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ABSTRACT

A UNIFIED APPROACH TO GPU-ACCELERATED AERIAL VIDEO

ENHANCEMENT TECHNIQUES

Stephen T. Cluff

Department of Computer Science

Master of Science

Video from aerial surveillance can provide a rich source of data for analysts. From

the time-critical perspective of wilderness search and rescue operations, information ex-

tracted from aerial videos can mean the difference between a successful search and an

unsuccessful search. When using low-cost, payload-limited mini-UAVs, as opposed to

more expensive platforms, several challenges arise, including jittery video, narrow fields of

view, low resolution, and limited time on screen for key features. These challenges make it

difficult for analysts to extract key information in a timely manner.

Traditional approaches may address some of these issues, but no existing system

effectively addresses all of them in a unified and efficient manner. Building upon a hierar-

chical dense image correspondence technique, we create a unifying framework for reduc-

ing jitter, enhancing resolution, and expanding the field of view while lengthening the time

that features remain on screen. It also provides for easy extraction of moving objects in

the scene. Our method incorporates locally adaptive warps which allows for robust image



alignment even in the presence of parallax and without the aid of internal or external cam-

era parameters. We accelerate the image registration process using commodity Graphics

Processing Units (GPUs) to accomplish all of these tasks in near real-time with no external

telemetry data.
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Chapter 1

Introduction

Time is of the essence when conducting Wilderness Search and Rescue (WiSAR)

operations. With each passing hour the search area radius increases by approximately three

kilometers, and the chances of finding the missing person decreases significantly [12]. Any

tool or technique that speeds up the search, therefore, can only increase the chances of

success.

Miniature unmanned air vehicles (mini-UAVs) have been proposed as a new tech-

nology that may be able to provide additional support to rescue workers. A small video

camera attached to the mini-UAV allows a worker to quickly scan an area for signs of a

missing person. The advantages of using a mini-UAV during the WiSAR operation are

1. they are small and easy to transport to remote locations,

2. they require no more than two people to operate,

3. they are relatively inexpensive to buy and operate,

4. they can cover a large area of rugged terrain quickly, and

5. they can scan the search area without contaminating it.

Using mini-UAVs to assist WiSAR operations is one example of the broader prob-

lem of using mini-UAVs for video surveillance in general. There are many other application

areas including law enforcement, border patrol, traffic surveillance, and military reconnais-

sance.
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1.1 Challenges Using mini-UAVs for Video Surveillance

Using a mini-UAV as a platform for video surveillance may provide many advantages, but

there are still some limitations that need to be overcome for the system to be useful. While

their small size makes them very portable, mini-UAVs have a limited payload capacity.

This weight limitation not only restricts how much equipment it can carry, but it also in-

directly restricts the kinds and number of sensors, processors, and radio transmitters that

can be powered by the onboard batteries. Any device that requires power will necessitate

additional batteries or will reduce the flight time of the mini-UAV.

Another limitation of the mini-UAV platform is the resolution available from the

video stream. High-resolution cameras either weigh too much or consume too much power

to be carried by the mini-UAV. Even as these limitations are overcome by new cameras

that weigh less and consume less power, the data still needs to be transmitted to the ground

station where it can be viewed by an operator. The bandwidth of the radio transmitter now

becomes a limiting factor in how much data can be transmitted to the ground station.

In order to get a high enough resolution to identify interesting features on the

ground, a high-magnification lens must be used on the camera. This produces a few

undesirable effects. First, magnifying the image also magnifies the jittery motion of the

mini-UAV as it is buffeted by air turbulence. This emphasizes the constant, high-frequency

motion of the camera and makes the video difficult to watch. This limitation can be miti-

gated by calculating the global frame-to-frame transformation between neighboring frames

of the video and using the transformation to stabilize the movement of the video, as in [24].

A second drawback from using a high-magnification lens is that it restricts the field

of view of the camera and creates the effect of looking at the ground through a “soda-

straw” [4]. It also causes features to move across the viewable area more quickly and limits

the time that they are detectable on screen. This combination of limited field of view and

fast-moving features can cause a loss of situational awareness and can make it difficult

for a human watching the video to relate objects in the current field of view with objects

2



Figure 1.1: A 301-frame mosaic created using the methods described in this work, with the

anchor frame outlined in blue. Beneath are five frames surrounding the anchor, acquired

1/30 of a second apart. At the velocity shown by the five frames, the entire visible scene

would pass from view in approximately one second. Mosaicking dramatically extends the

visible lifetime of the images.

that were observed previously. Current systems overcome these challenges by relying on

an abundance of expensive hardware that is easily transported by a full size airplane [20].

The limited payload capacity of mini-UAVs, together with the desire to keep costs reason-

able enough to allow local government agencies to purchase the technology, eliminates the

possibility of carrying onboard stabilization mechanisms and limits the computing power

available onboard. Prior work, however, has shown that this limitation can be overcome

through processing the UAV video once it is received at the ground station and presenting

it in a mosaic view (Figure 1.1). This can reduce the “soda-straw” effect while providing

greater opportunity for detection and identification of objects of interest [24]. Again, the

key technology for creating pleasing video mosaics is an accurate registration of the video

frames that comprise the mosaic.

A third undesirable effect of using a high-magnification lens is that the resulting

narrow field of view means it takes longer to cover the same area. We want to cover
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the search area as quickly as possible, so we need a way to reduce the search time while

providing the necessary resolution to identify features on the ground. This problem is

further complicated by the payload and bandwidth limitations that result from using the

mini-UAV platform. One method for reducing the time required to cover the search area

with the required resolution is to cover a larger portion of the search area on each pass

of the UAV, either by flying at a higher altitude or by using a lower-magnification lens.

While this would normally reduce the resolution of the video, we can partially recover

this loss of resolution by employing a super-resolution technique in which information

from overlapping video frames is combined to create an image that has a higher spatial

resolution than any of the input images. Once again, this enhancement to the original video

relies on having an extremely accurate registration of the images used for super-resolution.

While its application in WiSAR operations has yet to be implemented or evaluated,

the ability to identify and track moving objects in surveillance video is a highly desirable

feature to assist in the analysis of the video. This is typically done by registering two

frames of the video and then doing an image difference to determine what has changed

between the two frames. This registration is required to compensate for the camera motion

so that the only changes that remain after doing the image difference are due to objects that

have moved in the scene. As with the other video enhancement techniques, this registra-

tion needs to be extremely accurate. Otherwise, when the image difference is performed

any registration misalignments will show up as false positives, indicating a moving object

where there was none.

1.2 Global Registration Versus Locally Adaptive Warps

We note that each enhancement to the video, be it stabilization, mosaicking, super-

resolution, or identifying moving objects in a scene (mover-detection), requires accurate

image registration that can be calculated in a timely manner. One challenge that can plague

global registration techniques is motion parallax, or the apparent motion of nearby objects
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Figure 1.2: Parallax motion. As the camera viewpoint changes objects that are closer to

the camera, such as the lamp and the statue, move across the image faster than more distant

objects. Images from [27].

relative to more distant objects when viewed from two distinct viewpoints. In aerial video

this parallax motion is caused by variation in terrain height or by objects that are tall enough

to be significantly closer to the camera than the rest of the background (Figure 1.2).

When the camera motion and scene geometry are known a priori the parallax motion

can be compensated for directly and a global registration method is sufficient to produce

satisfactory results. However, when the depth variation in the scene is unknown and global

registration is used, parallax motion causes blurring in the super-resolution results and false

positives in the mover-detection results.

In order to avoid the problems introduced by parallax motion when using global

registration we need a technique that allows the transformation to deform locally to account

for parallax motion. While techniques such as optical flow are capable of calculating these

locally adaptive warps, these algorithms are computationally very expensive. Aerial video

surveillance typically generates a large volume of data that needs to be processed in near

real-time in order to maintain its relevance. Traditional methods either cannot produce the

locally adaptive warps that we require, or they are too computationally intensive to be used

with commodity hardware to produce near real-time results.
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1.3 Contributions

In order to overcome the limitations of global transformations, we build upon an image

correspondence technique, hierarchical dense correspondence (HDC), that robustly tracks

the general global frame-to-frame motion while providing locally deformable warps that

accommodate variations from the global transformation caused by parallax or lens distor-

tion. We show that HDC handles parallax and lens distortion more robustly than global

transformations through comparison of super-resolution and mover-detection results using

global and local techniques. We also show how HDC provides a unifying framework to

simultaneously stabilize aerial video footage, create a video mosaic, enhance the resolu-

tion of the video, and extract dynamic events in the video. We provide an example video

interface that demonstrates each of these each of these video enhancements running on a

modern desktop with a high-end graphics card.

HDC robustly aligns images without the aid of internal or external camera param-

eters. Eliminating the dependency on camera parameters allows the video interface to

provide its enhancements solely through analysis of the video stream, enabling its use with

a greater range of video where these parameters are unavailable.

The HDC algorithm has the added benefit of being easily ported to run on com-

modity Graphics Processing Units (GPUs). The hundreds of gigaflops of processing power

and large number of floating point processors provided by modern GPUs allow the image

registration to be accelerated to interactive speeds. This acceleration is key to creating a

responsive video interface that provides the desired video enhancements in a timely way.

We compare the performance of HDC running on the CPU to the performance of HDC

when accelerated on the GPU. In addition, because both global transformations and locally

adaptive warps can be obtained from HDC, it provides an efficient way to achieve video

stabilization, mosaics, super-resolution, and mover-detection.
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1.3.1 Individual Contributions

This work is the result of a collaboration between Stephen Cluff and Bryan Morse at

Brigham Young University and Mark Duchaineau and Jonathan Cohen at Lawrence Liver-

more National Laboratory. All four researchers contributed to the jointly authored paper

that appears in revised form as Chapter 2 in this thesis, with Cluff being the primary author

of the paper. A summary of the differences between the paper as it appears in this thesis

and the jointly authored paper appears at the beginning of Chaper 2. The HDC algorithm

was developed by Duchaineau and ported to the GPU by Cohen.

Cluff’s main contribution was in developing the example interface that demon-

strates how video stabilization, mosaics, and super-resolution can all be achieved using

HDC as the underlying algorithm. This included several non-trivial implementation de-

tails. He used a least squares fit to reduce the HDC mapping to an affine transformation

(Section 2.6.1), allowing for efficient compositing of individual video frames and for ex-

trapolation of the video mosaic well beyond the point where the first frame in the mosaic no

longer overlaps with the last frame. He introduced the technique of continuously recomput-

ing the transformations used to display older frames in the mosaic history so that the current

frame remains undistorted while the accumulated error due to compositing is transferred

to the oldest frames in the mosaic (Section 3.1.1). He also introduced the idea of showing

the frames that come both before and after the current frame in the same mosaic while

processing the video in offine or buffered mode. This allows the reach of the mosaic to be

extended while minimizing distortion and without necessitating a costly bundle adjustment

(Section 3.1.2). He improved upon the video interface presented in [24] by allowing the

user to pan, zoom, and rotate the mosaic, as well as pause the playback and rewind to a

previous spot in the mosaic. He also showed that it is possible to stabilize the video using

the same affine transformations that were used to construct the mosaic (Section 2.6.3).

In addition to the mosaic improvements, Cluff also introduced real-time super-

resolution display using the GPU. He implemented two blending algorithms, nearest neigh-
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bor and weighted average, on the GPU to allow interactive display of super-resolution re-

sults once the image alignment was computed using HDC. He leveraged the information

extracted during the creation of the mosaic by using the relative frame positions of non-

adjacent frames to seed the HDC algorithm. This eliminates the need to use a separate

bootstrapping technique to align temporally and spatially distant frames.

1.4 Thesis Outline

Chapter 2 contains a paper that was submitted in revised form to the IEEE Computer So-

ciety Conference on Computer Vision and Pattern Recognition (CVPR), although the ref-

erences section has been moved to appear at the end of this thesis. Sections 2.1 and 2.2

introduce the research, including the challenges that are unique to visualizing mini-UAV

video. In Sections 2.3 and 2.4 we review related work and present an overview of our

video interface, showing how each of the video enhancements are a direct result of the

frame-to-frame alignment that is provided through HDC. The HDC algorithm is detailed in

Section 2.5. The process of creating a local mosaic is discussed in Section 2.6. The mosaic

provides a starting point for further HDC refinement, which enables super-resolution and

mover-detection, described in Sections 2.7 and 2.8, respectively. We draw conclusions and

discuss future work in Section 2.10.

Chapter 3 of this thesis contains additional contributions and details that were not

included in the CVPR submission due to space constraints. Chapter 4 provides some details

necessary for the reader to recreate the work described in this thesis. We conclude with a

discussion of contributions, limitations, and future work in Chapter 5.
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Chapter 2

Paper Submitted to CVPR

This chapter contains the research paper that was submitted in revised form to the

IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR).

The paper contained in this chapter was written to emphasize the contributions of the author

of this thesis and focuses on the application of the HDC algorithm for use in video visual-

ization. The paper that was submitted to CVPR was revised to emphasize the advantages

of the HDC algorithm over other image registration techniques and to emphasize HDC as

a unifying framework for doing mosaicking, super-resolution, and mover-detection.

2.1 Abstract

Video from aerial surveillance can provide a rich source of data for analysts. From the

time-critical perspective of wilderness search and rescue operations, information extracted

from aerial videos can mean the difference between a successful search and an unsuccessful

search. When using low cost, payload-limited mini-UAVs, as opposed to more expensive

platforms, several challenges arise, including jittery video, narrow fields of view, low res-

olution, and limited time on screen for key features. These challenges make it difficult for

analysts to extract key information in a timely manner.

We present a video interface that reduces jitter, enhances resolution, and expands

the field of view while lengthening the time that features remain on screen. We create a uni-
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fying framework for accomplishing all of these tasks in real-time on commodity hardware

with no external telemetry data using a novel image correspondence technique.

2.2 Introduction

Over the last decade, video surveillance from Unmanned Aerial Vehicles (UAVs) has be-

come increasingly feasible. UAV-based systems come in a range of sizes and prices. The

more expensive systems, costing hundreds of thousands to millions of dollars, include mul-

tiple high-resolution cameras, GPS and other sensors, on-board data storage, and state-of-

the art transmission to ground. However, the high cost of such systems prohibits their

widespread adoption for important applications such as Wilderness Search and Rescue.

For such applications miniature UAVs (mini-UAVs), typically in the ten to fifty thousand

dollar price range, may be more realistically and widely deployed.

Unfortunately, videos taken from mini-UAVs suffer from a number of problems.

Due to their small size, these mini-UAVs are easily buffeted by the wind, making the video

jittery and hard to watch. Also, a zoom lens is required to provide enough detail of the

ground while maintaining sufficient altitude to avoid crashing the mini-UAV. This creates

a “soda-straw” effect, similar to that described in [4], where the features pass very quickly

across a narrow field of view and spatial context is quickly lost. This effect makes it difficult

for an observer to detect and identify objects and landmarks, let alone to build a mental

model of the enduring scene. Finally, the resolution of the video is restricted by both the

limited payload capacity of the craft as well as the available bandwidth for transmission to

ground. Our system had a payload capacity of up to one kilogram.

Video mosaics have the potential to address these problems. Mosaics are con-

structed by aligning and compositing multiple frames of a video sequence into a common

domain of spatio-temporal locality (see Figure 2.1). It has been demonstrated in [24] that

such mosaics can help alleviate the “soda-straw” effect while providing greater opportunity

10



Figure 2.1: A 301-frame mosaic created using the methods described in this work, with the

anchor frame outlined in blue. Beneath are five frames surrounding the anchor, acquired

1/30 of a second apart. At the velocity shown by the five frames, the entire visible scene

would pass from view in approximately one second. Mosaicking dramatically extends the

visible lifetime of the images.

for detection and identification of objects of interest. Visualizing the video using mosaics

can extend the lifetime of scene points on the screen by more than an order of magnitude.

In this paper, we improve the construction and display of video mosaics. We apply a

hierarchical dense image correspondence (HDC) algorithm, combined with strategic affine

fitting, to produce accurate alignment of video frames. This approach is robust, even in the

presence of motion parallax that defeats purely global alignment methods. Furthermore, it

does not require the precise camera position or orientation information that may be avail-

able on more expensive platforms, but is typically not as common on mini-UAVs. In this

dense correspondence setting, we can stabilize the mosaic by removing unwanted motions.

In addition, with proper acquisition focus (over-sharp with respect to CCD resolution), the

dense correspondence enables resolution enhancement and image noise reduction of the

mosaic imagery. The availability of such super-resolution output can produce greater clar-

ity for a given altitude, and could be used to allow higher flight and greater coverage of the

11



search area on the ground. The HDC and mosaic display algorithm are designed for ef-

ficient execution on graphics processing units (GPUs), enabling real-time mosaicking and

super-resolution using consumer hardware.

We demonstrate our mosaicking and HDC-based algorithms on real video data ac-

quired in the field, including both mini-UAV video footage and small sequences acquired

by a human with a Single Lens Reflex (SLR) camera in burst mode. For a variety of such

data, our approach provides a more consistent visualization of the video data than simply

playing back the frames.

2.3 Related Work

The creation of panoramas or mosaics from collections of images, including video, has

been a well-studied area for more than 15 years [23, 25, 30, 29, 28]. (For an excellent

survey of this broad area we recommend [31].) Mosaics have been used extensively as a

means for summarizing aerial video sequences in ways that provide broader spatial context

than individual frames [17, 21, 20], including providing a spatial index back to the source

video [16]. They may also be used as a component in a larger strategy for visualizing video

content [9, 5].

Once spatially aligned as with a mosaic, multiple video frames can also used to

provide super-resolution, or greater resolution than a single source frame alone provides.

Although there are a variety of approaches for aligning and warping the source images,

modeling their respective point spread functions, and blending them [26, 19, 18, 13, 3, 8,

14, 6, 3, 10, 1], a key component in all methods is the accurate alignment of image con-

tent. Since most mosaicking approaches use a global transformation between the images,

super-resolution from mosaics can often be limited by local deviations from the global

transformation, typically the result of parallax or intrinsic motion in the scene. The HDC

algorithm presented here, because it allows arbitrary per-pixel motions different from the

12



general global transformation, can accurately align frames on a per-pixel basis and super-

resolve the images even in the presence of minor parallax.

The alignment of frames through mosaics also facilitates the identification of in-

trinsic motion in the scene by separating out the frame-to-frame differences due to camera

motion [2]. While the HDC algorithm allows minor deviations in motion due to parallax,

larger motions can be detected and isolated to identify movement.

2.4 System Overview

The system presented in this paper produces a time-varying mosaic, M, from a video, V .

Given a temporal window of 2W +1 frames, the mosaic Mt is produced by combining the

frames {Vt−W , . . . ,Vt , . . . ,Vt+W} into a single image, with Vt serving as the anchor frame.

Playing back and interactively manipulating the mosaic sequence M1...N provides a much

better understanding of the imaged environment than playing back the original video se-

quence V1...N .

Our system employs two types of 2D transformations: hierarchical dense corre-

spondences and affine transformations derived from these (see Figure 2.2). The dense cor-

respondences produce pixel-level mappings between two images, often at sub-pixel accu-

racy. Without any direct computation of 3D depth or camera parameters, they can account

for effects such as change of perspective and motion parallax. Affine transformations, on

the other hand, provide a single, global mapping between two images that is compact to

store and simple to compose to describe the transformation along a sequence of images. A

useful tool in our approach is to compute the affine transform that is the best least-squares

fit to a given dense correspondence mapping.

Figure 2.3 illustrates the transformations that need to be computed to create a mo-

saic and enable super-resolution and mover-detection. HDC is used to compute the dense

correspondence Di 7→i+1 between frames Vi and Vi+1. This, in turn, is fit to affine Ai 7→i+1.

Each time our temporal window advances by a frame, we perform a single HDC and a

13



Frames V
t-w

 ... V
t+w

Register V
i
 to V

i+1

using

Hierarchical Dense

Correspondence

D
i             i+1

Fit Dense

Correspondence

to Affine

Transformation

A
i            i+1

Compose

Affine

Transformations

Display

A
i         t   

Refine Dense

Correspondence

for frames

overlapping V
t

D
i            t   

A
i            t   

Blend

Local Mosaic

Super-resolution

Figure 2.2: Overview of video visualization system. To create a temporally local mosaic

each frame Vi is mapped to its successor Vi+1 using HDC to produce Di 7→i+1. This is then

fit to an affine transformation Ai 7→i+1 (Section 2.6.1) and composed with At 7→i to create an

affine transformation that maps frame Vi+1 to the anchor frame Vt (Section 2.6.2). Each

frame is then displayed using its corresponding affine transformation to create the mosaic.

To achieve super-resolution each dense correspondence Di 7→t is seeded with Ai 7→t and then

refined with HDC in order to map each pixel that overlaps Vt . Once registered to sub-

pixel accuracy, the source images are blended using either a nearest neighbor or weighted

average technique.

single affine fit to incorporate the new frame into the sequence. Composing At 7→i with

Ai 7→i+1 produces At 7→i+1, which will be used for displaying Vi+1 as part of Mt+1. To display

Mt , we apply Ai 7→t to the corresponding frame i in the temporal window. These frames

may be composited with one of several approaches. They may be simply overlaid using the

painter’s algorithm, the nearest sample may be selected for each output pixel, or a weighted

combination may be taken for each output pixel. As we advance to Mt+1, we provide con-

tinuity by retaining the orientation of the new anchor frame, Vt+1, as it was displayed in

Mt . We also translate the new anchor frame to the location of the old anchor frame to assist

the user in keeping the entire mosaic on-screen.

Performing resolution enhancement requires somewhat more computation. In par-

ticular, it requires a dense correspondence Di 7→t for each frame contributing to Mt . Al-

though it may seem conceptually possible to compose dense correspondences in a manner

similar to the affine transforms, there are two noteworthy obstacles. First, we wish to avoid
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Figure 2.3: Summary of transformations. A dense correspondence is first calculated be-

tween each pair of neighboring frames (solid black arrows). This is then fit to an affine

transformation (solid red arrows) and then composed together to create a direct transfor-

mation from each frame to the anchor frame (dashed blue arrows). These composed affine

transformations are then used to seed the dense correspondence (solid green arrows) used

in super-resolution.

any procedure that repeatedly resamples the images. Second, the correspondences are not

easily composed without clipping to the boundaries of each successive image as the com-

position proceeds. Instead, we retain the previously described pipeline, but use each affine

estimate Ai 7→t to seed the HDC algorithm for the computation of Di 7→t . Having a good seed

for the HDC computation can be important as source and target are farther apart in the

sequence or in the spatial domain. At display time, the HDC mappings are applied to the

pixels of each image, and they are blended into a high-resolution output image.

2.5 Hierarchical Dense Image Correspondence

A fundamental building block of our mosaic system is an efficient and robust algorithm for

computing dense (per-pixel) correspondences between a source and a destination image.

As described in Section 2.4, this enables the mapping of a set of images to the domain

of a selected anchor image, and provides the ability to perform super-resolution image

enhancement and background/mover segmentation.

As with other dense correspondence algorithms, such as optical flow and stereo

matching, the HDC algorithm has a matching component that produces a motion field, and

a regularization component that straightens the warp. One key difference from existing

algorithms is that the matching and regularization components are decoupled and occur
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Figure 2.4: Parent (green) and child (blue) levels of a diamond hierarchy. Left: level i.

Right: level i+1

during two distinct passes. The reason this decoupling is important is that it makes the

algorithm amiable to implementation on the GPU where the required calculations are eas-

ily distributed to the processing cores to be calculated in parallel, providing a significant

acceleration over a CPU-only implementation.

2.5.1 Hierarchical Algorithm

The input to the correspondence algorithm is a source and target image. We currently

perform correspondence on greyscale imagery and assume that intensity levels across the

sensor field have had proper calibration applied. The output of the algorithm is a 2D coor-

dinate for every source pixel indicating its forward correspondence into the target domain.

In our current formulation, this warping function is presumed to be a bijection (i.e. the

mesh of warped samples has no folds or gaps). This is of course not true in general, but we

can get quite far under this assumption, especially for aerial imagery.

We begin by constructing a diamond hierarchy for the source and target images (see

Figure 2.4). Each successive level is low-pass filtered and contains half as many samples as

the previous one, similar to Hwa et al. [15]. Notice that in our application, we are applying

the hierarchy for the purpose of efficient computation and not just for visual display. As

compared to a standard image pyramid, the diamond hierarchy improves the prediction

quality as we advance from level to level, and reduces potential grid artifacts in the results.

After hierarchy construction, we apply an iterative, two-phase algorithm at suc-

cessively finer levels of the hierarchy (see Figure 2.5). Starting at the coarsest level, we

initialize the transformation from the source to target pixel locations to either an identity
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HIERARCHICALDENSECORRESPOND(Vsrc ,Vdst,Asrc7→dst)
{

for ℓ← ℓcoarse to ℓfine {
if (ℓ = ℓcoarse) {

if (Asrc7→dst is non null) Dℓ← sample(ℓ,Asrc7→dst)
else Dℓ← sample(ℓ, I) // I = identity mapping

}else Dℓ← split(Dℓ−1) // refine next coarser mapping

for j← 1 to jmax(ℓ) {

// perform matching motion per pixel

Move each source pixel’s destination position in Dℓ towards closest matching

isoline in destination image Vℓ,dst. Clamp motion to a fraction of a pixel width,

and avoid motion for destination positions with small gradients or missing/bad

pixels.

// straighten warp mesh

Perform least-squares affine fit Ap for the 5×5 neighborhood centered at each

source pixel p in Dℓ. For each source pixel p′ store the average of the affine

positions computed from the 5×5 neighborhood of local affine fits Ap centered

around p′.

}
}
return Dℓ

}

Figure 2.5: The Hierarchical Dense Correspondence processing starts at a coarse resolution

with either an identity mapping or an affine mapping estimate from the application. It

subsequently performs several iterations per resolution level, alternating per-pixel motions

to match intensity and mesh straightening, working to finer and finer levels by splitting

the coarser level as a prediction of the next finer level. Typically around ten iterations are

required for convergence at the finer, most expensive levels, and coarser levels can have a

hundred or more very inexpensive iterations for robustness.

transform or to an appropriate affine transform, if one is available. Then we perform some

number of iterations, each of which consists of a matching phase followed by a straight-

ening phase. The resulting transformation for level i of the hierarchy is used as a starting

prediction at level i+1 using mesh refinement (see Figure 2.6).

The matching phase is a gradient descent algorithm. For each pixel of the source

image, we compute a local gradient at its current position in the target image. We use the
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Figure 2.6: HDC stages. Left: source image (smaller squares) super-imposed on destina-

tion image. Center: two phases of the HDC algorithm. The top row demonstrates how

the pixels move independently during the matching phase, while the bottom row shows the

pixel locations after the straightening phase. Right: after several iterations of alternating

the matching and straightening phases, the images are aligned. The resulting locations are

then propagated down to the next finer level, and the process repeats.

gradient to make a linear prediction of the direction and distance to move the source pixel in

the target image to match its intensity. To promote robustness, the size of the step actually

taken is clamped to a fraction of a target pixel size. As the gradient magnitude becomes

small, the gradient direction becomes more noise than signal, so we disqualify such pixels,

as well as those that go outside the bounds of the target image, from motion during the

matching phase.

Whereas each source pixel moves independently in the matching phase, the straight-

ening phase uses information about the current locations of source pixel neighborhoods to

locally regularize the warp. For each source pixel, a local neighborhood of locations is

used to compute an affine transformation from the source to target image (empirical obser-

vations show that a 5× 5 neighborhood is sufficiently large). The new target location of

each source pixel then becomes a weighted average of its target locations as predicted by

all the local affine transformations to which it contributes.
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2.5.2 GPU Implementation

The architecture of the commodity Graphics Processing Unit (GPU) is ideally suited to

accelerate the dense correspondence algorithm. Modern GPUs provide hundreds of gi-

gaflops of processing power, driven by a large number of floating point processing cores

(e.g. 128 cores on the NVIDIA 8800 GTX). Furthermore, GPUs are designed to provide

highly optimized memory access for programs employing 2D local access patterns. The

correspondence algorithm is not significantly hindered by the limitations of the standard

GPU programming model, such as reduced efficiency for incoherently branching code and

lack of support for scattered write operations or inter-thread communication (though this is

actually improving on the latest GPUs).

Both the initial hierarchy construction and the iterative correspondence algorithms

map well to the fragment processing units on the GPU. The hierarchy construction requires

one “rendering pass” (computational kernel execution) for each level of the hierarchy.

The iterative algorithm is broken into passes for each phase of an iteration. The

matching phase, which requires a single pass, maps a fragment thread to each source pixel.

A thread reads a source pixel intensity and the current correspondence location in the target

image. A gradient is computed from the intensity values at the current target location and

this is used to compute the new 2D target location for the pixel, which is output to a 2D

texture via a frame buffer object.

The straightening phase requires two passes. The first pass maps a fragment thread

to each source pixel. For neighboring pixels (using a 5×5 neighborhood), the current warp

locations are read and contribute to a 6-parameter affine transformation, which is output

from the first pass. The second pass also maps a fragment thread to each source pixel. The

affine transformations computed in the first pass are read for each member of the source

pixel’s 5×5 neighborhood. Each of these affine transformations is applied to the thread’s

source pixel, and a weighted combination of the results is used to compute the pixel’s

location after the straightening phase, which is output from the fragment program.
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We have benchmarked the two algorithm phases on an NVIDIA Geforce 8800 GTX

GPU. The matching phase and straightening phases achieve rates of 145 million and 68

million pixel-iterations per second, respectively. This performance is over 230 times that

of our unoptimized CPU implementation running on a single processor of an Intel dual-

Xeon 3.0 GHz.

2.6 Local Mosaics

Creating a temporally local mosaic of hundreds of video frames in real-time requires a

fast and robust algorithm. While a perspective transformation more accurately describes

the relationship between successive frames in the video, its non-linear parameters prevent

us from calculating the perspective transformation analytically. An iterative solution is

required to estimate the non-linear parameters. Since, following the pattern in [24], our

goal is not to create a globally correct mosaic but rather to create a temporally local mosaic

in real-time, we simplify the transformation between frames to an affine transformation.

This allows us to analytically fit the dense correspondence to an affine transformation and

compose chains of frame-to-frame affine transformations so we can display several hundred

frames of the video in the same coordinate system.

2.6.1 Affine Transformation Estimation

The first step in creating a local mosaic is to create a transformation between each pair

of neighboring frames in V . The kinematics of the mini-UAV require that the current

frame-to-frame transformation is similar to the previous one. Thus, we initialize the dense

correspondence Di 7→i+1 with the previous affine transformation Ai−17→i. (If Ai−17→i has not

yet been calculated, we initialize Di 7→i+1 with the identity mapping.) We then run the HDC

algorithm to get the dense correspondence Di 7→i+1 between Vi and Vi+1.

In order to create a mosaic that can extend beyond the limits of our anchor frame,

we need to combine a chain of correspondences that relates each frame to its neighbors.
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Although it is possible to compose the HDC mappings directly, this is computationally

very expensive and does not extrapolate well beyond the edges of the anchor frame. To

overcome these limitations we reduce each HDC to an affine transformation using a least-

squares fit technique. This is accomplished by multiplying the HDC array by the pseudo-

inverse matrix to obtain the six parameters of the affine transformation. The x and y com-

ponents, Ax and Ay of the affine transformation Ai 7→i+1 are calculated independently, as

Ax
i 7→i+1 = Dx

i 7→i+1M(MT M)−1 (2.1)

A
y
i 7→i+1 = D

y
i 7→i+1M(MT M)−1 (2.2)

where Dx
i 7→i+1 and Dx

i 7→i+1 are the x and y components of Di 7→i+1, respectively, and M is the

N by 3 matrix of pixel locations (xi,yi)
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(2.3)

giving us an affine transformation Ai 7→i+1 that maps each frame to its successor.

2.6.2 Composing Affine Transformations

To correctly display all the frames composing the local mosaic, we need to combine the

frame to frame transformations Ai 7→i+1 to create a transformation Ai 7→t that maps each frame

Vi directly to the anchor frame Vt . We can do this by chaining together, or composing, the

frame-to-frame affine transformations, in the following manner:
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Ai 7→t =
t−1

∏
k=i

Ak 7→k+1 (2.4)

Our goal in creating this temporally local mosaic is to provide additional context

for the currently viewed frame while allowing features in the video to persist longer on

the screen. When transformations are composed without doing a bundle adjustment, small

errors in the transformations will accumulate and distort frames that are temporally distant

from the anchor frame. While small distortions are not necessarily inconsistent with our

goals, we would like to minimize distortions as much as possible, while maintaining the

real-time display of the mosaic. Thus, we select the middle frame of the video sequence

V to be the anchor frame, allowing both Vt−W and Vt+W to be as close to the anchor frame

as possible. Since the affine transformations calculated above are only calculated in one

direction, we need to invert the affine transformations Ai 7→t where i > t before doing the

composition. We can calculate Ai 7→t from the previous composition, Ai+17→t , as

Ai 7→t =























Ai+17→tAi 7→i+1 if i < t

Ai−17→t Âi−17→i if i > t

I otherwise

(2.5)

where Âi−17→i is the inverse of Ai−17→i and I is the identity transformation.

Each time t advances, we only need to compute one new frame-to-frame affine

transformation in order to display the complete mosaic Mt . The frame-to-frame affine

transformations are composed according to Equation 2.5 and then displayed as described

in the next section.

2.6.3 Mosaic Display

With each frame Vt now aligned to a common coordinate system through the affine trans-

formation Ai 7→t they next need to be composited into a single image to create the mosaic Mt .
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There are many ways to accomplish this blending (see [31]). We have experimented with

three methods of displaying the overlapping frames of the mosaic, namely the painter’s

algorithm, nearest neighbor selection, and using a weighted combination of the overlap-

ping source images. Our experience has indicated that the painter’s algorithm produces

satisfactory results and is the fastest of the three methods.

While mosaics can aid in the building of a mental model of the scene, there is a

possibility of creating artifacts during the mosaic process, especially in frames far from the

anchor frame. In order to ensure that each frame appears undistorted at some point during

the playback of the mosaic we keep the anchor frame undistorted at all times. We can,

however, filter out unwanted motions by allowing the anchor frame to translate. Experience

has shown that it can also be helpful to unwind the rotations, caused by the turning of the

plane, by allowing the anchor frame (and hence the mosaic) to counter-rotate. Thus, we

can maintain a consistent orientation. Users are also allowed to zoom and pan the mosaic

as desired. When the user zooms in far enough so that the anchor frame is occupying more

screen real estate than its original dimensions, we then transition to displaying the mosaic

in super-resolution.

2.7 Super-Resolution

A key element of Wilderness Search and Rescue is covering the search area as quickly and

as thoroughly as possible. Increasing the area that the mini-UAV covers on each pass while

still maintaining the resolution needed to identify ground features will shorten the time to

search a given area. Super-resolution techniques can enable the mini-UAV to fly at higher

altitudes while providing the same resolution as if it was flying at a lower altitude.

We can achieve this increased resolution by combining the information from over-

lapping video frames. The movement of the mini-UAV causes each frame to be captured

from a slightly different viewpoint. As a result, pixels in each source image are integrating

over a finite area of the scene that is slightly offset from the other images.
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To create a super-resolution image it is necessary to calculate a very accurate align-

ment for each of the source images that overlaps the anchor frame. This allows us to take

advantage of the additional information gained from repeatedly sampling the scene. Sig-

nificant parallax in the scene due to the movement of the mini-UAV and the depth variation

in the scene can cause alignment problems for global registration techniques. The local

warps that the HDC approach allows, however, can accommodate parallax motion and give

us the needed accuracy in alignment.

To generate a resolution-enhanced image we begin with a collection of overlapping

images. One of the images is chosen as the anchor frame and the other frames are warped

into the anchor frame’s coordinate system. The affine transformations that we calculated

during the mosaic construction (Ai 7→t) are used to initialize the HDC warps (Di 7→t), allowing

us to robustly warp frames that only slightly overlap the anchor frame. We then refine the

registration using the HDC algorithm to align the images to sub-pixel accuracy.

Once all of the dense correspondences are calculated we combine the source images

to create a super-resolution image. Each pixel of each source image is displayed on screen

at their floating-point coordinates (Figure 2.7). The pixels are displayed as point sprites

with a finite area. Each screen pixel then selects for its color the source pixel it is closest to

(nearest neighbor) or a blending of the source pixels that are close by (weighted average).

This blending process can be accelerated using a Graphics Processing Unit (GPU) to keep

the display of the super-resolution image at interactive speeds.

One indicator of the accuracy of the dense correspondence computation is the abil-

ity to create super-resolution images by warping multiple images to a single frame of ref-

erence and compositing, as shown in Figures 2.8 and 2.9.

2.8 Mover-Detection

Segmentation of moving objects is performed in two phases: detection and completion.

In the detection phase, the goal is to have at least a single pixel of positive detection per
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Figure 2.7: Merging multiple image sources into a super-resolution image. The shapes

(green squares, red circles, or blue diamonds) represent pixels from separate but overlap-

ping image sources. The solid lines represent the resolution of the input images. The dotted

lines represent additional sampling points in the higher resolution image. The pixel color

at each intersection is chosen using nearest neighbor or weighted average blending.

moving object, not including parallax motion of buildings, trees, or other tall structures.

In the completion phase, pixels for the entire object are determined. Extra “guard pix-

els” surrounding the object are also labeled as part of the mover to obtain a conservative

segmentation. Both phases of this algorithm could be accomplished with well-known but

expensive search and correlation strategies (see [7, 22]). For real-time processing on small

sensor platforms, fast, local computations are desired.

For detection, two approaches were tested. The first approach uses two buffered

frames to perform detection. Pixels are declared likely movers in frame f if (1) their value

v f (x,y) is different from all the values within one pixel in frame f + 1, (2) this frame-

to-frame difference has a high gradient magnitude, (3) the gradient magnitude at frame f

is high, and (4) the gradient directions in the two cases above are parallel to one another

(either the same or exact opposite directions). This is formulated as

~g = ∇v f (x,y)

~g′ = ~g/||~g||

d f (x,y) = min
dx,dy∈ [−1,1]

|v f (x,y)− v f +1(x+dx,y+dy)|
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Figure 2.8: 61-frame super-resolution example. Top: one image. Bottom: 61 images

warped and composited into a high-resolution image (from the same video sequence as

Figure 2.10).

~h = ∇d f (x,y)

~h′ = ~h/||~h||

q = (~h′ ·~g′)(||~g||−gmmin)||~h||

This consistently finds some pixels per mover but is somewhat sensitive to noise and does

not completely eliminate parallax-induced detections of tall building edges.

The second detection approach uses five frames. The median value is obtained for

a pixel over these frames. The detection is then the difference between the current frame’s

value and the least different value from a small neighborhood of the next frame. A small

amount of “soft erosion” is performed on the results. This was found to be very reliable

at detecting some pixels per mover and was not as sensitive to noise or to building edge

parallax.
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Figure 2.9: 15-frame super-resolution example. Left: example of one of the 15 input

frames. Right: super-resolution output. Notice the additional detail in the shadows of the

trees and around the red car, as shown in the magnified insets. Also notice how the color

artifacts caused by the Bayer filter array in the camera sensor are removed in the super-

resolution version, especially around areas that transition from light to dark.

After detecting a set of pixels from each mover, a conservative region of pixels is

determined around each complete mover. Using the results of the five-frame detection,

there are good starting points to seed a search for all mover pixels. We start with the core

pixel of each connected component, defined as the last pixel to be deleted for the component

by repeated erosion operations that are restricted to not break components into two pieces.

From this starting point, we flood fill to all pixels that are near pixels with frame-to-frame

differences with magnitudes above a specified threshold.

Figure 2.10 shows the differences in mover-detection accuracy using a dense cor-

respondence registration versus an affine warp. The dense correspondence matches the

background scene much better and eliminates the vast majority of false alarms caused by

parallax motion.
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2.9 HDC Improvements Over Global Registration

The HDC algorithm provides several advantages over global image registration techniques.

HDC can account for parallax motion to provide a more accurate registration. This is

important for both mover-detection and super-resolution. Figure 2.10 shows a significant

number of false positives when performing an image difference using a global registration

technique. This makes it extremely difficult to determine which differences are due to

movement of objects within the scene (moving cars in this case) and which differences are

due to the parallax motion of tall objects in the scene (tall buildings and elevated tracks).

Contrast this with the HDC result where the true movers are much easier to detect because

the parallax motion has been eliminated.

When combining multiple, overlapping images to produce a super-resolution re-

sult, parallax motion can cause blurring in the final result. This blurring is evident in the

super-resolution image produced using affine transformations in Figure 2.11. The super-

resolution image created using HDC produces a sharp image, even in the presence of paral-

lax motion. This result is possible because the HDC algorithm has the flexibility to locally

warp to movement that is not present in other areas of the images.

2.10 Conclusion

In this paper we have presented an improved approach to video visualization using mosaics.

Our approach, based on a judicious combination of affine transformations and hierarchical

dense correspondences, performs robustly even on mini-UAV video with no extrasensory

information and in jittery flight conditions. The same framework permits not only basic

mosaics but fast computation of super-resolution imagery on the GPU, as well as mover-

detection. Non-traditional means of visualizing video data, including the mosaics presented

here, provide promise of conveying more information to human observers with reduced

dependency on temporal viewing.
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Figure 2.10: Affine warp versus dense correspondence for mover-detection. Left: source

and target images. Middle: affine warp with difference image. Right: dense correspon-

dence warp with difference image (significant differences are movers).
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Figure 2.11: Affine warp versus dense correspondence for super-resolution. Top: The tall

building in the lower right corner is blurry when using an affine transformation to register

the input images. Bottom: the building remains sharp when HDC is used for registration.
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Chapter 3

Additional Contributions

This chapter contains details about the individual contributions outlined in Sec-

tion 1.3.1 that were not included in the paper submitted to CVPR due to space limitations.

3.1 Extending Local Mosaics

There are two innovations that allow us to increase the number of frames that we are able

to display in our local mosaics while maintaining minimal distortion. One technique is

to continuously re-warp the frames in the history to the coordinate system of the current

frame. The other technique extends the mosaic to include both a history of frames as

well as a buffered future history when running in offline mode. Both techniques rely on

transferring away from the current frame the distortion that builds up when doing purely

frame-to-frame alignment with no bundle adjustments.

3.1.1 Continuously Warping History to Current Frame

The approach taken in [11] while constructing the video mosaic is to paste each frame

onto a static canvas that each subsequent frame is then aligned to. This techniques works

well for short sequences when using a transformation that only allows for translations and

rotations. While transformations that allow for greater degrees of freedom, such as affine

transformations, can create a more seamless mosaic, they also allow for a greater degree

of distortion. While the frame to frame distortion is usually very small, the accumulated
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Figure 3.1: Mosaic distortion due to accumulated errors. The first frame pasted onto a static

canvas, outlined in blue, is undistorted. As each subsequent frame is aligned to the frames

that were previously pasted onto the canvas, small errors in the alignment accumulate and

the distortion becomes noticeable. In this example the black rectangles represent the posi-

tion of every 25th frame, and the 250th frame, outlined in red, is noticeably stretched in one

direction due to accumulated errors. If we continued and aligned additional frames to this

static canvas then the mosaic would continue to become more and more distorted.

effect over long sequences of several hundred frames can grow to be quite large. If we

were to continuously paste frames onto a static canvas using affine transformations, the

accumulated distortion would become very noticeable after several hundred frames. Fig-

ure 3.1 shows the distortion that is evident after 250 frame to frame affine transformations.

The frame outlined in blue was the first frame to be drawn onto the canvas. The black rect-

angles outline where every subsequent 25th frame would be pasted. The current frame is

outlined in red and is the 250th frame in the sequence. By this point the frame is noticeably

stretched in one direction. If future frames are aligned to this static canvas, they inherit the

accumulated distortion of all the frames already drawn on the canvas.
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Figure 3.2: Continuously warping the mosaic to the anchor frame. Each image shows a

snapshot of the mosaic after 30 frames have elapsed. The anchor frame, outlined in blue,

remains stationary as the mosaic “plays through” that fixed location.

In order to mitigate this distortion we continuously warp the history to the current

frame. This allows us to draw the current frame on the canvas without any distortion.

Frames that are temporally close to the current frame will have minimal distortion, while

the accumulated error gets pushed out to the frames that are temporally distant from the

current frame. This technique also allows the current frame to remain undistorted through-

out the entire length of the video. In Figure 3.1, if we consider the frame outlined in red

as the first frame that we received and the frame outlined in blue as the current frame, then

we can paste the current frame undistorted onto the canvas and warp the 250 previously

received frames to this anchor frame. Then when the next frame is received it becomes the

new anchor frame and the frames in the history are warped to align to it. This re-warping

to a new anchor frame is accomplished efficiently as described in Section 2.6.2.

While it is difficult to represent using still images, Figure 3.2 gives a general feel

for what the mosaic looks like as it plays and is warped to align to each succeeding anchor

frame outlined in blue.

33



Figure 3.3: Extending the mosaic in offline mode. Left: the mosaic only includes the 250

frames that preceded the anchor frame, outlined in blue. Right: the mosaic includes the

250 frames preceding and 250 frames following the anchor frame.

3.1.2 Displaying History and Future in Offline Mode

We can further extend the mosaic while maintaining minimal distortion when we are in

offline mode and have access to the frames both preceding and following the current anchor

frame. With access to these frames we can build up the mosaic on both sides of the anchor

frame to create a mosaic that is even longer than if we only used the frames that preceded

the anchor frame. Figure 3.3 shows an example of a mosaic using only the frames that

precede the anchor frame and what the same mosaic looks like if we include the frames

that follow the anchor frame.
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3.2 Using Mosaic Results to Initialize HDC

In order to get the best possible super-resolution results for a given feature in our aerial

video we need to use every input frame that overlaps that feature. This means that we need

to align input frames that may be temporally distant from each other to a common frame

of reference. While HDC can robustly align images that have a high degree of overlap,

when the overlap is not sufficient enough it may produce an incorrect alignment, as in

Figure 3.4. In order to ensure that HDC produces the correct alignment even in these cases,

we take advantage of the alignment information that was produced during the building of

the mosaic. The affine transformations calculated to bring the frames in the mosaic into

the coordinate system of the anchor frame (see Section 2.6.2) can be used to give an initial

alignment for the HDC algorithm. This alignment is then refined to produce the dense

correspondence needed to produce the super-resolution results.

35



Figure 3.4: Using Mosaic Results to Initialize HDC. Top: two input frames that are tem-

porally distant. Bottom left: HDC alignment when initialized with the identity transfor-

mation. The algorithm incorrectly locks on to a local minimum. Bottom right: HDC

alignment when initialized with the alignment calculated during the creation of the mosaic.

The algorithm correctly aligns the images.
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Chapter 4

Additional Methods

This chapter contains additional details about our methods that were not included

in the paper submitted to CVPR due to space limitations or intentionally omitted because

they are basic concepts generally understood throughout the computer graphics and vision

communities. They are included here for completeness.

4.1 Software Libraries

The video interface makes use of utilities and library functions made available through the

LibGen library, available for download at http://www.cognigraph.com. The videos were

pre-processed using MPlayer to extract individual video frames from movie sequences.

The MPlayer application is available for download at http://www.mplayerhq.hu.

4.2 Video Pre-processing

In order to simplify the video interface and focus our efforts on the visualization of the

video, we pre-processed the videos and stored the results on disk for use during video

playback. The first step in our pre-processing was to extract each video frame and store it

as an image file. Each image file was given a unique file name that was identified by the

frame number that the particular image was extracted from. This allowed us to play each

frame of the video in sequence without having to decode each frame each time we ran the

software. The frames were extracted offline using the MPlayer software application. The

37



benefit from doing this was to avoid incorporating software to handle the decoding of the

video in our project. One drawback from doing this was the performance hit that came in

the form of increased I/O from disk. Since we stored each frame in uncompressed format,

we were required to read a greater number of bytes from disk than if we had extracted the

frame direct from the video.

The next step during pre-processing was to de-interlace the video frames, if neces-

sary. The odd scan lines were extracted to one image file, while the even scan lines were

extracted to a separate image file. The missing scan lines were filled in using a simple

center-weighted average of the three pixels above and three pixels below the pixel to be

filled in.

In order to compensate for changes in the camera gain and bias during the recording

of the video, the final step of our pre-processing was to perform an equalization operation

over the entire video frame. This operation examines a neighborhood around each pixel, or-

dering the pixels in the neighborhood based on their intensity values. The value of the pixel

is then reassigned to be the percentile of its rank among its neighbors. The equalize util-

ity in LibGen was used to perform this step, with a neighborhood size of 64.

4.3 GPU Accelerated Super-Resolution

In Section 2.7 we mentioned that overlapping images could be combined to generate a

super-resolution image. Figure 2.7 illustrates how individual pixels from overlapping im-

ages are positioned using their respective dense correspondence positions. To create a

super-resolution image we harness the power of modern graphical processing units (GPUs)

to display each of the source images on the display, using fragment programs to blend the

source images where they overlap.

The blending can be accomplished through a variety of techniques. We have exper-

imented with using nearest-neighbor selection and normalized weighted averaging. Both

techniques begin by drawing each pixel of each source image as a point sprite with a fi-
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nite size that is proportional to the magnification of the displayed image, i.e. the pixels of

a source image that has been magnified two times are drawn as point sprites that are two

screen pixels wide on each side. With each point sprite drawn on the screen at its corre-

sponding dense correspondence position, we can combine them using a simple averaging

technique where each source image provides an equal contribution to the final pixel color,

we can select only the source image whose dense correspondence position is closest to the

screen pixel position (nearest-neighbor selection), or we can combine them by giving the

closest source pixels the greatest weight in the final color of the screen pixel (normalized

weighed averaging).

The fragment program in Figure 4.1 implements the nearest-neighbor selection. It

first calculates the distance between the source pixel (given by the dense correspondence

position), and the fragment, or screen pixel, that is covered by that source pixel. The

distance is then stored in the depth buffer. Before each fragment is drawn to the screen

its depth is compared against the depth that is stored in the depth buffer. If its depth is

less than the existing depth, then the fragment color is written to the output buffer, and the

fragment depth is written to the depth buffer. The result of applying this algorithm to each

sprite point is a Voronoi diagram where each partition corresponds to the source image that

provided the color for the super-resolution image.

Normalized weighted average blending requires a two-pass algorithm. On the first

pass each fragment calculates the distance between itself and the center of the source image

pixel. The weight for the fragment is inversely proportional to this distance. The color of

the fragment is then multiplied by the weight and accumulated off screen in a frame buffer

object (FBO). The weights are accumulated in the alpha channel of the FBO. The fragment

program code for this first pass is illustrated in Figure 4.2.

The second pass of normalized weighted average blending performs the normaliza-

tion. In this pass the values in the red, green, and blue channels are divided by the value
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!!ARBfp1.0

# set zbuff to be equal to distance squared between fragment

# and source color center

# input texture coordinate

ATTRIB tc=fragment.texcoord[0];

ATTRIB color=fragment.color;

# output color value

OUTPUT outColor=result.color;

OUTPUT outDepth=result.depth;

# temporary values

TEMP distx,disty,distsq;

TEMP newcolor;

# get distance between fragment and source color center

SUB distx,{0.5,0.5,0.5,0.5},tc.x;

SUB disty,{0.5,0.5,0.5,0.5},tc.y;

MUL distx,distx,distx;

MUL disty,disty,disty;

ADD distsq,distx,disty;

# set the alpha channel to 1.0

ADD_SAT newcolor,{0.0,0.0,0.0,1.0},color;

# output the depth value

MOV outDepth,distsq;

MOV outColor,newcolor;

END

Figure 4.1: Fragment program code for nearest-neighbor selection.

40



!!ARBfp1.0

# set alpha to the weight to be used when blending

# input texture coordinate

ATTRIB tc=fragment.texcoord[0];

ATTRIB inColor=fragment.color;

# output color value

OUTPUT outColor=result.color;

OUTPUT outDepth=result.depth;

# temporary values

TEMP dist,distsq,newWeight,finalColor,half;

# get distance between fragment and source color center

MOV half, {0.5,0.5,0.5,0.5};

SUB dist.xy, half, tc;

MUL dist.xy, dist, dist;

ADD distsq, dist.x, dist.y;

# convert the distance to a weight using:

# [weight=(1/(16*dist+1)]

POW dist, distsq.x, half.x;

MUL newWeight.x, {16.0}, dist;

ADD newWeight.x, {1.0}, newWeight;

RCP newWeight, newWeight.x;

# pre-multiply the color by the weight so we can

# accumulate using glBlendFunc(GL_ONE, GL_ONE)

MUL finalColor.rgb, inColor, newWeight.x;

# store the weight in the alpha channel

MOV finalColor.a, newWeight.x;

# output the new color

MOV outColor, finalColor;

# set the depth to a constant so we get blending instead of

# nearest neighbor coloring

MOV outDepth, {0.0,0.0,0.0,0.0};

END

Figure 4.2: Fragment program code for first pass of normalized weighted average blending.
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!!ARBfp1.0

# divide the color components by the alpha channel (where

# the sum of the weights are stored)

# input texture coord from draw calls

ATTRIB tc=fragment.texcoord[0];

# output color value

OUTPUT outColor=result.color;

# temporary values

TEMP tv,weightSum,finalColor,rcpWeight;

# Get the texture value

TEX tv,tc,texture[0],2D;

# Grab the sum of the weights stored in the alpha channel

MOV weightSum,tv.w;

# Check for weightSum == 0 in preparation for doing a divide

CMP rcpWeight,-weightSum,weightSum,{1,1,1,1};

# invert the sum of weights in preparation for

# multiplication since we don’t have a divide.

RCP rcpWeight,rcpWeight.w;

# output the color, divided by the weights

MUL finalColor.rgb,tv,rcpWeight;

# Set the alpha value of the final color. This should be set

# to one if weightSum is non-zero, otherwise it should be

# set to zero

CMP finalColor.a,-weightSum,{1,1,1,1},{0,0,0,0};

MOV outColor,finalColor;

END

Figure 4.3: Fragment program code for first pass of normalized weighted average blending.
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in the alpha channel. This is done using the fragment program shown in Figure 4.3. The

result of this second pass is a high-resolution texture that is then displayed on screen.

The nearest neighbor blending method produces images that maintain sharp edges

at the expense of introducing artifacts. The weighted average blending method produces

smoother images but is an order of magnitude slower than nearest neighbor blending (see

Figure 4.4).
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Figure 4.4: Comparison of blending techniques. Top left: portion of one of the input

images used to produce the super-resolution result, magnified to show individual pixels.

Top right: bilinear interpolation of the same image. Bottom left: super-resolution result

using multiple input images and nearest neighbor blending. Bottom right: super-resolution

result using multiple input images and weighted average blending.
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Chapter 5

Conclusions and Future Work

We have discussed the challenges that arise when using video from a mini-UAV,

including jittery video, narrow fields of view, low resolution, and limited time on screen

for key features. We have shown how existing techniques provide no efficient means for

addressing all of these issues simultaneously. Building upon hierarchical dense correspon-

dence (HDC), we create a unifying framework for removing jitter, creating a video mosaic,

enhancing the video resolution, and extracting dynamic events in the video. HDC is de-

signed to be accelerated on commodity GPUs allowing near real-time enhancement of the

video. The hierarchical nature of the algorithm allows HDC to robustly align video images

without the aid of external camera parameters, while the locally adaptive warps eliminates

the need for internal camera calibration parameters. This allows for its use on a wider range

of aerial videos where these parameters are unavailable. The dense local correspondence

built into HDC provides a robust method for compensating for parallax motion that cannot

be matched by purely global registration methods.

While the current implementation of the video interface gives pleasing results, there

are a few areas that need improvement. Occasionally noise in the video, usually in the form

of transmission errors, will cause the HDC algorithm to produce an alignment that is ob-

viously incorrect. The resulting frame-to-frame transformation will be propagated through

the mosaic when composed with other frame-to-frame transformations, as described in

Section 2.6.2. When these errors occur it should be possible to detect the incorrect trans-

formations and either correct them or prevent them from being included as part of the
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mosaic, as in [24]. As most of the errors occur during short (less than five frames) video

sequences, it may be possible to drop the noisy frames altogether and calculate a frame-

to-frame transformation that skips over the unusable frames. It is our opinion that it will

be easier to detect erroneous transformations than it will be to analyze the content of each

frame to determine if it is usable or not.

There are other efficiencies that could be implemented but have not been included

in this work. In the current system when super-resolution is enabled, the HDC algorithm

is applied across the entire frame at full resolution for each frame that overlaps the super-

resolution area. This sometimes involves computing the dense correspondence for areas

of the image that are not even being displayed on screen. It should be possible to cull the

inputs to the HDC algorithm to only include the parts of the input frames that will end up

being shown on screen. It may even be possible to restrict the algorithm to only run in a

small area surrounding the cursor, allowing the super-resolution feature to be even more

interactive than it currently is.
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