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ABSTRACT

VERIFYING ABSTRACT COMPONENTS WITHIN CONCRETE

SOFTWARE ENVIRONMENTS

Tonglaga Bao

Department of Computer Science

Doctor of Philosophy

In order to model check a software component which is not a standalone pro-

gram, we need a model of the software which completes the program. This problem

is important for software engineers who need to deploy an existing component into a

new environment. The model is typically generated by abstracting the surrounding

software environment in which the component will be executed. However, abstracting

the surrounding software is a difficult and error-prone task, particularly when the sur-

rounding software is a complex software artifact which can not be easily abstracted.

In this dissertation, we present a new approach to the problem by abstracting the soft-

ware component under test and leaving the surrounding software concrete. We derive

this abstract-concrete mixed model automatically for both sequential and concurrent

C programs and verify them using the SPIN model checker. We give verification

results for several components under test contained within complex software environ-

ments to demonstrate the strengths and weaknesses of our approach. We are able



to find errors in components which were too complex for analysis by existing model

checking techniques. We prove that this mixed abstract-concrete model can be bisim-

ilar to the original complete software system using an abstraction refinement scheme.

We then show how to generate test cases for the component under test using this

abstraction refinement process.
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Chapter 1

Introduction

Software is increasingly built from existing components developed in multiple

environments. Component reuse reduces development costs and shortens delivery

time by reusing previously developed components. Verification of component-based

software is, however, a difficult and challenging problem due to the complexity of

both the components and the environment in which they are integrated. When the

components consist of concurrent programs, verification is especially difficult due to

the exponential number of interleavings which are possible between the concurrent

components.

In this dissertation, we address the problem of verifying both sequential and

concurrent components inside complex software environments. In this work, a compo-

nent is defined as a reusable piece of code which can interact with other components

or software. The environment is the software in which the component is deployed.

This verification problem is important to component based software engineers.

Before adding a component to an application, engineers need to determine that the

component works as expected in their application environments. This problem is

also important to component testers who need to create test suites for a component

under test in a specific environment. Verifying concurrent components is important

as muti-core machines become more common.

One common way to address this problem is to abstract the environment and

model check the component inside the abstract environment. (A brief introduction to

1



model checking and program abstraction technique is discussed later in this chapter.)

The abstraction hides the complexity of the environment and also provides differ-

ent inputs to the component to invoke different behaviors of the component. One

drawback of this approach is that abstracting the environment is often difficult, or

even impossible, when no formal model exists for the environment. This happens, for

example, when the developer or tester does not have access to the source code of the

environment. Another drawback is that concretely exploring all possible behaviors of

the component may be impossible when the component is complex.

Another common approach to component verification is model based testing.

In this approach, both the component and its environment are modelled in an abstract

model and test cases are generated based on this model. Then the abstract test cases

are transformed into executable test cases and run against the concrete system. Since

an abstract model is easier to analyze than the concrete system, test cases generated

from the abstract model give better test suites than randomly generated test cases.

Similar to the previous approach, the drawback of this approach is that modelling

the system is impossible when no formal model exists for the environment.

In this dissertation, we verify components in a given environment by model

checking abstract components inside the concrete software environment. We abstract

the component under test and leave the rest of the software concrete. We start by

running the entire program normally. When program control is in the environment,

the program is executed as normal. When program control enters the component, a

model checker monitors execution of the component and explores all non-deterministic

behaviors caused by the abstraction or concurrency of the component. Our verifica-

tion approach allows us to verify components inside any complex environment with

or without access to the source code. It also allows us to verify complex components

by applying abstraction to the component. Our approach is especially well suited to

verify concurrent components running inside complex environments. This kind of sys-

2



tem is difficult to verify using either testing or model checking alone. This technique

can also be used with model based testing to generate test cases for complex envi-

ronments. Our work is a novel integration of testing with model checking to model

check only components under test while running the rest of the software concretely.

We implement the algorithm of model checking abstract components within

concrete software environments in SPIN, which is an explicit state model checker that

verifies protocols written in the PROMELA language. Since PROMELA protocols

are eventually translated into C code before being verified, SPIN provides an easy

interface between C and PROMELA. We utilize this feature in SPIN to automatically

verify any C program that is either sequential or concurrent. Given a C program,

we divide it into the component and environment. We translate the component into

PROMELA and execute the environment as is. The experimental results demonstrate

that we are able to model check programs which are otherwise impossible to model

check due to the complexity of both the component and the environment.

In the rest of this chapter, model checking techniques and abstraction tech-

niques are discussed.

1.1 Background

This section contains a discussion of core ideas in the dissertation. More complete

introductions to model checking and abstraction in model checking can be found in [8]

1.1.1 Model Checking

Given a transition system and a specification, model checking is a technique to deter-

mine if the transition system satisfies, or models, the given specification. Compared

with traditional validation techniques - simulation and testing - the main advantage

of model checking is it can conduct an exhaustive exploration of all possible behav-

3



system
Transition

Specification

Model checker explores the
state space of the 
transition system

Yes, model satisfies

here is the error trace

No, model does not 
satisfy the specification,

Do not know, verification
can not complete due to
the memory or time limit

the specification

Figure 1.1: Model checking

iors of the systems while simulation and testing only explore some of the possible

behaviors of the systems.

The model checker can automatically explore all the reachable states of a state

space. This feature enables a model checker to find all bugs in a system or to prove

that the system is error-free. When a bug is found, the model checker generates an

error trace to pinpoint where the error is exactly located. Error traces help the tester

locate and correct bugs more efficiently. Figure 1.1 summarizes the process of model

checking.

Model checking has been successfully applied in hardware verification because

hardware can, in many cases, be easily modeled as a finite state system. Model

checking software is harder since software is generally modelled into a very large, or

even infinite, state space. As Figure 1.1 illustrates, when the state space size is larger

than the memory size, the model checker may terminate with no definite answer.

There is a growing interest in applying model checking to software. Abstrac-

tion is frequently used with software model checking to manage large state spaces.

The next section introduces an abstraction method commonly used in software model

checking.

4
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1.1.2 Abstraction

Imprecise abstraction techniques can often be divided into under-approximation and

over-approximation. Under-approximation only considers part of the system’s behav-

iors. This can cause false negatives – finding no errors does not guarantee that the

system is free of errors. All the errors found, however, are feasible in the concrete

system. Over-approximation, on the other hand, introduces new behaviors into the

system and results in false positives. Not all the errors found are feasible in the

concrete system, but finding no error in the abstract system proves the absence of

errors in the concrete system. When a false-positive or false-negative report occurs,

the abstracted system is refined with the help of a theorem prover to more accurately

reflect the original concrete system.

Figure 1.2 explains under- and over-approximation. Dotted circles indicate

abstract states. Suppose concrete state 1 and concrete state 2 comprise abstract

state 1, concrete state 3 comprises abstract state 3 in May and Must abstraction, and

concrete state 4 comprises abstract state 4 in May abstraction. The first graph gives

the concrete system which consists of 4 concrete states and 4 concrete transitions.

The middle graph is an abstract system obtained by using over-approximation. Over-

approximation works like an existential quantifier over the concrete states. For a set

of concrete states that belongs to one abstract state, if there exists a concrete state

that has a transition to another concrete state, then the abstract state also has a

corresponding transition to another abstract state. In this graph, for example, since

5
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concrete state 1 has a transition to concrete state 3, the corresponding abstract state

1 also has a transition to the abstract state 3. The third graph gives an abstract

system obtained by applying an under-approximation. Under-approximation works

like a universal quantifier. All the concrete states that map to an abstract state must

have a transition to another state in order to include the transition in the abstract

system. For example, both concrete state 1 and concrete state 2 have a transition

to concrete state 3, so the corresponding abstract state 1 also has a transition to

abstract state 3. The other concrete transitions are all eliminated because they do

not satisfy this requirement.

Figure 1.3 gives the concretization of both the over-approximation and under-

approximation. Concretization means generating all possible concrete states and

transitions for each corresponding abstract state and transition. We can see that

the over-approximation represents more concrete behaviors than the original system

while the under-approximation represents fewer concrete behaviors than the original

system. In this research, we use various abstraction techniques in different parts of a

component based system.

1.2 Overview

In this dissertation, we use model checking and an abstraction technique to verify

a component in a concrete software environment. This approach is applied to three

areas: model checking a sequential component in a sequential environment, model

6



checking a concurrent component in a sequential environment, and generating tests

for a component deployed into a sequential environment to determine whether or not

the environment is compatible with an existing component. The component can be

either sequential or concurrent in the third case. We discuss each of these cases in

the chapters that follow.

Chapter 2 describes model checking sequential code in a sequential environ-

ment. The work in this chapter appears in [4]. Here, we assume both the component

and the environment are sequential. We apply three kinds of under-approximation

abstraction to the component and model check it in a concrete software environment.

The source code for the environment need not be available. Fast error discovery is

the main focus in this chapter.

Chapter 3 describes model checking concurrent code in a sequential environ-

ment. We assume that the component is concurrent and that the environment is

sequential. We apply an under-approximation abstraction technique to the compo-

nent and execute the environment as is. The environment source code is needed only

when the environment invokes a component function, where we need to translate the

function call into appropriate instruction to invoke the component. Fast state space

exploration which consumes little memory and fast error discovery are the focus in

this chapter. We can not guarantee full state space exploration in this method due

to the abstraction employed.

Chapter 4 describes test generation for a sequential environment to create

tests for determining whether or not the environment is compatible with an existing

component. The work in this chapter appears in [3]. We propose to generate test

cases for a component in its original environment. The generated test cases will

be used in the new environment to check compatibility. In this chapter, we give

theoretical results on how to get a full test coverage of the component in the original

environment by reasoning about symbolically simulated environment. Here, we need

7



the environment source code to analyze it symbolically. The generated test cases will

be used in a new environment to detect errors.

Chapter 5 concludes this dissertation and discuss future work. The appendices

present some additional proof and implementation details.

8



Chapter 2

Model Checking Abstract Components within Concrete

Software Environments

Abstract

In order to model check a software component which is not a standalone program, we

need a model of the software which completes the program. This is typically done by

abstracting the surrounding software and the environment in which the entire system

will be executed. However, abstracting the surrounding software artifact is difficult

when the surrounding software is a large and complex artifact. In this paper, we take

a new approach to the problem by abstracting the software component under test and

leaving the surrounding software concrete. We compare three abstraction schemes,

bitstate hashing and two schemes based on predicate abstraction, which can be used

to abstract the components. We show how to generate the mixed abstract-concrete

model automatically from a C program and verify the model using the SPIN model

checker. We give verification results for three C programs each consisting of hundreds

or thousands of lines of code, pointers, data structures and calls to library functions.

Compared to the predicate abstraction schemes, bitstate hashing is uniformly more

efficient in both error discovery and exhaustive state enumeration. The component

abstraction results in faster error discovery than normal code execution when pruning

during state enumeration and avoids repeated execution of instructions on the same

data.

9



2.1 Introduction

One way to manage the complexity of large software engineering projects is to factor

the problem into cooperating components. Each component must then be written to

implement that component’s functionality in the context of other components. The

modular verification problem is the problem of showing that each component behaves

correctly in the execution environment created by the other components.

We focus on modular formal verification when no formal model of the sur-

rounding software exists. Such a formal model would most likely be missing because

it is too expensive to generate. This can happen, for example, when the implemen-

tations of some components deviate from their specifications but the nature of those

deviations has not been precisely characterized. Or, there may simply be no formal

model of the entire system. In these situations, the key verification question is: does

the component under test satisfy a set of properties in the context provided by the

other components even though there is no formal model of the other components?

Modular verification without a formal specification of the surrounding software

is important to engineers who must implement and verify components for existing

software. This problem can occur when existing software is upgraded or when software

development organizations decide to use formal verification after having developed a

significant amount of software. In these and similar cases, a technique is needed to

verify formal properties of new components in the context of existing software.

Formal approaches to modular software verification have been proposed for

quite some time. However, in every case, the component is left concrete while the

environment is abstracted. This poses two problems. First, the component itself may

be too complex to admit formal analysis without abstraction. Second, abstraction of

the software environment requires a formal model of the software environment. This

means that the surrounding software must be converted to a formal model during or

before abstraction. For large software environment, this is very expensive.

10



Fortunately, a precise model does exist for every executable software artifact.

This model, though difficult to describe analytically, is simply the behavior of the

software on the computational platform on which it was intended to be executed. The

idea of defining semantics through execution is not new and lies at the foundation of

advances in explicit state-space representation model checking [23, 17, 12].

Similarly, discovering the precise definition of software meaning through exe-

cution lies at the core of our approach. The main difficulty is creating an efficient

interface between the abstract component and unabstracted surrounding software.

The interface must be defined so that execution can be quickly passed to concrete

software across the abstraction boundary. For example, over-approximation schemes

are unsuitable because a single abstract state may represent thousands of concrete

states–many of which are infeasible. Each of these concrete states would need to be

passed and executed by the surrounding software.

In this paper, we present a new approach to component verification in which

the component is abstracted and the environment is left concrete. We assume both

the component and the environment are sequential. We evaluate three abstraction

techniques which are compatible with this approach to modular verification.

We have implemented our idea in the SPIN model checker [12]. Given a

program written in C, we translate it to a model with PROMELA proctypes and

C functions using an extension of the CIL compiler [19]. Abstract components are

modeled by PROMELA proctypes and the surrounding software is left as C code with

little modification.

Previously, Holzman and Joshi extended PROMELA to have better commu-

nication with programs written in C using the c code and c track mechanism. The C

code enclosed inside a c code block is executed directly like a normal C program. The

c track block encloses variables from the C program which will be tracked. Tracked

variables are included in the PROMELA state vector and can be marked as “matched”

11



or “unmatched” to indicate that the variables will be stored into the hash table or

not.

Inside a component, we translate branching instructions to PROMELA in

order to expose the program control flow to the model checker using the c code

and c track, the environment is enclosed in a c code block and the component is a

mixed model with c code instructions interspersed with PROMELA instructions. In

the component, variables are strategically tracked and matched in order to support

data abstraction. When execution reaches the component boundary, the concrete

state in the state exploration queue or stack can be passed directly to the software

environment.

We tried three potential abstraction schemes with the component. The first

one is described in [21]. It is an under-approximated abstraction scheme. Refine-

ment is achieved by checking the preciseness of the abstraction through weakest pre-

conditions. The second one is described in [16], in which refinement is obtained

by checking the value range of the variables. THe third one is abstraction through

bitstate hashing.

Our approach can verify software components that interact with complex sur-

rounding software. For example, the surrounding software might contain mathematics

for which first order logic theorem provers, as used in predicate abstraction, can pro-

vide no useful information. This can happen even for relatively simple operations

like multiplying two variables or for more complex operations like exponentiation or

trigonometry. The environment might also contain pointers and references which are

too difficult to track in a formal semantic model. Our model runs without problem

in these cases since we simply execute the environment instead of reasoning about it.

It would seem natural, at this point, to just execute the component instead of

reasoning about it as well. After all, executing the environment sidesteps a range of

thorny semantic issues. However, the surrounding software just provides the environ-
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ment in which to verify the component so simply it, with no attempt at analysis or

verification, is sufficient. But the component is the target of the verification effort,

so tools, such as abstraction, to improve the utility verification effort are warranted.

The main contribution of this paper is a model of components which sup-

ports data abstraction for C programs. Our model supports model checking inside

unmodified, complex software environments and allows nested function calls between

component and environment. Our state exploration algorithm is a simple modifi-

cation of standard state enumeration algorithms. The value of this work is that it

enlarges the class of C programs to which standard state enumeration algorithms can

be applied. The abstraction method proposed in this work also leads to faster error

discovery than normal code execution.

Experimental results show this algorithm is indeed able to deal with complex

surrounding software with complex control structures and suggest that our algorithm

can be used as a complementary method of testing to discover errors faster by covering

the state space faster. It is a good way to deal with programs that are too complex

to be reasoned about by traditional model checking techniques.

Our test results show abstracting the component using supertrace outperforms

the other two abstraction schemes in terms of verification speed and error discovery

speed. It also outperforms concrete execution in terms of error discovery speed when

the state space includes many copies of the same large region of states. In this case,

concrete state exploration still needs to execute the already visited states since it does

not have a memory about what state is already visited. Abstraction, on the other

hand, can jump out of the partial state space it already visited and start to explore

new state space faster.

In the next section we survey closely related work in abstraction for explicit

model checking and component-based verification. Section 2.3 contains an explicit

model checking algorithm for exploring the state space of abstract components in
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concrete environments. Section 2.4 shows how we implement this approach in SPIN.

Section 2.5 provides experimental results. We close with conclusions and ideas for

future work in Section 2.6.

2.2 Related Work

In this section, we first discuss the prior work on which this work is built, then present

related work in abstraction and environment generation.

One way to view this paper is an extension of Holzmann and Joshi’s work on

model-driven software verification. In [13], Holzmann and Joshi describe a method

for mixing C code with PROMELA models such that data abstractions can be per-

formed on C variables. We build on their work by creating an abstraction model for

components based on data abstractions which under-approximate the state space.

Our approach to modeling the software environment is fundamentally different

than that used by Holzmann and Joshi. While Holzmann and Joshi use PROMELA

instructions as the test harness for C code, we use code from the surrounding software

as the test harness. Our approach is appropriate when a PROMELA model of the

surrounding software is too expensive to either build or execute. Our approach also

admits the use of PROMELA as a test harness for parts of the system–such as for

input from users.

FeaVer [14] also verifies a C program or part of a C program. It uses a tool

called Modex to extract a PROMELA model from the C source code. When verify-

ing some specific functions of a program, Modex requires the user to provide a test

harness in which to test these functions. Our approach has similar goals and is built

on PROMELA commands, such as c code and c decl, which were used in Modex.

However, our approach simplifies the process of defining a PROMELA model and

test harness from a C program and our approach is designed to verify data operations

of C programs rather than just the concurrent behavior of a threaded program. Our
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approach supports concurrency but the implementation does not. Implementation of

support for concurrency is described in chapter 4.

Our approach is different. The software environment is part of our test harness,

and we execute the component inside this specific environment instead of user defined

environments. When the component under test calls a function, we check if the

callee belongs to the component or belongs to the environment. If it belongs to the

component, we translate it to a PROMELA model, otherwise we execute it as it is.

Similarly, when the environment calls a function, we also check if the function belongs

to the component or belongs to the environment. If it belongs to the component, we

translate it to the PROMELA model, and otherwise, we execute it as it is. This is

quite different from the Modex approach that simply treats the callee of the function

under test as a blackbox.

In order to simplify the translation between branching instructions to

PROMELA in components, we used the CIL [19] compiler to compile C programs into

a C intermediate language, and then translate the resulting C intermediate language

into PROMELA. CIL can compile all valid C programs into a few core syntactic

constructs. This simplifies translation while allowing us to handle a large subset of

C.

2.2.1 Environment Generation

When verifying only part of a program, the problem of simulating the program envi-

ronment can be split into two parts: generating the test harness and simulating the

surrounding software. The test harness provides the inputs to the program. Most

existing work in component verification combines these two problems together to pro-

vide an abstract environment to the program under test which simulates both the test

harness and the surrounding software.
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Bandera [6] divides a given java program into two parts: the unit under test

and the environment. The component under test is verified concretely while the en-

vironment is abstracted to provide the unit the necessary behaviors. The abstract

environment is obtained through a specification written by the user or through the

source code analysis. The drawbacks of this approach are: first, abstracting the envi-

ronment is a time consuming and error prone process. Moreover, it is hard to avoid

the semantic gap between the concrete environment and the abstract representation of

it. Second, if the component under test is complex, then model checking it concretely

might cause state space explosion.

Slam [2] is a software model checker developed by Ball et al. to verify Windows

device drivers. A device driver is a program which communicates with the operating

system kernel on behalf of a peripheral device such as a mouse or printer. The sur-

rounding software for a device driver is the entire kernel, so device driver verification

requires a model of the kernel in order to close the execution environment. Since

the Windows kernel is a large and complex program with no formal specification,

manually generating a formal model of the kernel is expensive and error-prone.

Instead, Ball et al. [1] generate kernel models via merging different abstractions

of the kernel procedure. Slam selects a set of device drivers that utilize a specific kernel

procedure. These drivers are then used as a training set by linking each driver with

this specific kernel procedure and executing it in Slam. Slam automatically generates

Boolean abstractions for the kernel procedure with each device driver. The Boolean

abstractions for the procedure can be extracted and merged to create a library of

Boolean programs which are used to verify future device drivers which utilize that

kernel procedure. In this work, we take a different approach. Instead of abstracting

the kernel, we abstract the device driver and leave the kernel software concrete. In

our approach, a device driver would be verified by abstracting the device driver then

verifying the abstract model of it in the context of the actual Windows kernel. An
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external environment that generates IO requests to drive verification would also be

needed.

2.2.2 Abstraction

We abstract the component under test during verification. Abstraction is a widely

studied topic in software model checking. Abstraction methods can be split based

on whether they over approximate and under approximate the reachable states of a

program. SLAM, which was mentioned previously, uses predicate abstraction [2] to

abstract the device drivers and corresponding procedures in the kernel. SLAM uses

over-approximation abstraction techniques.

In this work, we need an abstraction scheme which stores abstract states in

the hash table but uses concrete states in the queue of states to be expanded because

this simplifies passing states between component and environment. We have investi-

gated three abstraction schemes which have this property: under approximation using

predicates which requires a theorem prover for refinement, under approximation using

predicates which do not require a theorem prover for refinement and bitstate hashing.

Results for component verification using each of these abstractions are given later.

Pasareanu et al. proposed an under approximation abstraction approach which

uses predicates and a theorem prover to manage refinement [21]. They explore the

concrete state space, push concrete states into the stack and store their corresponding

abstract states into the hash table. Abstract states are generated by evaluating a set

of predicates on variable values. The state vector includes one bit per predicate and

each bit is set based on the predicate’s truth value. Refinement is done by examining

each transition relation in terms of the existing predicates. If the existing predicates

do not imply the weakest pre-condition of the next state in terms of the current tran-

sition, then the abstraction is not precise and the weakest pre-condition is added into

the existing predicate set. Otherwise, abstraction is precise and no refinement is nec-
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essary. Since the state exploration is driven only by reachable concretes states in the

stack, the abstraction never introduces new behaviors to the system. The abstraction

misses behaviors when two concrete states satisfy the same set of predicates but lead

to different program states.

Kudra and Mercer hypothesized that under approximation with predicates

could be made faster by eliminating the theorem prover in refinement checking [16].

Pasareanu posed the same hypothesis, but eliminated the theorem prover by always

assuming that the abstraction is imprecise. Kudra and Mercer eliminated the theorem

prover by picking predicates which can be evaluated without a first order logic theorem

prover and tracking extra data required to test the validity of those predicates. For

each abstract state, they store the minimum and maximum value of each variable.

When the minimum and maximum value of a variable is different, then they know

this abstract state corresponds to at least two concrete states and needs to be refined.

Eventually, this method will explore all the concrete states. However, before exploring

all the concrete states, it covers more of the state space in less time in order to find

errors faster. For some programs, eliminating the theorem prover results in faster

error discovery because states could be generated more quickly.

Bitstate hashing stores concrete states in the queue of states to be expanded,

but represents visited states using a single bit (or small set of bits) in the hash

table [11]. In bitstate hashing, the location for a state in the hash table is determined

by applying a hash function directly to the entire state vector. The resulting value

is used as an index into the hash table and the bit at that index is set to true to

indicate that the state has been visited. This abstraction misses behaviors when two

concrete states hash to the same value but result in different program behaviors.

For the purposes of this work, under approximating predicate abstraction and

bitstate hashing are the same process with the difference being that predicates are

used to hash states in predicate abstraction while a hash function is used to hash
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states in bitstate hashing. In this sense, predicate abstraction is a semantically based

abstraction in which well-chosen predicates differentiate concrete states based on their

meaning while bitstate hashing is purely a structural abstraction in which the mean-

ings of data values are ignored by the hashing function.

2.3 Algorithm

In this section first we describe the state exploration algorithm, then we discuss how

abstraction is done for components.

2.3.1 State Exploration

Figure 3.1 shows our state enumeration algorithm for verifying abstract components

in the context of concrete software. We have omitted property checking in order to

simplify the presentation. Safety property checking can be added.

Given a program prog, we call the procedure init in line 1. Φ stores the initial

set of predicates in line 2. The initial set of predicates is all of the guards in the com-

ponent. Φnew stores the set of new predicates used to refine the abstraction after each

iteration and is initialized to the empty set in line 3. We check the starting instruction

of the program in line 6. If the starting instruction is in the environment, then we

execute instructions in the environment until control returns to the component. An

instruction is in the environment if the state generated by that instruction is in the

environment. The environment is specified as a set of program counter values, so an

instruction is in the environment if it generates a state with a program counter value

which is in the set. The environment execution function returns the first state which

lies in the component.

Now that we have a start state which lies in the component, we push it on

the stack at line 8 and begin verification by calling the component function in line
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9. When using predicate abstraction with refinement, we repeatedly verify the entire

program until no refinement is necessary, as shown in line 10.

The component function is a variation of explicit state exploration in which

abstract states are stored in the hash table, concrete states are stored in the stack and

transitions which leave the component are serially executed without storing states.

We obtain the transition out of the current state in line 18. If that transition exits

the component, then we execute instructions in the environment until an instruction

returns control to the component at line 21. The next state is generated by applying

the current transition to the current state, line 22, or in the environment function

at line 28. State exploration then continues by pushing the next state into the stack

in line 23.

In the environment function, when the next instruction is in the environment,

we will simply execute it at line 28. When the next instruction returns control to the

component, we return the first state which lies in the component at line 33.

2.3.2 Abstraction

The abstract function takes a concrete state s and returns an abstract state. abs

denotes an abstract state represented by a bit vector. The algorithm requires an

abstraction which stores concrete states in the stack and stores abstract states in the

hash table. If abstract states are stored in the stack, then passing control between the

component and environment at lines 7 and 21 of Figure 3.1 would be more difficult

because we would need to create a concrete state which represents the abstract current

state.

Figure 2.2 shows the abstractions which we have investigated as part of our

component model in this paper. The first pair of abstractions, (a) and (b), are shown

together because they differ only in the manner in which refinement is checked at

line 6. In both cases, refinement is checked by determining if the abstraction of the
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1 proc init(prog)
2 Φ := Guards(prog)
3 Φnew := ∅
4 do
5 Φ := Φ ∪ Φnew

6 if start instr ∈ environment then
7 start state = environment(start instr, start state)
8 push(start state)
9 component()
10 while Φnew 6⊆ Φ
11 end
12
13 proc component()
14 while size(stack) != 0
15 cur state = top(stack)
16 α = abstract (cur state)
17 if (α 6∈ hash table)
18 insert α into hash table
19 cur inst = transition(cur state)
20 if (cur inst 6∈ comp) next state = environment (cur inst, cur state)
21 else next state = cur inst(cur state)
22 push (next state)
23 else pop(stack)
24 end
25
26 proc environment(inst, state)
27 do
28 next state = inst(state)
29 inst = transition (next state)
30 while (inst ∈ environment)
31 return (inst(next state))
32 end

Figure 2.1: State enumeration algorithm that combines under-approximation with
concrete execution
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1 proc abstract(s)
2 foreach φi ∈ Φ do
3 if φi(s) then absi := 1
4 else absi := 0
5 if (refinement check is not
valid)

6 addNewPreds(Φnew)
7 return abs
8 end

1 proc abstract(s)
2 abs = hash(s)
3 return abs
4 end

(a), (b) (c)

Figure 2.2: Three abstraction schemes which store concrete states in the stack and
abstract states in the hash table that are compatible with our approach to component
verification. (a), (b) Predicate abstraction with or without a theorem prover as in [21]
and [16], the difference being that the precision check at line 6 is done with or without
a theorem prover. (c) Bit state hashing [11].

previous state implies the abstraction of the next state with substitutions made using

assignments in the instruction between the states. A detailed description can be

found in [21] In Pasareanu’s case, the validity of the implication is checked using an

automatic theorem prover. In Kudra’s case, the validity of the implication can be

checked by determining if the variable’s value falls within a certain range.

Figure 2.2(c) shows bitstate hashing interpreted as an abstraction function.

This is included to clarify the relationship between bitstate hashing and predicate

abstraction as used in our work. Bitstate hashing is an abstraction in which a hash

function is used to compute the abstract state. The abstract state is not stored

directly in the hash table, but is used as an address at which to set a bit indicating

that a state with that hash code has been visited. Refinement is not possible using

bitstate hashing so the predicate set Φnew is not updated and the while loop in line 10

of Figure 3.1 is simply ignored. However, bistate hashing can be made more precise

by re-running the algorithm with a different hash function. Bitstate hashing can be

used when a full verification is infeasible because of the memory limitations.
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Each of the three abstractions in Figure 2.2 under approximate the state space.

Every abstract state corresponds to at least one concrete state since the abstract

function is only applied to already existing concrete states. States can be missed

when two concrete states have the same abstract representation and only one of them

is expanded. Like other under-approximation techniques, every error found using

our algorithm is a feasible error, but finding no errors does not guarantee that the

component is error free.

For predicate abstraction, both with and without theorem proving support,

our under-approximation scheme can not be refined to include all behaviors of the

system since we ignore system behaviors in the environment and these parts can not

be included in the refinement check. More specifically, substituting the right side of

an assignment for the left side of the assignment when that variable appears in the

abstraction predicates can not be done safely for sequences of transitions that pass

through the environment. Multiple syntactic substitutions for the transitions in the

environment can mask program behavior and cause the precision check to succeed

when behaviors have been ignored.

Interestingly, this loss of information in the precision check is adjustable. When

the component grows to include the whole system, the refinement process works as

described in [21]. A detailed discussion of the properties of refinement for predicate

abstraction in the context of our component modeling method can be found in [3].

2.4 Implementation

We have implemented the algorithm in the SPIN model checker using CIL for prepro-

cessing of C code. For this implementation, we have assumed that a function is the

basic unit of a component or the environment. In other words, each function in a C

program either belongs entirely to the component or belongs entirely in the environ-
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1 main() {
2 int i;
3 for (i = 0; i < 10; i++)
4 if (i == 4)
5 break;
6 else i = i ∗ 2;
7 }

Figure 2.3: A simple C program.

ment. We group interesting functions together to be verified as a single component,

and group everything else into the environment.

Each function in the component is translated into a proctype in SPIN to be

verified. The functions in the environment remain unchanged as C functions to be

executed concretely. The details of how a function is translated into a SPIN proctype

and how the SPIN proctypes interacts with the functions in the environment are

discussed below.

SPIN supports embedded C code by providing five different primitives identi-

fied by the following keywords: c code, c track, c decl, c state, and c expr. Ev-

erything enclosed inside a c code block is compiled directly by GCC then executed

and interpreted as one atomic PROMELA state. c track specifies the C variables we

want to track as part of the state vector. c track can be used with the Matched or

UnMatched keywords. Matched variables are stored both in the state stack and hash

table, while UnMatched variables are only stored in the state stack. For example

c track “&i” “sizeof(int)” “UnMatched”

indicates C variable i will be tracked but not matched, and

c track “&i” “sizeof(int)” “Matched”

indicates i is both tracked and matched. A kind of forgetful data abstraction can be

obtained by tracking a variable but not matching it [13].
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1 c decl{ int i; char abs[predNum];}
2 c track “&i” “sizeof(int)” “UnMatched”
3 c track “&abs” “sizeof(abs)” “Matched”
4 proctype main() {
5 do
6 :: c expr{i < 10} → c code{i++; abstraction();}
7 if
8 :: c expr{i == 4} → break;
9 :: else → c code{i = i ∗ 2; abstraction();};
10 fi;
11 od;
12 }

13 c code {
14 void abstraction(){
15 for ( i = 0; i < predNum; i + +)
16 if (preds[i] == true)abs[i] = 1;
17 else abs[i] = 0;
18 }
19 };

Figure 2.4: The PROMELA code generated from the C code shown in figure 2.3

If a C function is contained within the component, then we translate it into

an equivalent PROMELA proctype by enclosing non-branching statements in c code

blocks and translating branching statements into PROMELA. We do this in three

steps.

First, we use the CIL compiler to translate C into the C intermediate language

(CIL) [19]. The CIL compiler compiles a valid C program into a C program which

has a reduced number of syntactic constructs. By translating from C to a syntactic

subset of C using CIL, we obtain a C program with simpler syntax, which makes

translation from C to PROMELA much easier. We have implemented an extension

of the CIL compiler to translate the CIL language into PROMELA.

Next, we enclose each non-branching statement of the component in a c code

block, so that every statement of the component is treated as a single PROMELA

transition.
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Finally, although each statement of the component is enclosed by a c code

block, control statements are translated entirely into PROMELA. This allows SPIN

to expose the branching structure of the component during verification.

As an example, consider the C code in Figure 2.3 which is translated into the

PROMELA code shown in Figure 2.4 assuming the use of a predicate abstraction. Ab-

straction through bit state hashing is simple as it does not require additional arrays for

predicates or their Boolean values. In Figure 2.4, predNum gives the number of pred-

icates, abs[predNum] is a vector that contains abstract states, and preds[predNum]

contains the given predicates. The function abstraction() on line 14 computes the

abstraction by evaluating the predicates then storing their evaluation in the abs[i]

vector of bits.

Predicate abstraction in the component is achieved by tracking and matching a

bit vector. We declare an array of bits, called abs[], which is also marked as Matched.

After every assignment statement or function call in the component, we insert a call

to a C function named abstraction(). abstraction() checks the current set of

predicates and sets the corresponding bit values in abs[]. We then store only the

values of abs[] and ignore all other variables. Abstraction through bit state hashing

is achieved by using SPIN’s built-in implementation of hashing.

The software environment is modeled by wrapping it in a single c code block.

This means that segments of the environment are executed as needed by SPIN based

on the behavior of the instructions in the component.

The next issue in the implementation is managing function calls within and

between components and the environment. When translating C into a mixed C-and-

PROMELA model, the most difficult problem is enforcing execution order in the

presence of function calls. Since SPIN is designed to run concurrent code, we need to

do some work to force it to avoid inappropriate interleavings in otherwise sequential

programs. On the other hand, modeling concurrent components is more difficult

26



because functions in the environment must support multiple active invocations. For

purely sequential components and environments, there are four cases to consider

depending on the location of the caller and the callee.

Inside a component, when a proctype calls a proctype, channels are used to

enforce the order of the execution. An example is given in Figure 2.5. In Figure 2.5,

proctype main calls proctype proc in line 7, and waits for proc to return at line

8. proctype proc signals the end of execution by pushing 1 into the channel at line

26. This signals the main process that it may resume execution.

When the code in a proctype calls a function in the environment, we pass an

integer pointer rtnFunFlag with the function call. The callee indicates its return by

setting rtnFunflag to 1 at the end of the function, at which time the caller continues

execution. This is illustrated by Figure 2.5 in lines 2 to 6 and line 16.

The most difficult case is when a function in the environment calls a proc-

type in the component. Since the c code block is designed to be executed without

interruption, if there is a call to a proctype in the middle, we must break out of the

c code block and run the proctype using just straight C. In the code generated by

SPIN, we find that calling a proctype is translated into an addproc function. In line

13 of Figure 2.5, we add an addproc function to invoke the corresponding proctype

proc. We pass the return program counter, pc value and function ID to proc so that

it knows where to jump back to after execution. Then the caller function will jump

out of the c code block as shown in line 14. Then the proc begins execution and

jumps back to the right place depending on the arguments.

When two functions in the environment call each other, it will be handled

in unmodified C code with little additional effort. One important thing to note is

that when a series of environment functions call each other, it may be that one of

them may in turn call a function in the component, which means we need to stop

execution in the environment immediately and return to the component. In this case
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1 proctype main() {
2 c code{fun(rtnFunFlag, -1);};
3 do
4 :: c expr{*rtnFunFlag == 1} → break;
5 :: else → skip;
6 od;
7 run proc();
8 c ? 1;
9 }
10 c code {
11 fun(int* rtnFunFlag, int callerLabel){
12 if (callerLabel) goto label;
13 addproc(1);
14 goto end;
15 label:
16 *rtnFunFlag = 1;
17 end: ;
18 }
19 proctype proc(chan c, int callerID, int callerLabel) {
20 c code{
21 if (callerID){
22 funarray[callerID](callerLabel);
23 goto end;
24 }
25 }
26 c ! 1;
27 c code { end: ; };
28 }

Figure 2.5: Functions in C translated into PROMELA

it is important to keep a stack of function names and labels so that each environment

function knows where to jump back after the component function returns back to the

environment.
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2.5 Results

The implementation of the algorithm allows us to take C code and model check parts

of it. The C code can include complex data structures with pointers, and calls to

library functions.

We choose three models to illustrate the result. They are matrix multipli-

cation, sorting algorithms, and a program that simulates the operating system’s

dynamic storage allocator. The Matrix Multiplication and Sorting algorithm im-

plementations are downloaded from the Internet. The dynamic storage allocator is

taken from an assignment in an undergraduate operating system class.

Matrix Multiplication is a program that takes two matrices from the user and

returns the product of those two matrices. This is an interesting problem for our

component model because the code contains much data and many predicates, which

makes it a good candidate for the predicate abstraction scheme. We supply 1000

pairs of matrices to the program. Each matrix has a user-defined number of column

and rows. We insert an assert function to check that the dimension of the column of

the first matrix equals to the row dimension of the second matrix. The result of the

verification is shown in Table 2.1.

In Table 2.1, the first column gives the different abstraction schemes we test.

PA+TP indicates predicate abstraction with theorem prover, and PA+NTP indicates

predicate abstraction without theorem prover. In the first row, cLine is the number of

lines of code in the component, eLine is the number of lines of code in the environment.

There are also several library function calls which we do not include in the line number

count. Matrix Multiplication uses library calls like “printf” and “assert”. States is

the total number of states generated from the component, mem is the amount of

memory (in Mbytes) used to store the state space of the component, predicates is the

total number of predicates used in the verification. Time is the total time (in seconds)

needed to complete the verification without seeded errors, and eTime stands for total
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Table 2.1: Matrix multiplication, All times in seconds, memory in MB, INFI indi-
cates the result is not known because either time or space limitation is reached, time
limitation is 300s and space limitation is 1GB
matrix cLine eLine states mem predicates time eTime match
bitstate 120 270 5.3M 744 0 21 0.21 14
PA+TP 120 270 INFI INFI INFI INFI INFI INFI
PA+NTP 120 270 INFI INFI INFI INFI INFI INFI

time to find a seeded error. Match shows the number of states that are matched inside

the hash table. We group several functions that do the main computation together to

compose the component and leave the rest of the software as the environment. This

model consists of total of 5 million states. Bitstate hashing performs best in matrix

multiplication. Both of the other two algorithms fail to explore the total state space

or find errors in the given time and space limit.

Table 2.2 also contains results for the matrix multiplication model, but this

time we decrease the size of the component and increase the size of the environment

by 80 lines. All three algorithms run to completion for this model. Observe that

bitstate hashing generates the least number of states while TA+NTP generates the

most. That is because bitstate hashing only needs one iteration of the entire program,

but the other two do a refinement on their abstractions and continue exploring the

whole state space until the state space covers all concrete states. PA+TP is the

slowest in both error discovery and generating the whole state space. That is because

it has to call the theorem prover to decide which, if any new predicates are needed

for the refinement.

Table 2.3 shows the results for verifying a C model called sorting. It consists

of several different sort algorithms. They are selection sort, insertion sort, bubble

sort, and quick sort. We pick selection sort as a component. The property we check

is asserting a value is less than the value after it in a list after returning back from

the sorting functions. As in the matrix models, bitstate hashing again outperforms

the other two abstraction schemes.
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Table 2.2: Matrix multiplication with smaller component, all times in seconds, mem-
ory in MB
matrix cLine eLine states mem predicates time eTime match
bitstate 40 350 3718 2 0 0.01 0.001 0
PA+TP 40 350 12095 54 102 170 41 198
PA+NTP 40 350 192516 111 101 5.1 0.08 100

Table 2.3: Sorting model, all times in seconds, memory in MB
sorting cLine eLine states mem predicates time eTime match
bitstate 44 110 8226 86 0 0.73 0.2 0
PA+TP 44 110 INFI INFI INFI INFI 41 INFI
PA+NTP 40 110 491830 405 449 51 3.5 8604

Table 2.4: Malloc model, all times in seconds, memory in MB
malloc cLine eLine matched time
bitstate 100 2000 10 1.2
concrete 0 2100 0 169

Table 2.5: Malloc model, all times in seconds, memory in MB
malloc cLine eLine states matched time
bitstate 400 1700 142352 8 5.3
concrete 0 2100 0 0 169
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In the models discussed so far, bitstate hashing is by far more efficient than

the other abstraction techniques. In fact, in these same models, concrete exploration

will be even faster than bitstate hashing. However, there are several advantages to

explore and store abstract states instead of simply executing them concretely. One

advantage is through abstraction, the state space is covered faster because previously

visited regions of the state space can be avoided through duplicate state detection

using the bittable.

In Table 2.4, we have a larger model that simulates part of an operating

system which allocates, reallocates, and frees blocks of memory. This code has a

bigger and more complex environment compared with the other two models. In this

model, the component is 100 lines of code and the environment is 2000 lines of code.

Both the component and environment uses library calls like “malloc”, “realloc” etc.

These libraries plus the environment make it difficult to model the code formally. By

concretely executing them, we don’t need a formal model of them.

We add a loop to make part of the code execute repeatedly, and we put an

assert function outside of the loop. The purpose of doing that is to see if bitstate

hashing can find an error faster than concrete exploration by recognizing already

visited states and going to another part of the state space. The experimental result

shows that it takes concrete exploration 169 seconds to discover the error, but bitstate

hashing find it in only 1.2 seconds. The reason for that is bitstate hashing is able to

track the states. When it sees an already explored state, it will backtrack and explore

the other part of the state space. Table 2.5 shows a similar result. In Table 3.5, we

increase the size of the component. Bitstate hashing again finds the error faster than

concrete exploration.
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2.6 Conclusion and Future Work

In this paper, we have presented a technique for component-based verification that

supports abstraction of the component under test rather than the environment in

which the component is embedded.

The main purpose of this approach to abstraction is to save space and time

by verifying only the part of the program under test rather than reasoning about

the entire program. This approach assumes that errors which occur outside of the

component under test are irrelevant and can be ignored. The focus is on detecting

errors which are located inside the component, but which may have been caused

by behaviors outside the component. Similarly, errors detected in the context of

a specific software environment say nothing about errors in the context of even a

slightly different software environment. The salient assumption here is that errors

within a specific environment are of more interest than errors that exist in a family

of environments.

Experimental results show that we can verify a C program with the SPIN

model checker automatically with little change to the original software. This software

also can run in complex environments and call any library function.We abstract the

component under test. The experiments suggest that bitstate hashing is the most

efficient abstraction for this approach to component verification. Abstraction based on

predicates did not reduce the abstract state space enough to justify the additional time

to interpret states using predicates. The experiments also demonstrate that errors

can be found in abstracted components more quickly than errors that can be found

by simply executing the component. This improvement is a result of when the model

checker pruning the search during state enumeration. Abstraction of components

finds errors more quickly than executing the component as is when the state space

includes many copies of the same large region of states. In this case, concrete state

exploration still needs to execute the already visited states since it does not have a
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memory about what state is already visited. Abstraction, on the other hand, can

jump out of the partial state space it already visited and start to explore the new

state space faster. Of the three abstraction methods we used, bitstate hashing found

errors in the least time, mostly because it does not need a refinement.

We have not yet investigated methods for extracting components from soft-

ware. Instead, we have simply assumed that the component is given by a set of

pc values. One avenue for future work is developing methods for extracting useful

components from software based on a set of verification properties. Future work also

includes investigating other abstraction schemes and extending the implementation

to handle concurrent software.
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Chapter 3

Model Checking Concurrent C Components in Concrete

Environments

We present a novel approach to verifying concurrent components by abstract-

ing the component under test and model checking it within the context of a concrete

software environment. By abstracting the component, we can verify more complex

components. By leaving the environment concrete, we are able both to avoid the

environment generation process and to allow the environment to contain complex

operations that are not amenable to model checking. We implement this process in

the Simple PROMELA Interpreter (SPIN) to verify concurrent C components with

a subset of the pthread library. We verify and find errors in concurrent components

within complex environments that SPIN failed to verify directly.

3.1 Introduction

Component-based software assembles existing components to build a piece of func-

tioning software. Interest in component-based software is increasing because it reuses

already existing software, which reduces developmental costs. Verifying components

in the different environments in which they will be deployed, however, is a challenging

task due to the complexity of both the components under test and the environments.

This problem becomes more complicated when the components have concurrent be-

haviors and the source code for the environment is unavailable. Component here
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refers to a reusable piece of code that can accomplish a certain task, and environ-

ment refers to the rest of the program, which interacts with the component under

test and closes it to make it executable. The environment can contain complex data

structures, pointers, and library calls.

The ability to model check components in new environments is important to

software engineers who build applications from existing components for environments

for which the code is too complex to admit a formal model or for which the source

code is simply unavailable. They need to ensure that a new component works as

expected in a given software environment. With the growing popularity of dual-core

and multicore machines, verifying threaded components also becomes increasingly

important for software engineers.

Previous approaches to addressing this problem have included testing and

model checking. Testing is an effective and easy way to verify the system in the

early stages of debugging, when there are many errors in the system. However, it is

harder to find bugs and more time consuming to build tests when the system becomes

cleaner and the preconditions to an error are more complex. Tracing and reproducing

an error is even more difficult when the software exhibits concurrent behaviors.

Model checking complements testing by exploring all behaviors of the system

and providing error traces when an error is found. The most common way to use model

checking in component-based software is to abstract the environment and model check

the component under test in the abstract environment. The abstract environment

closes the component under test and drives it to explore all possible behaviors of the

component. The drawback of this approach is that abstracting the environment is

difficult or impossible when no formal model exists for the environment. This can

happen, for example, when there is no documentation or source code available for the

environment. Another drawback is that the component itself is often too complex to

be verified concretely. When the component is a threaded program, its state space
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grows exponentially due to scheduling choices, which can easily cause a state space

explosion problem.

In this article, we present a novel approach to verifying concurrent components

inside complex software environments by abstracting the components under test and

model checking them in the given concrete software environment. Given a component-

based software artifact, we execute the environment in its native execution platform,

and when program control enters the component, the model checker analyzes the

state space of the component, while driving execution to explore all possible thread

interleavings. When program control reenters the environment, the model checker

is stopped, and the program is executed in the native environment. This process

continues until an error is found or all possible interleavings of the component have

been explored.

We model concurrency in threaded code by extending an existing software

model checker to support C programs with selected pthread library calls. We translate

pthread functions to corresponding functionalities of the software model checker. This

allows us to use model checking infrastructure to verify all C instruction interleavings.

We use the pthread library to achieve concurrency in C programs because the pthread

library is well known and widely used. We support a subset of commonly used pthread

functions, including thread creation, mutex, conditional variables, and thread joining.

In this work, we assume that the environment is sequential, and we focus on modeling

concurrent components at the C statement level, instead of at the assembly code level.

This approach has two main advantages compared with existing model check-

ing approaches. First, it avoids the analysis of the environment by simply executing

it, rather than modeling or abstracting it. Modeling and abstracting include complex

behaviors that are difficult or impossible to analyze using a model checker such as

complicated data structures, non-Pressburger arithmetic, library calls, and pointers.

Our approach also works when the source code of the environment is not available.
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The second advantage is that more complex components can be verified by

applying abstraction to the component under test. State space of the component

grows fast when the component is complex or when the component is composed of

threaded programs. Abstraction reduces state space size by compressing the state

space.

We have implemented this approach by extending the Simple PROMELA In-

terpreter (SPIN) model checker to verify threaded programs written in C. Given a

C program, we divide the program into the component and the environment. The

component is translated into a mixed C/PROMELA model, and the environment is

left as is. PROMELA is the native SPIN modeling language, and we leverage support

for execution of C instructions within PROMELA models. Branching C instructions

are translated into equivalent PROMELA constructs, while sequential C instructions

are left as is.

We evaluate the idea with several test cases that include threaded components

within complex environments. The test cases include software with more than 10,000

lines of code in the environment and software that has interesting functionality in the

environment such as computing options prices. Our tool finds an error in a mutex

program we obtained online. These test cases are too complex for SPIN to verify

directly, but our approach succeeds both in getting high coverage of the state space

and in finding errors.

This article is organized as follows. In section 2, we discuss related work. In

section 3, we describe the verification model. In section 4, we provide the imple-

mentation method. In section 5, we present the test results. In section 6, we offer

conclusions and discuss avenues for future work.
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3.2 Related work

As mentioned earlier, the goal of our approach is to model check concurrent com-

ponents by abstracting the component and running the environment as is. In this

section, we discuss two aspects of related work. First, we present existing methods

for verifying concurrent components. Then we discuss related work in compressing

the state space of the components under test.

3.2.1 Verification of concurrent components

JPF [23] is a run-time software model checker that verifies threaded Java bytecode.

Similar to our approach, it also supports the integration of running the program in its

native JVM environment and state tracking the program under the direction of JPF.

The main difference between JPF and our approach is in environment generation:

JPF requires test drivers or environment models to close the component under test,

whereas we do not use test drivers or environment models explicitly. The original

concrete environment is our test environment, and we close the component under test

simply by executing the concrete environment itself.

Pasareanu et al. [20] extend JPF to generate test cases for the unit under

analysis. They symbolically simulate the unit under test and concretely run the

surrounding environment to drive the unit under test. Similar to our approach, no

test drivers or environment models are necessary. Our previous work in model-based

test generation [3] is similar to the work of Pasareanu et al. [20] in that both works

generate test cases for components under test by exhaustively exploring the state

space of the components under test with the help of a model checker in a concretely

executing environment. The difference between our previous methods [3] and the

methods of Pasareanu et al. [20] is that the latter generate test cases by symbolically

analyzing the component under test, but our previous methods generate test cases by
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concretely executing the component under test. In this article, we model check the

component under test, instead of generating test cases for it.

Verisoft [10] is a software model checker that verifies concurrent C components.

The strength of Verisoft is that it does not need to model the application under test.

It is able to verify relatively large C programs directly by stateless search. The depth

of the search is generally limited to prevent stateless search from getting trapped in

cycles. Verisoft provides full state space coverage within certain bounds, with the

cost of redundantly exploring the same states and transitions many times. As with

JPF, it needs an environment model to close the application. Our approach is also

able to model check relatively large C programs directly. Unlike Verisoft, we do not

need to create an environmental model, and our state space exploration is not limited

within given bounds.

Pancam [24] verifies multithreaded C programs in SPIN. It first translates the

given C program into Low Level Virtual Machine bytecode and then implements a

virtual machine to execute the bytecode as directed by SPIN. This approach model

checks the entire program, which quickly causes a state space explosion due to the

large state vector size of any C program. Our approach is different in two major

ways: First, we model check the given program at the C statement level, instead

of at the bytecode level, which gives us less precise but more compact state space

compared with Pancam; second, we divide the program into the component and the

environment and completely ignore the environment code. This allows us to verify

components inside complex environments of any size.

CUTE [22] is a unit testing tool for C programs. CUTE collects path con-

straints while it executes the program and generates new input to the unit under

test so that the next run of the program with new input takes alternative paths. We

model check components under test, instead of generating test cases for them. The

advantage of our approach is that we can reason about more complex properties.
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CHESS [18] is a software model checker developed at Microsoft for finding

errors in multithreaded software. It replaces the Windows OS scheduler with its

own scheduler to systematically explore all scheduling choices. The major difference

between our approach and CHESS is that CHESS operates on a user-defined test

harness, while our test harness is provided by the concretely executed environment.

3.2.2 Abstraction

Slam [2] is a software model checker developed at Microsoft Research to verify Win-

dows device drivers. Since the device driver communicates with kernels, verification

of the device driver needs a model of the kernel to close the execution environment.

The kernel, however, is a complex program without a formal specification. Ball et

al. [1] abstract the Windows device driver along with required kernel procedures us-

ing overapproximation. The abstract system is then refined by analyzing spurious

counterexamples. We also use abstraction in the component under test to reduce the

state space size; however, we use underapproximation, instead of overapproximation,

to simplify communication between abstract component and concrete environment.

Pasareanu et al. [21] describe an underapproximating predicate abstraction

scheme. This abstraction works by executing the concrete transition relation on con-

crete states, rather than computing an abstract transition relation that will be applied

to abstract states. The abstraction function is applied to concrete states before they

are inserted into the hash table. In effect, concrete states are stored in the stack of

active states, and abstract states are stored in the hash table. Our abstraction is sim-

ilar to this abstraction in principle; however, instead of using predicate abstraction,

we use bitstate hashing, which allows us to include more complex control and data

structures in the program, without exceeding the capability of the theorem prover.
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3.3 Verification model

In this section, we describe the modeling approach we use to verify concurrent com-

ponents in concrete software environments by discussing component modeling, con-

currency modeling, and component abstraction.

3.3.1 Component modeling

Figure 3.1 shows the algorithm. It starts by calling the procedure init, which takes

a program prog as input. This procedure generates the start state, pushes it into

the stack in line 2, and abstracts it using bitstate hashing in lines 3 and 4. Line

3 calculates an address from the start state, and line 4 sets the bit in that address

to indicate that this state has already been visited. The start state is always in

the component because we always have a driver function in SPIN to start the main

function in C. In line 5, we call a component procedure to start the state space

exploration of the concurrent component.

The component and environment functions explore the state space of the

mixed abstract concrete system. When the program instruction is inside the com-

ponent, the program executes under the direction of the model checker. When the

program control enters the environment, the program executes as in its native execu-

tion environment.

In line 18, the component function checks whether the state on top of the

stack has an enabled transition. If the state does not have an enabled transition, then

we have already fully explored the state, so we pop it out of the stack in line 19. If the

state has an enabled transition, then we check the type of the current instruction. If

the instruction is in the component and is from the pthread library, as checked in line

10, then we call the c to spin function in line 11 to simulate the pthread behaviors in

SPIN. The c to spin function returns the next state by executing a simulated SPIN

instruction. If the instruction is not a pthreaded instruction, but rather, resides in
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the component, as line 12 indicates, then we generate the next state by executing the

current instruction in line 13. If the instruction does not lie in the component, then

we call the environment function in line 14. The environment function returns

the next state residing in the component. In line 15, we calculate an address from the

state vector using a hash function. Then we check if the bit in that memory address

is set in line 16. If the bit is not set, then we set the bit to show that the state has

already been visited in line 17 and push the state into the stack in line 18. If the

bit has already been set, then we assume that we have a duplicate state and ignore

it. Hash collision occurs when two different states are hashed into the same address.

Lines 15 to 17 are a simplification of the actual bitstate hashing algorithm.

As discussed in the previous paragraphs, we simulate four of the most com-

monly used pthread concurrent behaviors in SPIN: creating a thread, using mutex

to lock and unlock shared variables, waiting and signaling on a condition, and then

joining the threads. The c to spin function takes a pthread instruction and turns it

into a corresponding SPIN instruction. Then it executes the SPIN instruction to gen-

erate the next state of the component and returns it back to the component function.

In line 21, for example, we check the type of current instruction. If it is a thread

creation instruction, then we translate it into a corresponding SPIN instruction in

line 23 and execute it to generate the next state in line 24. The other cases follow a

similar pattern.

The environment function runs the code in the native execution environment

until it hits the first state residing in the component; it then returns to the component

function. In lines 39 and 40, we execute the program as is. When the instruction

leaves the environment, we check if it is a pthread instruction. If it is, then we call

the function c to spin in line 42. Otherwise, we return to the component function

in line 43. One special situation to consider here is when the environment invokes a

thread. In this work, we assume that the environment is sequential. Therefore, when
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the environment invokes a thread, we assume that the thread is in the component

and register it with an array of threads that SPIN creates in line 38.

3.3.2 Concurrency modeling

One of the main advantages of a model checker is its ability to reason about concurrent

programs. In this section, we discuss how we model the concurrent component in our

model checking environment.

In this work, we model pthread function calls using model checker concurrency

primitives. This allows us to leverage the model checker’s state space exploration

infrastructure and concurrency abstraction. As shown in the c to spin function in

Fig. 3.1, we simulate a subset of pthread that includes creating a thread, using mutex

variables, using conditional variables, and joining the threads. These functions are the

most commonly used functions in the pthread library, and we can generate useful real-

world examples from them. Other pthread functions can be implemented but require

reimplementing the pthread library and rewriting the SPIN model checker, which is

beyond the scope of this work. Significant modifications are required because pausing

the environment to switch thread contexts requires the ability to pause execution.

We focus on modeling concurrent components at the C statement level, in-

stead of at the assembly code level. This approach misses some behaviors because

each C statement corresponds to several assembly instructions and threaded program

interleaves at the assembly instruction level. We might miss different kinds of er-

rors such as deadlock and race conditions. The advantage of this approach is that it

significantly reduces state space size by exploring fewer interleavings. This kind of

state space reduction is especially important when we reason about concurrent soft-

ware systems described in general-purpose programming languages because the state

space size of the general program grows much more quickly than that of the regular

model due to the large number of rich data types used by general programs.
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1 proc init(prog)
2 push(start state)
3 addr = hash (start state)
4 inMem[addr] = 1
5 component()
6 proc component()
7 while (size(stack) != 0)
8 cur state = top(stack)
9 if (cur inst = next transition(cur state))
10 if (cur inst ∈ component && cur inst == pthread inst)
11 next state = c to spin(cur inst, cur state)
12 else if (cur inst ∈ component && cur inst != pthread inst)
13 next state = cur inst(cur state)
14 else next state = environment(cur inst, cur state)
15 addr = hash (next state)
16 if (!inMem[addr])
17 inMem[addr] = 1
18 push (next state)
19 else pop(stack)
20 proc c to spin(cur inst, cur state)
21 switch (cur inst)
22 case pthread create :
23 cur inst = spin proc

24 next state = cur inst(cur state)
25 case pthread mutex :
26 cur inst = spin mutex

27 next state = cur inst(cur state)
28 case pthread cond :
29 cur inst = spin cond

30 next state = cur inst(cur state)
31 case pthread join :
32 cur inst = spin join

33 next state = cur inst(cur state)
34 case default :
35 return next state

36 proc environment(inst, state)
37 do {
38 if (inst == pthread create) register spin proctype
39 next state = inst(state)
40 inst = next transition (next state)
41 } while (inst ∈ environment)
42 if (inst == pthread inst) return c to spin(inst, next state)
43 else return (inst(next state))

Figure 3.1: State enumeration algorithm combining an abstract component with a
concrete environment
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3.3.3 Component abstraction

As mentioned earlier, state space explosion is the most challenging problem to address

for models in general programming languages because such models have not only

concurrency, like other models, but also rich data types, which contribute to most

of the state vector size. We use an abstraction technique to reduce the state space

size of the concurrent component. The choice of abstraction type is important here

to ensure smooth communication between the abstract component and the concrete

environment. In this section, we analyze the existing abstraction techniques and

discuss the abstraction approach we use.

Overapproximation introduces extra behaviors to the component. Overap-

proximation is not a good choice for our model because overapproximation abstrac-

tion passes the extra behaviors into the concrete environment, which might cause the

program behaviors to become intractable or the environment to fail. Hence we use

underapproximation to derive the abstract state from the actual concrete state. The

concrete states of the component under test are explored and stored on the stack,

and abstract representations of these concrete states are stored in a hash table to

detect termination and duplicate states. The idea of the abstraction is similar to the

underapproximation abstraction proposed by Pasareanu et al. [21]. However, we use

bitstate hashing, instead of predicate abstraction, because the ability to model check

programs using predicate abstraction is very limited because of the limited power of

the theorem prover. Also, the time required to use the theorem prover exceeds the

savings gained through precision and refinement for most programs (D. Kudra and E.

G. Mercer, Finding termination and time improvement in predicate abstraction with

under-approximation and abstract matching, MS thesis, Brigham Young University,

2007).

Bitstate hashing [11] is the abstraction technique we use in the component

under test. In Fig. 3.1, lines 15 to 17 demonstrate this process. Bitstate hashing
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abstracts a state into a single bit. Given a state vector, a hash function is applied to

it to generate an address. If the bit in this address is set to 0, then we know that this

state is a new state, and we set the bit in that address to 1 and continue exploring

it. If the address has already been set to 1, we assume that the state has already

been visited and stop exploring it. Hash collision occurs when two states are hashed

into the same address. This can be reduced by increasing the number of bits used to

represent a state or by using multiple hash functions to compute the address.

3.4 Implementation method

We implement this work in SPIN and verify component-based software written in

C using the pthread library. In this section, we introduce different tools and the

verification method we use to achieve this goal.

Given a C program with pthread library calls, we translate it into a PROMELA

model that is usable by SPIN. The pthread library calls are translated into equivalent

PROMELA instructions. The translation from C code to PROMELA is done using

the C Intermediate Language Compiler (CIL) [19]. CIL can compile most valid C

programs into a few core constructs with clean syntax. For example, CIL compiles all

looping constructs in C into a single form, and it adds an explicit return statement to

all function bodies. This simplifies the varieties of syntax we need to consider during

the translation process. Figure 3.2 shows a simple C program and the correspond-

ing CIL program. We use CIL to parse the given C program into a simplified but

semantically equivalent form, and we modify the CIL code generator to generate a

PROMELA model.

The translation between C code and PROMELA is further simplified by SPIN’s

support of embedded C code. SPIN provides five different primitives to allow C code

to run within PROMELA. They are identified by the keywords c code, c track,

c decl, c state, and c expr [13]. Everything enclosed inside a c code block is

47



1 void main() {
2 int i;
3 for (i = 0; i < 10; i++)
4 if (i == 4) break;
5 else i = i ∗ 2;
6 }

(a) A simple C program

1 void main(void) {
2 int i = 0;
3 while (1){
4 while 0 continue: /* CIL Label */;
5 if (! (i < 10)) goto while 0 break;
6 if (i == 4) goto while 0 break;
7 else i ∗ = 2;
8 i++;
9 }
10 while 0 break: /* CIL Label */;
11 return;
12 }

(b) The CIL translation

Figure 3.2: An example of C to CIL

compiled directly by the GNU C Compiler and then executed and treated as one

atomic PROMELA state. Keywords c state and c track declare a C variable to

be part of the state vector. Keyword c decl is used to declare C variables inside

PROMELA. Keyword c expr encloses any form of C expression that does not have

side effects.

These primitives facilitate a direct translation between C source code and

PROMELA. We enclose each statement in the component in one single c code block.

This allows SPIN to generate and store states for each statement in the component.

All statements, except function calls, while statements, and the if statement, can be

enclosed inside a c code block to generate a PROMELA statement.

Since statements can be nested in the while statements or if statement, simply

enclosing them into a c code block will miss exploring the behaviors of the intermedi-

ate statements. Therefore we need to turn them into loops and conditional statements

of PROMELA. The while loop needs to be translated into do :: sequence [ :: sequence
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]* od in PROMELA, in which the sequence is composed of PROMELA statements

that are similar to the C statements. In other words, PROMELA contains the state-

ment block between do and od, instead of lying inside a while block. The if statement

in C needs to be translated into if :: sequence [ :: sequence ]* fi in PROMELA. The

details of this translation can be found in the work of Bao [4]. The purpose of this

translation is to ensure that SPIN is aware of all possible interleavings of the C state-

ments. The translated PROMELA model depends on SPIN’s underlying state space

reduction techniques to reduce its state space.

When the statement is a function call, then we have two cases to consider:

If the callee function is inside the component, then we translate this function call

statement into a PROMELA statement, generating a new thread. If the callee is a

library function or a function inside the environment, then we simply enclose it inside

a c code block to execute it as is.

We use c decl to embed all global variable declarations in C and use c track

to tell SPIN to include those variables in the state vector. All local variables in the

component are declared in c state to indicate that those variables should be included

in the state vector and tracked by SPIN. We enclose everything in the environment

in one c code block to execute it as is.

Figure 3.3 shows a C program and its corresponding PROMELA program. In

Fig. 3b, line 1 declares i as a local variable of proctype main and is included in the

state vector. When the PROMELA variables are accessed in the c code fragment,

SPIN needs a special prefix to identify them. For global variables, this prefix is now

followed by a period. For local variables, this prefix is an uppercase letter P , followed

by the name of the process type, followed by a right-pointing arrow (→). Line 2 of

Fig. 3a, for example, corresponds with line 4 of Fig. 3b. Here i in C code is translated

into Pmain → i in PROMELA. The same rule applies to all variables. The rest of
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1 void main(void) {
2 int i = 0;
3 while (1){
4 while 0 continue: ;
5 if (! (i < 10))
6 goto while 0 break;
7 if (i == 4)
8 goto while 0 break;
9 else i *= 2;
10 i++;
11 }
12 while 0 break:;
13 return;
14 }

(a) A simple CIL program

1 c state “int i ” “Local main”
2 proctype main()
3 {
4 c code {Pmain → i = 0;};
5 do
6 :: while 0 continue: ;
7 if
8 :: c expr {! (Pmain → i < 10)} →
9 goto while 0 break;
10 :: else → skip;
11 fi;
12 if
13 :: c expr {Pmain → i == 4} →
14 goto while 0 break;
15 :: else → c code {Pmain → i *= 2; };
16 fi;
17 c code {Pmain → i++;};
18 od;
19 while 0 break: ;
20 }

(b) The PROMELA translation

Figure 3.3: An example of C to CIL
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the translation is mostly a straightforward statement-by-statement matching between

C statements and PROMELA c code fragments.

In Fig. 3.4, lines 2 and 5, pthread create creates a thread, assigns it an ID, and

passes an argument to the thread. SPIN has a corresponding instruction to create a

thread, but the C argument cannot be passed directly through SPIN’s thread creation

instruction because SPIN does not support rich data types, as does C. We solve this

problem by following three steps: First, we assign a unique global ID number to each

SPIN thread that is generated; then we copy the C argument into a piece of global

memory indexed by this thread ID using embedded C code; finally, we pass the ID

as an argument to the new thread. When the new thread is executed, it receives the

argument from global memory, indexed by its ID passed as the parameter.

1 C statement:
2 pthread create(&thread[t], NULL, PrintHello, (void *)t);
3
4 CIL translation:
5 pthread create((pthread t * restrict )(& threads[t]), (pthread attr t const *

restrict
6 )((void *)0), & PrintHello, (void * restrict )((void *)t));
7
8 PROMELA translation:
9 atomic {
10 run PrintHello(globalID);
11 c code {
12 *(& Pmain → threads[Pmain → t]) = now.globalID;
13 Garg[now.globalID] = (void * restrict )((void *)Pmain → t);
14 };
15 globalID = globalID + 1;
16 };

Figure 3.4: C, CIL, and PROMELA version of creating a new thread

Figure 3.4 shows this translation. The function pthread create creates a thread

named PrintHello, gives it a unique identifier thread[t], and passes it to the argument t.

Lines 9 to 15 show the PROMELA translation. Line 10 invokes the thread PrintHello

in PROMELA. Line 12 assigns the new thread a unique ID number. Line 13 stores
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the C argument into a global argument array Garg, indexed by the thread ID. All of

the preceding steps are done in one atomic step to simulate pthread create.

1 C statement and CIL translation:
2 void *PrintHello(void *threaarg)
3 {
4 struct thread data *my data;
5 my data = (struct thread data *)threadarg;
6 }
7
8 PROMELA translation:
9 proctype PrintHello(int threadID)
10 {
11 c code{PPrintHello → threadarg = Garg[PPrintHello → threadID];};
12 c code {PPrintHello → my data = (struct thread data * )PPrintHello →

threadarg;};
13 }

Figure 3.5: Argument passing

Figure 3.5 shows how the thread receives its argument. In line 9, threadID

contains the unique ID of thread PrintHello. When this thread starts its execution,

it will first grab its argument from global argument array Garg by using its ID as an

index at line 11.

Function pthread join blocks the caller thread until the indicated thread fin-

ishes. This is done in SPIN by channel. We declare an array of global channel indexed

by the thread ID. The caller of pthread join blocks in the global channel called Gchan

that is indexed by the ID of the thread it is waiting to join. When each thread

finishes, it sends a signal to the channel indexed by its thread ID. When the caller

thread receives the signal, it unblocks and resumes its actions.

Functions pthread mutex lock and pthread mutex unlock lock and unlock a mu-

tex variable, respectively, to give the thread the exclusive right to access a shared

variable. We declare a corresponding mutex variable in SPIN. A thread locks the

mutex variable by subtracting 1 from it and unlocks the variable by adding 1 to it.
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Before locking the variable, the thread needs to ensure that the variable is unlocked.

Locking and unlocking steps occur in an atomic step in PROMELA so that no other

thread can access the mutex variable when one thread has access to it.

Funcion pthread cond wait blocks a thread until a condition is met. Function

pthread cond signal signals the blocking thread if the condition is met. In SPIN, we

create a corresponding conditional variable. The thread waits in a certain condition

for the conditional variable to become 1 and signals a certain condition by assigning

1 to the conditional variable. The details of the translation can be found in Appendix

B.

3.5 Experimental results

The experimental results given in this section show that our tool is able to verify and

find errors of concurrent components running in complex environments in a time- and

space-efficient manner.

The test cases we use to evaluate the tool include producer-consumer (PC),

reader-writer (RW), dining philosopher (DP), dining philosopher with deadlock

(DP E), and conditional variable problems (CV and CV2). All the test cases are

open source code downloaded from the Internet. Table 3.1 shows the verification

results for all models.

The PC program is composed of two threads: the producer and the consumer.

They share a common buffer with limited size. Producer and consumer use a mutex

variable to ensure exclusive access to the buffer when they need to produce or con-

sume. Producer waits if the buffer is full, and consumer waits if the buffer is empty.

The model itself is composed of 207 lines of code. We extend this model to add a

requirement that the consumer has to pay before he consumes a product. This is

done by adding an ATM bank application to the model.
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Table 3.1: Verifying concurrent software components in a concrete environmenta

Models cLine eLine States memAbs Mem Time eTime

PC 207 10000 93312 1.9 26 840 NDEF

RW 204 825 414366 2.5 94 2520 NDEF

DP 75 380 13M 269 3712 120 NDEF

DP E 108 380 1520 3 NDEF NDEF 4.1

CV 118 23 9M 135 3221 72 NDEF

CV2 141 0 273M 1073 180606 3300 NDEF

aAll times are in seconds. Memory is in megabytes.

The first column gives the name of the model and the first row gives the different metrics we used to evaluate our approach. Abbreviations

are as follows: cLine, number of lines of code in the component; eLine, number of lines of code in the environment; eTime, time spent

finding errors; M, million states; mem, amount of memory needed when no abstraction is applied to the state space; memAbs, amount

of memory used when bitstate hashing is used; NDEF, not defined; states, number of states explored; time, time spent exploring the

full state space.

The ATM bank application is also an open source code downloaded from the

Internet. It is a stand-alone program that simulates banking processes such as opening

an account, depositing and withdrawing money, checking an account balance, and so

on. This application is composed of more than 10,000 lines of code. It includes

complex data structures, sockets, library calls, and pointers.

Integrating the PC problem and the ATM application directly will result in

a complex program that is currently impossible to verify with the existing software

model checker. In our approach, we divide the system into component and environ-

ment by including the PC threads in the component and the ATM application in

the environment. Now, when the consumer calls any functions in the ATM appli-

cation, they execute in the native execution environment, without interruption from

the model checker.

The second verification model we used is the RW problem. Reader and writer

are two threads operating on the same object. Reader waits for a condition that

signals him to read, and writer waits for a signal to write. Both need to have an

exclusive right to the shared object when they want to operate on the object. Here

we add an environment code to enable the reader to sort the items he reads. This

is done by having the reader call a sort function whenever he reads an object. The

second row in Table 3.1 shows this result.

The third and fourth models are DP and DP E, in which the environment

computes options prices. The environment we provided was a stock options price

calculation program that includes mathematics such as square root, exponential func-
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tions, and so on. Our verification result indicates that the third one is error-free and

the fourth one has a deadlock in it. The error we discovered in the fourth model is an

actual error in the original code downloaded from the Internet. This error is caused

by a possible sequence of execution in which all philosophers get one chopstick and

wait for the other one. The third and fourth rows of Table 3.1 show this result.

The fifth model is a conditional variable model. In this model, one thread

waits on a condition, and the other threads work toward satisfying the condition.

Once the condition is met, they signal the waiting thread. Different from the other

examples, this model also calls the component from inside the environment.

We modify the fifth model CV to generate CV2. In this model, we verify

the entire program, instead of dividing it into component and environment. The

environment only includes 23 lines of code in the CV model. This environment has

the simple functionality of turning an integer into a string. However, it contains some

complex data structures. This model demonstrates how even very small environments

can add complexity to the component. The test result is given in the last row of

Table 3.1. In this model, the verification is not able to terminate. This is because

the environment adds one more thread with more data sets to the system.

Table 3.1 shows one common feature for all the models; that is, although the

number of states explored is quite large for all the models, they all use relatively small

memory sizes. That is because we applied bitstate hashing here. The average state

size for these models is 250 bytes, which is reduced to 3 bits in bitstate hashing, which

is the default number of bits for bitstate hashing in SPIN. The difference between

column “memAbs” and column “Mem” shows us the amount of space saved by using

abstraction.

The test results indicate that our method is able to verify models that cannot

be verified by SPIN directly due to their complexity. Although we are not able

to guarantee full state space exploration even after the algorithm terminates due to
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bitstate hashing, we can predict the state space coverage quite accurately by analyzing

the hash factor from the verification result [11].

3.6 Conclusion and future work

In this article, we present a concurrent component verification method that is able

to verify concurrent components within complex concrete environments. We abstract

the component under test and verify the abstract component using a model checker.

The rest of the program is left concrete to run as is in the native execution environ-

ment. The abstraction is designed to simplify the interaction between the abstract

component and the concrete environment. We implement this approach in SPIN to

verify C programs using a subset of pthreaded libraries. This tool is evaluated by

several test cases that are composed of concurrent components and complex environ-

ments. SPIN fails to verify them directly, while our approach is able to verify and

find errors in these test cases.

In the future, we plan to work on automatically extracting components from

component-based software. Currently we define a component as a collection of user-

provided functions. We will also work on extending our tool to support the full

pthread library.
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Chapter 4

Test Case Generation Using Model Checking for Software

Components Deployed into New Environments

Abstract

In this paper, we show how to generate test cases for a component deployed

into a new software environment. This problem is important for software engineers

who need to deploy a component into a new environment. Most existing model

based testing approaches generate models from high level specifications. This leaves

a semantic gap between the high level specification and the actual implementation.

Furthermore, the high level specification often needs to be manually translated into a

model, which is a time consuming and error prone process. We propose generating the

model automatically by abstracting the source code of the component using an under-

approximating predicate abstraction scheme and leaving the environment concrete.

Test cases are generated by iteratively executing the entire system and storing the

border states between the component and the environment. A model checker is used

in the component to explore non-deterministic behaviors of the component due to the

concurrency or data abstraction. The environment is symbolically simulated to detect

refinement conditions. Assuming the run time environment is able to do symbolic

execution and that the run time environment has a single unique response to a given

input, we prove that our approach can generate test cases that have complete coverage
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of the component when the proposed algorithm terminates. When the algorithm does

not terminate, the abstract-concrete model can be refined iteratively to generate

additional test cases. Test cases generated from this abstract-concrete model can be

used to check whether a new environment is compatible with the existing component.
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4.1 Introduction

As the complexity of software increases, so does the cost to develop, test, and maintain

software. Component based software development decreases this cost by reusing

software that has already been developed and tested. One difficulty of reusing a

component is ensuring that a component developed in one environment works as

expected in another environment.

In this paper, we address the problem of testing a new software environment

for compatibility with an existing component. We define components as a reusable

piece of code that can accomplish a certain task and is designed to interact with

other components or programs. The environment is the rest of the software which

closes the component to make it executable. The environment can include the other

components or programs that interact with the component. A new environment is

an environment other than the one in which the component is originally deployed. In

this work, we assume the component is already defined and we do not address the

problem of extracting a component from a software artifact.

This problem is important to software engineers who must deploy a component

inside a new software environment. Since software is increasingly built from the

existing components, verifying whether the already developed components work as

expected in new environments become more important.

Existing techniques to address the problem of verifying software components

include testing and formal verification. Software testing is useful in finding many

errors in the early stages of software development. Since it is well understood that

software can not be tested completely, finding a suitable set of test cases is critical

in software testing. Model based testing is often used to generate a promising set

of test cases by creating an abstract test model of the components to guide test

case generation. The abstract model should capture important functionalities of the
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System Under Test (SUT) and result in a useful test suite. Model based testing

technique generates test cases according to the test goal, such as a coverage criterion.

The two main challenges for model based testing are how to generate a model

and how to generate the test cases. The current approaches often generate the model

manually. There are several drawbacks for this approach. First, It is a time consuming

and error prone process to manually generate an abstract model of the SUT. In most

cases, the SUT is too complex to be accurately modeled. Second, if the model is

manually generated, generally there is a semantic gap between the model and the

original system. Therefore, it might not be feasible to turn the abstract test cases

into executable test cases. Third, once the model is generated, it is fixed. Refining

the model to generate more test cases or adding new features to the original system

requires an entire new modeling process. Testing an existing component within a

new environment is difficult when using model based testing approaches because the

new environment is often too complex to be modeled or there is simply no high level

specification or source code available for the environment from which a model can be

extracted.

Model checking complements software testing by locating errors which are dif-

ficult to find using software testing alone. However, applying model checking to a

component is difficult due to the complexity of both the component and its environ-

ment.One technique is to abstract the environment and leave the component under

test concrete. The abstract environment provides different inputs to the component

so that the model checker can explore all behaviors of the component. The drawback

of this approach is that abstracting the environment is difficult or impossible when

there is no formal model for the environment. Furthermore, the component itself can

be so complex that model checking it without abstraction is also impossible.

In this paper, we propose an original approach to generate test cases to verify

the compatibility of existing components with new software environments. Our ap-
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proach is a novel integration of model checking with model based testing to generate

test cases for the new environment. Through the integration, we obtain the advan-

tages of both model checking and model based testing and reduce the drawbacks of

both techniques.

Given a component and the original environment, we abstract the component

and leave the environment concrete. We start by executing the entire system normally.

When program control enters the component, a model checker generates concrete sys-

tem states from the component source code. We then apply an under-approximating

predicate abstraction based on [21] to the concrete states. The abstraction saves time

and space by reducing the model. When program control reaches the environment,

we pause the model checker and save the program state into the test input set. We

then initialize the environment using the program state and execute the system in the

native execution environment. When program control returns to the component, we

save the current program state into the test output set and resume the model checker.

We repeat this process to obtain a set of input and output values. These values are

test cases which can be used to test a new software environment for compatibility

with the component.

The abstraction approach has been used to model check software consisting of

hundreds of lines of code in several medium sized C programs with several thousand

lines of code in less than 5 minutes. These programs include open source software

and student projects from an operating systems class. The results are discussed along

with the implementation of the algorithm in SPIN in [4]. In this paper, we propose

an adaptation to the method to support test generation for components deployed into

new environments.

Figure 4.1 illustrates this approach. The left side of the figure shows the model

composed of an abstract component, which is represented by the dotted square, and

a concrete environment, which is represented by the solid square. The circles and
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Figure 4.1: Test generation for a new environment using an abstract model of the
component under test.

arrows indicate program states and transitions respectively. The state space of the

abstract component is explored until execution exits the component and enters the

first environment state A. Then the program executes normally until it reaches the

last environment state B and reenters the component. A similar process occurs for C

and D. The right figure shows the resulting list of test cases for the new environment.

In this work, we assume the environment has a single unique response for a given

input.

In order to generate test cases using an abstract model of a component within

a concrete model of the environment, we need to address two problems. One is to

simplify communication between abstract components and concrete environments.

The other one is to obtain a precise model for the abstract component through re-

finement. The precise model is a model that is bisimilar to the concrete component

so that it behaves the same as the concrete component. Communication between

component and environment is simple when state exploration in both the component

and environment is based on executing the original program on concrete states. If

we use an abstract state in the component, however, all concrete states represented

by the abstract state at the component interface must be generated, passed to the

environment, executed in the environment and then recollected to form possibly new
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abstract states. We discuss completeness, correctness and refinement for an abstrac-

tion scheme based on [21] which address the above problems.

Generating test cases with the abstract component is possible because the

new environment needs to have the same interface as the old environment in order for

the component to function inside the new environment. Assuming there is a single

unique response for any given input to the environment, test cases generated using

an abstract model of the component are compatible with the new environment if the

component is compatible with the new environment.

The goals of our test cases include getting a complete coverage of the compo-

nent interface behaviors in the original environment and detecting errors in the new

environment. The test coverage obtained by our approach depends on the refinement

and termination of the algorithm. Assuming the run time environment is able to

do symbolic execution either through instrumentation or some other mechanisms, we

can obtain complete test coverage for the component interface in the original environ-

ment when our algorithm terminates. We also can obtain more behavioral coverage

for the original environment by including a large part of the environment in the com-

ponent. When the new environment fails the tests, we know there are errors in the

new environment. If the new environment passes all the tests, then we can not claim

anything about the new environment because the new environment might include

more behaviors than the original environment.

Compared with traditional model based testing, the advantage of our approach

is that both modeling and test generation are automatic. And since test cases are

obtained through running the component within the original environment, they can

be applied directly to the new environment without the need to transform abstract

test cases into executable test cases. Furthermore, our modeling and test generation

approach can be refined iteratively to obtain an increasingly precise model yielding

more test cases.
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This paper is organized as follows. In section 4.2, we present related work.

In section 4.3, we give the definition of the model which we use to reason about. In

section 4.4, we describe the algorithm we propose. In section 4.5, we establish the

necessary conditions for a bisimulation between the abstract component model and

the original software. In section 4.6, we conclude and discuss future work.

4.2 Related Work

We focus on related work in the areas of model based testing, model checking compo-

nent based software, generating models through abstraction, and combining symbolic

simulation with concrete exectuion.

Most of existing approaches to apply model based testing to the SUT generate

models from high level specifications [7,9]. The approach has the advantage of finding

errors faster in the early stages of the development process. However, there is often

a semantic gap between the high level specification and the actual implementation.

Furthermore, if the high level specification is not written in a standard modeling

language, a manual translation from the specification to the actual model is required,

which is a time consuming and error prone process. Our method extracts a model

directly and automatically from the source code to obtain an accurate model of the

SUT fast. Our SUT is unique in a way that it is a mixed model of abstract component

and concrete environment.

Existing work in model checking of component based software includes high

level specifications of components as models and verifying concrete source code for a

component inside an abstract environment. In [15, 5], the components are modeled

using behavioral protocols. The drawback of this approach is that a precise high-level

model of a component can be difficult to obtain. We obtain the component model by

executing source code.
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In [6], a program is divided into two parts: the component under test and

the environment. The component under test is verified concretely inside the abstract

environment which provides the necessary behaviors to close the environment. The

drawback of this approach is it is a time consuming and error prone task to abstract

the environment and the component itself may be too complex to be verified without

an abstraction. In our approach, we abstract the component, which allows us to

reason about more complex components and we leave the environment concrete which

allows our environment to include language features such as complex data structures,

pointers and library calls.

We apply Pasareanu et. al ’s [21] under-approximation abstraction scheme to

the component under test. This abstraction also explores the concrete state space and

stores concrete states into a queue or a stack. A set of predicates is used to abstract

each concrete state. Each predicate is represented by a single bit in the abstract state.

Precision in the abstraction is lost when two concrete states map to the same abstract

state, but have different behaviors in the original system. An iterative refinement is

done to include more and more behaviors of the original system by adding predicates

to the abstraction. The algorithm terminates when the resulting abstract state space

is bisimilar to the concrete state space. Termination of the refinement process is

detected by checking the weakest precondition of each transition in terms of the given

predicates with the help of a theorem prover. In sections 3 and 5 we reason about

similar properties of Pasareanu’s abstraction scheme in a mixed concrete/abstract

computational model.

There are several works which combine concrete execution with symbolic sim-

ulation to generate test cases. The concolic testing approach [22] starts by executing

the unit under test with random inputs. Path constraints are then collected along

with concrete execution paths. These path constraints are used to provide new in-

puts to the unit under test which drive concrete execution through an alternative
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path. We also combine concrete execution with symbolic simulation. Our approach

is different in two major ways. First, concolic execution tests a unit by providing

random input values. We test a new environment to see if it is compatible with an

existing component by providing the environment the input that is generated by the

component. Second, concolic execution uses symbolic execution and path constraints

to generate new concrete input to the unit under test. We use symbolic simulationa

and path constraint to generate new predicates which refine the component and this,

in turn, generates new input to the environment. Compared with concolic testing,

our approach is more restricted with theorem prover capabilities but gets better test

coverage.

Pasareanu et al [20] extend JPF to generate test cases for the unit under test.

They symbolically simulate the unit under test and concretely run the surrounding

environment to drive the unit under test. Like our approach, it generates test cases by

exhaustively exploring the state space of the components under test with the help of

model checker in a concretely executed environment. The difference is [20] generates

test cases by symbolically analyzing the unit under test, but we generate test cases

by concretely executing the component under test.

4.3 Computational Model

In this section we present a computational model for abstract components inside

concrete software environments for use in model based test generation. As mentioned

earlier, we apply under approximated predicate abstraction based on [21] to model

the components. Under approximating abstraction with predicates allows the

detection of missed program behaviors through the use of weakest preconditions

as described by Pasareanu et.al [21]. Later, we will describe how to reason about

abstraction using weakest preconditions in our component representation.
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Component A component is a reusable piece of code that can accomplish a certain

task and which is designed to interact with other components or programs. We

assume the source code of the component is available. In this work, we simply define

a component as a set of program counter (pc) values. We let PCc denote the set

of pc values that belong to the component under test. The problem of extracting a

component from a software artifact is important, but left as future work.

Our model of a system consists of a concrete part and an abstract part. We

model both parts separately and then combine them in a mixed model as follows.

Concrete Model Given a finite set of atomic propositions AP , the state space of a

program is modeled as a transition system M = (S, s0, T, L) where:

• S is a finite set of states,

• s0 ∈ S is the initial state,

• T ⊆ S × S is a set of transitions,

• L : S → 2AP is a labeling function, where L(s) = {p ∈ AP | s |= p}. Here

s |= p means atomic proposition p is true in state s.

Figure 4.2 shows an example of the concrete model with other models that

will be introduced later. In (a), several simple C program statements are given,

and in (b) the corresponding concrete model is shown. Each circle represents a

state and each arrow represents a transition. The first number in the circle rep-

resents the value of variable i and the second number represents the value of variable j.

Abstract Model (adapted from [21]) Assume Φ = {φ1, . . . , φn} is a set of predicates.

Assume αΦ : S → Bn is an abstraction function in which Bn = {0, 1}n is a set of

bit vectors where n is the number of predicates, b1 . . . bn ∈ Bn is a bit vector, and
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αΦ(s) = b1 . . . bn with bi = 1 if s |= φi , else bi = 0. Here s |= φi means the predicate

φi is true in state s.

Given a concrete program model M = (S, s0, T, L), a set of predicates Φ, and

an abstraction function αΦ, the abstract model A = (Sα, a0, Tα, Lα) where:

• Sα = {a | s ∈ S and a = αΦ(s)} is a set of abstract states,

• a0 = αΦ(s0) is the initial abstract state.

• Tα ⊆ Sα × Sα is a set of abstract transitions.

• Lα : Sα → 2AP is a labeling function for abstract states, where Lα(a) = {p ∈

AP | a |= p}. and assume AP ∈ Φ.

Figure 4.2 (c) shows the corresponding abstract model of (a) with dotted

circles to represent abstract states. In this figure, we use two predicates i < 10 and

j < 10 to abstract the system. The first boolean variable corresponds to i < 10

and the second boolean variable corresponds to j < 10. As is typical in predicate

abstraction, we never abstract the program counter.

1 i = 2;
2 j = 5;
3 i = i * j;
4 j = j * i;
5 i = i - 1;

2,0

2, 5

10,50

9,50

10,5
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F,F
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(a) (b) (c) (d)

Figure 4.2: (a) Sample C program (b) Concrete system (c) Abstract system using
predicates i < 10 and j < 10 (d) Mixed system

Mixed Model The mixed model includes both the abstract and concrete parts of

the program. Given a concrete program model M = (S, s0, T, L), a predicate set Φ,

and an abstraction function αΦ, the mixed model X = {Sx, x0, Tx, Lx} is
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• Sx = {x | x = f(s) and s ∈ S} is a mixed set of abstract and concrete states,

where f is a function such that

f(s) =











s pc /∈ PCc

αΦ(s) otherwise

If the pc value in the current state does not belong to the component, then the

state remains concrete. Otherwise, the state gets abstracted.

• x0 is a start state, so that if pc ∈ PCc then x0 = αΦ(s0), else x0 = s0,

• Tx ⊆ Sx × Sx is a set of transitions. More specifically, it consists of con-

crete transitions T c→c
x , abstract transitions T α→α

x , transitions between concrete

and abstract states T c→α
x , and transitions between abstract and concrete states

T α→c
x ,

• Lx : Sx → 2AP is a labeling function, where Lx(x) = {p ∈ AP | x |= p}

Figure 4.2 (d) represents the mixed model. We assume that program location

1 and program location 5 belong to the component and that the rest belong to the

environment.

We write s
t

−→ s′ to indicate that there is a transition t between states s and

s′. We write s → s′ to denote a transition between s and s′ when the context is

obvious. If state s reaches s′ through zero or more transitions, we write s →∗ s′ and

say s′ is reachable from s.

Path A path π = s0 . . . sn in a mixed model is a finite sequence of states such that

(si, si+1) ∈ Tx for all i ∈ 0 . . . n − 1. We use πsn
si

to denote that there is a path

between si and sn. Paths which start in the abstract component, enter the concrete

environment and return to the abstract component will need special treatment later

when defining verification properties. We call them border paths. For example, in
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Figure 4.2(d), these five states compose a border path. we use a1

αc+α
−→ a2 to indicate

border path where
αc+α
−→ represents the path starts with an abstract state, goes through

one or more concrete states and ends at an abstract state.

For two paths πxn
x0

and πyn
y0

, πxn
x0

= πyn
y0

indicates that these two paths follow

the same transitions, and πxn
x0

6= πyn
y0

indicates that one or more transitions in each

path are different.

Under approximation abstracts away some behaviors of the concrete system.

If there is no loss of precision in the behavioral model due to the abstraction for

each transition relation, we say the abstraction is exact. Checking the exactness

of the abstraction of the transition relation is the biggest challenge we face using

mixed abstract and concrete models. If each transition between abstract states is

exact with respect to the corresponding transition between concrete states, then a

bisimulation relation can be established between the abstract and concrete models

and CTL* properties will be preserved in the abstract model. When the transition

resides entirely in the abstract part of the system, this check is done easily using

weakest precondition [21].

However, the check is more complicated when we must check the exactness of

a border transition. In order to explore all possible behaviors in such border cases,

we need to reason about the accumulated effect of the intermediate transitions on

the border states. We will use a method similar to symbolic simulation to capture

the meaning rather than just the effect of concrete transitions on the border states.

Symbolic transitions A symbolic transition is an accumulation of the effects of a

sequence of transitions on the state variables. For example, if we have a series of

transitions x = x + 1, x = 2x, and x = x2 in a path, then symbolic transition for

these transitions is x = (2(x + 1))2. Given a path πxn
x0

, the notation (x0, xn) denotes
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the symbolic transition from x0 to xn. In other words,

(x0, xn) = (x0, x1) ◦ (x1, x2) ◦ · · · ◦ (xn−1, xn)

where

0 ≤ i ≤ n − 1 and (xi, xi+1) ∈ Tx

and transition composition, ◦, denotes the sequential application of a transition to

the result of the previous transition.

As in [21], the precision check is based on weakest preconditions. We must,

however, cope with weakest preconditions defined over border transitions as well as

component transitions. In either case, the basic definition is the same.

Weakest Precondition The weakest precondition, in terms of a transition and

predicate φ, calculates a predicate that must be satisfied before a transition exe-

cutes so that φ is satisfied after the transition. We use wp(φ, i) to express weakest

precondition of transition i in terms of a predicate φ.

The wp(φ, i) = φ[xnew/xold] where xnew is the new value of variable x in the

predicate φ after a transition i, and xold is the old value of variable x before the

transition i.

4.4 Algorithm

In this section we describe the state enumeration algorithm for generating states and

test cases in abstract components in the context of a concrete environment. We have

omitted property checking and have assumed that all predicates are global in order

to simplify the presentation.
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Figure 4.3 shows the algorithm. It starts by calling the procedure init which

takes a program prog as input. In line 2, Φ is initialized with all of the guards in

the program. When a component is abstracted through predicate abstraction, the

predicates in Φ are the initial set of predicates used to create abstract states during

the first iteration of the algorithm. Φnew stores the new predicates to refine the

abstraction after each iteration and is initialized to the empty set in line 3. The

environment function returns the first state which lies in the component.

When we have a start state that lies in the component, we push it on the

stack at line 8 and call the component function in line 9. When using predicate

abstraction with refinement, we repeatedly run the entire program until no refinement

is necessary, as shown in line 10.

The component function explores the state space by storing abstract states

in the hash table, storing concrete states on the stack, and executing transitions

which leave the component without storing states. If the next transition exits the

component, then we store the current state in the input set at line 20 and execute

instructions in the environment until the program control returns to the component

at line 21. The next state is generated by applying the current transition to the

current state, line 22, or in the environment function at line 28. State exploration

then continues by pushing the next state into the stack in line 23.

In the environment function, when the next instruction is in the environ-

ment, we simply execute it at line 28. Otherwise, we store the first state that lies in

the component as the expected test output at line 31 and return it at line 33. Sym-

bolic simulation of the border transition is performed in this function. The symbolic

execution is used to refine the border transition. The test output and test input are

paired and added to the test set at line 32.
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1 proc init(prog)
2 Φ := Guards(prog)
3 Φnew := ∅
4 do
5 Φ := Φ ∪ Φnew

6 if start instr ∈ environment then
7 start state = environment(start instr, start state)
8 push(start state)
9 component()
10 while Φnew 6⊆ Φ
11
12 proc component()
13 while size(stack) != 0
14 cur state = top(stack)
15 α = abstract (cur state)
16 if (α 6∈ hash table)
17 insert α into hash table
18 cur inst = transition(cur state)
19 if (cur inst 6∈ comp)
20 insert next state into input
21 next state = environment (cur inst, cur state)
22 else next state = cur inst(cur state)
23 push (next state)
24 else pop(stack)
25
26 proc environment(inst, state)
27 do
28 next state = inst(state)
29 inst = transition (next state)
30 while (inst ∈ environment)
31 insert next state into output
32 insert (input, output) to test set
33 return (inst(next state))

Figure 4.3: State enumeration algorithm that combines under-approximation with
concrete execution.

73



4.5 Theorems

In this section, we analyze the mixed model we defined in section 2.3. First we discuss

how to check the precision of the abstraction used in the component. Then we show

how the under approximation abstraction scheme can be used to find test cases. After

that, we discuss termination detection and property preservation in the mixed model.

4.5.1 Precision

The central problem in our mixed computational model is determining whether or

not the abstraction is precise, or, in other words, creates a bisimulation between the

partially abstract and the original systems. And this problem is particularly difficult

for border transitions which span the boundary between the abstracted component

and concrete environment.

This section focuses on reasoning about precision in predicate abstraction with

a theorem prover [21]. There are two ways in which the mixed model can lose precision

due to abstraction in the component. We illustrate each case with a simple example

then discuss how to detect and recover lost precision. Proofs are given for each

precision-recovery technique.

Figure 4.4 shows the first case. In this case, precision is lost because two

concrete states are abstracted into the same abstract state, but exhibit different be-

haviors when they go through the concrete environment and return to the component.

In (a), a simple C program is given. Here, we assume program locations 1 and 5 are

in the component under test, and that program locations 2 → 4 are in the environ-

ment. We also assume that the initial value of i is 2, and that the initial predicate

for abstraction is i ≥ 1. Graph (b) represents the corresponding system. Solid circles

represent concrete states and dotted circles represent abstract states. In each state,

a small letter represents the name of the concrete state, and the number gives the

value of i in that state. Capitol letters denote abstract states.
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In start state a, i has the initial value of 2. Since program location 1 is in the

component, we abstract the current state to abstract state A. Then program control

enters the concrete environment. At this point, we execute the program through

states b, c, and d until program control returns to the component at program location

5. Now in the current state e, the value of i becomes 1, which also satisfies the

predicate. Therefore, state e is abstracted into abstract state C since PC values

make it different than a. Next, program control returns to the beginning of the loop.

Since the current state f has the same program counter value as state a and satisfies

the same predicate, state exploration will stop at f . However, if we had allowed the

concrete execution of f , then we would have reached state j, in which the value of

i becomes 0. Since this state does not satisfy the predicate, it is abstracted into a

different abstract state B, and this behavior will be missed.

To explore both state e and j, a refinement is needed to differentiate state a and

f . We perform refinement by checking the weakest precondition of the accumulated

effect of the concrete transitions in the border path. In this example, we will take the

accumulated behaviors of i = i+3, i = i−1, i = i−2, i = i−1, that is i = i+3−1−2−1,

which will be i = i − 1. Then we check if the current predicate implies the weakest

precondition of this accumulated transition. In other words, we check if i ≥ 1 ⇒

wp(i ≥ 1, i = i − 1), that is equivalent to checking if i ≥ 1 ⇒ i − 1 ≥ 1. Since this

is false, we will add i− 1 ≥ 1 to the predicate set to refine the system. Now states a

and f are differentiated under the abstraction.

For simplicity, given a set of predicates Φ and a concrete state s, we sometimes

write αΦ(s) to denote the conjunction of all predicates in the set Φ which evaluate to

true together with the negation of remaining predicates in Φ which evaluate to false

for state s.

Theorem 1 states that doing abstraction refinement on symbolic representa-

tions of transition sequences preserves the behavior of paths through boundary states.
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1 while (i ≥ 1){
2 i = i + 3
3 i = i − 1;
4 i = i − 2;
5 i = i − 1;
6 }

concrete
abstractA BC

c,4 i,1

j,0f,1a,2e,1

h,3

g,4b,5

d,2

(a) (b)

Figure 4.4: Loss of precision in a simple C program

Theorem 1. : Let Φ denote the set of predicates to abstract the system. Given two

paths πxn
x0

and πyn
y0

, such that πxn
x0

= πyn
y0

, αΦ(x0) = αΦ(y0), but αΦ(xn) 6= αΦ(yn), let

Φ′ = Φ ∪ {wp(αΦ(xn), (x0, xn))} then αΦ′(x0) 6= αΦ′(y0)

Proof. Doing symbolic simulation with the transitions in the border path is equiva-

lent to checking weakest precondition of the transitions in the border path in reverse

order. since αΦ(xn) 6= αΦ(yn), the wp(αΦ(xn), (xn−1, xn)) is a predicate that is able

to differentiate state xn−1 and yn−1, which is also equivalent to one step of symbolic

simulation according to the definition of the weakest precondition. Then, this weakest

precondition is symbolically substituted to produce the next level of weakest precon-

dition following the current transition. This newly produced weakest precondition

can differentiate state xn−2 and yn−2 and so on. This is repeated until we obtain a

predicate which differentiates x0 and y0.

The second case in which precision is lost occurs when the execution path

branches in the environment. If the execution path branches in the environment,

then the branch guard is propagated to the predicate set.

This is shown in the graph in Figure 4.5. In (a), we assume program locations

1 and 6 are in the component and that the rest are in the environment. All other

assumptions are the same as Figure 4.4.
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1 while (i ≥ 1){
2 i = i + 3
3 i = i − 1;
4 if (i == 3) i = 0;
5 i = i − 2;
6 i = i − 1;
7 }

A BC a,2 g,1

h,4b,5

c,4

j,0d,4

e,2

f,1 l,−3

k,−2

abstract

concrete

m,3

(a) (b)

Figure 4.5: Loss of precision in a C program with a branch

In graph (b) of Figure 4.5, border states a and g pass through the same

transitions i = i + 3 and i = i − 1, reach states c and m, then separate into different

transitions, and result in different abstract states C and B when they re-enter the

component. As in the above example, g is abstracted into the same abstract state after

the while loop iterates once. The state space exploration algorithm will backtrack

and miss the behavior of abstract state B.

The intuition of our approach is to push the guards that distinguish c and

m upwards into the path to generate predicates that distinguish a and g. In this

example, we use the predicate i == 3. First, we create a symbolic transition for the

series of transitions before the branch. In this case it will be symbolically simulating

i = i + 3 and i = i − 1, which will be i = i + 3 − 1, which is simplified to i = i + 2.

Then we check if i ≥ 1 ⇒ wp (i == 3, i = i + 2). This is equivalent to checking if

i ≥ 1 ⇒ i + 2 == 3. Since this implication does not hold, we add i == 1 to the

predicate set to refine the abstract system in the next iteration. Now, state a and g

will be abstracted into different abstract state because of the newly added predicate.
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Theorem 2. : Let Φ denote the set of predicates to abstract the system. Given two

path πxn
x0

and πym
y0

, such that

αΦ(x0) = αΦ(y0), αΦ(xn) 6= αΦ(ym)

x0 →
∗ xi−1

tx→ xi →
∗ xn, y0 →

∗ yi−1

ty
→ yj →

∗ ym,

tx 6= ty, π
xi−1
x0 = π

yi−1
y0 , and πxn

x0
6= πym

y0

let Φ′ = Φ ∪ {wp(αΦ′′(xi−1), (x0, xi−1))}

in which Φ′′ includes a set of guards that differentiate xi−1 and yi−1, then

αΦ′(x0) 6= αΦ′(y0).

Proof. Proof is similar to theorem 1. Since Φ′′ includes a set of guards that distinguish

xi−1 and yi−1, we have that αΦ′′(xi−1) 6= αΦ′′(yi−1). We propagate this predicate up

towards the path until we get a predicate that differentiates x0 and y0.

The next theorem says that if the abstraction is exact in terms of the sym-

bolically simulated transitions which lie outside the component, then the abstraction

includes all the possible behaviors of the states at the border of the component.

Theorem 3. Given a series of transitions x0 → x1 → · · · → xn, if the abstraction

is exact for a symbolically represented transition (x0, xn) using a set of predicates Φ,

then the abstraction captures all effects of concrete behaviors starting at location 0

and ending at program location n in terms of the predicates Φ.

Proof. This theorem follows from theorem 1. Suppose αΦ(x0) is an abstract state

produced in program location 0, and αΦ(xn) is an abstract state produced in program

location n. The concrete transition x0 → x1 → · · · → xn is replaced by symbolic

transition (x0, xn). States x0 and xn can be abstracted into existing abstract states

or new abstract states. There are four different possibilities. First, both αΦ(x0) and

αΦ(xn) are existing abstract states. Second, αΦ(x0) is an existing abstract state and

αΦ(xn) is a new abstract state. Third, αΦ(x0) is a new abstract state and αΦ(xn) is
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an existing abstract state. Fourth, both αΦ(x0) and αΦ(xn) are new abstract states.

In the first case, since both states are existing states, no precision is lost. The second

case is impossible since we assume the abstraction is exact. In the third case, the

new state is generated in program location 0 and the result of execution is an existing

state at program location n, which does not lose precision. In the forth case, a new

abstract state is generated in program location 0, which goes to a new abstract state

at program location n, which also does not lose precision. Therefore, the theorem

holds for all possible cases.

4.5.2 Under-approximation

Checking precision for border states is easier if we consider only a prefix of the se-

quence of transitions in the concrete environment because there are less transitions to

consider in the symbolic simulation. The precision of the component abstraction will

increase as the number of concrete transitions considered increases. When we con-

sider all the transitions, and the verification algorithm terminates, we have an exact

abstraction which creates a bisimulation between the program and its abstraction.

The following theorem precisely states these claims.

The next theorem states we can vary the precision of the abstraction by varying

the number of concrete transitions used to build the symbolic representation of the

surrounding software.

Theorem 4. Suppose x0

αc+α
→ xn, then the abstract component generated by doing

abstraction refinement in terms of (x0, xi) for the predicate set Φi, with 0 < i < n, is

an under-approximation of the original component.

Proof. All states and transitions visited during model checking are concrete states

and generated using concrete transitions from concrete software. Since 0 < i < n,

the exactness check will include concrete behaviors up to the instruction at program

location i. However, program behaviors between the instructions at locations i and n

79



are ignored in the precision check. This means that some execution paths that split

between locations i and n may be missed. Therefore, the abstraction scheme we use

results in an under-approximation and we can increase precision by including more

of the environment in the component.

If we treat each of the border transitions as one single transition by symboli-

cally simulating it, then we will get a system that is presented in [21] and therefore

we get a bisimilar system when the algorithm terminates as shown in [21]. Iteratively

refining and symbolically simulating more of the SUT increases the precision of the

model and supports the generation of increasingly complete sets of test cases.

4.5.3 Termination and Property Preservation

Termination is difficult to detect when execution leaves the component and never

returns. This can occur when the program enters an infinite loop in the environment

or when the program actually terminates in the environment. We can not, in general,

detect the first case and we simply add an “exit” marker to identify the second case.

4.6 Conclusion and Future Work

We have presented an approach to generating test cases for a new environment into

which an existing component will be deployed. Our approach is novel integration of

model based testing with model checking and abstraction. We automatically obtain

a mixed model of an abstract component within a concrete environment from the

component source code and the environment in which it is currently deployed. A

relatively complete set of test cases are generated from this model utilizing the ability

of model checker to exhaustively explore a system. The model also can be iteratively

refined by an abstraction refinement schemes to provide more complete test cases.
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Avenues for future work include evaluating the idea in real world software and

automatic methods for extracting components.
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Chapter 5

Conclusion and Future Work

This dissertation presents a novel approach to verifying component based soft-

ware by model checking abstract components inside concrete software environments.

By abstracting the components under test, we allow the model checker to verify com-

plex components. By simply executing the concrete environment, we avoid analyzing

the environment, and allow complex data structures, pointers, and library calls.

The main contribution of this work is to allow the model checker to verify

complex components in complex environments that are otherwise impossible to ver-

ify directly. Other contributions include generating test cases for complex systems

and extending SPIN to verify concurrent C programs which use a subset of pthread

libraries.

The work is done in three steps. First, we implement the algorithm in SPIN

to model check sequential C programs that include pointers, libraries and complex

data structures. SPIN fails to model check these test cases directly due to limited

memory, but it successfully detects errors using our approach. Second, we extend

the implementation to model check threaded programs, which are difficult to verify

by either model checking or testing alone due to their non deterministic behavior.

Our approach is able to verify and find errors on these test cases. Third, we discuss

how to generate test cases for the component based software based on an abstraction

refinement process.
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This work opens several avenues for future work. First, an extension to the

verification tool can be made to support more features. Automatic extraction of com-

ponents from the system will be an interesting topic. Given a system, the tool should

be able to recognize components under test and environment boundaries and invoke

the model checker when it is necessary. Currently, we simply consider a collection

of functions as a component and consider the rest as the environment. We also can

add more features to SPIN to support all pthread libraries. Since SPIN is designed

to handle non-determinism, it is appropriate to add more features to PROMELA to

support all functionality of pthread libraries. This work currently supports a subset

of pthread libraries that are most commonly used.

Third, a more general benchmark should be developed to evaluate the tool.

Currently the evaluation is done on several concurrent programs downloaded from

the Internet. It will be interesting to examine how the tool behaves with component

based software on an industrial scale.
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Appendix A

Additional Theorems

This chapter presents additional proofs related to this work. The following the-

orem establishes the relationship between sets of errors found when using symbolic

representations built from different numbers of steps through the concrete environ-

ment.

Theorem 5. Suppose x0

αc+α
→ xn, and suppose Ei is the set of errors detected in the

abstract component by doing refinement in terms of (x0, xi), and Ei+1 is the set of

errors detected in the abstract component by doing abstraction refinement in terms of

(x0, xi+1), where i < i + 1 < n, then,

Ei ⊆ Ei ∪ Ei+1 and ∪n
0 Ei = En but Ei 6⊆ Ei+1

Proof. Ei ⊆ Ei ∪ Ei+1 is obvious. However, it is not the case that Ei ⊆ Ei+1. For

example, if the accumulative transition through i steps is x = x − 1 and the next

transition is x = x + 1, then the accumulative transition through i + 1 steps is x = x.

If the complete accumulative transition is x = x−1, then the model built using i steps

is more precise than the model using i + 1 steps. Since the accumulative transition

(x0, xn) is the only complete model of concrete program behavior, the errors found in

the nth step include all the errors.

We have dealt with transitions that enter and leave the component in the

previous theorems. We now have the foundation on which to describe our model in
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terms of the one described in [21] and give a slightly modified version of the theorems

presented in [21].

Theorem 6 states that if the algorithm terminates, we either find an error or

prove that the system is error-free.

Theorem 6. ∀x0. x0

αc+α
→ xn, if we do abstraction refinement in terms of (x0, xn)

and the algorithm terminates with errors, then the errors correspond to real errors.

If the algorithm terminates without detecting any error, then the component is error

free.

Proof. The algorithm terminates only when an error is found or the abstraction is

exact with respect to all transitions and symbolically represented transitions. As

shown in Theorem 4, if an error is found, it will be a feasible error because we only

explore actual concrete states and actual concrete transitions. And from theorem

3, we know that we can treat complete symbolically simulated transitions through

the concrete software as a single transition because the abstraction does not lose any

precision relative to such transitions for paths which start at the start location and

end at the end location. Also, behaviors from the concrete software are ignored during

verification. If we treat each of the symbolically simulated transitions as one single

transition, then we will get a system that is presented in [21] and therefore all of the

theorems presented there also apply to our system.

Theorem 7 describes the cases in which the abstraction computation may not

terminate.

Theorem 7. If the algorithm does not terminate, there are two possibilities.

1. The concrete system includes infinite behaviors in which case we don’t know

anything about the component, or,

2. if the algorithm does not terminate because of infinite behavior in the compo-

nent, then the algorithm will eventually generate a structure which is bisimilar
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to the original component although the algorithm is not able to detect such a

bisimulation.

Proof. 1. The first statement holds due to fundamental limits of computability. In

particular, determining if the concrete software terminates or not is the halting

problem.

2. The theorem in [21] applies directly.

In theory, when the mixed model of abstract component and concrete envi-

ronment is bisimlar to the original concrete system, CTL* properties are preserved.

However, in practice, this detection of bisimilarity is hard since symbolic simulation

is expensive and theorem prover might fail to check if the current predicates implies

the weakest pre-condition of the accumulated behaviors of the environment. In this

case, we can gain faster verification speed and faster error discovery by sacrificing

some preciseness. We can completely ignore the environment and skip the refinement

check on the environment transitions. Safety properties are preserved and liveness

properties are preserved under certain conditions.

If the environment does not change the value of the variables we model check,

then LTL x properties are still preserved when we do not do a refinement check in the

environment transitions. This is because the two paths that generated by including

the environment and skipping the environment is stuttering equivalent in this case.

For example, suppose there is a path x
αc+α
−→ c, where component state x and c are

connected by a series of environment states and transitions, and we are interested

in variable i which has a value 0 in state x and value 1 in state c. If the value of

variable i is unchanged all along the environment, in other word, i is either 0 all

along the environment or 1 all along the environment, then x
αc+α
−→ c and x → c are

stuttering equivalent. See [8] for a discussion of the proof that LTL x properties are
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preserved under stuttering. Our empirical analysis in section 3.5 is done by skipping

the environment transition in the refinement check.
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Appendix B

Pthread Library Function to PROMELA Translation

This Chapter describes how we translate some of the pthread library functions

to PROMELA.

Figure B.1 shows how PROMELA simulates pthread join. Sending signal to

the channel is omitted for simplicity.

1 C statement and CIL translation:
2 pthread join(thread[t], &status);
3
4 PROMELA translation:
5 atomic {
6 c code {now.tid = Pmain → thread[Pmain → t ];};
7 Gchan[tid] ? 1;
8 }

Figure B.1: Thread join

Figure B.2 shows this approach. if statement in line 8 blocks until the condi-

tion holds and then executes the entire statement in one atomic step.

Figure B.3 and B.4 demonstrate how conditional variable is translated in

PROMELA. In Figure B.3, the C and CIL version of using conditional vari-

able is given. In this example, thread watch count blocks until count reaches

COUNT LIMIT. Thread inc count signals when count reaches the COUNT LIMIT.

Figure B.4 shows the matching PROMELA code. The conditional variable is a

global variable initialized to 0 when the program starts. When count is less than

COUNT LIMIT in line 11, we unlock the mutex at line 13 so that other threads that
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1 C statement and CIL translation:
2 pthread mutex lock(&mutexsum);
3 pthread mutex unlock(&mutexsum);
4
5 PROMELA translation:
6 atomic {
7 if
8 ::c expr{ *(& mutexsum) > 0} → c code {*(& mutexsum) = *(&

mutexsum) - 1;};
9 fi;
10 };
11 c code {*(& mutexsum) = *(& mutexsum) + 1;};

Figure B.2: C and PROMELA mutex statements

are blocking on this mutex can resume their executions. Then we block watch count

at line 14 by waiting the conditional variable to become 1. When count reaches

COUNT LIMIT, thread inc count signals by turning the value of conditional vari-

able to 1 at line 35. Then watch count unblocks and turn the value of conditional

variable to be 0 in line 14.
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1 C statement:
2 void *watch count(void *t)
3 {
4 pthread mutex lock (&count mutex);
5 if (count < COUNT LIMIT) {
6 pthread cond wait(&count threshold cv, &count mutex);
7 }
8 pthread mutex unlock(&count mutex);
9 }
10 void *inc count(void *t)
11 {
12 pthread mutex lock (&count mutex);
13 if (count == COUNT LIMIT) {
14 pthread cond signal(&count threshold cv);
15 }
16 pthread mutex unlock(&count mutex);
17 }
18
19 CIL translation:
20 void *watch count(void *t)
21 {
22 pthread mutex lock (&count mutex);
23 if (count < COUNT LIMIT) {
24 pthread cond wait((pthread cond t * restrict )(& count threshold cv),
25 (pthread mutex t * restrict )(& count mutex));
26 }
27 pthread mutex unlock(&count mutex);
28 }
29 void *inc count(void *t)
30 {
31 pthread mutex lock (&count mutex);
32 if (count == COUNT LIMIT) {
33 pthread cond signal(&count threshold cv);
34 }
35 pthread mutex unlock(&count mutex);
36 }

Figure B.3: C and CIL example of using conditional varialbes
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1 PROMELA translation:
2 proctype watch count( int threadID)
3 {
4 atomic {
5 if
6 ::c expr{ *(& count mutex) > 0} →
7 c code{*(& count mutex) = *(& count mutex) - 1;};
8 fi;
9 };
10 if
11 ::c expr {count < COUNT LIMIT} →
12 atomic{
13 c code{ *(& count mutex) = *(& count mutex) + 1;};
14 c expr {*(& count threshold cv) == 1} → c code{*(&

count threshold cv) = 0}
15 };
16 atomic{
17 if
18 ::c expr{ *(& count mutex) > 0 } →
19 c code{*(& count mutex) = *(& count mutex) - 1;};
20 fi;
21 };
22 ::else → skip;
23 fi;
24 c code{*(& count mutex) = *(& count mutex) + 1;};
25 }
26 proctype inc count( int threadID)
27 {
28 atomic {
29 if
30 ::c expr{ *(& count mutex) > 0} →
31 c code{*(& count mutex) = *(& count mutex) - 1;};
32 fi;
33 };
34 if
35 ::c expr {count == COUNT LIMIT} → c code {*(& count threshold cv)

= 1;};
36 ::else → skip;
37 fi;
38 c code{*(& count mutex) = *(& count mutex) + 1;};
39 }

Figure B.4: PROMELA translation of conditional variables
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