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ABSTRACT

SIMPLE, SECURE, SELECTIVE DELEGATION IN ONLINE

IDENTITY SYSTEMS

Bryant Cutler

Department of Computer Science

Master of Science

The ability to delegate privileges to others is so important to users of online

identity systems that users create ad hoc delegation systems by sharing authentica-

tion credentials if no other easy delegation mechanism is available. With the rise

of internet-scale relationship-based single sign-on protocols like OpenID, the secu-

rity risks of password sharing are unacceptable. We therefore propose SimpleAuth,

a simple modification to relationship-based authentication protocols that gives users

a secure way to selectively delegate subsets of their privileges, making identity sys-

tems more flexible and increasing user security. We also present a proof-of-concept

implementation of the SimpleAuth pattern using the sSRP authentication protocol

to demonstrate the generality of our technique.
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Chapter 1

Introduction

As use of the world-wide web becomes more tightly integrated into the daily

lives of people around the world, online identity systems become increasingly impor-

tant. Online identity to date has been ad hoc, site-specific, and generally insecure.

Recently, new online identity systems and authentication protocols including OpenID

[9] and Identity Metasystem [8] have offered more workable solutions that are user-

centric rather than site-specific. Unfortunately, these identity systems have some

severe limitations relative to real-world identity; one limitation is that they do not

include explicit support for delegation.

The primary benefit of real-world delegation is increased flexibility. Delegation

allows users to accomplish tasks in a more efficient or convenient way than would

otherwise be possible. For example, a manager might delegate responsibility for an

equipment purchase to an assistant, allowing him to use a company’s account. In this

way, the manager ensures the completion of a task without doing the work himself,

and without the additional cost of maintaining a separate purchasing account for each

employee.

The increased convenience and efficiency of delegation are not just desirable

qualities: they are vital to the success of identity systems. In practice, users will

willingly share authentication credentials - even at the risk of security breaches - to

delegate to coworkers, friends and family members. This security problem is exacer-

bated by single sign-on systems, in which a single credential provides access to many
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resources. Delegation will occur whether officially sanctioned or not; thus, explicitly

adding secure delegation capabilities to an identity system will increase users’ security

by allowing them to comply with the “principle of least privilege” [10]. Restriction of

delegate privileges and elimination of password sharing reduces the risk of delegating

by limiting the damage a malicious or incompetent delegate can inflict.

This privilege control is especially important because the web offers users new

delegation scenarios where the normal rules of human conduct may not apply. For

example, when a professor delegates access to his email account to a secretary by

sharing his password, there is a strong social disincentive for the secretary to misuse

the professor’s privileges. Web users often share passwords with friends and family

members with no ill effects. However, if a user wishes to delegate access to the

same private data to a computer system or service rather than a person, there is no

equivalent basis for trust.

Adoption of authentication protocols that include delegation would make it

easier for users to delegate to other users and services, without compromising their

credentials or giving untrustworthy delegates too many privileges. Example use cases

include:

• Delegation to other users In the simplest case, a delegation-enabled authentica-

tion protocol allows users to share their privileges and private data with other

users; the primary advantage over current ad hoc delegation mechanisms is the

cessation of password sharing. For example, a student might delegate access

to his online medical records to his parents, without sharing the single sign-on

credential he uses to access a social network.

• Multi-step delegation Users may give delegates not only user privileges, but the

ability to further delegate a subset of those user privileges to others. This en-

ables the use of a dynamic “trickle-down” user-mediated access control model

in situations where more static, role-based access control is inappropriate. For
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example, the deans of the colleges within a university might each delegate dif-

ferent privileges to their assistants, reflecting differing managerial styles; those

assistant deans may in turn grant different privileges to each department chair

they supervise.

• Self-delegation Users can protect themselves from insecure computing environ-

ments by using pseudonymous personas to whom they have temporarily del-

egated limited privileges. This decreases user risk: even if the pseudonym is

compromised, its time or usage limits and restricted privileges will reduce the

damage a successful attacker can cause. For example, a business traveler might

arrange a one-time-use pseudonym with read-only access to his webmail, so that

he can safely check his email from a cybercafe.

• Delegation to a service Users can delegate privileges to online services as well

as other users, making use of “mashup” services more secure. For example, a

user might give a mashup access to his webmail contact list without giving it

the ability to send email from his address.

With the goal of safely making online services more convenient and efficient,

we propose a new pattern called SimpleAuth. SimpleAuth is a simple modification to

relationship-based authentication protocols that allows users to selectively delegate

their privileges, making identity systems more flexible and increasing user security.
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Chapter 2

Delegation Concepts

2.1 Taxonomy and Terminology

Online, identity begins with a relying party, or RP , which represents the entity (for

example, a web application) that provides a service to users. A user is a person with

access to the RP’s functionality. Users are represented by digital identifiers (a single

user may have several identifiers for use in different contexts) which are managed

through an identity system, and verified by an authentication protocol. Recent identity

systems and their included authentication protocols strive to be user-centric; they

give users (rather than administrators) as much control as possible over the use of

user identifiers and personal data.

Bhargav-Spantzel et al. proposed a taxonomy for user-centric systems with a

division between credential- and relationship-based identity systems [4]. Credential-

based systems rely on long-lived, hard-to-forge, securely-stored credentials like keys

and certificates, typically managed by the user with a smart client. These systems

theoretically work offline; however, their security against compromised credentials

depends on periodic consultation of online, up-to-date revocation lists.

In contrast, authentication in relationship-based systems is based on proof of a

relationship between a user and an online verifying entity called an identity provider,

or IdP. IdPs must be online and available to participate in every authentication

transaction. This introduces a single point of failure to the system, but it makes
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revocation trivial and allows users access to their identities from any web-connected

device.

While some protocols like Identity Metasystem [8] are hybrids, with both

long-lived credentials and online identity providers, most identity systems and au-

thentication protocols fall firmly into just one of these categories. Traditional pass-

word authentication and systems based on the public key infrastructure (PKI) are

credential-based. Relationship-based systems, which are the basis for SimpleAuth, in-

clude OpenID [9] (used in our earlier work [2]) and the sSRP protocol [5] (described

in Section 4.2).

The focus of our work has been to add delegation capabilities to these

relationship-based protocols. Delegation occurs when a user allows a service, an

application, or another person (a delegate) to use the privileges the user has been

granted by an RP. Delegation is most useful when a delegate needs to use privileges

that the RP has not granted him. Delegation makes a security system’s evaluation of

delegates’ trustworthiness more flexible by allowing trusted users to determine which

privileges should be granted to delegates. This increased flexibility is so important

to users that they often create insecure ad-hoc techniques to work around security

policies that restrict their ability to delegate.

2.2 Security

Delegation systems are secure when only users’ authorized delegates have access to

the delegated user privileges. In online systems, this security is based on the following:

5



• The set of privileges desired by the user or delegate must be identified.

• The intent of the user to delegate those privileges must be verified.

• The delegate must satisfy delegation criteria before exercising the user’s privi-

leges.

The delegation criteria for current authorization systems almost always include

authentication of the user or delegate requesting access. To satisfy this criterion,

users provide an identifier and then use some associated secret to prove “ownership”

of that identifier. The secret information might be a password, a private key, or a

secret established via some handshaking protocol. In OpenID, for example, the secret

used to verify a user’s identifier claim is generated via a Diffie-Helman key exchange

during “associate” transaction between an RP and the user’s IdP, and unlocked by

the user’s authentication to the IdP; its exclusivity to the user’s identifier is based on

the user’s unique OpenID URI and an honest DNS [9].

2.3 Selectivity

In many ad-hoc delegation systems, delegates are able to exercise exactly the same set

of privileges available to delegating users. This full delegation is simple to implement,

and it can be very useful when users have a strong trust relationship with their

delegates. In other situations, the lack of privilege restrictions in full delegation is

hazardous because misbehaving or inept delegates may take actions the delegating

user would not approve. For example, web applications users’ delegates may have

the ability to highjack user accounts, change personalization settings, or permanently

delete user data.

One common form of ad-hoc full delegation is password sharing, in which

users simply give their secret authentication credentials to others. Password sharing

is uniformly condemned by security researchers because of the risks of full delega-
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tion, but it is often the only delegation mechanism available to users. The only

widely-used risk mitigation technique has been the use of multiple personas (different

identifier/password combinations), to partition user privileges in case of a breach of

security. While users are currently willing to trade increased risk for greater flexibility

in this way, the use of new single sign-on (SSO) systems decreases the granularity of

delegation possible. Users who share OpenID passwords, for example, are in effect

granting their delegates full access on every site that uses OpenID authentication.

The high risk of full delegation in SSO systems motivates the development of more

capable delegation mechanisms.

Selective delegation is the delegation of only a subset of a user’s privileges

to others. Users increase their security when they conform to the “principle of least

privilege” [10] and selectively delegate only those privileges delegates need. For exam-

ple, delegating privileges on at only a single RP is more secure than giving delegates

access to SSO credentials that work with any RP. Selectively delegating the various

privileges provided by a single RP necessitates more complex transactions between

users and RPs; authentication protocols with built-in selective delegation must at a

minimum include a communication channel for identification of the subset of user

privileges to be delegated. This results in a more complicated identity protocol. One

alternative is an increase in the granularity of RP services. For example, separate,

selective delegation of the “read” and “send” privileges in an email system may be

enabled either by a selective delegation protocol communicating with a single email

service, or by using a full delegation mechanism to control access to two separate

service endpoints. In this paper, we focus on the built-in selective delegation case,

reserving analysis of a high-granularity full delegation system for future work.
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2.4 Simplicity

In addition to the “principle of least privilege,” Saltzer et al. encourage the security

design principle of simplicity, both for reduction of implementation errors (“econ-

omy of mechanism”) and usability (“psychological acceptability”) [10]. In keeping

with these principles, delegation mechanisms should be simple to implement and

minimally impact performance. In addition, the semantics of delegation mechanisms

should match “real-world” delegation scenarios as closely as possible, so that users

can understand and trust them. Cryptography-centric approaches, which do not se-

mantically mirror human interactions, have proven too difficult for most users to

understand, trust, or use [15].
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Chapter 3

SimpleAuth

3.1 Metaprotocol

SimpleAuth is a metaprotocol based on previous work [2] extending OpenID to sup-

port delegation. It is not a standalone protocol; instead, it is a simple pattern for

adding selective delegation support to relationship-based identity systems. Its con-

crete implementations take the form of extensions or additions to the messages ex-

changed during online authentication transactions.

At a high level, SimpleAuth requires just four changes to a relationship-based

identity system:

• A series of identifiers is used instead of a single identifier.

• Delegators advertise user-specific permissions lists.

• Delegation policy is set by users and enforced by their identity providers.

• Delegate privileges are determined by delegation lists.

The first is that rather than presenting a single identifier for authentication,

delegates provide a series of identifiers that represent the chain of users who delegated

the desired privileges, starting with a user who has been granted privileges by the RP

and ending with the delegate’s own identifier. This series of identifiers corresponds to

a delegation chain of IdPs through which authentication requests and responses will

be passed.
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Second, an RP advertises a permissions list, in which each item in the list

represents a role, privilege, or set of privileges available to the user. Whenever pos-

sible this information is included in the “outbound” authentication requests to the

user’s IdP. The advertised permissions list is specific to the RP; applications in the

same domain may therefore choose to implement different privilege models. Ad-

ditionally, RPs may customize the permissions list advertised based on the user’s

provided identifier; for example, a photo sharing site might choose to provide more

delegable permissions (representing additional features) to paying users with “pro”

accounts than to users on free trial accounts. Permissions lists correspond to the lists

of boolean authorization values typically stored in a user’s session object in current

web applications.

Third, the authentication protocol funnels authentication requests carrying

permissions lists to the user’s IdP, where the user has specified delegation policy

based on these permissions lists. A delegation policy authorizes the IdP to advertise

a user-determined subset of the user’s privileges to the IdP of a delegate. In effect,

the delegating user’s IdP acts as an RP, providing a service to delegates that authen-

ticates them to the original RP. IdPs and RPs use the same mechanism to transmit

permissions lists; this imposes a simple, uniform interface on user and delegate IdPs.

It is this uniform interface that allows delegation chains to contain an arbitrarily long

series of delegators.

The final modification to the identity system is the addition of delegation

lists to “inbound” authentication responses. These are lists of the privileges actually

desired by a user or delegate. As the authentication response works its way back

along the delegation chain, each IdP checks to make sure that the delegation list it

forwards towards the RP is compliant with its user’s delegation policy. This privilege

enforcement operation is a simple set intersection between the delegation list and the

user’s permissions list.
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3.2 Simplicity and Security

SimpleAuth selective delegation is simple and efficient. Few modifications to the

authentication protocol are required. Bandwidth usage is only slightly increased,

since only a small site-specific list is transmitted through the chain, just once per site

session. Performance impact is minimized by piggybacking the delegation information

on authentication requests, avoiding the delays of additional network traffic.

SimpleAuth is also simple for users to understand. The metaprotocol corre-

sponds closely to the common real-world human interaction pattern manifested in

school permission slips, doctors’ prescriptions, and work and purchase orders. In ad-

dition, users will understand user- and site-specific permissions models (enabled by

SimpleAuth) better than they would application privileges expressed using a fixed set

of permissions like UNIX’s read, write and execute permissions.

SimpleAuth also fulfills the requirements mentioned in Section 2.2 for a secure

delegation system. The set of privileges desired is explicitly represented by the delega-

tion list returned to the RP. The delegating users’ intent is manifest in the delegation

policy that allows the users’ IdPs to pass authentication messages along the delega-

tion chain. Finally, the authorization criteria in SimpleAuth are fixed: delegates must

verify their identities, appear in the user’s predefined delegation policy, and request

privileges allowed by that policy. The first criterion is fulfilled by the authentication

request/response carrying the delegation information. The second and third criteria

are fulfilled when the user’s IdP verifies the applicable policy information before it

forwards the delegate’s authentication response and delegation list up the chain.

3.3 Approach

Policy-based access control in network design has been widely described in terms of

four necessary components: a policy management tool, policy repository, and policy
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decision point (typically bound together as a policy engine), and a policy enforcement

point [13]. This same taxonomy applies to any access control method based on poli-

cies. Since SimpleAuth encourages RPs to maintain a site-specific permissions model

(which requires a customized policy enforcement point), it is tempting to suggest

that the application should likewise provide the other three components. Indeed, re-

cent delegation-enabled web applications like Google Documents1 implement all the

components of policy-based access control within a single application. This approach

gives RPs greater control over how users make delegation decisions and may allow an

RP to guarantee the performance and reliability of the policy engine.

While RPs may desire this high level of control, there are significant disadvan-

tages to developing and maintaining an internal delegation solution. When an RP

implements a delegation mechanism, the RP must either accept delegates’ single sign-

on credentials or else provision local accounts for delegates. If local accounts are used,

even delegates who use SSO systems are forced into managing multiple site-specific

identifiers. If the RP accepts SSO logins, a local “handle” for persistent delegation

policy must still be established. This increases the user management burden on the

RP, decreasing scalability, and means that revoking a delegate’s privileges on many

RPs necessitates a separate user interaction with each RP. Spreading delegation and

revocation functionality across many RPs forces users to learn multiple user interfaces;

even requiring users remember to manage delegation information with multiple RPs

unacceptably increases users’ cognitive burden. A plurality of delegation interfaces

also makes users more vulnerable to phishing attacks.

Externalizing the policy engine, as in SimpleAuth, addresses these issues.

Pushing the policy decision point out to user IdPs allows RPs to store only privileged

users’ permissions models, and not delegates’. No site-specific identifiers, credentials,

1http://docs.google.com
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or user interfaces are required. Users can delegate or revoke a delegate’s privileges on

many RPs simultaneously.

More importantly, SimpleAuth gives responsibility for implementing delega-

tion to identity providers, who have a strong economic incentive to differentiate their

services with added functionality and refined usability. Delegation is important as a

component of a successful user-centric identity system, but it is not part of the “core

competency” of most RPs. Augmenting a widely-used authentication protocol with

selective delegation allows this feature to be used even with RPs whose implementors

do not have the resources or expertise to create an effective delegation system.

3.4 Validation

Relationship-based identity systems by definition share a single trait: their reliance

on authentication-time communication between an RP and a user’s IdP. Accordingly,

any metaprotocol applicable to relationship-based identity systems in general must

rely solely upon this property. SimpleAuth therefore cannot be used “out of the

box” with all relationship-based protocols because it requires a two-way means of

communicating delegation information; indeed, it is trivial to modify a relationship-

based protocol to be incompatible with SimpleAuth by blocking the communication

of any information besides authentication messages between RPs and IdPs. We be-

lieve, however, that it is similarly simple to modify any relationship-based protocol

to support SimpleAuth by enabling this communication channel.

To verify that SimpleAuth generalizes across multiple authentication proto-

cols, we have implemented a SimpleAuth extension to the Surrogate Secure Remote

Password protocol (sSRP). The SimplePermissions OpenID extension [2] is equiva-

lent to a SimpleAuth implementation for OpenID. Because OpenID and sSRP have

such different communication flows, as shown in Figure 3.1, these SimpleAuth im-

13



Figure 3.1: Differing OpenID and sSRP message flows

plementations, considered together, are significant evidence that the metaprotocol is

applicable to relationship-based authentication protocols in general.
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Chapter 4

SimpleAuth Implementations

4.1 OpenID SimpleAuth implementation

OpenID authentication protocol

OpenID [9] is a relationship-based identity system designed originally to provide SSO

capabilities to weblogs. When a user submits his identifier (a URL or XRI) to an

RP, the RP determines the URL of the user’s IdP through a process called Yadis

discovery. The user’s browser is then redirected to IdP with a checkid setup or

checkid immediate message. The user then logs in to the IdP, using whatever au-

thentication method the IdP requires. After authentication, the user is redirected to

the RP with a signed id res message confirming the user’s claimed identifier. The

signature is checked using either a session key previously established in an associate

message, or a confirming check authentication message.

SimpleAuth modifications to OpenID

SimplePermissions [2], a selective delegation extension to OpenID, was the predecessor

of SimpleAuth and is equivalent to a OpenID-based SimpleAuth implementation. A

typical use of the modified protocol is shown in Figure 4.1. The OpenID protocol has

been enhanced with the four SimpleAuth modifications:

• The delegate’s client submits the OpenID URL of the first user in the delegation

chain to the RP. When the client is redirected to that user’s IdP, it submits

15



Figure 4.1: OpenID with SimpleAuth extensions

the next OpenID URL in the chain, and so on, until it authenticates to the

delegate’s own IdP.

• Permissions lists are included in each checkid immediate or checkid setup

message. The privileges included in the advertised permissions list at each

stage are based on the delegation policy the IdP’s user has established for the

delegate in question. Privileges are expressed as extension attributes in the

openid.permissions.* namespace.

• A delegation list is returned from the IdPs with each id res message. When an

IdP receives an id res response, the included set of permissions is intersected

with the set of permissions allowed by the user’s delegation policy, to prevent

privilege escalation attacks.

• Creation of delegation policy is not shown in the figure, since the specific syntax,

format, and semantics used to express the user’s policy are outside the scope of

the SimpleAuth metaprotocol.
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Note that the OpenID protocol itself is unchanged (adding attributes to

OpenID messages is allowed by the protocol); the changes are all made to the IdP

and the delegate client.

4.2 sSRP authentication protocol

The Surrogate Secure Remote Password protocol (sSRP) is a relationship-based au-

thentication protocol developed for use in wireless internet access points [5]. It is

based on the Secure Password Protocol (SRP) [19, 17], which has been standard-

ized as RFCs 2945 [16] and 5054 [18]. SRP is a zero-knowledge proof-of-knowledge

(ZKPK) protocol, meaning that the user’s secret, a password, is never shared with

anyone; even the entity authenticating the user receives only a “password verifier”

based on a salted hash of the password. SRP has several desirable properties:

• SRP’s ZKPK approach means that no information useful to attackers is ever

transmitted across the network, making SRP effectively immune to several

classes of attacks that have been problematic in other protocols. For exam-

ple, the session secret created during authentication is not vulnerable to “man

in the middle” attacks, so SRP authentication messages can be safely proxied

through untrusted third parties.

• SRP is resistant to phishing attacks, because the user’s password is never sent

across the network. In addition, SRP authentication allows mutual authentica-

tion; the user can confirm the identity of the authenticating party based on its

posession of the correct password verifier.

• During authentication transactions SRP uses the minimum number of messages

necessary to provide replay prevention and mutual authentication (one session

parameter exchange and one authentication exchange per authentication).

17



Figure 4.2: Basic sSRP protocol

sSRP is a modification of the original SRP protocol. Unlike SRP (which

requires the RP to authenticate users with a password verifier), sSRP is a relationship-

based system that allows users to authenticate to RPs using an identity provider.

This is done by making the RP a proxy between a user and his identity provider, and

adding token splitting to verify that authentication has taken place. Using the RP as

a proxy is safe because no secret information is exposed to any “man in the middle”

during authentication.

Just as in SRP, sSRP has two distinct phases (shown in Figure 4.2). In the

first phase, the user submits his identifier to the RP. User identifiers are globally

unique and discoverable, meaning that the identifier can be used to find the location

of the user’s IdP. Examples of discoverable identifiers include URLs and XRIs [14]

in OpenID, or email addresses as in SAW [12]. After the RP finds the user IdP’s

sSRP endpoint, it passes on the unmodified identifier to the user’s IdP. The response

includes the large prime n, safe root g, and salt s associated with the IdP’s password

verifier, as well as a public message B based on a new random session secret b. The

RP forwards the parameters unchanged to the user.
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In the authentication phase of the protocol, the user client chooses its own

ephemeral secret a and creates a public message A from it. Only someone with access

to A, B, and the correct password verifier (based on the password, n, g, and s) can

compute the new shared session secret S. To prove possession of the password, the

user sends A along with a message M1 signed with S to the RP.

When the RP receives A and M1, it generates a session key for the user. This

key is split into two halves, KU and KS. KS is sent along with M1 and A to the user’s

IdP. The IdP uses A to create S, which it uses to verify M1. If verification succeeds,

the IdP uses S to sign M2 and to encrypt KS, which are returned to the RP.

The RP adds KU to the authentication response and forwards it on to the

user. The user verifies M2 (if mutual authentication is desired) and then uses S to

decrypt KS. Finally, the user submits a proof of its possession of KU and KS to the

RP. Both halves of the session key are necessary to prove that authentication has

occurred.

4.3 SimpleAuth modifications to sSRP

SimpleAuth is a generalization of earlier work using OpenID authentication [2]. Since

a working OpenI-based implementation of SimpleAuth already exists, the primary

purpose of our work has been the extension of the metaprotocol to handle other

relationship-based systems. sSRP was chosen as for our proof-of-generality imple-

mentation not only because of its desirable security features, but also because its

message flow differs significantly from OpenID’s. If SimpleAuth extensions can be

made to protocols as different as OpenID and sSRP, it argues for the applicability of

SimpleAuth to all relationship-based authentication methods.

A SimpleAuth-augmented version of the sSRP protocol is shown in Figure 4.3.

The basic sSRP protocol has been enhanced with the four SimpleAuth modifications:
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Figure 4.3: sSRP with SimpleAuth extensions

• The user submits a chain of identifiers, I, instead of a single identifier. At each

step in the delegation chain, the RP or IdP involved dynamically discovers the

sSRP endpoint of the next IdP in the chain.

• Permissions lists are sent from the RP through each IdP in the delegation chain.

The privileges included in the advertised permissions list at each stage are

based on the delegation policy the IdP’s user has established for the delegate

in question.

• Delegation lists are collected from the IdPs during the return leg of the authen-

tication phase. At each stage, the set of permissions requested by a delegate is

intersected with the set of permissions allowed by the user’s delegation policy,

to prevent privilege escalation attacks.

• Creation of delegation policy is not shown in the figure, since the specific syntax,

format, and semantics used to express the user’s policy are outside the scope of

the SimpleAuth metaprotocol.
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4.4 sSRP-specific protocol issues

In this section we examine the modifications to the sSRP protocol made during our

implementation which are not a part of the generalized SimpleAuth metaprotocol.

Discoverable identifiers

Rather than create a new identifier scheme, our sSRP-based SimpleAuth implemen-

tation uses a pluggable module to allow use of several types of discoverable user

identifier. Discoverable identifiers like OpenID URLs and email addresses are easy

for users to remember and type. Also, while the SimpleAuth pattern does not man-

date that user identifiers be discoverable, requiring discoverability greatly simplifies

implementation of the RP and IDP SimpleAuth modules: authentication messages

include the delegation chain as a simple list of identifiers instead of carefully main-

taining separate message routing information, and because the identifiers are public

information, delegation chains of identifiers need not necessarily be stored or trans-

mitted securely.

Additionally, identifiers with an indirect discovery process protect users from

identity provider lock-in (which was one the major drawbacks of previous attempts

at internet-scale identity systems including Microsoft Passport). In OpenID, this

is done by separating a user’s “ownership” of an identifier from responsibility for

authenticating that user: instead of pointing directly at an authentication service,

a user’s OpenID URL points to a pointer to the user’s chosen IdP. The OpenID

community refers to this technique, confusingly, as “delegation.”

This outsourcing of authentication responsibilities is important for two rea-

sons. First, it is unrealistic to require each user of an internet-scale identity system

to run their own IdP. This technique allows authentication services to be provided

by knowledgeable security professionals, rather than untrained users. Secondly, it

provides a users some protection against misbehaving IdPs: if an identity provider
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abuses its trusted position, users can point their identifiers at a more trustworthy

IdP. For both these reasons, and for the user’s convenience when submitting the del-

egation chain, we require that each identifier in the chain be globally unique and

discoverable. Note that we do not require that the identifiers share the same local

namespace: theoretically, a delegation chain might consist of a mix of email addresses,

XRIs, OpenIDs, or any other discoverable identifier type.

Figure 4.4: Problematic delegation chains

Shifting identifiers

While implementing the protocol, several identifier chain management issues became

apparent, as shown in Figure 4.4. An IdP in the delegation chain must know where

in the chain it is, so that it can correctly send sSRP messages to the next IdP in line.

Although it is unlikely, nothing prevents the creation of a circular delegation - that is,

a delegation chain in which Alice is delegated privileges by Bob which were originally

delegated to him by Alice. When Alice authenticates, how can Alice’s IdP determine

whether to return a delegation list to Bob’s IdP or to the RP? A more common

situation might be multiple delegation, in which a person is delegated privileges by
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two different users (or series of users) who are themselves both delegates of a single

user. The problem corresponds to the choice among multiple paths between two

nodes in a directed graph: which path should the delegate’s IdP take?

While this problem was never satisfactorily resolved in our OpenID imple-

mentation, the provision of the entire delegation list to each of the intermediate IdPs

in the sSRP version provides a convenient solution. The identifiers of the delegation

chain are actually kept in two lists, one representing the logical delegate and the other

representing the logical delegator. For example, if Alice has delegated her privileges

at “foo.com” to Bob, who has further delegated to Charles, the delegator would be

foo.com while the delegate would be Alice > Bob > Charles (> is used because it

does not appear in valid urls or email addresses). When Alice’s IdP receives a message

with these identifier strings, it shifts the identifiers; the delegator becomes foo.com

> Alice while the delegate is Bob > Charles. This makes the correct route through

the delegation “graph” unambiguous. For example, Charles’s IdP can easily differ-

entiate between delegators foo.com > Alice and foo.com > Alice > Bob, even if

both Alice and Bob have delegated him Alice’s privileges.

Delegation policy features

One of the four key components of SimpleAuth is the delegation policy that users

create at their IdPs. However, the SimpleAuh metaprotocol intentionally does not

define the form that these policies take, or the interface by which users create them.

While simple delegation policies may be simply a delegate identifier paired with a list

of permissions, policies could also be expressed with a rule or policy language like

XACML [7], be based on external data sources such as reputation systems, or could

be otherwise computed rather than set explicitly by the user for each delegate.

One important advantage of relataionship-based systems over credential-based

systems is that revocation is simple. In credential-based systems, the canonical solu-

23



tion to the revocation problem is the creation and frequent consultation of revocation

lists: in effect, this negates the protocols’ offline capabilities. IdPs in SimpleAuth-

enabled systems can revoke delegates’ privileges at any time (at least at session gran-

ularity) by refusing to authenticate them.

An interesting consequence is that it becomes trivial to put time or usage

limits on delegations. For example, a single time stamp or usage counter can be used

in a delegation policy record to limit use of that delegation to a specific range of

dates, a specific time of the day, or to a maximum number of uses (including one-

time-use delegation). These meta-restrictions are simply additional features an IdP

may choose to provide, and are outside the scope of the SimpleAuth protocol.

Additional restrictions may be built into delegation policies when SimpleAuth

is implemented in a way that exposes the entire delegation chain to each IdP in

the chain. For example, a user may decide to give privileges to a delegate but not

allow them to further delegate the permissions, or to forbid delegates authenticated

by identity providers the user distrusts. Since our implementation is a prototype

system designed only to demonstrate the SimpleAuth metaprotocol, delegation policy

is managed as a set of (user, delegate, privilege) tuples, with none of these

more advanced features.

Defense against delegate hopping

One problem unique to multi-step delegation is that a malicious IdP could try to skip

over its predecessors in the delegation chain, as shown in Figure 4.5. This is only

possible in systems like our sSRP implementation, where each IdP sees the entire

delegation chain but intermediate IdPs’ modifications to the message do not affect the

authentication of the delegate (only the delegate’s authorization). This vulnerability

would occur only in multi-step delegation, and would only allow privilege escalation

by partially-privileged delegates running their own IdPs.
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Figure 4.5: Delegate-hopping attack

To prevent this attack, each identity provider in the delegation chain needs as-

surance that the IdP returning a delegation list is the same IdP to which it previously

sent the user’s permissions list, i.e. that the delegation chain has been followed, step-

by-step, in both directions. In our implementation, this is achieved by appending a

random handle to every sSRP message. When an IdP receives a request-type message,

it stores the message handle and new random handle locally, and replaces the handle

in the message with its new handle. On receipt of a response-type message, the IdP

checks to make sure that the message handle matches the message handle sent before

processing, and includes the original message handle it received in its response. In a

TLS-encrypted transaction, this gives very strong assurance that the responding IdP

is not an impersonator. Even using non-confidential messages, however, it provides

reasonably strong protection, since it is unlikely that first, that a malicious user would

be delegated to initially, and secondly, that such a malicious user would have access

to the message traffic (and thus, the appropriate handle) between a pair of arbitrary

internet hosts (the other IdPs).
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Asynchrony

For scalability reasons, it is desirable to make the protocol as asynchronous and

stateless as possible. Together, these two properties minimize the negative impact of

sending multiple messages over the network during each authentication transaction.

This goal meshes nicely with the delegate-hopping prevention handles mentioned

previously in this section. Because each hop of each message already has a unique

handle, message handles can be used as keys to encapsulate all of a message’s state

in an associative datastore. When a mid-chain IdP receives a SimpleAuth message,

it simply retrieves the message state, consults the appropriate policy, and sends the

message on. The simplicity of the SimpleAuth IdP module is important because a

simple implementation can be inspected for flaws and tuned for performance. IdPs

compete not only on features but on security and performance, and any new feature

that detracts too greatly from the IdP’s efficiency or auditability will face significant

barriers to adoption.

4.5 sSRP SimpleAuth implementation

We wrote our proof-of-concept implementation in Python as a single module con-

taining Client, IdPServer and RPServer classes. These classes provide an external

API, so that they can be embedded for internal use by existing web applications.

Additionally, each class can run as a server (based on the Python standard library’s

BaseHTTPServer) during testing and development.

We also created a WebKit1-based demonstration browser using the PyObjC2

bridge to connect to the SimpleAuth Client class. The browser features a “Login”

button as an anti-phishing measure (as described in Section 4.6), and automatic

detection of SimpleAuth-enabled sites’ login endpoints by detecting HTML <form>

1http://webkit.org
2http://pyobjc.sourceforge.net/
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Figure 4.6: Demonstration SimpleAuth-enabled browser

tags marked up with the “simpleauth-login” class. On SimpleAuth enabled sites,

the login button activates, allowing the user to enter an identifier and password, as

shown in Figure 4.6. Acceptable identifiers include OpenID URLs and pseudo-email

addresses (username@idp).

Our final source code, including the PyObjC UI delegate, command line client,

and the IdP and RP web servers with demonstration web applications (including

HTML and CSS) is only nine hundred lines of Python script, and was written without

prior knowledge of Objective C or any of the various Python libraries involved. This

relative ease of implementation is strong evidence of the SimpleAuth pattern’s sim-

plicity, and demonstrates that this technology could be easily integrated into browser

and web application software.
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4.6 sSRP threat analysis

Direct attacks

Direct attacks are those that attempt to computationally “crack” a user’s credentials.

In sSRP, a user’s credential is his password. Because no information that can be

used to derive the password is ever transmitted across the network, sSRP passwords

are immune from direct attacks by untrusted third parties. The only party that can

attempt an offline attack to compromise a user’s credential is that user’s IdP, and only

then by means of a dictionary-based attempts to find a hash collision. Attacks against

user password verifiers in this way are unlikely; in a relationship-based protocol the

IdP is already trusted to assert its users’ identities, and must therefore be trusted both

to keep users’ password verifiers secret and not to attack their own users’ credentials.

Phishing and man-in-the-middle attacks

Phishing is the technique of coercing users to give up authentication credentials by

presenting them with a fraudulent authentication interface; in the case of online del-

egation, this is done by impersonating a legitimate RP or IdP. sSRP is exceptional

among relationship-based protocols in its intrinsic resistance to phishing attacks be-

cause users’ authentication credentials are never transmitted over the network. Im-

poster RPs and IdPs will never receive the user’s authentication credentials, even if

they display a convincing facade to users. This holds for eavesdropping third parties

(“men in the middle”) as well: none of the information exchanged over the network

during an sSRP authentication transaction can feasibly be used by attackers to com-

promise either a user’s password or the session secret the user’s client establishes with

the IdP.

The one place that users’ passwords are potentially at risk is the sSRP client

itself; since an insecure sSRP client implementation could compromise the user’s SSO
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credential, care must be taken to prevent attackers from impersonating the client’s

interface. An in-page client could theoretically be built as a signed applet, although

such an implementation would rely on users’ understanding and verification of the

applet’s signature for its security. A better option would be to implement the sSRP

client outside the page (“in chrome”) as a browser extension or operating system

module. These methods would allow user interfaces not easily duplicated by attackers

who have not already compromised the user’s system.

sSRP is also resistant to phishing for non-credential information. Users set up

policy exclusively at their identity providers, and therefore can’t be easily tricked into

transmitting this information to third parties. Users convey no secret information to

their delegates except for the fact that a delegation has occured - the chain of public

identifiers delegates will use to access user privileges can be safely communicated

even over insecure channels. Phishers attempting to pose as a user’s IdP are foiled;

the IdP directly authenticates users with the SRP protocol, which provides mutual

authentication.

Pharming and policy leaks

Pharming is the technique of compromising a system by controlling the information

it receives from the domain name system (DNS). When used in conjunction with

phishing attacks, pharming allows attackers to impersonate a website, displaying a

trusted URL to web users while delivering compromised pages. As an enabler of man-

in-the-middle attacks, pharming allows attackers to breach security when a connection

to a specific domain (for example, an identity provider) is required.

In our sSRP implementation of SimpleAuth, the authentication process is

secure against pharming of the user’s client because the base sSRP protocol is intrin-

sically resistant to man-in-the-middle attacks and phishing. However, SimpleAuth

(like any relationship-based web authentication protocol) relies on an honest DNS
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for security. If an RP is pharmed, it will forward authentication requests to phony

identity providers. This is a problem for any relationship-based protocol, not just

those with delegation enabled, and is outside the scope of SimpleAuth. It is clear,

however, that allowing authentication transactions only over SSL connections with

verified certificates would protect against most pharming attacks. While requiring

web users to correctly verify SSL certificates is unrealistic, RPs may reasonably be

expected to do so.

While sSRP authentication credentials are safe even from pharmers, our sSRP

SimpleAuth implementation does expose one piece of user data to attack: the user’s

delegation policy. User policy may contain confidential information, including the

roles or privilege levels assigned to delegates, which could be used in other attacks.

For example, discovering delegates’ roles might allow an attacker to formulate a more

effective social engineering attack. Since a user’s policy for a delegate is only ever

transmitted to that delegate’s IdP, this information is not casually available. In the

case of pharming, however, attackers could fool an IdP into disclosing this sensitive

information by masquerading as both the upstream service and the delegate’s IdP.

Just as RPs protect the authentication protocol by verifying IdP SSL certificates, IdPs

can protect the delegation policy by using only checked-certificate SSL connections

to communicate with downstream IdPs; correct implementation of SSL is a realistic

requirement for IdPs.

Privilege escalation

Privilege escalation attacks are attempts by malicious but valid delegates to use more

privileges than a user or upstream delegate has granted them. In our sSRP Sim-

pleAuth implementation, a delegate may attempt to gain privileges by modifying

the delegation lists returned by his IdP. A näıve attempt to add permissions to the

delegation list will fail because the list is inspected by the delegating user’s identity
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provider before being sent upstream, towards the RP. Any permissions asserted by a

delegate that are not contained in the user’s delegation policy are removed.

A more subtle attack is delegate hopping, as described in Section 4.4. Del-

egates several steps removed from the original delegating user may attempt to go

“over the head” of the delegates upstream from them, using a subset of the user’s

privileges approved by the user but not by upstream delegates. To defend against this

attack, the protocol must enforce the traversal of the entire delegation chain during

the trip from the authenticating delegate’s IdP to the RP. In our implementation,

this is done by having IdPs at each downward step in the delegation chain create

a non-guessable key to verify that the same route has been traversed coming back

up. These hop-specific keys should be protected from delegate eavesdroppers using

an SSL connection. In a synchronous SimpleAuth implementation, SSL connections

would provide all the necessary request origin assurance necessary - asynchronous im-

plementations must either use client-side SSL at each identity provider or implement

an application-layer method as we have.

Sidejacking

At the end of an sSRP SimpleAuth transaction, the authenticating user or delegate

has created shared secrets with both the RP and his IdP. How these secrets are

used to maintain web application state or control access to RP resources is outside

the scope of authentication and delegation protocols. In particular, users of secure

techniques for authentication and delegation may still be vulnerable to “sidejacking”

attacks, when attackers wait until after a user authenticates to step in and take over

their session. RP and IdP implementors should use techniques like SessionLock [3]

to maintain security after authentication.
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Chapter 5

Related Work

5.1 Authorization-based access control

SimpleAuth is similar in several ways to authorization-based access control (ABAC)

as proposed by Alan Karp [6]. Just as in SimplePermissions, ABAC systems decouple

the authorization policy engine from an RP’s services. ABAC’s trust model is similar

to SimpleAuth’s: the relying party’s trust relationship is with a trusted service or

IdP, rather than with the user himself (in the case of ABAC, this is the signer of

the user’s SAML assertions). Karp asserts that ABAC is more scalable, evolvable,

private, manageable, and secure than role-based access control because of site-specific

permission models and easy delegation; these assertions apply equally to SimpleAuth.

ABAC does differ from SimpleAuth in significant ways. At its core, ABAC

is a capabilities system, which means that the “authorizations” (capability tokens,

in Karp’s paper) created for a user are not tied to a delegation but allow anyone in

possession of an authorization token to access user privileges. This makes anonymous

delegate use cases possible, but also makes authorizations vulnerable to theft. Thus,

the authorizations must be stored and transported securely. Because ABAC autho-

rizations are as difficult to revoke as any other credential, user security is dependent

on careful doling out of authorizations; this makes maintaining a persistent delegation

more complicated than in SimpleAuth.
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A final way that ABAC differs from SimpleAuth is in the user interface for

delegation. Using ABAC, a user interacts directly with an RP, retrieving authoriza-

tions. The user is then responsible for conveying these tokens to delegates in a secure

manner. Because SimpleAuth policies are stored within a user’s identity provider and

transmitted automatically during authentication transactions, users do not need to

manually store or transmit any sensitive credential or policy tokens. A delegating user

interacts only with his identity provider, using his IdP’s single consistent interface to

set policy.

5.2 Certificate-based “limited delegation”

Researchers at Dartmouth developed a technique called “limited delegation for client-

side SSL” [11]. It is similar to SimpleAuth in that a delegation-enabled web site

creates a site-specific permissions model, described as a set of boolean attributes that

each represent a privilege or set of privileges. Users choose the subset of the available

privileges to be granted to a delegate. When a delegate attempts use the delegated

privileges, they must first authenticate using their own credentials.

Unlike SimpleAuth, the “limited delegation” technique is built on a credential-

based system, client-side SSL authentication. The system requires an PKI-based

identity system, in which users manage public and private keys and client-side SSL

certificates. The delegation process involves creation of a special certificate, signed

with the delegating user’s private key, which includes the public key of the delegate

along with the list of delegated privileges.

The use of SSL certificates as both delegation tokens and delegate credentials

provides very strong guarantees about the identities and intentions of users and dele-

gates. The client-side certificates must be stored locally and managed via a browser,

so user and delegate identities are not easily portable across devices. While this prob-

lem is common to other certificate-based and hybrid approaches, including Identity
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Metasystem [8], the use of delegation certificates further complicates the credential

synchronization problem. Because users do not maintain online revocation lists, the

delegation certificates must be time-limited; this may create either a security prob-

lem (misbehaving delegates whose credentials take too long to expire) or a usability

burden (frequent creation of replacement delegation certificates).

The technique’s main limitation is the reliance on HTTP cookies for permis-

sions model discovery. This means that users who do not accept cookies (to avoid

online advertising tracking, for example) are unable to delegate their privileges. Be-

cause the cookies are sent to the browser before authentication, RPs cannot advertise

user-specific permissions models. Also, because permission models are discovered

while visiting a site, rather than during authentication, the user’s browser must ac-

cept and store the permissions model for every site visited, even those on which

the user has no privileges. This makes the delegation method a new spam vector,

since cookies (which are normally be hidden from users) must be displayed in the

permissions management interface.

5.3 OAuth

The OAuth protocol is a generic methodology for API authentication, unique among

the protocols mentioned here because it is gaining widespread adoption [1]. Just like

SimpleAuth, OAuth is not tied specifically to any one authentication method. OAuth

was developed specifically for the “mashup” use case, in which a user delegates to a

service (a “consumer”), giving it access to user data stored by other services (“service

providers”). The OAuth specification defines the format of the authorization and

access tokens exchanged by users and service providers.

While SimpleAuth is designed for both user-to-user and user-to-service dele-

gation, OAuth has been tuned specifically for use by consumer services. This means

that there is no provision in the specification for end users to store or manage au-
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thorization tokens. The delegation process involves consumers redirecting delegating

users to service providers for authorization decisions; users are then redirected back

to the consumer, carrying notification of authorization for the consumer.

Although this approach has the advantage of being somewhat interoperable

with earlier systems (AOL’s OpenAuth1, Yahoo!’s BBAuth2, and Google’s Auth-

Sub3), increasing the likelihood of broad adoption, it means that there will be no

standard user interface for delegation: each service provider must provide its own in-

terface. Users must similarly visit each service provider separately to revoke consumer

access.

A bigger problem with the OAuth approach is the requirement that the con-

sumer establish a relationship with the service providers in advance of the delegation.

This relationship is typically realized when a service provider grants the consumer an

API key. This makes OAuth unsuitable for dynamic delegation decisions, in which

the consumer has no preexisting relationship with the service provider. When Sim-

pleAuth is paired with the proper authentication system, it allows full delegation even

on non-cooperating RPs; OAuth features no such capability.

1http://dev.aol.com/openauth
2http://developer.yahoo.com/auth/
3http://code.google.com/apis/accounts/docs/AuthForWebApps.html
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Chapter 6

Conclusion

Delegation is an essential feature of human identity systems. As people in-

creasingly participate in online identity systems, it is important that we give users

the ability to selectively delegate their privileges to others. The ability to selectively

delegate increases the security of users by allowing conformance to the principle of

least privilege. Building delegation into identity systems also increases security by

decreasing the likelihood of ad-hoc delegation via shared credentials, a technique that

becomes riskier as more web users use single sign-on systems.

SimpleAuth is a pattern for adding this selective delegation to relationship-

based protocols. In the SimpleAuth model, relying parties delegate privileges to

users, who may further delegate privileges to delegates. These delegated privileges

are advertised as a permissions list during authentication; this allows relying parties

to expose user-specific permissions models. The permissions list is passed down a

delegation chain of identity providers, modified at each step by users’ delegation

policy. After a delegate authenticates to their own identity provider, that identity

provider passes a delegation list back up the delegation chain to the relying party. At

each step up the chain, a delegation policy is enforced, by passing along assertions

for only those privileges the delegator wants to give the delegate.

SimpleAuth was first implemented as an extension to OpenID. To prove the

generality of the SimpleAuth metaprotocol, we have built a SimpleAuth implemen-

tation based on the sSRP protocol. The ease of implementing SimpleAuth on two
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relationship-based authentication protocols with very different message flows is strong

evidence for the technique’s generality. All SimpleAuth requires of the underlying au-

thentication protocol is a safe two-way communication channel between relying parties

and identity providers, to convey permissions and delegation lists.

The SimpleAuth pattern does not compromise the security of the underlying

authentication protocol. SimpleAuth is also simple, both for users to understand and

for developers to implement. SimpleAuth gives relationship-based identity systems

greater flexibility and increases the user security.
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