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ABSTRACT

THE HYBRID GAME ARCHITECTURE: DISTRIBUTING

BANDWIDTH FOR MMOGS WHILE MAINTAINING CENTRAL

CONTROL

Jared Lee Jardine

Department of Computer Science

Master of Science

Current Massively Multi-player Online Games (MMOGs) have enormous

server-side bandwidth requirements. The costs of providing this bandwidth is in

turn passed on to the consumer in the form of high monthly subscription fees. Prior

work has primarily focused on distributing this bandwidth using peer-to-peer archi-

tectures, but these architectures have difficulty preventing cheating, overwhelming

low resource peers, and maintaining consistent game state. We have developed a

hybrid game architecture that combines client-server and peer-to-peer technologies to

prevent cheating, maintain centralized and consistent game state, significantly reduce

central server bandwidth, and prevent lower capacity players from being overwhelmed.

By dramatically reducing the bandwidth needed to host a game without introducing

additional liabilities, our hybrid architecture reduces the costs associated with that

bandwidth and allows MMOG developers to reduce the cost of monthly subscription



fees. In addition, because the central server will need less bandwidth per player, a

single server is able to support considerably more concurrent players. Our experi-

ments show that bandwidth can be reduced by up to 95% and a single server can

support a game twice as large.
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Chapter 1

Introduction

Game developers spend a large amount of money on bandwidth to support a

single MMOG (Massively Multi-player Online Game). This investment in game host-

ing bandwidth is a significant consideration alongside software development costs.

These extra costs prevent many game developers from entering the field. The band-

width costs for hosting an online game are tied to the common client server archi-

tecture. As a result, many researchers are developing peer-to-peer architectures that

distribute these costs among the game players. Both of these architectures have ad-

vantages: the client-server architecture is simple and the game publisher can maintain

control of the game, while the peer-to-peer architecture reduces bandwidth costs. Our

hybrid-game architecture incorporates the advantages of both architectures.

1.1 Client-Server Architectures

The chief benefit of the client-server architecture is that control of the game can be

maintained by the game publisher. The central server provides four critical controls:

First, the server is able to control the sequence of events in game, for example deciding

who got a treasure first. Second the server maintains control of game state, including

character inventory and statistics. Third, the server can enforce game rules and

prevent cheating by limiting what it tells the clients. For example, users should not

know about where other users are unless the server tells them. Fourth, because the
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server is controlled by the game company, it can be updated directly without the

bother of patching all game users.

Another benefit of the client-server architecture is that it is generally sim-

pler to implement than other architectures. Peer to peer architectures require a peer

discovery mechanism, global event ordering, distributed storage, and distributed com-

putation, but the central server of the client-server architecture easily handles all of

these critical game elements.

The two main drawbacks of the client-server architecture are, first, the high

cost of centralized bandwidth, and second, the client-server architecture is less robust

due to its central point of failure. Server clusters are often used to mitigate failure

risks. With these clusters all of the responsibilities of the server are distributed among

the servers in the cluster. This is done with redundancies built in so that the cluster

is fault tolerant.

1.2 Peer-to-Peer Architectures

The peer-to-peer architecture has two primary benefits. First, the peer-to-peer archi-

tecture eliminates several significant server related costs. Communication, storage,

and computation costs are distributed to the peers. Second, the peer to peer ar-

chitecture provides a fault tolerant platform. Several peer-to-peer game systems use

distributed systems that are so robust they can handle as high as 50% node failure

without measurably degrading system performance [7].

Peer-to-peer architectures can be complicated, but their most fundamental

problem is maintaining coherent game state. This problem can be reduced to difficul-

ties with global event ordering. How do the peers decide who picked up the treasure

first or who was shot first by whom? This is a critical issue, because users are directly

competing with one another, and the transposition of two events can be the differ-

ence between victory and defeat. With all peers authoritatively equal, it is difficult
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to properly and efficiently order events. Most peer-to-peer architectures do not even

attempt to tackle this problem, while the few that do increase latency and have not

been widely adopted. Another difficulty is that peer-to-peer architectures often rely

on time synchronization. This synchronization must meet real-time requirements. A

popular time synchronization protocol, NTP, only gives assurances on the order of

seconds, while game state needs to be synchronized on the order of 10s of milliseconds.

1.3 The Hybrid Game Architecture

Our hybrid architecture saves bandwidth by having the central game server process

only state-changing moves. A state-changing move is a move where some action is

performed that changes the general state of the game, for example, moving to a new

game world region, attacking another player, or picking up treasure or equipment.

The majority of moves in a game are positional moves, which occur when a player is

moving around in the game without crossing any important boundary or performing

any action other than moving within a game world region. Our hybrid architecture

uses peer-to-peer methods to pass these moves among players, without using the

server’s resources. To make this distinction we assume that positional moves that do

not cross a regional boundary or trigger a significant event do not affect the global

game state.

To effectively use players to distribute positional moves, the central server

must measure them. Once the server knows which peers have capacity it can delegate

certain responsibilities to them. The central server then assigns capable peers to

be regional servers, which will serve regional state updates to all players in their

given region. This can account for tremendous bandwidth savings. Regional servers

also need to pass moves on to the central server when a player crosses a regional

boundary. These moves are sent to the server so that the new regional server can

be notified. Otherwise the regional server handles all simple positional moves, while
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state-changing moves are handled at the central server. This allows the central server

to maintain control of game state, while offloading bandwidth costs associated with

positional moves.

Our hybrid-game architecture possesses the key attributes of both the client-

server and peer-to-peer game architectures. First, by utilizing peer resources it can

dramatically reduce the bandwidth required to host a MMOG. Second, the distinction

between simple positional moves and state-changing moves allows the central server to

maintain control, which helps to maintain consistent game state and prevent cheating.

Third, because our hybrid game architecture’s regional servers act in many ways like

a typical game server, the implementation of our architecture should be simple and

low cost.

To evaluate our architecture, we create a simple multi-player online game in

which two teams of players search for hidden treasure. The game is played in either

client-server or hybrid architecture mode, which allows us to demonstrate the hybrid

architectures advantages. We use emulation to restrict player bandwidth, so that

we can test how our architecture performs when most players are unable to assist

in distributing the game’s bandwidth. Using this game, we run our experiments

with 50 automated players on PlanetLab. Our experiments show that the hybrid

architecture scales better than the client-server architecture, requires as much as 95%

less bandwidth at the central server, lowers average latency, and almost doubles the

throughput of the game. All of these benefits are dependent on having enough players

that are capable of sharing the central server’s load.
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Chapter 2

Related Work

While the client-server architecture currently dominates commercially-

deployed MMOGs, most academic work has focused on peer-to-peer architectures.

The two main classes of peer-to-peer architectures are those that are based on a Dis-

tributed Hash Table (DHT), and those that rely on a hierarchical organization of

peers.

2.1 DHT-Based Game Architectures

The core of several peer-to-peer architectures is what is known as a Distributed Hash

Table or DHT [19] [20]. DHTs are used in order to effectively distribute storage across

a large number of distributed machines. DHTs provide a basic storage and lookup

service of the form put(key, value) and value = get(key). The service also includes

some security guarantees, extensive fault tolerance, caching, and other performance

enhancements. Probably the chief of these is that DHTs typically guarantee O(logN)

bounds on item lookup. Many services have been built on top of DHTs, including file

systems [7] [18] and multicast [4].

In a DHT-based game, all of the players of a game collectively form a DHT.

To deliver game state to players, the system uses a publish-subscribe model. When

a player enters a region of the game, they subscribe to the region’s events. Then

as events are generated in the region, they are broadcast to all players who have
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a subscription to the region’s events. When used in this way, a DHT has three

primary benefits. First, the DHT gives a structure on which to base a purely peer-to-

peer system. DHTs have proven methods for joining and leaving without damaging

the effectiveness of the underlying architecture. Second, the DHT provides a fault

tolerant system. Most DHTs can survive many peers failing simultaneously without

interrupting playability on the other peers. Third, the DHT can guarantee state

lookup in O(logN) time. This is a great advantage when looking at games that are

of the scale of a MMOG.

SimMud [14] is a game simulation that is based on a DHT [18]. In addition

they use Scribe [4] to multicast the state changes. As players subscribe to a game

region, SimMud builds them into a multicast tree to receive the region’s published

events. One of the problems they encounter is that certain messages take incredibly

long to arrive, which the developers attribute to the Scribe multicast mechanisms

[14]. Another liability of SimMud is its reliance on multicast trees. It is a competitive

advantage for a player higher in the tree to receive moves earlier than those lower

in the tree. This presents a real opportunity for cheating by unscrupulous peers. In

addition SimMud is susceptible to catastrophic failures. This is not acceptable to

game developers.

Mercury [2] uses a DHT with a coordinate system, but makes a fundamental

change that allows it to support range based queries in a single request. Standard

DHTs would be required to store an entity list for each discrete region. Players

in the game would then need to subscribe to each region list that fell within their

sphere of influence independently. As they received these lists they would then need to

subscribe individually to each item in each of the lists. Mercury’s range queries solves

these cumbersome lookup chains. However, to support these range based queries,

Mercury is only able to claim O(log2n) bounds.
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Colyseus [3] is an architecture built on top of Mercury’s [2] DHT, that dis-

tributes the various game items uniquely. Instead of needing to access the original

objects all of the time, Colyseus stores local copies. A primary concern with Colyseus

[3] is view inconsistencies, which occur when one player sees a different game world

than another. Another problem with it is that the experiments do not take each

node’s available bandwidth into consideration. Because they are treating each peer

equally, a peer can become overwhelmed when it does not have sufficient bandwidth.

The Zoned Federation [12] is another game architecture that relies on the use

of a DHT. Rather than basing all traffic on the DHT, the Zoned Federation utilizes

the DHT as a backup system. First, each game region or zone is stored in the DHT.

Then, the first player that enters a zone becomes the zone owner until they leave.

The zone owner acts as the central server for the zone. All subsequent players then

send their moves to the zone owner while the zone owner sends all of the players

region state updates. During a session on a zone, the zone owner periodically stores

the zone’s state back to the DHT. In this way, if the zone owner fails or leaves, the

other nodes have a base point to work with. The chief drawback of this approach is

that each in game zone will be limited to the capacity of the zone owner. If a dial

up client visits a zone first they will still have the responsibilities of zone ownership,

although they may not have the capacities to support any other clients.

2.2 Hierarchical Architectures

Another set of peer-to-peer architectures relies on the peers to be organized into some

form of hierarchy. These hierarchies handle the problems of original peer discovery,

adjacent region discovery and other top level game concepts [9]. Most of this work

assumes an overall hierarchy and focuses on the communication and the ordering of

events among peers within a single game world region. One of the reasons that they

rely on a overarching hierarchy is that within the game region each player updates
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every other player. This means that they generally scale at O(logN2). By restricting

these all-to-all groups to the number of players within a single game region they can

avoid being unbearable. In addition, by passing messages directly between players

these architectures can reduce the message latency considerably.

MiMaze [11], a pioneer in distributed game architectures, relies on a bucket

synchronization method, in which virtual time is divided into buckets and moves are

identified by the bucket in which they take place. When every player’s move has been

received, the players can move forward. Bucket synchronization methods force the

players to move forward at the speed of the slowest connection. This is also vulnerable

to attacks made by those who are just trying to slow the game down for others by

delaying their communications.

Lockstep [1] builds on the bucket synchronization method in MiMaze to pre-

vent timing cheats. With bucket synchronization alone, any player can see other

players moves prior to committing their move. With Lockstep each player sends a

hash of his move for the given bucket to every other player. When players have

received a hash of every other player’s move, they then send the plaintext move to

all other players. In this way the players must commit their moves for a given time

bucket before then can find out other players moves. By requiring each player to

receive an update from every other player in the group, latency is bounded by the

slowest peer. However, in Lockstep, not only do you need to wait for the slowest peer,

you need to wait for him twice, since you will first send your hashed move, and then

follow it up with your plaintext move.

NEO [10] extends Lockstep by adding a bound on the maximum time allowed

for each round. For each move after the first round, each player sends their move

along with a list of those players from which it received the last move within the

given round time. Then, the majority vote is used to determine if each player’s move

has been received within the round time and will be accepted. Those moves which
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are accepted are processed, while those that failed to get to a majority of the other

players are rolled back. In essence, it provides a guarantee on the speed with which

the game will progress by choosing to ignore move messages that took too long. While

the game will progress at the given speed, a poor performing player may proceed at

a much slower pace.

Trailing State Synchronization (TSS) [6] is an unique event ordering architec-

ture that uses a time based state “roll back” to cope with inconsistencies. In TSS

the current state is based on guesses of where other peers will be based on current

position and velocity. As messages arrive from each peer, their position and veloc-

ity are updated. When TSS detects an inconsistency, it rolls back to a prior game

state and continues computation from there. Unfortunately, TSS relies on millisecond

clock synchronization between all players, so if an inconsistency occurs within a few

milliseconds of delay, the state must be rolled back. In addition, rollback states re-

quire ongoing computation as a complete, alternate version of the game. This greatly

increases the computational complexity required by the game.

Load Balanced Trees [21] assigns each region a ”responsible node”. All events

in a region are sent to the responsible node for that region, and the responsible node

forwards the region state to all who have subscribed to the region’s updates. This

responsible node essentially becomes the central server for the region. The main

contribution of this work is in dealing with scaling within a given region. When

enough peers are in a given region that the responsible node becomes overloaded, a

Load Balanced Tree of peers is constructed. The responsible node then disseminates

region updates through this tree.

Another hierarchical architecture uses Software Multicast Reflectors [17] as

quasi-servers. This structure is set up in a hierarchy and relies on in-game move

being assigned varying priorities. As a player subscribes to a game region, they also

stipulate at what priority they have assigned for events from that region. Each region
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then has a Software Multicast Reflector, which is best described as nested multicast

trees. The root of the multicast reflector is the root of the highest priority multicast

tree, while each subsequently lower priority tree is connected as a leaf in the previous

tree. For example, an in-game move is published, and enters at the root of the highest

priority multicast tree. It then is sent to every subscriber at that priority level, one

of which will be the next lower priority multicast tree. This process is repeated until

all of the priority levels are handled. Generally a player will subscribe to the events

that are closer at a high priority, while those at a distance could be subscribed to at

a low priority. This is intended to allow those who view actions with a higher priority

to receive those events first. Unfortunately it relies on additional dedicated resources

to form the heart of its hierarchical structure. This prevents the realization of the

bandwidth savings generally associated with peer-to-peer architectures.

2.3 Critique of Peer-to-Peer Architectures

Whenever choosing to spend the time necessary to formulate and test a new solution

it is necessary to describe why the current solutions are insufficient. With all of the

game architectures that are built on peer-to-peer architectures we feel a specifically

pressing need to describe why we believe that purely peer-to-peer architectures are

not the right solution.

First, DHTs do not place a bound on storage update time. Players and crea-

tures are moving around, picking up, using, and dropping equipment as well as dam-

aging themselves and others on a constant basis. These changes need to be recorded

swiftly and the true state needs to be available to all of the players; so that they can

maintain consistent state. A DHT does not bound the time it takes for a write to be

performed so that every interested party is able to access it. This question has not

been addressed primarily because the original purpose of DHT was to create a file

system or similar file sharing architecture that did not depend on quick writes.
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Second, peer-to-peer architectures struggle to enforce access control and secu-

rity - anyone can join at any time. Several peer-to-peer architectures do not ensure

that the nodes that are placed in a position of responsibility will be fair. In the Zoned

Federation of Servers [12] approach the zone and its players are totally at the mercy

of the zone owner. In the context of a MMOG the zone owner can unfairly pillage

the equipment and resources of the zone, and its members. Likewise, in a publish-

subscribe design, nothing prevents a player from subscribing to information that they

should not be able to obtain. This can allow certain players to see through walls, or

track other players outside of the rules of the game. Finally, there is no scrutiny of

those publishing new events or data to the system.

Third, peer-to-peer architectures assume that each node in the group of peers

has identical capacities. While this assists in simplifying the problem, it does not

present an accurate view of MMOGs customers. Relying on these assumptions will

either drive the architecture to the least common denominator, or else lock out nodes

that do not have sufficient resources to handle the load. If 30% of the games clients

access the Internet via a dial-up connection, the game developer does not want to

close the door to the revenue that these nodes provide, nor do they want to degrade

their game service to the other 70% of their clients to maintain the peer-to-peer ar-

chitecture’s attributes. For instance, a dial-up client should not serve as a responsible

node in the Load Balanced Trees [21]. Neither should an entire region of players in

Lockstep [1] be limited to a dial-up client’s latency.
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Chapter 3

The Hybrid Game Architecture

Our hybrid game architecture provides security by using a central server to

control access to the game state. This provides the server a great deal of power,

because the ultimate goal of most games is to acquire or control game state in the

form of treasure, power, or the lives of other players. Any time players must interact

with game state, the server acts as the arbiter, ordering state-changing events and

issuing state updates. The central server also registers players, monitors their actions,

and can evict them from the game if it detects that they have misbehaved.

The hybrid game architecture achieves scalability by using peers to distribute

game updates. The server divides the game into regions and assigns a player to

distribute updates for that region. Whenever a player makes a positional move,

it sends the move to its regional server, which distributes the move to the other

players in the region, illustrated in Figure 3.1(a). Whenever a player makes a state-

changing move, it sends the move directly to the central server. If the state change is

accepted, the central server sends the player the result and also issues an update to

the appropriate regional server, which in turn distributes this update to the players

in its region, illustrated in Figure 3.1(b).

For example, a player walks from one side of the foyer of an inn to the other.

This move is a simple positional move and is sent from the player directly to the

region server, which updates the region state and sends the update to all of the

region’s players who can see the player walking. The same player then picks up a

13



(a) Positional Moves

(b) State-Changing Moves

Figure 3.1: Distributing Moves

coin left on the inn’s floor. This move is state-changing is sent from the player directly

to the central game server. The central server then updates the player’s inventory

and send the player their new state. The central server will also pass the region server

a region update that shows that the coin is no longer on the floor. This message is

passed from the region server to the region’s players who can notice it.

Even with region servers, players always maintain a direct link to the central

server to be used for access control and for region navigation. When a player first ac-

cesses the system they validate through the central server. This link is then preserved

and used when a player is moving from one region to another. For example, when a

player approaches a new region his current region server includes that information as

a state-changing move that is passed on to the server. The server then communicates

the address of the new region server directly to the player so that it can switch. In

addition, players can inform the central server of problems with region servers. The

central server will also handle cases when a region server is overwhelmed or fails.
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(a) Undivided (b) Divided into Regions

Figure 3.2: Game World Map

Before region servers can be assigned, the game world needs to be divided

into regions. Different games world maps need to be divided differently. The game

world prior to region division is shown in Figure 3.2(a), while a divided game world

is illustrated in Figure 3.2(b). Game regions will generally have one or more paths

to other regions, these paths will probably be an alley, doorway, or other similar

transition area specific to the map. The game world is divided so that regions will

be large enough to generally have more than one player node, but small enough that

they can be handled by a region server without overwhelming it.

With region servers donating system resources and bandwidth to help the ar-

chitecture’s performance, special care should be given to ensure that they are not

abused. If a region server’s player experience is degraded because they are over-

whelmed, they will not want to participate in the architecture. To give capable nodes

incentive to share their resources, game developers may want to offer lower subscrip-

tion fees to those who share their resources as region servers.
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3.1 Measuring and Monitoring Players

To determine whether players can act as region servers, the central server needs to

classify the players according to bandwidth and latency. For the bandwidth classifi-

cation the server asks the player to classify their bandwidth. In addition, for those

who are capable, players will be asked if they would like to opt in and share their

bandwidth as a region server. If they do not wish to share their resources as a region

server or they have a connection that will not support acting as a region server they

will remove themselves from the region server pool. Those that report that they are

capable then move on to be classified according to latency. To measure latency we

have the central server ping the connecting player following sound Internet measure-

ment strategies [16]. We then take the maximum latency returned by the ping and

use it as that player’s latency. If a node has a latency over 200 milliseconds they are

classified as incapable and are never used as a region server. If their latency is less

than 200 milliseconds and there is currently a region that is being hosted by the cen-

tral server, the capable player is promoted to the region server over that game region.

If they have wrongfully claimed to be capable, the server will shortly recognize that

they are bogged down with even the smallest region and remove them from the pool.

The server picks players to act as region servers as capable players join the

game. Although smarter methods can be determined in the future, our current ar-

chitecture simply picks the next lowest region number and hands it out to the next

capable player. Although the server currently prevents players from acting as region

servers if they connect to the Internet from behind a NAT or similar mechanism that

prohibits them from being connected to by other players, there are some emerging

methods that may make this a non-issue [15].

While our hybrid game architecture leverages player node capacities to lower

bandwidth costs, this is not accomplished without creating some dependency on these

nodes. It is important that our architecture is able to smoothly transition when a
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region server fails or becomes overwhelmed. To achieve this, each region server sends

status messages to the central server every 150 ms if they have not already sent a state

update within the last 150 ms. If the central server goes for three of these 150 ms

intervals without a message from the region server, it knows that the region server has

failed or become overwhelmed and can quickly step in to take over the region server

duties. The central server then informs the region’s players to send their positional

moves to it until it appoints another player-based region server. This enables players

to recover from an unresponsive region server.

3.2 Advantages / Analysis

Our hybrid game architecture produces most of its bandwidth savings by our approach

to message passing. There are two key ways in which we benefit over the client-server

architecture. First, by distinguishing between simple positional and state-changing

moves, and then handling positional moves at the region servers, the server does not

need to devote any bandwidth to these moves. Second, by introducing the region

server into the architecture, the server’s bandwidth is limited more by the size of the

game map than by the number of players in the game.

The hybrid game architecture saves bandwidth for the central server by distin-

guishing between simple positional and state-changing moves. This savings is tightly

coupled with the specific MMOG. When players are moving around without perform-

ing any state-changing actions, these simple positional moves can be served by the

region servers without changing the global game state. The bandwidth savings of this

approach is directly tied to the average proportion of simple positional moves within

a specific game. For example, if 33% of a game’s moves are simple positional moves,

the central server requires 33% less bandwidth.

The hybrid game architecture also saves bandwidth for state updates by using

capable players as region servers. Studies have shown that a player’s move messages
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are approximately 20 bytes, and that state update messages are approximately 320

bytes [13]. Consider the case when a player sends a state changing move to the

central server. First, In the client server architecture, the player sends a 20 byte

move message to the server and receives a 320 byte state update message back from

the server. The central server in this case processed 340 bytes. Next, in our hybrid

game architecture a player sends a 20 byte state changing move to the central server,

which then sends a corresponding 20 byte update message to the correct region server,

which finally sends a 320 byte state update message to the player. The central server

in this case processed only 40 bytes, for a savings of 300 bytes or 88% of its required

bandwidth. Unfortunately, it isn’t always this simple. There are small messages that

add overhead, and there may not be enough capable players to fill all of the region

server roles. In regions where there is not a player acting as the region server, our

hybrid-game architecture reverts to the client-server architecture.

3.3 Security Concerns

In most peer-to-peer architectures malicious clients can be a real problem. By placing

the nodes into a system with central server controls, most of this problem is removed.

The central server maintains access control, and thus can ban or otherwise restrict

access to a misbehaving client. In addition, the clients have no control of game state.

This prevents a malicious client from purposely altering the game state to benefit

themselves or to attack the system. While a client can mount a denial of service on

either the central server or a region server, this risk exists in all architectures that

rely on a central component. This has not prevented commercially deployed MMOGs

from utilizing the client-server architecture, nor would it prevent the use of our hybrid

game architecture.

The first attack that we want to address is a player falsely manipulating the

game state. At first glance our hybrid game architecture may appear vulnerable to
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this attack because we place players in a position of responsibility over a region of

the game. However, region servers do not serve state-changing moves. All moves that

change a player’s stored attributes or inventory are sent directly to the central server.

This includes any move that changes a monster or player’s inventory, experience,

characteristics, or profile in any way. All that a region server does in response to the

central server’s state change message is adjust the region state update to reflect any

visible changes. Otherwise, the region server only deals with simple positional moves.

This severely restricts the attacks that a region server can perform.

Second, consider a region server using their position of responsibility to gain

an advantage over other players. As a safeguard against this, our hybrid-game archi-

tecture does not allow a region server to play in the region that it is serving. When

the central game server sees that the player is moving to the region that they are

serving, they will be replaced as the server of that region. This removes the region

server’s temptation to exploit the region that they are serving to benefit their player.

While a game region server and a player within that region could possibly collude to

the benefit of the player, region servers cannot know before they join the game which

region they will be selected to serve. Also, by limiting the region server’s influence

on state changing moves, the only benefits a player could gain from this collusion

are: possibly moving faster through the region than is allowed by game rules; see-

ing portions of the region that they should not be allowed to see; and having their

position somehow masked to other players of the game. To prevent these collusion

attacks, the server can periodically audit region state to check that players are moving

appropriately.

Finally, a region server may choose to mount a denial of service attack on

a given player within its region. If the region server does not properly update a

player, the player will be able to detect this action. Players expect a region state

update every 200ms. If they are not getting their messages or feel that they are being
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abused, they can lodge a complaint via their direct connection to the central server.

Whenever players in a region lodge a complaint against a region server, that server

will be removed. The central server will log all of the complaints that it receives from

players, and if players complain much more than usual, there future complaints will

be ignored. In addition, if game developers offer reduced subscription fees to region

servers they will have a financial motive to play fairly and treat players properly.
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Chapter 4

Methodology

We created a simple MMOG to test our hybrid-game architecture. It can run

in either client-server or hybrid-game modes. We choose to compare our architecture

with a client-server architecture because the client-server architecture dominates de-

ployed MMOGs. By comparing against client-server we are making a case for the

deployment of our architecture as its replacement. We measure our performance

based on server bandwidth consumption, network latency, and average player moves

per second.

4.1 The Game

In our MMOG players quest for treasure and bring it back to their start location. The

world map is divided into between 5 and 40 regions. The central server then assigns

players to one of two teams. Their given team determines the region that the players

are assigned to, with even numbered players being assigned to the first region and

odd players being assigned to the last region. The start locations begin at the top of

the far end of the starting region and move down the far edge. After the player enters

the game world, they query the central server as to the region that their treasure is

in. Players then send move messages to, and receive region state updates from their

region server. When a player reaches a region boundary they send a region move

message to both the central server and their region server. Once the player reaches
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the region where their treasure is placed they query the central server for the exact

location of the treasure. After the player has picked up the treasure, a state-changing

move, they move at 1/2 their normal speed. Each time a player returns to their

start location with a treasure, a point is added to their team’s score. A replacement

treasure is then generated and randomly placed, and the cycle begins again. For the

purposes of this game, players are programmed with automated behaviors.

4.2 Experimental Setup

Our tests run on PlanetLab, a global network of computers used for Internet research.

PlanetLab allows us to perform actual Internet experiments so that we do not need

to rely on a simulator. PlanetLab nodes generally have broadband connections; to

properly represent players of different capacities, we use an emulator that lets us limit

a player’s bandwidth to a fixed value. This allows us to test with different numbers

of players representing dial-up and broadband clients. Each test is run on both the

client-server architecture and our hybrid-game architecture five times to increase the

statistical significance of our results.

Our experiments are divided into two different stages, the ramp-up followed by

the steady state. During ramp-up players join the game with an exponential arrival

rate averaging one player per second. After all of the players have joined the game

the experiment enters steady state, which lasts for ten minutes. Our bandwidth

measurements are taken during steady state because the server is under the most

strain during this period. This allows us to illustrate the capabilities of our hybrid

game architecture with everything up and running. While an average client duration

has been measured to be around 180 minutes [13], we chose a 10 minute period. This

gives us a sufficiently large interval to measure, while allowing us to fit within the

bandwidth limits enforced by PlanetLab.
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In our game, move messages and state update messages are very small, because

our game is simple. We choose to pad our messages so that they represent a more

realistic MMOG message load. In accordance with the sizes measured in [13] we

padded our move messages to 20 bytes and our state update messages to 320 bytes.

Every move message and region state update is time-stamped and logged. Players

also measure and log the time between the sent move and the received region state

update as a the player’s experienced latency.

4.3 Metrics

Whenever a player sends a move message, that player first records the message and

a time stamp. They then set a timer and wait to receive a corresponding region

state update from their server. When it is received, the player records the time it

took as the move’s latency. Each player sends moves no faster than once every 200

milliseconds. As the moves are received either by the central server or a region server,

they are also logged and time stamped. At the end of an experiment the data is then

taken and logged for both the messages in and the messages out. Using these message

logs the bandwidth used both at the central server and region servers is calculated. To

ensure that the ramp-up portion of our experiment doesn’t skew our results we only

use data from the last 600 seconds of the central server, region servers and players.

Although our experiments are primarily focused on bandwidth usage at the

central server we also calculated latency and average player moves per second. The

hybrid game architecture is successful if it lowers the bandwidth used at the central

server. The other two metrics ensure that our central server bandwidth measurement

is useful. If the latency in our hybrid game architecture is too much, then regardless

of how much bandwidth savings there is the game is unplayable [8]. Also if the central

server bandwidth is reduced, but the player moves per second is also reduced it shows

that the bandwidth was reduced because the game did not progress at the same pace.
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On the flip side if bandwidth is reduced, latency is kept within a playable range, and

player moves per second increases it shows that our hybrid game architecture is being

successful.
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Chapter 5

Results

We ran three experiments: varying the size of the game world, varying the

percentage of players with broadband connections, and varying the percentage of

moves that were state-changing. In our first experiment, we vary the size of the

game world, using 50 players, 24% broadband players. For our second experiment

we varied the number of players with a broadband connection, also using 50 players,

but always on a game world with 8 regions. In our final experiment we vary the

percentage of moves that are state-changing, with an 8 region game world and 24%

broadband players. In this experiment we are limited to 35 players because PlanetLab

was undergoing major updates and over 100 of the nodes we rely on for our tests were

unresponsive. While we prefer to have 50 players for all of our tests we believe that the

results from this final experiment with 35 players is still sufficient to show the benefits

of the hybrid game architecture. We run each experiment ten times at each setting,

with five runs using the client-server architecture and five runs using the hybrid game

architecture. In each experiment the players are restricted to send moves no faster

than one every 200 milliseconds or five per second.

All of our bandwidth results show the central server in the client server archi-

tecture, the central server in the hybrid game architecture and the region servers in

the hybrid game architecture. In addition, we graph all of our results with the 25th

and 75th percentiles.
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Figure 5.1: Map Region Density Experiment: Incoming Bandwidth

5.1 Varying the Game World Size

Our first experiment varies the game world size. We vary the size of the game world to

see how our hybrid game architecture performs as the average regional player density

shifts. This is because it is far simpler for us to shrink the game world than it is to

increase the number of players we use in our tests.

For this experiment we use a capable player percentage of 24%, which gives

us an average of 12 capable players for each run. We start with a game world that

is 40 regions large. We then progressively reduce the game world size until we reach

a game world of 5 regions. This includes the following game world sizes: 40, 20, 10,

and 5. Because our experiments have 50 players in the game, these game world sizes

yield average regional player densities of 1.25, 2.50, 5.00, and 10.00.

Our results show that as the game region player density increases the central

server in the hybrid game architecture uses less bandwidth. The pattern found in
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Figure 5.2: Map Region Density Experiment: Outgoing Bandwidth

Figure 5.3: Map Region Density Experiment: Latency
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Figure 5.4: Map Region Density Experiment: Moves per Second

Figure5.1 and Figure5.2 illustrates that both incoming and outgoing bandwidth are

behaving similarly. They also show that the central server is being overwhelmed in

both the client-server architecture and our hybrid game architecture when the density

is low. We have, on average, 12 capable players in each test. This means that on tests

with low region density, with 40 and 20 regions, the central server is only offloading

a portion of its regions. For mkoexample, in our tests with 40 regions, 28 regions

are served by the central server because the 12 capable players are only assigned one

region each. However, in our hybrid architecture tests with high player density, our

10 and 5 regions, the central server only needed to serve state-changing moves, and

all of the positional moves were handled by region servers. These tests show the real

bandwidth savings of the hybrid-game architecture. Not only is the central server’s

bandwidth reduced, but the total game throughput soars. Finally, in the tests with

the game world size reduced to 5 regions we anticipated the most savings. Our central
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server was free to only serve state changing moves, but all of our simple positional

moves were being served by only 5 capable players, and it appears that they were

overwhelmed. Although the bandwidth savings of our hybrid-game architecture as a

percentage is improved, the total game throughput is less than in the 10 region tests.

The latency results for this experiment are shown in Figure 5.3. It shows that

the latency in the hybrid game architecture is significantly reduced. It also shows that

the variance in latency is best in our test with 10 game regions, where the density is

high and all regions are served by region servers. This data also reinforces that the

central server in the client-server architecture was overwhelmed. In the client-server

architecture the median latencies are all over 700 milliseconds. In the hybrid-game

architecture, while the 75th percentile latencies are still higher than we would have

liked, the medians are around 200 milliseconds. One might expect the added level

of hierarchy would give us a slight latency disadvantage, but that is really only for

state-changing moves, and because the server in the hybrid game architecture is free

from serving positional moves it can serve the state-changing moves quickly.

Figure 5.4 illustrates that the game in the hybrid-game architecture is moving

much more quickly than the client-server game. The ideal for these experiments

would be an average of 5.0 moves per second for every player. Both the hybrid-

game architecture and the client-server architecture fall short of that ideal. In this

experiment the client-server architecture is averaging between .5 and 1.0 moves per

second, while the hybrid-game architecture is averaging between 1.0 and 2.25 moves

per second. This shows that the hybrid-game architecture is able to get substantially

more game throughput, and is thus doing a better job of serving the game.

5.2 Varying Capable Player Percentage

Our hybrid-game architecture depends on capable players being promoted to act as

region servers. To tell to what degree this reliance is a liability, our second experiment
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Figure 5.5: Player Capacity Experiment: Incoming Bandwidth

varies the portion of players that are capable of being region servers. To illustrate

the hybrid-game architecture’s limitation we use a game world size of eight regions

and the following capable player percentages: 8%, 16%, and 24%. This gives us test

results with an average of 4, 8, and 12 players capable of being regional servers.

Broadband access should be more prevalent in the future; studies have shown

that as residential users increase their bandwidth capacities they are more likely to

participate in resource sharing peer-to-peer architectures [5]. As broadband and fiber-

optic Internet access becomes increasingly prevalent, the portion of players that would

be qualified as capable players should increase.

These results dramatically illustrate how the hybrid-game architecture saves

bandwidth as the number of capable players increases. The pattern is once again

the same for both incoming bandwidth Figure 5.5, and outgoing bandwidth Figure

5.6. In the first tests we use a capable player percentage of 8. This translates to an
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Figure 5.6: Player Capacity Experiment: Outgoing Bandwidth

Figure 5.7: Player Capacity Experiment: Latency
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Figure 5.8: Player Capacity Experiment: Moves per Second

average of 4 capable players for each test. The central server in these tests still serves

4 of the regions as well as all of the state-changing moves. The bandwidth used at the

central server is the same for the client-server and the hybrid-game server, although

the hybrid game architecture processes more moves and has better latency. The next

tests use a capable player percentage of 16, or an average of 8 broadband players. In

these tests the central server is generally only required to serve the state-changing

moves and the bandwidth savings is considerable. Then in our final tests we use a

capable player percentage of 24, or 12 broadband players. With these test we always

have more than enough capable players to act as region servers and so the central

server never needs to serve simple positional moves. This illustrates the ideal situation

for the hybrid-game architecture, and the bandwidth savings as well as the increase

in overall game throughput are substantial.
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Figure 5.7 shows that the median latency for the hybrid game architecture is

much faster than the client-server architecture even when broadband players are rare.

This data shows that in the client-server architecture the central server was always

overwhelmed, with the average latency over a second in all of our tests. It also shows

that when there are not enough capable players to assist in sharing the load, the

central server in the hybrid game architecture can also slow down. However, when

the capable player percentage gets high enough to serve the game regions the hybrid

game architecture is much more responsive than the client-server architecture. What

this is really showing is that when there are sufficient capable players, the hybrid

game architecture allows the central server to run a much larger game.

Figure 5.8 shows that the hybrid game architecture is getting roughly two

times the move throughput of the client-server architecture. Though the ideal for

these experiments would be an average of 5.0 moves per second for every player,

it is not achieved in either the architecture. The client-server architecture averages

between .4 and .75 while the hybrid-game architecture ranges between .65 and 2.0. By

being able to get substantially more game throughput the hybrid game architecture

is doing a better job of serving the game.

Figure 5.9 and Figure 5.10 illustrate the CDF of latency for the best and worst

case. Both of these graphs show that while the majority of the latencies are minimal

they have long tails. In the best case, the hybrid-game architecture is getting well

over 50% of its latencies below 200 milliseconds. However, when there are insufficient

broadband players the worst case shows that the server on both the hybrid-game and

client-server architectures becomes overwhelmed. Even the hybrid game architecture

appears to have over 40% of its players experiencing latencies over a full second,

and [8] shows that latencies any higher than 400 milliseconds make a real-time game

unplayable.
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Figure 5.9: Best Latency Results: 12 Broadband Players

Figure 5.10: Worst Latency Results: 4 Broadband Players
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Figure 5.11: Best Moves per Second Results: 12 Broadband Players

Figure 5.12: Worst Moves per Second Results: 4 Broadband Players
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Figure 5.11 and Figure 5.12 show how even in the worst case the hybrid game

architecture’s game is progressing considerably faster than the client-server’s. While

in the best run, Figure 5.11, the hybrid-game architecture has a majority of players

getting between 1.5 and 2.5 moves per second, a few players that are getting close to

the ideal of 5.0 moves per second. The client-server architecture is a different story, in

its best run it is getting a few players above 1.0 moves per second, while the majority

of its players are getting between 0.5 and 1.0. In its worst run, Figure 5.12, while the

two architectures are much closer the players in the client-server architecture entirely

range between 0.25 and 0.75 moves per second.

5.3 Varying State-Changing Move Percentage

Our final experiment changes the percentage of moves that are state-changing. In an

actual game, the state changing move percentage would be fixed and a function of

the game. In our experiment we are able to simulate a change in the state-changing

move percentage by sending what would otherwise be a positional move directly to

the central server. The central server then passes the move on to the region server

and the region server sends the player the region state update directly. By rerouting

these positional moves through the central server, the server follows the same pattern

as it does when the player sends in an actual state changing move. This allows us

to maintain the same game mechanics while effectively changing the percentage of

state-changing moves. In this way these rerouted messages can illustrate how the

hybrid game architecture performs with different state-changing move load.

For this experiment we use a game world of 8 regions and a capable player

percentage of 24%, but we were restricted in the number of players we could use to

35. This means that there is an average of seven capable players for each run. We

test 25% , 50% , and 100% of the messages being rerouted through the central server.
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Figure 5.13: Extra State-Changing Moves Experiment Results: Incoming Bandwidth

Figure 5.14: Extra State-Changing Moves Experiment Results: Outgoing Bandwidth
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Figure 5.15: Extra State-Changing Moves Experiment Results: Latency

Figure 5.16: Extra State-Changing Moves Experiment Results: Moves per Second
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This is the first bandwidth graph that shows a distinctly different pattern

for incoming bandwidth Figure 5.13, than for outgoing bandwidth Figure 5.14. As

the number of messages that are changed to state-changing moves and sent through

the central server increases, the bandwidth into the central server in the hybrid game

architecture also increases, whereas the bandwidth out of the region servers decreases.

This is showing that the extra messages in and out of the central server in the hybrid

game architecture are slowing the system down. When the bandwidth handled by

the central server and region servers are added together they are not as much as the

bandwidth handled by the client-server architecture. This is most likely due to the

monolithic thread that runs the central server. In our original calculations we did

not anticipate even beginning to overwhelm any of the PlanetLab nodes. Any future

experiments should address this liability. If the various connections were threaded,

and thus responded independently, this overhead could be avoided.

Figure 5.15 shows the median latency for this experiment. The server in the

client-server architecture is much less overwhelmed than in the previous experiments

due to the reduction in total number of players. The latency in both architectures

is acceptable with 25% additional state-changing moves. However, as the number of

state-changing moves increases beyond that, the hybrid game architecture slows more

than the client-server architecture does, to where at 100% the hybrid game architec-

ture’s latency is four times that of the client-server architecture. This demonstrates

how the hybrid game architecture relies on the differentiation of state-changing and

positional moves. If all moves are truly state-changing moves, then the hybrid game

architecture adds another layer of hierarchy. While this adds to the message latency

it also decreases the size of the messages that the central server needs to handle.

Figure 5.16 shows that the average moves per second that each player makes

decreases as more moves are state-changing. These numbers are the direct inverse of

the latency numbers. If a player is having to wait over a second to get the response
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for each move they will have less than one move per second. Once again this should

improve with some threading adjustments to the central server.
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Chapter 6

Conclusion

For games that can distinguish between positional and state-changing moves,

not only does our hybrid-game architecture distribute upwards of 90% of the central

server bandwidth, it allows the central server to serve twice as many player moves per

second. This means that our hybrid-game architecture can save game hosting com-

panies 90% of their bandwidth costs and 50% of their server costs while maintaining

central game control. This will provide for an incredible advantage in an increasingly

competitive global market.

6.1 Bandwidth Consumption

Our original hypothesis regarding the game world size experiments was that “we

predict that the hybrid-game architecture’s performance should increase with the

player density of a given region.” While this is partially true we found that when the

density got too high, the region server was overwhelmed. More interesting though,

the results show that having sufficient capable players to serve all of the regions is

much more important than the density of the players in the regions.

Our original hypothesis regarding capable player percentage was that “We pre-

dict that the hybrid game architecture will produce great bandwidth savings so long

as their are sufficient capable players to serve as regional servers; once this number

is reached we expect to have similar performance with or without additional capable
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players.” Our results back this up by showing that the hybrid game architecture has

substantial bandwidth savings so long as we had enough capable players. Once we

have them serving all of the regions, there is only a small improvement found by

increasing the number of capable players, for example going from 16% to 24%.

Our original hypothesis regarding state-changing moves was that “we predict

that as the proportion of state-changing moves increases our bandwidth savings will

decrease, but that is will remain in the 80% range.” Once again this hypothesis ended

up part true and part false. With regard to bandwidth savings, although the central

server maintained the 80+% bandwidth reduction the savings is not as strong as it

should have been because the game progressed at a much slower pace. We believe

that this is an artifact of our central server being a monolithic thread rather than

accepting each incoming connection on its own thread. Had we done this we believe

that this this hypothesis would be proven correct.

6.2 Latencies

Our original hypothesis regarding latencies has three parts. The first is that the

hybrid-game architecture will have an increased latency due to its hierarchy. This

turns out to have been generally false. The first reason is that most of our commu-

nication does not require two levels of hierarchy, it is just back and forth with the

region servers. The second reason is that with the central server so overwhelmed,

the distribution of bandwidth really freed up the central server in the hybrid-game

architecture to respond more quickly. The second part of our latency hypothesis is

that latency should still generally be less than 200 milliseconds. This sprung from

our thoughts that our game would never really come near the capacities of the sys-

tem we were running on. While the results for the hybrid game architecture were

generally less than 200 milliseconds, our hypothesis really never took into account

its incredibly long tail. The final part of our hypothesis stated that we believed that
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when more messages were state-changing moves our latency would nearly double the

client-server architecture’s latency. Our results show that the latency does indeed

increase. Rather than being limited to two times the latency it climbed to four times

the latency. This further illustrates that it is important to distinguish correctly be-

tween state-changing and positional moves. With the proper number of broadband

players and a reasonable portion of positional moves the hybrid game architecture

will reduce latency.

6.3 Player Moves per Second

Our original hypothesis regarding Player Moves per Second is that both architectures

will easily maintain 5.0 moves per second. This is obviously disproved by our data.

We didn’t have a single player that averaged the full 5 moves per second. What the

data tells us though is just as important. With the central server capacities as they

were, and with the right settings, the hybrid-game architecture allowed for more than

double the player moves per second than the client-server architecture. This means

that the hybrid-game architecture not only distributed the central server bandwidth

and lowered those costs, but that if the same server could then serve twice as many

player moves the game hosting company would only need half as many servers.

6.4 Future Work

While we maintained the message and region update sizes discussed in [13] we would

like to do a future battery of tests that maintain those message’s relationship but

make them smaller so that we can more accurately test our hybrid-game architecture

on PlanetLab. If we can reduce the load on the game’s central server for both the

client-server and hybrid game architectures we can get a more realistic view of its

potential impact.
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We would also like to re-examine the state-changing moves tests with a fully

threaded central server. We believe that the lack of threading in our experiments is

the key factor that limited the total game throughput and latency in this experiment.

We postulate that the bandwidth savings would remain high, latency for both archi-

tectures would improve, and total game throughput would be comparable to that in

our other experiments.

Also, as broadband becomes more prevalent we would like to test certain runs

where all players are capable. While we have demonstrated that the benefit of moving

from 16% to 24% yielded only minor gains, we believe that this test would further

prove our assertion.

We would also like to do tests that further vary the layout of the game world.

In all of our tests the start regions for the two teams logged by far the most traffic.

If these regions were divided and served by separate region servers we believe that

it would demonstrate that the game world shape and organization can dramatically

effect our hybrid-game architecture. We believe that this would prove that the hybrid-

game architecture can be optimized by a game developer to take full advantage of its

resource savings.

Another test we want to perform is one that illustrates the difficulty of cheat-

ing. To do this we may need to complicate the interactions that go on between

players to present avenues where cheats may be used. We also want to refine the

mechanism that is used to swap out overwhelmed region servers, and test the hybrid

game architecture in even larger games to see how it scales up.
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