
Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2009-09-14

Guided Testing for Automatic Error Discovery in
Concurrent Software
Neha Shyam Rungta
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations
by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Rungta, Neha Shyam, "Guided Testing for Automatic Error Discovery in Concurrent Software" (2009). All Theses and Dissertations.
1920.
https://scholarsarchive.byu.edu/etd/1920

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F1920&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F1920&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F1920&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F1920&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F1920&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F1920&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/1920?utm_source=scholarsarchive.byu.edu%2Fetd%2F1920&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

GUIDED TESTING FOR AUTOMATIC ERROR DISCOVERY IN

CONCURRENT SOFTWARE

by

Neha S. Rungta

A dissertation submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

Brigham Young University

December 2009

Copyright c© 2009 Neha S. Rungta

All Rights Reserved

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a dissertation submitted by

Neha S. Rungta

This dissertation has been read by each member of the following graduate committee
and by majority vote has been found to be satisfactory.

Date Eric G. Mercer, Chair

Date Michael D. Jones

Date Kevin D. Seppi

Date Mark J. Clement

Date Parris Egbert

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the dissertation of Neha
S. Rungta in its final form and have found that (1) its format, citations, and bibli-
ographical style are consistent and acceptable and fulfill university and department
style requirements; (2) its illustrative materials including figures, tables, and charts
are in place; and (3) the final manuscript is satisfactory to the graduate committee
and is ready for submission to the university library.

Date Eric G. Mercer
Chair, Graduate Committee

Accepted for the Department

Date Kent E. Seamons
Graduate Coordinator

Accepted for the College

Date Thomas W. Sederberg
Associate Dean, College of Physical and Mathematical
Sciences

ABSTRACT

GUIDED TESTING FOR AUTOMATIC ERROR DISCOVERY IN

CONCURRENT SOFTWARE

Neha S. Rungta

Department of Computer Science

Doctor of Philosophy

The quality and reliability of software systems, in terms of their functional

correctness, critically relies on the effectiveness of the testing tools and techniques to

detect errors in the system before deployment. A lack of testing tools for concurrent

programs that systematically control thread scheduling choices has not allowed con-

current software development to keep abreast with hardware trends of multi-core and

multi-processor technologies. This motivates a need for the development of systematic

testing techniques that detect errors in concurrent programs.

The work in this dissertation presents a potentially scalable technique that

can be used to detect concurrency errors in production code. The technique is a

viable solution for software engineers and testers to detect errors in multi-threaded

programs before deployment. We present a guided testing technique that combines

static analysis techniques, systematic verification techniques, and heuristics to effi-

ciently detect errors in concurrent programs. An abstraction-refinement technique

lies at the heart of the guided test technique. The abstraction-refinement technique

uses as input potential errors in the program generated by imprecise, but scalable,

static analysis tools. The abstraction further leverages static analyses to generate a

set of program locations relevant in verifying the reachability of the potential error.

Program execution is guided along these points by ranking both thread and data

non-determinism. The set of relevant locations is refined when program execution

is unable to make progress. The dissertation also discusses various heuristics for ef-

fectively guiding program execution. We implemented the guided test technique to

detect errors in Java programs. Guided test successfully detects errors caused by

thread schedules and data input values in Java benchmarks and the JDK concurrent

libraries for which other state of the art analysis and testing tools for concurrent

programs are unable to find an error.

ACKNOWLEDGMENTS

My incredible journey of graduate school and its culmination was made pos-

sible by the support and encouragement of many people. I thank each and every

one.

Eric Mercer has been an amazing mentor, guide, and friend throughout this

journey. He has greatly impacted this work by constantly probing the boundaries

of my abilities, challenging me to strive harder, and enthusiastically cheering my

successes. His efforts have been critical in the development and evolution of my

research, writing, and presentation skills.

Mike Jones helped to instill the importance of having a cohesive dissertation

and also taught me the importance of having a strong narrative. Kevin Seppi, Mark

Clement, and Parris Egbert have been exemplary committee members and provided

invaluable feedback. Suggestions and feedback by Willem Visser, my Google Summer

of Code Mentor, has greatly improved this work. While discussions with Peter Mehlitz

on the Java Pathfinder model checker enabled me to make better design choices while

constructing the guided test framework.

The financial support provided by my advisor Eric Mercer, the Computer

Science Department at BYU, and Google Anita Borg Scholarship has made for a

smoother ride. The administrative staff at the Computer Science Dept. have been

invaluable while traversing through paper work and deciphering graduate policies. A

special cheer for Mindy and Shannon.

My friends Bryant, Cheree, Dave, Devlin, Josh, Sabra, Sam, Sole, and Topher

have cheered for me, listened to me rant, advised me, made ice-cream runs with me,

and even proof read papers close to Apia Samoa midnight deadlines. Being part of

their lives has made this journey fun and enjoyable.

My family Shyam, Kusum, Vandana, and Hemant Rungta made it possible

for me to embark on such an extraordinary journey. It is their love, sacrifices, and

unwavering support that has made this journey possible. They encouraged me to

dream and provided the means to fulfill those dreams. I dedicate this work to them.

Contents

Contents ix

List of Figures xiii

List of Tables xvii

1 Introduction 1

1.1 The Problem: Testing Concurrent Software Systems 1

1.2 Impact on Developers and the Cost of Software 3

1.3 Current State of the Art Testing Techniques 4

1.4 Automated Error Discovery in Concurrent Programs 7

1.4.1 Observations on Existing Research 7

1.4.2 Observations on Our Empirical Studies 8

1.4.3 Guided Test . 9

1.5 Effectiveness of Guided Test . 10

1.6 Summary Of The Contributions . 11

1.6.1 Guided Program Execution using Abstraction-Refinement . . 12

1.6.2 Meta-Heuristic for Concurrent Programs 13

1.6.3 A Distance Heuristic for Programs with Polymorphism 14

2 Guided Program Execution using Abstraction-Refinement 15

2.1 Introduction . 16

2.2 Overview . 18

2.3 Program Model and Semantics . 20

ix

2.4 Abstraction . 23

2.4.1 Background definitions . 23

2.4.2 Abstract System . 25

2.4.3 Abstract Trace Set . 28

2.5 Guided Symbolic Execution . 30

2.6 Refinement . 35

2.7 Discussion . 38

2.8 Experimental Results . 39

2.9 Related Work . 42

2.10 Conclusions and Future Work . 43

3 Meta-heuristic for Concurrent Programs 45

3.1 Introduction . 47

3.2 Meta heuristic . 49

3.2.1 Input Sequence . 49

3.2.2 Greedy depth-first search . 53

3.2.3 Guidance Strategy . 54

3.3 Empirical Study . 57

3.3.1 Study Design . 58

3.3.2 Error Discovery . 59

3.3.3 Effect of the Sequence Length 62

3.4 Related Work . 63

3.5 Conclusions and Future Work . 65

4 A Distance Heuristic for Programs with Polymorphism 67

4.1 Introduction . 68

4.2 Background . 70

4.3 Motivation . 72

x

4.4 Polymorphic Distance Heuristic . 74

4.4.1 Static analysis phase . 76

4.4.2 Guided Search . 78

4.4.3 Dynamic heuristic computation 78

4.4.4 Example of heuristic computation 84

4.5 Results . 87

4.6 Discussion . 90

4.7 Conclusions and Future Work . 91

5 An Extensive Comparative Empirical Analysis 93

5.1 Introduction . 95

5.2 Benchmarks . 98

5.3 Multi-tool Results . 99

5.4 On-line Resource . 102

5.5 Empirical Study . 104

5.5.1 Reorder . 107

5.5.2 TwoStage . 108

5.5.3 Airline . 110

5.5.4 Discussion . 112

5.6 Related Work . 113

5.7 Conclusion . 114

6 Conclusions and Future Work 115

6.1 Conclusions . 115

6.2 Future Work . 116

Appendices 121

xi

A Randomization in Guided Execution 121

A.1 Introduction . 123

A.2 Background . 127

A.3 Randomized GDS . 129

A.4 Evaluation . 136

A.5 Conclusions and Future Work . 143

B Designing Benchmarks to Evaluate the Effectiveness of Error Dis-

covery Techniques 145

B.1 Introduction . 146

B.2 Background and Motivation . 149

B.3 Error Density Measure . 152

B.3.1 Experiment Design . 154

B.3.2 Results . 155

B.3.3 Effect of the Time Bound . 157

B.4 Making Models Hard . 158

B.5 Other considerations . 164

B.6 Related Work . 166

B.7 Conclusions and Future Work . 167

Bibliography 169

xii

List of Figures

2.1 Overview of the abstraction-guided symbolic execution technique . . . 18

2.2 An example of a multi-threaded program with two threads A and B

that operate on a shared variable elem of type Element 20

2.3 Initial abstract system. 28

2.4 Guided symbolic execution pseudocode. 31

2.5 Ranking data non-determinism for complex data structures. (a) Classes

A and B inherit from class O. (b) Locations in an abstract trace. (c)

Different non-determinism choices for obj sym of type O. 33

2.6 Refinement pseudocode. 35

2.7 Additions to the abstract system after refinement 37

2.8 Abstraction and refinement in context of the program behavior and

control flow. (a) Target is reachable. (b) Target is not reachable. . . . 38

3.1 Possible race-condition in the JDK 1.4 concurrent library. 50

3.2 Pseudocode for the greedy depth-first search. 52

3.3 Guidance (a) Greedy depth-first search (b) Two-level ranking scheme 54

3.4 Two-tier ranking scheme for the meta heuristic. 55

3.5 Stochastic backtracking technique. 56

3.6 Effect of varying the number of locations in the sequence in the AryLst(1,10)

program to verify the race condition in the JDK1.4 concurrent library. 63

4.1 The equals function in the AbstractList implementation of the JDK

1.4 library which uses polymorphism. 73

xiii

4.2 A partial call graph for the equals function in the AbstractList im-

plementation. 74

4.3 Pseudocode for computing distance estimates statically. 75

4.4 Pseudocode for computing the distance heuristic during runtime . . . 79

4.5 An example program and its corresponding call graph to demonstrate

the heuristic computation.(a) An abstract class, X, with an abstract

method and implementations for two functions. (b) The Y class that

inherits from the X class. (c) The Z class that inherits from the X class.

(d) The call graph for the functions in X, Y, and Z. 85

5.1 Concurrency Tool Comparison wiki containing benchmark details with

multi-tool summary results and tool specific results: top level page

showing the available models. 102

5.2 Concurrency Tool Comparison wiki containing benchmark details with

multi-tool summary results and tool specific results: an example of a

model page. 103

A.1 An illustration of greedy best-first search that chooses the state nearest

to the goal state to expand in the search based on a heuristic function. 128

A.2 Pseudo-code for randomized GDS that shuffles states with the same

heuristic values using a secondary key from a random number generator.131

A.3 Visualizing the normalized minimum, mean, and maximum values of

different metrics comparing randomized GDS, using the Prefer-Threads

heuristic, to randomized DFS. (a) An aggregation of all values for

the different metrics. (b) Values comparing path error density. (c)

Values comparing length of counter-example. (d) Values comparing

time taken before error discovery. (e) Values comparing number of

states generated. (f) Values comparing memory usage. 140

xiv

B.1 Pseudo-code for randomized search techniques (a) True random walk

with no backtracking (b) DFS with a randomized transition order . . 149

B.2 Frequency of errors at various search depths 162

B.3 Frequency of errors at various search depths 162

xv

xvi

List of Tables

2.1 Information on models and abstract trace generation. 40

2.2 Effort in error discovery and abstract trace statistics. 42

3.1 Error density of the models with different search techniques. 60

3.2 Comparison of the heuristics when used with the meta heuristic. . . . 61

4.1 Comparing the performance of various heuristics. 92

5.1 Comparing the error discovery of different techniques on the reorder

benchmark. 106

5.2 Comparing the error discovery of different techniques on the twostage

benchmark. 109

5.3 Comparing the error discovery of different techniques on the airline

benchmark. 111

A.1 Comparing the performance of default order guided search (GDS) and

randomized guided search (Randomized-GDS) using the heuristics in

JPF and published benchmarks. 133

A.2 Comparing the performance of default order guided search (GDS) and

randomized guided search (Randomized-GDS) using the Estes model

checker. 135

A.3 Comparing the average values generated in error discovering trials of

randomized guided search (RGDS), using the Prefer-Thread heuristic,

and randomized DFS (DFS). 138

xvii

A.4 Comparison of results using the Most-Blocked Heuristic with a ran-

domized guided search (RGDS) to results from randomized DFS (DFS).142

A.5 Comparison of results using the Interleaving Heuristic with a random-

ized guided search (RGDS) to results from randomized DFS (DFS). . 142

A.6 Comparison of results using the Choose-Free Heuristic with a random-

ized guided search (GDS) to results from randomized DFS (DFS). . . 143

B.1 Comparing path error density and randomized DFS 153

B.2 Increasing Time Bound . 158

B.3 Error depth statistics . 160

B.4 Summary of Models made hard . 160

B.5 Making models hard as measured by the observed R-DFS error density 161

xviii

Chapter 1

Introduction

1.1 The Problem: Testing Concurrent Software Systems

Computing systems are increasingly pervasive in all aspects of life. Examples of com-

putational systems include electronic appliances, smart phones, desktop computers,

computing clusters, and super-computers. Even devices that are not generally asso-

ciated as computational systems, like access cards, contain a microchip. Much of the

software running on various computational systems is created through a development

process that are: requirements, specification, design, implementation, testing, de-

ployment, and maintenance. Significant effort is expended in overcoming the various

challenges associated with each phase of the software development cycle. The work

in this dissertation focuses on the testing phase of the development cycle.

Software testing encompasses all activities that evaluate various behaviors of

the program against the requirements of the system. Testing can be applied to func-

tional correctness, quality assurance, and the validation of software programs. The

biggest challenge in software testing results from the complexity of software programs.

It is not feasible to fully explore all possible behaviors of software programs of even

moderate complexity. This problem is further exacerbated in concurrent programs

since the number of possible behaviors increases exponentially with the number of

concurrent processes in a given system.

1

In recent years, there has been a paradigm shift in software from inherently

sequential programs to highly concurrent and parallel programs. The ubiquity of

multi-core processors is prompting the paradigm shift from sequential to concurrent

programs to better utilize the computation power of the processors. Stress testing is

the current industry standard for finding bugs in parallel applications; however, its

inability to directly control scheduling choices renders it insufficient and ineffective

for error discovery. The lack of tools and techniques to test parallel applications has

significantly hindered mainstream developers.

In concurrent systems, threads or processes simultaneously execute different

parts of the program and communicate with each other through shared variables and

other limited resources. To maintain the integrity of shared resources, different con-

tending threads acquire and release synchronization elements, such as locks. Incorrect

usage of the synchronization elements, however, can lead to concurrency errors such

as deadlocks and race conditions.

Deadlocks and race-conditions are the most common concurrency errors in

multi-threaded programs. A deadlock state is when threads in the program cannot

make any progress. At such a point, the system generally has to be reset in order

to resume execution. A race condition is an unwanted program state caused by

a specific order of operations performed by different threads on a shared resource.

Unprotected accesses to shared resources often leads to race-conditions. Deadlocks

and race-conditions are manifested under very specific execution orders of threads

and/or certain input from the user or environment.

Two forms of non-determinism need to be accounted for in order to detect

errors in concurrent programs. One form is scheduling where the operating system

decides which thread can execute. The other form of non-deterministic choice is

program input. Program behavior can change based on the schedule chosen by the

operating system and input provided by the user or the environment in concurrent

2

systems. Reasoning about behaviors in concurrent systems is harder for developers

and testers, compared to sequential programs, because the number of behaviors in

a concurrent system increases exponentially with the number of threads. In a tra-

ditional testing environment, developers and testers test a few interactions of the

different threads and a subset of all possible data values to check if any deadlocks

or race-conditions exist in the program. More importantly, in most cases developers

cannot control thread schedules and check interesting behaviors of the system. Hence,

when the system is in use and an untested sequence of events leads to an error, it can

cause the system to either crash or lead to unwanted behaviors.

Although parallel programming and concurrent systems are well studied in

academia and a few specialized problem domains, it is not a paradigm commonly

known in mainstream programming. As a result, there are few, if any, tools available

to programmers to help them test and analyze concurrent program for functional

correctness. This motivates a need to find effective and scalable techniques for dis-

covering concurrency errors before deployment.

1.2 Impact on Developers and the Cost of Software

Access to efficient testing tools is an important aspect in allowing developers to create

reliable programs. Systems and application programmers developing concurrent net-

worked applications, web servers, device drivers, and file systems need tools for testing

the programs. We expect to see an increase in the number of application program-

mers writing concurrent applications to take advantage of the multi-core processors.

With the future computing moving toward concurrent programs the need for tools to

test concurrent software affects essentially all developers.

Testing programs accounts for a significant portion of the cost associated with

the software development cycle. The cost rises even further when defects in the system

are detected after its deployment. The effects are magnified when defects are detected

3

in capital and safety-critical systems. Efficient testing tools reduce the cost of testing

software and fixing defects in deployed software, aids engineers in the development

process, and improves the overall reliability of the software.

1.3 Current State of the Art Testing Techniques

Various approaches such as static analysis, testing, model checking, and symbolic

execution have been used to detect errors in concurrent software systems. We provide

a brief overview of each of the techniques and their limitations.

Static analysis techniques abstract the actual execution environment of the

program and reason about errors by performing a control and data flow analysis of

the system [Artho and Biere, 2001, Engler and Ashcraft, 2003, Flanagan et al., 2002,

Hovemeyer and Pugh, 2004, Sterling, 1993]. Most scalable static analysis techniques

report warnings that may exist in the program. The programmer has to manually

verify the feasibility of each warning by reasoning about thread schedules, input

values, and branch conditions required to manifest the error in a real execution path

in the program. When manually verifying the warnings, a large part of the effort is

expended in checking warnings that do not correspond to real errors (false positives).

Static analysis techniques often report a large number of false positives. In essence,

manual verification of the static analysis warnings is tedious and, in general, not

feasible for large programs.

The current industry standard for detecting errors in concurrent programs is

dynamic analysis based testing techniques that entail running the program. In stress

testing the software programs are executed under heavy loads in order to elicit an

interleaving that leads to an error. For example, a networked application can be

stress tested with twice or more number of incoming connections than those expected

under normal circumstances. In another example, a large number of threads can be

created in a shared memory system that operate on the same shared resource to stress

4

test the program. The inability of stress testing to control scheduling choices renders

it ineffective in detecting errors in concurrent programs. In order to overcome this

problem, random testing uses random inputs or thread schedules to find errors in the

program [Csallner and Smaragdakis, 2004, Dwyer et al., 2007, Sen, 2007]. Random

testing controls the runtime environment to randomly sample from the possible thread

schedules during program execution. Our empirical evidence, however, shows that

random testing obtains a partial coverage of the behavior space of the program within

a specified time bound, and is not effective in detecting subtle concurrency errors that

are only manifested along certain execution paths [Rungta and Mercer, 2007a].

Symbolic execution has been extensively used for test-case generation and error

detection in sequential programs for over twenty years. Symbolic execution substi-

tutes concrete data values of the program with symbolic values representing arbitrary

values. Seminal work by King [1976] uses symbolic execution to test programs over

a large range of numbers. Even though the symbolic representation is useful in ab-

stracting the data input values, the different thread schedules in a concurrent program

are not represented in the symbolic data. For each thread schedule a separate set of

constraints over the symbolic data values is constructed. Checking the satisfiability

of the constraints (constraint solving) to determine the feasibility of each path in

the program is extremely expensive for concurrent programs because the number of

paths increase exponentially with the number of threads in the system. This high-

cost of constraint solving has not allowed symbolic execution to be effectively used in

concurrent programs.

Model checking is a precise, sound, and complete analysis technique that sys-

tematically explores all possible behavior of a concurrent software system. Traditional

model checking techniques extract a model of a system under test and verify its prop-

erties [Ball and Rajamani, 2001, Havelund and Pressburger, 1998, Holzmann, 2003,

Robby et al., 2003]. The process of model extraction can often be tedious and error-

5

prone. Software model checking techniques, pioneered by tools such as VeriSoft and

Java PathFinder, verify the software as is without model extraction; that is, the soft-

ware is the model [Godefroid, 1997, Visser et al., 2000a]. Software model checking

tools take control over the scheduling process to reveal subtle concurrency bugs in

the system. In contrast to random testing techniques that control the runtime en-

vironment and randomly sample from the possible thread schedules, software model

checking systematically explores all possible thread schedules. Additionally, software

model checking tools also explore all possible data input values to find errors in the

system caused by thread schedules, data input values, or a combination of both. The

growing complexity, however, of concurrent systems leads to an exponential growth

in the number of possible behaviors (state space). This state space explosion has

prevented the use of software model checking in mainstream test frameworks.

In contrast to exhaustively searching the system, certain model checking tech-

niques also use heuristics to guide the search quickly toward the error [Edelkamp and

Mehler, 2003, Edelkamp et al., 2001b, Groce and Visser, 2002b, Rungta and Mercer,

2005, 2006, Yang and Dill, 1998]. Directed model checking uses heuristic values and

path-cost to rank the states in order of interest in a priority queue. Directed model

checking uses some information about the program or the property being verified to

generate heuristic values. The information is either specified by the user or computed

automatically. An efficient heuristic leads to errors quickly compared to other ex-

haustive search techniques. In large programs, however, the size of the search frontier

grows very rapidly causing an explosion in the number of states saved in the priority

queue which proves to be the bottleneck in the success of directed model checking.

Some heuristics also require manual configuration and tuning of parameters to be

effective. The manual configuration requires a significant knowledge of the program

and the error being verified in order to be successful in error discovery.

6

In summary the existing solutions lack the ability to effectively detect errors

in concurrent systems. The existing solutions only work for small systems and do

not scale well. The main limitations of the current technologies that our solution

addresses are as follows:

• A significant amount of user-intervention is required to manually validate warn-

ings reported by static analysis tools.

• The reliance of testing and dynamic analysis tools on the ad-hoc sampling of

thread schedules and data values does not allow them to detect errors as demon-

strated by our empirical evidence [Rungta and Mercer, 2007a].

• Precise verification techniques such as model checking and symbolic execution

attempt to build an exhaustive proof of correctness that demonstrates the pro-

gram to be free of all possible errors. Such an exhaustive proof construction

is infeasible for concurrent programs with even moderate complexity using the

current state of art technology.

1.4 Automated Error Discovery in Concurrent Programs

In this work we have designed a fully-automated technique to efficiently detect errors

in concurrent systems. The main focus of the solution is an effective strategy for bug-

detection in concurrent programs rather than building a complete proof of correctness.

Before presenting the solution we discuss a series of observations that were important

in the design and implementation of the solution. These observations are based on

existing research and also extensive empirical studies conducted by us.

1.4.1 Observations on Existing Research

To efficiently detect errors in concurrent programs it is imperative to take control

over the scheduling decisions in a manner similar to software model checking tools.

7

It is, however, infeasible to construct an exhaustive proof of complete correctness

(absence of all errors) in concurrent programs with even moderate complexity using

current state of the art software model checking techniques. Our solution assumes

that building such a proof of complete correctness is not feasible and instead tries to

detect errors in the system.

Guided model checking directs the search into areas of the behavior space

where errors are more likely to exist. It assumes the existence of an error and focuses

the resources in trying to find the error. Guided model checking techniques that

use heuristics based on the information about possible errors in the program can

lead to the feasible errors faster than a systematic search that does not use such

information. As part of our solution we have designed heuristics to rank thread and

data non-determinism to efficiently detect concurrency errors.

Most static analysis techniques can scale to large programs since they abstract

the runtime environment of the program and only analyze the source of the program.

Furthermore, static analysis techniques can be used to detect possible errors in the

program and extract additional information about the possible errors. Our solution

uses such information to guide the program execution toward the possible errors and

automatically detect feasible errors.

1.4.2 Observations on Our Empirical Studies

Randomization while guiding the program execution is an important element in over-

coming the limitations of the default search order arising from heuristic ties. In Ap-

pendix A, our empirical study shows that randomization while guiding the program

search, overall, decreases the number of states generated before error discovery when

compared to a search with no randomization using the same heuristic [Rungta and

Mercer, 2007b]. Our solution shuffles states in a priority queue or search stack with

equivalent heuristic ties to overcome the limitations of the default search order.

8

It is important to evaluate the effectiveness of a technique in detecting errors on

benchmarks that have been characterized with hard to find errors. In Appendix B our

empirical study demonstrates that a hardness metric based on a stateful randomized

depth-first search is a good baseline measure. Furthermore, it also shows how to

convert easy models into hard models by pushing errors deeper in the system and

manipulating the number of threads that actually manifest an error [Rungta and

Mercer, 2007a]. We evaluate the effectiveness of our solution in error discovery on

models with hard to find errors and compare it with other state of the art techniques.

1.4.3 Guided Test

To automatically detect errors in concurrent programs, we present a guided test

technique that leverages information from static analysis techniques to systematically

guide program execution toward possible error locations in the program. A class of

heuristics have been designed to efficiently guide program execution and quickly detect

feasible errors.

Guided test combines static analysis techniques, systematic verification tech-

niques, and heuristics to automatically detect errors in concurrent programs. Impre-

cise static analysis techniques identify possible errors in the program and also generate

a set of program locations relevant in determining the feasibility of a possible error

in the program. Program execution is guided along the set of the relevant program

locations to determine the feasibility of the error. A combination of heuristics and

stochastic methods have been developed to efficiently guide the program execution.

The heuristics in guided test rank, both, thread and data non-determinism to find

errors in concurrent programs. The set of relevant program locations is refined by

adding new locations when program execution is unable to make progress.

The guided test solution overcomes the limitations of existing work to ef-

ficiently detect errors in concurrent software systems. Unlike exhaustive software

9

model checking and symbolic execution techniques, guided test assumes the existence

of an error and does not attempt to construct a proof of correctness. It recognizes that

such a proof construction is not feasible for programs with even moderate complexity

and rather focuses on generating a witness for a possible error or static analysis warn-

ing. Guided test uses the information about possible errors in the program generated

from scalable static analysis and uses the information to guide the program execution

toward these possible errors. In contrast to static analysis techniques, however, the

guided technique is sound in error discovery. No further manual investigation of the

error is required. Finally, unlike traditional testing techniques, guided test is not

reliant on an ad-hoc sampling of the thread schedules to detect the error. Instead, it

systematically guides program execution toward parts of the behavior space that are

more likely to contain errors.

1.5 Effectiveness of Guided Test

Guided test is a potentially scalable technique that can be used to detect concurrency

errors in production code. Guided test is a viable solution for software engineers and

testers to detect errors in multi-threaded programs before deployment. To evaluate

the effectiveness of the guided test technique we use the algorithm to detect errors

caused by thread schedules and data input values in Java benchmarks and the JDK

concurrent libraries. We use the Java Pathfinder (JPF) model checker as the verifi-

cation engine and as a platform to implement the guided test solution.

We evaluate the bug detection capabilities of various tools and techniques and

compare them to the guided testing technique. We have compiled a set of Java bench-

marks from various sources and our own efforts. For many of the Java examples we

have created structurally equivalent C# programs. In each C# model corresponding

to a Java program the same number of threads are created, similar data structures are

instantiated, threads access the same data structures, and threads perform the same

10

synchronization operations. Note that since Java and C# have very similar execution

models we can recreate the same programs in both languages. In our multi-language

benchmark suite we compare results from various tools: CalFuzzer, ConTest, CHESS,

and Java Pathfinder.

We provide extensive results using Java Pathfinder for stateless random walk,

randomized depth-first search, and guided testing. Using the data from our study

that was conducted on benchmarks categorized as having hard to find errors, we

demonstrate that iterative context-bounding and dynamic partial order reduction are

not sufficient to render model checking for testing concurrent programs tractable.

Iterative context-bounding limits the number of preemption points along a single

path while partial order reduction techniques reduces the number of thread schedules

that need to be explored in concurrent programs.

Exhaustive symbolic execution is unable to discover errors within a time bound

of one hour in the benchmarks that use the JDK concurrent library in accordance

with the documentation and contain both thread and data non-determinism. While

the guided test only takes a few seconds to find the errors in the same models.

The extensive comparative analysis presented in this work demonstrates that

guided testing techniques such as the one presented in this dissertation are essential to

make software model checking tractable for testing concurrent programs. A prototype

implementation of the algorithm is a guidedsymbolic extension that is now part of

the JPF model checker. The extension can be obtained by downloading JPF from

http://javapathfinder.sourceforge.net.

1.6 Summary Of The Contributions

We now present a detailed overview of the various research contributions of this

work. Each contribution is an important element in automatically guiding program

execution in order to detect errors in concurrent programs. In the rest of this section

11

we discuss each of the research contributions, we also list each paper published for

the corresponding research contribution.

1.6.1 Guided Program Execution using Abstraction-Refinement

- N. Rungta, E. G. Mercer, and W. Visser, “Efficient Testing of Concurrent

Programs with Abstraction-Guided Symbolic Execution”, in Proceedings of the

SPIN Workshop on Software Model Checking, Grenoble, France, June 2009.

Chapter 2 in this dissertation presents an abstraction-refinement technique

that guides the program execution in order to determine the feasibility of a possible

error. The possible error locations (target locations) in the program are generated

using imprecise, but scalable, static analysis techniques. The technique further lever-

ages static analysis techniques to generate an abstraction of the program that consists

of program locations relevant in verifying the reachability of the potential error. The

abstract system encodes the sequence of relevant program locations that determine

the reachability of the target locations: call sites, conditional branch statements, and

data definitions. The initial abstraction is generated along the sequential flow of the

program and does not consider any inter-thread dependence.

The program execution is guided along the sequence of program locations in

the abstract system using a variety of heuristics described in later chapters. The

heuristics are used to rank, both, thread and data non-determinism. At points when

the program execution is unable to follow the sequence of program location due to

the value of certain global variables (e.g. in a certain conditional branch statement),

the refinement process is invoked. The refinement adds the thread inter-dependence

information by adding definitions of global variables of interest to the abstract system.

The execution is then restarted along a new sequence of program locations in the

abstract system.

12

1.6.2 Meta-Heuristic for Concurrent Programs

- N. Rungta and E. G. Mercer, “A Meta Heuristic for Effectively Detecting Con-

currency Errors”, in Proceedings of Haifa Verification Conference (HVC), Haifa,

Israel, November 2008.

Chapter 3 in this dissertation presents a meta heuristic that guides the pro-

gram execution in a greedy depth-first manner along a sequence of program locations

that are relevant in determining the feasibility of a possible error in the program.

Using a greedy depth-first search allows us to overcome the memory bottlenecks of

priority-queue based greedy best-first and A∗ searches. The greedy depth-first search

picks the best immediate successor of the current state and does not consider un-

explored successors until it reaches the end of a path and needs to backtrack. The

backtracking is stochastic and, also considers the rank assigned to the state by the

meta heuristic.

The meta heuristic ranks the states based on the number of locations already

observed from the sequence of program locations. States that have observed a greater

number of locations from the sequence of relevant program locations are ranked as

more interesting compared to the other states. In the case where multiple states have

observed the same number of locations in the sequences, the meta heuristic uses a

secondary heuristic to guide the search toward the next location in the sequence.

The empirical analysis in this work demonstrates that the meta-heuristic is

extremely effective in localizing a feasible error, given the set of relevant locations.

Furthermore, the results that the choice of the secondary heuristic has a dramatic

effect on the time required for error discovery.

13

1.6.3 A Distance Heuristic for Programs with Polymorphism

- N. Rungta and E. G. Mercer, “Guided Model Checking for Programs with Poly-

morphism”, in Proceedings of ACM SIGPLAN Workshop on Partial Evaluation

and Program Manipulation (PEPM), Savannah, Georgia, USA, January 2009.

Chapter 4 in this dissertation discusses a new distance estimate heuristic

that efficiently computes a tighter lower-bound in programs with polymorphism when

compared to the state of the art FSM distance heuristic. Distance heuristics guide the

program execution toward a program location. The heuristic rank is an estimate of the

number of transitions required by each thread to reach the desired program location.

In Java programs that contain dynamic method invocation, the initial estimate is

computed on a statically generated abstract model of the program that ignores all

data values and only considers control flow. The estimates are dynamically refined

when the targets of dynamic method invocations are resolved. All ties in heuristic

values are randomly resolved.

In our empirical analysis the state of the art FSM distance heuristic is compu-

tationally infeasible for large programs with polymorphism while the new distance

distance heuristic can quickly detect the errors. Another empirical analysis also

demonstrates that the new distance heuristic is the most effective in error discov-

ery as a secondary heuristic when used with the meta heuristic, compared to other

state of the art heuristics.

14

Chapter 2

Guided Program Execution using Abstraction-Refinement

This chapter was published as:

N. Rungta, E. G. Mercer, and W. Visser, “Efficient Testing of Concurrent Programs

with Abstraction-Guided Symbolic Execution”, in Proceedings of the SPIN Workshop

on Software Model Checking, Grenoble, France, June 2009.

Abstract

In this work we present an abstraction-guided symbolic execution technique that

quickly detects errors in concurrent programs. The input to the technique is a set

of target locations that represent a possible error in the program. We generate an

abstract system from a backward slice for each target location. The backward slice

contains program locations relevant in testing the reachability of the target locations.

The backward slice only considers sequential execution and does not capture any inter-

thread dependencies. A combination of heuristics are to guide a symbolic execution

along locations in the abstract system in an effort to generate a corresponding feasible

execution trace to the target locations. When the symbolic execution is unable to

make progress, we refine the abstraction by adding locations to handle inter-thread

dependencies. We demonstrate empirically that abstraction-guided symbolic execu-

tion generates feasible execution paths in the actual system to find concurrency errors

in a few seconds where exhaustive symbolic execution fails to find the same errors in

an hour.

15

2.1 Introduction

The current trend of multi-core and multi-processor computing is causing a paradigm

shift from inherently sequential to highly concurrent and parallel applications. Cer-

tain thread interleavings, data input values, or combinations of both often cause

errors in the system. Systematic verification techniques such as explicit state model

checking and symbolic execution are extensively used to detect errors in such sys-

tems [Godefroid, 1997, Holzmann, 2003, King, 1976, Pǎsǎreanu et al., 2008, Visser

et al., 2003].

Explicit state model checking enumerates all possible thread schedules and in-

put data values of a program in order to check for errors [Holzmann, 2003, Visser et al.,

2003]. To partially mitigate the state space explosion from data input values, symbolic

execution techniques substitute data input values with symbolic values [King, 1976,

Pǎsǎreanu et al., 2008, Tomb et al., 2007]. Explicit state model checking and symbolic

execution techniques used in conjunction with exhaustive search techniques such as

depth-first search are unable to detect errors in medium to large-sized concurrent pro-

grams because the number of behaviors caused by data and thread non-determinism

is extremely large.

In this work we present an abstraction-guided symbolic execution technique

that efficiently detects errors caused by a combination of thread schedules and data

values in concurrent programs. The technique generates a set of key program locations

relevant in testing the reachability of the target locations. The symbolic execution is

then guided along these locations in an attempt to generate a feasible execution path

to the error state. This allows the execution to focus in parts of the behavior space

more likely to contain an error.

A set of target locations that represent a possible error in the program is pro-

vided as input to generate an abstract system. The input target locations are either

generated from static analysis warnings, imprecise dynamic analysis techniques, or

16

user-specified reachability properties. The abstract system is constructed with pro-

gram locations contained in a static interprocedural backward slice for each target

location and synchronization locations that lie along control paths to the target loca-

tions [Horwitz et al., 2004]. The static backward slice contains call sites, conditional

branch statements, and data definitions that determine the reachability of a target

location. The backward slice only considers sequential control flow execution and

does not contain data values or inter-thread dependencies.

We systematically guide the symbolic execution toward locations in the ab-

stract system in order to reach the target locations. A combination of heuristics

are used to automatically pick thread identifiers and input data values at points of

thread and data non-determinism respectively. We use the abstract system to guide

the symbolic execution and do not verify or search the abstract system like most other

abstraction refinement techniques [Ball and Rajamani, 2001, Henzinger et al., 2003].

At points when the program execution is unable to move further along a sequence of

locations (e.g. due to the value of a global variable at a particular conditional state-

ment), we refine the abstract system by adding program statements that re-define the

global variables. The refinement step adds the inter-thread dependence information

to the abstract system on a need-to basis. The contributions of this work are as

follows:

1. An abstraction technique that uses static backward slicing along a sequential

control flow execution of the program to generate relevant locations for checking

the reachability of certain target locations.

2. A guided symbolic execution technique that generates a feasible execution trace

corresponding to a sequence of locations in the abstract system.

3. A novel heuristic that uses the information in the abstract system to rank data

non-determinism in symbolic execution.

17

analysis

Target

True False

t1t0 tn. . .

t0, t1, . . . , tn

True

def(a)def(a)

l3

l2

l1
Lt

l0

Refine abstract system

Rank thread schedules

Symbolic Execution

Rank input data values

if(asym)

Abstract System

Data dependence analysis

target

if(a)
Control

dependence

Locations

Figure 2.1: Overview of the abstraction-guided symbolic execution technique

4. A refinement heuristic to add inter-thread dependence information to the ab-

stract system when the program execution is unable to make progress.

We demonstrate in an empirical analysis on benchmarked multi-threaded Java

programs and the JDK 1.4 concurrent libraries that locations in the abstract system

can be used to generate feasible execution paths to the target locations. We show that

the abstraction guided-technique can find errors in multi-threaded Java programs in

a few seconds where exhaustive symbolic execution is unable to find the errors within

a time bound of an hour.

2.2 Overview

A high-level overview of the technique is shown in Figure 2.1.

Input: The input to the technique is a set of target locations, Lt, that rep-

resent a possible error in the program. The target locations can either be generated

using a static analysis tool or a user-specified reachability property. The lockset anal-

18

ysis, for example, reports program locations where lock acquisitions by unique threads

may lead to a deadlock [Engler and Ashcraft, 2003]. The lock acquisition locations

generated by the lockset analysis are the input target locations for the technique.

Abstract System: An abstraction of the program is generated from back-

ward slices of the input target locations and synchronization locations that lie along

control paths to the target locations. Standard control and data dependence analyses

are used to generate the backward slices. Location l3 is a single target location in Fig-

ure 2.1. The possible execution of location l3 is control dependent on the true branch

of the conditional statement l2. Two definitions of a global variable a at locations l0

and l1 reach the conditional statement l2; hence, locations l0, l1, and l2 are part of

the abstract system. These locations are directly relevant in testing the reachability

of l3.

Abstraction-Guided Symbolic Execution: The symbolic execution is

guided along a sequence of locations (an abstract trace: 〈l0, l2, l3〉) in the abstract

system. The program execution is guided using heuristics to intelligently rank the

successor states generated at points of thread and data non-determinism. The guid-

ance strategy uses information that l3 is control dependent on the true branch of

location l2 and in the ranking scheme prefers the successor representing the true

branch of the conditional statement.

Refinement: When the symbolic execution cannot reach the desired target

of a conditional branch statement containing a global variable we refine the abstract

system by adding inter-thread dependence information. Suppose, we cannot generate

the successor state for the true branch of the conditional statement while guiding

along 〈l0, l2, l3〉 in Figure 2.1, then the refinement automatically adds another def-

inition of a to the abstract trace resulting in 〈l1, l0, l2, l3〉. The new abstract trace

implicitly states that two different threads need to define the variable a at locations

19

1: Thread A{
2: . . .
3:

public void run(Element elem){
4: lock(elem)
5: check(elem)
6: unlock(elem)
7: }
8:

public void check(Element elem)
9: if elem.e > 9

10: Throw Exception
11: }}

1: Thread B {
2: . . .
3:

public void run(Element elem){
4: int x /∗ Input Variable ∗/
5: if x > 18
6: lock(elem)
7: elem.reset()
8: unlock(elem)
9: }}

(a) (b)

1: Object Element{
2: int e
3: . . .
4: public Element(){
5: e := 1
6: }
7: public void reset(){
8: e := 11
9: }}

(c)

Figure 2.2: An example of a multi-threaded program with two threads A and B that
operate on a shared variable elem of type Element

l1 and l0. Note that there is no single control flow path that passes through both l1

and l0.

Output: When the guided symbolic execution technique discovers a feasible

execution path we output the trace. The technique, however, cannot detect infeasible

errors. In such cases it outputs a “Don’t know” response.

2.3 Program Model and Semantics

To simplify the presentation of the guided symbolic execution we describe a simple

programming model for multi-threaded and object-oriented systems. The restrictions,

however, do not apply to the techniques presented in this work and the empirical

analysis is conducted on Java programs. Our programs contain conditional branch

20

statements, procedures, basic data types, complex data types supporting polymor-

phism, threads, exceptions, assertion statements, and an explicit locking mechanism.

The threads are separate entities. The programs contain a finite number of threads

with no dynamic thread creation. The threads communicate with each other through

shared variables and use explicit locks to perform synchronization operations. The

program can also seek input for data values from the environment.

In Figure 2.2 we present an example of such a multi-threaded program with two

threads A and B that communicate with each other through a shared variable, elem, of

type Element. Thread A essentially checks the value elem.e at line 9 in Figure 2.2(a)

while thread B resets the value of elem.e in Figure 2.2(b) at line 7 by invoking the

reset function shown in Figure 2.2(c). We use the simple example in Figure 2.2

through the rest of the paper to demonstrate how the guided symbolic execution

technique works.

A multi-threaded program, M, is a tuple 〈{T0, T1, . . . , Tu−1}, Vc, Dsym〉 where

each Ti is a thread with a unique identifier id → {0, 1, . . . , u − 1} and a set of local

variables; Vc is a finite set of concrete variables; and Dsym is a finite set of all input

data variables in the system. An input data variable is essentially any variable that

seeks a response from the environment.

A runtime environment implements an interleaving semantics over the threads

in the program. The runtime environment operates on a program state s that con-

tains: (1) valuations of the variables in Vc, (2) for each thread, Ti, values of its local

variables, runtime stack, and its current program location, (3) the symbolic repre-

sentations and values of the variables in Dsym , and (4) a path constraint, φ, (a set of

constraints) over the variables in Dsym . The runtime environment provides a set of

functions to access certain information in a program state s:

• getCurrentLoc(s) returns the current program location of the most recently

executed thread in state s.

21

• getLoc(s, i) returns the current program location of the thread with identifier

i in state s.

• getEnabledThreads(s) returns a set of identifiers of the threads enabled in s.

A thread is enabled if it is not blocked (not waiting to acquire a lock).

Given a program state, s, the runtime environment generates a set of successor

states, {s0, s1, . . . , sn} based on the following rules ∀i ∈ getEnabledThreads(s)∧ l :=

getLoc(s, i):

1. If l is a conditional branch with symbolic primitive data types in the branch

predicate, P , the runtime environment can generate at most two possible succes-

sor states. It can assign values to variables in Dsym to satisfy the path constraint

φ ∧ P for the target of the true branch or satisfy its negation φ ∧ ¬P for the

target of the false branch.

2. If l accesses an uninitialized symbolic complex data structure osym of type T ,

then the runtime environment generates multiple possible successor states where

osym is initialized to: (a) null, (b) references to new objects of type T and

all its subtypes, and (c) existing references to objects of type T and all its

subtypes [Khurshid et al., 2003].

3. If neither rule 1 or 2 are satisfied, then the runtime environment generates a

single successor state obtained by executing l in thread Ti.

In the initial program state, s0, the current program location of each thread is

initialized to its corresponding start location while the variables in Dsym are assigned

a symbolic value v⊥ that represents an uninitialized value.

A state sn is reachable from the initial state s0 if using the runtime environment

we can find a non-zero sequence of states 〈s0, s1, . . . , sn〉 that leads from s0 to sn such

that ∀〈si, si+1〉, si+1 is a successor of si for 0 ≤ i ≤ n−1. Such a sequence of program

22

states represents a feasible execution path through the system. The sequence of

program states provides a set of concrete data values and a valid path constraint

over the symbolic values. The reachable state space, S, can be generated using the

runtime environment where S := {s | ∃〈s0, . . . , s〉}.

A depth-first or breadth-first search can systematically generate and search

the reachable state space using the runtime environment in an attempt to find the

target state. In most programs, however, the reachable state space is so large that

exhaustive search techniques are ineffective in finding the target state.

2.4 Abstraction

In this work we create an abstract system that contains program locations relevant

in checking the reachability of the target locations. We then use the locations in the

abstract system to guide the symbolic execution. The abstract system is constructed

with program locations contained in a static interprocedural backward slice for each

target location. The abstract system also contains synchronization locations that lie

along control paths to the target locations. A backward slice of a program with respect

to a program location l and a set of program variables V consists of all statements

and predicates in the program that may affect the value of variables in V at l and

the reachability of l.

2.4.1 Background definitions

Definition 1. A control flow graph (CFG) of a procedure in a system is a directed

graph G := 〈L, E〉 where L is a set of uniquely labeled program locations in the

procedure while E ⊆ L × L is the set of edges that represents the possible flow of

execution between the program locations. Each CFG has a start location lstart ∈ L

and an end location lend ∈ L.

23

Definition 2. cfgPath(l, l′) describes a path in a CFG and returns true iff there

exists a sequence of q := 〈l, . . . , l′〉 such that (li, li+1) ∈ E where 0 ≤ i ≤ length(q)− 1

and E is the set of edges in the CFG.

We define the following functions to access information about the locations

and edges in the CFGs:

• start(l) returns true iff l is a start location.

• end(l) returns true iff l is an end location.

• callSite(l) returns true iff l is a call site that invokes a procedure.

• branch(l) returns true iff l is a conditional branch statement.

• aquireLock(l) returns true iff l acquires a lock.

• releaseLock(l, l′) returns true iff l releases a lock that is acquired at l′.

• cfgEdge(l, l′) returns true iff ∃(l, l′) ∈ E .

• callEdge(l, l′) returns true iff callSite(l) ∧ start(l′)∧ l invokes l′.

Definition 3. An interprocedural control flow graph (ICFG) for a system with p

procedures is 〈L, E〉 where L :=
⋃

0≤i≤p Li and E :=
⋃

0≤i≤p Ei. Additional edges from

a call site to the start location of the callee and from the end location of a procedure

back to its caller are also added in the ICFG.

Definition 4. icfgPath(l, l′) describes a path in the ICFG and returns true iff there

exists a sequence q := 〈l, . . . , l′〉 such that (li, li+1) ∈ E where 0 ≤ i ≤ length(q)− 1

Data and control dependences are an integral part in constructing the ab-

stract system. The dependence analyses are defined along intraprocedural paths

in the CFG. Data dependence is primarily based on reaching definitions ; whereas

control dependence is determined by whether the outcomes of branch predicates in

conditional statements affect the reachability of certain locations. The definitions of

the dependence analyses are as follows:

24

Definition 5. postDom(l, l′) returns true iff for each path in a CFG between l and

lend , q := 〈l, . . . , lend〉, where lend is an end location, and there exists an i such that

li = l′ where 1 ≤ i ≤ length(q)− 1.

Definition 6. defines(l, v) returns true iff the variable, v, is defined at program

location l.

Definition 7. uses(l, v) returns true iff the value of variable, v, is used at program

location l.

Definition 8. reaches(l, l′) returns true iff there exists a path q := 〈l, . . . , l′〉 such

that icfgPath(l, l′) ∧ defines(l, v) ∧ ¬defines(l′′, v) ∧ uses(l′, v), for i, j where

li = l, lj = l′′, and i + 1 ≤ j ≤ length(q).

Definition 9. controlD(l, l′) returns true iff there exists a path q := 〈l, . . . , l′〉 such

that cfgPath(l, l′)∧branch(l)∧postDom(l′′, l′)∧¬postDom(l, l′) for i, j where li = l,

lj = l′′, and i + 1 ≤ j ≤ length(q).

2.4.2 Abstract System

The abstract system is a directed graph A := 〈Lα, Eα〉 where Lα ⊆ L is the set of pro-

gram locations while Eα ⊆ Lα×Lα is the set of edges. The abstract system contains

target locations; call sites, conditional branch statements, and data definitions in the

backward slice of each target location; and all possible start locations of the program.

It also contains synchronization operations that lie along control paths from the start

of the program to the target locations.

To compute an interprocedural backward slice, a backwards reachability anal-

ysis can be performed on a system dependence graph [Horwitz et al., 2004]. Note that

the backward slice only considers sequential execution and ignores all inter-thread de-

pendencies. We describe the construction of the abstract system in the rest of this

section.

25

The abstract system is constructed based on the set of input target locations

Lt and the CFGs of the system 〈L, E〉. We initialize the set of abstract locations, Lα,

with the set of target locations Lt and the set of all possible start locations of the

program Ls. The set Ls contains the start location of each thread, Ti, in the system.

We initialize the set Lα := Lt∪Ls and iteratively add locations, l ∈ L, to Lα if one of

the following four equations is satisfied. We continue to add locations until we reach

a fixpoint, re-evaluating the four equations each time a location is added.

∃lt ∈ Lt, ls ∈ Ls, l
′ ∈ L, [icfgPath(l, lt) ∧ icfgPath(l′, lt)]∧

[icfgPath(ls, l) ∧ icfgPath(ls, l
′)] ∧ [callEdge(l, l′) ∨ callEdge(l′, l)] (2.1)

The call sites are added to Lα one at a time by satisfying Equation 2.1; the

call sites are part of method sequences such that invoking a particular sequence leads

from the start of the program to a procedure containing a target location. In addition

to the call sites, start locations of the procedures invoked by the call sites are also

added one at a time to the set of locations Lα when Equation 2.1 evaluates to true.

∃lα ∈ Lα, l′ ∈ L, [cfgPath(l, lα) ∧ cfgPath(l′, lα)]∧{
[cfgEdge(l, l′) ∧ controlD(l, l′) ∧ controlD(l, lα)]∨ (2.2)

[cfgEdge(l′, l) ∧ controlD(l′, l) ∧ controlD(l′, lα)]
}

Conditional branch statements that determine the reachability of the locations

that are already present in the abstract system are added to Lα whenever Equation 2.2

is satisfied. The branch statements that result from any nested control dependence are

also added. Furthermore, the immediate target of a conditional branch statement is

added when Equation 2.2 evaluates to true where the execution of the target depends

26

on the same branch outcome as lα. This allows the desired target of the branch to be

encoded in the abstract trace.

∃lα ∈ Lα, icfgPath(l, lα) ∧ defines(l, v)∧ (2.3)

isBranch(lα) ∧ uses(lα, v) ∧ reaches(l, lα)

Locations that define variables used in branch predicates at the conditional

statements in Lα are added if Equation 2.3 is satisfied. To compute the reaching

definitions we conservatively compute the alias information based on the notion of

maybe an alias. If two variables in a given procedure can be aliases of one another

we assume they are aliases.

In order to add the synchronization locations we define the auxiliary functions

acqLock(l) that returns true iff l acquires a lock and relLock(l, l′) that returns true

iff l releases a lock that is acquired at l′. For each lα ∈ Lα we update Lα := Lα ∪ l

if Equation 2.4 is satisfied for l.

[icfgPath(l, lα) ∧ acqLock(l)] ∨ [icfgPath(lα, l) ∧ relLock(l, lα)] (2.4)

After the addition of the synchronization locations and locations from the

backward slices we connect the different locations. Edges between the different lo-

cations in the abstract system are added based on the control flow of the program

as defined by the ICFG. To map the execution order of the program locations in

the abstract system to execution order in the ICFG we check the post-dominance

relationship between the locations while adding the edges. An edge between any two

locations lα and l′α in Lα is added to Eα if Equation 2.5 evaluates to true.

27

A.check(Element)
l0

l2

l1

l6

A.run(Element)

〈A.run lstart〉

〈6 : unlock(elem)〉

〈4 : lock(elem)〉

〈5 : check(elem)〉
〈10 : Exception〉

〈9 : if elem.e > 9〉 l4

l5

〈check lstart〉 l3

Figure 2.3: Initial abstract system.

∀(l′′α ∈ Lα) such that ¬postDom(lα, l′′α) ∨ ¬postDom(l′′α, l′α) (2.5)

The abstract system for the example in Figure 2.2 where the target location

is line 10 in the check method in Figure 2.2(a) is shown in Figure 2.3. Locations l0

and α0 in Figure 2.3 are the two start locations of the program. The target location,

l5, represents line 10 in Figure 2.2(a). Location l2 is a call site that invokes start

location l3 that reaches target location l5. The target location is control dependent

on the conditional statement at line 9 in Figure 2.2(a); hence, l4 is part of the abstract

system in Figure 2.3. The locations l1 and l6 are the lock and unlock operations. The

abstract system shows Thread B is not currently relevant in testing the reachability

of location l5.

2.4.3 Abstract Trace Set

The input to the guided symbolic execution is an abstract trace set. The abstract

trace set contains sequences of locations generated on the abstract system, A, from the

start of the program to the various target locations in Lt. We refer to the sequences

generated on the abstract system as abstract traces to distinguish them from the se-

28

quences generated on the CFGs. To construct the abstract trace set we first generate

intermediate abstract trace sets, {P0, P1, . . . Pt−1}, that contain abstract traces be-

tween start locations of the program (Ls) and the input target locations (Lt); hence,

Pi := {π|π satisfies Equation 2.6 and Equation 2.7 }. We use the array indexing

notation to reference elements in π, hence, π[i] refers to the ith element in π.

∃l0 ∈ Ls, lt ∈ Lt such that π[0] == l0 ∧ π[length(π)− 1] == lt (2.6)

(π[i], π[i + 1]) ∈ Eα ∧ (i 6= j =⇒ π[i] 6= π[j]) for 0 ≤ i, j ≤ length(π)− 1 (2.7)

Equation 2.7 generates traces of finite length in the presence of cycles in the ab-

stract system caused by loops, recursion, or cyclic dependencies in the program. Equa-

tion 2.7 ensures that each abstract trace generated does not contain any duplicate

locations by not considering any back edges arising from cycles in the abstract system.

We rely on the guidance strategy to drive the program execution through the cyclic

dependencies toward the next interesting location in the abstract trace; hence, the

cyclic dependencies are not encoded in the abstract traces that are generated from

the abstract system.

Each intermediate abstract trace set, Pi, contains several abstract traces from

the start of the program to a single target location li ∈ Lt. We generate a set of final

abstract trace sets as:

ΠA := {{π0, . . . , πt−1}|π0 ∈ P0, . . . , πt−1 ∈ Pt−1}

29

Each Πα ∈ ΠA contains a set of abstract traces. Πα := {πα0 , πα1 , . . . , παt−1}

where each παi
∈ Πα is an abstract trace leading from the start of the program to a

unique li ∈ Lt. Since there exists an abstract trace in Πα for each target location in

Lt, |Πα| == |Lt|.

The input to the guided symbolic execution technique is Πα ∈ ΠA. The

different abstract trace sets in ΠA allow us to easily distribute checking the feasibility

of individual abstract trace sets on a large number of computation nodes. Each

execution is completely independent of another and as soon as we find a feasible

execution path to the target locations we can simply terminate the other trials.

In the abstract system shown in Figure 2.3 there is only a single target

location—line 10 in check procedure shown in Figure 2.2(a). Furthermore, the ab-

stract system only contains one abstract trace leading from the start of the pro-

gram to the target location. The abstract trace Πα is a singleton set containing

〈l0, l1, l2, l3, l4, l5〉.

2.5 Guided Symbolic Execution

We guide a symbolic program execution along an abstract trace set, Πα :=

{π0, π1, . . . , πt−1}, in order to construct a corresponding feasible execution path, Πs :=

〈s0, s1, . . . , sn〉. For an abstract trace set, the guided symbolic execution tries to

generate a feasible execution path that contains program states where the program

location of the most recently executed thread in the state matches a location in

the abstract trace. The total number of locations in the abstract trace is m :=∑
πi∈Πα

length(πi) where the length function returns the number of locations in the

abstract trace πi. In our experience, the value of m is a lot smaller than n, m << n

where n is the length of the feasible execution trace corresponding to Πα, because the

abstract traces contain large control flow gaps between two locations in the abstract

30

1: /∗ backtrack := ∅, Aα := Πα, s := s0, trace := 〈s0〉 ∗/
procedure main()
2: while 〈s, Πα, trace〉 6= null do
3: 〈s, Πα, trace〉 := guided symbolic execution(s, Πα, trace)
4:

procedure guided symbolic execution(s, Πα, trace)
5: while ¬(end state(s) or depth bound(s) or time bound()) do
6: if goal state(s) then
7: print trace exit
8: 〈s′, Ss〉 := get ranked successors(s, Πα)
9: for each sother ∈ Ss do

10: backtrack := backtrack ∪ {〈sother , Πα, trace ◦ sother〉}
11: if ∃ πi ∈ Πα, head(πi) == getCurrentLoc(s) then
12: lα := head(πi) /∗ First element in the trace ∗/
13: l′α := head(tail(πi)) /∗ Second element in the trace ∗/
14: if branch(lα) ∧ (l′α 6= getCurrentLoc(s′)) then
15: return 〈s0, Aα := refine trace(Aα, πi), 〈s0〉〉
16: remove(πi, lα) /∗ This updates the πi reference in Πα ∗/
17: s := s′, trace := trace ◦ s′

18: return 〈s′, Πα, trace〉 ∈ backtrack

Figure 2.4: Guided symbolic execution pseudocode.

trace. The intermediate program locations that are not part of the backward slice

are also not included in the abstract system or the resulting abstract traces.

The pseudocode for the guided symbolic execution is presented in Figure 2.4.

On line 1 we initialize the backtrack set as empty, store a copy of the input abstract

trace set Πα in Aα, set program state s to the initial program state s0, and add s0

to the feasible execution trace. On line 3, main invokes guided symbolic execution

where the values of the elements in the tuple are 〈s0, Πα, 〈s0〉〉. A time and depth

bound are specified by the user as the termination criteria of the symbolic execution.

The guided symbolic program execution is a greedy depth-first search that

picks the best immediate successor of the current state and does not consider un-

explored successors until it reaches the end of a path and needs to backtrack. The

search is executed along a path in the program until it reaches an end state (a state

with no successors), a user-specified depth bound (line 5), a user-specified time bound

(line 2), or the goal state (line 6). In the goal state, s, there exists a unique thread at

31

each target location (∀li ∈ Lt,∃j ∈ getEnabledThreads(s), getLoc(s, j) == li). If

the state s is the goal state (line 6) then the feasible execution trace is printed before

exiting the search. In this scenario we are successfully able to find a corresponding

execution trace that includes each location in the abstract trace set. The guided

symbolic execution technique is guaranteed to terminate even if the goal state is not

reachable because it is depth and time bounded.

States are assigned a heuristic rank in order to intelligently guide the program

execution. The get ranked successors function returns a tuple 〈s′, Ss〉 on line 8 in

Figure 2.4 where s′ is the best ranked successor of state s while all the other successors

are in set Ss. Each sother ∈ Ss is added to the backtrack set with the abstract trace set

and the feasible execution trace (lines 9 and 10). The feasible execution trace added

to the backtrack set with sother denotes a feasible execution path from s0 to sother . The

best-ranked state s′ is assigned as the current state and the feasible execution trace

is updated by concatenating s′ to it using the ◦ function (line 17). The ◦ function

returns the concatenation of two input lists.

In order to match a location in the abstract trace set to a program state, the

algorithm checks whether the program location of the most recently executed thread

in state s matches the first location in an abstract trace, πi ∈ Πα (line 11). The head

function returns the first element of the input abstract trace. The tail function

returns the input abstract trace without its head. Location lα is the first location in

πi while l′α is the immediate successor of lα. Location lα is removed from the abstract

trace (line 16) if refinement is not needed. Removing lα updates πi and in turn

updates Πα. The execution now attempts to match the location of the most recently

executed thread in the current state toward the next location in πi by directing the

search.

The abstract trace set on line 15 is immediately refined when the program

execution is unable to reach the desired target of a conditional branch statement

32

1: abstract class O
2:
3: class A extends O

procedure myFunc()
4: {. . .}
5: class B extends O

procedure myFunc()
6: {. . .}

objsym.myFunc()

A.myFunc()

(a) (b)

objects
new A()null

O objsym

new B() existing

(c)

Figure 2.5: Ranking data non-determinism for complex data structures. (a) Classes
A and B inherit from class O. (b) Locations in an abstract trace. (c) Different
non-determinism choices for obj sym of type O.

that contains a global variable in its predicate. The refinement is performed on

the abstract trace set Aα (a copy of the original unmodified abstract trace set Πα).

After the refinement the search is restarted from the initial program state s0 and

the updated abstract trace set Aα. The details on the refinement process are given

in Section 2.6.

The get ranked successors(s, Πα) in Figure 2.4 takes as input a program

state s and the abstract trace set Πα. For each successor state s′i of s we compute

its heuristic value using a two-tier and data ranking scheme. The two-tier ranking

scheme has been described in earlier works [Rungta and Mercer, 2008, 2009b, Chap-

ter 3, Chapter 4]. In the first-tier rank program states along execution paths that

correspond to more locations from the input abstract trace set are ranked better than

others [Rungta and Mercer, 2008, Chapter 3]. The second-level rank is an estimate

33

of the distance from the program state to the next program location in any of the

abstract traces in Πα [Rungta and Mercer, 2009b, Chapter 4].

The abstract trace contains conditional branch statements where the outcome

of its branch predicate determines the reachability of the input target locations. When

the path constraints for both outcomes of a conditional branch with primitive sym-

bolic data types is satisfiable, the second-level heuristic uses information from the

abstract trace to assign a better rank to the state at the desired outcome of the

conditional branch.

New in this work, we use the information in the abstract trace to rank data

non-determinism choices generated in the symbolic execution for complex input data

structures. We rank s′i at a point of complex data non-determinism for some object

obj sym . If there exists in an abstract trace in Πα a call site l where obj sym is the object

that invokes the procedure containing the start location l′, then we prefer successor

states where obj sym is initialized to objects of type T := getClass(l′). The getClass

function returns the class containing the program location l′. The h3(s
′
i) := 0 if obj sym

points to an object of type T ; otherwise, h3(s
′
i) := 1.

In Figure 2.5(a), two classes A and B inherit from the abstract base class O

and implement the myFunc method. Figure 2.5(b) is an abstract trace where obj sym is

a symbolic object of type O that invokes the myFunc method in class A. Figure 2.5(c)

shows the non-deterministic choices: (1) null, (2) new instance of class A or B, and

(3) existing objects of type A and B to account for aliasing [Khurshid et al., 2003].

The information in Figure 2.5(b) indicates that the obj sym .myFunc call needs to invoke

the myFunc method in class A. This allows us to pick a state where the complex data

structure is of type A. Information in the abstract trace about types of the objects

required to reach target locations allows us to guide the symbolic execution to the

target locations.

34

procedure refine trace(Aα, πi)
1: lbranch := head(πi)
2: Lv := {lv | defines(lv, global vars(lbranch))}
3: Update the A /∗ generate backward slices for lv ∈ V and synchronization

locs(Section 2.4.2) ∗/
4: πv := get abstract trace(Lv)
5: πpre := 〈l0, . . . , lk〉 such that ∃〈l0 . . . lk〉 ◦ πi ∈ Aα

6: if ∃la ∈ πpre , lb ∈ πv, same lock(la, lb) then
7: πv := πv ◦ l′b where releaseLock(l′b, lb)
8: πnew := πv ◦ πpre

9: Aα.replace trace(πpre ◦ πi, πnew ◦ πi)

Figure 2.6: Refinement pseudocode.

2.6 Refinement

The refinement process is invoked when the symbolic execution cannot reach the

target of the branch statement in an abstract trace, πi . The branch predicate contains

global variables that can be possibly redefined by other threads. The global variables

can either be concrete or symbolic. In an effort to execute the needed branch condition

a location that redefines a global variable in the branch predicate is added to the

abstract trace. This allows us to account for inter-thread dependencies that affect

the reachability of the target locations. We define some additional functions that are

used to describe the refinement process.

• same lock(la, lb) returns true iff acqLock(la) ∧ acqLock(lb) such that la and lb

acquire the lock on the same object determined using a may-alias algorithm.

• get abstract trace(Lv) returns an abstract trace from the start of a program

to lv ∈ Lv.

• Πα.replace trace(πi, πj) substitutes πi with πj in Πα.

The refinement process is shown in Figure 2.6. The first element of the abstract

trace, πi, is a branch statement as assumed on line 1 of Figure 2.6. To generate a

set of program locations, Lv, on line 2 the defines function returns a set of program

35

locations where global variables in the branch predicate of lbranch are redefined. The

abstract system, A, is updated from locations in backward slices that affect the

reachability of lv ∈ Lv and additional synchronization locations. In essence, the

process to generate locations and edges for the target location is repeated now with

locations in lv ∈ Lv. The get abstract trace returns an abstract trace in the

abstract system from the start of the program to some location in Lv.

There can be many threads in the program that define a particular global

variable of interest. We randomly pick a lv ∈ Lv and generate an abstract trace from

the start of the program to lv in A. When there are multiple abstract traces to lv then

we, again, randomly pick an abstract trace. This refinement strategy is a heuristic

that is forcing the symbolic execution to try and reach a program location where

a global variable of interest is redefined and then again check whether the desired

target location of lbranch is reachable.

The abstract trace set Aα is updated with a new abstract trace that contains

additional locations leading to the definition of a variable used in the branch predicate.

In Figure 2.6, πv := 〈l0, . . . , lv〉 is an abstract trace from the start of the program to

location, lv, that defines a variable in the branch predicate. The abstract trace πpre

is the prefix of the trace πi in the original abstract trace set. The prefix denotes the

sequence of locations from the start of the program up to, and not including, the

conditional branch statement that cannot reach the desired target. This allows the

refinement heuristic to add inter-thread dependence information that is ignored in

the original abstraction.

In order to generate the replacement abstract trace we check the lock depen-

dencies between πpre and πv. If πpre and πv acquire the lock on the same object (line

6), then we add the corresponding lock relinquish location to πv (line 7). Adding the

lock relinquish location ensures that if one thread acquires a lock to define a variable

in the branch predicate, then after the definition another thread is not blocked trying

36

〈Element.reset lstart〉

α0

α1

α2

α3

α6

B.run(Element)

Element.reset()

〈8 : unlock(elem)〉

〈7 : elem.reset()〉

〈6 : lock(elem)〉

〈5 : if x > 18〉

〈B.run lstart〉

〈8 : e := 11〉 α5

α4

Figure 2.7: Additions to the abstract system after refinement

to acquire the same lock to reach the conditional statement. A new prefix, πnew , is es-

sentially created by combining πv and πpre . This operation adds to the abstract trace

the definition of a variable in the branch predicate before the conditional statement.

Finally we replace in the abstract trace set Aα the abstract trace corresponding

to πpre ◦ πi with πnew ◦ πi (line 9). The guided symbolic execution is now restarted

from the initial program state s0 and guided along the updated abstract trace set.

Suppose, Aα := {〈l0, l1, l2, l3, l4, l5〉} and πi := 〈l4, l5〉 for the example in Fig-

ure 2.2. In the runtime environment we have found a feasible execution trace that

visits locations l0 to l3, but at the conditional branch l4 the execution cannot reach

the desired target location l5. The refinement process shown in Figure 2.6 adds new

locations and edges shown in Figure 2.7 to the abstract system in addition to the

ones shown in Figure 2.3. In Figure 2.7 location α5 defines the integer field, e, of the

shared variable elem; πv := 〈α0, α1, α2, α3, α4, α5〉 such that the sequence leads from

the start of the program to α5 in Thread B. The prefix of πi is πpre := 〈l0, l1, l2, l3〉.

Locations l1 and α2 in Figure 2.3 and Figure 2.7 respectively acquire the lock on the

same object elem; hence, we add the lock release location to πv := πv ◦ α6. Finally

the guided symbolic execution is restarted from s0 and Aα := {πv ◦ πpre ◦ πi}.

37

Control Flow

behavior

abstraction
initial

refined

target
Program

target

behavior
refined

abstraction
initial

Control Flow

Program

(a) (b)

Figure 2.8: Abstraction and refinement in context of the program behavior and control
flow. (a) Target is reachable. (b) Target is not reachable.

The refinement process can be invoked repeatedly for the same branch condi-

tion it is possible the same definition of the variable is added multiple times. Such a

scenario allows us to handle the cases where the variable needs to be over a certain

value in the branch predicate and its value is incremented by some variable or con-

stant in the definition. The refinement strategy is in itself a heuristic. Developing

and evaluating other precise refinement strategies is a work in progress.

In this illustrative example, we end up adding all the locations in Thread B;

however, in our experience the set of locations added to the abstract set is smaller

than the total number of locations in the program.

2.7 Discussion

The abstraction is an under-approximation of the control flow of the system, and the

refinement adds more information as needed. In Figure 2.8(a) and (b) the outer-most

circle represents the control flow of the program while the dashed circle represents

the actual behaviors possible in the program. The control flow of the program is an

over-approximation of all possible behaviors of the program. In Figure 2.8(a) and (b)

the initial abstraction is represented by the shaded triangle. The initial abstraction

generated from the backward slice is an under-approximation of the control flow of

38

the system. It attempts to carve out parts of the control flow relevant in checking

the feasibility of the target locations.

Consider the two possible cases. In the first case, the target location, initial

abstraction, and the refined slice are all contained within the realm of the program

behavior in Figure 2.8(a). When the symbolic execution is unable to reach the target

location based on the information in the initial abstraction, the abstraction is refined

(represented by triangle enclosing the shaded triangle). More information is added to

the original under-approximation. Since the target is contained within the reachable

part of the program behavior the guided symbolic execution is effective in discovering

the error. In the second case shown in Figure 2.8(b), the target location is contained

outside the program behavior. The approach in this work is unable to state its

infeasibility since the refinement is a heuristic. In this case, the time bound is used

as the termination criteria.

2.8 Experimental Results

We conduct experiments on machines with 8 GB of RAM and two Dual-core In-

tel Xeon EM64T processors (2.6 GHz). We use the symbolic extension of the Java

PathFinder (JPF) v4.1 model checker with partial order reduction turned on [Pǎsǎreanu

et al., 2008]. The symbolic execution extension uses Choco Solver (http:choco-solver.net)

to check the satisfiablity of the path constraints. JPF uses a modified JVM that op-

erates on Java bytecode. This allows us to model the libraries as part of the program.

We present an empirical study on five multi-threaded Java programs. In Ta-

ble 2.1, for each program we show the type of error, source lines of code (SLOC), total

time taken in seconds to generate the set of abstract traces (Time), total number of

abstract trace sets tested (Traces Sets), and total memory used (Memory). To pick

the initial abstract trace sets we choose sets that contain traces with the smallest

number of call sites leading from the start of the program to each target location.

39

Error Type SLOC Time Trace Memory
(secs) Sets MB

Reorder Reachability 44 0.28 5 1.93 MB
Airline Reachability 31 0.30 3 1.58 MB
VecDeadlock0 Deadlock 7267 1.21 5 38 MB
VecDeadlock1 Deadlock 7169 0.98 17 38 MB
VecRace Race 7151 0.92 8 39 MB

Table 2.1: Information on models and abstract trace generation.

For the programs used in this empirical study, we were able to discover the goal state

with the initial abstract trace sets.

The guided symbolic execution trials for the different abstract trace sets re-

ported in Table 2.1 are launched in parallel on different computation nodes since each

trial is completely independent of the other trials. When a feasible execution trace

is generated along an abstract trace set, we terminate the other trials. We present

the total number of states generated, total time taken, and total memory used in

the trial that generates a feasible execution trace corresponding to the abstract trace

set in Table 2.2. We also show the length of the initial trace (
∑

πi∈Πα
|πi|) and to-

tal number of refinements performed on the abstract trace; Πα is the input abstract

trace set. The parameters with the program names indicate the thread configuration

of a particular program. Each parameter represents the total number of symmetric

threads in the system.

The Reorder and the Airline model are benchmarked examples and have

user-defined reachability properties. These models do not contain any data non-

determinism. The results of the models are used to demonstrate the effectiveness

of the abstraction refinement technique in guiding a concrete program execution to

an error state. The Airline model required a larger number of refinements because

the reachability of the target location depends on the value of a global counter that

is modified by different threads. The refinement adds the location where the global

variable is defined at each iteration.

40

We created C# programs for the Reorder and Airline models to evaluate

on CHESS, a stateless concurrency testing tool [Musuvathi and Qadeer, 2008, 2007].

The models with the thread configuration presented in this paper, CHESS was unable

to find an error within a time bound of one hour. CHESS uses an iterative context-

bound approach that bounds the number of preemptions along a certain path in order

to reach the error faster. Note that the correct number of preemption points required

to find the error was provided as input. Random walk and randomized depth-first

search in JPF have also been shown ineffective to find errors in these models [Rungta

and Mercer, 2007a, Appendix B]. A detailed empirical analysis is shown in [Rungta

and Mercer, 2009a, Chapter 5].

VecDeadlock0, VecDeadlock1, and VecRace are examples that use the JDK

1.4 synchronized Vector library in accordance with the documentation. We use

Jlint to automatically generate warnings on possible deadlocks and race-conditions

in the synchronized Vector library [Artho and Biere, 2001]. Each model has two

symbolic variables whose specific values in addition to certain thread schedules are

required to manifest errors in the Vector library. Exhaustive symbolic execution

using a depth-first search is unable to discover the errors in these models within

a time bound of one hour. In the VecDeadlock0, the abstraction-guided symbolic

execution only generates 1370 states and takes about 4.5 seconds to find the deadlock

in the program. Similarly in the VecDeadlock1 and VecRace programs, the guided

symbolic execution only generates a few thousand states before generating a concrete

trace to the error. Using the information from the abstract trace set, the heuristic

to rank the non-determinism of complex data structures allows us to achieve this

dramatic improvement in error discovery over exhaustive symbolic execution.

41

Model States Time Memory Total trace Total
secs MB Length Refinements

Reorder (9,1) 205 1.67 7MB 13 1
Reorder (10,1) 236 1.67 7MB 13 1
Airline (15,3) 1210 3.23 5MB 3 13
Airline (20,2) 3279 7.46 6MB 3 19
Airline (20,1) 3609 7.46 6MB 3 20
VecDealock0 1370 4.56 66MB 14 1
VecDeadlock1 2948 6.89 69MB 15 2
VecRace 3120 7.98 65MB 12 1

Table 2.2: Effort in error discovery and abstract trace statistics.

2.9 Related Work

Recent work by Tomb et al. uses symbolic execution to generate concrete paths to null

pointer exceptions at an inter-procedural level in sequential programs [Tomb et al.,

2007]. In contrast, concolic testing executes the program with random concrete values

in conjunction with symbolic execution to collect the path constraints over input

data values [Sen and Agha, 2007, Sen et al., 2005]. The cost of constraint solving

in concolic testing to achieve full path coverage in a concurrent system is extremely

high. The techniques presented in this work are complementary to concolic testing.

The techniques can also be used to efficiently guide concolic testing.

Recent work shows that guiding the concrete program execution along a se-

quence of manually generated program locations relevant in verifying the feasibility

of the target location dramatically lowers the time taken to reach the target lo-

cation [Rungta and Mercer, 2008, Chapter 3]. The manual aspect of generating

relevant program locations is tedious and sometimes intractable.

Race-directed random testing of concurrent programs uses the output of impre-

cise dynamic analysis tools and randomly drives threads to the input locations [Sen,

2008]. The work in [Rungta and Mercer, 2008, Chapter 3] shows that guiding the

search through key locations relevant in determining the target locations yields sig-

nificantly better error discovery rates. Dynamic analysis tools such as ConTest use

42

heuristics to randomly add perturbations in the thread schedules [Eytani et al., 2007].

The results are similar to those obtained with just a stateless random search and it

is not very effective in error discovery. Chess is a concurrency testing tool that sys-

tematically explores thread schedules in C# programs and supports iterative context

bounding [Musuvathi and Qadeer, 2007].

Model checking is a formal approach for systematically exploring all possible

behaviors of a concurrent software system [Ball and Rajamani, 2001, Godefroid, 1997,

Holzmann, 2003, Visser et al., 2003]. The state space explosion problem renders it

intractable in verifying medium to large-sized programs. Conservative abstractions

are applied to high-level programming languages [Ball and Rajamani, 2001, Hen-

zinger et al., 2003] in order to verify programs. The abstraction is iteratively refined

if it generates an infeasible counter-example to an error state. Counter-example

guided abstraction refinement techniques are successful in verifying sequential pro-

grams; however, they are not effective for testing concurrent programs.

Related works in hardware verification guide the simulation of the concrete

model using an abstract model of boolean variables that represent the transition

relation [Nanshi and Somenzi, 2006, Paula and Hu, 2007]; however, these works are

limited to verifying circuit designs and boolean programs. The techniques cannot be

extended to verify complex concurrent software systems. Another area of related work

is the use of abstract databases and heuristics that are used to guide the searches in

planning problems [Edelkamp, 2001].

2.10 Conclusions and Future Work

In this work we present an abstraction-guided symbolic execution technique that

efficiently detects errors caused by thread schedules and data values in concurrent

programs. Using backward slices for the input target locations the technique auto-

matically generates an abstract system with relevant locations in checking the reach-

43

ability of the target locations. The backward slices only consider sequential execution

along the control flow of the program. The symbolic execution is guided along traces

in the abstract system to generate a corresponding feasible execution path to the

target locations. When the symbolic execution is unable to make progress we refine

the abstraction by adding locations to handle inter-thread dependencies.

In the case when we are unable to discover a feasible execution path, we

want to design a probabilistic measure to estimate the likelihood of the reachability

of the target locations as future work. Another avenue of future work consists of

studying more precise refinement techniques based on compositional symbolic execu-

tion [Anand et al., 2008].

44

Chapter 3

Meta-heuristic for Concurrent Programs

This chapter was published as:

N. Rungta and E. G. Mercer, “A Meta Heuristic for Effectively Detecting Concur-

rency Errors”, in Proceedings of Haifa Verification Conference (HVC), Haifa, Israel,

November 2008.

Abstract

Mainstream programming is migrating to concurrent architectures to improve perfor-

mance and facilitate more complex computation. The state of the art static analysis

tools for detecting concurrency errors are imprecise, generate a large number of false

error warnings, and require manual verification of each warning. In this paper we

present a meta heuristic to help reduce the manual effort required in the verification

of warnings generated by static analysis tools. We manually generate a small sequence

of program locations that represent points of interest in checking the feasibility of a

particular static analysis warning; then we use a meta heuristic to automatically con-

trol scheduling decisions in a model checker to guide the program along the input

sequence to test the feasibility of the warning. The meta heuristic guides a greedy

depth-first search based on a two-tier ranking system where the first tier considers

the number of program locations already observed from the input sequence, and the

second tier considers the perceived closeness to the next location in the input se-

quence. The error traces generated by this technique are real and require no further

45

manual verification. We show the effectiveness of our approach by detecting feasible

concurrency errors in benchmarked concurrent programs and the JDK 1.4 concurrent

libraries based on warnings generated by the Jlint static analysis tool.

..

46

3.1 Introduction

The ubiquity of multi-core Intel and AMD processors is prompting a shift in the pro-

gramming paradigm from inherently sequential programs to concurrent programs to

better utilize the computation power of the processors. Although parallel program-

ming is well studied in academia, research, and a few specialized problem domains,

it is not a paradigm commonly known in mainstream programming. As a result,

there are few, if any, tools available to programmers to help them test and analyze

concurrent programs for correctness.

Static analysis tools that analyze the source of the program for detecting con-

currency errors are imprecise and incomplete [Artho and Biere, 2001, Engler and

Ashcraft, 2003, Flanagan et al., 2002, Hovemeyer and Pugh, 2004]. Static analysis

techniques are not always useful as they report warnings about errors that may exist

in the program. The programmer has to manually verify the feasibility of the warning

by reasoning about input values, thread schedules, and branch conditions required to

manifest the error along a real execution path in the program. Such manual verifica-

tion is not tractable in mainstream software development because of the complexity

and the cost associated with such an activity.

Model checking in contrast to static analysis is a precise, sound, and complete

analysis technique that reports only feasible errors [Holzmann, 2003, Visser et al.,

2000a]. It accomplishes this by exhaustively enumerating all possible behaviors (state

space) of the program to check for the presence and absence of errors; however, the

growing complexity of concurrent systems leads to an exponential growth in the size

of state space. This state space explosion has prevented the use of model checking in

mainstream test frameworks.

Directed model checking focuses its efforts in searching parts of the state space

where an error is more likely to exist in order to partially mitigate the state space

explosion problem [Edelkamp et al., 2001b, Groce and Visser, 2002b, Rungta and

47

Mercer, 2005, 2006, 2009b]. Directed model checking uses heuristic values and path-

cost to rank the states in order of interest in a priority queue. Directed model checking

uses some information about the program or the property being verified to generate

heuristic values. The information is either specified by the user or computed automat-

ically. In this work we use the imprecise static analysis warnings to detect possible

defects in the program and use a precise directed search with a meta heuristic to

localize real errors.

The meta heuristic presented in this paper guides the program execution in a

greedy depth-first manner along an input sequence of program locations. The input

sequence is a small number of locations manually generated such that they are relevant

in testing the feasibility of a static analysis warning or a reachability property. The

meta heuristic ranks the states based on the portion of the input sequence already

observed. States that have observed a greater number of locations from the input

sequence are ranked as more interesting compared to other states. In the case where

multiple states have observed the same number of locations in the sequence, the meta

heuristic uses a secondary heuristic to guide the search toward the next location in the

sequence. In essence, the meta heuristic automatically controls scheduling decisions to

drive the program execution along the input sequence in a greedy depth-first manner.

The greedy depth-first search picks the best-ranked immediate successor of the current

state and does not consider unexplored successors until it reaches the end of a path

and needs to backtrack.

In this work we do not consider any non-determinism arising due to data input

and only consider the non-determinism arising from thread schedules. The error traces

generated by the technique are real and require no further verification; however, if

the technique does not find an error we cannot prove the absence of the error. The

technique is sound in error detection but not complete.

48

To test the validity of our meta heuristic solution in aiding the process of au-

tomatically verifying deadlocks, race conditions, and reachability properties in multi-

threaded programs, we present an empirical study conducted on several benchmarked

concurrent Java programs and the JDK 1.4 concurrent libraries. We use the Java

PathFinder model checker (an explicit state Java byte-code model checker) to con-

duct the empirical study [Visser et al., 2000a]. We show that the meta heuristic

is extremely effective in localizing a feasible error when given a few key locations

relevant to a corresponding static analysis warning. Furthermore, the results demon-

strate that the choice of the secondary heuristic has a dramatic effect on the number

of states generated, on average, before error discovery.

3.2 Meta heuristic

In this section we describe the input sequence to the meta heuristic, our greedy

depth-first search, and the guidance strategy based on the meta heuristic.

3.2.1 Input Sequence

The input to our meta heuristic is the program, an environment that closes the

program, and a sequence of locations that are relevant to checking the feasibility of

the static analysis warning. The number and type of locations in the sequence can

vary based on the static analysis warning being verified. For example, to test the

occurrences of race-conditions, we can generate a sequence of program locations that

represent a series of reads and writes on shared objects. Note that we do not manually

specify which thread is required to be at a given location in the input sequence and

rely on the meta heuristic to intelligently pick thread assignments.

We use the example in Figure 3.1 to demonstrate how we generate an input

sequence to check the feasibility of a possible race condition from a static analy-

sis warning. Figure 3.1 represents a portion of a program that uses the JDK 1.4

49

1: class raceCondition{
2: . . .
3: public static void main(){
4: AbstractList l1 := new Vector();
5: AbstractList l2 := new Vector();
6: AThread t0 = new AThread(l1, l2);
7: AThread t1 = new AThread(l1, l2);
8: t0.start(); t1.start();
9: . . .

10: }
11: . . .
12: }

1: class AThread extends Thread{
2: AbstractList l1;
3: AbstractList l2;
4: AThread(AbstractList l1,
5: AbstractList l2){
6: this .l1 := l1; this .l2 := l2;
7: }
8: public void run(){
9: . . .

10: if some condition then
11: l2.add(some object);
12: . . .
13: l1.equals(l2);
14: . . .
15: }
16: }

(a) (b)

1: class Vector extends
2: AbstractList{
3: . . .
4: public synchronized boolean equals
5: (Object o){
6: super .equals(o);
7: }
8: . . .
9: public synchronized boolean add

10: (Object o){
11: modCnt + +;
12: ensureCapacityHelper(cnt + 1);
13: elementData[cnt + +] = o;
14: return true;
15: }
16: . . .
17: }

1: class AbstractList

2: implements List{
3: public boolean equals(Object o){
4: if o == this then
5: return true;
6: if ¬(o instanceof List) then
7: return false;
8: ListIterator e1 := ListIterator();
9: ListIterator e2 :=

10: (List o).listIterator();
11: while e1.hasNext() and
12: e2.hasNext() do
13: Object o1 := e1.next();
14: Object o2 := e2.next();
15: if¬(o1 == null ? o2 == null :
16: o1.equals(o2)) then
17: return false;
18: return ¬(e1.hasNext() ||
19: e2.hasNext())
20: }
21: }

(c) (d)

Figure 3.1: Possible race-condition in the JDK 1.4 concurrent library.

50

concurrent public library. The raceCondition class in Figure 3.1(a) initializes two

AbstractList data structures, l1 and l2, using the synchronized Vector sub-class

implementation. Two threads of type AThread, t0 and t1, are initialized such that

both threads can concurrently access and modify the data structures, l1 and l2. Fi-

nally, main invokes the run function of Figure 3.1(b) on the two threads. The threads

go through a sequence of events, including operations on l1 and l2 in Figure 3.1(b).

Specifically, an add operation is performed on list l2 when a certain condition is sat-

isfied; the add is then followed by an operation that checks whether l1 equals l2.

The add operation in the Vector class, Figure 3.1(c), first acquires a lock on its own

Vector instance and then adds the input element to the instance. The equals func-

tion in the same class, however, acquires the lock on its own instance and invokes the

equals function of its parent class which is AbstractList shown in Figure 3.1(d).

The Jlint static analysis tool issues a series of warnings about potential con-

currency errors in the concurrent JDK library when we analyze the program shown

in Figure 3.1 [Artho and Biere, 2001]. The Jlint warnings for the equals function in

the AbstractList class in Figure 3.1(d) are on the Iterator operations (lines 8− 14

and lines 18− 19). The warnings state that the Iterator operations are not synchro-

nized. As the program uses a synchronized Vector sub-class of the AbstractList

(in accordance with the specified usage documentation), the user may be tempted to

believe that the warnings are spurious. Furthermore, people most often ignore the

warnings in libraries since they assume the libraries to be error-free. To check the

feasibility of the possible race condition reported by Jlint for the example in Figure 3.1

we need a thread iterating over the list, l2, in the equals function of AbstractList

while another thread calls the add function. A potential input sequence of locations

to test the feasibility of the warning is as follows:

1. Get the ListIterator, e2 at lines 9− 10 in Figure 3.1(d).

2. Check e2 hasNext() at line 12 in Figure 3.1(d).

51

1: /∗ backtrack := ∅, visited := ∅ ∗/
procedure gdf search(〈s, locs , hval〉)
2: visited := visited ∪ {s}
3: while s 6= null do
4: if error(s) then
5: report error statistics
6: exit
7: 〈s, locs , hval〉 := choose best successor(〈s, locs , hval〉)
8: if s == null then
9: 〈s, locs , hval〉 := get backtrack state()

Figure 3.2: Pseudocode for the greedy depth-first search.

3. Add some object to l2 at line 11 in Figure 3.1(b).

4. Call e2.next() at line 14 in Figure 3.1(d).

The same approach can be applied to generate input sequences for different

warnings. Classic lockset analysis techniques detect potential deadlocks in multi-

threaded programs caused due to cyclic lock dependencies [Engler and Ashcraft, 2003,

Williams et al., 2005]. For example, it detects a cyclic dependency in the series of lock

acquisitions l0(A) → l1(B) and l9(B) → l18(A), where A and B are the locks acquired

at different program locations specified by ln. To generate an input sequence that

checks the feasibility of the possible deadlock we can generate a sequence of locations:

l0 → l9 → l1 → l18. A larger set of concurrency error patterns are described by Farchi

et. al in [Farchi et al., 2003]. Understanding and recognizing the concurrent error

patterns can be helpful in generating location sequences to detect particular errors.

In general, providing as much relevant information as possible in the sequence

enables the meta heuristic to be more effective in defect detection; however, only

2–3 key locations were required to find errors in most of the models in our study.

Any program location that we think affects the potential error can be added to the

sequence. For example, if there is a data definition in the program that affects the

variables in the predicate, some condition, of the branch statement shown on line 10

in Figure 3.1(b), then we can add the program location of the data definition to the

52

sequence. Similarly we can generate input sequences to check reachability properties

such as NULL pointer exceptions and assertion violations in multi-threaded programs.

3.2.2 Greedy depth-first search

In this subsection we describe a greedy depth-first search that lends itself naturally

in directing the search using the meta heuristic along a particular path (the input

sequence of locations). The greedy depth-first search mimics a test-like paradigm

for multi-threaded programs. The meta heuristic can be also used with bounded

priority-queue based best-first searches with comparable results.

The pseudocode for the greedy depth-first search is presented in Figure 3.2.

The input to gdf search is a tuple with the initial state of the program (s), the se-

quence of locations (locs), and the initial secondary heuristic value (hval). In a loop

we guide the execution as long as the current state, s, has successors (lines 3 − 9).

At every state we check whether the state, s, satisfies the error condition (line 4). If

an error is detected, then we report the error details and exit the search; otherwise,

we continue to guide the search. The choose best successor function only consid-

ers the immediate successors of s and assigns to the current state the best-ranked

successor of s (line 7). When the search reaches a state with no immediate succes-

sors, the technique requests a backtrack state as shown on lines 8 − 9 in Figure 3.2.

The details of choose best successor and get backtrack state are provided in

Figure 3.4 and Figure 3.5 respectively.

Figure 3.3(a) demonstrates the greedy depth-first search using a simple exam-

ple. The choose best successor function ranks c0, c1, and c2 (enclosed in a dashed

box) to choose the best successor of b0 in Figure 3.3(a). The shaded state c2 is ranked

as the best successor of b0. When the search reaches state d2 that does not have any

successors, the search backtracks to one of the unshaded states (e.g., b1, b2, c0, c1, d0,

or d2). We bound the number of unshaded states (backtrack states) saved during the

53

d2

a0

b0 b1 b2

c0 c1 c2

d0 d1

(a)

Locations

ln

l2 s3s2

s4

s5 s6 s7

l1 s1

(b)

Figure 3.3: Guidance (a) Greedy depth-first search (b) Two-level ranking scheme

search. Bounding the backtrack states makes our technique incomplete; although, the

bounding is not a limitation because obtaining a complete coverage of the programs

we are considering is not possible.

3.2.3 Guidance Strategy

The meta heuristic uses a two-tier ranking scheme as the guidance strategy.

The states are first assigned a rank based on the number of locations in the input

sequence that have been encountered along the current execution path. The meta

heuristic then uses a secondary heuristic to rank states that observed the same number

of locations in the sequence. The secondary heuristic is essentially used to guide the

search toward the next location in the input sequence.

In Figure 3.4 we present the pseudocode to choose the best successor of a given

state. The input to the function is a tuple 〈s, locs , hval〉 where s is a program state,

locs is a sequence of locations, and hval is the heuristic value of s generated by the

secondary heuristic function. We evaluate each successor of s, s′, and process s′ if it

is not found in the visited set (line 2− 3). To process s′ we add it to the visited

set (line 4), copy the sequence of locations locs into a new sequence of locations locs ′

(line 5), and compute the secondary heuristic value for s′ (line 6). If s′ observes

54

1: /∗ mStates := ∅, hStates := ∅, min hval := ∞ ∗/
procedure choose best successor(〈s, locs , hval〉)
2: for each s′ ∈ successors(s) do
3: if ¬visited .contains(s′) then
4: visited .add state(s′)
5: locs ′ := locs /∗ Make copy of locs ∗/
6: h′val = get h value(s′)
7: if s′.current loc() == locs .top() then
8: mStates := next state to explore(mStates , 〈s′, locs ′.pop(), h′val〉)
9: else

10: hStates := next state to explore(hStates , 〈s′, locs , h′val〉)
11: backtrack .add state(〈s′, locs ′, h′val〉)
12: if mStates 6= ∅ then
13: 〈s, locs , hval〉 := get random element(mStates)
14: else
15: 〈s, locs , hval〉 := get random element(hStates)
16: backtrack .remove state(〈s, locs , hval〉)
17: bound size(backtrack)
18: return 〈s, locs , hval〉

procedure next state to explore(states , 〈s, locs , hval〉)
1: if states == ∅ or hval == min hval then
2: states .add state(〈s, locs , hval〉)
3: else if hval < min hval then
4: states .clear()
5: states .add state(〈s, locs , hval〉)
6: min hval := hval

7: return states

Figure 3.4: Two-tier ranking scheme for the meta heuristic.

an additional location from the sequence (line 7), then we update the mStates set

(line 8); otherwise, we update the hStates set (line 10). An element from the locs ′

is removed on line 8 to indicate s′ has observed an additional location. We invoke

the next state to explore function with the mStates or the hStates set and the

tuple containing s′. The best successor is picked from mStates if it is non-empty;

else, it is picked from the hStates set. The algorithm prefers states in the mStates

set because they have observed an additional location compared to their parent. All

other successor states are added to the backtrack set (lines 12− 18).

The next state to explore function in Figure 3.4 uses the secondary heuris-

tic values (hval) to add states to the mStates and hStates sets. Recall that the

55

procedure get backtrack state()
1: if backtrack == ∅ then
2: return 〈null,∞,∞〉
3: else
4: x := pick backtrack meta level()
5: b points := get states(backtrack, x)
6: b points := b points ∩ states min h value(b points)
7: return get random element(b points)

Figure 3.5: Stochastic backtracking technique.

next state to explore is invoked with either the mStates set or hStates set which

is mapped to the formal parameter states. When the states set is empty or the

hval is equal to the minimum heuristic value (min hval) then the algorithm simply

adds the tuple with the successor state to the states set. If, however, the hval is

less than the minimum heuristic value then the algorithm clears the states set, adds

the tuple with the successor state to states, and sets the value of min hval to hval .

Finally, the function returns the states set.

We use Figure 3.3(b) to demonstrate the two-tier ranking scheme. In Fig-

ure 3.3(b) the search is guided through locations l1 to ln. The dashed-lines separate

the states based on the number of locations from the sequence they have observed

along the path from the initial state. The states at the topmost level l1 have encoun-

tered the first program location in the sequence while states at l2 have observed the

first two program locations from the sequence, so on and so forth. In Figure 3.3(b)

we see that state s1 has three successors: s2, s3, and s4. The states s2 and s3 observe

an additional location, l2, from the sequence compared to their parent s1. Suppose s2

and s3 have the same secondary heuristic value. We add the states s2 and s3 to the

mStates set to denote that a location from the sequence is observed. Suppose, the

secondary heuristic value of s4 is greater than that of s2 and s3; then s4 is not added

to the hStates set.

56

After enumerating the successors of s1, the mStates set is non-empty so we

randomly choose between s2 and s3 (line 13 in Figure 3.4) and return the state as the

best successor. When we evaluate successors of a state that do not encounter any ad-

ditional location from the sequence, for example, the successors of s2 in Figure 3.3(b)

(enclosed by the box), the states are ranked simply based on their secondary heuris-

tic values. The best successor is then picked from the hStates set. All states other

than the best successor are added to the backtrack set. We bound the size of the

backtrack set to mitigate the common problem in directed model checking where

saving the frontier in a priority queue consumes all memory resources.

The get backtrack state function in Figure 3.5 picks a backtrack point when

the guided test reaches the end of a path. Backtracking allows the meta heuristic to

pick a different set of threads when it is unable to find an error along the initial

sequence of thread schedules. As shown in Figure 3.5, if the backtrack set is empty,

then the function returns null as the next state (lines 1− 2); otherwise, the function

probabilistically picks a meta level, x, between 1 and n where n is the number of

locations in the sequence. The states that have observed one program location from

the sequence are at meta level one. We then get all the states at meta level x and

return the state with the minimum secondary heuristic value among the states at that

meta level. The stochastic element of picking backtrack points enables the search to

avoid getting stuck in a local minima.

3.3 Empirical Study

The empirical study in this paper is designed to evaluate the effectiveness of the meta

heuristic in detecting concurrency errors in multi-threaded Java programs.

57

3.3.1 Study Design

We conduct the experiments on machines with 8 GB of RAM and two Dual-core

Intel Xeon EM64T processors (2.6 GHz). We run 100 trials of greedy depth-first

search and randomized depth-first search. All the trials are bounded at one hour. We

execute multiple trials of the greedy depth-first search since all ties in heuristic values

are brokenly randomly and there is a stochastic element in picking backtrack points.

An extensive study shows that randomly breaking ties in heuristic values helps in

overcoming the limitations (and benefits) of default search order in directed search

techniques [Rungta and Mercer, 2007b, Appendix A]. We pick the time bound and

number of trials to be consistent with other recent empirical studies [Dwyer et al.,

2006, 2007, Rungta and Mercer, 2007a, Appendix B]. Since each trial is completely

independent of the other trials we use a super computing cluster of 618 nodes to

distribute the trials on various nodes and quickly generate the results.1 We use the

Java Pathfinder (JPF) v4.0 Java byte-code model checker with partial order reduction

turned on to run the experiments [Visser et al., 2000a]. In the greedy depth-first search

trials we save at most 100,000 backtrack states.

We use six unique multi-threaded Java programs in this study to evaluate the

effectiveness of the meta heuristic in checking whether the input sequence leads to an

error. Three programs are from the benchmark suite of multi-threaded Java programs

gathered from academia, IBM Research Lab in Haifa, and classical concurrency errors

described in literature [Dwyer et al., 2006]. We pick these three artifacts from the

benchmark suite because the threads in these programs can be systematically manip-

ulated to create configurations of the model where randomized depth-first search is

unable to find errors in the models [Rungta and Mercer, 2007a, Appendix B]. These

models also exhibit different concurrency error patterns described by Farchi et. al

1We thank Mary and Ira Lou Fulton for their generous donations to the BYU Supercomputing
laboratory.

58

in [Farchi et al., 2003]. The other three examples are programs that use the JDK

1.4 library in accordance with the documentation. Figure 3.1 is one such program

that appears as AbsList in our results. We use Jlint on these models to automat-

ically generate warnings on possible concurrency errors in the JDK 1.4 library and

then manually generate the input sequences. The name, type of model, number of

locations in the input sequence, and source lines of code (SLOC) for the models are

as follows:

• TwoStage: Benchmark, Num of locs: 2, SLOC: 52

• Reorder: Benchmark, Num of locs: 2, SLOC: 44

• Wronglock: Benchmark, Num of locs: 3, SLOC: 38

• AbsList: Real, Num of locs: 6, Race-condition in the AbstractList class using

the synchronized Vector sub-class Figure 3.1. SLOC: 7267

• AryList: Real, Num of locs: 6, Race-condition in the ArrayList class using

the synchronized List implementation. SLOC: 7169

• Deadlock: Real, Num of locs: 6, Deadlock in the Vector and Hashtable

classes due to a circular data dependency [Williams et al., 2005]. SLOC: 7151

3.3.2 Error Discovery

In Table 3.1 we compare the error densities of randomized depth-first search (Random

DFS) to the meta heuristic using a greedy depth-first search. The error density which

is a dependent variable in this study is defined as the probability of a technique finding

an error in the program. To compute this probability we use the ratio of the number

of error discovering trials over the total number of trials executed for a given model

and technique. A technique that generates an error density of 1.00 is termed effective

in error discovery while a technique that generates an error density of 0.00 is termed

ineffective for error discovery.

59

Subject Total Random Meta Heuristic

Threads DFS PFSM Rand
Prefer

Threads
TwoStage(7,1) 9 0.41 1.00 1.00 1.00
TwoStage(8,1) 10 0.04 1.00 1.00 1.00
TwoStage(10,1) 12 0.00 1.00 1.00 1.00
Reorder(9,1) 11 0.06 1.00 1.00 1.00
Reorder(10,1) 12 0.00 1.00 1.00 1.00
Wronglock(1,20) 22 0.28 1.00 1.00 1.00
AbsList(1,7) 9 0.01 1.00 0.37 0.00
AbsList(1,8) 10 0.00 1.00 0.08 0.00
Deadlock(1,9) 11 0.00 1.00 1.00 1.00
Deadlock(1,10) 12 0.00 1.00 1.00 1.00
AryList(1,5) 7 0.81 1.00 1.00 1.00
AryList(1,8) 10 0.00 1.00 1.00 0.01
AryList(1,9) 11 0.00 1.00 1.00 0.00
AryList(1,10) 12 0.00 1.00 1.00 0.00

Table 3.1: Error density of the models with different search techniques.

We test three different secondary heuristics which is an independent variable

to study the effect of the underlying heuristic on the effectiveness of the meta heuris-

tic: (1) The polymorphic distance heuristic (PFSM) computes the distance between a

target program location and the current program location on the control flow repre-

sentation of the program. The heuristic rank based on the distance estimate lends

itself naturally to guiding the search toward the next location in the sequence [Rungta

and Mercer, 2009b, Chapter 4]. (2) The random heuristic (Rand) always returns a

random value as the heuristic estimate. It serves as a baseline measure to test the

effectiveness of guiding along the input sequence in the absence of any secondary guid-

ance. (3) The prefer-thread heuristic (Prefer Threads) assigns a low heuristic value

to a set of user-specified threads [Groce and Visser, 2002b]. For example, if there are

five total threads in a program then the user can specify to prefer the execution of

certain threads over others when making scheduling choices.

The results in Table 3.1 indicate that the meta heuristic, overall, has a higher

error discovery rate compared to randomized depth-first search. In the TwoStage

60

Subject PFSM Heuristic Random Heuristic Prefer-thread Heuristic
Min Avg Max Min Avg Max Min Avg Max

TwoStage(7,1) 209 213 217 40851 130839 409156 414187 2206109 4813016
TwoStage(8,1) 246 250 255 49682 217637 502762 609085 4436444 10025314
TwoStage(10,1) 329 333 340 52794 314590 827830 2635251 6690008 8771151
Wronglock(1,10) 804 3526 12542 73 7082 22418 560 120305 675987
Wronglock(1,20) 2445 21391 175708 67 24479 242418 1900 3827020 15112994
Reorder(5,1) 106 109 112 1803 5597 10408 259 977 2402
Reorder(8,1) 193 197 202 17474 36332 65733 523 3110 13536
Reorder(10,1) 266 271 277 28748 67958 110335 771 5136 16492
AryList(1,10) 1764 14044 55241 3652 15972 63206 - - -
AbsList(1,10) 1382 1382 1382 10497302 10497302 10497302 - - -

Table 3.2: Comparison of the heuristics when used with the meta heuristic.

example the error density drops from 0.41 to 0.00 when going from the configuration of

TwoStage(7,1) to the TwoStage(10,1) configuration. A similar pattern is observed

in the Reorder model where the error density goes from 0.06 to 0.0; in the AryList

model the error density drops from a respectable 0.81 to 0.00. For all these models,

the meta heuristic using the polymorphic distance heuristic finds an error in every

single trial as indicated by the error density of 1.00. In some cases, even when we

use the random heuristic as the secondary heuristic, the greedy depth-first search

outperforms the randomized depth-first search.

The AbsList, AryList, and Deadlock models represent real errors in the

JDK 1.4 concurrent library. The AbsList model contains the portion of code shown

in Figure 3.1. In addition to the locations shown in Section 2.1 we manually add

other data definition locations that are relevant in reaching the locations shown in

Section 2.1. We use the meta heuristic to successfully generate a concrete error trace

for the possible race condition reported by Jlint. The counter-example shows that the

race-condition is caused because the equals method in Figure 3.1(c) never acquires

a lock on the input parameter. This missing lock allows another thread to modify

the list (by adding an object on line 11 in Figure 3.1(b)) while the thread is iterating

over the list in the equals method. To our knowledge, this is the first report of the

particular race condition in the JDK 1.4 library. It can be argued that the application

61

using the library is incorrect and changing the comparison on line 13 of Figure 3.1(b)

to l2.equals(l1) can fix the error; however, we term it as a bug in the library because

the usage of the library is in accordance with the documentation.

Table 3.2 reports the minimum, average, and maximum number of states gen-

erated in the error discovering trials of the meta heuristic using the three secondary

heuristics. The entries in Table 3.2 marked “-” indicate that the technique was unable

to find an error in 100 independent greedy depth-first search trials that are time-

bounded at one hour. In the TwoStage, Reorder, AryList, AbsList subjects, the

minimum, average, and maximum states generated by the PFSM heuristic is percepti-

bly less than the random and prefer-thread heuristics. Consider the Twostage(7,1)

model where, on average, the PFSM heuristic only generates 213 states while the

random heuristic and prefer-thread heuristic generate 130, 839 and 2, 206, 109 states

respectively, on average, before error discovery. In the AbsList(1,10) model the

PFSM heuristic finds the error every time by exploring a mere 1382 states. In con-

trast, from a total of 100 trials with the random heuristic only a single trial finds the

error after exploring over a million states, while the prefer-thread heuristic is unable

to find the error in the 100 trials. Wronglock is the only model where the minimum

number of states generated by the random heuristic is less than the PFSM heuristic.

This example shows that it is possible for the random heuristic to get just lucky in

certain models. The results in Table 3.2 demonstrate that a better underlying sec-

ondary heuristic helps the meta heuristic generate fewer states before error discovery.

The trends observed in Table 3.2 are also observed in total time taken before error

discovery, total memory used, and length of counter-example.

3.3.3 Effect of the Sequence Length

We vary the number of key locations in the input sequence provided to the meta

heuristic to study the effect of the number of locations on the performance of the meta

62

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 1 2 3 4 5 6

A
vg

 S
ta

te
s

be
fo

re
 e

rr
or

Length of Sequence

Figure 3.6: Effect of varying the number of locations in the sequence in the
AryLst(1,10) program to verify the race condition in the JDK1.4 concurrent library.

heuristic. In Figure 3.6 we plot the average number of states generated (the dependent

variable) before error discovery while varying sequence lengths in the AryLst model.

In Figure 3.6 there is a sharp drop in the number of states when we increase the

number of key locations from one to two. A smaller decrease in the average number

of states is observed between sequence lengths two and three. We observe the effects

of diminishing returns after three key locations and the number of states does not vary

much. In general, for the models presented in this study, only 2–3 key locations are

required for the meta heuristic to be effective. In the possible race condition shown

in Figure 3.1 (AbsList model), however, we needed to specify a minimum of five key

program locations in the input sequence for the meta heuristic to find a corresponding

concrete error trace. Recall that the AbsList model represents the race-condition in

the AbstractList class while using the synchronized Vector sub-class in the JDK

1.4 library.

3.4 Related Work

Static analysis techniques ignore the actual execution environment of the program and

reason about errors by simply analyzing the source code of the program. ESC/Java

relies heavily on program annotations to find deadlocks and race-conditions in the

63

programs [Flanagan et al., 2002]. Annotating existing code is cumbersome and time

consuming. RacerX does a top-down inter-procedural analysis starting from the root

of the program [Engler and Ashcraft, 2003]. Similarly, the work by Williams et al.

does a static deadlock detection in Java libraries [Williams et al., 2005]. FindBugs

and Jlint look for suspicious patterns in Java programs [Artho and Biere, 2001, Hov-

emeyer and Pugh, 2004]. Error warnings reported by static analysis tools have to be

manually verified which is difficult and sometimes not possible. The output of such

techniques, however, serve as ideal input for the meta heuristic presented in this pa-

per. Furthermore, dynamic analysis techniques can also be used to generate warnings

about potential errors in the programs [Havelund, 2000, Shacham et al., 2007].

Model checking is a formal approach for systematically exploring the behavior

of a concurrent software system to verify whether the system satisfies the user spec-

ified properties [Holzmann, 2003, Visser et al., 2000a]. In contrast to exhaustively

searching the system, directed model checking uses heuristics to guide the search

quickly toward the error [Edelkamp and Mehler, 2003, Edelkamp et al., 2001b, Groce

and Visser, 2002b, Rungta and Mercer, 2005, 2006, 2009b]. Property-based heuristics

and structural heuristics consider the property being verified and structure of the

program respectively to compute a heuristic rank [Edelkamp et al., 2001b, Groce and

Visser, 2002b]. Distance estimate heuristics rank the states based on the distance

to a possible error location [Edelkamp and Mehler, 2003, Rungta and Mercer, 2005,

2006, 2009b]. As seen in the results, the PFSM distance heuristic is very effective in

guiding the search toward a particular location; however, its success is dramatically

improved in combination with the meta heuristic.

The trail directed model checking by Edelkamp et. al uses a concrete counter-

example generated by a depth-first search as input to its guidance strategy [Edelkamp

et al., 2001a]. It uses information from the original counter-example (trail) in order

to generate an optimal counter-example. The goal in this work, however, is to achieve

64

error discovery in models where exhaustive search techniques are unable to find an

error. The deterministic execution technique used to test concurrent Java monitors

is related to the technique presented in this paper [Harvey and Strooper, 2001]. The

deterministic execution approach, however, requires a significant manual effort with

the tester required to provide data values to execute different branch conditions,

thread schedules, and sequence of methods.

Similar ideas of guiding the program execution using information from some

abstraction of the system have been explored in hardware verification with consider-

able success [Nanshi and Somenzi, 2006, Paula and Hu, 2007]. An interesting avenue

of future work would be to study the reasons for the success (in concretizing abstract

traces by guiding program execution) that we observe in such disparate domains with

very different abstraction and guidance strategies.

3.5 Conclusions and Future Work

This paper presents a meta heuristic that automatically verifies the presence of errors

in real multi-threaded Java programs based on static analysis warnings. We provide

the meta heuristic a sequence of locations and it automatically controls scheduling

decisions to direct the execution of the program using a two-tier ranking scheme

in a greedy-depth first manner. The study presented in this paper shows that the

meta heuristic is effective in error discovery in subjects where randomized depth-first

search fails to find an error. Using the meta heuristic we discovered real concurrency

errors in the JDK 1.4 library. In future work we want to take the output of a static

analysis tool and automatically generate the input sequence using control and data

dependence analyses. Also we would like to extend the technique to handle non-

determinism arising due to data values.

65

66

Chapter 4

A Distance Heuristic for Programs with Polymorphism

This chapter was published as:

N. Rungta and E. G. Mercer, “Guided Model Checking for Programs with Poly-

morphism”, in Proceedings of ACM SIGPLAN Workshop on Partial Evaluation and

Program Manipulation (PEPM), Savannah, Georgia, USA, January 2009.

Abstract

Exhaustive model checking search techniques are ineffective for error discovery in

large and complex multi-threaded software systems. Distance estimate heuristics

guide the concrete execution of the program toward a possible error location. The

estimate is a lower-bound computed on a statically generated abstract model of the

program that ignores all data values and only considers control flow. In this pa-

per we describe a new distance estimate heuristic that efficiently computes a tighter

lower-bound in programs with polymorphism when compared to the state of the art

distance heuristic. We statically generate conservative distance estimates and refine

the estimates when the targets of dynamic method invocations are resolved. In our

empirical analysis the state of the art approach is computationally infeasible for large

programs with polymorphism while our new distance heuristic can quickly detect the

errors.

67

4.1 Introduction

The ubiquity of multi-core processors is creating a paradigm shift from inherently

sequential to highly concurrent and parallel systems. The lack of scalable verification

techniques to detect concurrency errors is proving to be a hindrance for programmers

developing concurrent programs. The trend toward parallelism and concurrency moti-

vates a need to develop effective and scalable error detection techniques for concurrent

programs.

Model checking techniques exhaustively enumerate all possible behaviors of

the system to verify the presence as well as the absence of errors in programs [Ball

and Rajamani, 2001, Henzinger et al., 2003, Holzmann, 2003, Robby et al., 2003,

Visser et al., 2003]. The systematic exploration of all possible behaviors enables

model checking to find subtle concurrency errors that are often missed by ad-hoc

testing techniques. The exhaustive nature of model checking leads to a huge state

space explosion making it intractable in verifying practical applications.

Guided model checking tries to overcome the state space explosion problem

by focusing the search in parts of the program that are more likely to contain an

error [Edelkamp and Mehler, 2003, Edelkamp et al., 2001b, Groce and Visser, 2002b,

Rungta and Mercer, 2005, 2006]. Guided model checking techniques use heuristic

functions to rank states in order of interest in an attempt to quickly generate a

counterexample. States are ordered in a priority queue or a search stack based on

their heuristic rank and path cost such that the states estimated to lead to an error

state are explored before others.

Distance estimate heuristics try to compute a reasonable lower-bound on the

number of computation steps required to reach a target location from the current

location [Edelkamp and Mehler, 2003, Rungta and Mercer, 2005, 2006]. The distance

estimates are used to guide the concrete program execution toward the target loca-

tions. The target locations are either provided by the user or generated using static

68

analysis techniques. The estimates are computed on a statically generated abstract

model that ignores all data values and only considers the control flow of the program.

In the absence of data values to compute an accurate distance estimate between two

arbitrary program locations is undecidable in general.

The FSM distance heuristic is the state of the art distance heuristic for pro-

grams with polymorphism [Edelkamp and Mehler, 2003]. The FSM distance heuristic

ignores all calling context information and is unable to compute a reasonable lower-

bound. Furthermore, the complexity of the FSM distance heuristic is cubic in the

total number of instructions in the program. This complexity renders the FSM dis-

tance heuristic intractable for computing distance estimates in medium to large sized

programs. Note that this is after we perform a rapid type analysis that uses the

information about instantiated classes to create a reduced set of executable methods

in programs with polymorphism [Bacon and Sweeney, 1996].

In this work we present a distance heuristic estimate that computes a tighter

lower-bound on the distance estimates in polymorphic programs compared to the

FSM distance heuristic. The polymorphic distance heuristic first performs an inter-

procedural static analysis to compute an initial lower-bound on distance estimates;

second, during the model checking we refine the distance estimates on demand when

the targets of dynamic method invocations are resolved. The complexity of the new

approach is cubic in the number of instructions in the method with the largest number

of instructions. Note that this is significantly less than the complexity of the FSM

distance heuristic.

We present an empirical analysis to demonstrate the effectiveness of the poly-

morphic distance heuristic in error discovery in a set of benchmarked multi-threaded

programs where exhaustive and randomized search techniques are unable to find an

error. We compare the polymorphic distance heuristic to the FSM distance heuristic

and a random heuristic that assigns a random value as the rank of a state. Using

69

the polymorphic distance heuristic we are able to detect real errors in the JDK 1.4

concurrent library. We also demonstrate that it significantly outperforms the FSM

distance heuristic and the random heuristic in the number of states, time taken, and

total memory used before error discovery.

4.2 Background

Distance estimate heuristics compute a heuristic value based on the distance to a

target state, t, from a current state, s. The state s contains a set of unique thread

identifiers, a program location and stack for each thread, and a heap. A transition

relation generates a set of successor states for s, {s′0, s′1, . . . , s′n}, where the transition

to each successor s → s′i represents a possible change in state from s. Iteratively

applying the transition relation to each state allows us to build the entire reachable

behavior space of the program. A path, π, is a sequence of transitions, s → s′ →

s′′ → s′′′ . . ., that represents a feasible execution path in the behavior space.

Definition 10. The distance, d, between state, s, and target state, t, is the number

of computation steps in an execution path from s to t: d(s, t) := |π| where π := s →

s′ → s′′ → . . . → t.

Computing accurate distance estimates between two states requires us to first

build the reachable state space of a program that essentially entails solving the original

problem a priori. In order to overcome this problem, distance estimate heuristics use

a heuristic function, h, that approximates the distance between s and t on a statically

generated abstract transition graph of the program. In the abstract system a state

simply contains a unique program location identifier. In other words, an abstract

state represents a single program instruction. The control flow of the program is

the transition relation used to generate the abstract transition system. The abstract

transition system ignores all data values and is an over-approximation of the original

70

system. The program location of the recently executed thread in state s is used to

map the concrete state to an abstract state. The heuristic function, h, estimates the

distance between s and t by computing the distance between their respective abstract

counterparts in the abstract transition system. Different distance heuristics compute

the heuristic values on the abstract transition graph with varying degrees of calling

context information.

The FSM distance heuristic is the state of the art heuristic for computing

distance estimates in programs with polymorphism [Edelkamp and Mehler, 2003]. The

FSM distance heuristic performs an interprocedural control flow analysis to statically

compute the lower-bound on the distance between two arbitrary instructions in the

program. The FSM distance heuristic is unable to compute a reasonable lower-bound

because it ignores all calling context information and simply minimizes across the

different methods. A detailed example is shown in [Rungta and Mercer, 2005]. This

problem is further exacerbated in programs with polymorphism because it minimizes

the distance estimates across all implementing sub-type targets of a dynamic method

invocation.

The e-FCA heuristic computes full calling context-aware distance estimates

in non-recursive C programs with resolved function pointers using a combination of

static and dynamic information [Rungta and Mercer, 2006]. The e-FCA improves

on previous distance estimates based on the FSM heuristic function and the EFSM

heuristic function [Edelkamp and Mehler, 2003, Rungta and Mercer, 2005]. The FSM

distance heuristic does not consider any calling context while the EFSM distance

heuristic only considers partial context information. A comparative empirical study

in [Rungta and Mercer, 2006] demonstrates that computing a tighter lower-bound by

adding more calling context information enables us to more efficiently find an error.

The e-FCA distance estimate is computed based on the statically generated

abstract model that only contains control flow information with following rules: at a

71

given program location, we can either (a) reach the return statement of the current

function and return to its caller without encountering the target location; or (b) reach

the target location without executing the return statement of the current function

(the target location can be reached in the forward direction). In cases where the target

location cannot be reached in the forward direction, the e-FCA looks up the return

point of the current function on the dynamic runtime stack of the recently executed

thread in the concrete state. If the target location is reachable in the forward direction

from the return point then the final estimate is the summation of the cost of moving

to the return point and the distance in the forward direction from the return point

to the target location. Otherwise, the algorithm keeps unrolling the stack until it

reaches the main function.

The e-FCA lower-bounds all distance estimates by computing the shortest

paths through various branching and looping constructs of a program. This allows

the heuristic to be admissible and consistent.

Definition 11. An admissible heuristic h is a function that guarantees a lower bound

on the distance from every state, s, to the target state, t: h(s, t) ≤ d(s, t).

Definition 12. A consistent heuristic h is a function that guarantees for every state

s and each successor of s′ of s the estimated distance from s to t is less than or equal

to the distance between s and s′ plus the estimated distance from s′ to t: h(s, t) ≤

d(s, s′) + h(s′, t)

In an A∗ search, [Russell et al., 1995], the e-FCA generates minimal length

counter-examples. The e-FCA heuristic is, however, not designed to compute distance

estimates in the presence of dynamic method invocations whose targets cannot be

statically resolved using a type analysis.

4.3 Motivation

72

1: class AbstractList implements List{
2: . . .
3: public boolean equals(Object o){
4: if o == this then
5: return true;
6: if ¬(o instanceof List) then
7: return false;
8: ListIterator e1 := ListIterator();
9: ListIterator e2 := (List o).listIterator();

10: while e1.hasNext() and e2.hasNext() do
11: Object o1 := e1.next();
12: Object o2 := e2.next();
13: if¬(o1 == null ? o2 == null : o1.equals(o2))then
14: return false;
15: return ¬(e1.hasNext() || e2.hasNext())
16: }
17: . . .
18: }

Figure 4.1: The equals function in the AbstractList implementation of the JDK
1.4 library which uses polymorphism.

It is important to compute accurate distance estimates in the presence of poly-

morphism because there is an increasing use of object oriented languages like Java

and C# which inherently encourage the use of polymorphism. More importantly,

Java and C# are being used to develop concurrent applications because they na-

tively support concurrency. The inability of the FSM distance heuristic to compute

estimates in the presence of polymorphism makes it ineffective for guiding program

execution in Java and C# programs.

The example shown in Figure 4.1 is the equals function of the AbstractList

class in the JDK 1.4 concurrent library. In order to compute the distance estimate

from the start to the end of the equals method we have to evaluate the cost of

moving through the method calls in Figure 4.1. The list iterator operations (lines

8-12 and 15) and the call to equals on the objects from both lists (line 13) are

dynamic method invocations whose targets cannot be determined statically. A very

small portion of the call graph with the class hierarchy for the method in Figure 4.1

is shown in Figure 4.2. The call graph shows that even for a single method call, there

73

equals

Object

AbstractList

AbstractCollection

AbstractSequenctialList

AbstractSet
equals

equals

LinkedList
equals

Stack
equals

Vector
equals

ArrayList
equals

equals

equals

Figure 4.2: A partial call graph for the equals function in the AbstractList imple-
mentation.

may be a large number of possible functions that we need to evaluate for computing

heuristic estimates.

Simply minimizing the distance estimates across all the methods implemented

by the sub-classes for a particular polymorphic method call is not computationally

feasible. Our tests show that even for medium-sized programs such an analysis does

not complete within a time bound of one hour. The heuristic estimates computed

using such a brute force approach also tend to be inaccurate because at every program

location it simply computes a lower-bound across all implementations. For programs

with a large number of types the inaccurate estimates degenerate essentially into

random estimates.

4.4 Polymorphic Distance Heuristic

In this section we present a new polymorphic distance estimate (PFSM) that performs

an interprocedural static analysis to conservatively compute distance estimates with

74

partial context information for targets of dynamic method invocations that are not

statically resolved with a type analysis (unresolved polymorphic methods). It then

dynamically computes the distance estimates on demand when the type of polymor-

phic methods are resolved during model checking. In other words, without completely

analyzing all subtypes it lower-bounds distance estimates and computes the estimate

on demand as type information is discovered at runtime.

procedure polymorphic distance heuristic(main)
1: /∗ N is set of nodes, E is the set of edges, nstart is the start node, and nend is

the end node in the CFG ∗/
2: 〈N, E, nstart , nend〉 := get CFG(main)
3: compute estimates(〈N, E, nstart , nend〉)
4:

procedure compute estimates(〈N, E, nstart , nend〉)
5: /∗ Entries along the diagonal are 0 while others are ∞ ∗/
6: L : |N | × |N | → N ∪ {∞}
7: L := analyze function(nstart , L, ∅)
8: L := compute all pairs shortest distance(L)
9: Explored .add(〈N, E, nstart , nend〉, L)

10:
procedure analyze function(n, L,Visited)
11: if is call site(n) then
12: if has resolved type(n) then
13: 〈N ′, E ′, n′start , n

′
end〉 := get target CFG(n)

14: dsucc := get distance to end(〈N ′, E ′, n′start , n
′
end〉, n)

15: else
16: dsucc := 2 /∗ Conservative estimate ∗/
17: else
18: dsucc := 1 /∗ Instructions other than call sites ∗/
19: for each n′ ∈ succ(n) and n′ 6∈ Visited do
20: L(n, n′) := dsucc; Visited := Visited ∪ {n′}
21: L := analyze function(n′, L,Visited)
22: return L
23:
procedure get distance to end(〈N, E, nstart , nend〉, nc)
24: if nc ∈ N then
25: return 2 /∗ Recursive call ∗/
26: if ¬Explored .contains(〈N, E, nstart , nend〉) then
27: compute estimates(〈N, E, nstart , nend〉)
28: L := Explored .get element(〈N, E, nstart , nend〉)
29: return L(nstart , nend)

Figure 4.3: Pseudocode for computing distance estimates statically.

75

4.4.1 Static analysis phase

An abstract model of the program is created to compute initial distance estimates.

The model ignores all data values of the program and focuses only on control flow.

The abstract model combines a control flow graph for each procedure in the program

and a call graph that represents the call hierarchy of various procedures. The control

flow graphs and the call graph denote the control flow of the program at an intra and

inter procedural level respectively. The distance estimates between instructions in a

procedure are computed as a lower-bound in the presence of branching and iterative

constructs.

We algorithmically construct the abstract model and compute the distances

between instructions in a method. The algorithm uses a reverse invocation order to

estimate the cost of moving through method calls if the type of the callee can be

statically determined. The analysis, however, does not step into methods whose type

cannot be statically resolved after a rapid type analysis. In such cases a conservative

estimate of two (one to call the function and another for the return edge) is assigned

as the cost of moving through the corresponding call site to its immediate successor

in the analysis. The conservative estimates are superseded by the distance estimates

dynamically computed on demand as the type of methods is resolved during the model

checking run.

The pseudo-code for the static analysis phase of computing the distance es-

timate values is presented in Figure 4.3. The tuple, 〈N, E, nstart , nend〉, is a control

flow graph (CFG) where N is a set of abstract nodes labeled with unique program

location identifiers, E ⊆ N ×N is the set of edges, nstart ∈ N is the start node, and

nend is the end node in the CFG. The variable, L, is a matrix of values that holds

the distance estimates between instructions in each method. The Explored variable

is a map used to memoize the distance matrices for the different CFGs so that each

method in the program is evaluated only once. The Visited set is used to detect cycles

76

in the control flow of a particular method. The function is call site takes as input a

node in the CFG and returns true if the node represents a call site in the program.

The has resolved type function takes as input a node that is a call site and returns

true if the type of the target method (callee) is statically resolved after the rapid type

analysis; the function get target CFG returns the CFG of the target method given a

call site. Finally, the succ function returns a set of the immediate successors of a node

n in the CFG, succ(n) = {n′ ∈ N |(n, n′) ∈ E}.

The polymorphic distance heuristic function is invoked by the main method to

statically compute distance estimates as shown in Figure 4.3 (lines 1-4). The function

invokes the compute estimates function with the CFG of the main method (lines 2-3).

The compute estimates function initializes a distance matrix L : |N | × |N | where the

entries along the diagonal are set to zero while all other entries are set to ∞ (line

6). Next, on line 7 of Figure 4.3, the analyze function is called with the start node of

the CFG, nstart , and the corresponding distance matrix, L, to initialize the edge costs

between the nodes in the CFG.

The analyze function uses a depth-first search traversal (lines 19-21) to update

edge costs in L. For all nodes that are not call sites, the distance between the node

and its immediate successor, dsucc, is set to one (line 18). When we encounter a call

site during the traversal whose target method cannot be statically resolved then we

conservatively set the cost of moving from the call site to its immediate successor

node as two (lines 15-16). In essence, we do not evaluate any methods whose type

cannot be statically resolved. If the type of the method can be resolved statically

we update the cost between the call site and its successor by computing the distance

estimate of moving through the target method (lines 12-14). After all the edge costs

are updated in the distance matrix, L, the matrix is returned (line 22). At this point

the analysis resumes on line 8 of the compute estimates function where an all-pairs

77

shortest path analysis is performed on the distance matrix. Finally the matrix is

added to the Explored map with its corresponding CFG (lines 8-9).

To compute the cost of moving through the target method of a call site, we

invoke the get distance to end function with the CFG of the target method and its

corresponding call site (line 14). A simple check of whether the call site is also

part of the target CFG reveals a recursive method call, in which case a conservative

estimate of two is returned. In non-recursive method calls, if the target method is

not found in the Explored set, then we step into the target method by calling the

compute estimates function with the CFG of the target method (line 27). When the

execution flow returns on line 28 of Figure 4.3, we get the corresponding distance

matrix, L, for the target method. The shortest distance from the start node to the

end node in the distance matrix is returned as the cost of moving from the call site

to its immediate successor on line 14 of the analyze function.

4.4.2 Guided Search

The heuristic computed on the abstract model is used to intelligently rank the concrete

states generated at points of thread non-determinism during model checking. A

concrete state, s, contains a set of unique thread identifiers, a program location and

stack for each thread and a heap. For each successor, s′, of s the PFSM distance

estimate from the current program location of the recently executed thread in s′ to

the specified target location is assigned as the heuristic rank of the s′. Intuitively, the

PFSM heuristic drives certain threads toward the target locations specified by the

user or generated using static analysis techniques.

4.4.3 Dynamic heuristic computation

The abstract model consisting of control flow graphs and the call graph of the pro-

gram is refined when type information is discovered during model checking. As the

78

procedure get forward distance estimate(curLoc, targetLoc)
1: 〈N, E, nstart , nend〉 := get function containing(curLoc)
2: if ¬Explored .contains(〈N, E, nstart , nend〉) then
3: compute estimates(〈N, E, nstart , nend〉)
4: if targetLoc ∈ N then
5: return get distance(curLoc, targetLoc)
6: return get estimate(get CFG node(curLoc), get CFG node(targetLoc))
7:

procedure get estimate(n, nt)
8: hVal := ∞
9: for each n′ ∈ call sites(get function containing(n)) do

10: if not related(n′, nt) then
11: continue
12: d := get distance(n, n′)
13: if d < hVal then
14: hVal := min(compute dynamic estimate(n′, nt, d, hVal), hVal)
15: return hVal
16:
procedure compute dynamic estimate(nc, nt, d, hVal)
17: if nt ∈ target CFG nodes(nc) then
18: hVal ′ := d + get distance from start to node(nt) + 1
19: return hVal ′

20: else
21: /∗ CGR ⊆ Xc ×Xc where Xc is the set of all call sites in the program. ∗/
22: for each n′c ∈ CGR(nc) do
23: if not related(n′c, nt) then
24: continue
25: d′ := d + get distance from start to node(n′c) + 1
26: if d′ < hVal then
27: hVal := min(compute dynamic estimate(n′c, nt, d

′, hVal), hVal)
28: return hVal
29:

Figure 4.4: Pseudocode for computing the distance heuristic during runtime

refinement step we compute the distance estimates between the instructions in the

control flow graph of a procedure whose alias information is discovered during the

model checking run. The final heuristic value is computed on the abstract model

along a sequence of call sites across the different control flow graphs from the current

location to the target location.

We algorithmically show the heuristic computation in the dynamic analysis

phase of the PFSM heuristic. The algorithm traverses the call graph in a depth-first

manner to implicitly construct call traces between the current location and the target

location in the forward direction. It uses the type information in the state generated

79

during model checking to compute the distance estimates on demand along a partic-

ular call trace by using correct alias information to resolve types. The algorithm uses

a branch and bound technique to restrict the number of call traces that need to be

evaluated. The algorithm minimizes the distance estimate among all the call traces

that lead from the current location to the target location. If the target location is

not reachable in the forward direction then we look up the return point of the cur-

rent function in the runtime stack extracted from the state generated during model

checking as described in [Rungta and Mercer, 2005]. Next, if the target location is

reachable from the return point we return the sum of the cost of moving to the end

of the current function plus the distance estimate from the return point to the target

location as the heuristic estimate; otherwise we keep unrolling the stack and repeat

the above process.

The pseudocode for the dynamic phase of the algorithm is shown in Figure 4.4.

The get forward distance estimate function in Figure 4.4 takes as input the current

program location of the most recently executed thread in the concrete state (curLoc)

and the target location (targetLoc) to compute the distance estimate between them

in the forward direction. The get function containing returns the CFG which contains

the current program location (line 1). If the CFG containing the current location has

not been previously analyzed (line 2) then we know that the type of a polymorphic

method is now resolved. At this point we can compute the distance estimates between

the instructions in the method (line 3) by calling the compute estimates function in

Figure 4.3. Next, if the target node is contained within the same CFG as the current

node (line 4) then the algorithm returns the value obtained from the get distance

function. The get distance function returns the shortest distance between the two

nodes in the same CFG. Note that the distance between the two nodes in the CFG

is computed using partial context information because the algorithm conservatively

80

assigns the distance between a call site for an unresolved polymorphic type to its

immediate successor as two in the CFG.

The get estimate and compute dynamic estimate functions traverse the nodes

in the call graph implicitly constructing the call traces from the current location to

the target location in the forward direction to compute the heuristic value, hVal . The

function uses a branch and bound algorithm in an attempt to restrict the number

of call traces that need to be evaluated for computing hVal . The function call sites

(line 9) generates the set of nodes that represent call sites in the input CFG while

the not related (lines 10 and 23) function returns true if there does not exist a path

between the input nodes, n′ and nt (line 10), in the forward direction on the call

graph. The get estimate and compute dynamic estimate functions compute the dis-

tances along call traces using a depth-first traversal of the call graph (lines 9-14 and

22-27 respectively) such that the target node is reachable in the forward direction

along the call trace. Note that we detect loops in the call trace in our implementa-

tion and backtrack appropriately. The get estimate function constructs the first part

of the call trace. It gets the distance from the current location to a call site within

its own method that leads to the target node (lines 10-12). The get estimate function

then calls compute dynamic estimate (line 14) to compute the distance estimate on

the rest of the call trace.

The compute dynamic estimate function computes the distances through the

different call sites in a call trace. It uses a call graph relation, CGR ⊆ Xc × Xc,

where Xc is the set of the call sites in the entire program, to build a path through

the different call sites in the program (lines 22-27) to a target location. Intuitively, a

call graph relation describes the edges between different nodes in a call graph. The

algorithm maintains a running summary of the distance estimates between the call

sites (line 25). The get distance from start to node function takes as input a node

(which in this case is a call site) and gets the CFG that contains the input node. If

81

the Explored set contains the CFG then the get distance from start to node function

returns the shortest distance from the start node of the CFG, nstart , to the call site;

otherwise it returns a conservative estimate of two. This essentially computes the

distance estimates between different call sites in the call trace. When the algorithm

reaches a call site whose callee CFG contains the target node, the function returns

the summation of the distances along the path in the call trace up to the target node

as the heuristic value (lines 17-19). The heuristic value is computed as a lower-bound

and is propagated along the different call paths to prune other call traces when the

value along a path becomes greater than the current heuristic value.

Theorem 1. The PFSM heuristic computes a lower-bound on the distance esti-

mate, if there exists one or more sequences of call points, 〈c0, c1, . . . , ck〉, in the

call graph through k methods, in the presence of unresolved polymorphic methods,

that represent a path between the current location, l, and the target location, t,

dmin(l , t) := dmin(l , c0) +
∑

i=1to k−1 dmin(start(i), ci) + dmin(start(k), t), between l and

t and minimizes across all call sequences.

Proof. Assume that the algorithm does not lower-bound the distance estimate along

a particular sequence of call points. There are two possible cases when computing the

distance along a sequence of call points. (1) The type of the method containing a call

point is resolved—either statically or dynamically. Here the algorithm performs an

all-pairs shortest path analysis on the CFG of the method. The analysis returns values

between the nodes that are a lower-bound on the actual distance in the presence of

branching and looping constructs. (2) The type of the method containing the call

point is not resolved. The algorithm assigns a lower-bound of two to account for

moving from the start of the method to a call site and then moving to next call

site. The summation of all the values as the algorithm moves along a particular call

sequence is a lower-bound on the distance estimate between l and t which contradicts

our assumption.

82

Corollary 1. The PFSM heuristic estimate is consistent.

Proof. The proof follows the one described for the FSM distance heuristic in [Edelkamp

and Mehler, 2003]. There are two possible cases: (1) The shortest path from s to t

contains s′. Suppose the length of the shortest path from s to t is l then, by definition,

h(s, t) = h(s′, t)− d(s, s′) which satisfies h(s, t) ≤ h(s′, t) + d(s, s′). (2) The shortest

path from s to t does not contain s′. Consider the path, π = s → s′ → . . . → t,

where |π| ≥ l + d(s, s′) and l is the shortest path between s and t. Further-

more, π′ = s → . . . → t, which implies |π′| ≥ l and h(s′) ≥ l. Hence we have

h(s, t) ≤ h(s′, t) + d(s, s′).

Corollary 2. The PFSM heuristic is admissible.

Proof. By definition, a consistent heuristic is also admissible [Russell et al., 1995].

From Corollary 1 we know that the PFSM heuristic is admissible.

Theorem 2. The complexity of computing the PFSM distance heuristic in the forward

direction is O(
∑rm

i=0 |Ni|3+|Nc+Ec|) where rm is the number of methods with resolved

types, Ni is set of nodes representing instructions in method i, Nc is the set of nodes

in the call graph, and Ec is the set of edges in the call graph.

Proof. The complexity of computing the PFSM distance heuristic in the forward

direction is O(
∑rm

i=0 |Ni|3) for performing an all-pairs shortest path analysis on every

method whose type has either been statically (line 8 in Figure 4.3) or dynamically

resolved. Note that when the type of a method is dynamically resolved, line 3 in

Figure 4.4 calls the function compute estimates in Figure 4.3 and then performs the

all-pairs shortest path analysis on line 8 in Figure 4.3. The complexity of the PFSM

distance heuristic is also linear in the number of nodes and edges in the call graph as it

computes a lower-bound on the distance estimates across the different call sequences

between the current and target location (lines 9-14 and 22-27 in Figure 4.4). In

the worst case, the algorithm explores the entire call-graph in a depth-first manner;

83

in general, however, propagating the lower-bound across the different call sequences

is successful in pruning a large number of call sequences that do not need to be

explored.

In contrast, the FSM distance heuristic, minimizes over all possible imple-

menting sub-types of a particular method and has a complexity of O(X3), where X

is the number of total instructions in the program X =
∑

1≤i≤m |Ni|, and m is the

total number of methods in the program; however, X is very large for most programs

of interest. The PFSM heuristic is more computationally effective even though both

heuristics belong to the same complexity class.

As the model checking run progresses, PFSM distance heuristic estimate, hp,

is a tighter lower-bound compared to the FSM distance heuristic estimate, hf , such

that hf ≤ hp. The FSM distance heuristic is a context-insensitive algorithm and

under-approximates distance values by ignoring all calling context. As the type of

one or more methods are resolved during the model checking run the PFSM distance

heuristic computes distances along different methods based on correct alias informa-

tion. The PFSM distance heuristic uses the context information on the runtime stack

of the state in a manner similar to the e-FCA [Rungta and Mercer, 2006]. A more

detailed example demonstrating the effects of calling context is shown in [Rungta and

Mercer, 2006].

4.4.4 Example of heuristic computation

We use the example in Figure 4.5 to demonstrate how the heuristic values

are computed. The class X in Figure 4.5(a) is an abstract class with three methods:

aa, test, and bb. The classes Y (Figure 4.5(b)) and Z (Figure 4.5(c)) inherit from

the X class. In Figure 4.5(a), the input to the test method is an object, x , of type

X. On lines 7 and 8, methods bb and aa are invoked, respectively, on the current

instance of X and the input parameter x . Statically we can determine that the call

84

1: public abstract class X {
2:
3: public abstract void aa();
4:
5: public void test(X x){
6: i := 0;
7: this .bb();
8: x .aa();
9: }

10:
11: public void bb(){
12: this .val := 10;
13: this .otherVal := 11
14: }
15: }

1: class Y extends X {
2:
3: public void aa(){
4: this .cc();
5: }
6:
7: public void cc(){
8: if(. . .) then
9: throw RuntimeException()

10: }
11: }

(a) (b)

1: class Z extends X {
2:
3: public void aa(){
4: this .cc();
5: }
6:
7: public void cc(){
8: /∗ Local Instruction ∗/
9: }

10: }

Z

aabb
X

aa

test
X

cc cc

Y

Y

Z

(c) (d)

Figure 4.5: An example program and its corresponding call graph to demonstrate
the heuristic computation.(a) An abstract class, X, with an abstract method and
implementations for two functions. (b) The Y class that inherits from the X class. (c)
The Z class that inherits from the X class. (d) The call graph for the functions in X,
Y, and Z.

on line 7 of the test method invokes the bb method on lines 11−15 in Figure 4.5(a);

however, aa is a dynamically invoked method and the target of the call on line 8 of

Figure 4.5(a) depends on the type of x . The overall calling structure of the program

is shown in Figure 4.5(d). The test method in X can call the aa method in either

the Y or Z class. The aa method then calls the cc method in its respective class. In

the example shown in Figure 4.5, the goal is to drive the program execution to line

9 in the cc method of the Y class in Figure 4.5(b). Recall that in medium to large

programs evaluating all possible implementing subtypes is intractable.

85

Suppose for the program shown in Figure 4.5, a main method calls test with

different instances of X objects. During the static analysis phase, when we reach

the test function in Figure 4.5(a), the analysis accounts for the cost of moving

through the this .bb method call on line 7 in Figure 4.5(a); however, the analysis

cannot statically resolve the type of x ; thus, the static analysis does not evaluate

either implementation of aa in the Y or Z class and assigns a conservative estimate of

two to account for the cost of moving from line 8 to the end of the test method. At

the end of the static analysis, the Explored set only contains the test and bb methods.

Let us consider two cases in the dynamic computation of the heuristic. In the

first case, suppose the current location of the program is at line 6 in Figure 4.5(a)

and we want to compute a distance estimate to line 9 in Figure 4.5(b). We first get

all the call sites that are reachable from the current location such that there exists a

path from the call site to the target location on the call graph and the call sites are in

the same CFG as the current location. The only call site that satisfies the condition

in Figure 4.5 is x.aa(). We then call the get estimate() function in Figure 4.4 with the

corresponding call site. The x.aa() call site can call the aa function in either the X class

or the Y class. This maps to two entries in the call graph relation: Y.aa() → Y.cc()

and Z.aa() → Z.cc(); however, the target location can only be reached from Y.cc()

based on the calling hierarchy shown in Figure 4.5(d). Since the distance estimates

in the aa method of the Y class have not been computed on the CFG (as the method

does not currently exist in the Explored set), a conservative cost of two is added along

the call trace when moving from x.aa() to Y.cc(). Similarly, a conservative estimate

of two is added for the cost of moving to the cc method in the Y class and reaching

the target at line 9 because the cc method does not exist in the Explored set. A final

heuristic estimate of four is returned for the example.

In another example that demonstrates the dynamic computation of the heuris-

tic, suppose the current location of the program is at line 4 in Figure 4.5(b). The

86

location implicitly resolves the type of the aa method in the Y class because the model

checking search is at the method. At this point we run the static analysis algorithm

(shown in Figure 4.3) on the aa method in Figure 4.5(b). Note that since the target

of this.cc() is dynamically resolved the static analysis technique computes the cost

of moving through the cc method at line 4 in Figure 4.5(b). After refining the dis-

tance estimates, we return to the dynamic heuristic computation in Figure 4.4. The

analysis computes the distance estimates on the call trace Y.aa() → Y.cc() based on

the shortest distances in the CFGs of the methods aa and cc in the Y class. The

distance estimates in a CFG lower-bounds all values across the iterative and looping

constructs.

4.5 Results

The experiments are conducted on machines with 8 GB of RAM and two Dual-core

Intel Xeon EM64T processors (2.6 GHz). We run 100 trials of guided search with var-

ious heuristics. Note that we break all heuristic ties randomly that enables us to over-

come the benefits and limitations of a default search order in guided search [Rungta

and Mercer, 2007b, Appendix A]. All the trials are time bounded at one hour. This

is consistent with other empirical studies [Dwyer et al., 2006, Rungta and Mercer,

2007a,b, Appendix A, Appendix B]. Since each trial is completely independent of the

other trials we use a super computing cluster of 618 nodes to distribute the trials on

different nodes.1 Even though the algorithm does not require parallel computation,

using the super computing cluster allows us to quickly generate results. We use the

Java Pathfinder (JPF) v4.1 model checker with partial order reduction turned on to

conduct the experiments described in the paper. JPF model checks Java byte-code

using a modified virtual machine.

1We thank Mary and Ira Lou Fulton for their generous donations to the BYU Supercomputing
laboratory.

87

The input to the guided search is the model and possible error locations. The

possible error locations are be derived by user-specified reachability properties, can

be generated by static analysis tools, or generated from dynamic analysis tools [Artho

and Biere, 2001, Havelund, 2000, Hovemeyer and Pugh, 2004]. For example, static

analysis tools report program locations where lock acquisitions by unique threads may

lead to a deadlock. These tools, however, cannot state the feasibility of the deadlock.

We use the technique described in [Rungta and Mercer, 2008, Chapter 3] to generate

a sequence of program locations that are relevant to checking the reachability of the

possible error locations.

We use five unique multi-threaded Java programs in this study to evaluate

the effectiveness of the PFSM heuristic. Three programs are from the benchmark

suite of multi-threaded Java programs gathered from academia, IBM, and classical

concurrency errors described in literature [Dwyer et al., 2006]. We pick these three

artifacts from the benchmark suite because the threads in these programs can be

systematically manipulated to create configurations of the model where randomized

depth-first search is unable to find errors in the models [Rungta and Mercer, 2007a,

Appendix B]. These models also exhibit different concurrency error patterns described

by Farchi et. al in [Farchi et al., 2003]. The AbsList and the AryList are programs

that use the JDK 1.4 library in accordance with the documentation. We use Jlint

on the AbsList and AryList models to automatically generate warnings on possi-

ble concurrency errors and then manually generate the input sequences as described

in [Rungta and Mercer, 2008, Chapter 3]. The name, type of model, number of

locations in the input sequence, and source lines of code (SLOC) for the models are

as follows:

• TwoStage: Benchmark, Num of locs: 2, Null Pointer Exception, SLOC: 52

• Reorder: Benchmark, Num of locs: 2, Null Pointer Exception, SLOC: 44

88

• Wronglock: Benchmark, Num of locs: 3, Deadlock due to inconsistent locking.

SLOC: 38

• AbsList: Real, Num of locs: 6, Race-condition in the AbstractList class using

the synchronized Vector sub-class. SLOC: 7267

• AryList: Real, Num of locs: 6, Race-condition in the ArrayList class using the

synchronized List implementation. SLOC: 7169

Exhaustive search techniques like randomized depth-first search either struggle

or fail to find an error in the models used in the empirical study. A more detailed

comparison with a randomized depth-first search is shown in [Rungta and Mercer,

2008, Chapter 3].

We use a greedy depth-first search to guide the search. The greedy depth-

first search picks the best-ranked immediate successor of the current state and does

not consider unexplored successors until it reaches the end of a path and needs to

backtrack. We observe comparable results with a traditional greedy best-first search

with a bounded queue. We use the distance heuristic to guide the search through

each of the input locations generated using the technique in [Rungta and Mercer,

2008, Chapter 3] to mimic a test-like paradigm. The effects of varying the length

of the sequence on the performance of the heuristic are also reported in [Rungta and

Mercer, 2008, Chapter 3].

Only a portion of the frontier states are saved as backtrack points which turns

the complete search into a partial search; however, our aim is to find a counter-

example efficiently rather than to do an exhaustive proof or find an optimal counter-

example. It is important to note that in medium to large programs, it is intractable

to generate optimal counter-examples using an A∗ search because it exhausts the

memory resources very quickly.

In Table 4.1 we specifically compare the performance of the PFSM heuristic

with the FSM and random heuristic while guiding the program execution through a

89

small sequence of locations. The entries in Table 4.1 with “-” in the FSM heuristic

columns indicate that the static analysis did not finish within the time bound of one

hour.

The performance of the PFSM heuristic is dramatically better than the random

and FSM heuristic. In the Twostage(7,1) model the PFSM heuristic generates

a mere 213 states, on average, before error discovery while the random and FSM

heuristic generate 109, 259 and 30, 193 states respectively, on average, in the error

discovering trials. A similar improvement for the PFSM heuristic is noticed in the

total time taken and memory used. In the TwoStage(7,1) model the PFSM only

takes 0.42 seconds on average for error discovery, in contrast, the random heuristic

takes 40.14 seconds while the FSM heuristic takes 39.11 seconds. In some models such

as Reorder(5,1) and Wronglock(1,10) where the magnitude of states generated is

small, the memory usage of the random heuristic is lower than the PFSM heuristic

because it does not incur the additional heuristic computation cost. Note that the

variance in the results using the FSM and PFSM heuristics is caused because we

break all ties in heuristic values randomly.

4.6 Discussion

Recent work and our experience in testing and verifying multi-threaded programs

show that only a small number of perturbations to certain global or shared variables

are required to find a particular error in the multi-threaded system. The key, however,

lies in discovering and driving the program execution through these perturbations to

elicit the error. Recent work uses the output of static analysis warnings to generate a

sequence of interesting programs relevant for verifying the feasibility a particular static

analysis warning. The sequence is small with large gaps between each location. We

rely on the distance estimate heuristic presented in this paper to guide the program

execution toward the locations in the sequence. In essence, the distance heuristic

90

drives certain threads toward specific program locations without manual intervention

that is required in the other heuristics such as the prefer-thread heuristic [Groce and

Visser, 2002b]. This allows us to scale to realistic benchmarks and discover errors

after exploring only a few hundred states.

The heuristic lower-bounds the values across loops and recursive function calls.

If the loops and recursive function calls operate solely on local variables the dynamic

partial order reduction allows us to process a series of instructions as a single trans-

action; however, if they operate on global variables then the distance heuristic is

sufficient to drive a particular thread through a loop until it exits the loop and moves

toward the location of interest.

4.7 Conclusions and Future Work

In this work we present a distance heuristic function that computes estimates in

programs with unresolved polymorphic methods. The PFSM heuristic performs an

interprocedural static analysis to conservatively compute distances estimates and,

then, dynamically computes the distance estimates on demand after the types of

polymorphic methods are resolved at transaction boundaries during model checking.

The empirical analysis shows that the PFSM heuristic outperforms the FSM distance

heuristic that ignores the calling context information and the baseline random heuris-

tic. In future work we want to study and evaluate the trade-off between the accuracy

in the heuristic estimate and the performance in the heuristic computation in how

it affects the effectiveness of the guided search. For example, to further improve the

accuracy of the distance estimate we can propagate the types—extracted from the

state—along the program, as far as possible. A def-use analysis could be used to

detect how far we can propagate the values in the program.

91

EXPLORED STATES
Subject Random Heuristic FSM Heuristic PFSM Heuristic

Min Avg Max Min Avg Max Min Avg Max

Twostage(7,1) 15249 109259 409156 3279 30193 178653 209 213 217
Twostage(8,1) 23025 204790 603629 5956 46259 281132 246 251 255
Twostage(10,1) 36056 364859 1216340 14232 156697 1302040 329 335 340
Wronglock(1,10) 58 7064 49100 75 196 2362 367 3781 15923
Reorder(5,1) 1803 6006 12529 912 2562 5765 106 109 112
Reorder(8,1) 10155 34193 98683 5422 24022 96681 193 197 202
Reorder(10,1) 24890 80160 343429 6785 65506 149916 266 272 277
AryList(1,10) 3652 15972 63206 - - - 846 5216 50904
AbsList(1,10) 10497302 10497302 10497302 - - - 982 982 982

TIME IN SECONDS
Subject Random Heuristic FSM Heuristic PFSM Heuristic

Min Avg Max Min Avg Max Min Avg Max

Twostage(7,1) 4.52 40.14 124.17 33.49 39.11 65.93 0.37 0.42 2.57
Twostage(8,1) 6.70 76.24 184.82 34.65 41.87 83.45 0.39 0.41 0.49
Twostage(10,1) 10.89 132.08 318.93 36.35 59.90 242.78 0.43 0.46 0.52
Wronglock(1,10) 0.22 2.85 12.46 10.25 10.70 12.49 0.48 1.66 4.24
Reorder(5,1) 1.19 2.34 4.08 12.78 13.37 14.41 0.28 0.31 0.67
Reorder(8,1) 3.59 9.70 34.72 13.90 17.84 34.02 0.34 0.39 0.54
Reorder(10,1) 6.81 25.62 97.33 14.31 26.30 41.99 0.37 0.41 0.45
AryList(1,10) 2.12 7.95 26.11 - - - 12.21 13.60 22.56
AbsList(1,10) 2585.79 2585.79 2585.79 - - - 4.85 4.92 5.92

MEMORY IN MB
Subject Random Heuristic FSM Heuristic PFSM Heuristic

Min Avg Max Min Avg Max Min Avg Max

Twostage(7,1) 219 972 2090 922 1325 2219 160 182 203
Twostage(8,1) 352 1415 2541 961 1462 2411 163 178 203
Twostage(10,1) 508 2038 3902 1033 1886 3227 163 181 203
Wronglock(1,10) 18 117 374 204 434 693 77 114 187
Reorder(5,1) 50 89 166 185 348 590 160 179 203
Reorder(8,1) 159 387 848 214 571 1168 160 173 203
Reorder(10,1) 279 851 1856 362 1032 1453 163 179 203
AryList(1,10) 136 275 572 - - - 280 318 391
AbsList(1,10) 6154 6154 6154 - - - 165 193 256

Table 4.1: Comparing the performance of various heuristics.

92

Chapter 5

An Extensive Comparative Empirical Analysis

This chapter was published as:

N. Rungta and E. G. Mercer, “Clash of the Titans: Tools and Techniques for Hunt-

ing Bugs in Concurrent Programs”, in Proceedings of Workshop on Parallel and Dis-

tributed Systems: Testing, Analysis, and Debugging (PADTAD VII), Chicago, US,

July 2009.

Abstract

To evaluate the effectiveness of guided test in detecting bugs compared to

other state of the art tools and techniques we create a benchmark suite of concurrent

programs for Java and C# programs. We have compiled a set of Java benchmarks

from various sources and our own efforts. For many of the Java examples we have

created structurally equivalent C# programs. All the benchmarks are available for

download.

In our multi-language benchmark suite we compare results from the follow-

ing tools: CalFuzzer, ConTest, CHESS, and Java Pathfinder. We provide extensive

results for the Java Pathfinder using stateless random walk, randomized depth-first

search, and guided search using abstraction refinement. Based on this data, we argue

that iterative context-bounding and dynamic partial order reduction are not sufficient

to render model checking for testing concurrent programs tractable and secondary

93

techniques such as guidance strategies are required. As part of this work, we have

also created a wiki to publish benchmark details and data from the specified tools on

those benchmarks to a broader research community.

94

5.1 Introduction

The last several years have seen growth in both multi-core processors and a desire

to write concurrent programs to take advantage of these multi-core processors. The

growth, however, has not been matched by any improvement in our ability to test,

analyze, and debug concurrent programs. For example, despite the proliferation of

concurrent programs, developers are largely unaware as to how these programs should

be tested (or even written for that matter), and as a result often employ stress testing

which is known to be very ineffective in detecting concurrency errors.

To be fair, the growth in concurrent programming has been matched by re-

search into methods such as model checking to test, analyze, and debug such pro-

grams; although, the research has yet to be widely adopted or even shown to be

practically applicable to mainstream programming. This assertion we believe to be

true of static analysis, test generation, model checking, or any other such technique.

We believe there are several reasons for such a slow uptake such as

i) No technique has been shown effective in a general setting. Of the myriad of al-

gorithms and tools, there has yet to be a single approach (or even a combination

of approaches) that is demonstrated clearly to be effective.

ii) No clear comparison of competing approaches. It is very difficult to even begin

to identify and select a possible superior approach because, as is common in aca-

demics and especially model checking, every tool uses a different input language,

produces a different output format, and tests on a unique set of benchmarks

often distinct from other researchers (and not available too). How is one to

compare without re-implementing every published technique that is seemingly

useful?

95

iii) We have yet to discover the right technology (or combination of technologies).

The research community may still be in search of the needed technology to

manage, maintain, and develop the emerging concurrent world.

iv) There is no money in it. Perhaps it is just a matter of capitalistic forces and no

group or individual has seen the right technology to produce sufficient revenue to

justify and overcome the development costs of producing a useful and effective

tool.

Regardless of the reason for the slow uptake of these emerging technologies to support

concurrent programming, we as researchers are obliged to be more scientific in our

quest to tackle the problem of test, analysis, and debug of such programs. We ought

to have a common set of problems for which we produce results using our various

techniques, and the problems in the set are sufficient to rationally compare competing

technologies. Such a commonality benefits the researcher, the business person, and

the developer as decisions can now be made from a common reference point.

As one of many first steps (by ourselves and other groups) in the direction of

commonality, this paper presents our modest efforts to produce a benchmark suite of

concurrent programs for multiple programming languages with results from several

tools. Although our focus in the benchmark suite is detecting shared memory concur-

rency errors in the testing mindset, such a suite can be used for analysis and debug as

well. Our benchmark suite builds on the Dwyer FSE 2006 benchmark suite, [Dwyer

et al., 2006], and the IBM benchmark suite, [Eytani and Ur, 2004, Eytani et al., 2007],

by adding new models including C# versions of many of the models. We also follow

the pattern of the DiVinE tool from the Paradise labs, [Pelanek, 2007], in that we

publish the results for the benchmarks; only we also include results from other tools.

Unlike other efforts, we also make the raw data available for mining, and we have

put everything in a public repository where other researchers can contribute as ap-

propriate. To demonstrate the value of such a common reference point, we present a

96

small empirical study on the data we have thus far collected that motivates guidance

strategies and randomization to improve error discovery in dynamic software model

checking. The main contributions of this paper are

i) Multi-language Benchmarks: we have taken our set of Java benchmarks

compiled from academia, IBM, and our own efforts and created many equivalent

C# versions. All of the benchmarks are available to download. Such a multi-

language collection of benchmarks is important to understanding and evaluating

different technologies for detecting concurrency errors.

ii) Multi-tool Results: for select models in our multi-language benchmark suite

we have results for CalFuzzer, ConTest, CHESS, and Java PathFinder. For

Java Pathfinder we provide extensive results for stateless random walk, ran-

domized depth-first search, and guided search using abstraction refinement. We

are working on results for Inspect which is a dynamic model checker for C pro-

grams using pthreads. Such a repository of raw data facilitates more rigorous

data analysis for future technologies and the needs of other researchers in the

area.

iii) On-line Resource: we have created a wiki to publish benchmark details and

data from various tools on those benchmarks to a broader research community.

Such an on-line publication encourages researchers to compare emergent tech-

nologies for detecting concurrency errors to current state of the art. It also

identifies the strengths and weaknesses of such technologies.

iv) Empirical Support of Randomization and Guidance: using the data

from our study we provide a modest empirical analysis showing the merits of

randomization and guidance in improving error discovery in dynamic model

checking. We further argue that techniques such as iterative context bounding

and dynamic partial order reduction are not sufficient to render model checking

97

tractable and secondary techniques such as guidance strategies are required if

model checking is ever to be practical in mainstream development. Further

results to support this claim are found on the on-line resource.

5.2 Benchmarks

A set of 45 unique Java programs has been collected from various sources [Dwyer

et al., 2006, Eytani and Ur, 2004, Rungta and Mercer, 2008, Sen, 2008, Visser et al.,

2000a]. The benchmarks encompass a wide variety of Java programs and concurrency

errors. Program derived from concurrency literature, small to medium sized realistic

programs obtained from sourceforge, models developed at IBM to support their

analyses research, and programs designed to exhibit patterns of concurrency bugs

usually found in real-world programs. The programs have been parameterized in

order to control the number of threads in the program. This allows us to study the

effectiveness of the error discovery tool or technique as the number of threads increase

in the program.

One of the contributions of this work is that we have created a set of C#

programs structurally corresponding to many of the Java programs. We have C#

programs for 12 unique Java models. In each C# model corresponding to a Java pro-

gram the same number of threads are created, similar data structures are instantiated,

threads access the same data structures, and threads perform the same synchroniza-

tion operations. Note that since Java and C# have very similar execution models

we can recreate the same programs in both languages. The methods responsible for

generating the various threads in the Java programs are used to create unit tests in

the C# programs. The unit tests start the appropriate threads needed to execute the

concurrent program. The C# programs that are created essentially have the same

functionality and behavior as the original Java programs. For these models we also

have multi-tool results.

98

The Java and their corresponding C# programs are available from a public

repository. Furthermore, the data generated from the tests is also available. The

details of how to obtain the benchmarks and data are available on a wiki location

at: http://vv.cs.byu.edu

5.3 Multi-tool Results

In this section we present an overview of the various tools and techniques that are

evaluated on a set of concurrent programs. The CHESS concurrency testing tool is

used to check multi-threaded C# programs while all other techniques and tools are

used to check multi-threaded Java programs. The random walk, randomized depth-

first search (DFS), and abstraction guided refinement techniques are implemented

and evaluated in the Java Pathfinder (JPF) model checker [Visser et al., 2000a] with

dynamic partial order reduction turned on [Flanagan and Godefroid, 2005]. The

JPF model checker is a modified Java virtual machine that provides the ability to

systematically explore all possible thread schedules in concurrent programs. ConTest

and CalFuzzer are dynamic analysis tools that rely on instrumentation to control the

scheduling of concurrent programs.

Random Walk: Random walk is a stateless search technique [Haslum, 1999,

Stoller, 2002]. Starting from the initial state of the program random walk randomly

picks one of the possible successors of the current state to explore a sequence of states

in the transition graph. The search continues until it either reaches a state with no

successors (end state), an error state, or some user-specified depth-bound. Due to its

stateless nature it does not store any information on previously visited states.

Randomized Depth-first Search: A randomized depth-first search (DFS)

is a stateful search technique [Dwyer et al., 2006, 2007]. Similar to random walk, a

randomized DFS explores a sequence of states starting from some initial state. At

each state it randomly picks one successor to explore in a depth-first manner. In

99

order to obtain better coverage of the transition graph, it maintains a set of visited

states to track states that have been explored.

CHESS with iterative context-bounding: CHESS is a concurrency test-

ing tool for C# programs [Musuvathi and Qadeer, 2008, 2007]. It systematically

explores the various thread schedules deterministically. CHESS requires an idempo-

tent unit-test that creates the requisite threads to test a piece of concurrent program.

In an idempotent test, the number of threads running at the end of the test needs to

be the same as the number of threads running before the start of the test. Further-

more all allocated resources are freed and the global state is reset. CHESS executes

the unit test and explores a different schedule at iteration of the test. CHESS is also

a stateless search technique that does not track any information on the states.

The iterative context-bounding approach bounds the number of preemptions

along a certain path in order to reach the error faster [Musuvathi and Qadeer, 2007].

To further restrict the number of preemptions CHESS only considers preemption

points simply at synchronization operations. In programs that contain data races,

however, CHESS provides a knob for turning on preemptions at accesses to shared

volatile variables.

Guided Search with Abstraction Refinement: The guided search using

abstraction refinement attempts to verify the reachability of a set of target locations

that represent a possible error in the program [Rungta et al., 2009, Chapter 2]. The

input locations are either generated from imprecise static analysis warnings or user-

specified reachability properties. An abstract system contains call sites, conditional

statements, data definitions, and synchronization points in the program that lie along

control paths from the start of the program to the target locations. The program

execution is then guided toward the locations in the abstract system in order to

reach the target locations. A combination of heuristics are used to automatically

pick thread identifiers [Rungta and Mercer, 2008, 2009b, Chapter 3, Chapter 4]. At

100

points in the execution when the program execution cannot be guided further along

a sequence of locations (e.g. a particular conditional statement) the abstract system

is refined by adding program statements that re-define the variables of interest.

Contest Contest is a concurrency testing tool for Java programs [Eytani et al.,

2007]. It attempts to insert noise (randomness) at various synchronization operations

while dynamically running the program. It uses a variety of heuristics to drive the

schedules. It closely resembles random walk in both behavior and technique.

CalFuzzer: There are two parts to the tool. The RaceFuzzer uses an existing

hybrid dynamic race detection to compute a pair of program states that could po-

tentially result in a race condition [Sen, 2008]. RaceFuzzer randomly selects a thread

schedule until a thread reaches one program location that is part of the potential data

race pair. At this point the execution of the thread is paused at that program loca-

tion, while the other thread schedules are randomly picked in order to drive another

thread to the second program location that is part of the possible data race. When

two threads reach the program location part of the data race and access the same

memory location such that at least one of the accesses is a write operation then a real

data race is reported. Similarly the DeadlockFuzzer uses the Goodlocks algorithm

and locket set analysis, [Engler and Ashcraft, 2003, Havelund, 2000], to detect poten-

tial deadlocks in the program and randomly drives the threads toward the program

locations similar to the abstraction guided search in JPF. CalFuzzer, however, uses a

naive guidance strategy. It randomly picks thread schedules until the thread reaches

a point of interest.

In a manner similar to CHESS, CalFuzzer is stateless. Also it only performs

thread switches before synchronization operations and input program locations that

represent the potential data race in the program. If the reachability of the program

locations, however, depends on another data race in the program, the current imple-

mentation of CalFuzzer is unable to detect the error. To overcome this limitation

101

Figure 5.1: Concurrency Tool Comparison wiki containing benchmark details with
multi-tool summary results and tool specific results: top level page showing the avail-
able models.

the tool has to insert preemption points at all data races in the program. The per-

formance of CalFuzzer would most likely degrade considerably, if preemption points

were added at all data races, for two reasons: (1) the overhead in the runtime of the

analyses used to detect all data races and (2) the increase in the size of the transition

graph resulting from the larger number of preemption points in the program.

5.4 On-line Resource

We have created a concurrency tool comparison wiki to publish details on each avail-

able benchmark including summary tables for results from each of the tools for which

the benchmark has been run with tool specific tables showing more complete output.

The wiki is located at: http://vv.cs.byu.edu

Figure 5.1 and Figure 5.2 show screen shots from the wiki. Figure 5.1 is the

main screen listing benchmarks in the repository. Future work displays the main

page as a table providing summary data on the benchmarks including location count,

class count, thread count as a function of parameters, error type, and a notion of

hardness. Hardness in our work is based on randomized DFS and is a ratio of error

102

Figure 5.2: Concurrency Tool Comparison wiki containing benchmark details with
multi-tool summary results and tool specific results: an example of a model page.

finding randomized DFS trials divided by a total number of trials. The idea is that

randomized DFS, at a minimum, should fail to find an error most of the time for a

model to be considered hard.

Figure 5.2 is an example of the information found on a specific benchmark

page. Each benchmark page includes a description with location count, class count,

parameters, the number of threads as a function of parameters, and the type of error

in the benchmark. It also includes different languages expressing the model. For the

shown example, it exists in both Java and C# currently.

After the description comes a complete summary table displaying data from

all the tools run on the benchmark. The summary data currently lists the tool,

the trials run including successful trials in ()’s with the ratio of successful trials to

total trials next to the ()’s (for deterministic tools the number of trials is 1), time in

seconds, transition count with paths explored in ()’s, and max depth explored with

error depth in ()’s. We are attempting to select summary statistics that would be

applicable to most model checkers or systematic search tools; although, as noted in

103

the introduction, there is no general consensus on what should be output from any

given tool.

5.5 Empirical Study

We present a summary of the interesting results by evaluating the various tools and

techniques on the set of benchmarks. In this empirical study we present the results

on the multi-tools on three unique programs. A more extensive comparison across a

larger set of benchmarks is provided on the wiki. We vary model, the independent

variable, in our study to evaluate the effectiveness of the error discovery by the dif-

ferent techniques. For a particular model we also vary the number of threads and the

kind of threads created by each model.

Time Bound: The randomized DFS trials and the CHESS trials are time

bounded at one hour. This time bound was picked to be consistent with other stud-

ies [Dwyer et al., 2006, 2007, Rungta and Mercer, 2007a, Appendix B].

Number of Trials: Over the course of the last three years, we have conducted

extensive studies [Rungta and Mercer, 2007a,b, Appendix B, Appendix A] on a set

of benchmarks collected from [Dwyer et al., 2006]. To recreate the results from the

parallel randomized stateful search (PRSS) technique, [Dwyer et al., 2007], we ran

upto 5000 independent trials of randomized DFS each time bounded at one hour.

To compare the random walk results reported in [Dwyer et al., 2006] for certain

benchmarks we have run upto 10,000 independent random walk trials. For those

benchmarks, we present the results based on the data that has already been collected.

We have executed between 100 to 1000 trials for the other tools. We believe that this

number is sufficient to compare the effectiveness of the different non-deterministic

techniques. Increasing the number of trials for these tools is part of ongoing work.

Hardness: We measure the semantic measure of hardness in error discovery

as described in [Rungta and Mercer, 2007a, Appendix B] in order to evaluate the

104

error discovery abilities of the different tools and techniques. For a given benchmark

and technique, the hardness is the ratio of the total number of trials executed over

the total number of error discovering trials. Consider, for example, if 100 trials are

executed and 50 trials are successful in finding an error then the hardness is reported

as 0.50 or 50%. Non-deterministic algorithms like randomized DFS and random walk

provide a range of values between 0 (hard) and 1 (easy), however, for deterministic

algorithms the hardness is either 0 (hard) or 1 (easy).

In this study we compare the error discovery capabilities of stateful as well as

stateless search techniques. In order to measure the effectiveness of error discovery

we measure the number of transitions that were executed before error discovery, the

maximum depth of the search, and the depth at which the error was found. Note that

some tools such as ConTest and CalFuzzer do not output values for the measures. The

number of transitions executed are reported to better compare stateful and stateless

techniques.

In Table 5.1, Table 5.2, and, Table 5.3 we present the results for the reorder,

twostage, and airline benchmarks respectively. The column labeled Tool indicates

the tool used to evaluate the benchmark. ConTest is run with the default values

where it randomly picks one of its heuristics for improving error discovery. The

parameters of CHESS indicate whether volatile variables are monitored (V=true) and

the preemption bound (B=num). Recall that preemptions at volatile variables are

turned off by default. The randomized DFS, random walk, and abstraction guided

search (Abs. Guided) are executed in JPF with dynamic partial order reduction

turned on. The na entries in the table indicates that the particular output is not

available for the particular tool. The x legend indicates that none of the trials found

an error and, hence, there is no data to report.

105

Tool Trials Error Dis. Time Transition Max Depth
(Successful) Rate (Error Depth)

Reorder(2,1) ThreadNum=4
CalFuzzer 100 (12) 12% 1.376s na na(na)
CHESS* (V=true, B=2) 1 (1) 100% 0.44s 2600 26 (na)
ConTest 1000 (23) 2.30% na na na(na)
Randomized DFS 100 (100) 100% 0.61s 560.58 28.33 (21.24)
Random Walk 1000 (2) 0.20% 0.28s 27.50 27.50 (27.50)
Abs. Guided 1 (1) 100 % 1.67s 44 14 (14)

Reorder(1,5) ThreadNum=7
CalFuzzer 100 (24) 0.24% 1.658s na na(na)
CHESS* (V=true, B=2) 1 (0) 0% x x x
ConTest 1000 (285) 0.28% na na na(na)
Randomized DFS 100 (100) 100% 16.61s 238450.80 52.94 (25.52)
Random Walk 10128 (438) 4.32% 0.35s 32.41 32.41 (32.41)
Abs. Guided 1 (1) 100% 2.67s 29 12 (12)

Reorder(4,1), ThreadNum=6
CalFuzzer 100 (12) 0.12% 1.45s na na(na)
CHESS* (V=true, B=2) 1 (1) 100 140.53s 1200000 40
ConTest 1000 (3) 0.3% na na na(na)
”Randomized DFS” 100 (100) 100% 7.35s 33895.58 46.61 (34.29)
Random Walk 1000 (0) 0% x x x
Abs. Guided 1 (1) 100% 1.67s 80 18 (18)

Reorder(9,1) ThreadNum=11
CalFuzzer 100 (10) 0.10% 1.49s na na(na)
CHESS* (V=true, B=2) 1 (0) 0% x x x
ConTest 1000 (10) 0.01% na na na(na)
Randomized DFS 5000 (593) 11.86% 2497.98s 38704112.56 81.67 (59.64)
Random Walk 10124 (0) 0% x x x
”Abs. Guided” 1 (1) 100% 1.67s 205 28 (28)

Reorder(10,1) ThreadNum=12
CalFuzzer 100 (9) 0.09% 1.49s na na (na)
CHESS* (V=true, B=2) 1 (0) 0% x x x
ConTest 1000 (0) 0% x x x
Randomized DFS 5000 (4) 0.08% 2414.82s 38022689.25 89.75 (65.25)
Random Walk 10127 (0) 0% x x x
Abs. Guided 1 (1) 100% 1.67s 236 30 (30)

Table 5.1: Comparing the error discovery of different techniques on the reorder

benchmark.

106

5.5.1 Reorder

The benchmark contains a data race. There is a check whether the data race causes

an inconsistency in the data values. When such an inconsistency is discovered an

exception is raised. The benchmark contains two kinds of threads: setter and

getter that cause a data race in the program. The getter thread also checks for the

inconsistency in the data values caused by the data race. As we increase the number

of setter threads while keeping the getter thread constant, the semantic measure

of the hardness in error discovery increases (i.e., get harder) as shown in [Rungta and

Mercer, 2007a, Appendix B].

CHESS is effective for error discovery in the reorder model with a small num-

ber of threads as shown in Table 5.1. The data race in the model can be manifested

with a preemption bound of two (B=2). We also monitor volatiles variables (V=true).

As the number of threads increases even with a preemption bound of two, CHESS

progressively takes more time to find the error. In Table 5.1 we notice that CHESS

is unable to find an error in reorder(9,1) and reorder(10,1) in a time bound of

one hour.

The error discovering capability of randomized DFS search degrades when the

number of threads are increased. In the reorder(10,1) model only 8 trials out of

5000 were able to find an error and, on average, took 2414.82 seconds to find an error

as shown in Table 5.1. Random walk and ConTest are only able to find an error in

reorder(2,1) and reorder(1,5) models.

CalFuzzer and the abstraction guided search are most effective in finding errors

as the number of threads increase in the reorder model. CalFuzzer is more effective

than randomized depth-first search because it only considers preemptions points at

the pair of program locations that are reported to be part of a data race. In the

reorder model there are no synchronization operations, hence, for CalFuzzer there

only exist two points of preemption. The abstraction guided search is able to find the

107

error quickly even when the model checker considers preemption points at all shared

variable accesses.

5.5.2 TwoStage

The benchmark contains an atomicity violation. The program has sequences of oper-

ations that need to be protected together but the implementation incorrectly protects

the two sequences separately. The input parameters to the benchmark are two dif-

ferent types of threads (twoStagers and readers). The twoStage thread modifies

the two separately protected sequences. When the reader thread reads the value of

a shared variable between the two write accesses by the twoStage thread then a bug

is manifested (an exception is raised).

CalFuzzer is unable to find a set of input location using their initial dynamic

analysis. In the current configuration of the tool we are unable to manually specify

the input location to CalFuzzer. The input target location is the program location

where the exception is raised. This is to check whether the exception is ever raised.

The ConTest tool is unable to find the bug in 1000 trials for any configuration of the

model. Random walk is also not very effective in error discovery. The error discovery

rate for twostage(1,1) is only 4.25%.

CHESS is effective in error discovery for the twostage(1,1) and twostage(1,2)

models where there are a small number of threads. The twostage(1,1) has 3 total

threads while twostage(1,2) has 4 threads. As, however, the number of threads

in the benchmark increase, CHESS is less effective in error discovery. Note that in

twostage(2,2) the average time taken by randomized DFS to find the error is only

2.41 seconds while CHESS takes 17.44 seconds to find the error.

The abstraction guided search does not degrade as we increase the number of

threads in the program. So while it takes more time to detect the error in the bench-

mark when there is a small number of threads (such as twostage(1,1)) compared

108

Tool Trials Error Dis. Time Transition Max Depth
(Successful) Rate (Error Depth)

TwoStage(1,1), ThreadNum=3
CHESS* (B=2) 1 (1) 100% 0.94s 180 20 (na)
ConTest 1000 (0) 0% x x x
Randomized DFS 100 (100) 100% 0.61s 88.04 20.18 (18.51)
Random Walk 10127 (430) 4.25% 0.02s 0.94 0.94 (0.94)
Abs. Guided 1 (1) 100% 3.53s 30 11 (11)

TwoStage(1,2), ThreadNum=4
CHESS* (B=2) 1 (1) 100% 0.52s 5800 29 (na)
ConTest 1000 (0) 0% x x x
Randomized DFS 100 (100) 100% 1.07s 1966.10 38.46 (30.08)
Random Walk 1000 (10) 1% 0.30s 30.20 30.20 (30.20)
Abs. Guided 1 (1) 100% 3.53s 46 13 (13)

TwoStage(2,2), ThreadNum=5
CHESS* (B=2) 1 (1) 100% 17.44s 228000 38 (na)
ConTest 1000 (0) 0% x x x
Randomized DFS 100 (100) 100% 2.41s 10223.50 45.72 (36.07)
Abs. Guided 1 (1) 100% 3.53s 46 13 (13)

TwoStage(1,5), ThreadNum=7
CHESS* (B=2) 1 (0) 0% x x x
ConTest 1000 (0) 0% x x x
Randomized DFS 100 (100) 100% 319.01s 3341784.11 73.96 (38.09)
Abs. Guided 1 (1) 100% 2.53s 30 11 (11)

TwoStage(8,1), ThreadNum=10
CHESS* (B=2) 1 (0) 0% x x x
ConTest 1000 (0) 0% x x x
Randomized DFS 4999 (126) 2.52% 2155.76s 32969192.09 105.46 (73.40)
Random Walk 10200 (0) 0% x x x
Abs. Guided 1 (1) 100% 2.53s 184 25 (25)

Table 5.2: Comparing the error discovery of different techniques on the twostage

benchmark.

109

to the other techniques, the time stays consistent even as we increase the number

of threads. In benchmarks where increasing the number of threads does not change

the conditions that cause the error, the abstraction guided search is consistent in its

performance showing little change in running time.

5.5.3 Airline

The benchmark contains a data race. As the number of threads are created the value

of a global variable is updated. An incorrect assumption on atomicity allows more

threads to be created leading to a data inconsistency. The two parameters to the

airline model are: ticketsIssued and cushion. The minimum depth of the error

is pushed deeper in the execution trace when we increase the value of the cushion

and keep the total number of threads, ticketsIssued, constant.

The reachability of the error state in the airline model depends on the value

of a global counter that is modified by different threads. Based on the input param-

eters of the model, a different number of preemptions is required to elicit the error

in the airline model. In Table 5.3 for the airline(20,1) model, 18 preemptions are

required to elicit the error. Even after setting the correct number of preemptions,

CHESS is unable to discover the error in a time bound of one hour. The need to

specify the correct preemption bound is another limitation of the iterative context-

bounding approach.

Recall that CalFuzzer only inserts preemption points at synchronization points

and the input pair of program locations that represent a potential data race in the

program. In the airline model, CalFuzzer is unable to find the error in the bench-

mark because a specific number of preemptions at unprotected global variables are

required to elicit the bug.

The abstraction guided search technique can successfully find the error in

the model. In the refinement process the location of setting the global variable is

110

Tool Trials Error Dis. Time Transition Max Depth
(Successful) Rate (Error Depth)

Airline(4,1), ThreadNum=5
CalFuzzer 100 (0) 0% x x x
CHESS* (V=true, B=2) 1 (1) 100% 231.240s 5,200,425 114 (na)
CHESS* (V=true, B=3) 1 (1) 100% 1982.522s 44,916,000 114 (na)
Randomized DFS 200 (200) 100% 0.81s 5776.74 14.28 (13.23)
Random Walk 1011 (98) 9.69% 0.25s 22.85 22.85 (22.85)
Abs. Guided 1 (1) 100% 3.46s 61 17 (17)

Airline(4,2), ThreadNum=5
CalFuzzer 100 (0) 0% x x x
CHESS* (V=true, B=2) 1 (1) 100% 67.533s 1,482,000 114 (na)
Randomized DFS 200 (200) 100% 0.25s 655.86 13.75 (12.59)
Random Walk 1021 (433) 42.41% 0.19s 19.05 19.05 (19.05)
Abs. Guided 1 (1) 100% 3.46s 46 14 (14)

Airline(5,1), ThreadNum=7
CalFuzzer 100 (0) 0% x x x
CHESS* (V=true, B=2) 1 (0) 0% x x x
CHESS* (V=true, B=3) 1 (0) 0% x x x
Randomized DFS 200 (200) 100% 58.19s 670929.49 25.27 (22.17)
Random Walk 1021 (111) 10.87% 0.39s 28.75 28.75 (28.75)
Abs. Guided 1 (1) 100% 3.46s 98 21 (21)

Airline(20,8), ThreadNum=21
CalFuzzer 100 (0) 0% x x x
CHESS* (V=true, B=2) 1 (0) 0% x x x
Randomized DFS 5000 (2507) 50.14% 285.85s 4111966.14 121.07 (118.62)
Random Walk 10123 (696) 6.88% 0.09s 12.98 12.98 (12.98)
Abs. Guided 1 (1) 100% 5.46s 2680 60 (60)

Airline(20,3), ThreadNum=21
CalFuzzer 100 (0) 0% x x x
CHESS* (V=true, B=2) 1 (0) 0% x x x
Randomized DFS 4992 (24) 0.48% 375.78s 5905884.67 121.75 (119.75)
Random Walk 11132 (19) 0.17% 0.44s 110.63 110.63 (110.63)
Abs. Guided 1 (1) 100% 7.46s 3210 75 (75)

Airline(20,1), ThreadNum=21
CalFuzzer 100 (0) 0% x x x
CHESS* (V=true, B=18) 1 (0) 0% x x x
Randomized DFS 4996 (0) 0% x x x
Random Walk 11125 (0) 0.00% x x x
Abs. Guided 1 (1) 100% 7.46s 3609 95 (95)

Table 5.3: Comparing the error discovery of different techniques on the airline

benchmark.

111

iteratively (and automatically) added. This enables the abstraction guided search

to find the error even when a specific sequence of preemptions are required. For

example, airline(20,1) requires the most number of refinements, hence, its total

time for error discovery is 7.46 seconds while the model airline(4,1) that requires

fewer refinements takes only 3.46 seconds. The results are encouraging since the other

techniques struggle to find an error in the model within significant constraints of time

and memory.

5.5.4 Discussion

The performance of CHESS is hindered due to its deterministic nature. Even in the

presence of iterative context-bounding CHESS is severely limited by the benefits and

limitations of default search order. With a systematic randomization implemented

within CHESS, we believe it can outperform randomized DFS in models that require

only one or two preemptions along an execution path to reach an error location. In

large programs, however, where the errors exists along very few paths in the transition

graph, iterative-context bounding is not likely to pick the schedule that leads to an

error state (even with randomization).

The performance of ConTest is comparable to that of random walk. A more

systematic random search such as randomized depth-first search is in general more

effective for error discovery within the same constraints of time and memory. At a

certain point, however, simple randomized search techniques fail to find an error. The

data from our empirical study demonstrate that iterative context-bounding and dy-

namic partial order reduction are not sufficient to find errors in concurrent programs.

There is a need for a more sophisticated guidance such as the guided search with ab-

straction refinement that consistently performs well across the different benchmarks

in this study.

112

5.6 Related Work

Various efforts have been made to compile a set of benchmarks for concurrent pro-

grams [Eytani and Ur, 2004, Eytani et al., 2007]. The programs collected exhibit

a variety of concurrency errors. The benchmark suite has multi-threaded programs

with documented bugs. The annotations about bugs in the program also helps eval-

uate imprecise static and dynamic analysis technique in determining whether the

warning on a possible error is a false positive. This work attempts to take the idea of

a benchmark suite one step further by having multi-language programs and results

from different tools on the programs.

The BEEM—BEnchmarks for Explicit Model Checkers is a benchmark set

that contains 50 parameterized models along with with their correctness proper-

ties [Pelanek, 2007]. For a given model, an instance generator can generate models

in the DiVinE specification language (DVE) as well as Promela, the input language

for the SPIN model checker [Holzmann, 2003]. Our work here attempts to provide

the same resource for programs targeted to software model checking rather than pure

model checking.

The work on defining a semantic hardness measure for concurrent programs

using randomized depth-first search has allowed us to test new techniques on models

where exhaustive and randomized techniques fail to find an error [Rungta and Mercer,

2008, 2007a, Rungta et al., 2009, Appendix B, Chapter 3, Chapter 2]. Our experience

shows that the hardness measures generated by a randomized depth-first search with

partial order reduction turned on provides a good threshold that needs to be overcome

by a new technique or tool in order for that technique or tool to be considered effective

in error discovery.

113

5.7 Conclusion

We present in this work a modest attempt to bring commonality and a sure reference

point to research for the test, analysis, and debug of concurrent programs. Our

contribution is in the form multi-language benchmarks, multi-tool results, an on-

line resource for broader impact, and a empirical study showing the merits of various

techniques. All of the models are open to other researchers, and we hope other are able

to contribute to the work. An example of the effectiveness of such a common reference

for research is in our empirical study. Using the data from our study show that

techniques such as iterative context bounding and dynamic partial order reduction

are not sufficient to render model checking tractable and secondary techniques such as

guidance strategies are required if model checking is ever to be practical in mainstream

development.

We intend to continue to publish benchmarks and data on the wiki. Immediate

future work is to automate table construction from the raw data using various scripts.

We are also working on a summary table showing all the available benchmarks as the

opening main page rather than the simple list of benchmarks. We hope to continue

to produce C# models as appropriate. The next target tool is Inspect requiring C

pthread models. We are also looking to begin exploring and publishing results from

automated test tools like jCUTE [Sen and Agha, 2007]. jCUTE is a concolic testing

framework for concurrent programs using a dynamic partial order reduction.

114

Chapter 6

Conclusions and Future Work

6.1 Conclusions

The guided test technique presented in this dissertation automatically detects errors

in concurrent programs. It is a systematic test technique that uses information derived

automatically from the source of the programs. Imprecise static analysis techniques

identify possible errors in the program, and other program locations relevant in deter-

mining the feasibility of a possible error in the program. Program execution is guided

along the relevant program locations to determine the feasibility of an error. A com-

bination of heuristics and stochastic methods have been developed to efficiently guide

program execution. The heuristics used in guided test rank, both, thread and data

non-determinism to find errors in concurrent programs. The set of relevant program

locations is refined by adding new program locations when the execution is unable to

make progress.

The guided test solution is effective in error discovery in programs where other

existing techniques fail. To evaluate the effectiveness of the guided test technique

we used the algorithm to detect errors caused by thread schedules and data input

values in Java programs. The algorithm was able to efficiently detect errors in Java

benchmarks and the JDK concurrent libraries where other state of the art analysis

and testing tools for concurrent programs are unable to find an error.

115

To further compare the effectiveness of the guided test solution with CHESS, a

stateless concurrency tool for C# programs, we created C# programs corresponding

to the Java benchmarks. The C# programs are structurally similar to the Java

programs. In each corresponding model the same number of threads are created,

similar data structures are created, the threads perform the same accesses on the data

structures, and the threads perform the same synchronization operations. Guided test

can quickly detect the bugs within a few seconds while CHESS is unable to find an

error within a time bound of one hour.

By effectively automating the process of bug detection in concurrent programs,

we can significantly improve the efficiency of software testing and verification in gen-

eral. The broader impact of this result is seen first and foremost in software being

more reliable and correct. Reliability is not the only impact, however, as improving

efficiency in verification reduces overall cost in software development which hopes to

save the end-user money in licensing. Also, as designers are able to use tools that

can efficiently test concurrent programs, they are more likely to be aggressive in the

manner in which they use concurrency to improve performance. The end result is

that consumers are going to receive a more reliable product at a lower cost while the

developers are provided with better verification and testing solutions.

6.2 Future Work

An efficient implementation of the technique that can be used out of the box by

a non-model checking expert on production code represents a significant software

engineering challenge. The immediate next step is to test a larger set of benchmarks

and identify the areas where the algorithm or the implementation can be further

improved.

The current algorithm is restricted to detecting errors in programs with explicit

synchronization operations. One of the software engineering challenges is to extend

116

the algorithm such that it is applicable to a varied set of synchronization constructs.

For example, a large number of concurrent applications use wait and notify operations,

atomic references, and lock-free synchronization operations; in future work we want

to effectively find errors in such programs.

We believe that guided test approach can allow us to state the infeasibility of

certain static analysis warnings, in other words, automatically identify certain false

positives generated by static analysis tools. In order to automatically identify false

positives we would develop a modular partial order-reduction to prune all interleavings

from dependencies that are not relevant in testing the feasibility of a given static

analysis warning or reachability property. Developing the property-specific partial

order-reduction technique might allow us to state functional correctness of concurrent

programs with respect to a certain static analysis warning or reachability property.

This will provide the guided testing technique the ability to guarantee the absence of

certain errors.

Using the modular partial order reduction, if we detect a relevant location as

unreachable and through transitivity the error as infeasible, we can efficiently detect

the absence of certain errors. We can hope to accomplish this result due to the

modular nature of the abstraction refinement process presented in this dissertation

that focuses verification of certain static analysis warnings and possible errors.

In case we are unable to conclusively state the feasibility of the error, a coverage

measure is critical in quantifying the test effort expended in the verification process.

Currently there are no standardized coverage metrics for concurrent programs. The

existing coverage measures such a branch-coverage and predicate coverage are insuf-

ficient for measuring test effort in concurrent programs or making any claims about

the functional correctness of the program. There is a need to design and measure

a metric for concurrent programs in identifying gaps in coverage in terms of thread

schedules with respect to a particular error in the program. In general we recognize

117

that it is not possible to obtain complete coverage in a concurrent system, however,

we need a measure that quantifies the verification for test effort to identify coverage

gaps.

118

Appendices

119

Appendix A

Randomization in Guided Execution

This empirical study was published as:

N. Rungta and E. G. Mercer, “Generating Counter-examples through Randomized

Guided Search”, in Proceedings of the SPIN Workshop on Model Checking of Software,

Berlin, Germany, pages 39-57, July 2007

Abstract

Computational resources are increasing rapidly with the explosion of multi-core pro-

cessors readily available from major vendors. Model checking needs to harness these

resources to help make it more effective in practical verification. Directed model

checking uses heuristics in a guided search to rank states in order of interest. Ran-

domizing guided search makes it possible to harness computation nodes by running

independent searches in parallel in a effort to discover counter-examples to correct-

ness. Initial attempts at adding randomization to guided search have achieved very

limited success. In this work, we present a new low-cost randomized guided search

technique that shuffles states in the priority queue with equivalent heuristic ties. We

show in an empirical study that randomized guided search, overall, decreases the

number of states generated before error discovery when compared to a guided search

using the same heuristic. To further evaluate the performance gains of randomized

guided search using a particular heuristic, we compare it with randomized depth-first

121

search. Randomized depth-first search shuffles transitions and generally improves er-

ror discovery over the default transition order implemented by the model checker. In

the context of evaluating randomized guided search, a randomized depth-first search

provides a lower bound for establishing performance gains in directed model check-

ing. In the empirical study, we show that with the correct heuristic, randomized

guided search outperforms randomized depth-first search both in effectively finding

counter-examples and generating shorter counter-examples.

122

A.1 Introduction

The current trend in micro-processor design is to group multiple processors into a

single silicon die and package. For example, dual-core processors are quickly becoming

mainstream, and quad-core packages are readily available from most vendors. CEO

Paul Otellini, at a recent Intel development forum, displayed an 80 core prototype

chip capable of terabyte per second data exchange and pledged production runs in

the next five years [Krazit, 2006]. The trend is clearly to put more processors on a

single die rather than to increase clock speed and computation in a single processor.

This is leading to an explosion in computational resources.

The question for the model checking community given the growth in multi-

core processors, as well as parallel and distributed systems, is how can we harness

this computation power? At the heart of explicit state model checking is an exhaus-

tive proof to show the absence of a specific behavior. The proof literally enumerates,

in a largely brute-force manner, the entire behavior space of the system being ver-

ified [Clarke et al., 1986]. The complexity of the systems, however, limits practical

application of model checking in both time and space. Aggregating the available

computation resources to solve the model checking problem can help to improve the

situation.

Parallel and distributed model checking has shown some limited promise in uti-

lizing large amounts of computation resources [Barnat et al., 2001, Brim et al., 2006,

Holzmann, 2006, Inggs and Barringer, 2006, Jabbar and Edelkamp, 2006, Stern and

Dill, 1997]. The focus of the community is to find ways to harness several computation

nodes to cooperatively construct the exhaustive proof. These approaches generally

look appealing in low node counts but are less efficient as more computation nodes

are added [Jones et al., 2003]. Seminal work goes so far as to prove that depth-first

search itself is inherently sequential and does not lend itself to parallel computation

[Reif, 1985]. This may explain the lack of scaling in current approaches and possibly

123

suggest that we need a fundamentally different algorithm for model checking that is

less sequential and more amenable to parallelization.

As a counterpoint, it is possible to parallelize model checking by moving away

from an exhaustive proof and instead focus on counter-example generation. In other

words, run several independent experiments with some degree of randomization on

individual computation nodes to find a counter-example to the proof. This is in

contrast to several computation nodes cooperatively constructing an exhaustive proof.

The shift in focus from exhaustive proof to counter-example generation began in the

directed model checking community, and it opens new avenues for distributed model

checking.

Early researchers of parallel and distributed model checking explored the con-

cept of random walk for counter-example generation with modest success [Haslum,

1999, Jones and Sorber, 2005, Sivaraj and Gopalakrishnan, 2003]. Random walk

has inherently low memory requirements, and the work distributes these random

walk based searches over many computation nodes in hopes of discovering a counter-

example. The effectiveness of random walk in terms of coverage is critically dependent

on the structure of the model [Barnat et al., 2006, Holzmann, 1997, Pelanek et al.,

2005]. Empirical studies show that random walk is not very useful for error discov-

ery in the models where it achieves poor coverage. This creates a need for effective

randomized searches which better harness the computation resources.

Recent work studying default search order in model checker performance con-

tributes a key insight to randomization of a regular depth-first search [Dwyer et al.,

2006]. Controlling for default search order in depth-first search by randomly choosing

transitions to explore (randomized DFS) dramatically improves counter-example gen-

eration [Dwyer et al., 2007]. Independent randomized DFS searches easily distribute

to any number of computation nodes, however, like any search method, random-

ized DFS breaks down in certain models [Rungta and Mercer, 2007c]. The issue in

124

randomized DFS is that it blindly moves through the behavior space even when there

is information readily available about the structure of the model and the property

being invalidated that can improve the search.

Directed model checking uses heuristics to rank interest in states and guide

the search of the behavior space to efficiently generate counter-examples [Edelkamp

and Jabar, 2006, Edelkamp et al., 2001a,b, Groce and Visser, 2002a, Pasareanu et al.,

2003, Rungta and Mercer, 2006, Seppi et al., 2006, Yang and Dill, 1998]. The heuris-

tics generally consider either the model structure or the property being validated to

rank the states. A guided search then orders the states in a priority queue based

on the path cost and heuristic ranking where states estimated to lead more quickly

to a counter-example are explored before other states. Guided search is effective in

counter-example generation and often succeeds where depth-first search fails. More

importantly, the length of the counter-examples generated by guided search algo-

rithms are often shorter than those generated by depth-first search. This simplifies

the developer’s task of understanding the counter-example.

Guided search also benefits from randomization, and like depth-first search,

once randomized, it can be run independently in parallel (randomized GDS1). Pre-

liminary work in randomized GDS chooses randomly from the first n-best entries of

the priority queue when selecting the next state to explore [Jones and Mercer, 2004].

The effectiveness of the randomization is not clear from the empirical study. In some

instances, the randomization helps; while in other instances, the randomization hurts.

The control, n, in [Jones and Mercer, 2004] only ranges over a limited set of values

between two and five, and the algorithm also does not distinguish between states in

the priority queue with different heuristic values. In Java PathFinder v4.0 (JPF), it

is also possible to execute a randomized GDS by randomizing the transition order

in generating successors before adding them to the priority queue. This random-

1We use randomized GDS to refer generally to any algorithm that adds randomization into guided
search, and we will clearly indicate how the search is randomized in the context in which it appears.

125

ization, however, has very limited impact on the actual default search order in the

guided search. Clearly, there are several open questions in randomized GDS left to

be explored.

This paper presents a new randomized GDS algorithm that completely shuffles

states in the priority queue with equal heuristic rankings. We show that full random-

ization of the guided search improves the effectiveness of the search over default search

order in an empirical study. The empirical study uses characterized benchmarks from

[Dwyer et al., 2006, Rungta and Mercer, 2007c] and published heuristics for the JPF,

[Visser et al., 2000b], and Estes, [Mercer and Jones, 2005], model checkers. This

paper also presents a second empirical study on the new randomized GDS algorithm

in context of randomized DFS using the previously mentioned models and heuris-

tics. The second study highlights the role of the heuristic in performance. When the

heuristic is correctly matched to the models and properties, the new randomized GDS

algorithm outperforms randomized DFS in both the effectiveness of the search in find-

ing counter-examples and the length of the counter-examples. When the heuristic is

not correctly matched to the models or properties, randomized DFS is more effective

in error discovery which demonstrates a need to develop better heuristics for those

classes of models and properties.

The algorithm and empirical studies in this paper underscore a need to develop

methods that match heuristics to models and the properties being disproved. This

work and other work such as [Jones and Mercer, 2004] and [Dwyer et al., 2007] also

revisit a new way to view randomization, model checking, and search techniques. It

motivates a need to study and understand how to best use randomization in model

checking and parallelization for counter-example generation. Research in this area

is especially timely given the rapid increase in computational resources, and more

importantly, the ever increasing need for practical model checking in system design.

126

A.2 Background

It is important to control for default search order when evaluating model checking

algorithms because implementation details in the model checker itself affect perfor-

mance to a larger degree than previously supposed [Dwyer et al., 2006]. For example,

in a simple depth-first search, the state at the top of a search stack may have several

enabled transitions that move the current state to the next state of computation.

The choices arise from non-determinism in the model, where the non-determinism

is usually a result of scheduling decisions or input locations. The principle observa-

tion in [Dwyer et al., 2006] is that controlling for the default order in which a model

checker selects transitions during depth-first search dramatically affects the outcome

of counter-example generation. The work in [Dwyer et al., 2006] proposes a random-

ized DFS that controls for default transition order by shuffling transitions enabled

at each state. Follow-on work in [Dwyer et al., 2007] shows that randomized DFS

is effective in counter-example generation across their benchmark set2. In the words

of [Dwyer et al., 2006], “[T]hese findings tell a strong cautionary tale”, because de-

fault search order significantly affects performance of the techniques being evaluated

in comparison studies. This is especially critical for directed model checking which

relies on comparison studies to establish performance gains.

Directed model checking uses a guided search rather than depth-first or breadth-

first search to find counter-examples for the property being verified. The fundamental

assumption is that an error does exist in the model, and the goal is to find the error

before exhausting computation resources. The work in this paper focuses on a greedy

best-first search; although, the ideas are equally applicable to other best-first search

techniques that make no guarantee on the optimality of the counter-example. In other

words, the results of an A∗ search are not significantly affected by our approach. A

2There are other default orders in model checkers that are yet to be controlled as evidenced
in [Rungta and Mercer, 2007c], where different versions of JPF yield different results in random-
ized DFS.

127

912

1 e1

1 24

2

Figure A.1: An illustration of greedy best-first search that chooses the state nearest
to the goal state to expand in the search based on a heuristic function.

greedy best-first search is illustrated in Figure A.1. The top state in Figure A.1 is

the initial state. At each iteration of the search, a state is removed from a priority

queue, its successors are generated, ranked by a heuristic function, and inserted into

the priority queue. For example, the initial state in Figure A.1 has three successors

which are ranked 12, 9, and 2. These states are inserted into the priority queue. The

next iteration of the search removes the state with rank 2 from the priority queue

and repeats the process. The heuristic function estimates the nearness of a state to

an actual goal state. The goal state in our example is marked with the ‘e’ character.

The goal state in directed model checking is an error state from which we build a

counter-example to the specified property. A good heuristic for a greedy best-first

search often converges quickly to an error state, and the length of the counter-example

is near minimal.

Directed model checking critically relies on empirical studies to show per-

formance gains over depth-first search, and like depth-first search, must control for

default search order. For example, consider a priority search queue that contains

over 100,000 states and a heuristic function that assigns an integer value between one

and six to each state. Invariably, there are many thousand states with equivalent

heuristic values. The order in which they are explored is largely controlled by the

order in which they are generated by the model checker and ordered in the priority

128

queue. During a guided search, some function compares the heuristic value of a newly

generated state to the heuristic values of existing states in the queue before inserting

the new state in the queue based on its ranking. Most often, this function uses a pre-

determined ordering to sort states that have the same heuristic value. For example,

when comparing a newly generated state, s1, with a heuristic value, x, to an existing

state in the priority queue, s2, with a heuristic value, x, the state ordering function

always inserts state s1 after s2 in the priority queue. The order in which states s1

and s2 are explored can potentially affect the total number of states generated before

error discovery—a fact disregarded by the ordering function. The lesson from [Dwyer

et al., 2006] is that these default choices in the model checker need to be controlled.

This gives rise to randomized GDS which in the context of this paper refers to a

greedy best-first search with some randomization to control for default order.

There are several ways to implement randomized GDS, and each controls for

default order in the priority queue to a certain extent. For example, [Jones and

Mercer, 2004] randomly chooses between the n-best entries in the priority queue, and

JPF v4.0 allows the transition order to be shuffled during state generation. The former

method shows some potential while the later method is not effective in randomization.

This paper presents a new algorithm for randomized GDS that controls for all heuristic

ties in the priority queue. We show that with the correct heuristic function, our new

algorithm for randomized GDS outperforms not only the greedy best-first search using

default ordering but randomized DFS as well. This is especially true in models that

are hard—that is, models where randomized DFS is not successful.

A.3 Randomized GDS

Current techniques for randomization of guided search are not effective in exploiting

the full potential of the randomization. For example, as mentioned previously, the

approach presented in [Jones and Mercer, 2004] limits the randomization to the n-best

129

entries in the priority queue, where n is specified by the user. As another example,

JPF allows for randomization in its searches. To understand its approach, we need to

first look at its priority queue implementation; specifically, the DefaultComparator

class. The class uses state identifiers and hash values to resolve heuristic ties between

states in the priority queue. The state identifiers and hash values map to the same

states in every single run of a guided search and deterministically resolve the heuristic

ties. Turning on the randomize choices option in JPF successfully modifies the order

in which successors, for a particular state, are added to the priority queue because

the successors are now assigned different state identifiers every time we execute a

guided search trial. This randomized GDS approach causes only a small amount of

variance in the number of states generated before error discovery when compared

to the guided search since the randomization is limited to the successors of a given

state. Our studies show that the limited amount of randomization is not effective in

significantly changing the default search order.

To fully exploit the potential of randomization in directed model checking we

define a randomized GDS algorithm that randomly shuffles states with equivalent

heuristic ranking in the priority queue. The pseudo-code for this algorithm is pre-

sented in Figure A.2. The algorithm is embarrassingly parallel [Foster, 1995]. Several

trials of the new randomized GDS algorithm can be launched in parallel on different

computation nodes since each randomized GDS trial is completely independent of the

other trials. There is no communication overhead between the trials which allows the

algorithm to scale up to an arbitrary number of computation nodes.

In the randomized GDS algorithm, we associate a random value with each

state generated during model checking in addition to its heuristic value. The tuple

〈si, hi, ri〉 in Figure A.2 is an element stored in the priority queue where si is the

state, hi is the heuristic ranking of si, and ri is the random value associated with si.

The randomized GDS algorithm employs a new comparator function, compare vals,

130

1: /∗ N is the set of computation nodes ∗/
procedure randomized guided search init(N)
2: for each i ∈ N do
3: execute(randomized guided search(), i)
4: wait for all nodes to terminate execution()
5: gather results(1...N)
6: return
7:
8: /∗ Add initial element 〈s0, h0, r0〉 to PriorityQueue PQ ∗/
9: /∗ Add s0 to the Visited set ∗/

procedure randomized guided search()
10: while PQ 6= ∅ do
11: 〈si, hi, ri〉 := PQ .dequeue()
12: for each s′ ∈ successors(si) do
13: if error(s′) then
14: return Error Statistics
15: if s′ 6∈ Visited then
16: V isited := V isited ∪ {s′}
17: PQ .enqueue(〈s′, heuristic(s′), rand val()〉)
18: return No Errors Found
19:
20: /∗ PriorityQueue PQ uses compare vals to order states ∗/
procedure compare vals(〈s1, h1, r1〉, 〈s2, h2, r2〉)
21: if h1 > h2 then
22: return true
23: else if h1 < h2 then
24: return false
25: else
26: if r1 > r2 then
27: return true
28: else
29: return false

Figure A.2: Pseudo-code for randomized GDS that shuffles states with the same
heuristic values using a secondary key from a random number generator.

that is also shown in Figure A.2 and uses the random values as a secondary key to

sort states with the same heuristic rankings. The approach enables us to effectively

randomize the order of states with same heuristic values across different states and

search levels. The new randomized GDS algorithm has a low cost of randomization

because maintaining the random value is the only additional cost it incurs when

compared to a regular guided search.

We present two empirical studies that compare randomized GDS to default

order guided search. The first study is in JPF v4.0 uses Java benchmarks and the

second study is in Estes uses C benchmarks. JPF contains a suite of structural

131

heuristics, [Groce and Visser, 2002a], that exploit thread properties in Java programs

and also has a heuristic for finding feasible abstract counter-examples [Groce and

Visser, 2002a, Pasareanu et al., 2003]. The Java models used in this study are small

to medium sized programs that contain concurrency errors. These models have been

collected from different sources: original papers presenting the heuristics [Groce and

Visser, 2002a], concurrency literature [Eytani et al., 2007], research describing Java

specific errors [Farchi et al., 2003], and the IBM benchmark suite [Eytani and Ur,

2004]. Additionally, these models are characterized to a certain degree having been

used recently in two extensive benchmarking studies [Dwyer et al., 2006, Rungta and

Mercer, 2007c].

Our empirical study is conducted on a super-computing cluster with 618 nodes.

We conduct a single experiment of executing 100 trials of our randomized GDS algo-

rithm in parallel for each subject in the study. The choice of 100 trials is arbitrary,

but we believe its size is sufficient to indicate general trends in performance. The

randomized GDS trials and the guided search are allocated 7GB RAM, and the ex-

ecution time is bounded at 1 hour. The 1 hour is again arbitrary but together with

100 trials constitutes an upper bound of 100 hours of computation for each model—a

significant amount of resources.

Table A.1 is a comparison between the default order guided search and our new

randomized GDS algorithm in JPF. We present results for four different heuristics

in JPF: choose-free heuristic, most-blocked heuristic, interleaving heuristic, and the

prefer-thread heuristic. Based on the description of the heuristics in [Groce and

Visser, 2002a] and our knowledge of the models, we pick heuristics that are most

likely to work well for a given model. We present, in Table A.1, the number of states

generated for a default order guided search (GDS). The values in Table A.1 with the

form, x ∗, indicate that the search generated x number of states before running out of

either time or memory. For the new randomized GDS algorithm (Randomized-GDS),

132

Table A.1: Comparing the performance of default order guided search (GDS) and ran-
domized guided search (Randomized-GDS) using the heuristics in JPF and published
benchmarks.

Model GDS Randomized-GDS
PED Minimum Mean Maximum 95% CI

ChooseFree Heuristic
Deos(abstracted) 16 1.00 11 40 423 14
RwNoExcpChk(2,100,1) 372,826 1.00 769 6,419 20,865 739
MostBlocked Heuristic
Clean(1,1,12) 188 1.00 33 377 993 59
Piper(2,2,2) 16,437 1.00 240 1,338 3,909 171
Piper(2,4,4) 2, 478, 360∗ 0.87 138,916 1,229,530 2,274,249 116,015
Interleaving Heuristic
Raxextended(4,3) 1, 225, 743∗ 1.00 404 20,774 670,813 14,480
PreferThreads Heuristic
Accountsubtype(2,2) 2, 225, 914∗ 1.00 30,726 193,313 642,193 94
Producerconsumer(1,10,4) 1, 783, 620∗ 0.93 2,774 145,466 742,693 36,519
Producerconsumer(1,12,4) 1, 781, 899∗ 0.90 13,830 238,092 960,610 52,981
Producerconsumer(1,16,4) 1, 781, 530∗ 0.49 7,280 257,131 889,248 67,850
Producerconsumer(1,8,4) 1, 835, 216∗ 1.00 1,148 156,428 925,537 38,689
Producerconsumer(2,2,4) 2, 591, 457∗ 1.00 10,902 109,394 313,929 13,602
Producerconsumer(2,4,4) 2, 016, 936∗ 1.00 2,592 213,491 1,122,008 45,523
Producerconsumer(2,8,4) 1, 721, 824∗ 0.68 21,055 434,401 1,098,461 77,976
Reorder(1,1) 144 1.00 40 98 163 6
Reorder(1,5) 545 1.00 36 14,864 64,447 4,312
Reorder(10,1) 1,727,521 0.00 - - - -
Reorder(5,1) 15,207 1.00 393 10,850 30,790 1,473
Reorder(8,1) 274,125 0.80 10,789 714,454 2,624,613 120,013
Reorder(9,1) 691,264 0.32 324,035 861,445 1,412,937 110,618
Twostage(1,1) 218 1.00 53 134 246 9
Twostage(2,5) 24,187 0.96 218 361,571 1,681,177 97,480
Twostage(5,2) 322,593 0.96 5,419 417,841 2,170,752 95,440
Twostage(6,1) 716,413 0.94 31,346 486,830 1,626,718 76,994
Twostage(7,1) 2, 354, 460∗ 0.36 81,218 867,382 1,411,624 120,191
Twostage(8,1) 2, 119, 657∗ 0.05 178,476 755,151 1,259,085 514,492
Wronglock(1,1) 156 1.00 37 67 122 4
Wronglock(1,10) 7,391 1.00 94 98,616 1,805,704 58,614
Wronglock(1,20) 7,391 0.78 97 562 2328 99
Wronglock(10,1) 2, 330, 993∗ 1.00 795 4,848 26,070 834
Wronglock(20,1) 2, 056, 532∗ 1.00 3,176 32,484 163,642 6,282

133

in Table A.1, we present the following statistics: path error density (PED), minimum

(Minimum) and maximum (Maximum) number of states generated in a single error

discovering randomized GDS trial among all the trials, mean (Mean) number of states

generated in all the error discovering randomized GDS trials, and the 95% confidence

interval (95% CI) for the mean number of states. The path error density is the ratio

of the number of error discovering randomized GDS trials to the total number of trials

executed.

The results in Table A.1 show that the new randomized GDS algorithm, over-

all, improves the error discovery for a given heuristic over default search order. In

the AccountSubtype(2,2) model, the default order guided search does not find an

error even after exploring over 2.22 million states. In contrast, all 100 trials of the

new randomized GDS algorithm find an error and explore only 193, 313 states—

on average—before error discovery. Furthermore, the maximum number of states

generated—642,193—by a single randomized GDS run of the new algorithm is also

dramatically lower than the number of states generated by the default order guided

search. Similar behavior is observed in all the ProducerConsumer models, and some

TwoStage, Piper, and Wronglock models. In certain models, the mean number of

states generated by the new randomized GDS algorithm is more than the states

generated by the default order guided search, as seen in the Deos(abstracted) and

Reorder(1,5) models; however, even in these models, the minimum number of states

generated by the new randomized GDS algorithm is less than the number of states

generated by the default order guided search.

Table A.2 presents the results of running our new randomized GDS algorithm

on different distance heuristic functions implemented in the Estes model checker [Mer-

cer and Jones, 2005]. We evaluate three specific distance heuristic functions in Ta-

ble A.2: FSM [Edelkamp and Mehler, 2003], EFSM [Rungta and Mercer, 2005], and

e-FCA [Rungta and Mercer, 2006]. The only change in the setup for evaluating heuris-

134

Table A.2: Comparing the performance of default order guided search (GDS) and
randomized guided search (Randomized-GDS) using the Estes model checker.

Model GDS Randomized-GDS
PED Minimum Mean Maximum 95% CI

FSM Heuristic
Barbershop(5) 132,376 1.00 13,917 59,496 154,473 5,948
Barbershop(9) 492,166 0.59 61,732 785,698 2,003,928 118,996
Barbershop(11) 1, 292, 835∗ 0.15 381,808 813,644 1,247,461 157,172
e-fca Heuristic
Barbershop(5) 814 1.00 921 1,012 1,308 13
Barbershop(9) 1,070 1.00 1,543 1,692 1,918 18
Barbershop(11) 1,196 1.00 1,939 2,243 2,671 27
Barbershop(20) 1,767 1.00 5,099 6,319 8,439 131
Barbershop(25) 2,086 1.00 7,654 9,873 12,657 233
EFSM Heuristic
Barbershop(5) 21,706 1.00 4,950 19,849 67,875 1,853
Barbershop(9) 17,537 0.65 94,357 816,848 1,999,595 129,344
Barbershop(11) 30,256 0.06 293,893 701,278 1,181,985 412,829

tics in Estes from the study in JPF is that the randomized GDS trials and guided

search using default search order are allocated 2 GB of RAM. The performance of

the FSM distance heuristic function improves with the new randomized GDS algo-

rithm as seen in Table A.2. In the Barbershop(11) model, the default order guided

search does not find an error in over 1.2 million states while the new randomized GDS

algorithm explores only 813, 644 states—on average—in 15 error discovering trials.

It is interesting to note that for some models, the default order guided search

outperforms the new randomized GDS algorithm using the EFSM and e-FCA distance

heuristics. For example, in the Barbershop(20) model, 1767 states are generated with

guided search while the minimum number of states generated by the randomized GDS

algorithm is 5099. The examples where default order guided search outperforms the

new randomized GDS algorithm support the hypothesis presented in [Dwyer et al.,

2006] that certain reported performance gains of directed model checking techniques

135

can potentially be an artifact of the default order implemented by the model checker

rather than the technique itself.

This empirical study shows—on average—that the new randomized GDS al-

gorithm is a better search technique than a default order guided search with no ran-

domization. As a side note, we omit the results on the n-best algorithm in [Jones and

Mercer, 2004] and JPF’s random choice generator because they are not competitive

with the new randomized GDS algorithm. For the remainder of this paper, we use

randomized GDS to refer to our new randomized GDS algorithm. The next section

shows in another empirical study that with the correct heuristic, randomized GDS

performs well in the models where randomized DFS is unable to find an error. We

refer to these models as hard [Rungta and Mercer, 2007c].

A.4 Evaluation

Randomized DFS serves as a good standard for comparison when we evaluate the per-

formance gains of randomized GDS [Rungta and Mercer, 2007c]. Randomized GDS

and randomized DFS both effectively control for the default search of the model

checker implementation which makes them well-suited for comparison. Also, when

evaluating the performance of a new heuristic, it is sometimes hard to find another

heuristic that is designed to work on the same class of programs or properties. Ran-

domized DFS serves as an ideal comparison technique to evaluate the performance

of such heuristics. It also provides a tighter lower bound on performance than say a

metric based on stateless random walk, [Rungta and Mercer, 2007c], and is a signifi-

cant bar to overcome when showing performance gains in stateful techniques such as

randomized GDS.

We design an empirical study to compare the performance of existing heuris-

tics, using randomized GDS, to randomized DFS implemented by JPF. Like the

previous study, we run 100 trials of randomized GDS for each model and an equal

136

number of randomized DFS trials. We bound the execution time at 1 hour for each

trial. In our initial experiments, the size of the frontier, states in the priority queue,

increases rapidly in randomized GDS trials which causes the searches to run out of

memory in JPF before reaching the specified time bound. To overcome this issue, we

bound the size of the queue in JPF at 100,000 states. This allows randomized GDS

trials to successfully run for an hour in JPF without exhausting the available mem-

ory. Bounding the size of the queue turns the complete search into a partial search;

however, guided search aims to find a counter-example efficiently rather than to do an

exhaustive proof. An earlier study, [Groce and Visser, 2002a], and our experiments

show that bounding the size of the queue does not affect, in general, the number

of randomized GDS trials that discover an error. The system configuration used to

conduct this empirical study is the same as described in the previous section.

We record and normalize values of five different metrics in the randomized GDS

and randomized DFS trials to study the performance gains of randomized GDS over

randomized DFS. We measure the path error density, number of states generated,

time taken before error discovery, length of the counter-example, and total memory

utilized for each of the search trials. Recall that the path error density is the ratio

of the error discovering trials over the total number of trials executed. We measure

the minimum, mean, and maximum values for all metrics, except path error density,

generated during the error discovering trials since the randomization generates dif-

ferent results in each trial. The minimum, mean, and maximum values generated by

the search trials are normalized between 0.00 and 1.00 for each metric. Here is an

explanation of the normalization process for states generated: the smallest number

of states generated among the trials of both search techniques, for a given model, is

mapped to the value of 1.00; similarly, the largest number of states generated among

the trials is mapped to the value of 0.00. All other values for states generated, in the

given model, are normalized between these two values. The values are normalized to

137

Table A.3: Comparing the average values generated in error discovering trials of ran-
domized guided search (RGDS), using the Prefer-Thread heuristic, and randomized
DFS (DFS).

PED States Time Trace Memory
DFS RGDS DFS RGDS DFS RGDS DFS RGDS DFS RGDS

Accountsubtype(1,1) 1.00 1.00 0.98 0.58 0.58 0.68 0.37 0.45 0.62 0.60
Accountsubtype(2,2) 1.00 1.00 1.00 0.59 0.99 0.60 0.42 0.36 0.99 0.37
Wronglock(10,1) 1.00 1.00 1.00 0.79 0.89 0.70 0.34 0.65 0.98 0.78
Wronglock(1,1) 1.00 1.00 0.89 0.52 0.55 0.94 0.70 0.49 0.58 0.56
Wronglock(1,10) 1.00 0.97 0.47 0.98 0.45 0.98 0.57 0.53 0.90 0.93
Twostage(1,1) 1.00 1.00 0.83 0.48 0.66 0.83 0.39 0.54 0.40 0.67
Twostage(2,5) 1.00 0.96 0.52 0.91 0.54 0.94 0.44 0.59 0.39 0.78
Twostage(6,1) 1.00 0.98 0.60 0.87 0.62 0.92 0.31 0.64 0.87 0.63
Reorder(5,1) 1.00 1.00 0.34 0.72 0.34 0.83 0.45 0.75 0.44 0.79
Reorder(8,1) 1.00 0.89 0.36 0.84 0.40 0.92 0.41 0.72 0.89 0.61
ProdCons(1,16,4) 0.67 0.87 1.00 0.88 0.99 0.85 0.55 0.72 1.00 0.67
Twostage(7,1) 0.41 0.73 0.42 0.76 0.42 0.89 0.17 0.58 0.97 0.53
Wronglock(1,20) 0.28 0.81 1.00 0.99 1.00 0.99 0.50 0.62 1.00 0.99
Reorder(9,1) 0.06 0.57 0.31 0.75 0.16 0.87 0.10 0.74 0.99 0.48
Twostage(8,1) 0.04 0.57 0.70 0.70 0.40 0.74 0.01 0.50 0.99 0.43
Reorder(10,1) 0.00 0.34 0.00 0.63 0.00 0.70 0.00 0.51 0.00 0.38

the maximum or minimum values since these represent the extremes in the observed

performance across several trials. The normalization process is conducted separately

for each metric in a model. Intuitively, values close to 1.00 indicate good performance

for a given metric while values close to 0.00 indicate the opposite. The normalization

technique helps us in better understanding and visualizing the performance of the

heuristic in different models because it puts all metrics on the same scale and graph

across both search techniques.

The prefer-thread heuristic, using randomized GDS, performs well in the mod-

els shown in Table A.3. Please note that this table omits the data for the minimum

and maximum values across our several metrics. Table A.3 only presents the average

values that have been normalized. The values given in Table A.3 are as follows: path

error density (PED), number of states (States), time taken (Time), length of counter-

example (Trace), and memory utilized (Memory) measured in error discovering trials

of randomized GDS and randomized DFS. In a large number of models, the path

error density is the same, 1.00, for both randomized DFS and randomized GDS. In

138

models where randomized DFS has a path error density of 1.00, finding an error is

not difficult, and the results on these models do not convey much information on the

effectiveness of the heuristic.

To overcome some of the weakness in the benchmarks, our study uses hard

models generated in [Rungta and Mercer, 2007c] to evaluate the true effectiveness

of the heuristic, which are the last six entries in Table A.3. For example, in the

Wronglock(1,20) model, the measured path error density of randomized DFS is

0.28 while the path error density of the randomized GDS is dramatically higher at

0.81. The average values for states, time, and memory are close to 1.00 for both

search techniques in the Wronglock(1,20) model; however, the average length of

the counter-example for randomized GDS is smaller than the average length of the

counter-example recorded from the randomized DFS trials. In understanding the

length of a counter-example, values closer to 1.00 depict a shorter counter-example

while values close to 0.00 indicate a longer counter-example. There are other models

like Reorder(9,1), Twostage(8,1), and Reorder(10,1) where randomized GDS

improves over randomized DFS.

The high path error density of randomized GDS in models where random-

ized DFS struggles to find an error makes a compelling argument for the use of the

heuristic in the given models. The results in Table A.3 show that randomized GDS,

using the prefer-thread heuristic, successfully overcomes the lower bound on the per-

formance set by randomized DFS in the given models.

In Figure A.3 we visualize the comparative performance of randomized DFS

and randomized GDS using the prefer-thread heuristic for the models shown in Ta-

ble A.3. The minimum, mean, and maximum values for all the different metrics and

models are aggregated in Figure A.3(a). The different edges along the graph show

which search technique generates the best and worst boundary values. The points in

the graph along the axis where x = 0 show all the worst values that are contributed

139

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

R
an

do
m

iz
ed

 G
D

S

Randomized DFS

Aggregated Values

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

R
an

do
m

iz
ed

 G
D

S

Randomized DFS

Path Error Density

(a) (b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

R
an

do
m

iz
ed

 G
D

S

Randomized DFS

Length of Counter-example

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

R
an

do
m

iz
ed

 G
D

S

Randomized DFS

Time Taken before Error Discovery

(c) (d)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

R
an

do
m

iz
ed

 G
D

S

Randomized DFS

Number of States Generated

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

R
an

do
m

iz
ed

 G
D

S

Randomized DFS

Memory Usage

(e) (f)

Figure A.3: Visualizing the normalized minimum, mean, and maximum values of
different metrics comparing randomized GDS, using the Prefer-Threads heuristic, to
randomized DFS. (a) An aggregation of all values for the different metrics. (b) Values
comparing path error density. (c) Values comparing length of counter-example. (d)
Values comparing time taken before error discovery. (e) Values comparing number of
states generated. (f) Values comparing memory usage.

140

by randomized DFS for the measured metrics while the points along the axis where

y = 0 show all the worst values generated by randomized GDS. Similarly, points along

x = 1 represent the best values contributed by randomized DFS while points along

y = 1 represent the best values contributed by randomized GDS. The points above

the dashed diagonal line in Figure A.3(a) show the values of the metrics where ran-

domized GDS improves over randomized DFS. In general, there is a high density of

points above the diagonal that show for the given set of models, it is more effective to

use randomized GDS, with the prefer-thread heuristic, over randomized DFS. There

is also a high density of points in the upper right corner of the graph. These points

represent the values where both randomized GDS and randomized DFS perform well

and do not help us in evaluating the true effectiveness of the search and heuristic over

randomized DFS. We now look at each of the metrics separately to understand the

areas in which randomized GDS scores over randomized DFS.

There are three metrics where randomized GDS clearly outperforms random-

ized DFS in the benchmark suite using the prefer-thread heuristic. These three met-

rics are the path error density, length of the counter-example, and time taken before

error discovery as shown in Figure A.3(b), (c), and (d) respectively. The points in

the upper right corner of the graph in Figure A.3(b) show that in all trials, both

search techniques are equally successful in finding the error; however, points that are

above the dashed diagonal line show that a larger number of randomized GDS trials

find an error in models where only a small number of randomized DFS trials find an

error. The high path error density of randomized GDS is a very compelling measure

that depicts the improvement of randomized GDS over randomized DFS. Random-

ized GDS also performs extremely well in generating shorter counter-examples. The

high density of points above the diagonal in Figure A.3(c) indicates that random-

ized GDS has dramatically shorter counter-examples compared to randomized DFS

across all the models in test. Similarly, the distribution of points in Figure A.3(d)

141

Table A.4: Comparison of results using the Most-Blocked Heuristic with a randomized
guided search (RGDS) to results from randomized DFS (DFS).

PED States Time Trace Memory
DFS RGDS DFS RGDS DFS RGDS DFS RGDS DFS RGDS

Clean(1,1,12) 1.00 1.00 0.09 0.59 0.52 0.87 0.34 0.25 0.42 0.65
Piper(2,4,4) 1.00 1.00 0.96 0.65 0.96 0.63 0.60 0.85 0.94 0.25
Piper(2,8,4) 0.96 0.00 0.92 0.00 0.92 0.00 0.52 0.00 0.47 0.00

Clean(10,10,1) 0.96 0.00 0.95 0.00 0.96 0.00 0.37 0.00 0.85 0.00
Piper(2,16,8) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table A.5: Comparison of results using the Interleaving Heuristic with a randomized
guided search (RGDS) to results from randomized DFS (DFS).

PED States Time Trace Memory
DFS RGDS DFS RGDS DFS RGDS DFS RGDS DFS RGDS

Airline(6,1) 1.00 1.00 0.75 0.99 0.74 0.99 0.22 0.62 0.53 0.90
Airline(6,2) 1.00 1.00 0.96 1.00 0.95 1.00 0.25 0.60 0.89 0.97

Raxextended(4,3) 1.00 1.00 0.96 0.99 0.96 1.00 0.67 0.99 0.87 0.96
Airline(20,4) 0.03 0.00 0.55 0.00 0.59 0.00 0.47 0.00 0.39 0.00
Airline(20,3) 0.01 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
Airline(20,2) 0.01 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00

indicates that randomized GDS takes less time to find an error when compared to

randomized DFS.

In Figure A.3(e), it is hard to discern which search technique performs better

in generating fewer number of states before error discovery; however, the random-

ized DFS clearly outperforms randomized GDS in the amount of memory utilized as

shown in Figure A.3(f). Randomized GDS maintains the frontier of states that need

to be explored. The increasing frontier size, however, has a dramatic impact on the

memory usage. The unbounded priority queue in JPF causes a serious explosion in

memory usage while executing the randomized GDS. In fact, as mentioned earlier,

we restrict the size of the priority queue to only 100,000 states so that 7 GB of RAM

is not exhausted before reaching the specified time bound. Overall, across the differ-

ent metrics, randomized GDS using the prefer-thread heuristic improves performance

over randomized DFS by effectively finding counter-examples and generating shorter

counter-examples.

142

Table A.6: Comparison of results using the Choose-Free Heuristic with a randomized
guided search (GDS) to results from randomized DFS (DFS).

PED States Time Trace Memory
DFS RGDS DFS RGDS DFS RGDS DFS RGDS DFS RGDS

Deos(true) 1.00 1.00 0.72 0.97 0.56 0.96 0.36 0.95 0.60 0.92
Replicated(5,2) 0.97 0.00 0.81 0.00 0.87 0.00 0.57 0.00 0.88 0.00
RWNoExpChk 0.77 1.00 0.97 0.72 0.72 0.55 0.75 0.99 0.94 0.69

We present results for the most-blocked, interleaving, and choose-free heuris-

tics in Table A.4, Table A.5, and Table A.6 respectively. These heuristics do not

perform well on the class of models for which they are designed, and the comparison

with randomized DFS makes these heuristics even less appealing in our benchmarks.

For example, the randomized DFS path error density for Piper(2,8,4) model is 0.96

while the path error density of randomized GDS using the most-blocked heuristic as

seen in Table A.4 is 0.00. Similar behavior is seen for the model Clean(10,10,1).

The choose-free, most-blocked, and interleaving heuristics do not overcome the ran-

domized DFS lower bound and are not effective in generating counter-examples for

models in the tables. The sub-par performance of these heuristics argues a greater

need to identify models where they are effective.

The results in this section indicate that given the correct heuristic for a set

of models, randomized GDS is effective in finding errors where randomized DFS

struggles. It is also important to note that better error discovery, shorter counter-

examples, and reduced error discovery time in randomized GDS comes at the cost of

increased memory usage due to the large search frontier.

A.5 Conclusions and Future Work

This paper presents a new randomized GDS algorithm that completely shuffles states

in the priority queue with equal heuristic rankings. The algorithm is easily imple-

mented, efficient, and has low overhead in terms of memory and time. We show that

143

full randomization of the guided search improves the effectiveness of the search over

the regular guided search. To evaluate the performance of randomized GDS using a

particular heuristic, we compare it with randomized DFS because randomized DFS

creates a lower bound for establishing performance gains in directed model checking.

Also, when the heuristic is correctly matched to the models and properties, the new

randomized GDS algorithm outperforms randomized DFS in both the effectiveness of

the search in finding counter-examples and the length of the counter-examples. The

approach is timely given the recent explosion in computation resources and is easily

distributed to several computation nodes to improve the likelihood of error discovery.

There is a need to explore other avenues for combining randomization and di-

rected model checking. For example, can we use randomization to balance exploring

new parts of the behavior space and use heuristics to exploit the information available

about the model? Also, as we develop heuristics appropriate for use in a random-

ized GDS algorithm, there is a need to understand the intended problem domain

for the heuristic. In other words, we need to characterize heuristics in terms of the

models for which they are expected to be effective. Without this characterization,

it is not obvious which heuristic best fits a given property and model. There also

a need to define language and metrics to characterize heuristics for their intended

problem domains. An interesting avenue of research is to use something similar to

the “Patterns” categorization for specifications [Dwyer et al., 1998].

144

Appendix B

Designing Benchmarks to Evaluate the Effectiveness of Error

Discovery Techniques

This empirical study was published as:

N. Rungta and E. G. Mercer, “Hardness for Explicit State Software Model Checking

Benchmarks”, in Proceedings of the 5th IEEE International Conference on Software

Engineering and Formal Methods (SEFM), London, UK, pages 247-256, September

2007

Abstract

Directed model checking algorithms focus computation resources in the error-prone

areas of concurrent systems. The algorithms depend on some empirical analysis to re-

port their performance gains. Recent work characterizes the hardness of models used

in the analysis as an estimated number of paths in the model that contain an error.

This hardness metric is computed using a stateless random walk. We show that this

is not a good hardness metric because models labeled hard with a stateless random

walk metric have easily discoverable errors with a stateful randomized search. We

present an analysis which shows that a hardness metric based on a stateful random-

ized search is a tighter bound for hardness in models used to benchmark explicit state

directed model checking techniques. Furthermore, we convert easy models into hard

models as measured by our new metric by pushing the errors deeper in the system

and manipulating the number of threads that actually manifest an error.

145

B.1 Introduction

Model checking is a formal approach for systematically exploring the behavior of a

concurrent software system to verify whether the system satisfies the user specified

properties [Havelund and Pressburger, 1998, Robby et al., 2003]. A model of a con-

current software system is a transition graph that consists of states and transitions.

Each state in the transition graph is a snapshot of the program condition which con-

sists of the values of all variables at a specific program location; while the transitions

in the graph are rules that represent the change in the program condition from one

state to another.

Exhaustive search techniques such as breadth-first search (BFS) or depth-first

search (DFS) are commonly used to explore all the states in the transition graph.

Starting from an initial state, the search technique computes the enabled transitions

at each state to generate and explore the possible successors in either a breadth-first

or depth-first manner.

A path or state in the transition graph that violates a user specified property

is known as an error in the model. Since model checking considers all possible thread

interactions, it enables us to find subtle concurrency errors deep in the execution

trace. These errors are hard to detect in a traditional validation technique based on

test vector generation because scheduling decisions cannot be controlled by the input

vectors.

The primary challenge in model checking is managing the size of the transition

graph. The increase in the size of the transition graph is also known as the state

space explosion. For large software systems, the computation resources are exhausted

before a search finishes exploring the transition graph. Directed model checking is

one solution to the state space explosion problem. It aims to guide the search to

parts of the transition graph where errors are more likely to exist [Edelkamp et al.,

2001b, Groce and Visser, 2002a, Rungta and Mercer, 2005, 2006, Tan et al., 2004].

146

It assumes an error exists in the software, and the goal is to find the error before it

runs out of computational resources (time or memory).

Directed model checking techniques use heuristics to rank the states in order of

interest with states estimated to be near errors explored before the other states. The

performance of a given heuristic estimate is compared to existing heuristic functions,

or a DFS, with an empirical analysis. A reduction in the number of states generated

and a decrease in the total time taken before error discovery are two commonly used

metrics to measure performance gains of a directed model checking technique.

The reliance of directed model checking algorithms on an empirical analysis

to assess and validate the performance gains of a given technique motivates a need to

characterize the quality of models used in such an analysis. The set of models used

to benchmark directed model checking should at least be computationally expensive

for simple variants of DFS or BFS techniques. In other words, if the baseline model

checking algorithm easily solves a benchmark for directed model checking, then the

benchmark is not successful or useful in delineating performance. There is a need to

classify and characterize benchmarks for directed model checking to control for this

situation. We believe that understanding the benchmarks improves understanding in

the algorithm.

The work in [Dwyer et al., 2006] is the pioneering research in characterizing the

hardness of benchmarks for directed model checking. The benchmarks are guaranteed

to contain an error and the goal is to rank the benchmarks in terms of effort, time and

memory, required for error discovery. The work in [Dwyer et al., 2006] presents the

traditional syntactic metrics for hardness in a set of Java benchmarks such as thread

count, class count, location count, etc., and it then defines a semantic hardness metric

as a lower bound on the estimated number of paths in the model that contain errors.

The lower bound is computed by conducting a large number of stateless random walks

on the model. Follow on work in [Dwyer et al., 2007] shows that only 5 to 20 non-

147

deterministic DFS trials are required to guarantee that one DFS trial successfully

discovers the error. The DFS trial results are reported on a set of seven models that

are classified as hard by the semantic metric for directed model checking in [Dwyer

et al., 2006]. The results in [Dwyer et al., 2007] contradict the intuition that a hard

model used for benchmarking directed model checking needs to minimally challenge

basic search techniques and indicates that the reported lower bound on the hardness

for these models in [Dwyer et al., 2006] is not sufficient.

To provide a semantic metric with a tighter bound on the estimated number of

errors in a benchmark for explicit state directed model checking, we define a new hard-

ness metric that is computed by conducting a large number of non-deterministic DFS

trials. To test the effectiveness of this new hardness metric, we conduct an analysis

on a set of 36 models that have not been previously analyzed with non-deterministic

DFS trials. In a large subset of the 36 models that have a low estimated number of

errors as computed by random walk, all non-deterministic DFS trials conducted are

successful in finding an error. The large performance gap between a random walk and

non-deterministic DFS indicates that a hardness metric based on non-deterministic

DFS trials is a better starting baseline measure of hardness than the one computed

using random walk.

To aid researchers in designing hard benchmarks, we identify certain factors

that control the hardness in models as measured by the new semantic hardness met-

ric. Traditionally, the total number of threads is a syntactic measure of hardness

used when evaluating directed model checking approaches. Our analysis indicates,

however, that arbitrarily increasing the total number of threads in the model does

not necessarily challenge the new hardness measure. In fact we create two versions of

several models with the same number of total threads that have diametrically oppo-

site hardness values as measured by the new metric. As such, we show that the type

of threads that cause errors to be discovered and the depth at which errors occur in

148

procedure Random Walk Init(s0)
1: s := s0, depth := 0
2: Random Walk(s, depth)
3:

procedure Random Walk(s, depth)
4: Xsucc := get successors(s)
5: while (Xsucc 6= ∅ or depth ≤ depth bound)

do
6: s := get random element(Xsucc)
7: depth := depth + 1
8: if error(s) then
9: print “1 Error Found”

10: return
11: Xsucc := get successors(s)
12: print “No Errors on this Path”

procedure Random DFS Init(s0)
1: Visited := {s0}
2: Random DFS(s0, V isited)
3:

procedure Random DFS(s, V isited)
4: if (within time bound()) then
5: if error(s) then
6: print “1 Error Found”
7: exit
8: Xsucc := get successors(s)
9: randomize elements(Xsucc)

10: for each s′ ∈ Xsucc do
11: if s′ 6∈ V isited then
12: V isited := V isited ∪ {s′}
13: Random DFS(s′, V isited)
14: else
15: print “Out of Time”

(a) (b)

Figure B.1: Pseudo-code for randomized search techniques (a) True random walk
with no backtracking (b) DFS with a randomized transition order

the transition graph are two controlling factors that affect the hardness measure. We

present evidence for these factors in making seemingly easy models into hard models

by systematically varying these factors in the models.

The main contributions of this paper are: (1) Defining non-deterministic DFS

(randomized DFS) as a tighter bound on the hardness of a model when compared to

random walk, (2) Showing correlation between error discovering threads and depth

of errors with the hardness of models, and (3) Characterizing a set of existing bench-

marks as well as creating hard benchmarks based on the new metric.

B.2 Background and Motivation

Recent work in [Dwyer et al., 2006] defines path error density as a conservative

probability estimate on the number of paths in a model that contain an error. This

estimate is a lower bound on the total number of paths that actually contain an error

in the model. To compute the path error density, a large number of independent

149

random walks are conducted on the model. The probability estimate is the ratio of

random walks that find an error to the total number of random walks. This estimate

is assigned as the path error density of the model. The path error density of an

easy model is close to one if a large number of random walks find an error. This

demonstrates that there is a high probability of finding an error along an arbitrary

path in the program which makes the model extremely easy in terms of error discovery.

Conversely, the path error density of a hard model is close to zero if only a few random

walks are successful in finding an error. The work in [Dwyer et al., 2006] also reports

syntactic metrics, like lines of code and thread count, on the models used in their

study. The study shows that syntactic metrics are not able to predict path error

density values. A model that looks syntactically hard may actually be semantically

easy. This syntax-semantic gap creates a need for a semantic metric, like path error

density, to classify benchmarks for directed model checking until we better understand

the relationship between syntax and error discovery.

Random walk is a stateless search technique that does not store information

on states that are already explored. In Figure B.1(a), we present the pseudo-code

for a pure random walk with no backtracking. Starting from an initial start state

(s0), a random walk explores a sequence of states in the transition graph expanding

a random successor at each state in the path (lines 4−7 and 11). If the random walk

encounters an error, it reports the error (lines 8 − 10); however, when the random

walk reaches a node with no successors or a depth greater than the specified depth

bound (line 5), it simply terminates the search (line 12).

The path error density does not provide a tight bound on the estimated number

of paths in a model that contain an error due to the inherent limitations of random

walk. New research in [Pelanek et al., 2005] shows that the total coverage obtained

by a pure random walk is largely dependent on the structure of the graph. It also

shows that coverage of the random walk increases logarithmically with the number of

150

computation steps; thus, during the initial phase of the random walk, a large number

of new states are visited, but with time, the number of newly visited states decreases

rapidly. Experimental analysis indicates that the coverage achieved by pure random

walk ranges between 100% to 1% for transition graphs commonly used in model

checking [Barnat et al., 2006, Dill, 1996, Holzmann, 1997]. In models where pure

random walk achieves medium to low coverage, the path error density measure does

not accurately reflect the effort required in finding an error in the model because the

coverage is so sporadic.

The work in [Dwyer et al., 2007] shows that a parallel randomized state-space

search (PRSS) is very effective in finding errors for models of [Dwyer et al., 2006] with

relatively low path error densities. Intuitively, PRSS runs independent randomized

DFS trials in parallel to discover an error. A randomized DFS is simply a variant of

the rudimentary DFS that randomizes the order of its successors in the search. The

PRSS approach computes the required number of nodes such that with every node

running a randomized DFS trial in parallel at least one node finds the error in the

model.

In Figure B.1(b), we present the pseudo-code for a randomized DFS. It explores

a sequence of states starting from the start state (s0), where at each state it generates

a set of all possible successors, randomizes their order, and picks one successor to

explore in a depth-first manner (lines 8 − 13). When the search encounters a node

with no successors, it backtracks to the next node in the list of randomized successors.

A randomized DFS is a stateful search technique that maintains a set of visited states

to track every explored state (lines 10−11). The randomized DFS terminates when an

error state is encountered (lines 4−7) or reaches the specified time bound (lines 4 and

14−15). Note that the algorithm for the randomized DFS presented in Figure B.1(b)

assumes that the model contains an error. Memory resources limit the amount of time

a randomized DFS trial can run. Unlike a random walk, memory in a randomized

151

DFS trial is exhausted if it is run long enough. For seven subjects presented in [Dwyer

et al., 2006] with a relatively low path error density, the PRSS requires only between 5

to 20 nodes to guarantee error discovery in at least one randomized DFS trial [Dwyer

et al., 2007]. This is counterintuitive since the models labeled hard seem so easy.

A hard model should at least challenge a randomized DFS which is a basic

search technique used in model checking tools. It is counterintuitive for a small num-

ber of parallel randomized DFS trials in the PRSS approach to consistently discover

errors in supposedly hard models. This contradiction motivates a need for defining a

better notion of hardness in models for benchmarking path analyses techniques and

model checking algorithms. We especially need this metric to characterize and classify

benchmarks for comparative studies in explicit state directed model checking.

B.3 Error Density Measure

The path error density based on a stateless random walk underestimates the hardness

of models for benchmarking stateful directed model checking algorithms. Specifically,

it tends to label models hard even when the error discovery is trivial with a stateful

randomized DFS. A hard model used for benchmarking directed model checking algo-

rithms needs to at least be computationally expensive in terms of time and space for

a stateful randomized DFS. To demonstrate the utility of having a stateful hardness

measure, we re-run the PRSS analysis for 36 models in [Dwyer et al., 2006]; however,

instead of computing the number of nodes required to run randomized DFS in parallel

to guarantee at least one node finds an error, we record the number of randomized

DFS trials that encounter an error.

Based on randomized DFS trials, we define a new hardness metric, the observed

randomized-DFS (R-DFS) error density which is the ratio of the randomized DFS

trials that find an error to the total number of randomized DFS trials conducted.

Since the observed R-DFS error density is based on a stateful search, it provides a

152

Table B.1: Comparing path error density and randomized DFS

Subject Randomized DFS trials
Name(Thread Num) Params Path error observed R-DFS Number of States

density[Dwyer et al., 2006] error density Minimum Average Maximum
Account-NoDeadlkCk(6) none 0.549 1.00 182 27,928 1,089,171
Account-NoExcpCk(6) none 0.077 0.48 405 1,749,259 13,151,326
AccountSubtype(10) 8,1 0.152 0.34 250 248,714 3,245,340
Airline(21) 20,8 0.069 0.49 101 571,214 6,479,374
Airline(7) 6,2 0.030 1.00 40 226,846 5,112,586
Airline(7) 6,1 0.003 1.00 50 1,618,915 6,401,539
Airline(21) 20,2 0.000 0.01 5,249 5,249 5,249
Alarm Clock(4) 9 0.093 1.00 28 112 288
Alarm Clock(4) 4 0.083 1.00 41 111 147
AllocateVector(3) 8,20,1 0.441 0.99 33 198,206 4,623,001
AllocateVector(3) 2,20,4 0.294 1.00 34 5,646 143,866
AllocateVector(3) 2,20,1 0.084 1.00 34 4,832 7,773
AllocateVector(3) 2,100,1 0.017 1.00 34 28,406 40,248
Clean(21) 10,10,1 0.289 0.96 206 283,357 5,497,056
Clean(3) 1,1,12 0.033 1.00 12 907 987
Deadlock(3) 1 0.450 1.00 12 17 33
Deadlock(3) 2 0.379 1.00 5 6 8
Deos(4) abstracted 0.190 1.00 7 747 2,638
LinkedlistSync(5) 4,100 0.000 1.00 9,324 10,014 12,351
Piper(17) 2,8,4 0.083 0.96 146 621,340 7,921,766
Piper(9) 2,4,4 0.029 1.00 1,611 189,872 1,288,076
ProducerConsumer(11) 2,8,4 0.967 1.00 127 261 12,334
ProducerConsumer(7) 2,4,4 0.956 1.00 97 116 372
ProducerConsumer(5) 2,2,4 0.768 1.00 93 112 210
RaxExtended(6) 2,3 0.128 1.00 25 1,783 19,502
Reorder(3) 1,1 0.030 1.00 16 55 80
Reorder(7) 1,5 0.043 1.00 15 49,151 65,490
ReplicatedWorkers(9) 8,2,0,10,.001 0.948 0.97 1,739 1,801 1,866
RWNoExcepChk(5) 2,2,100 0.769 0.80 52 533 2,031
TwoStage(3) 1,1 0.043 1.00 20 57 127
TwoStage(8) 2,5 0.028 1.00 30 1,759,759 3,702,115
TwoStage(5) 2,2 0.022 1.00 34 3,301 8,638
WrongLock(12) 10,1 0.478 1.00 61 94 167
WrongLock(12) 1,10 0.200 1.00 25 1,574,058 2,966,459
WrongLock(3) 1,1 0.068 1.00 13 25 43

tighter bound on the hardness of models for benchmarking explicit state directed

model checking algorithms compared to path error density which is computed using

random walk. The underlying assumption is that randomized DFS always achieves

better coverage of a transition graph compared to a random walk. We do not consider

comparisons with BFS because variants of BFS often have prohibitively large frontier

sizes that render BFS techniques ineffective for error discovery in the benchmark set.

153

B.3.1 Experiment Design

To compare path error density and observed R-DFS error density we conduct random

walk and randomized DFS trials on a cluster of 618 nodes. Every node in the cluster

has 8 GB of RAM and two Dual-core Intel Xeon EM64T processors (2.6 GHz). The

execution time for a single randomized DFS trial is bounded at one hour. We pick

the time bound to be consistent with the other recent studies [Dwyer et al., 2006,

2007]. Later in this section we also study the affects of changing the time bound.

The programs in this study are compiled using Java 1.5 and verified by the Java

PathFinder (JPF) v4.0 model checker with partial order reduction turned on [Visser

et al., 2003].

For each model in test we conduct 100 randomized DFS trials to compute its

semantic hardness. We experimented with different number of trials to pick an upper

bound on the required number of trials for predicting the semantic hardness. For

the models in our test suite we found that 100 trials are sufficient to compute the

semantic hardness. To compute the path error density, we execute 10,000 trials of

random walk, where one trial is a single random walk execution or single path in the

program. The original study of [Dwyer et al., 2006] uses between 1000 and 10,000

random walk trials to estimate the path error density of the model.

Independent Variable

We vary models, the independent variable, in our study to test whether randomized

DFS provides a tighter bound on hardness of benchmarks used in explicit state di-

rected model checking. We conduct the study on a set of 36 models used in the

benchmarking analysis of [Dwyer et al., 2006] and have not been previously analyzed

with a randomized DFS. The set of benchmarks encompasses a wide variety of Java

programs with concurrency errors. The test suite includes programs derived from

concurrency literature, small to medium-sized realistic programs, models designed to

154

exhibit Java-specific errors described in [Farchi et al., 2003], and models developed

at IBM to support their analyses research [Eytani and Ur, 2004]. Many models have

been made parameterizable to control the number of threads for studying their effect

on the path error density.

Dependent Variables and Measures

The dependent variables in this study are the path error density and the observed

R-DFS error density values. We compute the values of the path error density rather

than report the values in [Dwyer et al., 2006]1. We also compute the observed R-

DFS error density which is the ratio of randomized DFS trials that find an error over

the total number of randomized DFS trials executed. On the scale of hardness, an

observed R-DFS error density of 1.00 indicates an extremely easy model while an

observed R-DFS error density of 0.00 indicates a very hard model. Note that this

scale is consistent with the path error density hardness scale of [Dwyer et al., 2006]

where probabilities close to one indicate easy models whereas probabilities close to

zero indicate hard models. We measure the number of states generated during the

randomized DFS trials to gain a better understanding on the effort required for error

discovery by the randomized DFS trials in terms of time and memory resources.

B.3.2 Results

The results of the study are presented in Table B.1 where the first column indicates

the name of the subject, and the maximum number of threads created in the subject is

indicated in the parenthesis (Name(Thread Num)). The second column specifies the

input parameters (Params) used by the subject (see [Dwyer et al., 2006] for parameter

details and other syntactic metrics such as thread count, class count, location count,

etc.). In the section of Table B.1 labeled randomized DFS trials, we present four

1The values in [Dwyer et al., 2006] are computed on JPF3.1.2 while we do our analysis on JPF4.0.

155

statistics: the observed R-DFS error density, the minimum and maximum number

of states generated in a single trial of randomized DFS among the error discovering

trials, and the average number of states generated across all randomized DFS trials

that find an error.

The analysis in Table B.1 shows that for a large number of models that have

near zero path error densities with random walk, almost all of the randomized DFS

trials find an error. For example, the model Clean with parameters (1,1,12) has

a path error density of 0.033 while its observed R-DFS error density is 1.00. The

parameterized versions of the TwoStage and Reorder models have a path error density

of less than 0.050 but have an observed R-DFS error density of 1.00. In 26 examples

presented in Table B.1 out of the total 36 subjects, all 100 trials of randomized DFS

find an error. Furthermore, in some models with a low path error density and high

observed R-DFS error density, the minimum and average number of states generated

in the randomized trials is very small. This indicates that the computation cost in

terms of memory for error discovery in these models is very low. Fourteen models

with an observed R-DFS error density of 1.00 generate less than 1000 average states

before error discovery. In fact, some models like TwoStage with parameters (1,1) and

ProducerConsumer with parameters (2,4,4) generate a maximum of only 127 states

and 372 states respectively in a single randomized DFS trial out of the 100 trials.

The small state counts further show for these models that a stateful search technique

is effective in finding an error when compared to random walk.

The fact that most models have a hardness of 1.00 under the observed R-

DFS error density metric shows that the set of models used in [Dwyer et al., 2006]

severely lacks in diversity when evaluating directed model checking approaches. It

also indicates that the more varied distribution of hardness values computed by the

path error density in [Dwyer et al., 2006] is not representative of the amount of effort

required to find errors in these models with stateful search methods.

156

The examples in Table B.1 that appear hard in terms of the observed R-DFS

error density are interesting to study in order to identify factors that cause a low ob-

served R-DFS error density in the models. For example, the Accountsubtype model

with parameters (8,1) is a moderately hard model with an observed R-DFS error

density of 0.34, and the average number of states generated before error discovery is

significant. Further examination of the Accountsubtype model may assist in identi-

fying the factors affecting the low observed R-DFS error density. There are two other

parameterized subjects that have a low observed R-DFS error density: Airline with

parameters (20,2) and Piper with parameters (2,16,8). These are interesting subjects

because other parameterized versions of these models have a high observed R-DFS

error density. For example, Piper with parameters (2,4,4) and Airline with param-

eters (6,1) have an observed R-DFS error density of 1.00.

B.3.3 Effect of the Time Bound

The observed R-DFS error density measure in Table B.1 is dependent on the time

bound of 1 hour set for the randomized DFS trials. We test the effect of the time

bound on the observed R-DFS error density by running randomized DFS trials on a

set of hard models using different time bounds. In the next section we show how to

create the hard models. The independent variable in this study is the time bound

while the dependent variable is the observed R-DFS error density. We expect the

observed R-DFS error density to increase with the time bound. In Table B.2 we

present results of the study.

In certain models, the observed R-DFS error density steadily increases with

time while in others, it is not clear how the observed R-DFS error density changes.

In the TwoStage model with parameters (7,1), the observed R-DFS error density

increases from 0.41 to 0.93. This still shows that Twostage(7,1) is a moderately

hard model for stateful search techniques because it takes an upper bound of 300

157

Table B.2: Increasing Time Bound

Subject observed R-DFS error density
Name (Thread Num) Params 1 hour 2 hours 3 hours
Airline(21) 20,2 0.01 0.00 0.00
Reorder(11) 9,1 0.06 0.45 0.37
TwoStage(9) 7,1 0.41 0.69 0.93
TwoStage(10) 8,1 0.04 0.03 0.07
TwoStage(12) 10,1 0.00 0.00 0.00
Wronglock(22) 1,20 0.18 0.20 0.20

computation hours—a significant amount of resources—to obtain an observed R-DFS

error density of 0.93 in the model. In essence, the time bound allows researchers to

set their own threshold of hardness. In general, we expect a decrease in time bound

makes a model progressively harder and vice-versa.

In the following section, we use models defined as hard in terms of the observed

R-DFS error density measure to identify the factors that contribute toward hardness

other than the time bound. In other words, given a fixed time bound, how do we

make an easy model hard? We show that the number of threads that manifest an

error in the model and the depth of the transition graph at which errors occur assist

in making hard models. We also use these factors to convert some easy models into

hard models in a given time bound.

B.4 Making Models Hard

Making hard models for benchmarking directed model checking algorithms requires

an understanding of the factors that make a model hard in terms of the observed

R-DFS error density measure. From prior studies, [Dwyer et al., 2006], and our own

empirical analysis on different models, we show there is a causal relationship between

the observed R-DFS error density and the depth of errors in the transition graph as

well as the thread count in the model. To aid in our discussion on the effects of the

depth of errors on the observed R-DFS error density, we present in Table B.3 several

158

members of our study group from Table B.1 with their minimum error depth (Min),

maximum error depth (Max), average error depth (Avg), Standard deviation in the

error depth (Std Dev), the 95% confidence interval (95% CI), and the maximum

depth observed in the model (Depth) as measured by several trials of randomized

DFS. We selected these models from the larger set because we are able to make these

models hard by controlling the depth of the errors and the threads that produce the

errors. We are still working on other models from the study.

A closer analysis indicates that for a large number of the models, error depth

is closely tied to the thread count of the model which means it is not always possible

to strictly separate the depth of errors and number of threads while making a model

hard. Furthermore, simply increasing the number of threads arbitrarily in a model

does not always result in hard models. Sometimes it is important to systematically

vary the number of threads that manifest an error in the model. This also makes it

hard to define a syntactic metric to classify benchmarks for directed model checking.

A summary of the models we make hard is presented in Table B.4. For each

model we make hard (Subject), we show the parameters (Params), the factor we used

to make models hard (Hardness Factor), the lowest observed R-DFS error density

seen among the parameterized versions of the model (observed R-DFS error density),

and the parameter values used to obtain the lowest observed R-DFS error density (P.

val). In Table B.5 we present evidence on the importance of the error depths and

number of threads that manifest an error by making models hard using these factors.

For each subject (Name) with its corresponding parameters (Params) in Table B.5

we conduct an experiment of a 1000 randomized DFS trials time-bounded at 1 hour.

We present the observed R-DFS error density, the minimum (Min), maximum (Max),

and average (Average) number of states generated, and the minimum, maximum and

average depth of errors observed during the randomized DFS trials.

159

Table B.3: Error depth statistics

Name(Thread Num) Params Min Max Avg Std Dev 95 % CI Depth observed R-DFS
error density

Piper(9) 2,4,4 63 89 75 3.70 0.102 119 1.00
AllocateVector(3) 2,100,1 28 102 71 21.8 0.622 119 .948
RaxExtended(6) 2,3 16 701 179 143 3.981 712 1.00
WrongLock(12) 1,10 15 64 27 6.84 0.189 83 1.00
Wronglock(12) 10,1 61 98 85 4.49 0.124 98 1.00
ProducerConsumer(11) 2,8,4 110 158 126 4.76 0.137 173 .926
AccountSubtype(10) 8,1 239 274 255 6.37 0.249 278 .500
Airline(7) 6,1 31 40 35 1.30 0.036 41 1.00
Airline(7) 6,2 24 40 34 2.15 0.059 41 1.00
Airline(21) 20,2 114 124 119 1.36 0.144 124 .068
Airline(21) 20,8 87 127 113 7.00 0.195 127 .986

Table B.4: Summary of Models made hard

Subject (Params) : Making models Hard
Piper (#seatRequests, #producers and #consumers, bufferSize) : Errors are pushed deeper

in the transition graph when we increase the bufferSize and keep the number of threads,
#producers and #consumers, constant.

Airline (#ticketsIssued, cushion) : The minimum depth of the error is pushed deeper in the
execution trace when we increase the value of cushion and keep the total possible
number of threads, #ticketsIssued, constant.

Accountsubtype (#correctAccounts, #incorrectAccounts) : We increase the number of threads that create
#correctAccounts and keep the number of threads that create #incorrectAccounts
constant because only threads that create #incorrectAccounts cause an error condition.

Wronglock (#dataLockers, #classLockers) : We increase the #classLockers while keeping the
#dataLockers constant; dataLockers check for the data inconsistency created by classLockers.

ProducerConsumer (#producers, #consumers, #items) : We increase #consumers and keep #producers
constant because the error condition, deadlocked consumer threads, is detected after
the correctly running consumer threads complete execution.

Reorder (#setters, #checkers) : We increase the #setters and keep #checkers constant;
setter threads create the error while checker threads manifest the error.

TwoStage (#twoStagers, #readers) : We increase the #twoStagers and keep #readers constant;
twoStager threads cause the error while reader threads manifest the error.

The hardness in the Piper and Airline model can be controlled by varying

the depth of the error for a specific thread configuration. The Piper model with

parameters (2,4,4) has a moderately-deep distribution of errors as seen in Figure B.2

and the minimum depth of an error is fairly high as seen in Table B.3. The depth of

errors in the Piper model can be controlled by increasing the size of the global buffer

as shown in Table B.4. This is because a larger buffer requires more execution steps

in the transition graph to fill the buffer. The Piper model with parameters (2,8,5)

with 17 threads has an observed R-DFS error density of 0.930 as shown in Table B.5.

160

Table B.5: Making models hard as measured by the observed R-DFS error density

Subject observed R-DFS States Error Depth Statistics
Name(Thread Num) Params error density Min Max Average Min Max Average

Piper(17) 2,8,5 .930 166,680 9,124,665 3,993,474 133 165 147
Piper(17) 2,8,6 .010 1,597,902 6,897,906 3,670,129 139 148 144
Piper(17) 2,8,7 0.00 - - - - - -

Airline(21) 20,7 .938 293 5,671,899 85,169 94 125 116.0
Airline(21) 20,6 .836 336 7,799,950 142,970 101 126 117.7
Airline(21) 20,5 .669 353 6,707,146 237,961 107 125 118.5
Airline(21) 20,4 .441 372 7,490,825 546,131 107 124 119.0
Airline(21) 20,3 .228 379 6,048,042 448,035 108 123 119.5
Airline(21) 20,1 .007 464 5,671,267 1,649,334 119 122 120.0

Accountsubtype(11) 9,1 .316 1,270 7,983,855 1,078,276 269 300 281
Accountsubtype(12) 10,1 .171 1,908 7,694,424 1,499,804 295 326 306
Accountsubtype(13) 11,1 .085 1,826 6,992,772 1,270,414 322 350 332
Accountsubtype(22) 20,1 0.00 - - - - - -

Accountsubtype(11) 8,2 .995 1,084 6,595,167 156,152 267 315 292
Accountsubtype(17) 8,8 1.00 2,308 1,218,295 5,131 475 584 560

Wronglock(22) 1,20 .186 50 182 98 18 51 30

ProducerConsumer(10) 1,8,4 .373 232 6,680,332 1,218,856 80 127 95
ProducerConsumer(12) 1,10,4 .232 263 4,160,717 60,268 92 125 104
ProducerConsumer(14) 1,12,4 .198 269 605 395 102 134 113
ProducerConsumer(18) 1,16,4 .178 353 711 455 122 152 133

TwoStage(8) 6,1 1.00 61,572 4,028,179 2,335,507 51 61 58
TwoStage(9) 7,1 .160 1,007,210 9,650,374 6,259,728 62 69 65
TwoStage(10) 8,1 .002 7,484,947 8,308,465 7,896,706 72 73 72
TwoStage(12) 10,1 0.00 - - - - - -

Reorder(7) 5,1 1.00 8,083 34,671 27,280 30 35 34
Reorder(10) 8,1 1.00 550,927 4,326,254 3,415,442 40 45 49
Reorder(11) 9,1 .017 3,475,434 7,470,672 5,615,955 52 55 54
Reorder(12) 10,1 0.00 - - - - - -

If we keep the same number of producers and consumers but increase the buffer size

from 5 to 7, the corresponding observed R-DFS error density rapidly drops to 0.00.

The minimum depth of the errors also dramatically increases as shown in Table B.5.

A strong dependence on the depth of errors in the Piper model allows us to create

hard versions of the Piper model in terms of the observed R-DFS error density. If

we fix the number of producers and consumers to any arbitrary value we are always

able to push the error depth by increasing the buffer size. This effectively makes the

model hard as measured by the observed R-DFS error density. The Airline model is

made hard in the same fashion as described in Table B.4. By controlling the value of

the cushion parameter the Airline models with 21 threads get progressively harder

as shown in Table B.5.

161

 0

 200

 400

 600

 800

 1000

 1200

 65 70 75 80 85 90

N
um

be
r

of
 E

rr
or

s

Search Depth

Piper(2,4,4)

Figure B.2: Frequency of errors at various search depths

 0

 50

 100

 150

 200

 250

 300

 240 245 250 255 260 265 270 275

N
um

be
r

of
 E

rr
or

s

Search Depth

AccountSubtype(8,1)

Figure B.3: Frequency of errors at various search depths

162

In other models a more complicated thread count manipulation is required to

decrease the observed R-DFS error density of the model. The Accountsubtype is a

classic example of how simply increasing the size of the transition graph arbitrarily

does not decrease the observed R-DFS error density of the model.

In the Accountsubtype model we control the number of threads that create

an error in the model to create hard versions of the model in terms of the observed

R-DFS error density. The Accountsubtype model has fairly deep errors; however,

simply increasing the minimum depth of the errors by arbitrarily changing the number

of threads does not always decrease the observed R-DFS error density of the model.

The Accountsubtype model with parameters (8,1) creates a total of 10 threads and

has an observed R-DFS error density of 0.500 as shown in Table B.1. Table B.3

shows that the (8,1) thread configuration has an average error depth of 255 and the

maximum depth of the transition graph is 278. Moreover, a large number of the

errors are clustered around the mean as demonstrated by Figure B.3. We can push

the errors deeper in the transition graph by increasing the number of threads by one,

and we get two possible input parameter configurations with 11 threads: (9,1) and

(8,2). The minimum depth of errors for the (9,1) and (8,2) configurations are 269 and

267 respectively as shown in Table B.5, while the minimum depth of errors for the

(8,1) configuration shown in Table B.3 is 239. Although, the depth of errors for the

(9,1) and (8,2) configurations are deeper than the (8,1) configuration, the observed

R-DFS error density of Accountsubtype model with parameters (9,1) is 0.316 which

is dramatically lower than 0.995 for the (8,2) configuration. Simply increasing the

thread count may push the errors deep in the transition graph but may not necessarily

challenge the observed R-DFS error density metric. This is why syntactic metrics are

hard to define to predict hardness. Until we understand the syntactic relation to the

error, we need to rely on semantic definitions for benchmarks to use in comparative

studies for directed model checking.

163

In the Accountsubtype model, we control a specific type of thread count to

make models hard in terms of the observed R-DFS error density. The Accountsubtype

model takes two parameters as input where the first parameter is the number of

threads that create error-free accounts while the second parameter is the number of

threads that create error-causing accounts. The error-causing accounts update a local

data value of its neighboring thread with an unprotected access to the data causing

a data inconsistency. As we increase the number of threads that create error-free

accounts from 9 to 20 while fixing the number of threads that create error-causing

accounts at 1, the observed R-DFS error density value drops from 0.316 to 0.00 as

shown in Table B.5. In contrast, when we fix the number of threads that create error-

free accounts at 8 while increasing the number of threads that create error-causing

accounts from 1 to 8, the observed R-DFS error density value dramatically increases

from 0.50 for parameters (8,1) seen in Table B.1 to an observed R-DFS error density

of 1.00 for parameters (8,8) seen in Table B.5.

We make the other models in Table B.4 hard according to our semantic metric

by either pushing the error deeper into the execution or by controlling the specific

type of thread that manifests an error. All of the models in Table B.4 challenge a

time-bounded randomized DFS and are suitable for studying directed model checking

algorithms. This is the value of the semantic metric. The performance gains occur

where the basic search strategy is not successful in the benchmark.

B.5 Other considerations

The observed R-DFS error density measure is dependent on the time bound of the

randomized DFS trials. It is fair to ask, as we increase the depth of errors or the

number of threads in a model, does an increase in the corresponding time bound of

the randomized DFS trials result in a better observed R-DFS error density estimate?

To test this hypothesis we re-run some of our experiments for models with relatively

164

low observed R-DFS error density after doubling the randomized DFS execution time

bound to 2 hours. In these experiments we did not see any perceptible rise in the

observed R-DFS error density of the model. However, to find a definitive relation be-

tween the time bound of the randomized DFS and the observed R-DFS error density,

all the randomized DFS trials should be run without a time bound and have memory

be the only factor limiting the duration of the randomized DFS trial. Obtaining com-

putation resources to perform such a expensive study is very challenging. Regardless,

when showing performance in directed model checking relative to randomized DFS,

we can compare time-bound to time-bound to give meaning to performance gains.

Memory is the other important factor that affects the observed R-DFS error

density of the model. The BoundedBuffer model with parameters (3,6,6,1) presented

in [Dwyer et al., 2007] requires 14 GB of memory before the PRSS approach can

guarantee error discovery in 20 nodes. In our experiments with the same model run

with lower memory constraints, the randomized DFS trials run out of memory in a

few minutes. Given sufficient memory, a randomized DFS trial always discovers an

error but there is a realistic constraint on the amount of memory available. At some

point there is a tradeoff on whether we should spend additional computation resources

of time and memory on a randomized DFS or expend resources in developing efficient

model checking algorithms. Regardless, any directed model checking study should

discuss the computation limits in articulating performance gains.

As seen in the previous section, varying the depth of errors and the number

of threads manifesting an error do not always allow us to increase the hardness of

models. For example, pushing the errors deeper in the Piper model resulted in a

decrease of the observed R-DFS error density while for the Accounsubtype model,

increasing the depth of errors did not give the same results. Since making the model

hard is so dependent on the model, the depth of errors and number of threads that

manifest an error can be used as a starting point for making models hard in terms of

165

the observed R-DFS error density measure. We are still trying to identify additional

factors that can potentially affect the performance of the randomized DFS.

B.6 Related Work

In recent years tremendous progress has been made in the field of software model

checking [Ball and Rajamani, 2001, Clarke et al., 2004, Henzinger et al., 2003, Holz-

mann, 1997]. Java Pathfinder model checks the actual Java bytecode using a Java

virtual machine [Visser et al., 2003]. Similar approaches use simulators and debug-

gers for other machine architectures [Leven et al., 2004, Mercer and Jones, 2005].

These approaches retain a high-fidelity model of the target execution platform while

retaining a low-level control of scheduling decisions. There is a growing interest in

developing tools and models for benchmarking different model checking approaches

used to verify multi-threaded programs [Eytani and Ur, 2004, Eytani et al., 2007,

Farchi et al., 2003]. Recent work [Dwyer et al., 2006] makes a good first attempt

in trying to evaluate the hardness of models used for benchmarking directed model

checking by using random walk to estimate the number of paths in a model that

contain an error. It is the first time random walk is used to evaluate the quality of

directed model checking benchmarks. Other researchers have often used variants of

random walk as an error discovery mechanism with limited success [Haslum, 1999,

Jones and Sorber, 2005, Pelanek et al., 2005, Sivaraj and Gopalakrishnan, 2003].

Randomization techniques have been used in tandem with different model

checking approaches by various researchers. Stoller uses randomized scheduling to

find thread interactions that lead to an error in Java programs [Stoller, 2002], while

Jones and Mercer randomize a decentralized parallel guided search to disperse the

search in different parts of the transition graph [Jones and Mercer, 2004]. The work

in [Dwyer et al., 2006] shows that the default search order used by an algorithm in

a model significantly affects the results for error discovery in empirical analysis. The

166

analysis in [Dwyer et al., 2006] demonstrates that by simply randomizing the default

search order, the same algorithm may perform worse than other algorithms. The

PRSS approach in [Dwyer et al., 2007] overcomes the limitations of the default search

order by using a depth-first search that randomizes the order of successors.

B.7 Conclusions and Future Work

Characterized and classified experimental benchmarks for directed model checking

are critical to understand the performance in explicit state directed model checking.

Currently, we do not have the syntactic metrics for this classification and character-

ization. As such, this paper defines the observed R-DFS error density as a semantic

metric suitable for directed model checking empirical studies. The observed R-DFS

error density is based on a rudimentary search technique and provides a lower bound

on the number of errors in a model. Our analysis in this paper of the most compre-

hensive benchmark set of Java programs for explicit state directed model checking

shows the set to be lacking in diversity and hardness. We study the few Java models

that have a low observed R-DFS error density to understand the factors that con-

tribute toward making them hard. Our analysis of the hard models seems to indicate

that a model can be made hard by pushing errors deep in the transition graph and

manipulating the thread count of specific threads reducing the number of errors. We

use these factors to systematically lower the observed R-DFS error density of several

easy models.

In a follow-on work, [Rungta and Mercer, 2007b], we test the effectiveness of

heuristics in JPF, [Groce and Visser, 2002a], on models defined as hard in this paper.

The study in [Rungta and Mercer, 2007b] shows that the most-blocked, interleaving

and choose-free heuristics are not effective in error discovery on hard models. Note

that we test the performance of these heuristics only on the class of subjects for which

they are designed. The prefer-thread heuristic consumes more resources in terms of

167

time and memory, as the models get harder, to find errors effectively in a certain class

of subjects. The empirical evidence of [Rungta and Mercer, 2007b] shows that the

observed R-DFS error density measure of hardness provides a good starting point in

defining the quality of the models for evaluating directed model checking techniques.

In future work, we want to identify additional factors that affect the observed

R-DFS error density of a model and tie those factors to syntactic constructs in the

model. Some interesting factors to study are the depths of the transition graph where

the randomized DFS spends a large portion of its search time and the structure of

the transition graph derived from the branching factor.

168

Bibliography

S. Anand, P. Godefroid, and N. Tillmann. Demand-driven compositional symbolic

execution. In C. R. Ramakrishnan and Jakob Rehof, editors, TACAS, volume 4963

of LNCS, pages 367–381. Springer, 2008. ISBN 978-3-540-78799-0.

Cyrille Artho and Armin Biere. Applying static analysis to large-scale, multi-threaded

java programs. In Proc. ASWEC, page 68, Washington, DC, USA, 2001. IEEE

Computer Society.

David F. Bacon and Peter F. Sweeney. Fast static analysis of c++ virtual function

calls. pages 324–341, New York, NY, USA, 1996. ACM. ISBN 0-89791-788-X. doi:

http://doi.acm.org/10.1145/236337.236371.

T. Ball and S. Rajamani. The SLAM toolkit. In G. Berry, H. Comon, and A. Finkel,

editors, Proc. CAV, volume 2102 of LNCS, pages 260–264, Paris, France, July 2001.

Springer-Verlag.

J. Barnat, L. Brim, and J. St. Distributed LTL model checking in SPIN. In Proceed-

ings of the 8th International SPIN workshop on Model Checking of Software, pages

200–216. Springer-Verlag New York, Inc., 2001. ISBN 3-540-42124-6.

J. Barnat, L. Brim, I. Černá, P. Moravec, P. Ročkai, and P. Šimeček. DiVinE – A

Tool for Distributed Verification (Tool Paper). In Computer Aided Verification,

volume 4144/2006 of LNCS, pages 278–281. Springer Berlin / Heidelberg, 2006.

L. Brim, I. Cerna, P. Moravec, and J. Simsa. How to order vertices for distributed LTL

model-checking based on accepting predcessors. Electronic Notes in Theoretical

Computer Science, 135(2):3–18, February 2006.

E. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C programs. In Kurt

Jensen and Andreas Podelski, editors, Tools and Algorithms for the Construction

and Analysis of Systems (TACAS 2004), volume 2988 of Lecture Notes in Computer

Science, pages 168–176, Barcelona, Spain, April 2004. Springer. ISBN 3-540-21299-

X.

169

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-

state concurrent systems using temporal logic specifications. ACM Transactions

on Programming Languages and Systems (TOPLAS), 8(2), 1986.

Christoph Csallner and Yannis Smaragdakis. JCrasher: an automatic robustness

tester for Java. Software - Practice and Experience, 34(11):1025–1050, 2004. ISSN

0038-0644. doi: http://dx.doi.org/10.1002/spe.602.

D. L. Dill. The Murφ verification system. In CAV ’96: Proceedings of the 8th Inter-

national Conference on Computer Aided Verification, pages 390–393, London, UK,

1996. Springer-Verlag. ISBN 3-540-61474-5.

M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Property specification patterns for

finite-state verification. In Mark Ardis, editor, Proceedings of the 2nd Workshop

on Formal Methods in Software Practice (FMSP-98), pages 7–15, New York, 1998.

ACM Press. URL citeseer.ist.psu.edu/article/dwyer98property.html.

M. B. Dwyer, S. Person, and S. Elbaum. Controlling factors in evaluating path-

sensitive error detection techniques. In SIGSOFT ’06/FSE-14: Proceedings of the

14th ACM SIGSOFT international symposium on Foundations of software engi-

neering, pages 92–104, New York, NY, USA, 2006. ACM Press. ISBN 1-59593-468-

5. doi: http://doi.acm.org/10.1145/1181775.1181787.

M. B. Dwyer, S. Elbaum, S. Person, and R. Purandare. Parallel randomized state-

space search. In ICSE ’07: Proceedings of the 29th International Conference on

Software Engineering, pages 3–12, Washington, DC, USA, 2007. IEEE Computer

Society. ISBN 0-7695-2828-7. doi: http://dx.doi.org/10.1109/ICSE.2007.62.

S. Edelkamp and S. Jabar. Large-scale directed model checking LTL. In A. Valmari,

editor, 13th International Workshop on Model Checking of Software (SPIN’06),

volume 3925 of Lecture Notes in Computer Science, pages 1–18. Springer, 2006.

S. Edelkamp and T. Mehler. Byte code distance heuristics and trail direction for

model checking Java programs. In Proc. MoChArt, pages 69–76, 2003.

S. Edelkamp, A. L. Lafuente, and S. Leue. Trail-directed model checking. In S. D.

Stoller and W. Visser, editors, Electronic Notes in Theoretical Computer Science,

volume 55. Elsevier Science Publishers, 2001a.

170

citeseer.ist.psu.edu/article/dwyer98property.html

S. Edelkamp, A. L. Lafuente, and S. Leue. Directed explicit model checking with

HSF-SPIN. In Proceedings of the 7th International SPIN Workshop, number 2057

in Lecture Notes in Computer Science. Springer-Verlag, 2001b.

Stefan Edelkamp. Planning with pattern databases. In Proc. European Conference

on Planning, pages 13–24, 2001.

Dawson Engler and Ken Ashcraft. RacerX: effective, static detection of race condi-

tions and deadlocks. In Proc. SOSP ’03, pages 237–252, New York, NY, USA, 2003.

ACM Press. ISBN 1-58113-757-5. doi: http://doi.acm.org/10.1145/945445.945468.

Y. Eytani and S. Ur. Compiling a benchmark of documented multi-threaded bugs.

In Proceedings of the Workshop on Parallel and Distributed Systems: Testing

and Debugging, page 266a, Los Alamitos, CA, USA, 2004. IEEE Computer Soci-

ety. ISBN 0-7695-2132-0. doi: http://doi.ieeecomputersociety.org/10.1109/IPDPS.

2004.1303339.

Y. Eytani, K. Havelund, S. D. Stoller, and S. Ur. Towards a framework and

a benchmark for testing tools for multi-threaded programs: Research articles.

Concurr. Comput. : Pract. Exper., 19(3):267–279, 2007. ISSN 1532-0626. doi:

http://dx.doi.org/10.1002/cpe.v19:3.

E. Farchi, Y. Nir, and S. Ur. Concurrent bug patterns and how to test them. In IPDPS

’03: Proceedings of the 17th International Symposium on Parallel and Distributed

Processing, page 286.2, Washington, DC, USA, 2003. IEEE Computer Society.

ISBN 0-7695-1926-1.

Cormac Flanagan and Patrice Godefroid. Dynamic partial-order reduction for model

checking software. In Proc. POPL, pages 110–121, New York, NY, USA, 2005.

ACM. ISBN 1-58113-830-X. doi: http://doi.acm.org/10.1145/1040305.1040315.

Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B.

Saxe, and Raymie Stata. Extended static checking for Java. In Proc. PLDI, pages

234–245, New York, NY, USA, 2002. ACM. ISBN 1-58113-463-0. doi: http://doi.

acm.org/10.1145/512529.512558.

Ian Foster. Designing and Building Parallel Programs: Concepts and Tools for Parallel

Software Engineering. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,

USA, 1995. ISBN 0201575949.

171

P. Godefroid. Model checking for programming languages using Verisoft. In Proc.

of POPL, pages 174–186, New York, NY, USA, 1997. ACM. ISBN 0-89791-853-3.

doi: http://doi.acm.org/10.1145/263699.263717.

A. Groce and W. Visser. Model checking Java programs using structural heuristics.

In International Symposium on Software Testing and Analysis, pages 12–21, July

2002a. URL citeseer.nj.nec.com/groce02model.html.

A. Groce and W. Visser. Model checking Java programs using structural heuristics.

In Proc. ISSTA, pages 12–21, 2002b.

Craig Harvey and Paul Strooper. Testing Java monitors through deterministic exe-

cution. page 61, Washington, DC, USA, 2001. IEEE Computer Society.

P. Haslum. Model checking by random walk. In Proceedings of ECSEL Workshop,

1999. URL http://citeseer.ist.psu.edu/haslum99model.html.

K. Havelund. Using runtime analysis to guide model checking of java programs. In

Proc. SPIN Workshop, pages 245–264, London, UK, 2000. Springer-Verlag. ISBN

3-540-41030-9.

K. Havelund and T. Pressburger. Model checking Java programs using Java

PathFinder, 1998. URL citeseer.ist.psu.edu/havelund98model.html.

T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software verification with

Blast. In T. Ball and S.K. Rajamani, editors, Proc. SPIN Workshop, volume 2648

of LNCS, pages 235–239, Portland, OR, May 2003.

G. J. Holzmann. The design of a distributed model checking algorithm SPIN. FMCAD

2006 Invited Presentation, November 2006.

G. J. Holzmann. The SPIN Model Checker: Primer and Reference Manual. Addison-

Wesley, 2003.

G. J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engi-

neering, 23(5):279–295, 1997. ISSN 0098-5589. doi: http://dx.doi.org/10.1109/32.

588521.

Susan Horwitz, Thomas Reps, and David Binkley. Interprocedural slicing using de-

pendence graphs. SIGPLAN Not., 39(4):229–243, 2004. ISSN 0362-1340. doi:

http://doi.acm.org/10.1145/989393.989419.

172

citeseer.nj.nec.com/groce02model.html
http://citeseer.ist.psu.edu/haslum99model.html
citeseer.ist.psu.edu/havelund98model.html

David Hovemeyer and William Pugh. Finding bugs is easy. SIGPLAN Not., 39(12):

92–106, 2004. ISSN 0362-1340. doi: http://doi.acm.org/10.1145/1052883.1052895.

C. P. Inggs and H. Barringer. CTL∗ model checking on a shared-memory architecture.

Formal Methods in System Design, 29(2):135–155, 2006. ISSN 0925-9856. doi:

http://dx.doi.org/10.1007/s10703-006-0008-z.

S. Jabbar and S. Edelkamp. Parallel external directed model checker with linear I/O.

In E. A. Emerson and K. S. Namjoshi, editors, Seventh International Conference on

Verification, Model Checking and Abstract Interpretation, volume 3855 of Lecture

Notes in Computer Science, pages 237–251, 2006.

M. Jones, E. Mercer, T. Bao, R. Kumar, and P. Lamborn. Benchmarking explicit state

parallel model checkers. In 2nd International Workshop on Parallel and Distributed

Methods in Verification, 2003.

M. D. Jones and E. Mercer. Explicit state model checking with Hopper. In Inter-

national SPIN Workshop on Software Model Checking (SPIN’04), number 2989 in

LNCS, pages 146–150, Barcelona, Spain, March 2004. Springer.

M. D. Jones and J. Sorber. Parallel search for LTL violations. Software Tools for

Technology Transfer, 7(1):31–42, 2005.

S. Khurshid, C.S. Pasareanu, and W. Visser. Generalized symbolic execution for

model checking and testing. Proc. TACAS, pages 553–568, 2003.

James C. King. Symbolic execution and program testing. Communications of the

ACM, 19(7):385–394, 1976. ISSN 0001-0782. doi: http://doi.acm.org/10.1145/

360248.360252.

T. Krazit. Intel pledges 80 cores in five years. CNET News.com, September 2006.

URL http://news.com.com/2100-1006 3-6119618.html.

Peter Leven, Tilman Mehler, and Stefan Edelkamp. Directed error detection in C++

with the assembly-level model checker StEAM. In Proceedings of 11th International

SPIN Workshop, Barcelona, Spain, volume 2989 of Lecture Notes in Computer

Science, pages 39–56. Springer, 2004. ISBN 3-540-21314-7.

E. G. Mercer and M. Jones. Model checking machine code with the GNU debugger.

In 12th International SPIN Workshop, volume 3639 of Lecture Notes in Computer

Science, pages 251–265, San Francisco, USA, August 2005. Springer.

173

http://news.com.com/2100-1006_3-6119618.html

M. Musuvathi and S. Qadeer. Fair stateless model checking. In Proc. of PLDI,

pages 362–371, New York, NY, USA, 2008. ACM. ISBN 978-1-59593-860-2. doi:

http://doi.acm.org/10.1145/1375581.1375625.

M. Musuvathi and S. Qadeer. Iterative context bounding for systematic testing of

multithreaded programs. SIGPLAN Not., 42(6):446–455, 2007. ISSN 0362-1340.

doi: http://doi.acm.org/10.1145/1273442.1250785.

Kuntal Nanshi and Fabio Somenzi. Guiding simulation with increasingly refined

abstract traces. In Proc. DAC, pages 737–742, New York, NY, USA, 2006. ACM.

ISBN 1-59593-381-6. doi: http://doi.acm.org/10.1145/1146909.1147097.

C. Pasareanu, M. Dwyer, and W. Visser. Finding feasible abstract counter-examples.

Springer International Journal on Software Tools for Technology Transfer (STTT),

5(1):34–48, November 2003.

F. M. De Paula and A. J. Hu. An effective guidance strategy for abstraction-guided

simulation. In Proc. DAC ’07, pages 63–68, New York, NY, USA, 2007. ACM.

ISBN 978-1-59593-627-1. doi: http://doi.acm.org/10.1145/1278480.1278498.

R. Pelanek. BEEM: Benchmarks for explicit model checkers. Lecture Notes in Com-

puter Science, 4595:263, 2007.

R. Pelanek, T. Hanzl, I. Cerna, and L. Brim. Enhancing random walk state space

exploration. In FMICS ’05: Proceedings of the 10th International Workshop on

Formal methods for industrial critical systems, pages 98–105, New York, NY, USA,

2005. ACM Press. ISBN 1-59593-148-1. doi: http://doi.acm.org/10.1145/1081180.

1081193.

C. S. Pǎsǎreanu, P. C. Mehlitz, D. H. Bushnell, K. Gundy-Burlet, M. Lowry,

S. Person, and M. Pape. Combining unit-level symbolic execution and system-

level concrete execution for testing NASA software. In Proc. ISSTA, pages 15–

26, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-050-0. doi: http:

//doi.acm.org/10.1145/1390630.1390635.

J. H. Reif. Depth-first search is inherently sequential. Information Processing Letters,

20(5):229–234, 1985.

Robby, M. B. Dwyer, and J. Hatcliff. Bogor: An extensible and highly-modular model

checking framework. ACM SIGSOFT Software Engineering Notes, 28(5):267–276,

September 2003.

174

N. Rungta and E. G. Mercer. A context-sensitive structural heuristic for guided

search model checking. In Proc. ASE, pages 410–413, Long Beach, California,

USA, November 2005.

N. Rungta and E. G. Mercer. An improved distance heuristic function for directed

software model checking. In Proc. FMCAD, pages 60–67, Washington, DC, USA,

2006. IEEE Computer Society. ISBN 0-7695-2707-8. doi: http://dx.doi.org/10.

1109/FMCAD.2006.5.

N. Rungta and E. G. Mercer. A meta heuristic for effectively detecting concurrency

errors. In Haifa Verification Conference, Haifa, Israel, 2008.

N. Rungta and E. G. Mercer. Clash of the titans: Tools and techniques for hunting

bugs in concurrent programs. In To Appear in Proceedings of Workshop on Par-

allel and Distributed Systems: Testing, Analysis, and Debugging (PADTAD VII),

Chicago, US, 2009a.

N. Rungta and E. G. Mercer. Guided model checking for programs with polymor-

phism. In Proc. PEPM, pages 21–30, New York, NY, USA, 2009b. ACM. ISBN

978-1-60558-327-3. doi: http://doi.acm.org/10.1145/1480945.1480950.

N. Rungta and E. G. Mercer. Hardness for explicit state software model checking

benchmarks. In Proc. SEFM, pages 247–256, London, U.K, September 2007a.

N. Rungta and E. G. Mercer. Generating counter-examples through randomized

guided search. In Proceedings of the 14th International SPIN Workshop on Model

Checking of Software, pages 39–57, Berlin, Germany, July 2007b. Springer–Verlag.

N. Rungta and E. G. Mercer. Hardness for explicit state software model checking

benchmarks. Technical Report SMC-BYU-0107, Brigham Young University, De-

partment of Computer Science, 2007c.

N. Rungta, E. G. Mercer, and W. Visser. Efficient testing of concurrent programs with

abstraction-guided symbolic execution. In Proceedings of the 16th International

SPIN Workshop on Model Checking of Software, pages 174–191, Grenoble, France,

June 2009. Springer–Verlag.

S.J. Russell, P. Norvig, J.F. Canny, J. Malik, and D.D. Edwards. Artificial intelli-

gence: a modern approach. Prentice Hall Englewood Cliffs, NJ, 1995.

175

K. Sen. Race directed random testing of concurrent programs. SIGPLAN Not., 43(6):

11–21, 2008. ISSN 0362-1340. doi: http://doi.acm.org/10.1145/1379022.1375584.

Koushik Sen. Effective random testing of concurrent programs. In ASE ’07: Pro-

ceedings of the twenty-second IEEE/ACM international conference on Automated

software engineering, pages 323–332, New York, NY, USA, 2007. ACM. ISBN

978-1-59593-882-4. doi: http://doi.acm.org/10.1145/1321631.1321679.

Koushik Sen and Gul Agha. A race-detection and flipping algorithm for automated

testing of multi-threaded programs. In Proc. HVC, volume 4383 of LNCS, pages

166–182. Springer, 2007. ISBN 978-3-540-70888-9.

Koushik Sen, Darko Marinov, and Gul Agha. CUTE: a concolic unit testing engine

for C. In Proc. ESEC/FSE-13, pages 263–272, New York, NY, USA, 2005. ACM.

ISBN 1-59593-014-0. doi: http://doi.acm.org/10.1145/1081706.1081750.

K. Seppi, M. Jones, and P. Lamborn. Guided model checking with a bayesian meta-

heuristic. Fundamenta Informaticae, 70(1-2):111–126, 2006.

O. Shacham, M. Sagiv, and A. Schuster. Scaling model checking of dataraces using

dynamic information. J. Parallel Distrib. Comput., 67(5):536–550, 2007. ISSN

0743-7315. doi: http://dx.doi.org/10.1016/j.jpdc.2007.01.006.

H. Sivaraj and G. Gopalakrishnan. Random walk based heuristic algorithms for

distributed memory model checking. In Proceedings of Workshop on Parallel and

Distributed Model Checking, 2003. URL www1.elsevier.com/gej-ng/31/29/23/

141/47/28/89.1.006.pdf.

N. Sterling. Warlock— a static data race analysis tool. In USENIX Technical Con-

ference Proceedings, pages 97–106, 1993.

U. Stern and D. L. Dill. Parallelizing the Murφ verifier. In O. Grumburg, editor,

Computer-Aided Verification (CAV ’97), volume 1254 of Lecture Notes in Computer

Science, pages 256–267, Haifa, Israel, June 1997. Springer-Verlag.

Scott D. Stoller. Testing concurrent Java programs using randomized scheduling. In

Proc. Second Workshop on Runtime Verification (RV), volume 70(4) of Electronic

Notes in Theoretical Computer Science. Elsevier, July 2002.

J. Tan, G. S. Avrunin, L. A. Clarke, S. Zilberstein, and S. Leue. Heuristic-guided

counterexample search in flavers. In SIGSOFT ’04/FSE-12: Proceedings of the

176

www1.elsevier.com/gej-ng/31/29/23/141/47/28/89.1.006.pdf
www1.elsevier.com/gej-ng/31/29/23/141/47/28/89.1.006.pdf

12th ACM SIGSOFT twelfth International symposium on Foundations of software

engineering, pages 201–210, New York, NY, USA, 2004. ACM Press. ISBN 1-58113-

855-5. doi: http://doi.acm.org/10.1145/1029894.1029922.

Aaron Tomb, Guillaume Brat, and Willem Visser. Variably interprocedural program

analysis for runtime error detection. In Proc. ISSTA, pages 97–107, New York,

NY, USA, 2007. ACM Press. ISBN 978-1-59593-734-6. doi: http://doi.acm.org/

10.1145/1273463.1273478.

W. Visser, K. Havelund, G. Brat, and S. Park. Model checking programs. In Proc.

ASE, Grenoble, France, September 2000a.

W. Visser, K. Havelund, G. Brat, and S. Park. Java PathFinder: Second generation

of a Java model checker. In G. Gopalakrishnan, editor, Proceedings of the Workshop

on Advances in Verification (WAVE’00), July 2000b.

W. Visser, K. Havelund, G. P. Brat, S. Park, and F. Lerda. Model checking programs.

Automated Software Engineering, 10(2):203–232, 2003.

Amy Williams, William Thies, and Michael D. Ernst. Static deadlock detection for

Java libraries. In ECOOP 2005 — Object-Oriented Programming, 19th European

Conference, pages 602–629, Glasgow, Scotland, July 27–29, 2005.

C. H. Yang and D. L. Dill. Validation with guided search of the state space. In

35th Design Automation Conference (DAC98), pages 599–604, 1998. URL http:

//citeseer.nj.nec.com/yang98validation.html.

177

http://citeseer.nj.nec.com/yang98validation.html
http://citeseer.nj.nec.com/yang98validation.html

	Brigham Young University
	BYU ScholarsArchive
	2009-09-14

	Guided Testing for Automatic Error Discovery in Concurrent Software
	Neha Shyam Rungta
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 The Problem: Testing Concurrent Software Systems
	1.2 Impact on Developers and the Cost of Software
	1.3 Current State of the Art Testing Techniques
	1.4 Automated Error Discovery in Concurrent Programs
	1.4.1 Observations on Existing Research
	1.4.2 Observations on Our Empirical Studies
	1.4.3 Guided Test

	1.5 Effectiveness of Guided Test
	1.6 Summary Of The Contributions
	1.6.1 Guided Program Execution using Abstraction-Refinement
	1.6.2 Meta-Heuristic for Concurrent Programs
	1.6.3 A Distance Heuristic for Programs with Polymorphism

	2 Guided Program Execution using Abstraction-Refinement
	2.1 Introduction
	2.2 Overview
	2.3 Program Model and Semantics
	2.4 Abstraction
	2.4.1 Background definitions
	2.4.2 Abstract System
	2.4.3 Abstract Trace Set

	2.5 Guided Symbolic Execution
	2.6 Refinement
	2.7 Discussion
	2.8 Experimental Results
	2.9 Related Work
	2.10 Conclusions and Future Work

	3 Meta-heuristic for Concurrent Programs
	3.1 Introduction
	3.2 Meta heuristic
	3.2.1 Input Sequence
	3.2.2 Greedy depth-first search
	3.2.3 Guidance Strategy

	3.3 Empirical Study
	3.3.1 Study Design
	3.3.2 Error Discovery
	3.3.3 Effect of the Sequence Length

	3.4 Related Work
	3.5 Conclusions and Future Work

	4 A Distance Heuristic for Programs with Polymorphism
	4.1 Introduction
	4.2 Background
	4.3 Motivation
	4.4 Polymorphic Distance Heuristic
	4.4.1 Static analysis phase
	4.4.2 Guided Search
	4.4.3 Dynamic heuristic computation
	4.4.4 Example of heuristic computation

	4.5 Results
	4.6 Discussion
	4.7 Conclusions and Future Work

	5 An Extensive Comparative Empirical Analysis
	5.1 Introduction
	5.2 Benchmarks
	5.3 Multi-tool Results
	5.4 On-line Resource
	5.5 Empirical Study
	5.5.1 Reorder
	5.5.2 TwoStage
	5.5.3 Airline
	5.5.4 Discussion

	5.6 Related Work
	5.7 Conclusion

	6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Future Work

	Appendices
	A Randomization in Guided Execution
	A.1 Introduction
	A.2 Background
	A.3 Randomized GDS
	A.4 Evaluation
	A.5 Conclusions and Future Work

	B Designing Benchmarks to Evaluate the Effectiveness of Error Discovery Techniques
	B.1 Introduction
	B.2 Background and Motivation
	B.3 Error Density Measure
	B.3.1 Experiment Design
	B.3.2 Results
	B.3.3 Effect of the Time Bound

	B.4 Making Models Hard
	B.5 Other considerations
	B.6 Related Work
	B.7 Conclusions and Future Work

	Bibliography

