
Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2009-12-09

Bisecting Document Clustering Using Model-
Based Methods
Aaron Samuel Davis
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Davis, Aaron Samuel, "Bisecting Document Clustering Using Model-Based Methods" (2009). All Theses and Dissertations. 1938.
https://scholarsarchive.byu.edu/etd/1938

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F1938&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F1938&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F1938&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F1938&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F1938&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F1938&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/1938?utm_source=scholarsarchive.byu.edu%2Fetd%2F1938&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu


Bisecting Document Clustering Using Model-Based Methods

Aaron S. Davis

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Eric K. Ringger, Chair
Christophe Giraud-Carrier

Robert P. Burton

Department of Computer Science

Brigham Young University

April 2010

Copyright c© 2010 Aaron S. Davis

All Rights Reserved



ABSTRACT

Bisecting Document Clustering Using Model-Based Methods

Aaron S. Davis

Department of Computer Science

Master of Science

We all have access to large collections of digital text documents, which are useful only
if we can make sense of them all and distill important information from them. Good document
clustering algorithms that organize such information automatically in meaningful ways can make
a difference in how effective we are at using that information. In this paper we use model-based
document clustering algorithms as a base for bisecting methods in order to identify increasingly
cohesive clusters from larger, more diverse clusters. We specifically use the EM algorithm and
Gibbs Sampling on a mixture of multinomials as the base clustering algorithms on three data sets.
Additionally, we apply a refinement step, using EM, to the final output of each clustering technique.
Our results show improved agreement with human annotated document classes when compared to
the existing base clustering algorithms, with marked improvement in two out of three data sets.

Keywords: Document Clustering, Text Mining, Model-based
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Chapter 1

Introduction

Given the already enormous and ever increasing number of digital documents, finding ways

to provide access to so much information is a valuable pursuit. Clustering documents in large col-

lections is one way to organize information into a more accessible form in an efficient manner.

The desired output of a document clustering algorithm is a partition of documents into sets of sim-

ilar documents. Such a clustering can be used in multiple applications, including the discovery

of interesting patterns in document collections (Berkhin, 2006), simplifying browsing and facil-

itating information retrieval (Grossman, 2004). In each application, the user seeks information

without expending money and time to have people read individual documents and summarize their

findings, and document clustering facilitates the process.

Patterns in data help a user make sense of the data. Document clustering can be used in

discovering patterns such as correlations among topics, authors, and documents (Hearst, 1999).

These patterns can then be used directly or as a precursor in areas such as document classification

by bootstrapping a training set which does not contain sufficient amounts of labeled data (Nigam

et al., 2000). Regardless of the application, the patterns discovered give structure to an otherwise

unstructured set of data.

The most direct application of document clustering is browsing by humans. In this scenario,

the document clustering output is consulted by a human without a specific query or pattern in mind.

Typically one or more document clusters will pique their interest and result in further exploration.

This application of document clustering is important because it represents a model of direct usage

rather than only using document clustering as one piece in a pipeline of information discovery.
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Document clustering serves two different purposes in the area of Information Retrieval.

The first deals with efficiency in searching through a document set. By partitioning a document

collection the size of the search space can be reduced from the entire document collection to related

documents. This is especially important because of the correlation between the time to return query

results and the size of the search space. The second purpose in Information Retrieval is related to

the results of a query. In this case, document clustering is used as a refinement process where

search results can be clustered and returned to a user. The user can then retrieve new results by

selecting the cluster which is most closely related to the intent of the query (Hearst & Pedersen,

1996).

1.1 Overview

In some cases document clustering is hierarchical which leads to additional methods for brows-

ing. Hierarchical document clustering is a very common technique for document clustering which

generates high quality clusters (Zhao et al., 2005). In addition to the clusters themselves, hierar-

chical document clustering creates a taxonomy for documents in a data set. This taxonomy can be

represented as a dendrogram as seen in Figure 1.1 .

d1 d2 d3 d4

Figure 1.1: A dendrogram showing the progression from one cluster to four documents.

The two types of hierarchical clustering are agglomerative and divisive. In hierarchical ag-

glomerative clustering, each document starts in its own cluster and clusters are combined iteratively

based on similarity to each other. Divisive clustering begins with all documents combined into one
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cluster and iteratively breaks clusters apart. While it is natural to combine documents, hierarchi-

cal divisive clustering has been shown to produce better clusters than hierarchical agglomerative

clustering (Steinbach et al., 2000; Boley et al., 1999). As an additional benefit, divisive clustering

produces a taxonomy which increases in granularity. This matches the common browsing pattern

of “drilling down” from broader concepts to more specific ones.

This work focuses on the hierarchical divisive technique where each division is fixed at two

clusters. For simplicity we refer to this as bisecting throughout this work. The document clustering

algorithms we propose focus on bisecting but that does not describe how to create the bisection of

documents. We will refer to the clustering algorithms that bisect the document collection as base

algorithms. As base algorithms we propose using a class of clustering methods commonly called

model-based.

Model-based clustering works on the assumption that data is generated from a model and

that the data can be used to estimate the parameters of such a model. Model-based clustering

is an active area of research, producing high quality clusters (Meilă & Heckerman, 1998). The

increasing appeal of statistical methods for various problems involving uncertainty is driving the

improvement of model-based clustering methods and introducing alternative models which focus

on other objectives. For example, topic models such as Latent Dirichlet Allocation and its variants

generate word clusters representing a particular topic inside of a document (Blei et al., 2003).

The effectiveness of a document clustering algorithm is a complex subject. The desired

output of a document clustering algorithm is a partition of documents into sets containing similar

documents. The similarity of a set of documents can be measured directly or indirectly depending

on the availability of labels and the clustering objective. In order to understand if a document

clustering algorithm is creating a proper partition of documents, metrics must be established. Due

to the subjective nature of similarity, it is difficult to find a metric for all possible clustering objec-

tives. Consequently, it is important to establish what metrics will be used and how the metrics are

derived in order to understand how the documents of a document partition are similar.
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1.2 Outline

In this work, we show that using model-based methods as a base for the hierarchical divisive clus-

tering technique of bisecting increases the quality of document clusters over independent model-

based methods. We do this by running model-based algorithms with the number of clusters set to

the number of human labeled classes and running bisecting variants of these algorithms for com-

parison. The remainder of the thesis is organized as follows: in Chapter 2, we cover prior research

related to hierarchical, bisecting and model-based document clustering. In Chapter 3 we discuss

the metrics used to evaluate document clusters. In Chapter 4 we describe the process of bisecting

using model-based algorithms. In Chapter 5 we show the results of our experiments. In Chapter 6

we examine the qualitative aspects of our experiments and in Chapter 7 we conclude.
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Chapter 2

Related Work

Prior work in document clustering records a progression of improvement on certain metrics

of interest. This progression shows that model-based text clustering is often superior to vector-

based and more traditional methods (King, 1967; Sneath & Sokal, 1973; Jain & Dubes, 1988). The

methods we introduce in this work are natural extensions of the work on model-based clustering.

2.1 Hierarchical Agglomerative Clustering

Hierarchical Agglomerative Clustering (HAC) is a well-known and highly-intuitive clustering

method which has been in use for some time (Jain & Dubes, 1988). HAC starts with each docu-

ment in its own cluster and proceeds by merging two clusters at each iteration of the algorithm.

Which two clusters to merge is determined using a distance metric and a merging method (such as

“single link”). The goal is to select for merging the two clusters which are most similar.

2.2 K-means

K-means can be implemented using either a vector-based algorithm or a model-based algorithm,

and a variety of distance measures can be employed with the vector-based K-means algorithm.

The algorithm begins with an initial set of cluster centroids. All documents are then assigned to

the nearest centroid using the chosen distance measure. Next, each centroid is moved to better

fit/explain the assigned data. These assignment and centroid adjustment steps are repeated in

greedy fashion until the centroids no longer change, up to some tolerance. K-means has been
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found to produce inferior document clusters to HAC (Steinbach et al., 2000; Jain & Dubes, 1988).

However, the linear run-time of K-means is often an acceptable trade-off for the loss in accuracy.

2.3 Bisecting K-means

Steinbach et al. proposed a variation of K-means which scores better than HAC or K-means (Stein-

bach et al., 2000) and that runs in linear time. This algorithm consists of an outer bisecting loop

with K-means as the base clustering algorithm. The outer bisecting loop contains the criterion for

selecting which cluster to split and repeats until the pre-determined number of clusters is reached.

The inner bisecting loop performs the base clustering algorithm on the cluster selected in the outer

loop with the desired number of sub-clusters equal to two. Inspired by this work, we explore the

bisecting approach in greater detail in the next section and throughout the thesis. The quality im-

provement over HAC showed that K-means can be employed for higher quality clustering as well

as faster asymptotic performance.

2.4 Mixture of Multinomials Model

The mixture of multinomials model is a probabilistic, generative model for clustering in which a

single topic or class is assigned to each document. In addition, the model includes one variable

for each document feature (i.e., word). We assume that the words are conditionally independent of

each other, given the class. Documents can thus be represented as word vectors.

In this work, we follow the common assumption that words are distributed according to the

multinomial event model. Particularly in the clustering setting, this model is known as a mixture of

multinomials. This model has proven to be accurate for classifying documents, which suggests that

it is a reasonable representation of a document for our purposes (McCallum & Nigam, 1998). By

extension, if the parameters of this model could be learned in an unsupervised manner one would

also expect high-quality clusters. A graphical model representing the mixture of multinomials

model with its parameters made explicit is shown in Figure 2.1 .
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Figure 2.1: Graphical model representing the mixture of multinomials model.

In this graphical model we use plate notation to represent multiple instances of a node

denoted by a variable present inside the plate. The random variables in the model are represented

by ci and wi, j. These random variables are generated from parameterized distributions where λ

and β represent the parameters for the corresponding distributions: ci ∼ Categorical(λ) and wi, j ∼

Multinomial(β). This mixture of multinomials model provides the basis for each of the model-

based clustering algorithms explored in this work.

The mixture of multinomials is commonly used in model-based document clustering even

though recent research has introduced additional models which are shown to yield superior re-

sults on several data sets (Zhong & Ghosh, 2005; Elkan, 2006). Zhong & Ghosh use the von

Mises-Fisher model and Elkan uses the extended DCM (EDCM) model. These new models are

foundationally similar to the mixture of multinomials but account for areas of weakness in the mix-

ture of multinomials model with regard to document clustering. For example, Elkan explains in his

work how the DCM and the EDCM model account for burstiness of words which is the increased

probability of a word to be seen again once observed in a document. We assume that these models

would improve the results of bisecting model-based techniques and include them in our discussion

of future work.
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2.5 Expectation Maximization

In the model-based document clustering of this work, we employ the mixture of multinomials

model. Because the document set does not contain complete data (in fact, it is entirely unlabeled),

the well-known Expectation-Maximization (EM) algorithm can be used to find maximum like-

lihood estimates for the parameters of the model (Dempster et al., 1977; Meilă & Heckerman,

1998). After learning estimates of the model parameters, the model can be consulted for the pos-

terior probability of any class (i.e., cluster i.d.) for a given document (i.e, set of words comprising

the document). The class with the highest posterior probability is chosen as the cluster i.d. for the

given document.

EM begins by initializing model parameters. Initial parameters can be either drawn ran-

domly (from a Dirichlet distribution) or computed in a data-dependent manner. Prior work has

shown that results from random initialization are roughly on par with data-driven initialization

(Meilă & Heckerman, 1998). We will use random initialization as it is simpler to implement and

minimizes run-time. As an iterative algorithm, EM begins with the expectation (E) step which, in

practical terms, computes a posterior distribution over the class variable for each document using

the given model parameters. The posteriors from the E-step can be thought of as fractional labels

assigned to each document. The M-step uses the new complete data to learn a better model (i.e.,

re-estimate the model parameters) so as to improve the likelihood of the data. This process con-

tinues until the change in data likelihood is within a pre-specified threshold. This maximization

process is a hill-climbing procedure on the (data) likelihood surface; hence, the EM algorithm is

guaranteed to converge to a maximum, although the maximum may not be a global maximum

(Meilă & Heckerman, 1998).

The problem of EM converging on local maxima depending on initialization suggests

multiple-restarts of EM from multiple starting points. Recently deterministic annealing EM has

been used successfully in document clustering (Elkan, 2006). While deterministic annealing EM

does not guarantee convergence to a global maximum, it does ensure convergence to better local

maxima than traditional EM. We have not included experiments using deterministic annealing in
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EM but do include it in our discussion of future work. In this work we employ a brute force method

of restarting EM from different randomly selected initialization points in order to approximate the

more sophisticated deterministic annealing method.

2.6 Gibbs Sampling

Another common technique for estimating the parameters of our mixture of multinomials model

employs sampling, namely Markov Chain Monte Carlo (MCMC) algorithms. Gibbs Sampling is

one such algorithm and has proven to converge quickly (in distribution) on the mixture of multi-

nomials model and to find high-quality document clusters (Walker & Ringger, 2008).

In each of our model-based algorithms there is a likelihood surface which represents the

likelihood that the data was generated from the model. Unlike EM, Gibbs Sampling does not

climb a maximum in the likelihood surface but can better explore the likelihood surface. This

difference is due to the nature of sampling which does not follow an established pattern of taking

a small step towards the nearest maximum. Instead, sampling tends to be drawn from the range

of maximum likelihood. After a relatively short amount of time, Gibbs Sampling has been shown

to settle into a good approximation of the true posterior distribution over cluster assignments and

model parameters.

2.7 Bisecting Using Model-based Techinques

Any clustering algorithm which can produce two clusters from a data set can be used a a base

algorithm. In a Brigham Young University class project from 2007, we showed that EM performed

better than Bisecting K-Means over a range of tasks. As a result, in this work we propose using

model-based methods as base algorithms to bisecting techniques. By doing so we intend to show

that bisecting can be applied effectively as an enhancement to the more effective model-based

algorithms.
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Chapter 3

Metrics

In this section we provide information about the metrics used to assess the quality of clus-

tering algorithms. Corresponding formulas for each of the metrics are included. Our focus is on

External Metrics which are explained in this section. However, we also include the Internal Metrics

which are reported in our empirical evaluation.

When evaluating clusters there are a number of metrics which represent different character-

istics of a clustering. By reporting a number of different metrics in this thesis, we hope to reinforce

the improvements made through bisecting techniques and clearly identify areas where additional

improvement can be made.

3.1 External Metrics

External metrics are a type of metric which can be computed with the use of class labels, when

available for a data set. When using class labels to calculate external metrics the documents con-

tained in a cluster are examined to see how closely they match the documents contained in the

labeled class. The five external metrics we employ in this thesis include: F-Measure, Variation of

Information(VI), Adjusted Rand Index(ARI), V-Measure and Q2.

• F-Measure A combined measure of precision and recall used frequently in information re-

trieval. F-Measure, is a good indication of the effectiveness of a clustering method to re-

produce human-labeled classes (Larsen & Aone, 1999; Steinbach et al., 2000). We iterate
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through classes (i) and clusters ( j) and use the corresponding document counts (n) as follows:

Precision(i, j) =
ni j

n j

Recall(i, j) =
ni j

ni

F(i, j) =
2×Precision(i, j)×Recall(i, j)

Precision(i, j)+Recall(i, j)

F-Measure = ∑i
ni
n max{F(i, j)}

• Variation of Information (VI) This measure is information theory based. VI measures

the distance between two proposed clusterings. The overall idea is to compare clustering

variations on the same data set to determine information loss or gain (Meilă, 2002).

P(k) =
nk

n

P(k,k′) =
|Ck∩C′k′|

n

H(C) =−
K

∑
k=1

P(k)logP(k)

I(C,C′) =
K

∑
k=1

K

∑
k′=1

P(k,k′)log
P(k,k′)

P(k)P(k′)

VI(C,C′) = H(C)+H(C′)−2I(C,C′)

• Adjusted Rand Index (ARI) This measure is the similarity of two independent partitions

of the data (Yeung et al., 2001). We iterate through classes (i) and clusters ( j) and use the

corresponding document counts (n) as follows:

ARI = ∑i, j (ni, j
2 )−[∑i (ni

2)∑ j (n j
2 )]/(

n
2)

1
2 [∑i (ni

2)+∑ j (n j
2 )]−[∑i (ni

2)∑ j (n j
2 )]/(

n
2)

• V-Measure This measure uses entropy from information theory to measure homogeneity

and completeness. Homogeneity and completeness are combined as a weighted harmonic
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mean to produce V-Measure (Rosenberg & Hirschberg, 2007). We represent homogeneity

as h and completeness as c.

H(C|K) =−
|K|

∑
j=1

|C|

∑
i=1

ni, j

N
log

ni, j

∑
|C|
i=1 ni, j

H(C) =−
|C|

∑
i=1

∑
|K|
j=1 ni, j

n
log

∑
|K|
j=1 ni, j

n

H(K|C) =−
|K|

∑
j=1

|C|

∑
i=1

ni, j

N
log

ni, j

∑
|K|
j=1 ni, j

H(K) =−
|K|

∑
j=1

∑
|C|
i=1 ni, j

n
log

∑
|C|
i=1 ni, j

n

h =

 1 if H(C,K) = 0

1− H(C|K)
H(C) else

c =

 1 if H(K,C) = 0

1− H(K|C)
H(K) else

V-Measure = 2×h×c
h+c

• Q2 This measure uses entropy from information theory to calculate homogeneity and the

model cost (Dom, 2001). We represent homogeneity as h.

Q0(C,K) = H(C|K)+
1
n

|K|

∑
j=1

log
(

h(k)+ |C|−1
|C|−1

)

Q2(C,K) =
1
n ∑
|C|
i=1 log

(h(c)+|C|−1
|C|−1

)
Q0(C,K)
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3.2 Internal Metrics

Internal metrics refer to metrics which can be computed without class labels. Internal metrics are

computed solely from the data which constitute a cluster. Two types of internal metrics which we

report are described as follows:

• Total Inter-Cluster Divergence (TD) By defining K-L Divergence between two clusters,

TD can be defined as the sum (or log-sum where probabilities exist in log space) of the K-L

divergence measures for all cluster combinations. We define the K-L divergence between

two clusters as:

logKL(c1||c2) =−logSumwiεVc1c2
(logP(wi|c1)+(logP(wi|c1)− logP(wi|c2))

Where Vc1c2 is the unique word set or vocabulary of cluster 1 and cluster 2, Vc1c2 is defined

as Vc1c2 = Vc1 ∪Vc2 . To avoid issues where one cluster contains a wi that does not exist in the

other cluster, add one smoothing is implemented for the probability distributions. This gives

an overall K-L divergence for the distributions that describe two clusters.

• Total Intra-Cluster Divergence (TIAD) Total Intra-Cluster Divergence is computed by

randomly splitting a single cluster in half, then computing the divergence between the two

subclusters. We repeat this randomized splitting five times and report the average upon

completion. Due to the randomized nature of this metric, the outcome is not deterministic.

This metric measures the degree to which a cluster is unlike itself, on average. TIAD is

measured for all clusters. TIAD is the sum (or log sum where applicable) of all the self

divergence values for all clusters in the final clustering.

Internal metrics provide useful information, particularly when class labels do not exist, or where

class labels do not necessarily correlate with a particular clustering motivation. However, because

of the non-deterministic nature of TIAD and because TD is biased towards model-based techniques
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which use the probability distributions of features in their calculations, we report these metrics with

some tentativeness.

In addition to these internal metrics we use the Log-Likelihood of the Data (LD). We use

LD as a diagnostic part of the bisecting technique. After performing a number of split attempts we

must decide which cluster to keep. We use the LD for the resulting clusters to determine which

bisection is the best candidate. To calculate the LD we sum the log-probability of the data for each

of the classes. The log-probability of the data for a given class is the sum of the log-probabilities

for each of the words that are an element of that class. This is shown in the following equation.

P(D) = ∑
k

P(C = k,D) = ∑
k

P(D|C = k)P(C = k)

= ∑
k

∏
wi∈Ck

P(wi|k)P(k)

log(P(D)) = logSumk ∑
wi∈Ck

log(P(wi|k))+ log(P(k))
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Chapter 4

Bisecting Document Clustering

Consistent with Steinbach et al., bisecting clustering is a divisive method in which smaller

clusters are formed from larger clusters. Such methods start with one cluster and repeatedly divide

existing clusters into smaller clusters until a predetermined number of clusters (or some other

criterion) is reached. Inside the bisecting loop is a base clustering method which produces two

sub-clusters from one of the existing clusters at each iteration. In this work we employ both EM

and Gibbs Sampling as base clustering methods within the bisecting loop. The following steps

illustrate the process:

1. Choose a cluster to split (In this work, we select the largest cluster.).

2. Run the base clustering algorithm to find 2 sub-clusters (Bisecting step).

3. Repeat step 2 for a pre-determined number of split attempts, saving the 2 sub-clusters which

exhibit the best score on a specified internal metric (In this work, the score is the Log-

Likelihood of the Data.).

4. Repeat cluster splitting (Steps 1–3) until the number of clusters equals a pre-specified num-

ber of clusters (in this work, we set this number to the number of labeled classes in a given

data set).

Internal metrics are an intrinsic part of the bisecting loop (Step 3). In order to choose an

appropriate bisection, only internal metrics can be used in clustering, because they do not rely on

labeled data.
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Figure 4.1 is an illustration of three iterations of bisecting. In this example, the largest

cluster is chosen at each iteration. The dotted line represents the cluster split chosen by the base

clustering algorithm with the number of clusters equal to two.

Iteration One 
Iteration Two 

Iteration Three

Figure 4.1: Three iterations of bisecting

4.1 Cluster Selection

Choosing the appropriate cluster for bisection is a challenging problem (Savaresi et al., 2000). In

our experiments we use a simple technique which has been explored previously: select the cluster

containing the largest number of documents (Steinbach et al., 2000; Zhao & Karypis, 2001). The

largest cluster is likely to contain the greatest variety of documents. This is especially true in the

early stages when the largest cluster is significantly larger than the other clusters. Future work

could explore more complex techniques for this decision point.

After choosing one of the existing clusters to bisect, the base clustering algorithm is run

on the data in the chosen cluster. This sub-clustering is fixed to find two clusters from the chosen

cluster. The model-based clustering algorithms we have chosen, EM and Gibbs Sampling, have

a degree of uncertainty to them: depending on where the model is initialized, EM may not find a

global maximum. Also, like all MCMC techniques, Gibbs Sampling is guaranteed to converge to
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the true posterior distribution; however, there is no known way to know when a particular chain has

converged to the true posterior distribution (Wasserman, 2003). We look for stability in the mixing

plot of the likelihood after a pre-determined burn of 20 rounds. Burn is the sampling rounds which

are discarded at the beginning of a sampling chain because the samples have not yet settled into a

stable pattern.

4.2 Split Attempts

When using EM as a base clustering algorithm, the initialization directly influences which maxi-

mum will be reached. We use a random initialization of the parameters by sampling from a uniform

Dirichlet distribution. Each split attempt is a run of EM to completion, beginning with a random

initialization of the parameters. Increasing the number of split attempts improves the chances of

reaching the global maximum but adds to the time required by the algorithm. Likewise for Gibbs

sampling, each split attempt is a run of Gibbs to convergence (in distribution), beginning with a

random initialization.

4.3 Refinement

Steinbach et al. further improve the results of Bisecting K-means by applying a post-clustering

procedure. This clustering refinement is accomplished by using the cluster centroids from the final

clustering of Bisecting K-means as initial centroids to the base K-means algorithm. Additionally,

Steinbach et al. show that using base K-means to refine Bisecting K-means results in improvement

on the chosen metrics. Although Steinbach et al. suggest a post-clustering refinement in their

work, clustering with Bisecting K-means can also be considered an initialization method for the

K-means algorithm itself.

In our experiments, we explore the degree to which bisecting model-based techniques

might also show improvement through refinement. This is done with EM by taking the final clus-

tering from Bisecting EM and using the clustering to determine initial counts in the base EM

algorithm. More generally, the final clustering from any clustering algorithm could be used to
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initialize EM. While Gibbs sampling could also be used as a refinement algorithm, we choose to

leave it for future work, focusing here on EM which is more official.

18



Chapter 5

Empirical Evaluation

A consistent experimentation methodology is applied to all tests in our evaluation. Each

test was run on Dell Poweredge 1955s with two Quad-core 2.6GHz Intel Xeon processors and 16

GB of RAM. By using identical hardware and the same code base for the the standard and bisecting

model-based techniques, we can approximate a fair comparison using run time.

We applied minimal feature selection to our experiments. We used a consistent stop word

list, provided in Appendix B, for each of the three data sets and for each of the four algorithms.

In addition we limited the number of features from each document by first computing a term

frequency inverse document frequency score (tf-idf) for each word and then only keeping the top

ten tf-idf scoring words for each document (Jones, 1972; Salton & Buckley, 1988; Manning &

Schutze, 1999). To be clear, the method this work employs for computing tf-idf scores is as follows:

tfi,j =
ti, j

∑k tk, j

idfi = log
|D|

1+ |{d : ti ∈ d}|

(tf-idf)i,j = tfi,j× idfi

Where ti, j is the number of occurrences of term i in document j, |D| is the total number of docu-

ments in the data set and 1+ |{d : ti ∈ d}| is the number of documents where the term ti, j 6= 0. We

add one to |{d : ti ∈ d}| to ensure that we do not have a denominator of zero for terms that are not

in the corpus. This is often called “add one smoothing.”
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In order to visualize the results of our experiments we have included several graphs. We

have chosen to focus on one external metric for our graphs and include additional external and

internal metrics in our tables. By doing this we hope to clearly explain the outcome of our empirical

evaluation without inundating the reader with data. Because all external metrics use class labels

as the basis for their calculation, they generally track one another quite closely as we show in our

tables. As F-Measure is a commonly used external metric, we will present data in our graphs using

F-Measure.

Tables reporting the results for EM, Bisecting EM and Bisecting EM with refinement show

the mean of five runs of Bisecting EM and the equivalent number of runs of EM as reported for each

data set. In order to balance the number of random restarts with Bisecting EM and EM, run time

was measured and equal run time was given to each algorithm. In addition to the mean, we report

the standard deviation for each metric. This provides a clear idea of what to expect when running

EM, Bisecting EM and Bisecting EM with refinement given the non-deterministic nature of EM

based on initialization. We conclude with maximum and minimum values in a comprehensive

graph of data sets and algorithms using the widely used F-Measure metric.

5.1 Data Collections

All experiments were performed on each of three data collections: 20 Newsgroups (Joachims,

1997), Annotated Enron Email (Berry et al., 2007) and del.icio.us (Walker & Ringger, 2008).

These data collections have one class label per document and are used as a gold standard for

evaluation by external metrics. The class labels are not consulted during the clustering phase in

order to properly execute unsupervised learning. We have included Table 5.1 which describes the

characteristics of each of the data sets.

5.2 Bisecting EM

In order to begin an evaluation of Bisecting EM we must evaluate the effect of increasing the num-

ber of split attempts. We begin with two split attempts and increase to 150 split attempts for each
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Data Set Documents Tokens Summary Classes
Enron 4,936 29,812 Subpoenaed e-mail

from Enron employ-
ees

32

20 Newsgroups 19,997 43,627 Online newsgroup
postings

20

del.icio.us 21,627 71,548 Web pages book-
marked by users of
social bookmarking
tool del.icio.us

50

Table 5.1: Descriptions of each data set used for empirical evaluation.

of the three data collections. While simple to run each split attempt in parallel, we run each split

attempt serially and accumulate the time it takes to complete the specified number of split attempts.

Total clustering time for Bisecting EM will be used when determining how many iterations of reg-

ular EM to run. This gives regular EM an opportunity to overcome a poor initialization just as

multiple split attempts do for Bisecting EM. Figure 5.1 shows the effect of increasing the number

of split attempts on F-Measure for each of the three data sets.

It is important to note that F-Measure is not used to determine which split attempt to keep.

This would unfairly skew the final results and be considered “cheating”. The smoothed average

shown in Figure 5.1 is computed by a moving average of width nine across the scatter plot for

Bisecting EM.

There are two additional lines in Figure 5.1 . These represent the mean of multiple runs of

EM as specified in the “EM iter” column of Table 5.2 and five runs of Gibbs Sampling. They are

included as a point of reference to see how Bisecting EM performs against the base model-based

algorithms.

We examine the smoothed average to select the number of split attempts which is most

likely to produce a good result. This is done by looking for a “knee” in the smoothed average.

By searching for the point where additional split attempts is least likely to increase F-Measure, we

reduce the processing power and run time of Bisecting EM. Table 5.2 gives the selected number

of split attempts.
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(a) Enron without refinement.
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(b) 20 Newsgroups without refinement.
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(c) del.icio.us without refinement.

Figure 5.1: Sweeping the number of split attempts using Bisecting EM
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Data Set Split Attempts Run Time (seconds) EM iter
Enron 90 3,298 16

20 Newsgroups 82 11,456 34
del.icio.us 86 52,769 54

Table 5.2: Selected number of split attempts for each data set using Bisecting EM, average run time for
the reported number of split attempts and Number of EM iterations equal to the run time of five runs of
Bisecting EM using reported Split Attempts.

Using the selected number of split attempts we ran Bisecting EM five times. The run time

was summed for the five runs and used to determine the appropriate number of times to run EM

on the same data set. Run time was considerably faster for smaller data sets. Table 5.3 shows

the results of clustering with Bisecting EM and EM according to the chosen external and internal

metrics.

Each metric in the table is accompanied by an arrow to indicate whether higher or lower

values are better. The first line for each metric is the mean and the second line contains the standard

deviation. In the first line for each metric we have indicated in bold the better result between the two

clustering algorithms. Internal metrics are informational and are separated from external metrics

by a double line.

Bisecting EM had better results for each of the metrics. With many of the metrics the

standard deviation for Bisecting EM seems to be less than EM. However, there are clear cases

where the standard deviation of Bisecting EM is much higher for specific metrics and data sets.

No clear pattern emerges from the standard deviation data.

For EM refinement, we use the output from Bisecting EM as the input to EM in a refining

step. To do this we use the cluster assignments made in the last iteration of bisection to estimate

parameters for a run of EM. This begins the familiar process of estimating and maximizing until

convergence. The results are included in Table 5.4 with a comparison to unrefined Bisecting EM.

In every case EM refinement improved the results of Bisecting EM using external metrics. The

standard deviation was again mixed.
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Metric Bisecting EM EM
F-Measure ↑ 0.328 0.306

0.006 0.008
VI ↓ 3.748 4.080

0.005 0.007
ARI ↑ 0.194 0.165

0.006 0.012
V-Measure ↑ 0.429 0.412

0.009 0.014
Q2 ↑ 0.730 0.695

0.010 0.012
TD ↑ 190.649 567.833

5.895 7.739
TIAD ↓ 8.353 14.522

0.367 1.13
LD ↑ −1.653×107 −1.657×107

1.461×105 1.525×105

(a) Enron data set using 90 split attempts for Bisect-
ing EM.

Metric Bisecting EM EM
F-Measure ↑ 0.543 0.306

0.00007 0.00003
VI ↓ 2.826 4.080

0.008 0.009
ARI ↑ 0.365 0.165

0.011 0.011
V-Measure ↑ 0.524 0.412

0.013 0.012
Q2 ↑ 0.758 0.695

0.009 0.008
TD ↑ 271.878 320.888

3.727 4.829
TIAD ↓ 22.212 10.732

1.518 1.356
LD ↑ −2.851×107 −3.142×107

1.547×105 2.245×105

(b) 20 Newsgroups data set using 82 split attempts
for Bisecting EM.

Metric Bisecting EM EM
F-Measure ↑ 0.377 0.303

0.005 0.012
VI ↓ 3.937 4.080

0.007 0.009
ARI ↑ 0.201 0.165

0.005 0.010
V-Measure ↑ 0.422 0.412

0.012 0.008
Q2 ↑ 0.727 0.695

0.007 0.012
TD ↓ 2008.804 2226.456

2.491 3.361
TIAD ↑ 17.758 36.548

1.336 2.005
LD ↑ −2.014×108 −2.020×108

4.798×105 4.683×105

(c) del.icio.us data set using 86 split attempts for Bi-
secting EM.

Table 5.3: Comparing the performance of Bisecting EM to EM clustering. Each row contains the mean
followed by the standard deviation for the corresponding metric

5.3 Bisecting Gibbs

The first experiment required to run Bisecting Gibbs is to run multiple chains of Gibbs sampling

with the number of clusters equal to two for each data set. By running these experiments we were
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Metric Bisecting EM BEM/EMR
F-Measure ↑ 0.328 0.333

0.011 0.012
VI ↓ 3.748 3.559

0.005 0.007
ARI ↑ 0.194 0.207

0.011 0.012
V-Measure ↑ 0.429 0.441

0.012 0.010
Q2 ↑ 0.730 0.731

0.010 0.008
TD ↑ 190.649 183.444

5.895 4.562
TIAD ↓ 8.353 13.138

0.367 0.623
LD ↑ −1.653×107 −1.672×107

1.460×105 1.415×105

(a) Enron data set using 90 split attempts for each.

Metric Bisecting EM BEM/EMR
F-Measure ↑ 0.54282 0.614927

0.007 0.009
VI ↓ 2.826 2.470

0.009 0.011
ARI ↑ 0.365 0.386

0.009 0.008
V-Measure ↑ 0.524 0.555

0.012 0.011
Q2 ↑ 0.758 0.769

0.005 0.005
TD ↑ 271.877 262.978

3.727 2.331
TIAD ↓ 22.212 19.871

1.517 1.419
LD ↑ −2.851×107 −2.741×107

1.547×105 1.497×105

(b) 20 Newsgroups data set using 82 split attempts
for each.

Metric Bisecting EM BEM/EMR
F-Measure ↑ 0.377 0.415

0.009 0.00010
VI ↓ 3.937 3.862

0.006 0.008
ARI ↑ 0.201 0.245

0.010 0.009
V-Measure ↑ 0.422 0.429

0.013 0.011
Q2 ↑ 0.727 0.754

0.008 0.009
TD ↑ 2008.804 2004.527

2.491 2.524
TIAD ↓ 17.758 17.463

1.336 0.938
LD ↑ −2.014×108 −2.009×108

4.817×105 4.598×105

(c) del.icio.us data set using 86 split attempts for
each.

Table 5.4: Results comparing the performance of Bisecting EM without refinement to Bisecting EM with
EM refinement (BEM/EMR). Each row contains the mean followed by the standard deviation for the corre-
sponding metric

able to choose a reasonable number of sampling rounds to take at each bisection during Bisecting

Gibbs. Results for these experiments are shown in Figure 5.2 .
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(a) Enron likelihood time-series for two clusters.

0 500 1000 1500 2000
Rounds

-1.246E10

-1.243E10

(b) 20 Newsgroups time-series for two clusters.

0 500 1000 1500 2000
Rounds

-1.464E10

-1.462E10

(c) del.icio.us time-series for two clusters.

Figure 5.2: Gibbs sampling with k=2. Five chains are shown superimposed.
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The time-series data show that with five random initializations the sample likelihood settles

into a common range for each chain. We chose 800 rounds with a burn of 20 rounds for each

bisection. Our criteria for choosing the number of rounds is to examine the time-series data from

each of the mixing plots and approximate the lowest number of rounds before each of the chains

appeared to settle. 800 rounds could likely be reduced using the time-series data in Figure 5.2 but

we decided to use a conservative number to account for variations from random initialization and

a different data likelihood surface for later bisections. Table 5.5 contains the results of running

Bisecting Gibbs and Gibbs using 800 rounds.

In order to determine the necessity of increasing split attempts with Bisecting Gibbs we

again swept the number of split attempts and compared F-Measure. Figure 5.3 shows the results

of these experiments. Due to the excessive time and resources running multiple chains of Gibbs

sampling, we limited the number of split attempts to 40. We found that split attempts with Gibbs

Sampling are unnecessary given a sufficient number of sampling rounds. This is most likely due

to the fact that the global maximum of the data likelihood is generally reached after relatively few

samples in spite of the initialization of the model parameters (Walker & Ringger, 2008).

After establishing the number of sampling rounds and split attempts to use for Bisecting

Gibbs, we continue with our experiments comparing Bisecting Gibbs to Gibbs. The results of these

experiments are included in Table 5.5 .

Again we use the final cluster output in a refinement step. In this case there are a few

differences. First we use EM to refine Bisecting Gibbs. While it is possible to use Gibbs to refine

Bisecting Gibbs this was not included in the scope of this work due to the amount of computing

and programming time required to run these experiments. In either case, improvement from a

refinement step shows that the final clustering from Bisecting Gibbs can be improved, even if it

outperforms the best result from other algorithms on the same data set.

Additionally, we do not run multiple iterations of Bisecting Gibbs and EM refinement. As

we have shown previously, Bisecting Gibbs tends to output the same clustering when sufficient

sampling rounds are run. Multiple runs of Bisecting Gibbs and EM refinement equates to multiple
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(b) 20 Newsgroups without refinement
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(c) del.icio.us without refinement

Figure 5.3: Sweeping split attempts using Bisecting Gibbs
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Metric Bisecting Gibbs Gibbs
F-Measure ↑ 0.332 0.333
VI ↓ 3.369 3.574
ARI ↑ 0.128 0.136
V-Measure ↑ 0.330 0.324
Q2 ↑ 0.722 0.713
TD ↑ 902.235 902.502
TIAD ↓ 12.588 11.901
LD ↑ −1.618×107 −1.541×107

(a) Enron data set.

Metric Bisecting Gibbs Gibbs
F-Measure ↑ 0.396 0.373
VI ↓ 3.525 3.615
ARI ↑ 3.215 3.127
V-Measure ↑ 0.422 0.412
Q2 ↑ 0.722 0.710
TD ↑ 442.248 445.089
TIAD ↓ 17.231 19.874
LD ↑ −2.512×107 −2.556×107

(b) 20 Newsgroups data set.

Metric Bisecting Gibbs Gibbs
F-Measure ↑ 0.509 0.422
VI ↓ 2.318 2.525
ARI ↑ 0.289 0.235
V-Measure ↑ 0.569 0.412
Q2 ↑ 0.738 0.712
TD ↑ 2471.946 2478.805
TIAD ↓ 19.635 20.805
LD ↑ −1.974×108 −1.943×108

(c) del.icio.us data set.

Table 5.5: Results comparing the performance of Bisecting Gibbs to the performance of Gibbs clustering.

runs of EM with the same initialization and consequently the same output. The results for these

experiments are included in Table 5.6 .

5.4 Comparison

To summarize our results, Figure 5.4 is included showing the results of all four algorithms run

on each of the three data sets. Also included are the results from refinement using EM on both

Bisecting EM and Bisecting Gibbs.

In a practical implementation involving multiple runs of EM or Bisecting EM, we would

retain the clustering that produces the highest likelihood value. However, in Figure 5.4 we report

the expected value of the F-measure for EM and Bisecting EM after multiple random restarts. In

addition we report the maximum and minimum F-measures to show the range of possible results.

It is important to note that had we picked the best result (rather than the expected result) according

to likelihood, it would have done no better than the maximum value shown; consequently, the
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Metric Bisecting Gibbs BG/EMR
F-Measure ↑ 0.332 0.337
VI ↓ 3.440 3.316
ARI ↑ 0.126 0.168
V-Measure ↑ 0.350 0.320
Q2 ↑ 0.716 0.753
TD ↑ 902.235 977.044
TIAD ↓ 12.588 13.504
LD ↑ −1.618×107 −1.647×107

(a) Enron data set.

Metric Bisecting Gibbs BG/EMR
F-Measure ↑ 0.400 0.400
VI ↓ 3.673 3.260
ARI ↑ 3.297 3.569
V-Measure ↑ 0.416 0.431
Q2 ↑ 0.755 0.787
TD ↑ 442.248 423.256
TIAD ↓ 17.231 16.992
LD ↑ −2.512×107 −2.464×107

(b) 20 Newsgroups data set.

Metric Bisecting Gibbs BG/EMR
F-Measure ↑ 0.509 0.554
VI ↓ 2.187 1.973
ARI ↑ 0.582 0.774
V-Measure ↑ 0.723 0.948
Q2 ↑ 0.862 0.880
TD ↑ 2471.946 2468.697
TIAD ↓ 19.635 18.394
LD ↑ −1.974×108 −1.964×108

(c) del.icio.us data set.

Table 5.6: Results comparing the performance of Bisecting Gibbs without refinement to the performance of
Bisecting Gibbs with EM refinement(BG/EMR).

results from this graph and the relative ranking of the various algorithms would not change in a

substantive way.

30



Enron del.icio.us 20 Newsgroups0.0

0.1

0.2

0.3

0.4

0.5

0.6

F-
M

ea
su

re

EM
Bisecting EM
Bisecting EM Refinement
Gibbs
Bisecting Gibbs
Bisecting Gibbs Refinement

Figure 5.4: Model-based clustering and bisecting variants with max and min shown for EM and Bisecting
EM
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Chapter 6

Qualitative Analysis

In this chapter we assess the quality of our clusters based on the hidden class labels on a

more granular level. While metrics provide a succinct number to assess quality we add qualitative

analysis in this chapter. Additionally we examine the characteristics of the data sets and how that

may affect the performance of the algorithm. There are many contingency tables which we could

show but we have chosen to focus on the best run of Bisecting EM. While this may sound biased,

the difference in one run of Bisecting EM and another is found in the initialization of the parame-

ters. The initialization is not an area we are examining in our analysis which makes choosing any

run of Bisecting EM interesting so long as we are consistent in picking the corresponding best,

worst or middle for each of the data sets. We therefore present data from the best run to show how

the best performance of Bisecting EM succeeds or fails to reproduce the original class labels.

In this chapter we present a heatmap for each data set. These heatmaps are increasingly dark

when a particular cluster included more documents from a specific class. The purpose of including

these heatmaps is to provide a visual representation of the entire dataset with the ability to quickly

see how specific clusters map to specific classes. A dark set of boxes along the diagonal indicates

strong agreement between document clusters and the labeled data. Data used to generate the “big

picture” heatmaps is contained in Appendix A. Because much of this data would be unreadable if

we shrunk it to fit on the page, we have removed some of the less interesting clusters in Appendix

A. We focus on the best and worst clusters to see where we are getting things right and where we

are getting things wrong. The mapping of clusters to classes is one-to-one as we have chosen to

use the number of classes as the target number of clusters.
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Finally, we acknowledge the potential value that internal metrics offer in analysis of clusters

as well. However, because the metrics are more open to interpretation we do not use them. In

addition, the purpose of document clustering can go beyond reproducing labeled classes: clustering

can also be a means of mining documents for interesting patterns which people may not be able to

see otherwise. Each of these points could lead to lengthy subjective debate and are not the ultimate

purpose of analyzing bisecting techniques in the context of this thesis. Therefore, we have chosen

to exclude internal metrics or new patterns as part of our qualitative analysis.

6.1 Enron

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 3232
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Calif_analysis

Figure 6.1: A contingency heatmap showing topic on the y-axis and clusters on the x-axis for the Enron data

set

The data used to generate Figure 6.1 is contained in Table A.1a and Table A.2 in Appendix A.

One of the first things we noticed in examining documents to come up with class labels for each

of the classes is that extra information about Enron must have been known in order to separate

some of the classes. For example, many of the classes talk about the California energy crisis and
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how that effects legislation and the connection of both of those to creative accounting practices.

With only the words in a document it would be difficult to pick distinctive topics for each of the 32

classes.

Many of the smaller classes that had distinct terms in them were more concentrated around

a possible corresponding class. For example, “Dynergy”, “Sempra”, and “College Football”. Each

of these have a small set of distinguishing words such as the class labels we have given them show.

Another interesting characteristic of this data set which is different from the others

is the rather non-uniform distribution of the documents into class labels. The largest class,

“Daily business”, makes up 30% of the entire dataset. It is natural to expect a more uniform distri-

bution of documents from bisecting techniques where the largest cluster is always being divided.

However, the non-uniform distribution of the Enron data is not a clear reason for why bisecting

techniques fail to perform significantly better than the base algorithms. Also, the final number of

documents in each of the generated clusters show that bisecting methods do adapt to non-uniform

distributions of documents. Therefore, we conclude that the non-uniform document distribution of

Enron data is not an issue for bisecting techniques.

6.2 del.icio.us

The data used to generate Figure 6.2 is contained in Table A.1b and Table A.3 . The del.icio.us

is a considerably larger data set than the other two. As with Enron, we see that the del.icio.us data

set has a number of areas of overlap. There are cases such as “games” and “final fantasy” were

the topic implies a hierarchical relationship. In this particular case “games” is a super-set which

contains “final fantasy.” However, “final fantasy” can contain documents about much more than

the video game. In general there appear to be a wider array of topics in the del.icio.us data set even

if some of them are closely related.

Another interesting feature of the del.icio.us data set is the relatively uniform size of the

document classes. Most of the classes have 500 documents but there are enough significant excep-

tions that this data set cannot be said to have a uniform distribution of documents. Again we see
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Figure 6.2: A contingency heatmap showing topic on the y-axis and clusters on the x-axis for the del.icio.us
data set

that bisecting methods produce roughly the same amount of significantly smaller clusters as there

are document classes. However, in the case of the del.icio.us data set we see a significant perfor-

mance improvement with regard to external metrics. This is a strong confirmation that bisecting

methods do not require a uniform data set to closely match human labeled data.

A unique trend in the clustering data for the del.icio.us data set is something we call the

“omnicluster.” These are clusters that contain documents from almost every document class. At

the same time no one document class stands out significantly from another in document count.

Cluster 20, which is represented in the x-axis by 20 in Figure 6.2 and Table A.3 , is an example

of such a cluster.
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6.3 20 Newsgroups
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Figure 6.3: A contingency heatmap showing topic on the y-axis and clusters on the x-axis for the 20 News-

groups data set

The data used to generate Figure 6.3 is contained in Table A.4 . We did not include a table with a

break down of the classes sizes for the 20 Newsgroups data set as this data set contains a uniform

distribution of documents for each of the classes. Each of the classes contains 1,000 documents.

Like Enron and del.icio.us, the 20 Newsgroups data set has some document classes with

obvious overlap. These prove to be the most difficult classes to recreate. It is important to note the

manner in which the class labels were applied to the document class. The 20 Newsgroups data set

contains newsgroups posting by individuals to a particular newsgroup. Humans did not examine a

completed document and classify it. It is likely the case that users posted messages that could have

been included in other newsgroups and at times they may have been given a recommendation to

post it elsewhere. As a result, the class labels for the 20 Newsgroups data set are more subjective
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and it is possible that a post-hoc labeling of this data set would categorize newsgroup postings

differently.

Overall the quality of the clusters for the 20 Newsgroups data set show a high correlation

with the human-labeled classes. Cluster 19 seems to be the only cluster that is not clearly attached

to any document class. We examined several of the files and found that they contained mime-

encoded files.

Finally, the 20 Newsgroups data set seems to perform much better due to the style of writ-

ing. This is the oldest data set of the three data sets and it was written in a period where less online

communication was occurring. There are natural changes to language and style over time and de-

pending on the forum. We speculate that the authors of the 20 Newsgroups data set may have been

more cautious in their communication using distinctive terms and phrases to ensure their message

was passed on correctly without as much ambiguity.
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Chapter 7

Conclusions

As we have seen with K-means, altering the approach to model-based document clustering

by using bisecting techniques improves the ability to recreate the document categories created by

humans in most cases. We have also seen that refinement of the bisecting variant improves the

clustering.

In each of our selected data sets we see improvement with Bisecting EM and Bisecting EM

with refinement over EM and Gibbs (see Figure 5.4 ). Bisecting Gibbs and Bisecting Gibbs with

refinement show improvement on the del.icio.us and 20 Newsgroups data set and are essentially

equal to the results from Gibbs on the Enron data set. The improvement was most dramatic when

using EM as a base algorithm for bisecting and bisecting with refinement. In every case where

we examined the effect of a refinement step to bisecting we noticed there was improvement over

simple bisecting using a model-based algorithm.

The only case where bisecting methods did not improve the results of the corresponding

model-based method was using Gibbs and Bisecting Gibbs on the Enron data set. While the results

for Enron using Gibbs and Bisecting Gibbs were equal to Gibbs, this pattern was atypical of results

from other data sets. Characteristics for each of the data sets such as size, number of clusters and

content, may affect the effectiveness of bisecting methods. Further evidence that bisecting methods

may be particularly tuned to specific data sets can be seen from the 20 Newsgroups data set which

has the fewest number of clusters but a rather large number of documents.

In addition, the 20 Newsgroups data set shows another interesting result. The results of

Bisecting EM are better than Bisecting Gibbs. This is particularly interesting given the fact that
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EM does not perform better than Gibbs on the same data set. If we only look at the maximum

F-Measure for Bisecting EM compared to Bisecting Gibbs we see that Bisecting EM is better than

Bisecting Gibbs on all three data sets.

This work represents a step forward in model-based clustering by augmenting such methods

with bisecting. In so doing, we have surpassed previously known algorithms’ ability to recreate

the work done by human experts in organizing document sets. This is an important contribution to

the field of text mining and specifically document clustering.

7.1 Future Work

The results of these experiments suggest further study of bisecting techniques to understand why

this approach improves on existing clustering techniques especially when fewer clusters are desir-

able. Deeper investigation into the results of each bisection may yield better understanding about

how bisecting works. This includes examining what the clusters look like qualitatively at each

bisection and examining the possibility of reducing the number of split attempts as the cluster we

are splitting becomes smaller from earlier iterations.

Further study on selecting the best bisection is another area where continued study may

be useful. With many different internal metrics, we can explore the outcomes from using each of

them on different data sets. In addition to understanding the ideal way to bisect a cluster, this may

yield additional insight into what each of the internal metrics tells us about the data.

Efficient clustering of large data sets is another future area of experimentation. Bisecting

methods easily extend to grid computing. Split attempts could be run on a number of nodes in

parallel. Additional data sets could be used to understand how well bisecting methods scale with

additional nodes. Before undertaking this change we would like to experiment with deterministic

annealing EM to see if split attempts could be reduced or eliminated. By using deterministic

annealing EM, EM is less likely to converge on a local maximum which is the basis for multiple

split attempts using random initialization (Ueda & Nakano, 1998; Elkan, 2006).
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We employed basic ad hoc feature selection in our experiments by using the top ten terms

using TFIDF and a stop word list. While our qualitative analysis points out some possible areas

of feature selection we did not re-experiment using additional feature selection. In the future,

we could expand the feature selection we have done by examining the effects of increasing the

number of features to keep and decreasing that number. Additionally, we may discover obvious

stop words that are not being eliminated. It is important to note that feature selection must be

carefully undertaken as not to upset the nature of unsupervised learning which can be applied on

data sets that do not have pre-annotated classes.

Finally, two models which have outperformed the mixture of multinomials model on most

data sets should be explored in future experiments. The first is the von Mises-Fisher model which

is a model-based adaptation of the spherical k-means algorithm using the cosine similarity metric

(Zhong & Ghosh, 2005; Mardia & El-Atoum, 1976). The second is the EDCM model proposed by

Elkan which is an approximation to the DCM model using an exponential family of distributions

(Elkan, 2006). In addition to using each of these models, the metric used by each of these papers

(NMI) has the ability to evaluate clusterings which do not match the natural number of classes.

Adding this external metric would be helpful in evaluating which internal metrics appear to be

doing the best at predicting the bisection to keep.
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Appendix A

Contingency Tables
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Topic Size
Calif analysis 304

Calif bankruptcy 36
Calif utilities 115

Calif cris legal 87
Calif enron 699
Calif federal 61

Newsfeed Calif 190
Calif legis 181

Daily business 1516
Educational 92
EnronOnline 271
Kitchen daily 37

Kitchen fortune 11
Energy newsfeed 331
General newsfeed 48

Downfall 144
Downfall newsfeed 48

Broadband 26
Federal gov 81
FERC DOE 219

College Football 100
Pro football 6

India General 38
India Dobhol 79
Nine eleven 29

Nine Eleven Analysis 30
Dynegy 7
Sempra 16
Duke 17

El Paso 34
Pipelines 17

World energy 25

(a) Enron

Topic Size
algorithms 498
applescript 500

BYU 398
clustering 499
copyright 500

Dell+Computers 380
diebold 500

finalfantasy 500
fuelcell 500
games 500

gardening 500
google 499

gtd 500
Hezbollah 500

hometheater 500
howto 500
ipod 500
java 500

Kohler 84
lawncare 238

linux 500
machinelearning 500

mac 500
MittRomney 273
mosaic+tile 69

nanotechnology 500
natural+language+processing 167

news+aggregator 500
osx 500

patents 500
pedometer 267

photography 346
podcasts 390

power+supply 498
productivity 500

programming 500
riaa 500
ruby 451
SCO 500

security 500
sony 403

sprinkler 189
textmining 500

thai+recipes 500
translation 500

wii 500
windows 500
youtube 478

(b) del.icio.us

Table A.1: Topics and number of documents.
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Appendix B

Stop Word List

The following is a list of stop words used to reduce the number of words in each document.
This list was obtained from the BYU NLP lab code base.

(, ), :, ., /, ¡, ¿, $, =, ?, ;, &, +, %, *,a, an, and, are, as, at, be, but, by, do, for, if, in, it,
would, mm, the, to, you, was, of, or, I, his, he, my, www, com, have, http, is, this, with, what, we,
were, your, your, any, br, ff, that, the, to, you, was, of, I, his, he, my, www, com, http, a, A, b, B, c,
C, d, D, e, E, f, F, g, G, h, H, i, I, j, J, k, K, l, L, m, M, n, N, o, O, p, P, q, Q, r, R, s, S, t, T, u, U, v,
V, w, W, x, X, y, Y, z, Z, An, is, this, would, your, any, would, br
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