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ABSTRACT

A SEE-ABILITY METRIC TO IMPROVE MINI UNMANNED

AERIAL VEHICLE OPERATOR AWARENESS USING VIDEO

GEOREGISTERED TO TERRAIN MODELS

Cameron H. Engh

Department of Computer Science

Master of Science

Search and rescue operations conducted in wilderness environments can be

greatly aided by the use of video filmed from mini-UAVs. While lightweight, inex-

pensive and easily transportable, these small aircraft suffer from wind buffeting and

may produce video that is difficult to search. To aid in the video search process, we

have created a system to project video frames into a 3D representation of the search

region. This projection allows us to tie each frame of video to a real-world location,

enabling a myriad of novel views, mosaics and metrics that can be used to guide

the search including a new metric dubbed “see-ability.” The “see-ability” metric is

the primary contribution of this research as it indicates what portion of the search

area has been viewed and provides an estimate of the quality of that viewing. The

research includes a validation of the “see-ability” metric as it correlates to objective

performance in the search task by real people.
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Chapter 1

Using mUAVs for Search and Rescue

1.1 Wilderness Search and Rescue

Rural outdoor activities are becoming increasingly popular with the adoption of hob-

bies and sports such as mountain biking, hiking, skiing, snowboarding, spelunking

and rock climbing. Utah is a premiere location for these outdoor activities. Such

activities bring people to remote areas of the state and often into dangerous circum-

stances. In Salt Lake County alone the search and rescue teams were called out an

average of 71 times per year for the past ten years. Of these instances, the vast ma-

jority have been for mountain rescues. The average rescue consumed 162 man-hours

for an average yearly total of 11,480 man-hours. In recent years there have been as

many as 16 fatalities in a single year in conjunction with rescue operations [1]. Tech-

nology to increase the ability of searchers to find their targets quickly would reduce

the number of rural fatalities and reduce search costs to the state.

Large-scale unmanned aerial vehicles (UAVs) have been used in surveillance

applications for a number of years and even for search and rescue in a military context

[2, 3]. By affixing a downward looking camera to a remotely operated or autonomous

air vehicle, additional perspective and understanding of the search region can be

gained.

More recently mini unmanned aerial vehicles (mUAVs) have been employed

because of their smaller size and lower costs [4]. This smaller size, however, causes
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various problems to arise when recording and viewing pure video shot from the air-

craft. The jitter of small aircraft causes jitter in the video, which makes it hard for

the human eye to focus on detail. This makes recognizing and locating objects of in-

terest nearly impossible through video alone. In addition, the continual banking and

circling of the aircraft cause the viewer of the video to lose visual context and become

disoriented [5, 6]. This disorientation hinders visual search tasks and communication

between operators and search crews on the ground, reducing the benefits of using the

UAV. When searching through off-line video, it is often difficult to review portions

of video that are relevant to the search while excluding portions of video that aren’t.

Video is bound to time, while search is often bound to a physical location. Traditional

video must be reviewed sequentially, reducing the ability of the operators to quickly

search a particular area of interest.

Finally, video does not offer the operator (or operation commander) a strategic

understanding of regions that have been visually captured nor does it give a measure-

ment of the level of detail and thoroughness of the recording. To direct the craft in an

efficient and complete search of the area, the operator must have an understanding

of how well areas have already been searched. A video recording alone does not offer

any instantaneous presentation of all areas that have been seen. If this processes is to

be done manually, the video must be painstakingly searched and careful notes must

be taken on a topographical map, a lengthy, inefficient and inaccurate process. A

mapping system using sampled GPS coordinates to display the path of the craft may

be helpful but gives no information regarding the direction the camera is pointing at

any moment in time or the quality of the video recording. Some regions may remain

in the camera’s view for long periods of time while others may flash in and out briefly.

Some areas may be recorded at high altitudes yielding a low visual resolution while

others are captured up close. A system is needed to give real-time feedback to the
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operator informing him of which areas have been visually recorded and how well those

recordings capture ground detail.

1.2 Experimental Motivation

In a recent field trial by our research team of an mUAV equipped with a camera it

became painfully obvious of the need for a system that give the operators a better

understanding of what areas had been searched and how well. The goal of the trial

was to locate a human-sized dummy that had been deposited in the search area in

advance. Three operators remained at the launch point. One operator acted as

the pilot for the aircraft. The other two operators acted as video searchers, both

monitoring the live video being broadcast from the mUAV. Their mission was to spot

anything of interest in the video and notify the pilot. The pilot would then guide the

mUAV to pass over the area of interest multiple times to acquire additional views of

the area. Once relatively confident of a find, the operators would radio the latitude

and longitude of the target to a crew of ground-based searchers to further investigate.

While this approach seemed fairly straightforward and logical, after multiple

hours of searching a number of weaknesses became obvious. There was no program-

matic link between the pilot’s interface and the video searchers’ interface. When a

point was spotted by the video searchers it was very difficult to communicate to the

pilot exactly where that point was on the ground. In fact, there was no way for the

video searchers to know where a point of interest was located. With only video on

their display, the searchers could not globally orient themselves since terrain con-

sisted of a hilly desert covered in thousands of virtually identical sage brush plants

and small trees. When the target finally was located in video it was almost impossible

to pinpoint its GPS coordinates to communicate the location to the ground searchers.

The aircraft flew over and over the point while the operators tried in vain to get the

ground crew to the spot.
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There was an even greater problem. In order for the camera to capture the

ground at a resolution high enough to distinguish a human-sized shape, the mUAV

had to be flown fairly low. Like any aircraft, it must maintain a certain minimum

airspeed to remain aloft. The result was video that sped along the ground too quickly

for the eye to pick up on anything out of the ordinary. The video was jittery, which

didn’t help. When the pilot finally got the word to turn around and make another

pass, the video searchers were so disoriented that they were not able to anticipate

when the point of interest would pass through the video again. Without any way to

pause the video, rewind or replay the chances of seeing the target again were very hit

or miss.

Finally, the system used was lacking a good way to know which areas had been

searched well and which ones had been missed. While the pilot did have a display

in which he could define a flight pattern for the aircraft, only the most recent flight

pattern was shown and it did not give any indication of what the camera actually

filmed.

1.3 Contribution of this Research

We have developed a system in which video frames from a mUAV are geo-registered

to frames of artificial video that is generated from rendering reference ortho-imagery

mapped to a three-dimensional polygonal terrain model from the telemetry-estimated

pose of the vehicle. The geo-registered imagery is then projected back onto the terrain

model, which allows novel views of live video information, out-of-sequence rendering,

image mosaics, and a number of viewing possibilities to aid in the search. Our research

focusses on a metric called “see-ability”, which is made possible by the re-projection

process. See-ability is an estimate of how well a search area has been seen. This

metric allows searchers to know what regions have been thoroughly searched and what
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regions need further passes, thereby making the search more efficient and improving

the likelihood of locating the target.

The result of the research presented here is an application that greatly fa-

cilitates the ability of video searchers to coordinate their efforts, review interesting

portions of video, maintain situational awareness and an understanding of the terrain,

catalog findings and perhaps most importantly, know exactly what has been searched

and where to search next.

The see-ability application presented here is ideally configured to be used on

two machines, each manned by an operator. The first operator watches live video

as it streams in from the mUAV. Whenever anything remotely interesting is seen,

a simple click in the video window creates a marker in the frame. This marker is

transferred to the second searcher’s application and is enqueued in a work queue.

The second searcher is almost an off-line searcher, taking the next marker from the

queue and reviewing the surrounding video. He has the time to engage the see-ability-

based video prioritization to narrow down the frames that viewed the area around

the marker. In fact, he can continue to work through enqueued markers during the

times when the craft returns to base to recharge. His video search not only includes

the immediate frames around the time the marker was enqueued, but all video frames

that have ever been captured that see that area. When either searcher sees something

interesting enough to warrant a second pass by the craft then it is a simple matter to

read off the coordinates to the pilot. If the pilot’s system were compatible a marker

could be transferred programmatically over the local network.

At any time either of the searchers can bring up the 3D display and view

an overlay of the see-ability map. They can rotate, translate and zoom the terrain

display revealing all parts of the search area clearly. They can see exactly what areas

have been filmed and how well. They have the ability to show the locations of all

markers. They can overlay a second display showing not what areas have been filmed,
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but what areas have had their video searched. This can be cross-referenced with the

first overlay to determine what areas have more un-searched video associated with

them. With these pieces of information the video searchers can direct the pilot to

make additional runs with the craft.

All of the functions and abilities of the see-ability-enabled search tool represent

a significant improvement in usability over a simple live video display technique.

These abilities result in a more efficient and effective search.

1.4 Overview of this Paper

We will first review some of the recent research in this and related fields to determine

what prior work might be useful to solving these problems (Chapter 2). Next we

will present the various sources of data that will feed into the system and how they

are processed to make them consumable by the “see-ability” algorithm (Chapter 3).

Topological terrain information, reference imagery, telemetry, and video footage all

must be acquired from unique sources and all must be preprocessed before they can

be used. Once the data is preprocessed we will examine the processes behind dis-

playing that data in a real-time environment (Chapter 4). This includes creating 3D

models, texturing them with reference imagery, and projecting video to terrain for

display. This process usually reveals the inaccuracies in the data, most particularly

the telemetry data. We will discuss the use of visual matching to refine camera pose

and to correct some of the error in projection (Chapter 5). Next we will discuss

some of the features in our application that this process makes possible (Chapter 6).

These features include rendering novel views, smoothing the camera path for display,

rendering novel video sequences, and a number of other useful features that help the

operator gain awareness of the search status. Finally we will discuss the primary

feature of the application, the “see-ability” metric (Chapter 7). We will present the

ideas of instantaneous and collective see-ability and describe the various metrics that
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comprise each of them. We will walk though the implementation of each metric and

present the results of calibration tests we’ve performed (Chapter 8).
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Chapter 2

Background

2.1 Technology in Search and Rescue

The field of robotics, and technology in general, has received increasing consideration

as a supplemental resource for search and rescue operations in recent years [7]. The

robots employed at the World Trade Center disaster site in 2001 brought public

attention to the use of remotely operated vehicles for urban search and rescue missions

(USAR) [8, 9]. Advances in technology have also aided wilderness search and rescue.

Communications systems, such as the CenWits system [10], have been developed to

improve communications between, and tracking of, ground personnel in remote areas

where cell phones, mobile radios or even satellites are inadequate.

The UAV is one of the most popular tools currently being explored for wilder-

ness search and rescue. UAVs are being applied in a number of configurations and

applications. The simplest application is a fixed-wing, independently controlled air-

craft. Hybrid systems, in which one or multiple UAVs operate in tandem with manned

aircraft, usually helicopters, provide some of the benefits of small unmanned aircraft

with the human control of manned aircraft [11].

2.2 Drawbacks of Video Searching

A major drawback of UAVs, particularly smaller ones, is the low quality of the video

filmed from the unstable craft. This is due, in part, to the fact that cameras small
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enough to be mounted on aircraft of this size generally have low resolution and simple

lenses. Another major problem with video filmed from mUAVs is the shakiness, or

jitter, exerted on the camera by the small craft as it is butted by wind. A third,

an perhaps most important, limitation is the operator disorientation called the “soda

straw” [9] or keyhole effect. The keyhole effect occurs when humans have limited view

of a system or problem [12, 13]. This has been shown to cause gaps in the search

space explored by robots [14].

A large body of research has gone into ways to help compensate for these

weaknesses. The operators situational awareness can be improved by augmenting

the video display with other available information. A form of Ecological Interface

Design (EID) [15], this approach focuses on the interaction of humans and machines

rather than solving any one particular task. This technique is used with mUAVs

in [16] where the goal is to use as few human operators as possible to manage both

the mUAV and its camera. One conclusion of the research was that simply having a

powerful user interface is not sufficient for search tasks. Video-based searching alone

leaves the operator unsure of which areas were well searched. Their conclusion was

that a tool to support a systematic search was probably needed.

Compiling a representation of the area covered is analogous to the mapping

problem in robotics [17]. One major difference between the robotic mapping approach

and something needed for mUAV search is that the robot is designed to map out an

unknown area explored by the robot while an mUAV is often covering a well known

search area and simply needs to know what has been covered. Another difference

is that robotic mapping does not provide a measurement of the quality of coverage,

something necessary with mUAVs where an entire area might be lightly covered by a

single distant pass that gives little information.

Ground-based robotic urban search and rescue lends the relevant concept of

considering the role that sensor resolution plays in limiting the operational range

16



of the robot [18]. The Minimum Useful Resolution (MUR) of the sensor defines

the maximum proximity to the target. This, in turn, contributes to the possible

search volume or Effective Performance Span (EPS). When multiple sensors are taken

together their combined EPS limits make up the Useful Perceptual Volume (UPV)

around the robot. Resolution plays a major role in the see-ability calculation in a

similar fashion. An important distinction, however, is the goal of see-ability to map

the actual resolution of the terrain as it was seen by the camera, rather than to

define a cutoff for the MUR. The goal of see-ability is to continue to guide subsequent

search passes and is not as concerned about what the camera can detect from a single

location in the sky.

To accomplish the goal of accumulating multiple passes worth of information

about what has been seen, coverage maps can be created that are designed to be over-

layed on top of 3D terrain models. These models can be augmented with previously

acquired reference imagery to give additional context. This process of overlaying

imagery on 3D models, and subsequently optimizing and rendering it, has been the

subject of much published research. We refer the reader to [19] for a recent survey of

this extensive body of work, particularly the multi-resolution and real-time interactive

methods of rendering.

In order to create accurate coverage maps, some form of georegistration must

be employed. By creating a correspondence between points on the terrain and frames

of UAV-acquired video, the video is said to be georegistered. (However, in it’s simplest

form, georegistration does not have to apply to only video.) The availability of high-

precision telemetry information and high-quality terrain models makes this process

much simpler. However, in the absence of near perfect telemetry, errors are amplified

and may result in very poor correspondence. The quality of correspondence depends

on which elements of the telemetry are inaccurate and the magnitude of the error. One

common approach to deal with this is to use telemetry to arrive at an initial estimate
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of the camera’s pose, then refine this estimate using automatic or semiautomatic

visual alignment [20, 21, 22, 23, 24, 25, 2, 26, 27].

2.3 Improving Video Usefulness

The usefulness of video-based search depends on how the video is manipulated and

presented to maximize its usefulness. While much has been done in the area of video

stabilization [28, 29, 30], reducing human user disorientation [31] and improving video

searching [32, 2, 33, 34, 35], one approach that can simultaneously alleviate these

problems is to take all video data recovered from the mUAV and project it into a

virtual world that mimics the search space [36]. The user would then be able to

see video data independent of how it was filmed, without experiencing jitter or the

disorienting effects of camera motion.

This very procedure is explored in “Airborne Video registration for Activity

Monitoring” [26]. Video georegistration, the process of linking video to the geographic

location of its subject [37], is used to monitor activity using airborne video cameras.

To put the video in context, [26] takes “metadata”, also known as telemetry data, that

defines the aircraft’s pose, camera orientation and camera parameters. A polygonal

model of the terrain is created and textured with ortho-imagery. The projection

matrix for the camera is computed and the video imagery is projected onto the terrain

model from the pose of the aircraft. This allows for the link between the video imagery

and geographic coordinates to be computed. Instead of visibility or search, this system

is tuned towards activity recognition of events on the ground. While the system can

run in real time, it requires human interaction to identify correspondence between

video and reference imagery to correct the errors in the telemetry. Additionally,

the system was designed to be used at a particular military site with full access to

pre-existing ortho-imagery. It was also designed for use with manned aircraft and

expensive high resolution camera equipment.
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2.4 Improving Projective Video

Wildes, et al. present a system in which video loosely coupled with rough telemetry

data is georegistered to a terrain model via a three-step process [25]. This is a step

or two closer to our system in that the telemetry used is less accurate and the ortho-

imagery used is not as controlled. Their system, which attempts to automatically

register the video using vision matching techniques, accounts for two weaknesses of

the basic projection method: sparse video and video that is visually different than

reference imagery. The sparse video imagery problem is solved by computing a frame-

to-frame correspondence on successive frames of video before attempting a correspon-

dence to the reference imagery. This allows a larger video image and therefore a larger

pool of visual detail to draw from when searching for corresponding features in the

reference imagery. The problem of appearance changes between reference and video

imagery is solved by first preprocessing both images. Both reference and video images

are run through a series of transformations to create what is called an “oriented en-

ergy” image. This representation is more invariant to visual differences due to filming

under different conditions. Once processed, an iterative matching is performed that

is similar to bundle adjustment to arrive at a final correspondence.

2.5 Using Coverage Maps and other Tools to Guide Search

A major part of this research is the use of coverage maps to guide search, as well

as filtering and prioritizing nonlinear presentation of video. Mosaics have been used

in a similar way to provide both a spatial summarization and indexing of video [38].

Since a mosaic is easily georegistered, linking regions of the mosaic to video frames

allows a user to spatially identify points of interest. However, mosaics do not offer

any information on the quality of the data being indexed as do see-ability-based cov-

erage maps. This research enhances the guided search task beyond what mosaics can
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provide by providing the operator with an understanding of exactly how thoroughly

all areas of the map have been searched and providing a prioritization mechanism to

review the video based on that quality measurement.

Other tools have been created to help guide a UAV-based search. Joseph

Cooper developed a system that brings telemetry, video, terrain data and aerial im-

agery together into once scene. [39] Although superficially similar to our research,

this tool was created primarily to support flight control as opposed to supporting the

search task itself. The projective video used in the system was only intended to give

the user a sense of where the camera was pointing and was not accurate enough to

be used to determine how well an area was searched. While his research attempts

to solve the problem of allowing minimally trained individuals pilot an mUAV effec-

tively, ours focuses on supporting a team of video searchers in their task to determine

what areas have been well searched and where to search next. These two tools would

complement each other perfectly as the respective tactical and strategic components

of an mUAV-lead search.
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Chapter 3

Acquiring and Preprocessing Data

A number of very different types of data feed into the rendering pipeline and

the see-ability calculation. The acquisition of data is the first obstacle that must be

crossed. Unique challenges must be addressed to retrieve each of the different types

of information. Once acquired, this data must be processed and stored in a format

that is usable by the system. Thus, data acquisition and manipulation makes up the

first stage of the application.

3.1 Acquiring Data

To replicate the search environment and determine the mUAVs interaction with that

environment, several pieces of data must be brought together from various sources.

The four principle collections of data are

1. Topological Terrain Information

2. Terrain Texture Imagery

3. Telemetry of the mUAV

(a) Location of the mUAV

(b) Orientation of the mUAV

4. Video Footage from the mUAV
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3.1.1 Topological Terrain Information

The United States Geological Survey

Reproducing the shape of the land that is to be searched by the mUAVs and search

teams is an intermediate step towards creating a more complete reproduction of the

search environment. The primary source of geological data is the United States

Geological Survey (USGS). The USGS provides free elevation maps of all of the

territory in the United States. These maps were formerly distributed in flat files

named Digital Elevation Models (DEM), each file corresponded to a rectangular set

of elevation data predetermined to tile nicely along degree boundaries. The files

consisted of a height-field sampled at regular angular intervals (decimal degrees). The

USGS no longer provides access to that set of DEM files (as of January 2, 2006) and

now offers essentially the same data through their Seamless Data Distribution System

(SDDS). The data has been renamed National Elevation Data (NED), although the

term DEM is also used generically refer to any georeferenced height-field data set.

This data can be found at http://seamless.usgs.gov/. Unlike the static DEM

system, the SDDS allows users to download elevation data for any rectangular region

of interest, regardless of size or location. Because of this flexibility, the extensive

coverage and high quality, the SDDS is the provider of choice, and our sole source, of

terrain data [40].

Topological Data

The SDDS has a number of sources of elevation data with differing qualities and

resolution. The most common is the “one arc second” (1” NED), also known as 30-

meter resolution data. Also provided are “three arc second” (90 meter), “one third

arc second” (10 meter) and “one ninth arc second” data. The elevation units of all of

these data sets are meters. The horizontal datum used is NAD83 (except in Alaska
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where NAD27 is used). The vertical datum is NAVD29. Because higher resolution

data sets are sparse and do not cover all of the Continental United States, they cannot

be used for a general-purpose data source. Rural areas tend to be the most sparse,

exactly the areas targeted by wilderness search and rescue operations. The 1” NED

(30 meter) data set is the highest resolution currently available that provides full

coverage of the nation.

There are other data sets besides the NED. One noteworthy candidate is Shut-

tle Radar Topography Mission (SRTM) data. The National Jet Propulsion Laboratoy

describes the SRTM data as follows [41]:

The Shuttle Radar Topography Mission (SRTM) obtained elevation data

on a near-global scale to generate the most complete high-resolution digi-

tal topographic database of Earth. SRTM consisted of a specially modified

radar system that flew onboard the Space Shuttle Endeavour during an

11-day mission in February of 2000. SRTM is an international project

spearheaded by the National Geospatial-Intelligence Agency (NGA) and

the National Aeronautics and Space Administration (NASA).

While the accuracy and resolution of the SRTM data appear to be comparable

to the NED’s (NED data being slightly more accurate: 7 meter RMSE vs. 10 meter

RMSE), the primary advantage of choosing SRTM data over NED is the recency of

the mission; SRTM data is more current. A second advantage is that the SRTM data

represents canopy elevation rather than “bare ground” as in the NED [42]. Canopy

would provide a better model for projection since that is what is seen from the

perspective of an aerial vehicle. For this research, however, NED was chosen due to

the fact that our search regions have little canopy and that the NED is being updated

to include increasing amounts of 10 meter data.

The SDDS provides the 1” NED in one of four file formats: ArcGRID, Geo-

TIFF, BIL and GridFloat. Supplementary metadata files can be downloaded in

23



HTML, XML or TXT format. In addition the SDDS archives the data in either

ZIP or TGZ format. Our data retrieval application uses the GridFloat file, XML

metadata and ZIP compression for its inputs. The GridFloat file format is described

by USGS as follows [42]:

The GridFloat format is non-proprietary made by running the GRID-

FLOAT command in ARC. The format is a 32-bit (4-byte) simple bi-

nary raster format (floating point data). There is an accompanying

ASCII header file that provides file size information (number of rows and

columns). The data are stored in row major order (all the data for row 1,

followed by all the data for row 2 etc.).

Acquiring Topological Data

To facilitate the retrieval of data from SDDS, we developed an application to au-

tomatically download the appropriate terrain data based on a user’s specifications.

While this made testing in the laboratory environment much simpler, in the field this

feature will be useful to quickly retrieve new sets of data on the fly. The application

allows the user to supply latitude and longitude values defining a rectangular area

of interest to be downloaded, or simply a center point and the width and height of

the desired region in meters. The application is also able to analyze the telemetry

data coming from the aircraft and compute a bounding rectangle to be used as the

download area. A screen shot of the application shown in Fig. 3.1 illustrates a typical

session. Once the area of interest rectangle is determined the application constructs

and HTTP request, including all the parameters required to retrieve data, and sends

it to the extract.cr.usgs.gov site. The resultant HTTP response contains status

codes as a process is initiated on the USGS servers to generate a custom file with our

particular height-field information. Another page on the site is perpetually requested

by the application that returns the status of the USGS data generation process. When
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complete, that page will return a success code and a link to a compressed archive file

on a USGS server where our data resides.

The height-field information consists of a number of small files packaged to-

gether in a “zip” archive. The actual height values are stored in a file with an “flt”

file extension in the GridFloat file format discussed earlier. Metadata is stored in the

“Metadata.xml” and “meta.html” files. These contain information about the source

of the data, the type of data, the resolution and the extent of the sampled region.

The geographic reference information is stored in a file with the “hdr” extension.

This includes the number of rows and columns in the GridFloat file, the latitude and

longitude of the lower left corner of the sampled region, the cell size in seconds, and

the byte order of the 4-byte float values in the file. The hdr and flt files taken together

are enough to reproduce a georeferenced height-field.

Of course, for the download application to retrieve data over the internet while

in the field some sort of connection must be present. A cell connection or satellite

internet device can be used in remote areas. If this is not possible, data can be

retrieved before arriving in the field. In this scenario the user would not be able to

take advantage of telemetry information to determine which data to download since

it wouldn’t have been captured by that point. Instead they would need to provide an

estimate of the search space manually.

3.1.2 Terrain Texture Imagery

Once terrain has been acquired, overlay imagery must be acquired to exactly match

it in size and location. There are various data sources for orthographic imagery that

can be used for this purpose.

The USGS provides a number of satellite-gathered data sets, but most of them

are scientific measurements and not visual imagery. The one exception is the LAND-

SAT7 ortho-imagery. The LANDSAT5 and LANDSAT7 satellites are continuously

25



Figure 3.1: Screen-shot of the “DataGrabber” application. This application is respon-
sible for retrieving terrain data at the request of the operator. The operator may select
the rectangular region of interest by providing latitude and longitude coordinates for
the center of the region and specifying the desired width in meters. Alternately, the
user may select a telemetry file and the application will determine the area of inter-
est automatically. Once determined, the corresponding data is downloaded from the
USGS site and stored on the local system.
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monitoring the Earth’s surface. The resolution of LANDSAT7’s ETM+ sensor is 30

meters per square pixel. This is approximately the same resolution of the terrain

data. This is probably the limit of what can be used for matching techniques. Higher

resolution is necessary. The main advantage of LANDSAT data is that it is contin-

uously updated and it’s often possible to get imagery created in the past few years.

A major weakness is the image quality. The sensors do not create true color images.

instead, pseudo-color images are created by composting various wavelength bands

from the TM or ETM+ multi-spectral sensors [43].

Microsoft TerraServer-USA provides a web service [44] for the retrieval of

rectangular regions of aerial photography and topographical maps covering most of

the United States. The imagery used is gray scale, however, and, at the time of this

research, appears to be of of lower visual quality. The photographic data used comes

from the USGS collection of ortho-imagery, but it is not clear from the site exactly

what data set is used. The data is free, however, and the user may employ it at will.

As a proof of concept, our data retrieval application was augmented to retrieve data

from TerraServer automatically after downloading the terrain data [45].

Google Maps is potentially the most ubiquitous provider of free ortho-imagery.

Their database contains data for the entire country (and most of the world) at a

surprisingly high resolution and quality. Just like all data sets, the resolution increases

closer to urban areas. Google Maps uses the same data as Google Earth, which uses

the imagery as a textural overly on a 3D model as in this research. The data itself is

a composite of multiple sources and resolutions provided by third parties.

Google Maps provides an API via the web that allows site developers to retrieve

the overhead photography of regions of interest for display in a web browser. The

API is very straightforward relying on JavaScript and AJAX technology. Functions

are provided to bring up a page centered on a point of choice and scaled to one of the
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resolutions available for that location, then translate that view across the imagery

without reloading the browser.

Google Maps would be the imagery source of choice if it were not for the strict

terms and conditions of use. You many not copy the imagery or make derivative

works without the permission of Google.

There are a number of third-party commercial vendors of satellite and

aerial photography such as terraserver.com (not to be confused with Microsoft

TerraServer-USA). These are generally expensive, but academic licensing may be

available with some vendors. In addition, there are players in the terrain visualiza-

tion industry that do not provide data, namely, NASA World Wind, Google Earth

and Microsoft Live View.

3.1.3 Video Footage from the mUAV

Video is transmitted from the aircraft using a standard NTSC format. NTSC provides

29.97 frames per second, with each interlaced frame consisting of two half-frames. The

half-frame refresh frequency is therefore doubled to 59.94 Hz. A frame consists of 484

lines of display and 41 additional lines used for other data. Once captured by a

capture card, the video arrives as a 640×480, 29.97 FPS feed. For offline processing,

the video is stored in a video file or as a sequence of images. The video file is generally

compressed with an implementation of the MPEG-2 standard.

DirectShow provides functionality to stream input video either from a video

file or from a capture device. OpenCV [46] is an open source library that provides

a collection of computer vision and image processing functions. The library provides

a convenient wrapper around DirectShow to acquire video data frame-by-frame from

a capture device or a video file. The cvCaptureFromAVI and cvCaptureFromCAM

functions can be used to initiate a capture device for a file or a camera device respec-

tively. Once the device is created the cvQueryFrame function will retrieve the next
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frame of video as a single image and advance the capture device’s internal structure

to be ready to receive the next frame.

3.1.4 Telemetry of mUAV

Telemetry information is broadcast from the mUAV along with the video information.

It is essentially tabular in nature. There are a number of fields containing data

from onboard sensors that can be used off-line for analysis of recorded data or used

immediately by operators to remotely control the mUAV. The fields related to this

research are

1. Time Stamp

2. Airspeed (scalar)

3. Altitude

4. Roll

5. Pitch

6. Easting (meters from launch point)

7. Northing (meters from launch point)

8. Corrected Roll

9. Yaw

10. Groundspeed (scalar)

11. Camera Azimuth

12. Camera Elevation

13. Latitude Degrees, Minutes, Seconds

14. Longitude Degrees, Minutes, Seconds
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Ideally we would have sensors that could instantaneously identify the craft’s

pose and provide an error-free rotation matrix and translation vector. In a real-world

situation, however, there is a limit to what sensors can be carried by the craft and

the accuracy of those sensors. This problem is increased on mUAVs because of their

small size and limited payload capacity.

The first limitation we run into is with the location sensors. The mUAV has

a GPS unit that reports a new 3D coordinate about once per second. Commercial

GPS units are only accurate to about 15 meters and tend to be more accurate in

the latitude and longitude measurements than in the altitude measurement. Our

telemetry data includes degree, minute and second values for latitude and longitude,

but it also maintains an internal distance from its starting point in meters similar

to UTM coordinates. There is, however, no absolute altitude measurement because

of the inaccuracies stated above. An altitude error of more than 50 feet could easily

cause a collision with steep terrain. Instead of relying on GPS for this, the mUAV

also includes a barometric altitude sensor. This sensor measures meters above a

starting altitude measured at the launch point. While there can still be errors with

this method, they tend to be far less than using GPS. However, this introduces a

dependence on a local origin, which will need to be resolved later.

The mUAV may include a gimballed camera. This allows the camera to swivel

and rotate (azimuth and elevation) either programmatically or in response to the

operator. This must be taken into account when the video is to be projected to the

ground. If it does not have a gimbal, the camera is usually fixed straight down or at

a slightly forward-facing angle.

3.2 Packaging Data

All of the data for a particular site is stored in the file system together in a single

file folder. This folder is referred to as a package and is given a unique name repre-
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sentative of the site. All packages are stored together in a folder named “Packages.”

A package folder contains two additional files to index its contents. The first, Con-

tents.txt, is a simple, flat textual file that lists the filenames of each data file in the

package and and identifier for its content type. This allows the individual data files to

maintain their original names thus facilitating a plug-able architecture in which files

may be retrieved independently from their respective sources and bundled together.

The second file, Coordinates.txt, is generated by the data retrieval application and

contains the latitude, longitude coordinates for origin of the site, which is generally

the center of the rectangular terrain area, as well as the coordinates of the upper left

and lower right corners of the rectangular area itself. Having all files for a particular

site bundled into a package makes it easy archive or to transfer all relevant data to

another machine for further analysis.

3.3 Preprocessing Data

Before a complete virtual environment can be assembled, there are a number of issues

with the data set that need to be resolved:

1. Use UTM Coordinates for Home Coordinate System

2. Translate Terrain to Scene Origin

3. Scale Terrain to Units Friendlier to Rendering

4. Scale Telemetry to Units Friendlier to Rendering

5. Adjust Telemetry Altitude

6. Adjust Camera

While the points in the elevation model are not a true grid, over small areas,

like the ones we are using, the error due to the curvature and irregularity of the Earth’s

surface is negligible. However, the error due to the non-symmetric scaling of latitude
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vs longitude at extreme latitudinal angles is not negligible. In northern states, a

numerical difference in latitude represents roughly twice the terrestrial distance of an

equivalent numerical difference in longitude. While this scale difference needs to be

accounted for, the variation of relative scale over the small area we are interested in

is negligible. The simplest way to account for the issue is to use a UTM coordinate

system from the beginning. In UTM, the Earth is divided into “zones”, each zone

containing a local origin. The zone is considered a flat plane resting on the surface

of the earth. All points in the zone are simply Cartesian coordinates relative to the

origin point. This transforms all measurements into meters from some local origin

rather than decimal degrees.

Rather than translate everything to match the UTM origin, which may be

miles away from our area of interest, we choose a point at the center of the area of

interest to be our working origin. This new scene origin is selected as the original

point of interest entered by the user in the data acquisition application (or the center

of the region of interest selected). The terrain data is translated so that this point is

at the origin.

A second advantage to translating the terrain to lie around the origin is the

increased accuracy of floating-point numbers closer to zero. For this reason, we also

perform a scaling at this point to shrink the numbers. For our research we’ve chosen

a 1/10th scale. Everything is represented in units one-tenth the numerical value of

real meters. This scaling is also done on telemetry values and, by default, terrain

texture imagery.

As discussed earlier, the altitude measurement in the telemetry data is relative

to some launch point and not to our scene origin. To bring these two into the same

frame of reference, the launch point must first be located on the terrain map. This is

easily accomplished by transforming the absolute latitude and longitude coordinates

to UTM coordinates and subtracting the northing and easting values from them
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respectively. The resulting point is the launch point and can be located on the

terrain map and used to determine a base height that must be added to all elevation

values in the telemetry. All telemetry values can now be translated so that they are

relative to the scene origin.

The mUAV’s camera orientation needs to be taken into account. The azimuth

and elevation angles of the gimbal are transformed into a rotation matrix and multi-

plied with the rotation matrix of the mUAV itself to get a final camera orientation.

Since the gimbal can rotate during flight, this must be done potentially for every

telemetry entry.

Finally there remains the issue of frame rates. The video frames come in at

almost 30 full frames per second yet the telemetry entries are recorded less frequently

and regularly depending on the sensors used. In a worst case scenario telemetry

might only arrive once a second or so and have large gaps of multiple seconds without

any data. To bring these two data sets together telemetry entries are padded with

interpolated entries so that there is one entry per video frame. Various interpolation

schemes were assessed, including third degree Bezier curves and b-splines, but in the

end linear interpolation seemed to be adequate and was chosen for efficiency and

simplicity.
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Chapter 4

Projecting Video into a Virtual Environment

Once data has been acquired, processed and stored, it can be used to create a

virtual environment to be displayed to the user. The goal is to create an application

that presents the user with the ability to explore the environment at will. The en-

vironment itself consists of the terrain model textured with reference imagery. Once

the environment is created, the application can show the user the exact path of the

aircraft through the search area. More importantly, the application can project the

view frustum of the camera down to the ground to enhance the user’s understanding

of what has been seen. [16] In related research, video frames were projected down to a

plane that approximated the ground. [39] This gave the operator a sense of what part

of the scene was being filmed. However, the planar projection poorly modeled the

terrain in hilly areas and resulted in an inaccurate depiction of what areas were being

filmed. We improved upon that approach by projecting the video frames textures

onto the 3D model for display to the user. This chapter presents the methods used

to create and render the virtual environment and project video frames into it.

It is worth noting here that a large body of work has been devoted entirely to

terrain rendering in various publications. The research presented here is not an at-

tempt to advance additional rendering techniques or further that technology. Rather,

it draws upon existing terrain rendering practices in order to explore innovative ways

to convey the notion of see-ability to the operator in a useful way by using coverage

maps as overlays and video as a projective texture. The following descriptions of ter-

35



rain modeling, texturing and rendering provide the basic infrastructure for overlaying

a coverage map on terrain for display once it has been computed.

4.1 Creating the Triangle Mesh

The first step in rendering is to create a polygonal model out of the elevation data.

Since the data is in the form of a sampled grid of points, the most straightforward

approach would be to tessellate the grid into triangles, two opposing triangles for

every four adjacent points. As discussed earlier, the elevation data has been prepro-

cessed and can be assumed to be a regular grid having already been translated to the

universal origin and scaled to a size manageable by the graphics hardware. The four

corners of the bounding rectangle are computed first, and the grid points are inter-

polated linearly between them. Fig. 4.1 shows a triangle mesh created by tessellating

a grid of points with height values set to the elevation values in the terrain data.

4.2 Texturing the Ground Model Mesh

Before rendering the terrain we must load the ortho-imagery to be used as its texture.

The ortho-imagery is stored as a single, large bitmap file (although losslessly com-

pressed using the PNG standard). The image is loaded into memory and should be

stored in video texture memory if possible. The initial load of the texture image will

be slow, but if it fits in texture memory on the video card then subsequent renderings

will not pose a performance problem.

4.3 Projecting Video

In addition to rendering the model from any pose, the system will project the frames

of video taken from the mUAV camera onto the polygonal model of the scene in

question. This procedure is often referred to as a “Video Flashlight” [36]. Telemetry
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Figure 4.1: An example triangle mesh. The mesh shown here was created by tessel-
lating the regular grid of elevation values. Vertices are located at height value center
locations and have the height represented by the elevation values in the terrain data.
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information collected by onboard sensors and a GPS receiver provide a good starting

point for the initial pose of the camera. From this pose, the video frames can be

projected onto the polygonal model as an additional layer of texture imagery.

To properly project video onto the terrain, the pose alone is not enough infor-

mation. Additional camera parameters must be known. At a minimum the camera’s

focal length and aspect ratio must be provided. The aspect ratio of NTSC video is

known to be 4:3. The focal length, however, depends on the camera and the lens

being used. Our mUAVs use a lightweight (0.8 ounces) KX131 Color CCD Camera.

The camera can be fitted with a number of lenses. Our applications generally call for

70◦, 60◦ or 40◦ lenses.

The transformation from camera space to screen (or projection) space can be

described with a projective transformation (or projection matrix) shown in Eq. 4.1.

This matrix is composed of the horizontal and vertical fields of view, as well as two

distances: the closest possible distance from the camera, called the near plane, and

the farthest possible distance from the camera, called the far plane.
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F−N 1

0 0 −2FN
F−N 0


(4.1)

Depending on the implementation used, a near plane and far plane must be

chosen to encompass the terrain as tightly as possible. The far plane should be just

far enough away to avoid cutting off parts of the terrain while the near plane should

be as close to the camera as possible without distorting the projection. There is a

tradeoff to be made. Generally, the closer the near plane is to the camera, the more

accurately it resembles the pinhole camera model yet the more artifacts appear in the

depth buffering.
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Figure 4.2: Projective space interpolation (left) versus real space interpolation
(right). Because the real space interpolation directly references the texture image
as it renders, cutting appears between the two polygons. Projective textures com-
pensate for this by using homogeneous texture coordinates. The texture image is
indexed after the interpolated coordinates are divided by depth, the homogeneous
coordinate. [47]

The projecting of textures requires special texture handling. This capability is

known as “projective texturing.” Projective texturing is a method in which textures

are applied to a surface to create the effect that they are being projected there by a

pinhole type projection source [47]. Unlike texturing in “real” coordinate space, pro-

jective texturing is done in “projective” space using homogeneous texture coordinates.

Essentially, every pixel of the output model undergoes an additional transformation

before it is drawn to the frame buffer. This transformation can be described by a

projection transformation matrix, instead of the standard affine transformation.

The standard barycentric warping across a triangle or linear warping across a

quad is insufficient to describe the depth perspective necessary in projective texturing.

A matrix is needed to capture the projective parameters and provide a “divide by

depth” at every pixel rendered. The difference between using projective textures and

standard linear interpolating textures can be seen in Fig. 4.2 [47]. Standard texturing

techniques don’t take depth distortion into account. As the scan-line interpolation

progresses across the surface of a polygon, each pixel is colored with the index pixel
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from the texture image. This is not sufficient when the texture must be scaled as the

polygon surface moves away from the source of projection.

To implement projective texturing we must first create a perspective transfor-

mation, as described previously. This alone is not enough. Since we will be viewing

this projection from a separate location than it is being projected from, we first must

“undo” the transformations that our display’s camera has applied to the scene. To

do this we invert the display camera’s view matrix. Then we multiply it by our pro-

jective view matrix and projective projection matrix. Finally we apply a translation

matrix that adjusts the texture so that it lies in the range of -0.5 to 0.5 (instead of

0 to 1) in both the U and V axes, shown in Eq. 4.2. The resulting matrix (Eq. 4.3)

is the complete projective transformation matrix for the texture transformation and

we use it for the secondary texture’s transformation.



0.5 0 0 0

0 0.5 0 0

0 0 0.5 0

0.5 0.5 0.5 1


(4.2)

p′ = pV −1VuavPuavT (4.3)

Shadow mapping is an extension of projective texturing that takes into account

the occlusions of some polygons by others [48]. Like a shadow cast on a complex

object, the image is only projected onto surfaces that would be visible from the point

source. As described in [48], shadow mapping utilizes a depth buffer to determine

what polygons are visible from the source point. The depth buffer is then used as

a stencil buffer while performing the projective texturing as described above. This

textures only the polygons visible from the point source. Shadow mapping will only be

necessary if the angle of incidence is overly acute or the terrain data is complex enough
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to cause self occlusion in the terrain. Shadow mapping does come at a performance

cost. An optimization can be made so that shadow mapping is only employed when

the situation calls for it. Situations that require shadow mapping because of self

occlusion would cause the projected image to map to non-adjacent polygons in the

model, skipping regions of the model not visible from the camera. This tearing effect

can be detected by ray casting or depth buffering. When a projective tear is detected,

shadow mapping can be enabled. Preliminary results show that for the terrains used in

this research, shadow mapping is not necessary very often. For this research we simply

predetermine a threshold for the maximum acceptable angle between the projection

direction and the tangent of the surface of the ground model. For highly oblique

angles shadow mapping is employed. In scenes where the terrain is relatively flat or

the camera is pointed down most of the time, shadow mapping is never employed at

all.

Once the projection and texturing parameters are set up, a texture image

must be acquired and loaded into video memory to be rendered. Depending on the

implementation, creating a single texture surface in memory and copying data onto

it is often faster than creating a new surface every frame. The texture surface is

generally a 32-bit ARGB image. If so, any image data must be re-sampled to this

color depth. For example, our system queries the next frame from the video file or

the capture device through OpenCV. The frames returned are 24-bit RGB frames

and therefore must be re-sampled to 32-bit ARGB. This is done by creating a bitmap

from the IplImage provided by OpenCV [46], drawing the image onto a new image

of the proper bit depth, locking the new image’s data and writing it onto the texture

surface. Finally, once the texture image is in a compatible format, it can be rendered.

Fig. 4.3 shows the results of this process.
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Figure 4.3: A frame of video projected onto the terrain model. The video frame is
being projected from the pose of the mUAV and the scene is being rendered from
a unique pose. DirectX projective texturing allows the video frame to be drawn
correctly on the ground, properly accounting for the foreshortening due to depth.
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4.4 Platform Dependent Implementation

There are a number of “real time” rendering packages available that can be used to

render terrain models. Most of them are wrappers for one of two basic hardware

abstraction APIs, Microsoft DirectX and OpenGL. For this project we decided to use

one of these two low-level APIs for the sake of performance rather than a higher level

package. We chose DirectX. Most of the figures used in the document were generated

in our DirectX application.

4.4.1 DirectX

Microsoft DirectX 9.0 was selected for its ability to interface with DirectShow for

importing and exporting video content as well as its excellent support for projec-

tive texturing. The standard Direct3D fixed-function rendering pipeline provides the

means to take advantage of graphics hardware to accelerate the texture mapping pro-

cedure to be used for mapping satellite imagery onto the faces of a polygonal model

[49]. Once texture mapped, the scene can be rendered from any pose.

Direct3D is an API within DirectX that provides supporting functionality for

the rendering process. The Mesh object is perhaps the most useful of the objects in

Direct3D. A Mesh object provides a wrapper for a collection of vertices and indices

representing a mesh. It supplies methods for optimizing, refining, copying, rendering

and performing ray intersection with mesh data. Another key object is the Texture

object and the corresponding TextureLoader class factory. The TextureLoader object

can be used to create a Texture object from an image file. The Texture object manages

the texture memory reserved for the image data and proves multiple methods for

manipulating it. One noteworthy functionality is the ability to create a progressive

texture. A progressive texture can be rendered at differing resolutions to increase

performance when the object is far enough from the camera that detail can’t be seen.
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4.4.2 Creating the Triangle Mesh in DirectX

Using Managed DirectX 9.0, an array of CustomVertex.PositionTextured objects is

created with a size equal to the total number of points in the terrain grid. The position

vector and texture components (Tu and Tv) of each object are populated from the

elevation data. An array of short ints is also created to assemble vertex indices. Once

the arrays are populated a Mesh object is created and calls to the SetVertexBuffer-

Data and SetIndexBufferData methods load each array into the mesh. DirectX pro-

vides some optimization functions for the Mesh object. First the GenerateAdjacency

method is called to compute the adjacency information that will be used for opti-

mization. OptimizeInPlace is then called with the MeshFlags.OptimizeVertexCache

flag to reorder the vertices and indices to maximize vertex cache hits and minimize

vertex cache misses while rendering. Finally ComputeNormals is called to compute

the vertex normals based on the optimized vertex data. Now fully processed and

loaded, the terrain mesh is ready for rendering.

4.4.3 Texturing the Ground Model Mesh in DirectX

The Direct3D TextureLoader class is used to load the texture directly from an im-

age file into a Direct3D Texture object. To do this we call TextureLoader.FromFile

passing the images file path and a reference to the DirectX device object. This image

is stored in texture memory on the video card if possible; otherwise it is stored in

system memory. There is a significant performance tradeoff when system memory

is used because the texture data must be transferred to the video card every time a

frame is rendered. The initial load of the texture image will be slow. The terrain tex-

ture is probably quite large. For our system, at the best resolution possible, a texture

created to cover a 1000 meter square patch of terrain would require approximately

2200× 2200 pixels and the file, even when PNG compressed, occupies about 12MB.

This amount roughly doubles when uncompressed and loaded into video memory. To
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Figure 4.4: Terrain model textured with satellite imagery. The model shown here
was rendered using Managed DirectX. The intersecting lines represent the axes and
origin of the scene.

conserve video RAM we do not create a progressive texture (Mip Map) but force

DirectX to keep it to a single texture level. Fig. 4.4 shows the result of texturing the

terrain model with this texture.

4.4.4 Projecting Video in DirectX

DirectX provides a method to generate the perspective transformation matrix once

the camera parameters are known. Matrix.PerspectiveFovLH creates a left handed

perspective matrix using the horizontal field of view (FOVh), aspect ratio (AR), and

the distances to the near (N) and far (F) planes. When rendering, DirectX clips any

polygons that lie in front of the near plane or beyond the far plane. In addition to
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defining the clipping planes, however, this affects the projective transformation and

the depth buffering. For accurate projection, we would like to set the far plane as close

as possible without cutting off any of the terrain. Yet with the near plane we have

a problem. We would like to make the near plane as close as possible to the camera

location without losing accuracy. Yet for the best depth buffering accuracy, a near

plane closer to the closest polygons is better. For this application a near plane placed

at 0.1 and a far plane at 400 were chosen. Putting the near plane at 0.1 creates some

artifacts in the depth buffering but causes the projection to more closely approximate

the pinhole camera model. The camera’s FOVh is approximately 38◦ and it has an

aspect ratio of 4/3. The final projection matrix computed with these parameters is

given in Eq. 4.4.



2.178158 0 0 0

0 2.904211 0 0

0 0 1.000025 1

0 0 −0.01000025 0


(4.4)

Direct3D supports multiple texture maps and alpha blending between them.

The primary texture is applied first, and subsequent textures are blended in accord-

ing to the parameters set by the application. For simply projecting the texture onto

the terrain as in Video Flashlight, the texture state is specifically set to TextureOp-

eration.BlendTextureAlpha for the second texture operation. This operation takes

two inputs as parameters. We define the first parameter to be the texture color it-

self (TextureArgument.TextureColor) and the second to be the color of the surface

that has already been rendered (TextureArgument.Current). Also, to avoid tiling or

repeating the texture, we specify the address mode of the sampler state to be Tex-

tureAddress.Border for the AddressU, AddressV and AddressW coordinates. This

forces the color of anything mapping to pixels of the texture outside of the original
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secondary texture area to be the default border color. The default border color is

0,0,0,0, i.e. black and 100% transparent. This allows us to project the secondary

texture onto the terrain model in a single location and leave all other areas textured

with the primary texture.

To implement projective texturing in DirectX we follow the same steps de-

tailed in Section 4.3. That is, we create a perspective transformation matrix, the

“view undo” transformation matrix, the projective view matrix, the projective pro-

jection matrix, and the texture translation matrix (shown in Eq. 4.2). The resulting

matrix (Eq. 4.3) is the complete projective transformation matrix for the texture

transformation and we assign it to the secondary texture’s transformation:

device.Transform.Texture1 = textureTrans

Finally we assign the texture stage state’s TextureCoordinateIndex the TextureCo-

ordinateIndex.CameraSpacePosition enumeration and its TextureTransform the Tex-

tureTransform.Projected — TextureTransform.Count3 flag combination. This tells

DirectX to treat the transformation supplied as a three-dimensional transformation

and to use the 3D coordinate seen from the camera’s view as input to the transfor-

mation.

Following the process previously described, once the projection and textur-

ing parameters are set up, a texture image must be acquired and loaded into video

memory to be rendered. Testing has shown that creating a single texture surface and

copying data onto it is faster in DirectX than creating a new surface every frame. The

DirectX texture surface is generally a 32-bit ARGB image. As described previously,

our system queries the next frame from the video file or the capture device through

OpenCV (which, in turn, uses DirectShow to perform the frame capture when running

on MS Windows). The frames returned are 24-bit RGB frames and therefore must

be re-sampled to 32-bit ARGB. This is done by creating a bitmap from the IplImage

provided by OpenCV [46], drawing the image onto a new image of the proper bit
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depth, locking the new image’s data and using Marshal.Copy to write it onto the

texture surface. Finally the texture can be assigned to a device and rendered, as is

shown in Fig. 4.3.
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Chapter 5

Using Matching to Refine Camera Pose

If the provided pose information were accurate enough the video could simply

be projected directly onto the terrain model. However, telemetry data is frequently

inaccurate. The location information comes from a GPS unit located on the plane.

The unit used for the mUAVs in this system only reports data once a second or so.

Additionally, the values returned by the unit may be off by several meters. This

inaccuracy does not present as great of a problem as inaccuracies in the orientation

components of the camera pose. A single degree of change in the camera direction

might dramatically alter the contents of a frame of video. In the case of projective

textures, these inaccuracies would result in video being projected onto the wrong

portions of the terrain model. This chapter presents various methods for improving

the camera pose and reducing error in the projection process.

5.1 Matching

To correct for errors in the telemetry data, matching techniques can be used to

align the filmed video to the reference virtual video. This virtual video is created

by rendering the reference imagery mapped on the terrain models to the pose best

estimated by telemetry and with the same camera parameters as the real camera

onboard the mUAV. This generates a two-dimensional image. Fig. 5.1 shows a real

frame of video and its virtual counterpart created using this method.
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Figure 5.1: Real video (left) vs. virtual video (right). On the left is an actual
frame of video from a downward looking camera on a mUAV. On the right is the
“virtual frame” created by rendering the 3D virtual replica of the search area from
the estimated pose of the mUAV using the same camera parameters of the actual
camera. Notice that inaccuracies in the telemetry have produced inaccuracies in the
estimated pose causing the images to be misaligned.

Once created, our virtual frame can be matched against the actual video frame.

Although the two images are not successive images in a moving camera, we can treat

them as if they were. However, this raises a problem. The images are visually very

different. The color and image quality is the most striking difference. While the

virtual frame is characterized by clear, highly saturated color, the video frame is

de-saturated, grainy, and noisy. However, while both images are of the same pixel

dimensions, the real video frame actually possesses a higher spatial resolution. While

the virtual frame is created from the pose of the low-flying mUAV, the textured

ortho-image was filmed from a satellite or high-flying aircraft. The resulting virtual

frame is a of a higher resolution than the terrain imagery it was created from, causing

the virtual frame to have a true resolution much lower than its real counterpart.

In addition, angles of view are different and environmental factors cause significant

visual changes. The time of day, the season of the year and the contemporary weather

conditions all contribute to visual discrepancies between the two images.
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To ameliorate the differences between the images, they are first converted to

grayscale. Both images are down-sampled from 640× 480 to 320× 240 to account for

some of the resolution discrepancies. This is a relatively quick process to perform at

displayable frame rates. Additional processing would be optimal but would require

more computation time.

The processed versions of the virtual image and the video frame can now be

searched for matching points using any number of techniques. The technique we

decided upon was to first compute interesting features in one image, then locate

corresponding features in the other using a Lucas-Kanade pyramidal algorithm and

optical flow. This approach was used in [50] to match successive frames of mUAV

video in the presence of noise and jitter and under an assumption of a planar world.

Here we must match frames of video to virtual frames that are visually quite dif-

ferent. We chose to start with the real image. OpenCV provides a function named

cvGoodFeaturesToTrack to find interesting points in an image. The function finds

corners in the image by looking for areas with the greatest eigenvalues. The OpenCV

documentation describes the method as follows [46]:

The function cvGoodFeaturesToTrack finds corners with big eigenvalues

in the image. The function first calculates the minimal eigenvalue for every

source image pixel using cvCornerMinEigenVal function and stores them

in eig image. Then it performs non-maxima suppression (only local max-

ima in 3x3 neighborhood remain). The next step is rejecting the corners

with the minimal eigenvalue less than quality level*max(eig image(x,y)).

Finally, the function ensures that all the corners found are distanced

enough one from another by considering the corners (the [strongest] cor-

ners are considered first) and checking that the distance between the

newly considered feature and the features considered earlier is larger than
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min distance. So, the function removes the features than are too close to

the stronger features.

The points selected can then be found in the virtual image. OpenCV also

provides a function to find these, named cvCalcOpticalFlowPyrLK, which uses the

Lucas-Kanade [51, 52] pyramidal algorithm. The function first computes the optical

flow between the two images on a down-sampled image, then refines the result with

subsequent higher resolution versions. The result is a list of points in the second

image that match points provided from the first. Some points from the source image

may not have matches.

There are a number of obstacles to finding correspondence between the refer-

ence video frames generated from the painted terrain model and input video frames

filmed from the mUAV. As discussed in [25], various factors can cause reference im-

agery to differ from the analogous video input. Seasonal changes and differences in

climate due to the span of time between recording reference imagery and input im-

agery can cause dramatic visual differences. Distinct camera and sensor properties,

differing pose information, and changes to the terrain itself are a few more of the many

challenges in computing good matching between images. To address some of these

problems, [25] proposes a preprocessing step in which both reference and projected

images are converted into normalized oriented energy images that emphasize small,

point-like structures. Detail within these processed images is likely to be texture

information, features like corners and edges on non-changing scene objects. This is

achieved by passing an image through a series of Gaussian second-derivative filters.

This results in four oriented-energy images: vertical, horizontal and two diagonals.

They are all normalized by the sum of the images to reduce the variance due to

contrast changes.

The authors of [25] also provide a method for creating the dense correspon-

dence between reference and input imagery. Because of the high amount of error
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present in telemetry data, the search area in reference imagery may be large. The

matching algorithm must be able to search large areas quickly, be insensitive to dif-

ferences between input and reference images, and yet be able to match accurately.

To accommodate this, an iterative matching system is used, which takes multiple

frames of input video simultaneously and iteratively refines the correspondence using

increasingly detailed versions of the reference imagery. This hierarchical approach

is similar to bundle adjustment. To perform this, input frames are first aligned to

one another. Key frames are determined among them by an automated process that

selects frames that overlap by about 50%. Three key frames are considered at a time

in a sliding window fashion. For each three-frame window, the hierarchical iterative

correspondence is computed. The first iteration considers what the authors call local

correspondence, matching each single frame of video independently to a low spatial

frequency version of the reference imagery. Each successive iteration uses a higher

spatial frequency version of the reference imagery until full detail is reached. At each

iteration the parameters of the input images are adjusted and then fed as input into

the next iteration. At this point a dense correspondence should be found.

5.2 Mapping Images Into Models

Once a dense correspondence is found, two valuable pieces of information are available:

1. Camera pose information in reference space reflecting the camera pose of the

mUAV, and

2. Association of video frame pixels to those of the corresponding reference im-

agery.

These two new pieces of information can now be used to place the video im-

agery into the three-dimensional model in one of two ways. The camera pose infor-

mation can be used to project the video frames onto the terrain data using projective
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texturing or shadow mapping. Alternatively, the video information can be applied

to the existing textures of the model using the dense correspondence map to create

new or layered textures out of the existing one. Each method has its advantages and

disadvantages.

If the correspondence is dense enough, individual pixels can simply be drawn

onto the texture map where they are found to match. The main drawback of this ap-

proach is the low percentage of pixels for which a corresponding match will be found.

Techniques can be employed that will help interpolate correspondence information

but these are computationally costly and run the risk of interpolating incorrectly.

For this reason, this approach will not be employed for painting the terrain data with

video.
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Chapter 6

Coverage Maps and See-ability

The goal of coverage maps and the proposed see-ability metric is to give the

operator an instantaneous understanding of what portions of the searched terrain

have been seen by the camera and how well the recording captures ground detail.

This information is primarily for path planning purposes in order to determine where

the craft should fly in subsequent passes. Because the recording is in the form of

video, a sequence of images filmed over time, there arise two measures of see-ability:

1. Instantaneous See-ability - How well is terrain seen by a single frame of video?

2. Collective See-ability - How well is terrain seen by all frames of video collec-

tively?

6.1 Instantaneous See-ability

The primary goal of instantaneous see-ability is a map of pixel resolution as related to

ground area from a single frame of video filmed from a particular pose. This resolution

is measured in terrain area per pixel (or pixels per area of terrain, if desired). If the

ground were completely flat and the camera faced directly downward, this would be a

simple computation: the number of square meters in the rectangle seen by the camera

divided by the number of pixels on the image. This can also be calculated as follows:

resolution =
meters2

pixel area
=

(
d

f

)2

(6.1)
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Here f is the focal length of the camera in pixel widths (assuming pixels are square)

and d is the distance between the camera and the focal point in meters. Alternatively,

the resolution can be measured as a ratio of lengths instead of a ratio of areas:

resolution =
meters

pixel width
=

(
d

f

)
(6.2)

However, typical terrain is not flat and therefore the camera is not directly facing all

surfaces. We can modify the equation to take into account the change in apparent

surface area due to the angle of incidence by multiplying it by the cosine of the angle

between the surface normal and the vector to the camera. The expression becomes

(
d

f cos θ

)2

(6.3)

where θ is the angle between the surface normal and the vector to the camera. Or,

in terms of areas: (
d

f cos θ

)
(6.4)

The results of these equations are in units of meters square per square pixel or meters

per pixel. Since see-ability is from the reference frame of the camera, we can take the

reciprocal to give us units of pixels per meter:

(
f cos θ

d

)
(6.5)

The cosine of the angle between two vectors is most easily computed by taking

their dot product. Thus the formal definition of instantaneous see-ability Sij at point

i computed from camera frame j is defined as follows

Sij =


~ni·~vij

dij/fi
if point i is visible in frame j

0 otherwise
(6.6)
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Because no see-ability is computed for points that are not visible in a frame, the

see-ability for non-visible points is defined as 0.

Because the focal length is so small relative to the distances involved, Sij is

often very small. While this does not create a problem for generating see-ability

for a point, it becomes impractical to deal with very small numbers, especially later

on when we begin to combine multiple viewings. For cameras with a fixed focal

length (such as those mounted on the mUAVs for this research) this length results

in a constant scaling to all samples. Therefore it is simply omitted in the see-ability

calculation. Instead, all proportionality constants are folded into a single scaling

factor α. A minimum distance from the camera and a 90 degree angle are chosen to

be 100% seeable. In other words, a point at the minimum distance from the camera

whose surface normal is co-linear with the camera vector is assigned a detection

probability of 1. The see-ability then approaches zero asymptotically as the distance

from the camera increases and as the angle of incidence becomes more oblique. In

order to keep the value of Sij in the range of [0, 1] the calculation is modified as

follows:

Sij =


~ni·~vij

1+dij/α
if point i is visiible in frame j

0 otherwise
(6.7)

In order to compensate for terrain variation, this expression can be calculated for

a grid of points spanning the terrain region in view of the camera. The terrain

model chosen for the rendering is a regular grid of points created from a height map.

These points are tessellated into a polygonal mesh (using triangular polygons) for

rendering purposes. This same grid can be used to compute the instantaneous see-

ability at all points where the grid varies from a plane. To reduce the effects of

aliasing, particularly when dealing with mesh self occlusion, the grid is re-sampled

at twice the spatial frequency of the underlying height map. In addition, the center

points of the new faces are used instead of the grid points themselves. To determine
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Figure 6.1: Points of occlusion are detected by comparing a point with all points
that lie along the same ray. If a closer point is found this point is determined to be
occluded. Points that are occluding others are depicted here by red arrows.

visibility in the camera view, all grid points pass through view frustum culling. This

is done by computing the six planes of the view frustum, then computing the dot

product of each plane against the point of interest. If any of the dot products are

negative, the point is rejected as not in view.

If a point passes the view frustum culling, it is tested against the terrain model

itself to ensure it is not occluded by the surface of the terrain itself. For this research,

the DirectX Mesh.Intersect method is used to perform this test. The method returns

all intersections of a ray and the mesh model. The intersection closest to the ray origin

is considered to be the “closest hit”. If this intersection corresponds to the point in

question, the point is accepted. Anywhere that there is a mismatch between these two

values we know that has been an occlusion. This method, therefore, provides a free

occlusion detector. The detector can be configured to show occlusions or the points

that are occluding. Fig. 6.1 shows the result of this operation and the occluding

points marked by red arrows.
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Figure 6.2: Instantaneous see-ability is computed from a single pose shown here in
red. The distance and angle from the mUAV to each point visible in the video frame
is used to create a “snapshot” of how well the area was seen from the camera.

Once a set of points is determined to lie within view of the camera, the see-

ability calculation described above is computed for each point. The resulting mea-

surement of square meters per pixel can be scaled to the range of [0,255] and used

to shade a map of the terrain area. Fig. 6.2 shows this calculation performed on the

terrain. Here a single pose of the aircraft is used to compute the distance and angle

to every point visible from the video frame.

Even though instantaneous see-ability is only calculated between a single frame

of video and a single point, pseudo-coverage maps can still be generated by only taking

the best value at each point. Fig. 6.3 Fig. (c) and Fig. (d) show this type of coverage

map.

6.2 Collective See-ability

While instantaneous see-ability is relatively straightforward to compute, its usefulness

is limited in a video-based application. The notion of a collective measure of see-ability
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adds the complexities of combining the see-ability measurement from a number of

distinct perspectives that may visually overlap. Collective see-ability attempts to

answer the following questions:

1. How many times has a location been filmed?

2. What is the collective quality of the filmings of a location?

3. How many unique angles has the location been filmed from?

4. How unique are those angles?

The most obvious problem that must be addressed arises when a single point

on the terrain map is seen from multiple locations in different parts of video. One

simple solution would be to take the total number of viewings as the new quality

metric. While simple, this approach ignores the quality of the individual viewings,

something that we have carefully calculated as instantaneous see-ability. If the quality

measurement of the multiple viewings were identical it would be trivial to take that

measurement as the overall quality of the multiple viewings. However, when the

qualities differ, how should they be combined? Should they be averaged? If so, that

raises the question of whether adding a single low-quality viewing to a set of high

quality viewings really reduces the overall quality of the collective viewings. If that

is the case, an area that has been successfully filmed and deemed “high quality” can

be unfairly penalized by a stray pass from a distant camera. Similarly, the quality

metric could also be artificially inflated by removing lower-quality viewings until only

a single high-quality image remained. Shouldn’t the quality also be affected by how

many different perspectives the camera can capture of a location? What is better, two

frames of video captured from opposite sides of a location or three frames captured

from the same side? An overall quality metric is desired that takes into account the

number of viewings, the quality of each viewing and the uniqueness of the perspective

to give an overall metric of see-ability.
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While an overall metric is desired, it can be difficult for an operator to extract

information from a metric that has so many components rolled together. Different

search operations may require different pieces of information. While an overall see-

ability metric may be right for path planning, the operator may desire to know specific

information for other tasks. The operator may need to know how many times a certain

cliff was seen from the south, for example, if ground searches aren’t able to view the

cliff from that direction due to difficult terrain. An operator may want to know when

certain areas have been filmed so that information remains up-to-date in all search

areas. For this reason, the deliverables for our application are split up into several

metrics, each providing a different set of information:

1. Multiple Viewings Metric

2. Time Coverage Metric

3. Multiple Angles Metric

4. Unique Angles Metric

5. Cumulative - Full See-ability

6.2.1 The See-ability Data Structure

To compute the see-ability metrics, a data structure must be defined similar to what

was described for instantaneous see-ability. While instantaneous see-ability could be

recorded with a simple 2D array of accumulator values (32-bit floating point numbers),

the complex nature of collective see-ability requires a more detailed data structure.

We chose to divide the world into a grid accumulator where every cell represents a

location on the ground and is used to store all information about video recordings

of that location. The grid was chosen to be twice the spatial resolution of the ter-

rain model. This provides four grid cells for every terrain quad. The center of every

cell is computed and stored to be used for subsequent computations. Every cell is
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represented by a GridCell data structure in an in-memory collection. The GridCell

object contains a collection of FrameForCell objects. Each FrameForCell object rep-

resents a frame of video that has recorded this location. The FrameForCell object

records the index into the video to look up the actual video image, as well as the time

of recording, the telemetry entry for that frame (camera pose) and accumulators to

hold see-ability information for processing.

6.2.2 Multiple Viewings Metric

The Multiple Viewings Metric simply counts the number of times a particular location

is seen by a frame of video. To compute the multiple viewings metric, each frame is

processed in order. Just as in instantaneous see-ability, the camera pose for a frame is

used to create the view frustum. This is used to cull grid cell points and the remaining

points are used to compute occlusions. Instantaneous see-ability is computed for all

locations that pass these two tests and is stored in the FrameForCell object. The

number of FrameForCell objects that belong to a GridCell object represent the value

of the Multiple Viewings Metric. For display, this number is scaled to lie within

[0,255] and applied as an alpha blending or shading to a map. This metric does not

take into account the quality of the viewings themselves. A close-up recording would

receive the same weight as a distant recording from an oblique angle.

6.2.3 Time Coverage Metric

The Time Coverage Metric is a measurement of when locations on the terrain were

recorded. Computation of the metric is trivial, in fact—it is a simple matter to

include the time a frame was filmed and fold it into the Multiple Viewings Metric

described above. The real development needed for this metric is a method to display

it. A static display would simply scale all time values to the range [0,255] and create

an alpha mask as in previous displays. However, if specific time ranges are required
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they may be supplied by the operator to limit the frames displayed. Because most

of the flights we experiment with are short and take place during a small window of

time, the time metric doesn’t contribute very much. For this reason we generally do

not include it in the see-ability-based features presented hereafter. This metric would

be more useful in a day-long or multiple day search when it would be important to

know when certain areas were covered.

6.2.4 Detectability (Background Contrast) Metric

In early trials it became clear that objects of interest are much more visible in grainy,

washed-out video when they are of a contrasting color with the background. In the

instance where the clothing of the missing person is known at search time, a metric

could be employed that compared the relative contrast between the background at

every point and the expected color of the lost individual’s clothing. The clothing

colors would have to be entered into the system manually at startup. Contrast might

be measured by treating colors as three-dimensional vectors. The Euclidean distance

between the background color vector and the target vector would yield a single con-

tinuous value. This value could be used much like the distance value previously, where

the value 1/(color distance) would be scaled to the range [0, 1]. Alternatively only the

brightness component of the color might be used. While we did not implement this

particular calculation, it is an example of the many possible factors and components

that could be incorporated to augment the usefulness of the see-ability metric.

6.2.5 Multiple Angles Metric

While it does help to know how many times a point has been seen, sometimes this

may not be enough information to determine if it has been seen well enough. Some

terrain point may be occluded from some angles but fully visible from others. For

example, in the case where the person to be located is resting up against a large
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rock or tree, seeing that rock or tree repeatedly from the back side does not add

any additional information. Even seeing it from closer and closer distances does not

solve the problem. To discover the hidden individual the search team must direct the

aircraft in order to capture that point from multiple different angles. We created the

Multiple Angles metric in order to account for this. The more unique angles have

been captured on a target point, the higher the metric.

The Multiple Angles Metric is computed by creating an imaginary dome over

the location and dividing it into angular sections similar to longitude and latitude

delineations on the earth. For consistency, the dome would be divided into 36 degrees

around and 9 degrees from horizon to zenith, one tenth the resolution of the terrestrial

coordinates. The data structure is modified to accommodate a two-dimensional array

of binary values on every GridCell object as well as an integer accumulator. For

every frame of video the vector from the location to the camera is computed and the

latitude and longitude of the appropriate section of the hemisphere is determined.

These values are used to look up the boolean value in the GridCell and determine if

it has been set. If it has not been set, it is then set and the integer accumulator is

incremented by 1. Otherwise the integer is not incremented. Once all frames have

been processed, the accumulator on each GridCell contains the number of angles that

the location has been viewed from.

6.2.6 Unique Angle Metric

The multiple angle metric helps to address the problem of angle-specific occlusion.

However it does does not take into account the quality of the images, or the uniqueness

of the angles. In most cases, a particular point on the ground will receive more than

one pass but not hundreds of passes. In the common case that a point is covered in

three frames of video from very similar angles, the Multiple Angles metric would yield

the same result as if those passes were from very different angles. What is needed is
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a way to weight the angles more by how unique they are. Thus the angular coverage

reported is not simply a percent of angles, but a representation of how spread out the

angles were. This is what the Unique Angle metric attempts to do.

Arriving at a fair algorithm that satisfies all intuitive ideas of what the Unique

Angle metric attempts to do is rather difficult. We experimented with a number

of approaches. One straightforward method would be to start with the imaginary

dome described for the multiple angles metric. The uniqueness of each cell could be

determined by computing the shortest spherical Mahalanobis distance (the sum of

the two angular components) to the nearest used neighboring cell. This approach

could be modified to a continuous form by first determining the compass direction

θij for which point i is viewed by frame j. We then search all known angles for its

nearest neighbor at frame k. The uniqueness Uij could be defined using the difference

between compass angles computed as the minimum difference modulo 2π then scaled

to the range [0, 1]:

Uij =
mink 6=j (θij − θik)

π
(6.8)

Either method requires that all cells be recomputed whenever a new cell is

added. This means, of course, that the see-ability data structure at every terrain point

must be modified to retain information about every angle involved in the computation.

6.2.7 Cumulative See-ability

Combining all of these metrics into one single number requires us to look at see-

ability in a new way. One option would be to simply average all of the instantaneous

see-ability components together. While simple, this approach has the major flaw

that subsequent viewings of a point could generate a decrease in see-ability. This

is inconsistent with our idea of see-ability. If a point has been seen very well by a

portion of video, it should not be possible for subsequent video to reduce the coverage
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(a) The flight path. (b) Simple coverage map.

(c) See-ability: Best Distance. (d) See-ability: Best Angle.

(e) See-ability: Unique Angles. (f) See-ability: Cumulative.

Figure 6.3: Five see-ability based coverage maps are compared. Fig. (a) simply
shows the terrain and the flight path over it. Fig. (b) shows a basic coverage map,
highlighting all areas that have been seen more than two times. This traditional
coverage map does not give any quality information and therefore does not help in
determining where to search next. Figs. (c) and (d) are the best distance and angular
measurement at each point, the result of the individual instantaneous calculations.
These are not accumulated but simply the best single value observed for each point.
Fig. (e) shows the result of the unique angle metric at each point and Fig. (f) is the
cumulative see-ability map (not including uniqueness of angles).
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of the first. See-ability should only increase with subsequent passes even if they aren’t

as good as previous ones.

In order to combine multiple metrics together we chose to model see-ability as

a subjective probability. Every individual instantaneous measurement can be treated

as the subjective probability that a user is able to detect or recognize a target or point

of interest in the frame. Although the true probability of this detection is unknown,

we assume that a linear increase of spatial resolution would result in a linear increase

in the subjective probability of detection.

To combine multiple viewings we would first consider the subjective proba-

bility that a viewing did not result in detection. This is easily represented as one

minus the subjective probability of detection. The product of all instantaneous see-

ability computations at a particular terrain point represents the subjective probability

that none of the viewings resulted in detection. This probability subtracted from 1,

therefore, is the subjective probability that any of the viewings resulted in detection:

Si = 1−
∏
j

(1− Sij) (6.9)

The Multiple Viewings metric is therefore not used directly but folded into the product

of all individual viewings.

In order to also incorporate the Unique Angle metric into the Cumulative

metric we simply bring back the Uij term previously computed. In the last equation

we considered Si the subjective probability of detection in an observation. Now we

alter our perspective slightly and consider SijUij to be the subjective probability of

an observation adding information to the detection process. With this new compu-

tation we can estimate the subjective probability that any of the observations added
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detection information to the search:

Si = 1−
∏
j

(1− SijUij) (6.10)

Finally in Eq. 6.10 we have a measurement of see-ability that takes into account

the angle and distance together as a resolution measurement for all viewings of a target

point as well as how unique each viewing is. Fig. 6.4 shows the result of applying

this complete metric to our dataset. The Time Coverage metric, and a myriad of

others, could be folded into the Cumulative metric in the same way as the Unique

Angle metric. The time a frame was taken would be compared to other frames of the

same point and its uniqueness would be computed and inserted into the innermost

term of the equation. Although this research stops short of implementing the Time

Coverage, Detectability and other metrics, it demonstrates the flexibility of the metric

and provides a powerful framework for future work.
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Figure 6.4: The result of the final and most complete version of the see-ability algo-
rithm. This incarnation takes all instantaneous see-ability values into account as well
as the angular uniqueness computations.
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Chapter 7

Features

In this chapter we will discuss a number of the features provided by this system

and their implementations. These features are designed to assist the operator in the

tasks of understanding search area, marking areas of interest, viewing video as it

is projected on the terrain and viewing video out of sequence. While none of the

individual techniques and features described here is completely novel, the collection

taken as a whole is a uniquely useful tool to aid mUAV operators in the search

and rescue task. By augmenting these features with the see-ability metric wherever

possible, they become invaluable to searching operations.

7.1 Organizing Input Data

The ability to georegister video opens an array of visualization techniques that can be

employed to increase operator awareness and facilitate the search process. To make

these possible, the georegistration data must be stored and organized in a usable

format. Record types (C# classes) are created for the following data:

1. Package

2. Video

3. FrameSet

4. VideoFrame
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5. Pose

6. BoundingBox

The Package object is the root object for a collection of data. Every video file is

represented by a Video object. This object contains time stamps for the date and time

the video filming was initiated and ended, as well as the number of frames in the video

and the file name of the video file. The video object contains a reference to a FrameSet

object. This object represents a sequential collection of VideoFrame objects. Each

VideoFrame object contains its frame number, a time stamp relative to the start time

of the video it is in, an axis aligned bounding box stored in BoundingBox objects,

and an instance of the Pose object. The Pose object stores a copy of the camera

pose corresponding to this frame of video. The BoundingBox object represents an

estimated bounding box surrounding the video once projected to the ground. The

BoundingBox is used to quickly identify relevant frames while the Pose object is

used to compute an accurate projection. This object hierarchy is primarily used for

manipulating data for display. It can quickly be generated at run time from telemetry

and terrain without having to actually play a video file. However, all objects are

marked as Serializable in order to efficiently store them to file. Additionally they

may be stored in a centralized database.

7.2 Rendering Novel Views

Once video data has been georegistered to the terrain data, it can be rendered from

any view the user requires. Rendering video data is as important to the search process

as capturing it in the first place. The primary goal is to provide the human viewer

with a high degree of situation awareness and simultaneously display sufficient level

of detail to locate objects of interest. In order to do this, views other than that of
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the mUAV’s camera may need to be employed. [16, 39] To facilitate this, our system

can be placed in one of a number of navigation modes:

1. Free Navigation – the operator has the ability to explore the scene by maneu-

vering the mouse to translate and rotate the virtual camera to render from any

pose desired. (Fig. 7.2(b))

2. Orthographic – the scene is rendered orthographically, the user may scroll

left/right and up/down as well as zoom in/out. (Fig. 7.2(a))

3. Camera View – the scene is rendered from the pose of the mUAV’s camera.

(Fig. 7.1(a))

4. Forward View – the scene is rendered from a novel view looking straight out

from the nose of the mUAV. (Fig. 7.1(b))

5. Downward View – the scene is rendered from a novel view looking straight down

from the mUAV. (Fig. 7.1(c))

6. Downward Axis View – the scene is rendered from a novel view looking straight

down the Y-axis from the location of the mUAV to give a sense of what the

craft is flying over. (Fig. 7.1(d))

7. Trailing (or Tracking) View – the scene is rendered from a novel view of behind

and above the mUAV, keeping the area corresponding to the Camera View in

sight. (Fig. 7.1(e))

It is important to remember that although the rendering techniques used here

are well known, the unique contribution of this research is bringing them together to

be used in conjunction with the see-ability metric to facilitate mUAV-assisted search

and rescue.

In any of these views the rendering of various lines may be turned on or

off. This includes axis lines at the scene origin, axis vectors at the plane location
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(a) Camera View. (b) Forward View.

(c) Down View. (d) Axis Downward View.

(e) Trailing View.

Figure 7.1: A comparison of five navigation modes. The system gives the user the
ability to quickly switch navigation modes to display one of these five views. Camera
View (a) shows what the camera sees, even if the camera is on a gimbal. Forward
View (b) shows the scene looking through the nose cone of the craft. Down View
(c) shows the scene as if looking through the belly of the mUAV. This is different
than Axis Downward View (d) which looks straight down the Y-Axis to the ground.
This is useful for determining what the craft is flying over. Finally, Trailing View (e)
tracks the craft from behind and above in a “third-person” perspective.
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(a) Orthographic View. (b) Free Navigation.

Figure 7.2: The Free Flight and Orthographic navigation modes are different than the
rest. The Orthographic Mode is rendered orthographically and remains fairly fixed.
The Free Navigation mode allows the user to manipulate the position and orientation
of the virtual camera to acquire any desired perspective.

(up, down, left, right, forward, camera), and the path of the mUAV. In addition,

the rendering of marker arrows, called “shapes” for rendering purposes, can also be

turned on or off. These include the current selection point, all marker points, and the

launch point. Although these may be helpful in some scenarios, we provide the ability

to deactivate them because their sharp lines and visual contrast may be distracting

during a video search.

7.2.1 Snapshots of Novel Views

The operator may cycle through these modes at will to find the desired pose. If an

interesting pose is encountered, the operator may take a “snapshot” [53] with a single

keystroke (the ‘s’ key). This preserves the pose information which can then be used

to recreate the view of interest at a later time. All saved poses are stamped with the

date and time that the operator created the snapshot. Optionally they can be given

a textual name and may include notes.
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7.2.2 Manipulating the 2D and 3D Interactive Windows

The user interface presented to the operator consists of three windows:

1. 3D Virtual Window – Terrain and projected video are rendered here

2. 2D Video Window – Displays the current video frame

3. Control Panel – UI controls and additional map display

These three views are tightly integrated allowing interaction with one window

to update the others. For example, a point in three-space can be selected by double-

clicking the 3D Virtual Window. This casts a ray to the terrain model from the

current virtual camera position and chooses the nearest intersection point. This

point becomes the current selection point and is marked with a yellow arrow in the

3D scene. Because of the integrated nature of the windows, the corresponding point

is also marked in the 2D Video Window with a small circle. This point is computed

by back projecting the selection point to the screen using the mUAV camera pose

for the current frame. Of course, if the point does not map to a point on the video

frame it is not displayed. Conversely, double-clicking in the video window will move

the selection point and circle it in the video window. The 3D window is also updated

and the arrow is moved to the corresponding point on the terrain. This is computed

by taking the selected point on the video frame and projecting it down to the terrain.

Whenever the selection point moves in response to either the 2D or 3D windows, the

Control Panel window is updated to display the latitude/longitude of the point.

7.2.3 Coverage Maps and See-ability Rendering

In the previous chapter we discussed the methods of computing the various incarna-

tions of the see-ability metric. It is worth mentioning here how that process ties-in

to the user interface of the system. A small section of the control UI is dedicated to

computing see-ability. The user is given the option to compute the see-ability metric
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Figure 7.3: The user interface for the see-ability features of the system. Through
this interface the user may enable or disable computing of the metric. The user may
also determine whether or not to render it to the scene and which of its components
should be considered in that rendering. This UI also allows the user to set the overlay
color and export a full-resolution overlay image to be saved to disk.

by simply checking the appropriate checkbox. When activated, this feature computes

and stores see-ability as telemetry streams into the system. The data structures used

to hold the resulting calculations contain all information needed to recompute the

metric. This means that computing any portion of the metric can be done very

quickly on data that has been processed. This allows us to present the user with a

number of display options. The user may enable or disable any combination of funda-

mental components of the algorithm simply by checking the appropriate boxes. Their

change is rendered immediately to the screen even though, as mentioned, this has no

effect on the underlying calculations performed and stored in the system. Finally, the

user may select the color to be used for the overlay and may generate a full resolution,

orthographic overlay image and save it to disk in a compression format of his choice.

Once see-ability is being computed the user may check a box to have the

current calculation rendered as a coverage map and overlayed on the scene. This

is demonstrated in the sequence of images shown in Fig. 7.3. As time progresses

and the mUAV travels through the scene the coverage map is updated to reflect

the changing see-ability of the terrain. With a high-end commodity video card this

can be computed and rendered in time with video arriving at approximately 30FPS.

These frame rates are only possible, however, if the telemetry is used to calculate

the see-ability without employing matching to improve the alignment to reference

imagery.
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(a) Time 1 (b) Time 2

(c) Time 3 (d) Time 4

Figure 7.4: Four snapshots demonstrate the ability of the system to compute and
render the see-ability metric as a coverage map overlayed onto the 3D terrain.
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7.2.4 Marking

Through the system, points can be marked as points of interest to be examined at

a later time. Points are marked in the same way that the selection point is moved,

through interacting with the display windows. To create a mark instead of a selection,

the operator simply holds down the Ctrl key while clicking the point of interest. Once

marked, a blue arrow designates the marked point. As with pose snapshots, marks are

tagged with the current time stamp and can be given a textual name and description.

In the Control Panel window the user can select the “Marks” tab to see a list of all

marks that have been created. The user may edit or delete them at will.

Since the marked point is stored with its latitude and longitude, marks chosen

at different times are compatible with one another. In fact, marks made by other

users, originating from different flights and video can be easily combined. Therefore,

if a particular point is marked in video A, then much later a second pass of the

area results in a user marking the same geographical point in video B, this can be

detected and brought to the attention of the operator. Because they are tied to a

physical coordinate system, these marks can be sent to hand-held GPS units to guide

searchers on the ground or transferred to topographical maps.

It should be noted that a similar mechanism is proposed in [38]. Points of

interest are defined by motion in the video and are automatically detected. These

can be annotated such that the annotation persists when the same point reenters the

video. However, the authors do not extend this idea to span multiple videos. In fact,

the annotations are not tied to any kind of global physical coordinate system.

7.3 Rendering Video Data in Sequence

Projected video can be displayed in any navigation mode. The simplest display

method involves rendering the frames of video from the same pose they were filmed
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from and in the same sequence. Once each frame is georegistered and associated

with a camera pose, it is a simple task to iterate through them, projecting a single

frame at a time to the model and rendering it immediately. When playing a video

in sequence, the operator has the option of pausing the playback. When paused or

during playback the operator is able to manipulate the display modes and the display

view to see the projected video from any desired pose. The operator may also rewind

and replay video, or play video from a certain frame, and the pose sequence will

remain synchronized. As described above, when playing or when paused, the user

may create pose snapshots or marks. Snapshots preserve the projection state of the

video, allowing the display to be exactly recreated at a later time, while marks only

reference a physical location.

7.3.1 Smoothing the Camera Path

Jitter in the mUAV flight path at the time of filming makes the sequential playback

technique rather poor for search purposes. It has been proposed that video can be

improved by smoothing the camera path used for the rendering pass, projecting the

video frames from the un-smoothed camera pose. Three problems arise with this

technique:

1. There is no guarantee that the new camera pose will capture the portion of the

terrain model that the video frames are being projected onto.

2. The viewer is still bound by time and must watch the progression of video one

frame at a time in the same linear sequence that they arrive.

3. Smoothing the camera pose for projection does not improve the ability of the

user to search the video.

It has been shown that simply smoothing a fly-through of a georegistered

sequence of video frames does not significantly increase the viewer’s ability to detect
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objects in the presence of a distracter [50]. One reason for this is that the smoothing

causes the video contents, the features to be located, to move about the display. The

eye must constantly adjust to locate features in their new screen locations. Rather

than smooth the camera path, mosaicing can be used to compensate for the jitter.

This provides a visual history on screen. The distracting effect of jittering is greatly

reduced when the imagery is left on-screen from frame to frame. This continuity

between frames allows the user’s eye to search the features freely without having to

reacquire their locations.

We have implemented path smoothing on the telemetry data but it is not

active by default. The user may choose to enable it as an administrative setting. The

smoothing is implemented by considering each component of the pose information

over time an independent vector of data points. This vector is then treated as a

third-degree B-Spline. To get the value of a particular element of the camera pose at

time t the spline is evaluated at t. This provides a smoothed approximation of the

camera pose including its rotational components.

7.4 Rendering Novel Sequences - Search by Location Rather

than by Time

When frames of video can be stored to access later, the viewing experience is no longer

bound by time. Instead of queueing a video sequence, playing it, then rewinding it

to review what was seen, the viewer now has the ability to select a location on a map

and view all video frames that cover that region. The user can now search an area

instead of searching a segment of video. This decouples the search process from time

and allows the operator to search spatially instead.

Mosaics are a natural fit for transforming temporal video data to a more spatial

organization. When viewing out-of-sequence video projected onto a model or even a
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flat surface, frames will often overlap. A decision must be made to determine which

frames should be shown. The simplest method would be to show the most recent

frames on top, the traditional painter’s algorithm modified to take collection time

into account. The major drawback to this method is that it discards potentially

viable video data. A portion of a frame that ends up underneath other video may be

the one that contains the target object.

One potential solution to the overlap problem would be to blend all video

data together when it overlaps on the model. This would be easily accomplished

by creating a single texture that consists of projected video frames alpha-blended

together. This technique suffers from the fact that images of a region taken from

different perspectives have different visual properties, especially when ground objects

like vegetation create variations in height too small to be captured by the terrain

model. Merging different images of a single region may create a blurry amalgamation

in which detail is difficult to discern.

An approach similar to this is described in [38]. The authors create a

panoramic mosaic from all frames of a video. Every frame is registered to this mosaic.

In the process, objects moving within the video can be detected. A major benefit to

this method is the ability to spatially index video. Selecting a point in the mosaic

yields all frames of video that are associated with that point. However, the authors

did not intend the mosaic alone to enable a user to exhaustively search an entire

video. Instead the mosaic provides a common frame of reference and “direct and

immediate access to the scene information.”

Similar to this visual indexing method, we propose a technique in which the

user/operator navigates a virtual camera in a scene rendered using a low resolution

version of the terrain models painted with the most recent video data or reference im-

agery where video frames for an area are not available. This is analogous to searching

a mosaic, however, the search area is a 3D model instead of a 2D image. The user
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then selects an area of interest. In response the system scans all available imagery

and displays to the user (in a separate view window) all images of equal or higher

resolution that intersect the selected region. The display is done in an animated loop

that gives the user a feel for the video sequence.

7.4.1 User Interface for Video Searching

Since this may generate clips of video (small sequences of frames separated by time

from other sequences), the display may be somewhat disjunct. These displayable

subsets of the video file are represented to the user in the form of a graphical bar

with portions highlighted to represent the visible portions of video. This view is said

to be a binary view because portions of the video are either highlighted and shown

in playback or not highlighted and skipped.

The user is free to show or hide groups of frames from the looping view as he

deems necessary in order to improve concentration on areas of interest. This is done

by simply right-clicking on the area of the bar to be shown or hidden. Hidden portions

appear grayed out, yet still detectible on the bar. When hidden, these portions of

video are skipped in the playback loop. A user may pause the playback loop and click

on the bar to be shown a single frame of video.

Fig. 7.5 shows the application after selecting two distinct points. The bar to-

wards the top of the image shows the video frames highlighted in yellow corresponding

to the selected point. All other frames are indicated by the gray portions of the bar.

7.4.2 Prioritization and Weighting

Because of the see-ability metric, we can do much better than simply showing the

user which frames contain a certain point. Every point on the scene model is assigned

an overall see-ability score. However, see-ability also gives us a measure for how well

a particular frame of video captured a particular ground point. We can use this score
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Figure 7.5: Two samples of binary video indexing. These two images show the
selection of two different points. The bar towards the top of the images shows the
video frames that contain the points in yellow and all other frames in gray.

to indicate to the user how well each frame of video saw the point in question. We

can then weight the frames in the display more heavily that better see the target

point. We can take this one step further and prioritize the playback so that more

important viewings are shown first. This is important because it allows the searcher

to shift his search task so that frames that are more likely to yield a find are searched

early. Frames that are less likely are postponed.

Fig. 7.6 shows this prioritization in practice. In the 3D display the user has

selected a point indicated by the small green arrow at the top of the image. The

system can then compute all frames of video that display this point. The bar below

represents the entire video. The bar is colored based on how well each frame “sees”

the selection point, black indicates the point is not seen in the frame and bright

yellow indicates a maximum see-ability score. All shades in between yellow and black

represent varying degrees of see-ability. The user is able to click anywhere in the

video bar which causes the application to immediately display that video frame in
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the 2D video window. Alternatively, the user my press “Play” and the application

will play through the portions of the video whose see-ability is above some predefined

see-ability threshold. By default that threshold is set to anything with a non-zero

see-ability score.

7.4.3 Implementation of Out of Sequence Viewing

To facilitate viewing video data out of sequence respective to the order it what filmed,

it must be stored in order to be recalled for rendering. Every frame of video has a

corresponding pose as defined by the telemetry coming from the mUAV. Each of these

poses is stored in the system and is tied to its frame of video. As described earlier,

our system divides the search area into a regular grid and associates each frame of

video with the grid points that lie in the view frustum of the virtual camera defined

by the telemetry for that frame. This is how the see-ability is computed. This same

data structure enables each video frame to be tied to the terrain.

The video bar is created by starting with a 3D selection point. This 3D point

may have been selected in the 3D window or a point in the 2D video frame may have

been selected. In this second case, the corresponding pose has been cached for that

video frame. The location of the selection point on screen can be used to create a ray

beginning at the pose location and radiating in the interpolated direction. Ray casting

is used to determine the intersection point of the ray on the terrain. View frustum

culling is first applied to ensure only viable polygons are considered in the ray hit test.

Once the 3D intersection is determined it can be used to create the video bar. Each

video frame is considered. The instantaneous see-ability from that frame is computed

but only at the selection point. Because it is only a single 3D point per frame of

video, the see-ability algorithm is very fast. This process generates a list of frames

and a see-ability value for each. The bar is drawn by inverse mapping, iterating over

pixels and mapping back to frames rather than iterating through frames. Finally the
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JĴ

@
@

@
@

@
@

@@R

Good

Medium

Bad

Figure 7.6: Prioritization of indexed frames based on See-ability. A point is selected in
the 3D display (top). The video bar represents all frames that see that point (middle).
The better the point is seen from the frame, the brighter yellow the representation.
Three points of varying see-ability are shown (bottom).
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currently displayed frame is marked by a red vertical line in the video bar. Clicking

the bar causes the system to fire an event in which the corresponding video frame

object is found by index, the pose is found and both are sent to be rendered by the

2D and 3D windows. The current frame is updated and the red bar is redrawn.

7.5 User Filtering and Knowing What You Have Seen

The see-ability coverage maps are a very powerful tool in knowing what areas have

been filmed. However, just because video has been generated does not mean that a

human has actually looked at the video. This research presents a method by which

an operator can also get a feel for what areas have been really searched, or in other

words, what areas are covered by the portion of video that has been reviewed by

human eyes.

The system can be placed in “audit” mode. In this mode, the operator reviews

video frames searching for potential points of interest. The frames may be presented

to the user in a prioritized order as described previously. As each frame is reviewed

it is tagged as having been reviewed by this user. As coverage maps are computed

in audit mode, this tag is taken into account. When computing the see-ability of a

point, instead of a single accumulator, two accumulators are used. If a frame has

been reviewed, it’s see-ability contribution is added to one accumulator. Otherwise

it is added to the other. When the operation is complete, every terrain point has two

values assigned to it. When rendering the coverage map, these values are inserted into

the red and blue channels of the pixels. This causes a blending effect. The more red

the area is the less review time it has undergone. Fewer of the frames that saw these

red areas have been human-reviewed. The more blue it is the more frames have been

reviewed. Purple areas are a good mix of both. Of course, the more transparent the

area on the map is (the background shows through) the lower the original see-ability

for that area.
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Figure 7.7: The see-ability coverage map is augmented with information about which
video frames have been reviewed by a human operator. Frames that have been re-
viewed cause the terrain they cover to be shaded blue. Frames that have not been
reviewed cause the terrain they cover to be shaded red. The purple areas have been
seen by both reviewed and unreviewed frames.

This same technique can be applied to the video prioritization. When com-

puting the frames to be represented in the video bar, the instantaneous see-ability

can be weighted by whether a frame has been reviewed or not. If it has been reviewed

its see-ability score is added to one accumulator. Otherwise it is added to the other

accumulator. They are used as the red and blue components of the color to be dis-

played on the bar. When engaging the minimum threshold during video playback,

only the red component needs to be considered. The accumulator corresponding to

the unreviewed areas must be over a certain threshold in order for that frame to be

played back.
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Chapter 8

Validation of See-ability

8.1 Validation of See-ability

Although the relationship between spatial resolution and human detection and recog-

nition is well established [54, 55], it is still worth evaluating the see-ability metric,

which is primarily based on resolution, in the context of the search task. To test the

validity of the instantaneous see-ability metric, we performed a user study designed

to measure how closely a user’s ability to detect detail matches what is predicted by

the metric.

8.1.1 Experiment Design

The experiment was set up as follows:

1. A virtual scene was created for an area that has been covered by a mUAV flight.

2. Individual mUAV poses were selected at random from the mUAV flight.

3. The virtual terrain was augmented by laying a marker in a randomly selected

location on the terrain surface.

4. The potential marker locations are limited to regions that were seen from the

selected mUAV pose.

5. Each marker was a 3D object in the scene approximately the size of a human

figure and colored with color typical of clothing.
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6. All markers were identical.

Each user was shown a series of images or “frames” created from the scene.

Each frame was dynamically generated by selecting a telemetry value from the list

of telemetry entries for the mUAV and recreating the camera pose within the virtual

world. The set of selected frames should therefore have been representative of the

entire flight. Every frame was guaranteed to have exactly one marker in it. The

frame was randomly designated as either a marker frame or a control frame. In a

marker frame the marker was rendered in its predefined position. In a control frame,

the marker was not rendered, even though it would have been visible had it been

rendered. The same set of frames was used for all subjects; however, the order in

which frames are presented to the user was random.

Each frame was shown to the user for two seconds. During the two seconds,

the user was tasked with scanning the scene and attempted to determine if a marker

was visible. If the user saw the marker in the scene they pressed the space bar to

indicate detection. Pressing the space bar a second time toggled their selection. This

was useful in the event of an accidental pressing. After two seconds the screen was

cleared to an image of white noise and the user was allowed to rest for one second.

During the rest period, the user was still able to press the space bar to toggle their

selection.

By using a simple binary selector, instead of point selecting with a mouse, the

interference due to user interface issues was minimized. The intent was to measure

whether the user was able to see the object, not whether they were able to select

it. By using a still frame, instead of a video segment where the target marker may

move around considerably, it was possible to pinpoint what distance, angles and other

factors contributed to see-ability. It also avoided the bias towards markers that would

have stayed in the frame for longer periods of time making them easier to spot. An

original intent was to use the internet to reach a greater number of test subjects.
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Although we ended up acquiring the necessary number of test subjects locally, a

frame-based approach would support this scenario in future tests that may require

a larger sample size. Detection rates in preliminary tests were low enough not to

merit an external distracter although this may also be useful in future work where

experiments do not yield low enough detection rates to provide usable information.

Once collected, the data was compared with instantaneous metrics as well as

the collective metrics. Each individual sub-metric can be analyzed independently to

look for errors in our assumptions. For the instantaneous metrics, the expectation was

that objects closer to the camera would average higher detection rates than objects

further from the camera and objects seen straight on would average higher rates than

objects seen at an angle. This is what the user study intended to determine. For

the collective metrics, we would also expect that areas covered more times by the

camera (and therefore by the test) would average higher detection rates than areas

covered fewer times. Similarly, we would expect that areas seen from multiple angles

would have higher detection rates than areas seen from the same angle more than

once. However, much of this would be due to the fact that in a normal video you

would have runs of frames that contained the target, giving the user more time to

locate it. Since this experiment was designed for the instantaneous case (one frame of

video per sample) we do not necessarily expect to see the same correlation with actual

detection rates for the cumulative metrics. The validity of the collective metrics will

remain largely anecdotal, dependant on the validity of the instantaneous metrics. As

a demonstration of this anecdotal relationship the measured detection rates of each

point were plotted on a map and compared to the complete see-ability map.

8.1.2 Experiment Implementation

In order to make the test as realistic as possible, an image of a real person was used

as the marker. We called this image the “hiker.” To place the hiker on the terrain we

91



Figure 8.1: The hiker image. The edges of the hiker are partially transparent to
create a smooth blend with the background to prevent strong edges from appearing
after rendering.

(a) A frame with no hiker. (b) A frame displaying the hiker.

Figure 8.2: Two video frames, one demonstrating the display of the hiker (b) vs.
another without a hiker present (a).

created a version with the edges smoothly alpha blended to transparency as shown

in Fig. 8.1. We then created a small polygon textured with the hiker image and

translated it to the marker point. We computed the average surface normals of all

the surrounding points and oriented the hiker to match. We raised the hiker’s polygon

off the terrain slightly to avoid submersion. Fig. 8.2(a) shows a normal frame without

the hiker. Fig. 8.2(b) shows a frame with the hiker rendered onto the terrain.

The most difficult challenge to overcome was the selection of valid and repre-

sentative pose information to construct the frames shown to the users. We wanted to
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select the telemetry pose information from actual mUAV telemetry rather than sim-

ply select convenient poses because we felt it would add relevance to the experiment.

To accomplish this we chose a particularly long and varied flight and iterated through

all poses. However, from initial experiments it was determined that a user could only

process about 100 frames or less before losing focus and becoming agitated, and as

a result, biasing the outcome. We therefore needed to keep the number of marker

frames to around fifty, with about that many more control frames. (In the end we

reduced the number of control frames to 30.) This presented the challenge of selecting

fifty frames and their corresponding marker positions that thoroughly cover the space

to be measured by the four see-ability metrics.

We began by throwing out the multiplicity of angles metric. We determined

that it would be too involved to work this metric into the study. This left three

metrics, distance, angle and multiplicity of viewings. The distance and angle metrics

could be covered by choosing three ranges of distances and three ranges of angles.

The ranges were chosen to cover best-case and worst-case scenarios as well as a some

in-between values. All nine combinations of distances and angles would be considered,

forming a three-by-three matrix. To generate this matrix we simply traversed the list

of poses, computing the possible marker positions that could be seen from each. For

each pose we eliminated marker positions lying too close to the view frustum edges to

avoid scenarios where the marker would be partially visible. We also eliminated from

consideration any marker locations that had already been used. We then scanned the

remaining marker positions for one that might fit an empty spot in the matrix. If

one was found it was added to the matrix and we would move to the next frame. If

no potential marker was found for that frame then we would skip it and move to the

next. The process was continued until all nine slots were full.

Choosing frames that would test the multiplicity of viewings metric was more

difficult. We arrived at a solution in which the previously described method of se-
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lecting frames and markers was repeated multiple times to generate three complete

sets of frames. The first set simply contained the nine combinations described previ-

ously. We dubbed this set “single” because it contained one of each distance/angle

combination. The second set was generated by running the algorithm two times but

constraining the second run to use the same markers that were selected by the first

run. We dubbed it “double,” naturally, because there were nine terrain points each

of which were seen from two different poses. The third set followed the same pattern,

requiring three runs of the algorithm. We dubbed it “triple,” of course, because it

contained nine points, each of which were seen from three distinct poses.

Theoretically this algorithm for generating poses would work perfectly assum-

ing an infinite data set to draw from. However, before we completed the “double” set

we started running into problems. Since our poses were being randomly selected from

actual telemetry, it was somewhat rare to find poses that would fit all the constraints

we imposed on them. For example, assume we have selected poses and their corre-

sponding marker points for the nine combinations and now we are going to begin the

second pass to select nine more using different telemetry but the same nine points.

We choose poses at random until we happen upon one that can see one of our nine

points. This frame, however, sees the point at a much different angle and distance

that doesn’t fit our constraints so we keep going. We realize that there might have

been a frame that could see that point from the proper distance and angle but we’ve

used this frame for some other data set and can’t reuse it. There just aren’t enough

targets that are visible from multiple poses.

Because of these limitations in our experimental design, in the end we were

forced to abandon the original intent of measuring actual detection rates in the cumu-

lative see-ability scenarios. Future studies that may be used to validate cumulative

versions of see-ability ought to take a different approach by using small video clips

rather than single, still images.
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(a) One User Response (b) Composite Map of All User Responses

Figure 8.3: One user’s responses mapped out geographically (left) vs. a composite
map of all user responses (right). The locations of the dots correspond to locations
of the target. Incorrect responses are shown in red for the single response. In the
composite image, the brighter the dot the more individuals correctly identified it.

The physical environment for the testing was strictly controlled by having all

users take the study in the same indoor location, at the same desk and using the same

computer and at the same time of day over a time period of less than a week. The

user experience was also controlled by providing written instructions and examples

to the user allowing the researchers to be absent throughout. In addition, a small

written survey was given to each user before taking the test. The survey requested

the user provide basic information about themselves including age, gender, area of

study/employment, and the use of any corrective eye-wear. In addition the study

asked the user to rank themselves on how often they used computers.

Every user response was saved to an XML file for further processing. Fig.

8.3 shows how these responses were mapped out. In the image on the left a single

user’s responses are shown on a map. The dots correspond to the physical locations

of the targets and are colored red where the user failed to detect them. On the right,

the map shows the composite scores of all users. The brighter the dot the more

individuals correctly identified it. A number of dots are too close to distinguish.
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8.1.3 Experiment Findings and Discussion

A number of interesting results came out of the study. The users quickly found that

the viewing angle of the LCD monitor made a difference in how well they could

discern the marker. The background of the images was mostly earth tones and greens

while the marker was an image of a hiker wearing blue-jeans and a red jacket. By

moving the head to the right or left the users discovered that the monitor’s contrast

changed, causing the marker to stand out. This resulted in higher detection rates

than observed in initial trials.

A second, more influential finding was the role the terrain color played in

detection. The terrain imagery consisted of vegetation, which was dark green in

color, and earth, a light tan. The marker was much more difficult to locate when

placed over vegetation than when placed over vegetation-free areas. To help account

for this in the results, a fifth metric was added based on the background color behind

the marker. This metric was a binary function with green backgrounds mapped to 0

and lighter tan backgrounds mapped to 1.

A third finding was that the control images did not come into play as much as

expected. In fact, only one person mistakenly claimed to have detected a hiker in a

control image, and that person did it twice. Therefore we did not have to throw out

any data or otherwise account for “cheaters.”

The resulting data showed a 0.56 correlation coefficient with high statistical

significance (p < 0.0001) between the instantaneous see-ability prediction (distance

and angle taken together) and the measured detection rates. This represents a mod-

erately strong correlation, especially when considering the multiple other factors that

can affect detection rates mentioned previously. The results also showed a strictly

proportional relationship between the see-ability prediction and measured detection

rates, with a negligible y-intercept on the fitted linear relationship.
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As an aside, the data did not show a strong bias toward or against gender or

age. It did, however, show a moderate bias towards those who were associated with a

technical field or who used computers often and a bias against those who used some

form of corrective eye-wear. Table 8.1 shows these results.

Table 8.1: Demographic Statistics for User Study Participants

Category Demographic Detection Rate

Gender
Female 65.85%
Male 68.49%

Age
Age ≤ 23 65.72%
Age > 23 69.34%

Tech Background
Technical 73.27%

Nontechnical 64.59%

Eye-wear

Glasses 68.87%
Not Glasses 66.75%

Contacts 61.99%
Not Contacts 69.96%

Eye-wear 63.02%
No Eye-wear 71.32%
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Chapter 9

Conclusion

The primary goal of this research is to develop, implement, test, and use the

see-ability metric. The see-ability metric has been observed in a user study, if even in

a simplified form, to predict how well areas of terrain can be seen from video with a

moderately high level of confidence. The metric incorporates a number of components

such as spatial resolution, the number of times a point is seen from video and the

uniqueness of the viewings. It is fast enough to be computed as telemetry streams

along with video, yet flexible enough to be augmented with a number of additional

components.

The secondary goal of this research is to develop a system in which see-ability

can be used to augment the search process and to provide a number of supporting

tools to make this a viable search technique. We were able to successfully develop

this system and tailor it to the needs of a mUAV, video assisted search process. Our

system aids in situation awareness by projecting video frames from a mUAV and geo-

registering them to rendered reference ortho-imagery mapped to a three-dimensional

polygonal terrain model. This creates a binding between a 2D display of the current

video frame and the 3D display of the terrain. The system also allows see-ability

and the related coverage maps to be generated in “real time” along with incoming

video and telemetry and overlayed onto the terrain model. Our system allows for

novel views of the video data and out-of-sequence viewing to improve video searching

accuracy. It uses see-ability to prioritize and filter the video review process improving
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efficiency and decreasing search time. Finally, it provides an interface for marking

and communicating points of interest on the ground so they can be cataloged and

retrieved later. All of these tools combine to create a potentially powerful and effective

solution for mUAV assisted search and rescue operations.
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