
Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2008-06-16

Interactive Part Selection for Mesh and Point
Models Using Hierarchical Graph-cut Partitioning
Steven W. Brown
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Brown, Steven W., "Interactive Part Selection for Mesh and Point Models Using Hierarchical Graph-cut Partitioning" (2008). All
Theses and Dissertations. 1392.
https://scholarsarchive.byu.edu/etd/1392

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F1392&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F1392&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F1392&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F1392&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F1392&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F1392&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/1392?utm_source=scholarsarchive.byu.edu%2Fetd%2F1392&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

INTERACTIVE PART SELECTION FOR MESH AND POINT

MODELS USING HIERARCHICAL GRAPH-CUT PARTITIONING

by

Steven W. Brown

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computer Science

Brigham Young University

August 2008

Copyright c© 2008 Steven W. Brown

All Rights Reserved

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Steven W. Brown

This thesis has been read by each member of the following graduate committee and
by majority vote has been found to be satisfactory.

Date Bryan S. Morse, Chair

Date Dan R. Olsen

Date Cristophe Giraud-Carrier

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the thesis of Steven W.
Brown in its final form and have found that (1) its format, citations, and bibliograph-
ical style are consistent and acceptable and fulfill university and department style
requirements; (2) its illustrative materials including figures, tables, and charts are in
place; and (3) the final manuscript is satisfactory to the graduate committee and is
ready for submission to the university library.

Date Bryan S. Morse
Chair, Graduate Committee

Accepted for the Department

Date Kent E. Seamons
Graduate Coordinator

Accepted for the College

Date Thomas W. Sederberg
Associate Dean, College of Physical and Mathematical
Sciences

ABSTRACT

INTERACTIVE PART SELECTION FOR MESH AND POINT

MODELS USING HIERARCHICAL GRAPH-CUT PARTITIONING

Steven W. Brown

Department of Computer Science

Master of Science

This thesis presents a method for interactive part selection for mesh and point

set surface models that combines scribble-based selection methods with hierarchically

accelerated graph-cut segmentation. Using graph-cut segmentation to determine op-

timal intuitive part boundaries enables easy part selection on complex geometries and

allows for a simple, scribble-based interface that focuses on selecting within visible

parts instead of precisely defining part boundaries that may be in difficult or oc-

cluded regions. Hierarchical acceleration is used to maintain interactive speeds with

large models and to determine connectivity when extending the technique to point

set models.

ACKNOWLEDGMENTS

My thanks go to those who graciously provided the 3D models: The Stanford

Computer Graphics Laboratory for the dragon, bunny, buddha, and lucy models; The

Stereolithography Archive at Clemson University for the hand model; XYZ RGB

Inc. for the Thai statuette and dragon (called “dragon 2” in this work) model;

Georgia Institute of Technology for hosting the blade model originally included in

the Visualization Toolkit (VTK); OpenSceneGraph.org for the tire model (a part of

the dumptruck model); Cyberware Inc. for the female01 and horse models; Visual

Computing Lab of the Institute of Information Science and Technologies (ISTI) for

the gargoyle model, found on AIM@SHAPE Shape Repository; The French National

Institute for Research in Computer Science and Control (INRIA) and ISTI for the oil

pump and elephant models, found on AIM@SHAPE Shape Repository.

I would also like to thank Dr. William Barrett for inspiring me, Dr. Bryan

Morse for supporting me, my friends at the lab for distracting and entertaining me,

and most of all, my wife Amber for putting up with me.

Contents

Contents vii

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Problem Description and Motivation 1

1.2 Related Work . 3

1.3 Contributions . 3

1.3.1 Graph-Cut Partitioning of Mesh Models 3

1.3.2 Hierarchical Acceleration . 4

1.3.3 Graph-Cut Partitioning of Point Sets 5

1.4 Thesis Outline . 5

2 Research Paper 7

2.1 Introduction . 8

2.2 Related Work . 10

2.3 Interaction and System Overview . 13

2.4 Mesh Model Partitioning with Graph Cut 15

2.5 Hierarchical Acceleration . 18

2.6 Point Set Models . 21

2.7 Results . 23

2.7.1 Mesh Model Results . 23

vii

2.7.2 Hierarchical Acceleration Results 26

2.7.3 Point Set Model Results . 29

2.8 Discussion and Future Work . 30

2.9 Conclusion . 31

3 Additional Methods 33

3.1 Mesh Model Partitioning . 33

3.1.1 Vertex Selection . 33

3.1.2 Graph Creation . 34

3.1.3 Model Segmentation . 35

3.2 Hierarchical Acceleration . 35

3.2.1 Building the Hierarchy . 35

3.2.2 Searching the Hierarchy . 36

3.2.3 Implementing Graph Cut . 36

3.3 Point Set Models . 37

3.3.1 Vertex Selection . 37

3.3.2 Surface Normal Approximation 37

4 Conclusion 39

Bibliography 41

viii

List of Figures

1.1 Examples of point set and mesh models 2

1.2 An example of part selection . 2

1.3 Selecting a part with multiple boundaries 4

2.1 User session with the Lucy point set model 8

2.2 Selection boundary in an occluded area of a tire model 10

2.3 Selecting the blade from the turbine blade mesh model 10

2.4 Unintended effects of surface boundary marking near silhouette edges 13

2.5 Screenshots from a typical user session using the hand bone mesh model 14

2.6 A two-dimensional example of the octree connectivity algorithm . . . 19

2.7 User session with a dragon point set model 21

2.8 Selecting the head fromt the bunny model 24

2.9 Selecting the head and hair from the female01 model 25

2.10 Selecting the center wrist bone of the hand mesh model 26

2.11 Interactive segmentation of a hand bone mesh model 27

2.12 Selecting a cylinder from an oil pump model 27

2.13 Selecting the wings from a gargoyle model 28

ix

x

List of Tables

2.1 Selection times for mesh models with and without the hierarchy . . . 24

2.2 Preprocessing times for point set models 29

xi

xii

Chapter 1

Introduction

1.1 Problem Description and Motivation

3D computer graphics have become ubiquitous in a wide range of fields. Whether

for entertainment in games and movies or for engineering tasks such as simulations

and visual design, the need for computer graphics has been quickly growing. At the

heart of computer graphics are 3-dimensional models that represent the objects in the

rendered scene. As the need for and ability to render more realistic objects increases,

the models representing these objects become increasingly large and complex.

Large, complex models today are rarely created by hand due to the intensive

effort required. Instead, physical objects are scanned using laser scanners, which

record the surface of the object as a dense set of 3D points called a point set (Figure

1.1a). Point sets are often thinned and connected together to form a polygonal mesh

(Figure 1.1b). Polygonal meshes are the de facto standard in computer graphics

because they can be efficiently rendered. Point sets themselves can also be used as

a model type. They require less post-processing since they are not meshed and have

the advantage of being smaller in physical (disk) size due to the lack of connectivity

information, but are more difficult to render and manipulate.

1

(a) Point set model (b) Mesh model

Figure 1.1: A close view of a dragon’s tail as a point set model (a) and mesh model (b).

Figure 1.2: An example of part selection. The head is perceived as a part because of
the natural boundary between it and the body.

As model sizes increase due to the desire for increased detail, the ability to

manipulate these large models with current methods decreases. Manipulations are

important to many aspects of computer graphics and include techniques such as

deformation, colorization, and segmentation. These manipulations generally require

the selection of a subset of the model. On complex models, this can be a difficult due

to size, occlusions and the inherent difficulty of manipulating a 3D object using 2D

interfaces.

One type of selection that is of particular use is part selection, in which the

selection is comprised of a logical part of the model. An example of this would be

selecting the head from a bunny model (Figure 1.2), with a logical boundary being

the sharp angle between the head and the body. Part selection is challenging because

2

part boundaries are subjective. While the head may be considered a part in the bunny

model in this instance, each ear may be a separate part in another. In other cases, the

boundaries between parts are not well defined. Part selection that can be guided by

simple user interaction lessens these ambiguities and facilitates manipulations where

logical parts are essential, such as creating a new model from parts of existing models.

1.2 Related Work

While much work has been done on automated part selection to assist in tasks such as

collision detection, skeletonization, and geometric searches, individual part selection

that can be guided by the user has received less attention. Current methods include

direct selection of points, selection by geometric primitive, selection by surface scoring

to indicate the selection boundary, and scribble-based selection with region growing.

These techniques, described in greater detail in Chapter 2, are all effective in certain

situations but have difficulty with unsimplified large models and complex geometry.

1.3 Contributions

1.3.1 Graph-Cut Partitioning of Mesh Models

Graph-cut segmentation, a powerful segmentation method that calculates optimal

partitioning between marked foreground and background areas, has already been used

successfully in the segmentation of 2D images, video, and 3D volumes. We extend

this method to 3D mesh models, which pose unique challenges because of their size

and difference in connectivity. By combining a scribble-based interface with graph-

cut segmentation, we are able to make selections of parts that would be difficult or

impossible with other methods such as selections that have multiple boundaries (see

3

Figure 1.3: Selecting a part with multiple boundaries. The white and yellow areas
are scribbles representing desired and undesired areas. Using graph-cut segmentation,
five separate selection boundaries are determined.

Figure 1.3), or selections for which the selection boundary is occluded by other parts

of the model.

1.3.2 Hierarchical Acceleration

Implementing graph-cut segmentation on large models can cause the selections to be

made at less than interactive speed. To provide acceleration, we represent the model

as an octree hierarchy composed of the 3D points of the model and perform a series of

localized coarse-to-fine cuts. An initial cut is made at a coarse hierarchical level. The

areas surrounding the initial cut are changed to represent finer levels of the hierarchy

and another cut is made that gives more accuracy in the region of interest. This is

continued until the finest level has been reached.

4

1.3.3 Graph-Cut Partitioning of Point Sets

Our method of hierarchical acceleration provides an additional benefit not found in

other techniques. Because the octree hierarchy containing the 3D model points gives

rough spatial connectivity, the technique can be directly applied to point sets, which

have no inherent connectivity. Each leaf cell in the octree hierarchy, which contains

10 to 15 points, is considered one node in the graph used for graph cut and its

neighbors in the graph are determined by the neighboring leaf cells in the hierarchy.

The acceleration benefits of the hierarchy remain useful as well, since point sets can

often be quite large.

1.4 Thesis Outline

Chapter 2 contains the entirety of a paper as revised after submission to and feedback

from ACM SIGGRAPH 2008, with the exception of the References section, which

appears at the end of this thesis. Section 2.1 introduces the subject and our approach

to solving the part selection problem. In Section 2.2 there is a discussion of related

work in the topics of user-guided part selection, scribble-based interfaces, and graph-

cut segmentation in 2D and 3D and how our methods fits into the body of that work.

Afterwards, in Section 2.3, we describe our interface and a typical user experience.

In Sections 2.4 through 2.6 we detail the methods of our part selection tech-

nique. Applying graph-cut segmentation to mesh models is described in Section 2.4.

Our process for achieving hierarchical acceleration of mesh models is detailed in Sec-

tion 2.5, and application of the hierarchical method to point set models is found in

Section 2.6. Section 2.7 contains the results for mesh model segmentation (Section

2.7.1), accelerated mesh model segmentation (Section 2.7.2), and point set model

segmentation (Section 2.7.3), while Sections 2.8 and 2.9 conclude the paper with a

5

discussion of our results, comments on the future of this area of study and a conclu-

sion.

Chapter 3 of this thesis contains information not included in the conference

submission, either because of space considerations or nonnecessity due to the common

knowledge of conference attendees. The additional methods are listed under the

section headings to which they apply in the conference submission. In Section 3.1 we

describe vertex selection for mesh models, describe in greater detail the reasons for

vertex-based graphs over face-based graphs, and explain the physical segmentation of

mesh models. We discuss the implementation and searching of the octree hierarchy in

Section 3.2. Adjusting vertex selection for point set models and normal interpolation

are the subject of Section 3.3.

Chapter 4 contributes additional ideas for future work, such as expanding

this technique to other model types, and discusses the overall effectiveness of this

technique and how it complements existing selection techniques.

6

Chapter 2

Research Paper

This chapter contains the research paper in its entirety as revised after sub-

mission to and feedback from ACM SIGGRAPH 2008.

Abstract

This paper presents a method for interactive part selection for mesh and point

set surface models that combines scribble-based selection methods with hierarchically

accelerated graph-cut segmentation. Using graph-cut segmentation to determine op-

timal intuitive part boundaries enables easy part selection on complex geometries

and allows for a simple, scribble-based interface that focuses on selecting within vis-

ible parts instead of precisely defining part boundaries that may be in difficult or

occluded regions. Hierarchical acceleration is used to maintain interactive speeds on

large models and to provide connectivity when extending the technique to point set

models.

7

(a) Original Model (b) Scribbles and result-
ing selection

(c) Side view (d) Front view

Figure 2.1: User session with the Lucy point set model. To select the wings of the
original model (a), the user draws a white scribble to select each wing and a yellow
scribble to exclude the body (b). Even though the user marked from only from
one view, the wings are completely selected (c,d). The entire process for this initial
partitioning takes less than 15 seconds even when using this 14 million point model.

2.1 Introduction

As 3D surface models increase in size, they become increasingly difficult to manipu-

late. One problem is quickly and efficiently selecting parts, or subsections, of large

3D models interactively using a 2D interface. While there are many methods for

automatic model partitioning such as [Mangan et al. 1999; Li et al. 2001; Katz and

Tal 2003; Shamir 2004; Simari and Singh 2005] that can be applied to tasks such

as shape matching, skeleton extraction for deformation and animation, and collision

detection, these methods partition the entire model and do not always give the user

control over the definition of individual parts. Since part boundaries are ultimately

a subjective human decision, this control is essential to accurate part selection.

In this paper we focus on methods for assisting the user in interactively select-

ing parts, even for very large models. User-guided part selection gives modelers a tool

with which they can partition and reassemble models [Funkhouser et al. 2004; Sharf

et al. 2006] or simply modify parts of models with color, texture, or deformations.

8

Our goal is to make part selection simple, interactive, and accurate for models of all

sizes.

We use a simple tool for interactive part selection for both mesh-based and

point set surface models. As shown in Figure 2.1, the user loosely scribbles on parts

they want to select and makes other scribbles on the parts they want to exclude.

Graph-cut segmentation of the 3D model is then used to automatically calculate the

selected part(s). Refining the selection interactively requires only the drawing of

additional scribbles.

These rough scribbles are ideal for interaction on large models, which are al-

ready difficult to render interactively. Additionally, by drawing on the visible surfaces

of the parts themselves rather than tracing or otherwise defining the boundary sepa-

rating the parts, the user’s attention can be focused on those parts and less rotation

is required. This makes it easier for a user to select parts even when the boundary

separating those parts might be occluded or hard to reach (Figure 2.2) or when the

geometry is complex (Figure 2.3). The selection can also be used in conjunction with

other selection techniques to give the user further control over the selection.

For an interactive approach to be effective, the tool must maintain rapid feed-

back in response to the user’s input, but this becomes a problem as the models become

increasingly large. We introduce a hierarchical approach that allows us to acceler-

ate the partitioning of the model for an interactive response even on large models.

The model is initially represented by a high-level octree hierarchy. When a scribble

is made the rough model is refined in the areas of interest using lower levels of the

hierarchy in a series of coarse-to-fine cuts. This allows areas not affecting the cut to

be ignored while maintaining accuracy in the desired areas.

This hierarchical method can also be used directly on point set models. The

hierarchy is well-suited to point set models, which are usually very large collections of

9

(a) Normal view (b) Inaccessible boundary

Figure 2.2: A selection boundary in an occluded area of a double tire (1K vertices).
The selection was made with one scribble on each side of the object (a), even though
the boundary separating the parts lies inaccessible on the axle connecting them (b).

(a) Exterior partitiong (b) Entire partitioning

Figure 2.3: Selecting the blade from the turbine blade mesh model (882K vertices).
The selection and resulting partitioning for the exterior of the mesh model can be
seen in (a) and the full partioning, including the occluded inner areas, can be seen
in (b).

laser-scanned points, because it can provide some spatial connectivity to the otherwise

unassociated points and eases computation. By grouping small numbers of points

together into hierarchy leaf nodes and connecting neighboring leaf nodes, a rough

connectivity graph can be quickly formed. As with mesh models, the graph is then

used to perform coarse-to-fine cuts on the model.

2.2 Related Work

User-guided part selection for 3D surface models can be performed in a number of

ways. The simplest approach is to allow the user to select vertices, polygons, or

10

unorganized points manually, using a brush to mark the surface of the model. While

this is very accurate and makes for easy, intuitive selection refinement, it is extremely

tedious on large models, is prone to incomplete selections, and fails completely in

cases of occlusion where portions of the desired selection are not visible or easily

accessible to the user.

Another approach is to use geometric primitives to define a selection volume.

The simplest of these is the cutting plane, drawn in screen space or positioned in 3D,

which is used to divide the model into two regions. Other geometric primitives include

cuboids and spheres [Weyrich et al. 2004], which can be intersected with the model

to define selected regions. These selections can be refined by including additional

geometric primitives. This method is appropriate for very simple selections, but the

primitives can be difficult to place correctly, and they quickly become infeasible for

models with complex geometry.

An alternate approach to defining the selected area is to allow the user to define

arbitrarily complex part boundaries directly on the surface. This may be done by

having the user specify the cut manually [Bruyns and Senger 2001] or by having them

place boundary-defining points along the desired cut and connecting those points with

least-cost paths [Gregory et al. 1999; Wong et al. 1998; Zöckler et al. 2000]. However,

these methods require precise placement of the boundary or boundary-defining points,

and drawing or placing points on the boundary often involves rotating the model to

see or mark the full boundary. One may also have the user provide only approximate

or incomplete strokes, then automatically complete the contour [Funkhouser et al.

2004; Lee et al. 2004; Lee et al. 2005; Sharf et al. 2006]. Such user-drawn boundaries

may then be refined using active contours [Lee et al. 2004; Lee et al. 2005], least-cost

paths [Funkhouser et al. 2004], or local graph-cut approaches [Sharf et al. 2006]. This

is an effective method for many selections, but it can be difficult to refine, can fail in

11

cases of occlusion, and as noted by Funkhouser, et al. [2004] has inherent problems

with selections near silhouette edges (Figure 2.4) because users must stroke across

desired areas instead of inside them.

It is worth noting the analagous boundary definition methods found in image

and video region selection. There are semi-automated methods for assisting the user

in selecting object contours in images [Kass et al. 1987; Mortensen and Barrett 1995;

Gleicher 1995] and video [Agarwala et al. 2004b], or assisting them in selecting object

regions [Maes et al. 1995; Reese and Barrett 2002].

Scribble-based interfaces are also popular for segmenting images or

video [Boykov and Jolly 2001; Agarwala et al. 2004a; Li et al. 2004; Wang et al. 2005;

Armstrong et al. 2007, among many others] and more recently for 3D meshes [Ji et al.

2006]. Scribbling on a surface requires less fine motor control than boundary tracing,

which makes the user training and experience easier. Once initial selections are made,

refinement of the selection is also more intuitive, requiring only additional scribbles

in incorrectly included or excluded areas.

Many of these assisted selection methods are implemented using graph-cut

segmentation, a powerful segmentation method that calculates optimal partitioning

between marked foreground and background areas [Boykov and Jolly 2001; Boykov

and Funka-Lea 2006], however other approaches have also been successful, such as

geodesic [Protiere et al. 2007; Bai and Sapiro 2007] and region growing approaches [Ji

et al. 2006]. Graph-cut segmentation can also be used locally to refine selections made

by other methods [Sharf et al. 2006].

While graph-cut segmentation can be applied directly to many image and

video problems, the computation required prohibits interactive segmentation of larger

data sets, such as large 3D volumes and mesh models. Graph-cut segmentation of

12

(a) User stroke (b) Proposed cut

Figure 2.4: Unintended effects of surface boundary marking near silhouette edges
(from [Funkhouser et al. 2004]).

3D volumes has been achieved at interactive rates using a multiband or hierarchical

approach [Lombaert et al. 2005; Armstrong et al. 2007] to accelerate the computation.

These assisted selection methods have been designed for meshes or volumes

that have inherent connections between data points. Point set models must be meshed

and possibly simplified before selection can begin using these methods.

Our approach combines the scribble-based selection techniques appearing in

3D interfaces with hierarchically accelerated graph-cut segmentation to do part se-

lection for large mesh and point set models. The scribble-based interface gives the

user simple, intuitive interaction, the graph-cut segmentation allows for selections

on complex models and the hierarchical acceleration makes graph-cut segmentation

possible for large mesh and point set models.

2.3 Interaction and System Overview

Figure 2.5 demonstrates a typical user session, including selecting disjoint parts and

refining the selections. Starting with the initial model (2.5a), the user marks (2.5b)

13

(a) Model (b) Initial scribbles(c) Initial selection(d) Second finger
scribble

(e) Partially
selected

(f) Refining scrib-
ble

(g) Resulting selec-
tion

(h) Back view (i) Model with selected parts removed

Figure 2.5: Screenshots from a typical user session using the hand bone mesh model
(327K vertices). (a) The original model. (b) The initial scribbles: the white scribble
is to be included, the yellow scribble is to be excluded. (c) The resulting selection,
where red indicates the selected areas. (d) An additional inclusion scribble on the ring
finger. (e) The resulting selection. (f) A refining scribble to complete the selection
of the ring finger. (g) The resulting selection. (h) The obverse view. (i) Result
of partitioning and deleting the selected fingers. The entire process takes about 9
seconds.

14

one or more areas as included (the white vertical scribble along the index finger)

and other areas as excluded (the yellow horizontal scribble along the thumb and

palm) to obtain an initial selection (2.5c). Additional scribbles are then used to

expand (2.5d,e) and refine (2.5f) the selection. The resulting selection is made along

natural boundaries on the model (2.5g,h). From here, the selection can then be used

for a number of purposes, including editing (2.5i).

The resulting selection boundaries are calculated from rough initial scribbles

using graph-cut methods as described further in Section 2.4. Smaller mesh models

can be formulated as graphs with connectivity defined by polygon edges and edge

weights determined by differences in vertex normal angles. For larger mesh models,

we use an octree hierarchy to accelerate the interaction by performing a series of cuts

from a coarse to fine level as described in Section 2.5. Edge weights are determined

by the difference of the normals of averaged vertex normals at different levels in the

hierarchy. The hierarchical method is also applied directly to point set models for

part selection as described in Section 2.6 using interpolated surface normals.

2.4 Mesh Model Partitioning with Graph Cut

The heart of our part-selection technique is minimum graph-cut segmentation, in

which a weighted graph is partitioned along edges of minimum cost. We use a version

of the algorithm described in [Boykov and Kolmogorov 2001].

Polygonal mesh models naturally lend themselves well to graph-cut segmenta-

tion because their inherent connectivity can be easily formulated as a graph, with the

mesh vertices as the graph vertices and the mesh edges as the corresponding graph

edges. Vertices are selected as part of the user’s scribbles by projecting the mouse

15

point onto the surface of the mesh and including all vertices within a certain distance

from that point.

One could also formulate the graph based on mesh faces and their connectivity

rather than mesh vertices, which would produce clean cuts along polygon edges.

However, calculating adjacency between faces is either computationally slower or

more of a strain on memory when given mesh data defining unorganized faces only

by their vertices. This becomes especially troublesome for very large models. Basing

the graph on vertices provides adjacency in linear time with no added memory costs

and has the added advantage of mirroring common mesh data types, where surface

normals and other information are commonly associated with vertices. It is also

more easily extensible to point set representations, as discussed in Section 2.6. The

drawback to the point-as-graph-node technique is that cuts do not occur on natural

polygon edges. This leaves a single-polygon wide strip separating the included and

excluded areas of selection. For our purposes we have chosen to group these polygons

with the excluded region.

Using the notation of [Boykov and Jolly 2001], given the set of vertices P , the

unordered set of vertex pairs N representing mesh edges, and the binary partitioning

vector A = (A1, . . . , Ap, . . . , A|P|) where each element Ap represents the inclusion

or exclusion of each vertex p in P from the selection, the cost function E(A) for a

particular partitioning A can be defined as

E(A) = λ R(A) +B(A) (2.1)

where R(A) denotes the penalty cost for incorrectly labeling a vertex specifically

marked by the user as included or excluded from the selection (“regional” properties),

B(A) denotes the sum of the costs of each edge along the partition boundary in N

(“boundary” properties), and λ represents the relative importance of these two terms.

16

The selection is calculated by finding the minimum cost partitioning as defined by

Equation 2.1 over all possibilites of A.

The region-labeling term R(A) is defined as

R(A) =
∑
p∈P

Rp(Ap) (2.2)

where (Rp) is based on the inclusion or exclusion of each point p in a given partitioning

A:

Rp(Ap) =

1 if Ap conflicts with the user’s input

0 otherwise
(2.3)

The boundary term B(A) is defined as

B(A) =
∑

{p,q}∈N
B{p,q} δ(Ap, Aq) (2.4)

and

δ(Ap, Aq) =

1 if Ap 6= Aq

0 otherwise
(2.5)

where B{p,q} is the cost assumed by each mesh edge between any points p and q not

in the same region (i.e., across the cut).

In order for graph-cut segmentation to be effective for part selection, the

weights of the edges in N must be formulated to minimize B{p,q} where natural

boundaries exist between parts. We do this by calculating weights according to the

minima rule [Hoffman and Richards 1983; Lee et al. 2004; Lee et al. 2005], which

states that the human vision system perceives part boundaries along concave creases,

or negative minima of principle curvature. To achieve this effect, we assign edge

weights based on the relative difference of the surface normals of adjacent vertices.

Vertex normals are sometimes provided with the model but can also be easily inter-

17

polated from the mesh data. Since we are interested only in the relative difference

between normals and not the actual angle, only the dot product of the normals is

needed. However, because normal estimation can sometimes give inverted normals

(see Section 2.6) and because it can be reasonably assumed that a surface will not

have adjacent normals at more than 90◦ angles, the absolute value of the dot product

can be used. The final edge weighting function B{p,q} between two vertices p and q

with unit normals Np and Nq becomes

B{p,q} = |Np ·Nq| (2.6)

where Np and Nq are of unit length and 0 ≤ B{p,q} ≤ 1. Since we want to mini-

mize costs in areas of concavity or sharp angles, values of B{p,q} approaching 1 (0◦

difference) indicate a flat and unlikely cut location, while values approaching 0 (90◦

difference) indicate a sharper angle and more likely cut location.

Since B(A) remains fixed for a static model and given partitioning A, mod-

ification of R(A) through specific inclusion and exclusion of vertices provides the

user-guided selection. Vertices may be marked as included or excluded from the se-

lection, but not both. (Should the user re-mark an area, we use the most recent

labeling.) With large values for λ, the user is effectively able to select directly along

borders where graph-cut is not performing well or can’t be expected to perform well.

Since the relative cost of R(A) will outweigh B(A), the optimal cut will be between

marked included and excluded regions.

2.5 Hierarchical Acceleration

While the use of graph-cut segmentation directly works well for smaller models, it

does not scale well. Because of the complexity of graph-cut segmentation, hierarchical

18

Figure 2.6: A two-dimensional example of the octree connectivity algorithm. The leaf
being considered is marked in green. The coarser leaf to the right is ignored since an
edge to it will be created when that leaf is considered, the finer leaves to the left are
connected with 1

2
and 1

4
weight (1

4
and 1

8
for 3D), the leaf above at the same octree

level is connected with regular weight, and the leaf below is ignored because it is in
a negative cardinal direction.

acceleration is needed in order to achieve interactive speeds using larger mesh models.

We use a self-building octree hierarchy to represent the vertices of the model, with

leaf nodes generally set to a maximum of 10 vertices per leaf cell. The vertices in each

leaf combine to form a representative superpoint with a surface normal that is the

average of the vertices’ normals. Parent cells are represented by a weighted average

of child cell normals. An alternate method that approximates a surface normal over

all points in the cell can also be used, as described in Section 2.6.

The physical adjacency of octree cells is used as graph adjacency. The edge

weights are calculated as described in Section 2.4, using the superpoint normals. The

connectivity at the leaf level is determined by this algorithm:

for each leaf

for each of the 6 cardinal directions

if the neighbor is a coarser leaf

ignore

if the neighbor is made of finer leaves

make fractionally weighted edges

19

if the neighbor is a leaf (same level)

make edge in positive direction

This algorithm is illustrated in 2D in Figure 2.6. Adjacent leaves at the same hier-

archical level are connected only if the neighbor is in a positive cardinal direction,

ensuring there is only one edge between each adjacent pair. A leaf is also connected

to neighboring leaves at a finer hierarchical level, but not coarser, again ensuring only

one edge between neighboring leaves at different levels. Because the connectivity is

limited to the leaf level, this hierachical technique is applicable to point sets as well,

which will be discussed in Section 2.6. While leaf adjency could be stored during the

creation of the octree hierarchy, for memory reasons we chose to find adjacent leaf

nodes as needed during execution by traversing the hierarchy.

For acceleration, parent cells at a coarser hierarchical level are treated as leaf

nodes. The graph is formed with the connections and weights at this level and the

segmentation boundary found. The cells bordering the segmentation boundary are

unmarked as leaf cells and the graph is recreated to include the border cells’ children

on the next level [Armstrong et al. 2007]. This process is repeated until the finest

level of the hiearchy has been reached. Because hierarchical techniques are subject

to overcommitting early based on inaccurate aggregate data, we found that starting

somewhere between 4 and 6 levels down the tree provides accurate surface normal

information to perform the cut without unreasonable performance strains from initial

graph size. All models demonstrated here, including the 14 million point Lucy model,

had 12 or fewer hierarchy levels.

20

(a) Model (b) Initial scribbles (c) Initial selection

(d) Refining scribble (e) Resulting selection (f) Another view

Figure 2.7: User session with a dragon point set model. (a) The original model. (b)
The initial scribbles; the white scribble is to be included, the yellow scribble is to be
excluded. (c) The resulting selection. (d) An additional scribble to include the neck.
(e) The resulting selection. (f) View of the back.

2.6 Point Set Models

The methods presented here may also be applied to purely point-based representations

(e.g., [Alexa et al. 2001; Alexa et al. 2003; Pauly et al. 2003; Zwicker et al. 2002])

without having to explicitly reconstruct the surface mesh [Hoppe et al. 1992; Curless

and Levoy 1996; Amenta et al. 1998; Amenta et al. 2001]. Extending our technique

to point set models (Figure 2.7) is fairly straightforward but requires changes to some

of the key elements to get similar results.

Since there is no longer a surface from which to find an intersection point,

vertex selection during scribbling is accomplished by casting a ray through the object

and finding all vertices within a small threshold distance from that ray. From these

vertices, the vertex closest to the near cutting plane is selected as the surface intersec-

tion point and all points within a threshold determined by the brush size are included

21

in the selection. By taking advantage of the hierarchy, this can be accomplished in

interactive time.

The hierarchical acceleration provides an inherent approximate connectivity,

precluding the need for direct meshing. While individual points are not considered,

due to the size of most point set models the differences between these vertices is often

very small, making the superpoints more receptive to changes in angle. They also

retain the acceleration benefits of the hierarchy, making interactive speeds possible

on very large models (Section 2.7.3).

While the hierarchy provides connectivity for the graph, the surface normals

are still lacking for edge weight calculation. We use the method described in [Gopi

et al. 2000] to compute surface normals for each leaf cell, or superpoint. A single

point p is found for each leaf cell. It is the point closest to the centroid of all points

in the leaf cell. The remaining k points in the leaf cell become the neighbors q1 to qk.

The vector ~np that estimates a normal for p is the vector that minimizes the variance

of the dot product between itself and the vectors from p to the neighboring points. If

we define these vectors as ~Vi = qi − p, where 1 ≤ i ≤ k, then we need to find ~np such

that it minimizes
k∑

i=1

(~np · ~Vi −
∑k

i=1 ~np · ~Vi

k
)2, or (2.7)

k∑
i=1

((~Vi −
∑k

i=1
~Vi

k
) · ~np)2 (2.8)

If p is at the origin, the centroid of the k neighbors can be defined as C =
∑k

i=1
~Vi

k
.

We can then rewrite the equation as

min(
k∑

i=1

((~Vi − C) · ~np)2) (2.9)

22

In this form, we can see that if we define a k × 3 matrix A with row vectors defined

as Vi − C, Equation 2.9 can be rewritten as

min(‖A~np‖2) (2.10)

This minimization problem can then be solved by treating it as a singular value

decomposition problem. The vector that corresponds to the smallest singular value

of A is the normal vector that minimizes Equation 2.10. Additionally, the smallest

singular value can function as a measure of fit (see Section 2.8).

Surface normals for the parent cells are calculated using the same method, con-

sidering the children cell superpoints as neighboring vertices of the centroid vertex of

the parent. The resulting normals are not necessarily aligned inwardly or outwardly

and can’t be easily aligned because of the lack of a true surface representation. How-

ever, inverted normals have no effect on our edge weighting function (Equation 2.6),

therefore for performance this step was ignored. Our interpolated normals were used

for all selection calculations, though we imported normals from corresponding mesh

models for display purposes only.

2.7 Results

This section demonstrates the results of our technique on various model types and

sizes. All computation was done on an Intel Xeon 5160 (3 GHz) with 3GB of RAM

and a NVIDIA Quadro FX 4500 (512 MB) graphics card.

2.7.1 Mesh Model Results

Figure 2.5 (shown earlier on page 14) shows a typical session in which the user wishes

to select the first and fourth fingers of a model of the bones of the hand. Note

23

File Vertices Part Select Hier. Sel.
Bunny 35,947 Head 9 17 (<1)
Female01 184,196 Head & Hair 28 40 (<1)
Oil Pump 542,199 Cylinder 72 61 (1)
Gargoyle 863,210 Wings 45 20 (1)
Blade 882,954 Blade 44 10 (1)
Elephant 1,537,283 Ears 88 32 (2)
Dragon 2 3,609,600 Front Leg N/A 20 (3)

Table 2.1: Selection times in seconds for mesh models with and without the hierarchy1.
Regular selection times include user time. Hierarchical selections include hierarchy
preprocessing (shown in parentheses).

Figure 2.8: Selecting the head from the Stanford bunny (35K vertices). This selection
was obtained in 9 seconds without hierarchical acceleration.

that the scribbles are only rough indications of desired and undesired areas, yet the

selection border lies along natural concave borders. This selection took approximately

9 seconds of user time and required no rotation of the model. Selection times for other

mesh models of varying sizes can be found in Table 2.1, and examples can be found

in Figures 2.8 and 2.9.

The advantages of a scribble-based approach can best be seen with parts that

have complex geometry, such as the center wrist bone from the hand model (Fig-

ure 2.10). In approximately 7 seconds, the user was able to select the desired part

with three scribbles. Note that because this model is contiguous, the bone is attached

1These models, while not all shown here, were included to quantify the performance of the
proposed method on models of varying types and sizes.

24

(a) (b) (c)

Figure 2.9: Selecting the head and hair from the female01 model (184K vertices).
This selection was obtained in 28 seconds without hierarchical acceleration.

in five separate locations, making selection of this part using a single cutting plane

impossible and selection by boundary tracing or scissoring laborious.

Preprocessing time for mesh models without hierarchical acceleration is neg-

ligible. None of the mesh models tested, including the Stanford Thai statuette with

5 million vertices and 10 million triangles, took more than 1 second to create the

cost-weighted graph after loading the model.

The selection calculation time varies depending on several factors. In general,

initial cuts are slower than refining cuts because they have no previous information

to work from, but initial selection times can be improved by placing more initial

seeds. Calculating selections predictably slows as the size of the model, and thus the

corresponding graph, increases. Selection time can also vary greatly depending on

the complexity of the model and the interaction required. The majority of the overall

selection time of the larger examples in Table 2.1 was spent on the initial cut.

Figure 2.11 shows the result of less than two minutes of user time to segment

the hand model into individual bones. In comparison, the semi-assisted segmentation

done by [Funkhouser et al. 2004] took 13 minutes of user time, while the automatic

segmentation done by [Katz and Tal 2003] took 28 minutes of computer time.

25

(a) Model (b) Initial scribbles (c) Refinement (back)

(d) Resulting selection (e) Close-up (front) (f) Close-up (back)

Figure 2.10: Selecting the center wrist bone of the hand mesh model (327K vertices).
Note that the selection requires five separate selection boundaries. (a) The original
model. (b) The initial scribbles; the white scribble is to be included, the yellow
scribble is to be excluded. (c) An additional scribble on the back of the bone to
complete the selection. (d) The resulting selection. (e) Close-up of the resulting
selection (front). (f) Close-up of the resulting selection (back). This selection took
about 7 seconds.

2.7.2 Hierarchical Acceleration Results

An example of partitioning using hierarchical acceleration can be seen in Figure 2.12,

in which a model with more than a half-million vertices was interactively segmented

in approximately one minute. Another example can be seen for the larger gargoyle

model in Figure 2.13. The hierarchical method cuts the processing time in half with

nearly identical results.

26

(a) Model (b) Interactive Partitioning

Figure 2.11: A mesh model of hand bones interactively segmented in under 2 minutes.

Figure 2.12: Selecting a cylinder from an oil pump model (542K vertices). This
selection was obtained in 61 seconds with hierarchical acceleration.

A coarse-to-fine selection using an octree hierarchy greatly reduced the com-

putation time required to partition larger models, but due to the characteristic of all

hierarchical approaches to sometimes overcommit with insufficient data, more user

interaction is sometimes required. Additional time is also required to preprocess the

hierarchy, but it is very short because the representative surface normals for the hi-

erarchy levels are quickly calculated from given normals or from easily interpolated

normals. In general, mesh models with fewer than 1,000,000 vertices require 1 second

or less additional time to create the hierarchy and normals. For larger mesh models

27

(a) Without hierarchical acceleration

(b) With hierarchical acceleration

Figure 2.13: Selecting the wings from a gargoyle (863K vertices). The regular mesh
selection (a) took 45 seconds. The hierarchical selection (b) took 20 seconds, including
preprocessing, for an almost identical result.

the overall preprocessing time is still only a matter of seconds, with file read time

being a significant portion.

For larger mesh models, the increase in preprocessing time and user interaction

is more than made up for by the speedup in selection times. As shown in Table 2.1,

hierarchical selections are faster in overall user time for large models despite the

increase in user interaction. The continuous feedback provided by quicker interaction

also causes less down time, providing a more responsive user experience. We found the

point at which hierarchical acceleration became faster overall than selecting without

acceleration to be around 500,000 vertices, although this will vary depending on the

model, user preferences, and the computational resources used.

28

Read Create Interp.
File Vertices File Hier. Norms Total
Bunny 35,947 <1 <1 <1 <1
Horse 48,485 <1 <1 <1 <1
Hand 327,323 <1 <1 1 1
Dragon 437,645 <1 1 1 2
Buddha 543,652 <1 1 1 2
Blade 882,954 <1 1 2 3
Elephant 1,537,283 <1 1 4 5
Dragon 2 3,609,600 <1 3 8 11
Statuette 4,999,996 <1 4 13 17
Lucy 14,027,872 1 6 20 27*
*Leaf cell max at 25 instead of 10

Table 2.2: Preprocessing times in seconds for point set models. Reading the file
includes creating all necessary data structures for display. Creating the hierarchy is
the organizing of vertices only. Interpolating normals is creating the representative
normals for the hierarchy cells. Total time includes all loading time, including display
setup and creating the graph.

2.7.3 Point Set Model Results

Applying the hierarchical acceleration method to point set data gives rough selections

similar to those for accelerated mesh models but increases the preprocessing time

(Table 2.2) compared to mesh models because of the necessity of interpolating surface

normals. Due to the size of some point set models, however, and depending on the

intent of the user, this may be preferable to first meshing the model.

Simple selections on point set models remain virtually unchanged, as can be

seen in Figure 2.7 in which the user wishes to select the head of the dragon. With a

few rough scribbles, the user is able to select the head in under 5 seconds. Refining

strokes allow the user to extend the selection to include more of the neck.

The advantages are especially apparent with large models, such as the Lucy

point set model with 14 million vertices. Figure 2.1 shows screenshots from a point

set selection of the wings of the Lucy model. Within 15 seconds, an initial rough

selection has been made. Because of the size of the model, the maximum number of

29

vertices per octree leaf cell had to be increased to 25 to fit in memory. This was the

only model that required this.

2.8 Discussion and Future Work

Our technique excels at giving very quick general selections, but as with any auto-

matic or semi-automatic parts-selection method it cannot always find subjective part

boundaries. In some cases of detailed refinement it can be more effective to directly

select the boundary. Our tool would ideally be used in combination with other tools

such as direct selection and boundary-based methods to give the user other forms of

control over the selection, as is often done with other media.

Hierarchical acceleration proved invaluable to point set models for speed and

connectivity, and it is essential for interactive selection on large mesh models. Since

model size and computation vary greatly, we believe combining the hierarchical and

non-hierarchical methods could be an effective solution. One option is to make the

initial selection with the hierarchy, then calculate refinements of the initial selection,

which are generally much faster, without the hierarchy. Another is to continue the

coarse-to-fine cuts past the leaf level and incorporate the connectivity of the mesh in

the final cut. Currently the maximum number of vertices per leaf node, the starting

level of the first cut, and whether to use the hierarchy are set manually. Automatic

techniques for determining these values based on model size and available computation

could make the tool more robust for differently-sized models.

Point set selections can be made rapidly using the hierarchy, but because

of the need to interpolate surface normals, the preprocessing time was significant.

This trading of preprocessing time for increased responsiveness during interaction

is reasonable, and even for a model with 14 million points took only 27 seconds.

30

Using a faster normal interpolation method could reduce this time. Alternately, the

interpolation method we use [Gopi et al. 2000] solves for the normal as the minimum of

a local fitting function, the value of which can be used as a goodness-of-fit measure to

apply the hierarchy normals only at cells where they accurately represent the surface

of the contained vertices. This could reduce the overcommitting due to inaccurate

normals on coarse levels as seen on some models.

Basing the weighting function on the difference in surface normals between

two points provided pleasing results. However, as with all graph-cut methods, we

observed a bias towards cuts with fewer, longer mesh edges than cuts of equal length

with more, shorter edges. Edge weighting being equal, denser areas will have higher

costs than sparse areas. Incorporating vertex separation (mesh edge length) into the

weighting along with any available vertex information, such as color, could improve

selections and reduce interaction.

2.9 Conclusion

We have presented an interactive technique that combines a simple, scribble-based

interface with hierarchically-accelerated graph-cut segmentation to perform part se-

lection on 3D mesh and point set models. Our technique gives good results on both

mesh and point set models, and works at interactive speeds even for very large mod-

els. The drawing of scribbles on visible surfaces reduces interaction on the model

and allows the user to select parts in complex models where the boundary may be

occluded or difficult to reach. While the user focuses on selecting within parts, the

graph-cut segmentation determines optimal boundary placement, using the minima

rule to select visibly intuitive part boundaries. The hierarchical acceleration allows

this technique to be applied to large, unconnected point set models.

31

32

Chapter 3

Additional Methods

This chapter contains additional details of our methods that we were unable

to include in the research paper (Chapter 2) either due to paper length restrictions

or lack of need due to shared knowledge of conference attendees. These details are

arranged in the same order and under the same headings as those in the research

paper.

3.1 Mesh Model Partitioning

3.1.1 Vertex Selection

Vertex selection during scribbling for mesh models is done through OpenGL’s UnPro-

ject function. The function reverses the series of transformation matrix calculations

used to project the object onto the screen in order to calculate the object space 3D

position of the screen coordinate indicated by the mouse. This 3D object space coor-

dinate is calculated for the center and cardinal radii of the selection brush circle. All

points within the distance defined by the smallest radius are included in the scrib-

ble. For display purposes, only triangles that have all three vertices included in the

scribble selection are rendered in the scribble color.

33

3.1.2 Graph Creation

Mesh data is normally stored by defining triangle faces. Some data types store a list of

vertices, each defined as three floating-point numbers, along with triangle faces, each

defined by three indices into the vertex list. This allows a vertex to be used multiple

times, which it invariably is in a triangle mesh, with the added cost of only 1 index

value (typically a 4-byte integer) instead of redefining the vertex (typically three 8-

byte floats). Other data types forgo the vertex list, repeating vertex values to define

each triangle face. In each of these cases, determining face adjacency, that is, which

triangles share two common vertices, requires an exhaustive search of all triangle

definitions to find a match for each triangle edge. While some speed-ups are possible,

such as eliminating edges already found from further searches, the complexity of

calculating adjacency still prohibits processing times of under a minute to all but the

smallest models. Another speed-up is to store a mapping for each edge, which would

require only two passes through the data, but this becomes prohibitively memory-

intensive for large models.

A third data type defines triangles in strips. Each strip consists of an initial

triangle defined by three vertices and additional triangles defined by an additional

vertex combined with the previous two vertices. While this method does give some

adjacency, it is partial adjacency at best, with two edges defined for each inner triangle

and 1 for triangles at each end of the strip. Completing the connectivity still requires

expensive computation, and since this data type is less common, an alternate solution

would still have to be made to process models based on the more common data types.

Determining the adjacency of vertices, however, is relatively simple. Since

the data types are fundamentally lists of triangles as defined by three vertices, the

adjacency between vertices can be derived in linear time with no extra memory costs

34

by pairing each possible combination of two vertices from the list of three for each

triangle.

3.1.3 Model Segmentation

To show the utility of our part selection technique, we implemented a segmentation

tool. Because the data are stored as triangles defined by indices into a vertex array,

segmenting a mesh model requires the creation of new vertex arrays for each segment

and a redefinition of each triangle to reflect this new array. To do this, a mapping is

created for each segment to map each vertex in that segment from the original vertex

array to a new vertex array. Each segment’s new triangle definitions use this mapping

to correctly index into its new vertex array. Once the reassignment is complete, each

segment is finalized as a new object. The file format we created allows multiple

objects to be saved in a single scene.

3.2 Hierarchical Acceleration

3.2.1 Building the Hierarchy

The octree hierarchy used for acceleration is self-building. An initial octree cell is

created as defined by the maximum and minimum coordinates over all vertices. As

vertices are added to the octree, the initial cell is divided into eight child cells when

the number of vertices reaches the limit for vertices in a leaf node. The vertices

contained in the initial cell are distributed to the child cells, which are marked as

leaf nodes, and the initial cell becomes a parent cell. This process continues as added

vertices trickle down the hierarchy and child cells that exceed the limit divide and

become parent cells.

35

3.2.2 Searching the Hierarchy

The octree hierarchy is used to determine physical adjacency of groups of points as

defined by the leaf cells. Because some cells within the octree are broken down into

finer cells while others are not, there are three possible outcomes when searching for

physical neighbors of a given cell face. The neighbor could be a leaf cell of the same

hierarchic level, a leaf cell from a coarser hierarchic level, or a parent cell containing

children leaf cells at finer hierarchic levels. The basic algorithm for determining which

connections to make is outlined in Section 2.5 and illustrated in Figure 2.6.

To implement the algorithm described in Section 2.5, each octree cell stores

its own relative position in relation to the parent cell as an index 0 through 7. When

finding a neighbor leaf cell, the index is referenced. If the direction of the desired

neighbor indicates the neighbor is within the same parent cell, finding the neighbor is

trivial. If this neighbor is a parent cell, all child leaf cells facing the original cell are

included as neighbors. If the direction of the desired neighbor indicates the neighbor

is outside the parent cell, the hierarchy is traversed upwards until a cell is found that

has a known neighbor in that direction, i.e., they are within the same parent cell

(or the root is reached indicating this cell is on an outside edge). The hierarchy is

then traversed downwards through cells that face the direction of the original cell. A

coarse neighbor can be found this way, as can a neighbor of equal hierarchical level

or multiple neighbors of finer hierarchical levels.

3.2.3 Implementing Graph Cut

When performing the coarse-to-fine cuts necessary for acceleration, it is essential to

know along which edges the cut lies in order to refine the graph along those edges.

Since the graph-cut package used had no mechanism for querying edges, or node pairs,

it was necessary to keep a separate data structure of edges consisting of pointers to

36

graph node objects. After the cut, each edge can then easily be evaluated with the

included foreground/background test by testing each node in the pair to see if the

edge crossed from a foreground to a background node.

3.3 Point Set Models

3.3.1 Vertex Selection

Due to the lack of connectivity in point set models, the point selection method for the

scribble-based interface used for mesh models could not be used. Points are selected

by casting a ray through the point set and finding all vertices within a small distance

from that ray. As before, the initial ray can be found easily in OpenGL by using

the UnProject function to find the object coordinates of the mouse point on the near

and far cutting planes. It can then be used to translate the brush radius in screen

pixels to an object space radius on the near and far cutting planes. Given the ray,

we take advantage of the hierarchy to limit the search to leaf cells intersected by the

ray. From the points contained in those leaf cells, the point closest to the viewing

plane is interpreted as the surface. The distance from this point to the points earlier

determined on the near and far cutting planes is determined and used to interpolate

the brush size, or selection threshold, at that point. All points within the threshold

distance from this point are included in the scribble.

3.3.2 Surface Normal Approximation

To implement the singular value decomposition we used the JAMA package.

37

38

Chapter 4

Conclusion

While the problem of part selection of 3D models is not completely solved, we

feel our technique has made a significant step in that direction. By combining the

interaction and segmentation techniques used successfully in other media, we were

able to provide an alternate method for part selection that is responsive enough for

easy interaction on all models, including very large models.

In addition to the future work discussed in Section 2.8, we also feel that our

technique has great potential for other 3D model types that use sparse surface-point

representations, such as certain implicit representations. While there would be dif-

ferences in finding connectivity, forming the graph, and weighting the graph, as there

were between mesh and point set models, the underlying construction remains com-

patible.

On mesh and point set models, our technique works very well. The scribble-

based interface allows users to focus on the parts they want to keep instead of metic-

ulously defining borders. This lack of necessary precision increases user interaction

speeds and makes selections that require borders in difficult or occluded areas possi-

ble. By combining the interface with graph-cut segmentation, it also simplifies and

makes possible selections of parts that have multiple connections to the remainder of

39

the model by requiring the user to focus only on the desired part, instead of defining

multiple selection boundaries.

The hierarchical acceleration was successful in maintaining interactive speeds

on large mesh models, something not possible with other methods. It allows selections

that might otherwise have taken minutes to be done in seconds. While work can be

done to improve the performance and automation of this technique (see Section 2.8),

its effectiveness even in this initial work shows it to be a success.

Perhaps the most exciting of all our results was the quickness in which we

could select parts from large point set models. With other methods, point set models

require meshing and possibly thinning. Our hierarchical method provides both the

essential connectivity and acceleration to give very similar results to the mesh models

in what was an otherwise unexplored problem of direct, point-set part selection. With

the increased role point set models are playing in the graphics community, this could

be an important basis for future work in this area.

In comparison with other techniques such as direct and geometric selection,

direct boundary definition, and region-growing, our technique proved to be versatile

and fast, especially on large, complex models. Because of the arbitrary nature of part

definitions, the sometimes unpredictable results from graph-cut selections, and the

imperfect connectivity provided by the hierarchy, however, some selections become

inefficient using only our technique. A simple cutting plane may be the most efficient

in one case, while a combination of our technique with a direct selection tool for

refinement may be better for another. As with selection in other media, such as 2D

selections in image editing, our tool is best used in conjunction with other techniques.

40

Bibliography

Agarwala, A., Dontcheva, M., Agrawala, M., Drucker, S., Colburn,

A., Curless, B., Salesin, D., and Cohen, M. 2004. Interactive digital pho-

tomontage. ACM Transactions on Graphics 23, 3, 294–302.

Agarwala, A., Hertzmann, A., Salesin, D. H., and Seitz, S. M. 2004.

Keyframe-based tracking for rotoscoping and animation. In SIGGRAPH ’04: ACM

SIGGRAPH 2004 Papers, ACM, New York, NY, USA, 584–591.

Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., and Silva,

C. T. 2001. Point set surfaces. In Proceedings IEEE Visualization, IEEE Computer

Society, Washington, DC, USA, 21–28.

Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., and Silva,

C. T. 2003. Computing and rendering point set surfaces. IEEE Transactions on

Visualization and Computer Graphics 9, 1, 3–15.

Amenta, N., Bern, M., and Kamvysselis, M. 1998. A new voronoi-based

surface reconstruction algorithm. In SIGGRAPH ’98: Proceedings of the 25th annual

conference on Computer graphics and interactive techniques, ACM, New York, NY,

USA, 415–421.

Amenta, N., Choi, S., and Kolluri, R. K. 2001. The power crust. In SMA

’01: Proceedings of the sixth ACM symposium on Solid modeling and applications,

ACM, New York, NY, USA, 249–266.

Armstrong, C. J., Price, B. L., and Barrett, W. A. 2007. Interactive

segmentation of image volumes with live surface. Computers & Graphics 31, 2,

212–229.

Bai, X., and Sapiro, G. 2007. A geodesic framework for fast interactive image

and video segmentation and matting. In IEEE 11th International Conference on

Computer Vision, 1–8.

41

Boykov, Y., and Funka-Lea, G. 2006. Graph cuts and efficient n-d image

segmentation. International Journal of Computer Vision 70, 2, 109–131.

Boykov, Y. Y., and Jolly, M.-P. 2001. Interactive graph cuts for optimal

boundary & region segmentation of objects in N-D images. In Proceedings Eighth

International Conference on Computer Vision (ICCV 2001), vol. 1, 105–112.

Boykov, Y., and Kolmogorov, V. 2001. An experimental comparison of min-

cut/max-flow algorithms for energy minimization in vision. In EMMCVPR ’01:

Proceedings of the Third International Workshop on Energy Minimization Methods

in Computer Vision and Pattern Recognition, Springer-Verlag, London, UK, 359–

374.

Bruyns, C. D., and Senger, S. 2001. Interactive cutting of 3D surface meshes.

Computers & Graphics 25, 4 (August), 635–642.

Curless, B., and Levoy, M. 1996. A volumetric method for building complex

models from range images. In SIGGRAPH ’96: Proceedings of the 23rd annual

conference on Computer graphics and interactive techniques, ACM, New York, NY,

USA, 303–312.

Funkhouser, T., Kazhdan, M., Shilane, P., Min, P., Kiefer, W., Tal,

A., Rusinkiewicz, S., and Dobkin, D. 2004. Modeling by example. ACM

Transactions on Graphics 23, 3 (Aug.), 652–663.

Gleicher, M. 1995. Image snapping. In Proceedings of SIGGRAPH ’95, Computer

Graphics Annual Conference Series.

Gopi, M., Krishnan, S., and Silva, C. T. 2000. Surface reconstruction based

on lower dimensional localized delaunay triangulation. In Computer Graphics Forum

(Eurographics 2000), M. Gross and F. R. A. Hopgood, Eds., vol. 19(3).

Gregory, A., State, A., Lin, M. C., Manocha, D., and Livington, M. A.

1999. Interactive surface decomposition for polyhedral morphing. The Visual Com-

puter 15, 9, 453–470.

Hoffman, D. D., and Richards, W. 1983. Parts of recognition. Tech. Rep.

AIM-732.

Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., and Stuetzle,

W. 1992. Surface reconstruction from unorganized points. In SIGGRAPH ’92:

42

Proceedings of the 19th annual conference on Computer graphics and interactive

techniques, ACM, New York, NY, USA, 71–78.

Ji, Z., Liu, L., Chen, Z., and Wang, G. 2006. Easy mesh cutting. In Com-

puter Graphics Forum (Eurographics 2006), E. Groller and L. Szirmay-Kalos, Eds.,

vol. 25(3).

Kass, M., Witkin, A., and Terzopoulos, D. 1987. Snakes: active contour

models. International Journal of Computer Vision 1, 4, 321–331.

Katz, S., and Tal, A. 2003. Hierarchical mesh decomposition using fuzzy clus-

tering and cuts. ACM Transactions on Graphics 22, 3, 954–961.

Lee, Y., Lee, S., Shamir, A., Shamir, A., Cohen-Or, D., and Seidel,

H. P. 2004. Intelligent mesh scissoring using 3D snakes. In Proceedings Pacific

Conference on Computer Graphics and Applications, 279–287.

Lee, Y., Lee, S., Shamir, A., Cohen-Or, D., and Seidel, H.-P. 2005. Mesh

scissoring with minima rule and part salience. Computer Aided Geometric Design

22, 5, 444–465.

Li, X., Toon, T. W., and Huang, Z. 2001. Decomposing polygon meshes

for interactive applications. In I3D ’01: Proceedings of the 2001 symposium on

Interactive 3D graphics, ACM, New York, NY, USA, 35–42.

Li, Y., Sun, J., Tang, C.-K., and Shum, H.-Y. 2004. Lazy snapping. ACM

Transactions on Graphics 23, 3, 303–308.

Lombaert, H., Sun, Y., Grady, L., Grady, L., and Xu, C. 2005. A multilevel

banded graph cuts method for fast image segmentation. In IEEE International

Conference on Computer Vision, vol. 1, 259–265 Vol. 1.

Maes, F., Vandermeulen, D., Suetens, P., and Marchal, G. 1995.

Computer-aided interactive object delineation using an intelligent paintbrush tech-

nique. In First International Conference on Computer Vision, Virtual Reality, and

Robotics in Medicine, Springer, N. Ayache, Ed., vol. 905 of Lecture Notes in Com-

puter Science, 77–81.

Mangan, A. P., Whitaker, R. T., and Whitaker, R. T. 1999. Partitioning

3d surface meshes using watershed segmentation. Transactions on Visualization and

Computer Graphics 5, 4, 308–321.

43

Mortensen, E. N., and Barrett, W. A. 1995. Intelligent scissors for image

composition. In SIGGRAPH ’95: Proceedings of the 22nd annual conference on

Computer graphics and interactive techniques, ACM, New York, NY, USA, 191–

198.

Pauly, M., Keiser, R., Kobbelt, L. P., and Gross, M. 2003. Shape modeling

with point-sampled geometry. In SIGGRAPH ’03: ACM SIGGRAPH 2003 Papers,

ACM, New York, NY, USA, 641–650.

Protiere, A., Sapiro, G., and Sapiro, G. 2007. Interactive image segmenta-

tion via adaptive weighted distances. Image Processing, IEEE Transactions on 16,

4, 1046–1057.

Reese, L. J., and Barrett, W. A. 2002. Image editing with intelligent paint.

In Computer Graphics Forum (Eurographics 2002), vol. 21, 714–724.

Shamir, A. 2004. A formulation of boundary mesh segmentation. In Proceedings

2nd International Symposium on 3D Data Processing, Visualization and Transmis-

sion (3DPVT), 82–89.

Sharf, A., Blumenkrants, M., Shamir, A., and Cohen-Or, D. 2006. Snap-

paste: an interactive technique for easy mesh composition. Vis. Comput. 22, 9,

835–844.

Simari, P. D., and Singh, K. 2005. Extraction and remeshing of ellipsoidal

representations from mesh data. In GI ’05: Proceedings of Graphics Interface 2005,

Canadian Human-Computer Communications Society, School of Computer Science,

University of Waterloo, Waterloo, Ontario, Canada, 161–168.

Wang, J., Bhat, P., Colburn, R. A., Agrawala, M., and Cohen, M. F.

2005. Interactive video cutout. In SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers,

ACM, New York, NY, USA, 585–594.

Weyrich, T., Pauly, M., Keiser, R., Heinzle, S., Scandella, S., and

Gross, M. 2004. Post-processing of scanned 3D surface data. In Proceedings of

Eurographics Symposium on Point-Based Graphics 2004, 85–94.

Wong, K. C.-H., Siu, T. Y.-H., Heng, P.-A., and Sun, H. 1998. Interactive

volume cutting. In Graphics Interface.

Zöckler, M., Stalling, D., and Hege, H.-C. 2000. Fast and intuitive gener-

ation of geometric shape transitions. The Visual Computer 16, 5, 241–253.

44

Zwicker, M., Pauly, M., Knoll, O., and Gross, M. 2002. Pointshop 3d: an

interactive system for point-based surface editing. In SIGGRAPH ’02: Proceedings of

the 29th annual conference on Computer graphics and interactive techniques, ACM,

New York, NY, USA, 322–329.

45

