unit square, taking care to retain proportions. Just over

20,000 unique curves were obtained which were distributed into four data sets of 5,000

curves each, labeled A, B, C and D.

Data Set A B C D Total

Impl 1.005 1.014 1.022 1.000 1.005

BezClip 1.661 1.624 1.628 1.497 1.593

GeoClip 1.000 1.000 1.000 1.021 1.000

Table 3.4: Relative computation time for cubic Bézier curves, by data set.

When testing with these data sets the small difference in speed between Impl

and GeoClip becomes insignificant. This is not unexpected when we consider that

Impl simply converts every intersection problem to a root-finding problem. There is

little difference in the work required to find a single point of intersection and multiple

50

intersections. GeoClip, on the other hand, will more efficiently clip away portions

of each curve when the curves can be more precisely bounded by the quadratic curves

of a geometric interval and when there are fewer intersections.

Analysis of the data sets A, B, C and D shows that over 99% of the curve

pairs result in only a single intersection. Table 3.5 shows the relative amount of time

spent finding intersections between curves in these data sets separated into groups

of zero to three intersections. Too few pairings of curves resulted in four or more

intersections to accurately measure performance.

Intersections 0 1 2 3

Impl 1.000 1.008 1.000 1.000

BezClip 2.322 1.526 4.978 6.580

GeoClip 1.062 1.000 1.632 1.972

Table 3.5: Relative computation time for cubic Bézier curves, by intersection count.

Our experience is that the GeoClip algorithm is significantly faster than the

other tested algorithms when applied to curves of degree four or higher. GeoClip

is still competitive with Impl for quadratic and cubic curves and is always faster

than BezClip. Furthermore, if it is expected that there will usually only be one

point of intersection between a pair of curves, GeoClip may beat Impl. Difficulties

with Impl, such as numerical stability issues and the need to check for degree ele-

vated curves, make GeoClip an attractive choice as a general-purpose curve/curve

intersection algorithm.

3.4 Observations and Conclusions

In this chapter we have presented the details of the GeoClip curve/curve intersec-

tion algorithm. In Section 3.2 we showed that geometric intervals can be used to

extend the design of BezClip [27] to create a simple, yet fast and robust algorithm.

This algorithm, GeoClip, exhibits cubic convergence, improving on the observed

51

quadratic convergence of BezClip. Section 3.3 provides evidence that GeoClip is

generally faster than BezClip for curves of any degree. GeoClip is also faster than

Impl for degree four and higher and competitive for quadratic and cubic curves.

BezClip uses the convex hull of the curve as a kind of linear bound on the

curve. The geometric interval we use in this chapter is formed by transforming a

Bézier curve into a quadratic hybrid curve. Logically, the next step would appear to

be to use some kind of cubic bound in conjunction with the Bézier clipping technique.

We have experimented with this possibility and found that the added complexity of

a cubic geometric interval outweighs any advantage. Timing tests suggest that a

cubic bound would yield performance somewhere between GeoClip and BezClip,

at best. This suggests that the choice of a quadratic geometric interval is a good

balance between complexity and rate of convergence.

Geometric intervals provide a powerful method to exploit the geometry of

Bézier curves for finding intersections. The same approach can be applied to ray/

surface intersection to similar effect, as shown in Chapter 4. GeoClip could also eas-

ily be extended to become a general-purpose polynomial root finder. Such a system

would bear some similarity to [3], but our geometric interval method would be em-

ployed to form quadratic bounds for determining clipping ranges, which may provide

some unique advantages.

52

Chapter 4

Ray/surface Intersection

Chapter 3 describes an algorithm for locating points of intersection between

two Bézier curves. This algorithm, labeled GeoClip, utilizes geometric intervals

to isolate curve regions which can be safely discarded; showing that they do not

participate in an intersection. This chapter presents an extension to this approach for

finding ray/surface intersections. That is, we will show how to use geometric intervals

to isolate points where a ray intersects a Bézier surface patch. We will continue to

use the label GeoClip for the ray/surface version of the geometric interval clipping

algorithm, distinguishing between the two algorithms by context.

Section 4.1 reviews several existing algorithms for solving the ray/surface in-

tersection problem. Section 4.2 presents the ray/surface GeoClip algorithm in de-

tail. Section 4.3 provides timing comparisons between GeoClip and a few other

algorithms. Section 4.4 is dedicated to observations and conclusions.

4.1 Previous Work

Several algorithms for ray/surface intersection, including [32, 33], utilize subdivision

techniques. A ray is tested against the convex hull of a Bézier patch and, if they

intersect, the patch is subdivided. The process of recursively subdividing the surface

and testing sub-surface convex hulls against the ray continues until points of intersec-

tion have been approximated sufficiently well. This amounts to a binary search and,

53

therefore, convergence is linear. [33] improves upon [32] by mapping the problem to

two dimensions, reducing the cost of using the de Casteljau algorithm to subdivide

the Bézier patch.

There is also a wealth of literature that takes advantage of numerical methods

to solve the ray/surface intersection problem. Toth [30] describes an algorithm that

combines bounding volumes and an interval version of Newton’s iteration to isolate

safe starting positions for a standard Newton solver. The use of interval arithmetic

allows Toth’s algorithm to make guarantees about the ability of the standard Newton

solver to converge on a solution. Barth and Stürzlinger [2] also use bounding volumes

and Newton’s method, but the robustness of interval arithmetic is abandoned for an

increase in speed. Their method makes no convergence guarantees, but, in practice,

intersections are only rarely missed. Martin et al. [16] brings together the work

of many previous Newton’s iteration-based numerical solvers to form one coherent

system that is efficient and reliable.

Kajiya [12] takes an algebraic approach, mapping the ray/surface intersection

problem to the task of finding the roots of a univariate polynomial. Kajiya’s approach

formulates the polynomial in the power basis, while other sources [23, 24] show that

it is possible to keep the polynomial in the Bernstein basis, enhancing numerical

stability. This approach parallels the Impl [28] curve/curve intersection algorithm

discussed in Chapter 3, therefore we will also apply the Impl label to this algorithm.

Nishita et al. [19] extend the Bézier clipping technique [27] to ray/surface

intersection. The label BezClip will be used to identify this ray/surface extension.

BezClip borrows and improves upon a technique from [33], using two planes that

intersect along the ray to project a Bézier patch to R2. The intersection of the ray

with the patch corresponds to the location of the origin after projection. A line

through the origin replaces the fat lines used in [27] and the surface is clipped against

this line alternately in the s and t parameter directions, removing portions of the

54

surface that do not contain the origin. This process is repeated until the origin,

and therefore the ray/surface intersection, has been located with sufficient precision.

BezClip combines the simplicity of subdivision techniques with the efficiency of the

numerical methods, making the algorithm a popular choice.

4.2 The GeoClip Ray/surface Intersection Algorithm

We extend the ray/surface BezClip technique to formulate our geometric interval

clipping algorithm, GeoClip. Projection to R2 is done in the same manner and

clipping against a line through the origin is retained as the mechanism for discarding

portions of the surface that do not intersect the ray. The major contribution of

GeoClip is the introduction of geometric intervals, which significantly improve the

algorithm’s ability to find regions of the surface which do not overlap the origin. Due

to this enhancement, GeoClip generally exhibits cubic convergence without much

added complexity, whereas BezClip is thought to converge quadratically.

Section 4.2.1 reviews the projection step defined in [19]. Section 4.2.2 in-

troduces a method for forming geometric intervals for Bézier surface patches. Sec-

tions 4.2.3 and 4.2.4 describe the clipping process. Section 4.2.5 explains how to

handle multiple intersections.

4.2.1 Projection to R2

The parametric equation

P̃(s, t) =

∑n
i=0

∑m
j=0 P̃i,jwi,jB

n
i (s)Bm

j (t)∑n
i=0

∑m
j=0 wi,jBn

i (s)Bm
j (t)

(4.1)

defines a degree n × m rational Bézier surface patch P̃(s, t). For now, we shall

concern ourselves with patches defined in Cartesian three-space, which have control

points P̃i,j = (x̃i,j, ỹi,j, z̃i,j) and corresponding weights wi,j. The tilde above some

55

symbols is to distinguish them from the projected (x, y) space we will use later. See

Section 2.3 for a review of Bézier surface patches.

A ray may be defined as the intersection of two planes with implicit equations

akx̃ + bkỹ + ckz̃ + dk = 0, k ∈ {1, 2}, (4.2)

where (ak, bk, ck) is normal to plane k and dk = −akx̃− bkỹ − ckz̃ for any (x̃, ỹ, z̃) in

the plane. Experience indicates that orthogonal planes work best.

Any point on P̃(s, t) that lies on both planes must also lie along the ray.

The intersection of the patch and plane k is found by substituting Equation 4.1 into

Equation 4.2 and clearing the denominator:

ρk(s, t) =
n∑

i=0

m∑
j=0

ρk
i,jB

n
i (s)Bm

j (t) = 0, ρk
i,j = wi,j(akx̃ + bkỹ + ckz̃ + dk). (4.3)

We now project P̃(s, t) to R2, forming a polynomial Bézier surface P(s, t) in

Cartesian two-space:

P(s, t) =
n∑

i=0

m∑
j=0

Pi,jB
n
i (s)Bm

j (t), Pi,j = (xi,j, yi,j) = (ρ1
i,j, ρ

2
i,j). (4.4)

An example projection is shown in Figure 4.1. Note that P is always polynomial,

even if P̃ is rational. If P̃ is polynomial (all wi,j = 1), and the planes intersecting

along the ray are orthogonal, then P is a simple orthographic projection of P̃ along

the ray.

This transformation projects plane 1 to the y axis and plane 2 to the x axis.

The ray is projected to the origin, 0. After projection, the ray/surface intersection

problem amounts to finding

{(s, t) | P(s, t) = 0; 0 ≤ s, t ≤ 1}. (4.5)

56

x

y

0

Figure 4.1: Bézier patch P, the projection of P̃.

4.2.2 Geometric Intervals

A geometric interval [P]g for the surface P can be formed by transforming the patch

into a hybrid Bézier surface. The hybrid surface is equivalent to P. However, moving

control points allow us to arbitrarily reformulate either the s or t parameter direction

as quadratic. By recasting the surface in this manner we will be able to more efficiently

determine which regions of the surface do not intersect the ray.

We first derive P̂s, a hybrid surface transforming the s parameter direction of

P so that it is quadratic. Figure 4.2a illustrates P̂s corresponding to Figure 4.1.

Theorem 4.1. Given a Bézier surface P(s, t) of degree n ×m, n ≥ 2, with control

points Pi,j, i ∈ {0, . . . , n}, j ∈ {0, . . . ,m}, there exists an equivalent hybrid surface

P̂s with fixed control points P̂s
0,j = P0,j and P̂s

2,j = Pn,j and moving control points

P̂s
1,j(s). P̂s is given by the equation

P̂s(s, t) =
m∑

j=0

Bm
j (t)

(
(1− s)2P̂s

0,j + 2s(1− s)P̂s
1,j(s) + s2P̂s

2,j

)
. (4.6)

57

Each moving control point P̂s
1,j(s) is a Bézier curve defined by control points P̂s

1,j,k,

k ∈ {0, . . . , n− 2}. The points P̂s
1,j,k are formed by applying Theorem 3.1 to row j of

the control net belonging to P.

Proof. By regrouping the equation for P(s, t),

P(s, t) =
n∑

i=0

m∑
j=0

Pi,jB
n
i (s)Bm

j (t) =
m∑

j=0

Bm
j (t)

(
n∑

i=0

Pi,jB
n
i (s)

)
, (4.7)

we isolate the expression
∑n

i=0 Pi,jB
n
i (s), which denotes the Bézier curve made up of

the control points along row j of the control net of P. Applying Theorem 3.1 to this

curve gives us Equation 4.6.

0

P̂s
0,0

P̂s
0,1

P̂s
0,2

P̂s
0,3

P̂s
1,0(s)

P̂s
1,1(s)

P̂s
1,2(s)

P̂s
1,3(s)

P̂s
2,0

P̂s
2,1

P̂s
2,2

P̂s
2,3

(a) Hybrid surface P̂s equivalent to Figure 4.1.

0
P̂t

0,0

P̂t
1,0

P̂t
2,0

P̂t
3,0

P̂t
0,1(t)

P̂t
1,1(t)

P̂t
2,1(t)

P̂t
3,1(t)

P̂t
0,0

P̂t
1,0

P̂t
2,0 P̂t

3,0

(b) Hybrid surface P̂t equivalent to Figure 4.1.

Figure 4.2: Application of Theorems 4.1 and 4.2 to a projected surface patch P(s, t).

P may also be transformed into the hybrid surface P̂t, which reformulates P

as quadratic in the t parameter direction, as illustrated in Figure 4.2b.

Theorem 4.2. Given a Bézier surface P(s, t) of degree n ×m, m ≥ 2, with control

points Pi,j, i ∈ {0, . . . , n}, j ∈ {0, . . . ,m}, there exists an equivalent hybrid surface

58

P̂t with fixed control points P̂t
i,0 = Pi,0 and P̂t

i,2 = Pi,m and moving control points

P̂t
i,1(t). P̂t is given by the equation

P̂t(s, t) =
n∑

i=0

Bn
i (s)

(
(1− t)2P̂t

i,0 + 2t(1− t)P̂t
i,1(t) + t2P̂t

i,2

)
(4.8)

Each moving control point P̂t
i,1(t) is a Bézier curve defined by control points P̂t

i,1,k,

k ∈ {0, . . . ,m− 2}. The points P̂t
i,1,k are formed by applying Theorem 3.1 to column

i of the control net belonging to P.

Proof. Mirroring the approach taken in the proof of Theorem 4.1, we regroup the

equation for P(s, t):

P(s, t) =
n∑

i=0

m∑
j=0

Pi,jB
n
i (s)Bm

j (t) =
n∑

i=0

Bn
i (s)

(
m∑

j=0

Pi,jB
m
j (t)

)
. (4.9)

The isolated expression,
∑m

j=0 Pi,jB
m
j (t), corresponds to the Bézier curve defined by

the control points along column i of the control net of P. Applying Theorem 3.1 to

this curve gives us Equation 4.8.

[P]g may be defined by either P̂s(s, t) or P̂t(s, t), denoted [P]sg or [P]tg, respec-

tively. In Sections 4.2.3 and 4.2.4 we show how [P]sg and [P]tg are used to iteratively

isolate all intersection points.

4.2.3 Geometric Interval Clipping

In this section we show how the geometric interval [P]sg is used to identify parameter

intervals in s where P(s, t) 6= 0. We begin by defining a line Ls through 0 parallel

to V0 + V1, where V0 = P0,m −P0,0 and V1 = Pn,m −Pn,0. If we represent Ls with

the implicit equation

δ(x, y) = ax + by + c = 0, (4.10)

59

then δ(x, y) is the signed distance from Ls to any point (x, y) scaled by
√

a2 + b2.

Therefore, the signed, scaled distance from Ls to P̂s(s, t) defined in Theorem 4.1 is

δ̂s(s, t) =
m∑

j=0

Bm
j (t)

(
(1− s)2δ̂s

0,j + 2s(1− s)δ̂s
1,j(s) + s2δ̂s

2,j

)
, (4.11)

where δ̂s
0,j, δ̂s

1,j(s) and δ̂s
2,j are distance measures from Ls to P̂s

0,j, P̂s
1,j(s) and P̂s

2,j,

respectively. δ̂s
0,j and δ̂s

2,j are found by directly applying Equation 4.10 to the fixed

control points P̂s
0,j = (x0,j, y0,j) and P̂s

2,j = (x2,j, y2,j) of P̂s(s, t):

δ̂s
0,j = δ(P̂s

0,j) = ax0,j + by0,j + c, δ̂s
2,j = δ(P̂s

2,j) = ax2,j + by2,j + c. (4.12)

However, P̂s
1,j(s) is a Bézier curve, so we must apply the function δ(x, y) to each of

its control points P̂s
1,j,k = (x1,j,k, y1,j,k) to produce δ̂s

1,j(s):

δ̂s
1,j(s) =

∑
0≤k≤n−2

Bn−2
k (s)δ̂s

1,j,k, δ̂s
1,j,k = δ(P̂s

1,j,k) = ax1,j,k + by1,j,k + c. (4.13)

The replacement of P with the equivalent surface P̂s now becomes important.

The geometric interval transformation enables us to bound the distance from Ls to

P(s, t) with an interval quadratic Bernstein polynomial [δ̂s](s):

[δ̂s](s) = (1− s)2[δ̂s
0] + 2s(1− s)[δ̂s

1] + s2[δ̂s
2], (4.14)

where [δ̂s
0], [δ̂s

1] and [δ̂s
2] are intervals containing δ̂s

0,j, δ̂s
1,j(s) and δ̂s

2,j, respectively:

[δ̂s
0] = [δ̂s

0,min, δ̂
s
0,max] = [min

0≤j≤m
δ̂s
0,j, max

0≤j≤m
δ̂s
0,j],

[δ̂s
1] = [δ̂s

1,min, δ̂
s
1,max] = [min

0≤j≤m
0≤k≤n−2

δ̂s
1,j,k, max

0≤j≤m
0≤k≤n−2

δ̂s
1,j,k],

[δ̂s
2] = [δ̂s

2,min, δ̂
s
2,max] = [min

0≤j≤m
δ̂s
2,j, max

0≤j≤m
δ̂s
2,j].

(4.15)

60

δ̂s
0,0

δ̂s
0,2

δ̂s
1,1,0

δ̂s
1,3,0

δ̂s
2,1

δ̂s
2,3

0

Ls

(a) δ̂s measures which define δ̂s
i,min and δ̂s

i,max.

[δ̂s
0] [δ̂s

1] [δ̂s
2]

0

Ls

(b) Visualization of [δ̂s
0], [δ̂s

1] and [δ̂s
2].

Figure 4.3: In this example, [δ̂s
0] = [δ̂s

0,0, δ̂
s
0,2], [δ̂s

1] = [δ̂s
1,1,0, δ̂

s
1,3,0] and [δ̂s

2] = [δ̂s
2,3, δ̂

s
2,1].

Figure 4.3 illustrates the gathering of distance measures δ̂s
0,j, δ̂s

1,j,k and δ̂s
2,j

to form the intervals [δ̂s
0], [δ̂s

1] and [δ̂s
2]. For the example hybrid surface P̂s from

Figure 4.2a, we find [δ̂s
0] = [δ̂s

0,0, δ̂
s
0,2] = [−206,−152], [δ̂s

1] = [δ̂s
1,1,0, δ̂

s
1,3,0] = [70, 150]

and [δ̂s
2] = [δ̂s

2,3, δ̂
s
2,1] = [248, 326]. Note that these values are scaled by the length of

the normal vector used to define Ls.

Equation 4.14 exhibits the useful property δ(P(s, t)) ∈ [δ̂s](s) for 0 ≤ s ≤ 1.

Since Ls contains 0, the roots of [δ̂s](s), 0 ≤ s ≤ 1, are intervals containing values

of s for which δ(P(s, t)) = 0 and, therefore, P(s, t) = 0. While it is possible to

use interval arithmetic and the quadratic formula to find the roots of [δ̂s](s), the

dependency problem (see Section 2.1.3) leads to excessive overestimation. There is,

however, a simple geometric solution, as illustrated in Figure 4.4.

The roots of [δ̂s](s) are intervals with end points made up of t = 0 (if 0 ∈ [δ̂s
0]),

t = 1 (if 0 ∈ [δ̂s
2]) and the values t ∈ [0, 1] corresponding to the roots of the equations

δ̂min(s) = (1− s)2δ̂s
0,min + 2s(1− s)δ̂s

1,min + s2δ̂s
2,min = 0, (4.16)

δ̂max(s) = (1− s)2δ̂s
0,max + 2s(1− s)δ̂s

1,max + s2δ̂s
2,max = 0. (4.17)

61

s0

50

δ

[δ̂s
0] = [-206,-152]

[δ̂s
1] = [70,150]

[δ̂s
2] = [248,326]

[δ̂s](s)

s = 0.26647

s = 0.40186

Figure 4.4: [δ̂s](s) crosses the s axis at s ∈ [0.26647, 0.40186].

The polynomials δ̂min(s) and δ̂max(s) are the lower and upper bounds of [δ̂s](s), re-

spectively. The roots of δ̂min(s) and δ̂max(s) (along with the values t = 0 and t = 1,

where required) are taken pairwise, in numerical order, as the end points of intervals.

These intervals are the roots of [δ̂s](s), of which there will be no more than two. Note

that any double roots of δ̂min(s) and δ̂max(s) must be counted twice.

To obtain accurate values for the roots of δ̂min(s) and δ̂max(s), it is important

to use a numerically stable method for solving the quadratic formula which can be

easily applied to a polynomial in the Bernstein basis. In practice, we have found that

pseudo-conversion from the Bernstein basis to the power basis [20], combined with

a numerically stable quadratic equation solver [4], is an efficient method to obtain a

high quality result.

For each interval root [s0, s1] of [δ̂s](s), regions of the projected surface P(s, t)

for which s < s0 or s > s1 are clipped away using the de Casteljau algorithm. For

example, [δ̂s](s) in Figure 4.4 has a single root at approximately [0.26647, 0.40186].

In this example, portions of P(s, t) below s = 0.26647 and above s = 0.40186 are

clipped since P(s, t) 6= 0 for s < 0.26647 or s > 0.40186. Figure 4.5 shows P(s, t)

after it has been clipped.

62

x

y

Figure 4.5: P(s, t) is clipped to s ∈ [0.26647, 0.40186] during the first clipping step.

Note that we may identify up to two roots for [δ̂s](s). If there are two roots,

then two separate clipping steps are performed, resulting in two new subsurfaces.

Each subsurface is then processed independently, as each bounds separate potential

intersection points. If [δ̂s](s) has no roots, then no intersection exists.

We use the phrase geometric interval clipping in s to describe the process of

using the interval Bernstein polynomial [δ̂s](s) to identify regions in the s parameter

direction of P(s, t) which can be safely clipped. Geometric interval clipping in t is the

analogous process whereby [δ̂t](t) is constructed from P̂t(s, t) to find clipping values

in t. Section 4.2.4 shows how alternate application of geometric interval clipping in s

and t converges on points where P(s, t) = 0.

4.2.4 Iterating

Geometric interval clipping in t is accomplished by applying the steps detailed in

Section 4.2.3 to the hybrid surface P̂t(s, t) (Theorem 4.2). We begin this section by

briefly outlining this process.

First, we define the line Lt as a line through 0 parallel to (Pn,0 − P0,0) +

(Pn,m−P0,m). As in Equation 4.10, we use the function δ(x, y) to denote the signed,

63

scaled distance from Lt to an arbitrary point (x, y). Therefore, the signed, scaled

distance from Lt to P̂t(s, t) is

δ̂t(s, t) =
n∑

i=0

Bn
i (s)

(
(1− t)2δ̂t

i,0 + 2t(1− t)δ̂t
i,1(t) + t2δ̂t

i,2

)
, (4.18)

δ̂t
i,1(t) =

∑
0≤k≤m−2

Bm−2
k (t)δ̂t

i,1,k, (4.19)

where δ̂t
i,0 = δ(P̂t

i,0), δ̂t
i,1,k = δ(P̂t

i,1,k) and δ̂t
i,2 = δ(P̂t

i,2).

[δ̂t
0]

[δ̂t
1]

[δ̂t
2]

0
Ls

(a) Visualization of [δ̂t
0], [δ̂t

1] and [δ̂t
2].

t0

16

δ

[δ̂t
0] = [-16.74,-15.02]

[δ̂t
1] = [10.46,16.16]

[δ̂t
2] = [48.63,50.35]

[δ̂t](t)

t = 0.23812

t = 0.29072

(b) [δ̂t](t) has a root at t ∈ [0.23812, 0.29027].

Figure 4.6: The t clipping values are found by solving for the roots of [δ̂t](t).

We may find intervals bounding the control points of δ̂t(s, t) to form [δ̂t](t),

an interval quadratic Bernstein polynomial bounding the distance from Lt to P(s, t):

[δ̂t](t) = (1− t)2[δ̂t
0] + 2t(1− t)[δ̂t

1] + t2[δ̂t
2], (4.20)

[δ̂t
0] = [δ̂t

0,min, δ̂
t
0,max] = [min

0≤i≤n
δ̂t
i,0, max

0≤i≤n
δ̂t
i,0],

[δ̂t
1] = [δ̂t

1,min, δ̂
t
1,max] = [min

0≤i≤n
0≤k≤m−2

δ̂t
i,1,k, max

0≤i≤n
0≤k≤m−2

δ̂t
i,1,k],

[δ̂t
2] = [δ̂t

2,min, δ̂
t
2,max] = [min

0≤i≤n
δ̂t
i,2, max

0≤i≤n
δ̂t
i,2].

(4.21)

64

The intervals [δ̂t
0], [δ̂t

1] and [δ̂t
2] are represented in Figure 4.6a as bars bounding the

distance of each row of control points to Lt. The interval polynomial [δ̂t](t) is shown

in Figure 4.6b. The interval roots of [δ̂t](t) determine the clipping values along the

t parameter direction. In this example, the de Casteljau algorithm is applied to clip

away the surface for t < 0.23812 and t > 0.29027.

x

y

Figure 4.7: Convergence to 0.

By alternately applying geometric interval clipping in the s and t parameter

directions, the portions of the surface which are not intersected by the ray are clipped

away. This process produces a nested sequence of rectangular regions in parameter

space; each level more tightly bounding the parameter locations of the intersection

points, as illustrated in Figure 4.7. Once the width and height of an enclosing region

approximate the parameters (s, t) of the intersection point to within tolerance, the

center of the region is reported as an intersection.

Note that each region may immediately contain several sub-regions if, for

example, [δ̂s](s) or [δ̂t](t) has multiple roots. The refinement process is repeated

recursively for all subregions until each area has converged to 0 or has been shown to

contain no intersections.

65

4.2.5 Multiple Intersections

If a ray intersects a Bézier patch at a single point, then the GeoClip algorithm, as

presented so far, is sufficient to locate the parameter values for the intersection point.

The final component of the GeoClip algorithm is a method for reliably isolating

multiple ray/surface intersections.

The same heuristic employed by BezClip [19] is used to handle multiple

intersections. That is, the width of a parameter interval must be reduced by at

least 20% during a clipping step or the surface is split in half along the current

parameter direction. Each half is then processed recursively. For example, suppose

that geometric interval clipping in s is being performed. If [δs](s) has a single root

at s ∈ [smin, smax], then the patch is split in half along the s parameter direction if

[smin, smax] covers more than 80% of the remaining curve segment. The heuristic is

applied to geometric interval clipping in t in an obviously similar manner.

4.3 Timing Comparisons

Implementations of BezClip and Impl have been tested to determine how GeoClip

compares to these popular algorithms. Since GeoClip is an extension of BezClip,

our tests are intended to provide a reasonable means of evaluating the extent to which

geometric intervals improve performance. Impl is a very fast algorithm which takes

a very different approach to the ray/surface intersection problem. Testing Impl gives

us some idea of how GeoClip compares to more diverse schemes. Subdivision and

numerical methods were not included as other sources [19] indicate that BezClip

performs well when compared to these algorithm classes.

Our tests focus on bicubic Bézier patches since they are the most widely used

Bézier surface. The first test we conducted is designed to evaluate how each algorithm

performs when applied to randomly generated Bézier surfaces. A collection of 100,000

66

bicubic patches in R2 is generated by randomly selecting 16 control points (x, y) per

patch, where x, y ∈ [−1, 1]. If each planar patch is thought of as the projection

of a patch in R3 along a ray, as described in Section 4.2.1, then the origin of the

plane corresponds to the point where the ray intersects the surface. Impl, BezClip

and GeoClip are each applied to the set of 100,000 randomly generated patches to

determine the parametric location(s) of the origin. Average relative runtimes for this

test are presented in Table 4.1.

Algorithm Impl BezClip GeoClip

Relative Time 1.000 2.044 1.568

Table 4.1: Relative computation times for randomly generated bicubic patches.

This test makes it apparent that GeoClip is significantly faster than Bez-

Clip. We have also performed similar tests using patches of varying degree. These

tests indicate that GeoClip is faster than BezClip for bilinear, biquadratic and

biquartic Bézier surfaces as well. Performance is approximately equal for biquintic

patches. For higher degrees, BezClip outperforms GeoClip.

Another striking result from Table 4.1 is that both BezClip and GeoClip

appear to be slower than Impl when applied to a set of cubic Bézier surfaces with

randomized control vertices. Must useful patches, however, are much smoother than

a randomly generated patch will tend to be. Applying these algorithms to ray tracing

would be a more realistic method of evaluation. Therefore, we have integrated each of

these algorithms into a simple ray tracer, enabling them to be used to render bicubic

Bézier patches composing a scene.

Using this ray tracer, we rendered the scene depicted in Figure 4.8 which con-

tains the classic Utah teapot. This scene was rendered using Impl, BezClip and

GeoClip to calculate each ray/surface intersection. The total time spent calculat-

ing intersections was recorded and averaged over several trials. GeoClip took the

67

least amount of time with BezClip and Impl taking about 28% and 43% longer,

respectively. Ray tracing timing results are summarized in Table 4.2.

Figure 4.8: Utah teapot rendering.

These ray tracing timings seem to contradict results obtained using randomly

generated patches. Based on Table 4.1, one might expect Impl to take the least time.

To get a better idea of why this isn’t the case, we have produced a series of images to

help us visualize the time required to calculate primary ray intersections. Figure 4.9

uses a color gradient to code each pixel by the time required to find the intersections

with the first patch along the ray through each pixel.

In Figure 4.9, BezClip and GeoClip exhibit difficulties near patch silhouette

edges. In these areas the ray is close to the outline of the object, producing multiple

intersections that are parametrically close together. This effect can be seen clearly on

the knob of the lid or the opening of the spout when using BezClip (Figure 4.9b).

Comparing this to Figure 4.9c, we can see that GeoClip also has difficulties at

silhouette edges, but the problem is less pronounced. The performance of the Impl

68

(a) Impl can slow down in smooth regions. (b) BezClip has trouble at silhouette edges.

(c) GeoClip has less trouble at silhouette edges.

Figure 4.9: Time taken to calculate primary ray intersections with visible patches.

algorithm seems to be more strongly affected by factors other than silhouette edges

which are not readily apparent in Figure 4.9a. However, it is clear that Impl can

be significantly slower than GeoClip and BezClip in smooth regions, such as the

body of the teapot.

Figure 4.10a depicts a single Bézier patch taken from the knob of the teapot’s

lid. The patch is positioned so that a single primary ray may intersect the surface up

to three times. Color coding is used in Figure 4.10b to illustrate how many times the

ray through a given pixel intersects the Bézier patch. This configuration was selected

to highlight the circumstances in which BezClip and GeoClip would have the most

difficulty. In this case, we would expect Impl to outperform GeoClip.

69

(a) A Bézier patch from the teapot’s knob. (b) Color coded by number of intersections.

Figure 4.10: A patch from the teapot’s knob, oriented to have multiple intersections.

(a) Impl timing results. (b) BezClip timing results.

(c) GeoClip timing results.

Figure 4.11: Time taken to calculate primary ray intersections with the knob patch.

70

Now consider Figure 4.11. In this figure, the color coding scheme used in

Figure 4.9 is applied to the knob patch to denote the time taken to calculate each

ray/surface intersection. BezClip, shown in Figure 4.11b, has the most difficulty

with this scene, slowing down significantly in regions where the ray intersects the

surface three times. Silhouette edges also present a problem for BezClip. Though

noticeably improved, a similar pattern can be discerned in the timing results for

GeoClip (Figure 4.11c). The same regions tend to be troublesome, but GeoClip is

almost universally faster than BezClip in this example. Despite the advantage that

GeoClip has over BezClip, Figure 4.11a clearly shows that Impl handles this case

better than the other algorithms.

(a) A Bézier patch from the teapot’s body. (b) Impl timing results.

(c) BezClip timing results. (d) GeoClip timing results.

Figure 4.12: Time taken to calculate primary ray intersections with a body patch.

71

The final ray tracing example we will consider is shown in Figure 4.12. The

Bézier surface used for this case comes from the teapot body and is never intersected

more than once by a primary ray. Figures 4.12b, 4.12c and 4.12d illustrate the

time taken to calculate each intersection when using Impl, BezClip and GeoClip,

respectively. The fact that Impl has the most difficulty here is consistent with our

earlier observation that BezClip and GeoClip tend to do better in regions that

lack multiple intersections and silhouette edges.

Figure Figure 4.8 Figure 4.10a Figure 4.12a

Impl 1.427 1.000 2.026

BezClip 1.283 1.777 1.252

GeoClip 1.000 1.388 1.000

Table 4.2: Relative ray/surface intersection computation times.

The relative time required to calculate all ray/surface intersections in each

ray tracing example is summarized in Table 4.2. The ray tracing tests, as well as

the randomly generated patch tests, empirically show that GeoClip improves upon

BezClip when calculating the intersection of a ray and a bicubic Bézier surface. This

is the primary goal of the BezClip algorithm. Additionally, Table 4.2 indicates that

GeoClip is the fastest of the three tested algorithms for ray tracing scenes where

most rays intersect a surface only once. In this scenario, GeoClip appears to be at

least 25% faster than BezClip and up to twice as fast as Impl.

4.4 Observations and Conclusions

The GeoClip ray/surface intersection algorithm has been detailed in this chapter.

Section 4.2 explains how geometric intervals are used to extend BezClip [19] to

form a new algorithm that is both simple and robust. In Section 4.3 we show that

this algorithm, GeoClip, takes less time than BezClip to find intersections using

randomly generated patches. Additionally, we provide evidence that GeoClip is

72

faster than BezClip for ray tracing bicubic Bézier patches. GeoClip also performs

favorably in comparison to the Impl algorithm for ray tracing bicubic surfaces.

The geometric interval used for GeoClip in this chapter is constructed by

transforming a Bézier patch into a hybrid surface that is quadratic in one parameter

direction. Since using a quadratic hybrid surface proved beneficial, it is logical to

consider extending the technique by using cubic hybrid surfaces. In experimenting

with this possibility, we found that any potential benefit to this scheme is outweighed

by the complexity of clipping using a cubic geometric interval. Timing results sug-

gest that such an algorithm would be slower than BezClip, and only slightly faster

than Impl, for ray tracing simple scenes. This indicates that the quadratic geomet-

ric interval used for GeoClip strikes the proper balance between complexity and

convergence rate.

GeoClip improves upon BezClip by leveraging geometric intervals to exploit

the geometry of Bézier surfaces for finding ray/surface intersections. Since GeoClip

is an extension of BezClip, a potentially fruitful avenue for improving GeoClip

might be to consider applying techniques that have previously been successfully ap-

plied to BezClip. For example, Wang [31] extends BezClip using ray coherence to

speed up ray tracing. Future research might also apply these methods to GeoClip

to improve performance.

73

74

Chapter 5

Conclusions and Future Directions

This work has introduced the concept of the geometric interval. We have shown

that geometric interval formulations for bounding Bézier curves and surfaces can be

used effectively for finding intersections. A brief summary of our results is presented

in Section 5.1. A discussion of ideas for extending geometric interval techniques into

new areas follows in Section 5.2.

5.1 Summary of Results

In Chapter 3, we show that a Bézier curve of cubic or higher degree can be transformed

into an equivalent hybrid Bézier curve. The properties of the hybrid curve, when

combined with interval analysis techniques, make it attractive for locating curve/

curve intersections. Therefore, we refer to the hybrid curve as a geometric interval.

The GeoClip algorithm is formed by extending the curve/curve BezClip

algorithm [27] using geometric intervals. A quadratic bound derived from the hybrid

curve allows GeoClip to improve upon the convergence rate of BezClip without

adding much per-iteration complexity. In our tests, GeoClip takes less time than

BezClip to find all intersection points between randomly generated Bézier curves,

regardless of degree. For quadratic and cubic curves, GeoClip is often faster than

the Impl algorithm when the curves intersect at a single point. GeoClip is always

faster than Impl for curves of degree four and higher.

75

Chapter 4 extends the principles developed in Chapter 3 to ray/surface inter-

sections. The geometric interval for curves is adapted to handle transforming a Bézier

surface patch into a hybrid surface that is quadratic along one parameter direction.

This hybrid patch serves as a geometric interval for Bézier surfaces.

A new GeoClip algorithm is derived by extending BezClip for ray/surface

intersections [19] using geometric interval techniques. The ray/surface GeoClip

algorithm shares many properties with its curve/curve counterpart. In timing tests,

GeoClip, once again, generally takes less time to find all intersections than the

BezClip algorithm it improves upon. GeoClip also compares favorably to Impl,

especially in our ray tracing tests where a ray intersects a single Bézier patch multiple

times for only a relatively small percentage of pixels.

5.2 Future Directions

The geometric interval techniques used to form the GeoClip algorithms from Bez-

Clip may also be applicable to other areas. For example, it would be trivial to adapt

the geometric interval for curves to Bernstein polynomials. A polynomial geometric

interval might hold some unique benefits for root finding algorithms. While we have

not tested this approach, the principles for doing so are all present in this work.

Curve/surface intersection is another area where future research could possibly

apply geometric interval methods. Using curve and surface geometric intervals, it may

be possible to efficiently narrow the parameter intervals where a curve meets a surface.

Locating curve/surface intersection points is a vital building block for more complex

algorithms, such as finding the intersection boundary between two surface patches.

76

Bibliography

[1] Ball, A. A. Consurf. part one: introduction of the conic lofting tile;. Computer-

Aided Design 6, 4 (1974), 243–249.

[2] Barth, W., and Stürzlinger, W. Efficient ray tracing for Bézier and B-

spline surfaces. Computers & Graphics 17, 4 (1993), 423–430.

[3] Bartoň, M., and Jüttler, B. Computing roots of polynomials by quadratic

clipping. Computer Aided Geometric Design 24, 3 (2007), 125–141.

[4] Blinn, J. F. How to solve a quadratic equation. part 2. Computer Graphics

and Applications, IEEE 26, 2 (2006), 82–87.

[5] Böhm, W., Farin, G., and Kahmann, J. A survey of curve and surface

methods in CAGD. Computer Aided Geometric Design 1, 1 (1984), 1–60.

[6] Ceberio, M., and Granvilliers, L. Horner’s rule for interval evaluation

revisited. Computing 69, 1 (2002), 51–81.

[7] Coons, S. A. Surfaces for computer-aided design of space forms. Tech. rep.,

Massachusetts Institute of Technology, Cambridge, MA, USA, 1967.

[8] de Casteljau, P. Outillage méthodes calcul. Tech. rep., André Citroen Au-

tomobiles SA, 1959.

[9] Hansen, E. Interval forms of Newton’s method. Computing 20 (1978), 153–16.

[10] Hickey, T. J., Ju, Q., and van Emden, M. H. Interval arithmetic: From

principles to implementation. Journal of the ACM 48, 5 (2001), 1038–1068.

[11] Horner, W. G. A new method of solving numerical equations of all orders,

by continuous approximation. Philosophical Transactions of the Royal Society of

London 109 (1819), 308–335.

[12] Kajiya, J. T. Ray tracing parametric patches. In SIGGRAPH ’82: Proceedings

of the 9th annual conference on Computer graphics and interactive techniques

(New York, NY, USA, 1982), ACM Press, pp. 245–254.

77

[13] Koparkar, P. A., and Mudur, S. P. A new class of algorithms for the

processing of parametric curves. Computer-Aided Design 15, 1 (1983), 41–45.

[14] Lane, J. M., and Riesenfeld, R. F. A theoretical development for the

computer generation and display of piecewise polynomial surfaces. IEEE Trans-

actions of Pattern Analysis and Machine Intelligence 2 (1980), 35–46.

[15] Manocha, D., and Krishnan, S. Algebraic pruning: a fast technique for

curve and surface intersection. Computer Aided Geometric Design 14, 9 (1997),

823–845.

[16] Martin, W., Cohen, E., Fish, R., and Shirley, P. Practical ray tracing

of trimmed NURBS surfaces. Journal of Graphics Tools 5, 1 (2000), 27–52.

[17] Moore, R. E. Interval Analysis. Prentice-Hall, Englewood Cliffs, N.J., 1966.

[18] Neumaier, A. Interval Methods for Systems of Equations, vol. 37 of Encyclo-

pedia of Mathematics and its Applications. Cambridge University Press, Cam-

bridge, UK, 1990.

[19] Nishita, T., Sederberg, T. W., and Kakimoto, M. Ray tracing trimmed

rational surface patches. In SIGGRAPH ’90: Proceedings of the 17th annual

conference on Computer graphics and interactive techniques (New York, NY,

USA, 1990), ACM Press, pp. 337–345.

[20] Pavlidis, T. Algorithms for graphics and image processing. W. H. Freeman &

Co., Computer Science Press, New York, NY, USA, 1982.

[21] Ratz, D. Inclusion isotone extended interval arithmetic. Tech. Rep. D-76128,

Institut für Angewandte Mathematik, Universität Karlsruhe, May 1996.

[22] Saito, T., Wang, G.-J., and Sederberg, T. W. Hodographs and normals

of rational curves and surfaces. Computer Aided Geometric Design 12, 4 (1995),

417–430.

[23] Sederberg, T. W. Implicit and parametric curves and surfaces for computer

aided geometric design. PhD thesis, Purdue University, 1983.

[24] Sederberg, T. W., Anderson, D. C., and Goldman, R. N. Implicit

representation of parametric curves and surfaces. Computer Vision, Graphics

and Image Processing 28 (1984), 72—84.

78

[25] Sederberg, T. W., and Farouki, R. T. Approximation by interval Bézier

curves. IEEE Computer Graphics and Applications 12, 5 (1992), 87–95.

[26] Sederberg, T. W., and Kakimoto, M. NURBS for Curve and Surface De-

sign. SIAM, 1991, ch. Approximating Rational Curves Using Polynomial Curves,

pp. 149–158.

[27] Sederberg, T. W., and Nishita, T. Curve intersection using Bézier clipping.

Computer Aided Design 22, 9 (1990), 538–549.

[28] Sederberg, T. W., and Parry, S. R. Comparison of three curve intersection

algorithms. Computer Aided Design 18, 1 (1986), 58–64.

[29] Spencer, M. R. Polynomial Real Root Finding in Bernstein Form. PhD thesis,

Brigham Young University, 1994.

[30] Toth, D. L. On ray tracing parametric surfaces. SIGGRAPH Computer Graph-

ics 19, 3 (1985), 171–179.

[31] Wang, S.-W., Shih, Z.-C., and Chang, R.-C. An improved rendering tech-

nique for ray tracing Bézier and B-spline surfaces. The Journal of Visualization

and Computer Animation 11, 4 (2000), 209–219.

[32] Whitted, T. An improved illumination model for shaded display. Communi-

cations of the ACM 23, 6 (1980), 343–349.

[33] Woodward, C. Ray tracing parametric surfaces by subdivision in viewing plane.

Springer-Verlag New York, Inc., New York, NY, USA, 1989, pp. 273–287.

79

	Brigham Young University
	BYU ScholarsArchive
	2007-10-27

	Intersection Algorithms Based On Geometric Intervals
	Nicholas Stewart North
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Free-form Curves and Surfaces
	1.2 Intersections
	1.3 Interval Arithmetic
	1.4 Geometric Intervals
	1.5 Fat Lines
	1.6 Solving for Intersections
	1.7 Overview

	2 Background
	2.1 Interval Arithmetic
	2.1.1 Vectors
	2.1.2 Polynomials
	2.1.3 Overestimation

	2.2 Bézier Curves
	2.2.1 The de Casteljau Algorithm
	2.2.2 Rational Curves
	2.2.3 Derivatives

	2.3 Bézier Surface Patches
	2.3.1 The de Casteljau Algorithm
	2.3.2 Rational Surfaces
	2.3.3 Derivatives

	2.4 Interval Bézier Curves
	2.5 Hybrid Curves and Surfaces

	3 Curve/curve Intersection
	3.1 Previous Work
	3.2 The GeoClip Curve/curve Intersection Algorithm
	3.2.1 Geometric Intervals
	3.2.2 Fat Lines
	3.2.3 Geometric Interval Clipping
	3.2.4 Iterating
	3.2.5 Multiple Intersections

	3.3 Timing Comparisons
	3.4 Observations and Conclusions

	4 Ray/surface Intersection
	4.1 Previous Work
	4.2 The GeoClip Ray/surface Intersection Algorithm
	4.2.1 Projection
	4.2.2 Geometric Intervals
	4.2.3 Geometric Interval Clipping
	4.2.4 Iterating
	4.2.5 Multiple Intersections

	4.3 Timing Comparisons
	4.4 Observations and Conclusions

	5 Conclusions and Future Directions
	5.1 Summary of Results
	5.2 Future Directions

	Bibliography

