
Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2008-03-12

Extending Web Application Development to the
User-Editable Space
Brian S. Goodrich
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Goodrich, Brian S., "Extending Web Application Development to the User-Editable Space" (2008). All Theses and Dissertations. 1338.
https://scholarsarchive.byu.edu/etd/1338

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F1338&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F1338&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F1338&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F1338&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F1338&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F1338&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/1338?utm_source=scholarsarchive.byu.edu%2Fetd%2F1338&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

Extending Web Application Development to the User-Editable Space

by

Brian Goodrich

A thesis submitted to the faculty of

Brigham Young University

In partial fulfillment of the requirements for the degree of

Master of Science

Department of Computer Science

Brigham Young University

April 2008

Copyright © 2008 Brian Goodrich

All Rights Reserved

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Brian Goodrich

This dissertation has been read by each member of the following graduate committee and

by majority vote has been found to be satisfactory

Date

 Dr. Phillip J. Windley, Chair

Date

 Dr. Daniel Zappala

Date Dr. David Embley

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate‟s graduate committee, I have read the thesis of Brian Goodrich

in its final form and have found that (1) its format, citations, and bibliographical style are

consistent and acceptable and fulfill university and department style requirements; (2) its

illustrative materials including figures, tables, and charts are in place; and (3) the final

manuscript is satisfactory to the graduate committee and is ready for submission to the

university library.

 Date

 Dr. Phillip J. Windley

Chair, Graduate Committee

 Accepted for the Department

 Date

 Dr. Parris Egbert

Graduate Coordinator

 Accepted for the College

 Date Dr. Tom Sederberg, Associate Dean

College of Physical and Mathematical Sciences

ABSTRACT

Extending Web Application Development to the User-Editable Space

Brian Goodrich

Department of Computer Science

Master of Science

The growth of the web increased dramatically when users were provided with applica-

tions that let them use just their browser to post and edit content on the World Wide Web.

Offering users the ability to use their browser to create their own web applications, in-

stead of just posting text and images, would cause another Internet evolution. This thesis

describes the EXPPO system (Extensible Page Productions and Operations), a web appli-

cation development environment for both end-users and technical-users. EXPPO

leverages the end-user‟s previous experience with internet browsers by using a page

based development experience or a Page Oriented Architecture. Because applications are

structured in this architecture, components used in one application can be re-used by an-

other, providing end-users with functionality that was created by more technical users.

This thesis demonstrates how the EXPPO development environment can be used to create

functionally rich web applications.

ACKNOWLEDGMENTS

This work would not have been possible without the support of many people.

First and foremost, I would like to thank my wonderful wife, Ashalon, for her support

and patience during the development of this work.

I want to thank my advisor, Dr. Phil Windley for the inspiration and support to pursue

this project.

I want to thank Dr. Daniel Zappala for assistance and instruction in writing this document

and expressing the concepts involved with it.

I would like to thank my entire graduate committee for their patience while the imple-

mentation of this thesis and its supporting documents were produced.

xiii

TABLE OF CONTENTS

1. INTRODUCTION... 1

2. THESIS STATEMENT .. 5

3. RELATED WORK ... 7

3.1 User-editable Applications ... 7

3.2 Structured Web Architectures ... 9

3.3 Code Frameworks ... 12

4. THE EXPPO SYSTEM .. 15

4.1 Page Method: Edit .. 16

4.2 Page Method: Query ... 18

4.3 Page Method: Render ... 19

5. IMPLEMENTATION .. 20

5.1 Page Oriented Programming: XML Page Units .. 21

5.2 EXPPO Meta-Language ... 22

5.3 Page Transitions .. 26

5.4 EXPPO Query System .. 27

5.5 Functional Handlers ... 29
5.5.1 Handler Message Passing and Handler Data Transactions 31

5.5.2 XML Message Cluster Creation ... 36

5.6 Implicit Page Generation ... 40

6. RESULTS .. 42

7. FUTURE WORK .. 47

8. CONCLUSIONS ... 50

xv

List of Figures

Figure 1 Screenshot of EXPPO Prototype Edit Window 17

Figure 2 Divisions of a Page Unit and their XML Representation 23

Figure 3 EXPPO Meta-Language DTD 25

Figure 4 XML Page Flow example 27

Figure 5 Functional Diagram of the EXPPO Page Query System 28

Figure 6 Example of Embedded Page Flow for Sample Query URL. 29

Figure 7 Data that is the Result Set of the Query in the Part_list Example 29

Figure 8 Diagram of EXPPO Remote Handler Execution 31

Figure 9 Example Interview Log Data Entry 33

Figure 10 Example of doing a value specific location write in the EXPPO system 35

Figure 11 Example Interview Log Entry with Multiple Entries 37

Figure 12 Bad Behavior Result on Figure 11 38

Figure 13 Good Behavior Result on Figure 11 40

Figure 14 Image of the Main Window of the Unit Test Application 43

Figure 15 Page flow diagram for Interview Log Application 44

Figure 16 Image of the Create Job Description Page 44

Figure 17 Image of the Interview Application Main Page for adding Candidates for a

Software Engineer Job Position 45

Figure 18 Log of Candidate Information on a Candidate Page 46

List of Tables

Table 1 Chart of EXPPO Page Operations and Responses... 16

1

1. Introduction

The ability to use an internet browser to create and edit web pages has revolution-

ized the web by allowing ordinary people to create massive amounts of content on the

World Wide Web. Previous to the creation of user-editable sites, a much more advanced

set of technical skills and expensive hardware was required to disseminate information to

the users of the World Wide Web. Now, everyone with access to the World Wide Web

can post or contribute text and images to wikis, blogs, home pages, forums, and other

user-editable areas.

Another revolution is possible by allowing users to create web applications, rather

than static content. In general, user-editable web sites only allow users to edit presenta-

tion content. While this is acceptable to provide text or images for a reader that is the

extent of presentation content's inherent capabilities. The problem is that users can only

create content that is meaningful within the domain of a particular application. Provid-

ing users with a standardized method by which they could create their own web

applications would allow users to customize the Web to fulfill their specific needs with-

out limitation and a more functional web could scale the same way that the current user-

editable sites have with simple web pages, blogs, forums and wikis.

With a standardized application creation framework, users could borrow and ref-

erence pre-existing work to create their own web applications. To make this possible,

users require a browser-based application development framework that supports struc-

tured data and a way to organize user-extensible functionality. Using a structured data

2

format means that information can be easily queried by internal and external systems for

re-use, sharing, aggregation, analysis and display. This provides users with facilities for

using large amounts of data without necessarily having to store and maintain the entire

bulk of it themselves. With a modular organization, applications can execute compos-

able logic that can be can be exchanged with other applications, and web application au-

thors will no longer be required to create specific computer logic themselves. Thus, a

user will no longer need years of technical training to create a web application. For these

reasons, this framework requires the ability to allow users to harness functionality written

by themselves or others, to have the capacity to exchange structured data and to provide

metadata support for third party applications.

To make the creation of these web page applications understandable to end-users,

this framework should use an architecture that is conceptually familiar to these users.

The user's internet browser experience is based on the concept of pages, therefore intui-

tive construction of a web page application should also use a page based architecture

[Quint][Gardner]. To meet this requirement, this thesis introduces a framework that uses

a Page Oriented Architecture. A Page Oriented Architecture is a web focused application

design methodology that uses pages as the fundamental unit of organization. These units

can be used in combination to create web applications. A page contains functional han-

dlers that dictate the behavior of the web page that it represents, and the metadata,

content and data that comprise that particular piece of a web application.

3

In this framework, pages of a web application must be easily machine readable to

allow other application authors and logic modules to interact with the data that belongs to

a page unit. To provide this automated access to logic, metadata, data and content, the

page units need to be stored in some kind of structured format [Di Iorio]. For the re-

quired structure, this thesis uses existing semi-structured W3C standards to allow easy

integration with the browser interface. The Extensible Hyper-Text Markup Language, or

XHTML, is a markup language that has the same depth of expression as HTML, but also

conforms to XML syntax. XHTML enables the use of the HTML browser language for

user presentation and the use of XML to structure the logic, metadata, content and data of

a given page unit. This structure enables this framework to present data with context, to

insert that data into presentation content, and to support a simple data query interface that

can serve both logic modules and third party developed applications.

This thesis describes the EXPPO system (Extensible Page Productions and Opera-

tions), a development environment for building web applications that are structured,

modular, extensible, and still support the presentational strength expected of the World

Wide Web. The EXPPO system hosts a browser development environment, allowing us-

ers easy access to the ability to create and edit custom web pages. By using a modular

logic system and a simplified data query system, EXPPO can support custom and pack-

aged application logic in both local and remote environments. Using the current format

standards of XML and XHTML and a Page Oriented Architecture, EXPPO can create

web applications that have an inherent, accessible structure, and still retain the user ex-

pressiveness of HTML.

4

This thesis demonstrates how the EXPPO development environment can be used

to create functionally rich web applications that inherently support XML-based interac-

tion. To validate the framework, we created an EXPPO web application that tests each

aspect of the framework and the claims made in this document. To demonstrate how or-

dinary users can use EXPPO to build web applications, we build an Interview Log system

that can capture job requirements and maintains a set of comments made about candi-

dates for that position. We use examples from these two applications to explain the

mechanics of the EXPPO system.

5

2. Thesis Statement

A web-based development environment with a Page Oriented Architecture en-

ables users to create and edit web pages to contain XML-formatted data, a user-extensible

collection of metadata, and a page handling set of instruction descriptors, in addition to

the traditional textual content. The system designed as proof of concept of this work,

called EXPPO (Extensible Page Productions and Operations), substantially increases the

power of the traditional Wiki metaphor by allowing useful web applications to be built in

a user-editable space.

7

3. Related Work

There has been considerable interest in helping users and developers more easily

design and build web applications. A number of companies have developed web appli-

cation frameworks whose main goal is to allow ordinary users to create web applications

without requiring the technical knowledge of programming. Discussed in this section are

a spectrum of related technologies which have been grouped into the following three sec-

tions: User-editable Applications, Structured Web Architectures, and Code Frameworks.

3.1 User-editable Applications

The origin of the user-editable web begins with the wiki. A wiki is an online ap-

plication that gives users the ability to create and edit web pages through a browser

interface. The first wiki, called the WikiWikiWeb, was an application created by Ward

Cunningham, thereby giving him credit as the creator of the Wiki (or WikiWiki) software

concept and arguably, the inventor of the user-editable web site. Cunningham named the

WikiWiki after the Hawaiian term he learned on his first visit to Hawaii. The “wiki wiki”

or “quick” shuttle buses at the Honolulu Airport provided an alliterative replacement for

the word quick and allowed Cunningham to name his software concept WikiWikiWeb

instead of quick-web [Cunningham].

Wikis have had many uses. The WikiWikiWeb application was created as a fo-

rum for the design pattern community by adding an automated supplement to the

Portland Pattern Repository [Cunningham]. The wiki soon became increasingly recog-

nized as a way to develop and express a knowledge base. Wikis began to be used as

8

collaborative forums for software development. Although originally used for project

management, workflow charting, and code discussion, other non-technical users soon

joined the wiki movement as well. The concept has continued to grow in popularity and

although it is difficult to catalogue the number of wikis operating on the web, it is obvi-

ous from a casual search that wikis are very much alive and active on the Internet today

[Schwall]. As the wiki metaphor has continued to develop, further steps have been made

towards the concept of a World Wide Web, which has not only open read, but also open

access writing ability. Sometimes referred to as the "Writeable Web," this open write web

is a vision of a medium where free expression is more than just text, but also a sharing of

data and functionality.

A series of extensions to the original wiki concept have been implemented in a

number of wiki variants. The WikiMedia foundation was one of the earliest contributors

to the wiki concept. MediaWiki is a large open source project for wiki meta-applications

such as Wikipedia, Wiktionary, Wikinews and Wikimedia Home. The WikiMedia or-

ganization provides wiki users with presentation templates, document version control and

a formatting syntax that allows users to manipulate their text to be more presentable

[WikiMedia]. WikiCalc, from Dan Bricklin, is a wiki program that works from a founda-

tion of adding structure to data [Bricklin]. Bricklin describes WikiCalc as "a Web

authoring tool for pages that include data that is more than just unformatted prose."

WikiCalc‟s current version is a web-based spreadsheet application that supports only ba-

sic mathematical functionality for the web community.

9

Amaya is a client-side implementation of a user-editable application [Quint].

Amaya was originally created in 1997 as a test-bed and demonstration environment for

new technologies developed by the W3C organization. Since that time, it has developed

into a stand alone application that serves as a web browser that gives users the ability to

create a customized representation of web pages. There are several ways of viewing web

pages in Amaya, including a table of contents view, a structure view, a source view, a

links view and an alternate view, that assist with adjusting web pages to a user‟s desires.

The customization process involves a series of annotations and Amaya created web pages

are stored using XML documents and style sheets associated with those documents.

Amaya can publish these customized web pages to share them. Amaya could be consid-

ered a fat-client desktop application that extracts documents from the web. Amaya does

not have support for web applications that have a persistence layer or to provide custom-

ized functionality for web applications.

3.2 Structured Web Architectures

One example of a structured web technology is WebML (or Web Modeling Lan-

guage), a graphical notation for representing the content, composition, and navigational

features of a web application [Ceri]. WebML borrows from the principles of Entity-

Relationship diagrams and the Universal Modeling Language. There are three different

models in a full WebML specification: the Data Model, the HyperText Model and the

Presentation Model. The Data Model most closely resembles an ER diagram, a common

database notation, and also is compatible with the UML class diagrams common to Ob-

ject Oriented Programming. The Data Model is a specification for showing how a given

10

web site relates to its underlying persistence model. The Hypertext Model is a graphical

representation of a web application's page flow and the composition of those pages.

Composition or content in WebML is broken into Units of which there are seven prede-

fined types: data, multi-data, index, multi-choice index and hierarchical index, entry, and

scroller. These units reside in a page "container" and related to other page "containers"

by a series of links, which can point back to other units on the same page or other units

on other pages. The Presentation Model is a style specification of a hypertext applica-

tion, used to determine the look and feel of a web page. Although this three-fold model

bears resemblance to the classification of data used by this thesis, it is important to note

that WebML is not a development environment, but rather a modeling language used to

create specifications for web applications.

IsaWiki was developed to follow the paradigm of the Xanadu project [Di

Iorio][Nelson]. IsaWiki is based on a conceptual term that the author‟s coin as “global-

editability.” IsaWiki is a wiki development environment for customizing new and exist-

ing web pages that has its own proprietary language called IML. IML is a conversion

language used as a generic representation of the different document types used on the

Web. Its grammar is composed of a few elements: paragraph blocks which containing

text and inline elements, tables containing cells, collections of vector-based graphics, and

lists. IsaWiki provides a web page editor in the form of an Internet Exporer and a Firefox

browser toolbar plugin that is available for download. IsaWiki claims to provide a sepa-

ration of data and presentation layer in IML, but uses this separation mostly to prevent

data loss during document conversion into IML. IsaWiki maintains a version control sys-

11

tem of original documents and personalized modifications for each user in that has access

to the wiki. Essentially, IsaWiki provides a custom layer of presentation on top of what a

user would normally conceive of as the web, and provides the ability to share these cus-

tomizations via a repository with other users. While IsaWiki focuses on providing

shareable and customizable views of the web that can introduce new content, IsaWiki is

weak in its use of data and does not provide users with persistence for customized content

or the ability to introduce new functionality.

Dabble DB is a powerful web-based system that lets you store and manage just

about any kind of information and share it over the web. Most of the DabbleDB focus is

based in spreadsheet technology (such as automatically generated calendars and data hy-

perlinks) and they expose data collaboration technologies. The DabbleDB application is

very data focused, allowing users to select different methods for exposing data, including

charts, graphs, geographic map representation, pivot tables and grouping [Dabble].

DabbleDB is more concerned with exposing these representations to users, and less on

custom functionality than the subject of this thesis.

Of the recent entries to the native web development field, JotSpot is the most in-

teresting and is the closest parallel to this thesis [Gonzalez-Reinhart]. JotSpot provides

features for users to integrate web applications into a wiki. JotSpot has three fundamental

principles about storing data: everything is a page, pages can hold any number of typed

properties, and pages are XML. The types of applications that have been hosted by Jot-

Spot include company intranets, document collaboration systems, bug loggers and

12

trackers, internet video on demand (i.e. Strmz.jot.com), a web-based RSS reader (i.e.

Rojo.jot.com) and also out-of-the-box applications such as call loggers, polling applica-

tions, help desk wikis and email clients that write directly to a JotSpot user's wiki

[JotSpot]. However, while JotSpot does support a logic framework with its selectable

and modifiable application templates, these templates have the limitation of still needing

to originate from JotSpot developers. Additionally, JotSpot does not strongly emphasize

the ability of a user to "own" and reuse structured data or the ability to share it. Since

being acquired by Google, there has been little forthcoming about the current state of this

application, and the original JotSpot.com website has been shut down.

3.3 Code Frameworks

Other works related to this thesis are code frameworks, systems concerned with

the exchange of fragments of code. The goal of these frameworks is not only to provide

developers with code libraries to use as tool sets to finish applications more rapidly, but

also to educate programmers, and provide safer, more secure logic that has been reviewed

by a body of peers. These systems are not concerned with data, providing an execution

environment for that code or providing their services to non-technical users.

The CodeSwap service from Microsoft is a desktop application that allows Visual

Studio .NET developers to easily connect to other developers and search for code. The

author of the code provides a brief summary describing their code and then adds it to

their list of shared snippets, which are uploaded to a repository. The search will scan the

file names, descriptions and the content of the files to find matches in the centralized

13

CodeSwap index. When users find the code that they are looking for, they simply

download it. Additionally, Microsoft‟s Visual Studio development studio now supports a

search and download client for snippets of code called the Code Snippets Manager

[CodeSwap].

The SNIPPETS project, started in the late 1980's, is a repository of useful snippets

of C and C++. Over time, it has grown to more than 94,000 lines of code in over 700

separate files. The goal of SNIPPETS was to collect and disseminate the best C/C++ an-

swers to "How do I...?" programming questions. Although the focus of the SNIPPETS

project continues to be its archive of C++ source code, it now includes Java, D, Python,

Perl, and assembly for embedded systems work. Similar systems are supported in the

Zend and Eclipse development environments. Although a very useful forum for ex-

changing logic between developers, SNIPPETS itself is not concerned with data or

exposing an execution environment for users to reference code from its repository.

The CPAN or the Comprehensive Perl Archive Network is a large collection of

Perl software and documentation. It supports a large search base for Perl modules and a

downloader for that software. The source material for CPAN comes from developers all

over the world and “has thrived because of the willingness of programmers to share the

fruits of their labor with the community” [Wall et. al.]. The network has been online since

1995 and as of the time of writing, CPAN supports over ten thousand modules, five thou-

sand authors and almost three hundred mirrors [CPAN].

14

 Support for systems that can automatically look-up and download applications,

libraries and install them often comes embedded in a user's operating system. An exam-

ple of this is the Advanced Packaging Tool (APT) that comes packaged with Debian.

APT is a front-end for the package management system used by Debian GNU/Linux and

its derivatives. APT simplifies the process of managing software by automating the ac-

quisition, installation and update maintenance of software packages. APT relies on

repositories to discover software using the apt-search command, while the apt-get com-

mand uses repositories to resolve dependencies during installation. The Debian project

maintains a repository services containing over 19,000 software packages ready for in-

stallation. Additional repositories can be added to the APT sources.list configuration file

and those URI repositories will also be queried by APT.

15

4. The EXPPO System

The EXPPO System is based on a Page Oriented Architecture, in which the basic

unit of organization for a web application is a page unit. A page unit contains a represen-

tation of a web page in three sections: each page has persistent data storage, an interface

specification and a set of metadata. The data storage of a page contains the local data

being used by the page. The interface specification or content section holds web page

formatting, and references to data and functional handlers. Metadata contains a page's

identifier, a set of functional handlers that a web page can use, and other information

about the page unit. Handler references allow EXPPO users to not only apply pieces of

logic to their web applications, but also to call and execute code in other EXPPO sites

and to customize the results to their own application. Hence, a page unit possesses acces-

sible data and functions for users to interact with. A cohesive set of page units creates a

web application.

In EXPPO, there are three primary methods for using a page unit: Edit, Query

and Render. As can be seen in Table 1, each of these methods requires a different set of

parameters and produces a different output. We discuss these methods in this section,

while the implementation choices for each of the components involved are discussed in

Section 5.

16

Query (string page_id,

string QueryStatement)

Edit (string page_id, ‘EDIT’)

Render (string page_id)

EXPPO

Edit Page

Render

Base Page

Web

Page

Remote

Handler

Web Application

Query Result

Page Unit Method and Parameters EXPPO Page Response

Table 1 Chart of EXPPO Page Operations and Responses

4.1 Page Method: Edit

 The Edit method provides the authoring interface for EXPPO and requires the name

of a stored web application file, usually the page identifier of the root page. When EX-

PPO Edit is requested without a file identifier, a page creation screen is shown, asking the

user the name of the web application the user would like to create, if the application does

not exist, or edit, if the application requested already exists in the library file of the sys-

tem. Regardless, once the desired name is submitted, the file in question is opened or

created and the user is transferred to the EXPPO Edit Page, shown in Figure 1.

17

Figure 1 Screenshot of EXPPO Prototype Edit Window

The Edit Window is the web application development environment of the EXPPO

prototype and provides the input fields for an EXPPO developer. As can be seen in Fig-

ure 1, several forms are shown on Edit Window, including the different values for a

page‟s metadata, and text areas for defining a page‟s content and data. Users can select

the functionality a web page uses by selecting from drop down lists of handlers that are

known to the EXPPO system hosting the Edit Window.

From this interface, users may edit the values in each of the page units belonging

to the file requested. If input inconsistent with the format of the EXPPO meta-language

is entered into one of the parts of a page unit, the Edit window will refuse to save the

page unit in that state and will display an error next to the appropriate content or data

window.

18

Another input form is provided to enter and store the names of remote EXPPO

systems. When an EXPPO developer adds the name of a remote EXPPO system to this

list, Edit will add the handlers stored in the handler repository of the indicated system to

the lists of known handlers. These new handlers will be added to the Edit Window's drop

down lists of handlers available to add to a page unit and become part of its functional

behavior. Remote handler specifications in the drop down list include the URL required

to access them, thus differentiating them from their local counterparts.

4.2 Page Method: Query

The EXPPO system provides a query system to enable data sharing, exchange of

modular components and data access for remote interaction. This query system is a key

component of EXPPO that enables selection of page units and their components. Because

data is owned by page units, and a web page is accessed using a URL, the root of any

query into an EXPPO system begins with a URL. With page units having a structured

architecture, a query statement can easily be created that indicates a location and its ac-

companying data result inside that structure. This is accomplished by adding an EXPPO

query instruction and the location statement to the URL. The exact format of an EXPPO

query is discussed in Section 5.4.

19

4.3 Page Method: Render

 Rendering an EXPPO page involves all of the components of a page unit. The Ren-

der method is responsible for accumulating all of the instructions an EXPPO web

application has for a given page, interpreting it, and delivering browser compatible in-

structions. This process involves several steps. The content section of a page can contain

embedded page units, references to items in the data section of a page and references to

functional handlers. References to handlers and data and embedded page units must be

replaced in the set of instructions being sent back to the requesting client.

Page units can contain other page units, and these sections of a page unit must be

parsed and converted into page links that a user can click on to navigate to that page. The

result of this is that page flow through a web application is built through the hierarchical

structure that comprises a page unit. This provides a standardized way to use the struc-

ture of an EXPPO web application to navigate from page to page.

 Data can also be referenced in the content section of a page unit. These refer-

ences point to a specific location in the document, indicating that the data that is stored at

this location should be inserted where the reference is made. This feature lets data refer-

ences act like data structures in a programming language, while the data section that the

references point to acts almost like a symbol table in many programming languages.

20

Function handlers are only executed when a page is Rendered. At Render time,

the content of a page must be checked for references to handler logic. Handlers refer-

enced in the content section of a page unit point to their execution information in the

metadata section of a page. At render time, these handlers will be executed and their re-

sult inserted into the location of the handler reference. Therefore, handler processing can

actually add references to data, whole embedded page units or even references to other

handlers. These handlers may be using data from the originating system, or a different

set of data, depending on how the application logic is written. To assist with acquisition

of data, EXPPO provides a number of built-in functions for handler logic to retrieve data

from EXPPO systems.

Once these steps are completed, the different divisions and forms are assembled

in XHTML. The resulting output is returned to the original requesting browser client.

Section 6 gives a detailed example of how a Web Application can be built in EXPPO.

5. Implementation

The EXPPO system is constructed as set of Perl modules that are supported by the

ATOM API to interface with a DBXML database [Obermeier]. The application has the

ability to create structured web applications using XML page units that conform to the

EXPPO meta-language. EXPPO supports an XPath based query interface and the ability

to interact with local and remote code referred to as functional handlers.

21

The technology behind EXPPO leverages pre-existing standards and technologies

to create a web application development environment that is revolutionary, and compati-

ble with current technologies. EXPPO uses XML to store pages, XPath to query pages

and XHTML when rendering pages. First, we describe how XML is used to structure and

to provide the meta-language for pages. Our use of XML also makes it easy to design a

system of transitioning between page units. Next we explain how we use XPath state-

ments to implement the query system so that EXPPO can reference data and support

handlers. Functional handlers integrate with page design using support functions, mes-

sage passing standards and transaction request processing to interact with a page’s data.

We finish by showing two supporting technologies. EXPPO includes the ability to rap-

idly generate implicit pages to support rapid end-user development. EXPPO also uses, a

simplified database interface to manage transactions using the native format of the data-

base and the specific format of EXPPO documents.

5.1 Page Oriented Programming: XML Page Units

The format of an EXPPO page unit conforms to the XML 1.0 specification. Using

XML as a format enables EXPPO to use existing XML tools, including XPath, a lan-

guage for selecting and computing data from XML documents [Chamberlin]. XPath is

based on XML hierarchy trees, using a variety of criteria to navigate around XML docu-

ments and select particular XML elements.

By using the XML format for its meta-language, EXPPO provides structure that is

machine readable via XPath and flexible enough for user defined application develop-

22

ment. EXPPO also uses the XML format to store page descriptions and to dictate the

page flow of the web application being created.

In the EXPPO prototype, authors are required to do a large percentage of XML

tag writing manually. The EXPPO prototype responds with rudimentary warnings if in-

valid XML is submitted to be saved to a page in either its content or data sections.

Possible improvements to this manual process are discussed in section 9.

5.2 EXPPO Meta-Language

The EXPPO XML meta-language contains three main elements that describe each

page unit. These three components are a functional description of a web page and, when

combined with a cohesive set of other pages, comprise a web application. As can be seen

in Figure 2, the three sections of a page unit - metadata, content and data - are expressed

in XML format. A more verbose explanation of their contents follows the diagram.

23

EXPPO Page Unit (Sections)

MetaData

Support Data and Handler

References

Content

HTML mixed with

EXPPO Pages, handlerref

and dataref tags

Data

Page’s XML data storage

EXPPO Page Unit (XML)

<pagemetadata>

<handlers><handler>

<handlerName>InterviewLog.cgi

</handlerName>

</handler></handlers>

</pagemetadata>

<content>

<page>…</page>

<handlerref>InterviewLog.cgi

</handlerref>

<dataref>/data/CustomerName/FirstName

</dataref>

</content>

<data>

<CustomerName>

<FirstName>

Bob

</FirstName>

</CustomerName>

</data>

Page Unit Specs

Figure 2 Divisions of a Page Unit and their XML Representation

 Metadata – This section of the document contains information on who created a

document, when it was created and last modified, the page‟s title, and a page type.

Handlers used by a page unit will be specified in this section of the XML meta-

language document. The metadata section must contain a page identifier tag, which

is the unique identifier for a web page document at a given level of the containing

document's XML hierarchy.

 Content – This is the interface specification for a web page, which must conform

to the XHTML standard to be viable with the rest of the system. References to data

items in content will be rendered with the result of the XPath statement that the refer-

ence points to. Render will also cause references to handlers in this section to execute

the referenced handler and the result to be inserted at the location of the reference.

The content section will replace pages embedded inside its structure with page links,

using the XML hierarchy to create page flow.

24

 Data – This is the data that is owned by a page unit and can be referenced by tags

in the content section. Examples of elements this section might contain include in-

formation on products to be advertised for sale, image references, blog entries, news

stories, job openings, candidates for those openings and any other data that should be

stored about a given page‟s tables, pictures, graphs, windows, and text areas. An

EXPPO data query will by default reference data in the page‟s data section.

25

<!DOCTYPE Feed [

 <!ELEMENT Feed (Entry*)[

 <!ELEMENT Title (#CDATA)>

 <!ELEMENT Subtitle (#CDATA)>

 <!ELEMENT Updated (#PCDATA)>

 <!ELEMENT ID (#CDATA)>

 <!ELEMENT Link (#CDATA)>

 <!ELEMENT Rights (#CDATA)>

 <!ELEMENT Entry (Page*)[

 <!ELEMENT Page [

 <!ELEMENT PageMetaData (Contributor*) [

 <!ELEMENT Page_Id (CDATA)>

 <!ELEMENT Author [

 <!ELEMENT Name (#CDATA)>

 <!ELEMENT Uri (#PCDATA)>

 <!ELEMENT Email (#PCDATA)>

]>

 <!ELEMENT Contributor [

 <!ELEMENT Name (#CDATA)>

 <!ELEMENT Email (#PCDATA)>

]>

 <!ELEMENT PageType (#PCDATA)>

 <!ELEMENT Display [

 <!ELEMENT Content_Type (#PCDATA)>

 <!ELEMENT Style_Sheet (#PCDATA)>

]>

 <!ELEMENT Handlers (Handler*)[

 <!ELEMENT Handler [

 <!ELEMENT HandlerMethod (#PCDATA)>

 <!ELEMENT HandlerName (#PCDATA)>

 <!ELEMENT HandlerRef (#PCDATA)>

]>

]>

 <!ELEMENT Content (Page_ref*,Handler_ref*,Data_ref*, HTML*, Page*)[

 <!ELEMENT Page_ref (#PCDATA)>

 <!ELEMENT Handler_ref (#PCDATA)>

 <!ELEMENT Data_ref (#PCDATA)>

 <!ELEMENT HTML (XHTML)>

 <!ELEMENT Page (EXPPOPage)>

 <!ELEMENT Data (XML)>

]>

]>

]>

]>

<!ENTITY XHTML "http://www.w3.org/TR/xhtml1/">

<!ENTITY XML "http://www.w3.org/2002/xmlspec/dtd/2.10/xmlspec.dtd">

<!ENTITY EXPPOPage "a <!ELEMENT Page> cannot be included into the DTD without causing recur-

sion">

Figure 3 EXPPO Meta-Language DTD

26

Figure 3 is a formalized Document Type Definition or DTD for the EXPPO lan-

guage [Lu]. Each of the elements specified conform to standard DTD 1.0 syntax, with

the exception of embedded EXPPO pages, an element which would cause recursion and

violates the DTD rule set. Where no other specification is given, an element contains ex-

actly one of each of its children. Where an element specification contains a note about

one or more of its children with a star symbol, it is an indication that the element may

contain any number of the children element preceding the star. PCData is a pseudo acro-

nym for parsed character data and CData indicates character data.

The DTD begins with a feed element because EXPPO uses the ATOM format

standard to store its documents. The root page entries of web applications are stored as

entries inside the ATOM feed. While the ATOM format serves no purpose in the current

implementation of EXPPO, it was chosen to ease integration with ATOM publishing and

storage applications in the future.

5.3 Page Transitions

EXPPO uses the hierarchical nature of XML as a method of dictating the page

flow of a website application. This means that the specification for a page can be placed

inside another page. When the site in question is generated, only a link to the embedded

page is visible on the parent page. Figure 4 demonstrates how the page flow of EXPPO

web applications can be designed:

27

In order to keep EXPPO page flow structured and yet unrestricted, standard

HTML link tags can be used in the EXPPO specification to allow user-developers to keep

page flow as embedded XML page units, as standard link tags, or both. In Figure 4 the

XML for page bob is contained within the XML for page alice, thereby instructing EX-

PPO to create a link on page alice for a user to navigate to page bob. When a user

navigates to page bob, the page id in the url would change from “alice” to “alice/bob.”

EXPPO uses this path based page id to location page bob inside page alice.

<page alice>

 <page bob>

 </page bob>

 <a href://[ip-address]/index.cgi?page_id="george"/>

</page alice>

…

<page george>

</page george>

Figure 4 XML Page Flow example

As shown here, page alice contains a reference link tag to page george. Page

george‟s XML is contained outside page alice, yet the reference link is an instruction to

create a link to page george on page alice. By using the structure of XML for page flow

instructions, EXPPO has the ability to describe an entire website in a single XML docu-

ment or to divide that document into multiple separate components.

5.4 EXPPO Query System

Because data in the EXPPO system adheres to the XML standard, a query takes

the form of an XPath statement. The design of a query to the system, a URL concate-

nated with an XPath statement, was designed to be conducive to automated construction.

28

 As shown in Figure 5, concatenating a URL with a query (“?XPath=”) and an XPath lo-

cation will return a data selection from an EXPPO file. While accessible through a

browser window, the query system is mainly intended for automated systems to access

data. Using these query URLs is how data is retrieved by other EXPPO systems, handler

logic and third party-applications.

Figure 5 Functional Diagram of the EXPPO Page Query System

A full query to the EXPPO system is the simple concatenation of a URL, a pa-

rameter indicating a query and an XPath statement. For example, a user may want to

query a website with data on car parts, having a page flow design as shown in Figure 6

for data items with attribute parent-part that have a value equal to two. The desired query

might appear in an XPath statement like this:

<InterviewLog>
 <Candidate>
 <CandidateName>
 Brian Goodrich
 </CandidateName>
 <CandidateSSN>
….
 </Candidate>
</InterviewLog>

XML Candidate
via HTTP

EXPPO
Page

[URL]?XPath = /data/InterviewLog/Candidate[CandidateName = ‘Brian Goodrich’]

Query
?XPath = [XPath]

29

http://[server.domain.tld]/index.cgi?page_id = parts_home/parts_directory/parts_list;

XPath=data/part_list[part/parent-part=2]

Figure 6 Example of Embedded Page Flow for Sample Query URL.

The return value would appear in a browser window as shown in Figure 7.

<part_list>

 <part number=”1070”>

 <description>Head gasket for 1995 Geo Prizm</description>

 <parent-part>2</parent-part>

 </part>

 <part number=”1071”>

 <description>Head gasket for 1993 Toyota Corolla</description>

 <parent-part>2</parent-part>

 </part>

</part_list>

Figure 7 Data that is the Result Set of the Query in the Part_list Example

5.5 Functional Handlers

Handlers are functional modules that dictate page logic and behavior. The current

prototype supports Perl scripts, although extensions for additional languages should be

fairly easy to implement. One or more handler tags may be contained inside the metadata

section of a page tag, and references to web application code are referenced by a file path

or URL inside these handler tags. EXPPO is able to call handlers from the file system of

the hosting machine using a file path, or remotely from other EXPPO application systems

30

by using a URL. Multiple handler tags can be placed together in chains to benefit from

functionality from multiple handler modules.

 Placing the handler XML tags inside the metadata section of page documents ac-

complishes two things. First, EXPPO gains functionality for web applications while still

holding the original premise that the foundational unit of the EXPPO system is a page

unit. Secondly, adding handler specifications to the metadata section gives handlers the

power to be easily “searchable” in the system. A handler can be retrieved using a simple

extension to EXPPO and an XPath statement that points to the handler specification.

 Using this system, programmers can provide the public with rich functionality for

web applications because handlers are modular enough to be exchanged and tailored to

an end-user‟s needs. Increases in the amount of software that is used in EXPPO data-

bases causes growth that benefits not only EXPPO users, but also other developers that

query these EXPPO systems for handlers. Additionally, because handlers are modular,

less code-savvy users can also build useful web content by combining different handlers

in use by other EXPPO systems.

Figure 8 shows a typical communication between a handler and the EXPPO sys-

tem that requested its execution. At render time, a handler reference is evaluated and the

URL of the handler is requested. Often, a handler will need to use some data from the

requesting page and so it sends a request using the EXPPO Query System discussed in

Section 5.4. EXPPO provides a small library of built in functions to assist developers

with this process. The handler parses the response, produces its output and returns the

31

result to the requesting system. The result is then inserted into the requesting part of the

EXPPO page, as discussed in Section 4.3.

EXPPO

Page Unit

Handlers

Get Remote

Handler

Remote

Handler

Handler Calling and Execution

Client

Request

Request Remote

Execution

Data Request

Query System

Response

Handler Result

Insert Results

at Position of

Handler

Reference

Figure 8 Diagram of EXPPO Remote Handler Execution

To facilitate interaction with remote handlers, EXPPO implements a handler

query system. This system involves a simple meta-instruction for a handler query to a list

of user-specified URIs that point to other EXPPO systems. When an EXPPO URL is re-

quested with a key-value pair of "exppoHandlerCall=exppoHandlerDisc", the EXPPO

system will respond by returning a list of the handlers stored at that EXPPO system. Fu-

ture implementation could easily include some kind of description of the services that

those handlers provide, whether contained in a WSDL document or another format.

5.5.1 Handler Message Passing and Handler Data Transactions

The EXPPO system uses an XPath based message passing system to handle data

transactions with a dynamic set of functional handlers. This message passing system is

32

based on key-value pairs with the key being the name of an XHTML input variable and

the value being equivalent to the input variable‟s value. When creating an EXPPO han-

dler, a developer selects how data should be used by naming the input variables in the

handler with an XPath statement appended with a meta-tag instruction. The meta-tags in

question fall at the end of the XPath statement, and indicate either a write (“ExppoW-

rite”) or delete (“ExppoDelete”) statement. A lack of a meta-tag in the input variables

name indicates a read transaction. For example, if a user wanted to have his data about

an interview session stored in the company EXPPO site, a portion of the handler's

XHTML output could be:

 <input type="textbox"

name="/data/InterviewLog/InterviewEntry/InterviewCandidate/CandidateName/ExppoWrite"> </input>

This particular input variable indicates that the value that the user inputs into this

textbox should be written at the location of the XPath statement preceding the “ExppoW-

rite” instruction. This XHTML, when submitted via HTTP POST to the EXPPO system

with a user entered value of "Bob Seger", will create an entry in the data section of the

page in question that looks like the XML in Figure 9. EXPPO processes the XPath

statement and creates parts of the hierarchy to make the XPath valid if those parts do not

already exist and then writes the value of the key-value pair (in this case “Bob Seger”), to

the appropriate location.

When designing an ExppoWrite statement in a handler there are several condi-

tions to consider. First, if the data section of the page unit in Figure 10 had been

completely blank, the result would have been the same. When evaluating an XPath

33

statement, EXPPO follows the existing XML element hierarchy in a step-by-step proce-

dure until the end of the path is reached or the next element required in the path does not

exist. Then EXPPO creates any elements required to fulfill the path and writes the value

at the indicated location.

<page>

 <data>

 <InterviewLog>

 <InterviewEntry>

 <InterviewCandidate>

 <CandidateName>

 Bob Seger

 </CandidateName>

 </InterviewCandidate>

 </InterviewEntry>

 <InterviewLog>

 </data>

</page>

Figure 9 Example Interview Log Data Entry

If an XML element already exists, and another statement uses the same XPath,

EXPPO will create another entry at the most specific level available. To use the previous

example in Figure 9, if the same XHTML input is used a second time with a value of

“Harshwardhan Nagaonkar,” a second CandidateName element will be created under the

same InterviewCandidate tag with that value. While this may seem like an erroneous be-

havior in the example, it exemplifies why careful selection of XPath names is important

as they are responsible for the automated construction of the XML in the EXPPO page

units.

The example in Figure 10 shows how to use an EXPPO handler input to write a

social security number to a specific part of an XML document using values that already

exist in the document. With the exception of the “/ExppoWrite” part of the statement, the

34

input name in Figure 10 follows standard XPath syntax for the location of a Candi-

dateSSN inside an InterviewCandidate element where there also exists a CandidateName

element with a value equal to „Bill Seger‟. Since „Bob Seger‟s‟ InterviewCandidate ele-

ment does not meet this criteria it would not be written there, and EXPPO would create a

single CandidateSSN element with the value „999-99-9999‟ after the CandidateName

element with the value of „Bill Seger‟. The automated construction of these statements

is facilitated by the EXPPO query system, which can serve handlers with page data, and

EXPPO provides built-in functions to facilitate this.

35

<input type="textbox" name="page/data/InterviewLog/InterviewEntry/InterviewCandidate[CandidateName

= „Bill Seger‟]/CandidateSSN/ExppoWrite">999-99-9999</input>

<page>

 <data>

 <InterviewLog>

 <InterviewEntry>

 <InterviewCandidate>

 <CandidateName>

 Bob Seger

 </CandidateName>

 <CandidateSSN>

 555-55-5555

 </CandidateSSN>

 </InterviewCandidate>

 <InterviewCandidate>

 <CandidateName>

 Bill Seger

 </CandidateName>

 <Candi- dateSSN>999-99-9999</CandidateSSN>

 </InterviewCandidate> (will be inserted here!)

 </InterviewEntry>

 <InterviewLog>

 </data>

</page>

Figure 10 Example of doing a value specific location write in the EXPPO system

Delete statements follow much of the same behavior but are even simpler to

evaluate as they are not concerned with an accompanying value to be written. Exppo-

Delete simply evaluates the XPath statement associated with the control to which it is

attached and then removes any of the resulting data from the page unit. Consider the fol-

lowing example, on the same page:

<input type="submit”

name="page/data/InterviewLog/InterviewEntry/InterviewCandidate[CandidateName = „Bill

Seger‟]/ExppoDelete">

Using this statement, any InterviewCandidate element containing a Candi-

dateName with the value of „Bill Seger‟ will be deleted. The amount of data

36

encompassed by the delete can be increased by changing the position of the „[„ character

in the XPath statement to include more parts of the path. As with deletes in most data-

base systems, ExppoDeletes are very powerful statements and should be used very

carefully.

5.5.2 XML Message Cluster Creation

To manage more complex transactions with remote systems, the implementation

of EXPPO includes a system for combining multiple messages from the same handler

that have similar XPath key values. The problem arose from an inability to place multi-

ple incoming XPath key-value pairs in the intended parts of an XML document. Figure

11 shows a set of example messages to be inserted into the XML data below it.

37

 <input type="textbox"

name="page/data/InterviewLog/InterviewEntry/InterviewCandidate/CandidateName/ExppoWrite">

Harshwardhan Nagaonkar </input>

 <input type="textbox"

name="page/data/InterviewLog/InterviewEntry/InterviewCandidate/CandidateSSN/ExppoWrite">999-99-

9999</input>

<input type="textbox"

name="page/data/InterviewLog/InterviewEntry/InterviewCandidate/CandidateAge/ExppoWrite">

23</input>

<page>

 <data>

 <InterviewLog>

 <InterviewEntry>

 <InterviewCandidate>

 <CandidateName>

 Bob Seger

 </CandidateName>

 <CandidateSSN>

 555-55-5555

 </CandidateSSN>

 </InterviewCandidate>

 <InterviewCandidate>

 <CandidateName>

 Bill Seger

 </CandidateName>

 </InterviewCandidate>

 </InterviewEntry>

 <InterviewLog>

 </data>

</page>

Figure 11 Example Interview Log Entry with Multiple Entries

These instructions have been submitted from a single handler that is referenced by

the current page unit. The outcome of this handler is to add a new interview candidate

with a name, age and social security number to an interview entry. The next example,

Figure 12, shows how the messages will be executed without the message clustering sys-

tem.

38

<page>

 <data>

 <InterviewLog>

 <InterviewEntry>

 <InterviewCandidate>

 <CandidateName>

 Bob Seger

 </CandidateName>

 <CandidateSSN>

 555-55-5555

 </CandidateSSN>

 <CandidateName>

 Harshwardhan Nagaonkar

 </CandidateName>

 <CandidateSSN>

 999-99-9999

 </CandidateSSN>

 <CandidateAge>

 23

 </CandidateAge>

 </InterviewCandidate>

 <InterviewCandidate>

 <CandidateName>

 Bill Seger

 </CandidateName>

 <CandidateName>

 Harshwardhan Nagaonkar

 </CandidateName>

 <CandidateSSN>

 999-99-9999

 </CandidateSSN>

 <CandidateAge>

 23

 </CandidateAge>

 </InterviewCandidate>

 </InterviewEntry>

 <InterviewLog>

 </data>

</page>

Figure 12 Bad Behavior Result on Figure 11

Figure 12 shows the disastrous behavior associated with submitting multiple si-

multaneous statements through the message passing interface alone. No new

InterviewCandidate entry has been created, but the new information elements for

Harshwardhan have been added to the InterviewCandidate entries for both Bob Seger and

Bill Seger. The cause for this is apparent; the XPath statement indicated those locations.

39

Although the user and the handler developer were unlikely to wish the result in Figure

12, the three XPath statements, when handled individually, do in fact point to the loca-

tions where the data was written.

In order for the intended data to be delivered appropriately, these three separate

messages need to act together. The EXPPO system implements a system of clustering

XPath messages from handlers and evaluating the clusters. First, the messages from a

handler are analyzed for similarities within a major section of a page document, a major

section meaning: metadata, content or data. Wherever the paths are identical up to a

point, then those messages are selected to be a part of an XML cluster. The XPaths of the

different statements are truncated to the point to where they stop being identical.

Using the example in Figure 11, three inputs will be combined into a new single

key-value set. The new combined XPath statement will be:

page/data/InterviewLog/InterviewEntry/InterviewCandidate/ExppoWrite

 The new XPath statement‟s value will include the values of all three statements.

The values are clustered in XML, constructed by using the truncated parts of the original

XPaths and so will contain a CandidateName element, a CandidateSSN element and a

CandidateAge element, each with their accompanying values. This new statement is now

evaluated as a write to the system and produces the desired result, as shown in Figure 13.

40

<page>

 <data>

 <InterviewLog>

 <InterviewEntry>

 <InterviewCandidate>

 <CandidateName>

 Bob Seger

 </CandidateName>

 <CandidateSSN>

 555-55-5555

 </CandidateSSN>

 </InterviewCandidate>

 <InterviewCandidate>

 <CandidateName>

 Bill Seger

 </CandidateName>

 </InterviewCandidate>

 <InterviewCandidate>

 <CandidateName>

 Harshwardhan Nagaonkar

 </CandidateName>

 <CandidateSSN>

 999-99-9999

 </CandidateSSN>

 <CandidateAge>

 23

 </CandidateAge>

 </InterviewCandidate>

 </InterviewEntry>

 <InterviewLog>

 </data>

</page>

Figure 13 Good Behavior Result on Figure 11

5.6 Implicit Page Generation

An additional feature EXPPO offers users is the ability to create pages implicitly

by using the current page as a template [Takao]. This means that a page can exist with

content and data while not actually ever having entered those elements in a page in the

database. By simply adding some rudimentary tags and instructions to a root page‟s con-

tent field, a user can specify a series of implicitly created pages that are generated on the

fly [Volker]. The ability to automatically generate pages makes the EXPPO system more

convenient for web development.

41

 For instance, say a user implements a review web site for digital cameras. The ex-

plicit page would list separate divisions of these cameras by model, manufacturer, price,

or some other piece of information. When a user clicks an EXPPO hyperlink, the pro-

gram will process the URL of that link. If the URL stored is for an implied page and a

reference to the data items selected, EXPPO will generate a page with data stored about

the selections.

 For example, on an EXPPO shopping page for Olympus cameras, a user will click

on a link and EXPPO will display a page with the data that corresponds to the cameras

that fit the description of the user-selected link. If the user clicks on one of the cameras,

another page will be generated implicitly showing more verbose data specific to the cam-

era selected stored on the explicit parent page. This example is using two levels of

implicitly generated pages from the root page of the digital camera shopping application.

5.7 ATOM API

 The ATOM API is actually a separate software application, written in conjunction

with EXPPO. The API serves as a wrapper system for the DBXML 2.0 database, simpli-

fying the database API and providing the capacity to wrap transactions in an ATOM

entry format [Obermeier]. The ATOM format is a publishing protocol similar to RSS

2.0. EXPPO uses ATOM entries to contain the specification documents that hold page

units, making page unit documents more accessible to third party publishing applica-

tions.

42

Though simplifying to the interface to DBXML, the ATOM API does not possess

significant portions of the functionality supported by DBXML. Although the API does

not currently support a method to actually modify entries or append new entries to an al-

ready existing document, the API still makes this possible through loading a document,

appending the new entry to a document and overwriting the data back to the same file,

achieving the same result but suffering a performance reduction.

6. Results

To verify these claims, we built a Unit Test Application in the EXPPO system

that tests each of the abilities mentioned in this thesis. Each of these tests completes

successfully. Implied pages are generated, page flow is dictated by embedding page units

inside other pages, the query system delivers data to handlers and browsers and handler

logic can update the database by using XPath entries for input field names. Figure 14

shows the main page of the Unit Test Application with the following features:

1. Embedded pages are rendered as page links.

2. Output from local and remote handlers use locally stored data.

3. There is a link to an implicitly generated page (the “genPage” link).

4. The page makes use of a CSS specification stored in the data section to show a

data reference in use.

The Unit Test application proved valuable for development of the EXPPO system.

Validation of working components indicated when bugs were introduced to the system.

43

Challenges not considered in the initial design were revealed during the test application‟s

implementation.

Figure 14 Image of the Main Window of the Unit Test Application

To show how EXPPO can be used to create a real application, we designed an In-

terview Log Application. This system can take a job description, record it and begin

taking records for applicants for that position by creating page units for each applicant for

the position. Interviewers can select a particular applicant‟s page unit and make addi-

tional comments about a particular applicant.

Using EXPPO, it is very easy to create an Interview Log application. At the EX-

PPO start page, enter the identifier of the job opening, and click „Create‟. The Edit

Window will appear and a user should enter a page id, select the interview_log.cgi for a

44

handler and click „Save‟. The Interview Log application is now ready for use. Figure 15

shows a page flow diagram a user might experience while using the Interview Log Appli-

cation.

Create

Job

Description

Candidate

Page

Add Comments

To a

Candidate

Candidate

Page

Candidate

Page

Add New

Candidates

Google

LinkedIn

Candidate

Check

Figure 15 Page flow diagram for Interview Log Application

Figure 16 Image of the Create Job Description Page

Upon entering a brand new instance of the Interview Log application, the user is

prompted with the screen shown in Figure 16, the Create Job Description Page. After

entering the values into the page and clicking enter, the page will change state to present

45

the main page of the application, an example of which is shown in Figure 17. From this

page, interviewers can change information about the job posting, add information about

new candidates for the job position, and navigate to an existing candidate‟s information.

Figure 17 Image of the Interview Application Main Page for adding Candidates for

a Software Engineer Job Position

Information about a particular candidate is stored in a page unit generated by the

Interview Log application. An example of the Rendered version of one of these page

units is show in Figure 18. This page holds information including a resume, a name, a

social security number and a set of comments made by interviewers. The candidate page

uses another handler that provides the display of this information and an interface for in-

terviewers to add new comments about the page candidate. Not shown in Figure 18 are a

pair of generated content items at the bottom of the page that are links to search for a

candidates information using the Google Search engine and the LinkedIn Network search

feature.

46

Figure 18 Log of Candidate Information on a Candidate Page

47

7. Future Work

Given that EXPPO is a prototype, it is not surprising that the work begun in this

thesis has a large potential for refinement and expansion. An additional project for EX-

PPO would be the creation of a much more graphical interface for managing page units.

Since EXPPO introduces strict XML structure to web application creation, sets and sub-

sets of content and data can be arbitrarily grouped and then moved or copied to other

EXPPO document locations. A GUI could be built on this principle, making it much eas-

ier to organize data and to add and rearrange parts of a web application. Such an

implementation, while not functionally required by the EXPPO system, would open EX-

PPO application development to a much wider range of users.

Akin to the browser-based GUI improvement would be the creation of a fat-client

or desktop application built specifically for EXPPO application development. While re-

mote handler interaction could be problematic in a desktop environment, creation and

organization of content, page flow and page data would still be very reasonable to con-

struct off-line. When a document would be ready for submission into the EXPPO

system, a user could publish from a desktop or fat-client environment to a set of EXPPO

library repositories, to make the new EXPPO application available for use. Additionally,

the fat client system could be used to create a more powerful interface for generating

XPath queries by freeing the interface from the restrictions of a browser window and the

inherent delay in network communications.

 A centralized repository of code and addresses of EXPPO systems, (similar to the

48

APT or YUM RPM repositories) would greatly enhance the ability to discover handler

code. A description of handler functionality (similar to a WSDL document) could com-

municate to end users the purpose of a particular handler, especially if those descriptions

included a set of keyword tags to help users search for the type of code they desired.

Search results would be ordered by an index based on the similarities to search terms and

the popularity of requests for a given handler. As a particular handler becomes more and

more popular, its position in the search index would be moved to a more prioritized posi-

tion. This would continue up to a threshold point where the handler logic itself would be

uploaded to the repository to ease the bandwidth usage of a particular EXPPO system. If

usage continued to increase past yet another threshold, the repository itself could upload

the actual handler code to requesting EXPPO systems, distributing code as a form of load

balancing. Updates to the code base at the repository and then to systems that have

downloaded the code could be handled by an extension to the subversion system already

supporting the EXPPO code base. As EXPPO handlers cannot maintain state without the

information from the EXPPO system, this would allow individual EXPPO systems to

maintain a handler set with the same functionality as the remote handler while also hav-

ing better performance throughout the entire system. This same repository system could

theoretically also be used to communicate what data a given EXPPO system has available

for open data exchange and the URI-XPath combination required to retrieve that data.

 While handler sharing is an impressive paradigm to code exchange and speed-

ing web application development, security has not been addressed in this system.

EXPPO requires a method of first establishing a set of trusted network nodes with which

49

data can be exchanged. If handler discovery is to be automated with or without a reposi-

tory, the method of establishing trust must also be automated. Second, a security

negotiation method between individual nodes in the system and a possible repository

based upon the automated trust negotiation would need to establish a secure communica-

tion line. While not functionally required by the EXPPO prototype, communication of

any data but the most insensitive would require a security system meeting these two re-

quirements.

 While the current EXPPO system is concerned with only read, write and delete

as meta-tags in its message passing system, a richer vocabulary of EXPPO meta-tags

would allow a richer functionality set to offer to handler developers. These could include

instructions to specify the position of an XML write in a given document, a re-ordering of

existing data, a tag for modifying a set of XML data without requiring a delete and insert,

tags indicating changes to other EXPPO files and a various other database transaction

instructions. Additionally, another meta-tag type could indicate input type checking for

HTTP POSTs. These tags would need to indicate what type of data should be submitted

from a given input element and what exception handling instructions should be associated

with a violation of the indicated constraints. Optionally, type checking could be imple-

mented as a separate set of EXPPO tags that would generate JavaScript that would limit

the keystrokes to a given input based on the field validation rules and could emit an error

message and lock submission upon detecting bad input into a given field.

50

8. Conclusions

We have used several example applications to demonstrate the validity of the

EXPPO system. Allowing web pages to exist in a Page Oriented Architecture produces

semi-structured web content that is still flexible enough to create functionally rich-

applications. We have shown that the EXPPO system can express a website with the

XML meta-language by building a website with the EXPPO development environment.

We have used the EXPPO system to create web sites that incorporate important design

principles and features:

 using XML hierarchy to dictate page flow

 using code that has its logic described in a handler tag

 logic that will generate implicitly generated pages.

The fact that EXPPO requires users to manually enter XML and XHTML means

that the prototype does not yet provide an improved experience for end-users. However,

because the implementation of EXPPO maintains the syntax of XPath and XHTML

throughout the system, further work for the interface could easily use the prototype as a

backbone for a much richer experience for end-users.

51

References

[Bricklin] Dan Bricklin. “About Wikicalc 0.1” 9 November 2005

<http://www.bricklin.com/log/aboutwikicalc01.htm>

[Ceri] Stefano Ceri, Piero Fraternali and Aldo Bongio, “Web Modeling Language

(WebML): a modeling language for designing Web sites.” Computer Networks, Volume

33, Issues 1-6, June 2000, Pages 137-157.

 [Chamberlin] Don Chamberlin, Daniela Florescu, Jonathan Robie, Jerome Siḿeon, and

Mugur Stefanescu (eds.). “XQuery: A query language for XML.” W3C Working Draft

<http://www.w3.org/TR/xquery, February 2001.>

 [Cunningham] Ward Cunningham. “Correspondence on the Etymology of Wiki.”

<http://c2.com/cgi/wiki?WikiWikiWeb >

[Dabble] “Dabble DB” <http://www.dabbledb.com/about/>

[Di Iorio] Angelo Di Iorio, Fabio Vitali. “From the Writeable Web to Global Editability.”

HT 2005, September 6-9, 2005 Salzburg, Austria, 2005.

[Eikvil] Line Eikvil. “Information extraction from the world wide web - a survey.” In

Technical Report 945. Norwegian Computing Center, Oslo, Norway, 1999.

[Gardner] Philippe Gardner and Sergio Maffeis. “Dynamic Modeling Web Data.” In

DBPL '03 LNCS Springer, 2003.

[Gonzalez-Reinhart] Jennifer Gonzalez-Reinhart. “Wiki and the Wiki Way: Beyond a

Knowledge Management Solution.” Information Systems Research Center, pp. 1-

22/February 2005

[JotSpot] JotSpot Inc., “JotSpot Beta: the application wiki.”

<http://www.jotspot.com/>

[Lu] Shiyong Lu, Yezhou Sun, Mustafa Atay, Farshad Fotouhi. “On Consistency of XML

DTDs.” In Data and Knowledge Engineering 2005, vol. 25, Issue 2, pages 231- 248

[McArthur] Gregory McArthur, John Mylopoulos, and Siu Kee Keith Ng. “An extensible

tool for source code-representation using xml.” pages 199–208. Proceedings of the Ninth

Working Conference on Reverse Engineering, IEEE Computer Society, Richmond, Vir-

ginia, USA, October 2002.

[Nelson] Theodor Nelson. “Literary Machines.” Sausalito, CA, Mindful Press, 1987.

 [Obermeier] Sebastian Obermeier. “Embedded XML-Databases.” Seminar Workout,

November 2004 <gauge.upb.de/pgmanet/seminar/workout/embeddeddatabases.pdf >

52

[Quint] Vincent Quint, Irene Vatton. “Towards Active Web Clients.” DocEng 2005.

<http://wam.inrialpes.fr/publications/2005/DocEng05-Quint.html>

 [Schwall] Johannes Schwall. “The Wiki Phenomenon.” August 2003

[WikiMedia] “Home-From the Wikimedia Foundation.” version 17th March 2006

<http://wikimediafoundation.org/wiki/Home>

	Brigham Young University
	BYU ScholarsArchive
	2008-03-12

	Extending Web Application Development to the User-Editable Space
	Brian S. Goodrich
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	1. Introduction
	2. Thesis Statement
	3. Related Work
	3.1 User-editable Applications
	3.2 Structured Web Architectures
	3.3 Code Frameworks

	4. The EXPPO System
	4.1 Page Method: Edit
	4.2 Page Method: Query
	4.3 Page Method: Render

	5. Implementation
	5.1 Page Oriented Programming: XML Page Units
	5.2 EXPPO Meta-Language
	5.3 Page Transitions
	5.4 EXPPO Query System
	5.5 Functional Handlers
	5.5.1 Handler Message Passing and Handler Data Transactions
	5.5.2 XML Message Cluster Creation

	5.6 Implicit Page Generation

	6. Results
	7. Future Work
	8. Conclusions

