
Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2007-07-12

Or Best Offer: A Privacy Policy Negotiation
Protocol
Daniel David Walker
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Walker, Daniel David, "Or Best Offer: A Privacy Policy Negotiation Protocol" (2007). All Theses and Dissertations. 1016.
https://scholarsarchive.byu.edu/etd/1016

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F1016&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F1016&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F1016&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F1016&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F1016&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F1016&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/1016?utm_source=scholarsarchive.byu.edu%2Fetd%2F1016&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

OR BEST OFFER: A PRIVACY POLICY NEGOTIATION PROTOCOL

by

Daniel D. Walker IV

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computer Science

Brigham Young University

August 2007

Copyright c© 2007 Daniel D. Walker IV

All Rights Reserved

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Daniel D. Walker IV

This thesis has been read by each member of the following graduate committee and
by majority vote has been found to be satisfactory.

Date Kent E. Seamons, Chair

Date Eric Mercer

Date Parris K. Egbert

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the thesis of Daniel D.
Walker IV in its final form and have found that (1) its format, citations, and bibli-
ographical style are consistent and acceptable and fulfill university and department
style requirements; (2) its illustrative materials including figures, tables, and charts
are in place; and (3) the final manuscript is satisfactory to the graduate committee
and is ready for submission to the university library.

Date Kent E. Seamons
Chair, Graduate Committee

Accepted for the Department

Parris K. Egbert
Graduate Coordinator

Accepted for the College

Thomas W. Sederberg
Associate Dean, College of Physical and Math-
ematical Sciences

ABSTRACT

OR BEST OFFER: A PRIVACY POLICY NEGOTIATION PROTOCOL

Daniel D. Walker IV

Department of Computer Science

Master of Science

Users today are concerned about how their information is collected, stored and used

by Internet sites. Privacy policy languages, such as the Platform for Privacy Prefer-

ences (P3P), allow websites to publish their privacy practices and policies in machine

readable form. Currently, software agents designed to protect users’ privacy follow a

“take it or leave it” approach when evaluating these privacy policies. This approach

is inflexible and gives the server ultimate control over the privacy of web transactions.

Privacy policy negotiation is one approach to leveling the playing field by allowing

a client to negotiate with a server to determine how that server collects and uses

the client’s data. We present a privacy policy negotiation protocol, “Or Best Of-

fer”, that includes a formal model for specifying privacy preferences and reasoning

about privacy policies. The protocol is guaranteed to terminate within three rounds

of negotiation while producing policies that are Pareto-optimal, and thus fair to both

parties. That is, it remains fair to both the client and the server.

ACKNOWLEDGMENTS

I would like to thank my family for all they have done to help me achieve my goals.

Most importantly, this work would not have been possible without the love and sup-

port of my beautiful wife Choka, and my children Zayaa and Daniel V, whose smiles

and hugs made all of this bearable.

I am also very grateful to my advisor, Dr. Kent Seamons, for the many hours that

he has spent proofing and helping to edit this this work for publication and for all

of his guidance and advice. I am also grateful to Dr. Eric Mercer, who went above

and beyond his duties as a second committee member and greatly contributed to the

formalization of the theory presented here and the development of the work.

I also acknowledge all of the ISRL members whose feedback and support helped

develop this idea into a thesis.

This research was supported by funding from the National Science Foundation

under grant no. CCR-0325951, prime cooperative agreement no. IIS-0331707, and

The Regents of the University of California.

Table of Contents

1 Introduction 1

2 Related Work 5

3 OBO Protocol Specification 7

3.1 Overview . 7

3.2 Message Definitions . 8

3.3 Message Flow . 9

4 Running Example 11

5 Policies 13

6 Preferences 17

6.1 Utility Functions . 17

6.2 Client Preference Model . 18

6.2.1 Alice’s Preferences . 22

6.3 Server Preference Model . 23

6.3.1 Bob’s Preferences . 26

7 Negotiation Strategy 27

7.1 Alice and Bob Negotiate . 28

8 Protocol Evaluation 31

8.0.1 Fairness Analysis . 31

8.0.2 Security Analysis . 34

xiii

TABLE OF CONTENTS

9 Conclusions and Future Work 37

References 42

xiv

List of Tables

7.1 Constraints on agent behavior. 27

xv

LIST OF TABLES

xvi

List of Figures

3.1 OBO negotiation messages. Here, sign(X) is a digital signature over X. 8

5.1 A term from Bob’s default policy. 15

6.1 Alice’s recipients preference graph, with A and C cutoff frontiers. . . 23

xvii

LIST OF FIGURES

xviii

Chapter 1 — Introduction

Reports of identity theft and the loss and misuse of personal information fuel increased

privacy concerns for many Internet users, who worry about the personal information

that websites collect. To help alleviate these concerns, many websites publicize their

privacy practices.

One way that privacy policies may be published is through the use of the Platform

for Privacy Preferences (P3P) [23], an XML language designed to specify sites intend

to handle information they collect about visitors to their site. Usually, a site publishes

its P3P policy in a well-known location on its server. When a client visits the site,

a software agent acting on the user’s behalf examines the policy and compares it to

the preferences the user has configured to express how her data is to be used. If

the policy meets the client’s preferences, the software agent approves the transaction,

and the user continues browsing without any noticeable interruption. If the agent

determines that the policy is incompatible with the user’s preferences, the transaction

is discontinued or limited, optionally with a message to the user explaining the nature

of the incompatibility.

This “take it or leave it” approach is static and confining given the dynamic

nature of the Internet and the flexibility of user preferences, which depend on context

and other factors. Spiekermann et al. [20] have shown that users have a variety of

goals in mind when formulating privacy preferences and that almost all are willing

to make concessions. Users seem to have an ideal set of preferences that they adhere

to when possible, and another set of “good enough” preferences that they are willing

to accept for minimal privacy protection. From the server’s perspective, although

a site may prefer to collect certain types of information and use that information

1

CHAPTER 1. INTRODUCTION

in rather promiscuous ways, it may be willing to collect less information, and use

that information in more protected ways, but only if a user specifically requests such

protections.

One way to increase the flexibility of P3P is by introducing per-session privacy ne-

gotiations that are carried out by software agents according to an established protocol

[4, 14, 21]. Their purpose is to produce fine-grained privacy contracts that dictate

the contents of the privacy policy that governs the use of data revealed or collected

during a single transaction.

Before it becomes practical and effective to implement per-session privacy pol-

icy negotiations, several developments need to occur. First there must be a way to

guarantee the authenticity of the resulting policies, and to verify which parties nego-

tiated to produce them. Second, mechanisms must be put in place to help enterprises

manage and enforce these policies. Third, some way must be found to detect policy

violations. Fourth, legal measures must exist to offer recourse when violations occur.

Finally, appropriate protocols for negotiating the terms of the privacy policies must be

formulated. This paper seeks to address only this final requirement, the formulation

of a privacy policy negotiation protocol. We assume the existence of a PKI infras-

tructure as a central part of the protocol to provide the needed authenticity. The

problems of developing enforcement mechanisms, violation detection techniques, and

the appropriate legal constructs, though important prerequisites for the deployment

of the protocol, are beyond the scope of this work.

Other privacy policy negotiation protocols have been developed [4, 14, 21]. There

are two limitations present in this earlier work that our research seeks to address.

First, earlier specifications allow negotiating parties to engage in potentially endless

exchanges of proposals and counter-proposals. Second, negotiating agents in these

systems cannot determine whether the concessions they make increase or decrease

2

the chances of a successful negotiation. The goal of this research is a protocol design

specification that overcomes these limitations while remaining secure and fair to both

parties.

Our contributions include the following: a privacy policy negotiation protocol that

terminates within a finite number of rounds, a set of preference models that allow for

the specification of privacy preferences in a graphical and fairly intuitive fashion, and

the application of game theory to specify reasonable utility functions that allow us

to show that the protocol is Pareto-optimal, and thus fair to both parties.

The protocol is based on an “Or Best Offer” (OBO) style of negotiation, similar

to sellers who advertise an item for a fixed price and then express a willingness

to entertain a “best offer” in order to learn what buyers might be willing to pay.

The protocol enables per-session privacy contract negotiations that are guaranteed

to terminate within a maximum of three negotiation rounds. The server makes a

proposal, the client makes a counter proposal and also gives hints about how the

server can best satisfy her needs. Finally, the server does its best to conform to the

clients preferences, while at the same time meeting its own needs.

The remainder of this document is organized as follows: Chapter 2 introduces

related work. Chapter 3 gives a high level explanation of the protocol along with def-

initions of each message type used and a specification for when each message is sent.

Chapter 4 introduces a running example that will be referenced to explain various

concepts throughout the remainder of the document . Chapter 5 defines the policy

model used in OBO. In Chapter 6 the problem of reasoning about privacy policies is

addressed through the introduction of preference models and utility functions used

by agents conducting OBO negotiations. The negotiation strategy employed by ne-

gotiating agents is given in Chapter 7. Chapter 8 evaluates how well OBO meets its

goals, including a proof showing the Pareto-optimality of OBO negotiations. Finally,

3

CHAPTER 1. INTRODUCTION

Chapter 9 contains conclusions and future work.

4

Chapter 2 — Related Work

The idea of negotiating per-session privacy policies was considered for inclusion in the

P3P specification. The idea was rejected, however, when the platform’s designers were

unable to envision scenarios in which this capability would be useful [5]. Since then,

there have been two proposals for per-session privacy policy negotiation protocols.

The first such proposal was made by Bennicke and Langendorfer [4]. In their

protocol, a negotiation is a process by which a privacy contract is proposed and

then incrementally modified to meet the demands of both parties. Negotiators have

demands that can either be mandatory or optional. The goal of a negotiating party is

to have all of its own mandatory demands met and as many of its optional demands

met as possible by the final contract. Each party alternatively assumes the roles,

proposal maker and acceptor. The proposal maker proposes a contract that meets

at least its own mandatory demands, and the accepter can then respond in one

of several ways to refine the policy until both parties agree to accept it. In order

to enable negotiations, Bennicke and Langendorfer introduce modifications to the

P3P and APPEL (a rule-based P3P preference exchange language) specifications. A

later paper, by Langendorfer and Maaser[14], includes a more detailed description of

the algorithms used to resolve conflicting APPEL messages caused by multiple rule

matches on the same policy.

The second negotiation protocol is the Privacy Server Protocol Project (PSP) [21],

which is designed to allow clients and servers to produce “mutual” privacy contracts.

These contracts are mutual in the sense that they are considered binding on both the

server and the client, instead of applying just to the server, as is usually the case.

The assumption is that both parties may reveal sensitive data, and the client should

5

CHAPTER 2. RELATED WORK

therefore agree to respect the server’s privacy also. Despite its bilateral nature, PSP is

very similar to the Bennicke-Langendorfer proposal, in that the protocol requires the

client and server to exchange proposals and counter-proposals until one side finally

agrees to the last proposal made by the other. It also uses a rule-based preference

model based on APPEL.

One limitation of these privacy policy negotiation protocols is the fact that they

are incomplete and could require a potentially infinite number of rounds. Moreover,

these methods do not have models in place to inform negotiating agents as to how

policy terms rank with regards to preference, so they may make concessions that are

actually counter-productive to the negotiation.

6

Chapter 3 — OBO Protocol Specification

The goals of OBO are to be complete, fair, and secure. A protocol is complete if

it always terminates in a successful or unsuccessful outcome. OBO is complete by

definition and only admits three rounds of negation. A protocol is fair if it does

not favor one party over the other. OBO is fair, and we prove its fairness using

Pareto-optimality from game theory in Section 8.0.2. Pareto-optimality is the notion

that no other solution exists that can better benefit either party participating in the

game. In other words, in a successful negotiation, neither the client nor the server

can better meet their own needs without causing the policy to be rejected by one or

the other. A protocol is secure when it protects the negotiating parties or a third

party from manipulating the negotiation process. OBO is secure assuming adequate

legislation, PKI, etc. as discussed in the introduction. A full analysis of OBO security

is contained in Section 8.0.2.

3.1 Overview

An OBO negotiation consists of three rounds. During each round, one party in

the negotiation makes a proposal and the other makes a decision to accept or reject

that proposal. The first proposal is issued by the server, in the form of its default

privacy policy. This policy details all of the ways in which the server needs to use

the client’s data to fulfill its purpose, along with other uses that the server might

put the data to in order to potentially increase revenue or provide a more customized

experience to the user. The client may accept this policy, or issue a counter proposal

to the server. This counter proposal will remove any of the portions of the policy

that the client does not feel completely comfortable with. With the counter-proposal,

the client is effectively telling the server: “Give me this much privacy, or make me

7

CHAPTER 3. OBO PROTOCOL SPECIFICATION

Proposalj =Proposal{Polj, t stamp, IDc, IDs[,Preferences],

sign(Polj, t stamp, IDc, IDs[,Preferences])}

Acceptj =Accept{t stamp, sign(Proposalj, t stamp)}

Reject =Reject{}

Figure 3.1: OBO negotiation messages. Here, sign(X) is a digital signature over X.

your best offer.” Because privacy means different things to different individuals, the

client must help the server understand which offers it might formulate are “better”

for this particular client. To accomplish this, the client sends information about its

preferences to the server, along with its counter-proposal. The server can either accept

the client’s counter-offer, or it may use the information about the client’s preferences

to formulate the final “best offer” proposal. If the client rejects the final proposal,

then the negotiation fails. If at any point during the negotiation one of the parties

accepts a proposal, then the negotiation succeeds and terminates.

Negotiations are carried out piecewise over distinct portions of the policy referred

to as terms. In fact, an OBO policy negotiation can be thought of as a set of simul-

taneous term-level negotiations carried out in parallel. If all term-level negotiations

succeed, the results are combined to produce a complete privacy policy contract. If

any of the the negotiations fail, the overall negotiation fails to produce a consensus

policy.

3.2 Message Definitions

There are three types of messages in the OBO protocol (see Figure 3.1).

8

3.3. MESSAGE FLOW

Proposal The proposal message for round j (Proposalj) contains the proposal policy

(Polj), which consists of all of the terms still under negotiation, as well as any that

have been accepted. The message also contains a timestamp representing the date

and time the message was created, and tokens that uniquely identify the client and

server (IDc and IDs, respectively). This message can optionally contain a set of

preferences (Preferences). A preference set consists of graphs specified by the client

that provide the server with an indication of what types of terms the user considers to

be less desireable. These preferences are only present in the second round proposal,

Proposal2.

Accept An accept message for round j is used to indicate that all of the terms of

Proposalj have been accepted and the negotiation should terminate. The contents

of this message constitute the privacy contract between the client and server. Accept

messages are approval tokens that indicate in an authentic and non-repudiable way

the acceptance of the last proposal policy. This token consists of a digital signature

over the contents of Proposalj along with a time stamp t stamp.

Reject The Reject message indicates that the current negotiation has failed. This

message is only sent by the client, and only at the end of the third round if the client

does not accept any of the terms in the server’s final proposal.

3.3 Message Flow

The rounds of an OBO negotiation proceed as follows.

Round 1 The client initiates the first round by connecting to the server and re-

questing the server’s privacy policy. The server replies by sending the default policy,

P1, in the message Proposal1. If the client accepts the default policy, it sends Accept1,

otherwise, Round 2 begins.

9

CHAPTER 3. OBO PROTOCOL SPECIFICATION

Round 2 If the client rejects any of the terms in the server’s default policy from

Round 1, then the client begins the second round of negotiation by sending the

message Proposal2, including the client’s preference set. If the server decides to

accept the policy proposal, then it sends Accept2.

Round 3 If the server rejects the client’s counter-offer, it has one more chance for

the negotiation to succeed. The server uses the client’s preference set, and its own

preferences, to create the best-offer policy, P3, which is sent in the message Proposal3.

If the policy is acceptable, the client sends Accept3. If the client does not approve of

the final offer, then it sends a Reject message.

10

Chapter 4 — Running Example

Throughout the remainder of this paper, we present a running example of an OBO

negotiation between a client (Alice) and an online merchant (Bob). The negotiation

reconciles Alice’s privacy preferences with Bob’s data collection. Bob obtains revenue

through selling goods, as well as occasionally offering information about his customers

to “partners”. In addition, if Alice consents, Bob can use information about Alice

to customize her experience at the site, and occasionally makes parts of her profile

available for others to view.

Once the preference model is formally specified, the running example shows how

Alice and Bob specify their privacy preferences. Then, a three round negotiation

example is given where Alice negotiates a contract with Bob for how he will handle

her information such as her physical address, purchase information, and financial

data.

11

CHAPTER 4. RUNNING EXAMPLE

12

Chapter 5 — Policies

Privacy policies are composed of the atomic constituents data elements and practice

tags. A data element is a reference to a single specific piece of information about

an individual (e.g., a telephone number). Data elements are organized hierarchically

into data categories and data sets, which can be used to refer to groups of data

elements. In this work, we make use of the elements and categories defined by the

W3C, as they are considered industry standards. For example, the data category

“physical,” as defined by the W3C, contains all of the data elements that would allow

someone to contact or locate an individual in the physical world. Here, we also define

a set AllData, which contains every data element that applies to an individual. It is

important to note that actual data about individuals does not occur inside of privacy

policies, only labels that refer to pieces of information that the site may collect. For

example, the policy may contain the token “telephone”, but never an actual client

telephone number.

In addition to declaring the types of data that they collect, entities must also be

able to specify how they will treat that data. To do this, privacy policies associate

practice tags with data elements. There are three types of practice tags: recipients,

retention, and purpose. Recipients tags specify the parties that will have access to

the data, retention tags specify how long the data will be stored, and purpose tags

specify the ways in which the data will be used. Three disjoint sets, RecipientTags,

RetentionTags, and PurposeTags are defined that contain all supported recipients,

retention and purpose tags, respectively. In this work we populate these sets with the

tags based on those found in the P3P specification [23].

A privacy policy combines these atomic constituents as a collection of terms,

13

CHAPTER 5. POLICIES

organized into statements. In order to formulate privacy policies and preferences, it

is often necessary to refer to the individual terms of a policy. These terms can be

expressed in different ways. Using natural language, for example, one might formulate

the following term: “we share your address with our shipping partners.” Terms can

also be expressed as formalized constructs in a machine readable format using P3P.

Formally, a policy is a set of statements, that is P = {S1, ..., Sn}, where each Si

is a tuple of the form Si = (Di, Reci, Reti, Puri), where Di ⊆ AllData, Reci ⊆

{RecipientTags}, Reti ⊆ {RetentionTags}, and Puri ⊆ {PurposeTags}.

The statements of a policy can further be decomposed into terms, each of which is

a tuple TX
i = (Di, Xi), where Di is the set of data items specified in Si and X indicates

the term type and is one of: Rec, Ret, or Pur, with Xi being the set of the appropriate

type, also from Si. This means that each statement consists of three terms, one

for each type. Figure 5.1 shows how an example policy term might be represented

formally. In this example, the P3P practice tags “ours”, “delivery”, “same”, “others”,

and “public” are applied to the named set of data elements “physical”, in order to

provide the same semantics as the natural language statement. The P3P specification

details the meaning of each tag [23].

Each OBO policy negotiation can be thought of as a set of synchronized concurrent

negotiations, one for every term in the policy. This is because different sets of data

elements have distinct preferences applied to them, and because it is impractical to

directly compare the utility of practice tags of different types. The decisions and

proposals made during the negotiation of one term in the policy do not affect the

others. Therefore, the remaining discussion on policies will focus on how to analyze

and interpret individual terms. In order to simplify the presentation here and without

loss of generality, we will assume that all the terms given in the remainder of this

paper refer to the same data set and are of the same data type. Using this assumption,

14

English: “We share your address with shipping partners who will use it to carry out

delivery and may use it in other ways as well. Your address may also be shared

with other organizations, who’s privacy policies are known to us, though they

may be different than our own. It may also be shared with other site visitors,

when appropriate.”

Formal Term:

TRec = (physical, { ours, delivery, same, others, public})

Figure 5.1: A term from Bob’s default policy.

we will treat references to T = TX
i = (Di, Xi) as references to Xi.

15

CHAPTER 5. POLICIES

16

Chapter 6 — Preferences

Agents must be able to reason about the relative quality of the terms that will be

evaluated during a negotiation. To this end preference models are defined to encode

the unique needs and preferences of individual clients and servers. From these models,

utility functions are derived that allow for the comparison and ranking of privacy pol-

icy terms. It is important that these models and their corresponding utility functions

be defined explicitly and unambiguously, as they are central to the functioning of the

protocol and necessary in order to prove that a given solution is Pareto-optimal.

6.1 Utility Functions

A cardinal utility function is a function of the form UC(T) → < which maps a

term to a real value, called the utility of T . In practice, it is not necessary to com-

pletely formulate such a utility function, however. The actual real-valued utilities are

inconsequential, as long as policies can be sorted. To accomplish this, ordinal utility

functions, UO(Ti, Tj), are defined for use by the software agents. These functions

act as comparators that can be used to sort terms in non-descending utility order,

without requiring the cardinal utility values. Ordinal utility functions can be easier

to define, because only proportionality, and not magnitude is required.

Definition 1. UO is an ordinal utility function if ∀Ti, Tj:

UO(Ti, Tj) =

0 if UC(Ti) = UC(Tj)

1 if UC(Ti) > UC(Tj)

−1 if UC(Ti) < UC(Tj)

Because the number of terms that can be created with a finite set of tags is also

finite, it must be the case that there is at least one term that has utility greater than

17

CHAPTER 6. PREFERENCES

or equal to all other terms. The value of UC for this term is the upper bound on the

range for that function and is called MAX U . The exact real value of MAX U is

unimportant, as the term T for which UC(T) = MAX U can be found using UO.

Finally, for the purpose of conducting negotiations, each party must choose a

threshold utility value FAILURE U that determines the point at which that party

would rather have a negotiation fail than accept a term with utility below that thresh-

old.

6.2 Client Preference Model

The formulation of client privacy preferences follows a data-centric model [25].

All data categories and (as required) data elements are assigned three separate DAGs

(directed acyclic graphs), one each for the retention, recipients and purpose tag types.

These DAGs define partial orderings over tags that can be found in policy terms, with

each tag occupying a node in the graph. For example, the recipients graph, GRec,

gives a partial ordering over all tags in RecipientTags.

In this ordering, for tags X and Y , X ≺G Y if there is a non-empty path in the

graph from X to Y . Also, X �G Y indicates that either X = Y (they are the same

tag) or X ≺G Y . We say that, X and Y are independent if neither X �G Y nor

Y �G X. In general we say that the preferability of a node is inversely related to this

ordering, so that if X ≺G Y , then the client prefers tag X to tag Y .

Once graphs have been assigned to data elements, two sets of nodes, A and C, in

each graph are selected as acceptable and unacceptable cutoff frontiers, respectively.

These frontiers must partition the graph’s set of nodes, N , into three disjoint sub-sets:

18

6.2. CLIENT PREFERENCE MODEL

Ideal , Acc, and Unacc, which are defined as shown here:

Ideal = {n ∈ N | ∃a ∈ A : n ≺G a}

Acc = {n ∈ N | ∃a ∈ A, c ∈ C : a �G n �G c}

Unacc = {n ∈ N | ∃c ∈ C : c ≺G n}

These sets contain tags that the client considers to be ideal, acceptable and unac-

ceptable, respectively. Ideal tags are those that the user “doesn’t mind,” that is, they

have no negative impact on the utility of the policy as far as the client is concerned.

Acceptable tags are those which the user would prefer not be included in the policy,

but that are tolerable if unavoidable. Unacceptable tags are deal breakers. By placing

a tag in this set, the client conveys that a negotiation should fail before the agent

accepts a policy containing that tag. Users must be solicited for information about

their tolerances in order to determine which of these sets each tag should belong to.

This could be done in a guided fashion, with the system using the preference DAGs

to selectively query the user about individual tag memberships until the borders are

determined. Another approach would be to provide the user with some way to group

or label the nodes free form, after appropriate instruction.

Once the graphs and cutoff frontiers are defined, the preferences for each data

element Di are expressed by the tuple:

(Di, G
Ret
i , GRec

i , GPur
i , ARet

i , CRet
i , ARec

i , CRec
i , APur

i , CPur
i), where the GX ’s are the pref-

erence DAGs, and the AX ’s and CX ’s are the acceptable and unacceptable cutoff

frontiers (respectively) for each graph. Sets of data elements can be grouped together

under the same set of preferences as desired.

From the specification of the client’s preference model, it is possible to derive a

utility function over terms for the client. Again, we assume that all terms and graphs

refer to the same data sets and are of the same type. First, we define the concept of

the least-preferred nodes in a set of tags.

19

CHAPTER 6. PREFERENCES

Definition 2. Given a preference graph G and a term, T , the least-preferred nodes

in T are those in the set

L(T, G) = {x | x ∈ T ∧ ∀y ∈ T, x ⊀G y}

In general, we say that the utility of the term as a whole is determined by the least

preferable tags contained in that term, and is inversely proportional to the ordering

over tags defined in the client’s preference graph, G. This means that for tags M and

N , if M ≺G N , and term TM contains tag M but not tag N and L(TM , G) = {M},

TN contains tag N but not tag M and L(TN , G) = {N} and TMN contains both M

and N and L(TMN , G) = {N}, then UC(TN) ≤ UC(TM) and UC(TN) = UC(TMN). In

addition, the following constraints apply:

1. If M ∈ Ideal , then UC(TM) = MAX U

2. If M ∈ Unacc, then UC(TM) < FAILURE U

3. If M, N ∈ Acc and M ≺G N then UC(TM) > UC(TN)

4. If M, N ∈ Acc and M = N , then UC(TM) = UC(TN)

5. If M, N ∈ Acc and M and N are independent (X �G Y ∧ Y �G X), then

UC(TM) = UC(TN)

Given these constraints on UC , we may now define the client’s ordinal utility

function over terms. This function formalizes the constraints listed above, generalizing

them to apply to the case where nodes M and N are replaced with arbitrary sets of

least-preferred nodes. Recall that Ideal , Acc, and Unacc form a mutually exclusive

partition on the term.

20

6.2. CLIENT PREFERENCE MODEL

Definition 3. The client’s ordinal utility function over terms with respect to graph

G is:

UO(Ti, Tj) =

0 if (Li ⊆ Ideal ∧ Lj ⊆ Ideal)∨

(| Fj |=| Fi | ∧ | Lj |=| Li |)∨

(Li ∩ Unacc 6= ∅ ∧ Lj ∩ Unacc 6= ∅)

1 if (Li ∩ Unacc = ∅ ∧ Lj ∩ Unacc 6= ∅)∨

(Li ∩ Acc 6= ∅ ∧ Lj ∩ Acc 6= ∅∧

(| Fj |>| Fi | ∨ | Lj |>| Li |))

−1 if UO(Tj, Ti) = 1

where Ti and Tj are the terms to be compared and Li = {t | t ∈ L(Ti, G)},

Fi = {t | t ∈ Li ∧ ∃u ∈ Lj s.t. u ≺G t}, and Lj and Fj are defined similarly for Tj.

In other words, two terms have equivalent utility if all of their least-preferred

nodes are in Ideal . If both terms have a least-preferred node in Unacc, or if both

least-preferred tag sets contain the same number of tags that are less preferred than

least-preferred tags in the other, and both least-preferred sets are the same size. A

term that does not have any of its least-preferred nodes in Unacc has greater utility

than one that does. A term that has all of its least preferred nodes in Ideal has

greater utility than one that does not. Also, if both sets have least-preferred tags in

Acc, then the one that has the most least-preferred tags that are less preferred than

the other term’s, or has fewer least-preferred tags in general, has less utility than the

other.

Based on this function, it is possible to identify terms with maximal utility, and

21

CHAPTER 6. PREFERENCES

those that have utility less than FAILURE U .

Definition 4. The maximal utility term for the client is any term, T , that contains

only ideal tags:

UC(T) = MAX U ⇐⇒ T ⊆ Ideal .

Definition 5. A client would rather a negotiation fail than accept any term T that

contains an unacceptable tag:

UC(T) < FAILURE U ⇐⇒ T ∩ Unacc 6= ∅.

6.2.1 Alice’s Preferences

At some point, Alice has defined preference graphs to safeguard her personal

data. Alice might have composed these graphs herself using a software tool. Another

possibility is that she selected these graphs from some pre-packaged source, or had

them provided as part of a security suite. Figure 6.1 shows one of these graphs that

gives an ordering over recipient tags. Many possible configurations exist for each

graph type. Alice might choose only one graph of each type for all her data, or apply

different graphs to different data groups.

Alice groups her data as follows:

D1(sensitive data) = {physical, purchase, financial}

D2 (less sensitive data) = {e | e ∈ AllData ∧ e /∈ D1}

These sets contain labels of data elements, or categories of elements. No actual user

data is included in these sets. Each group is assigned a set of preferences. This

means, for example, that if a privacy policy statement mentions any of the categories

(e.g. physical), or members of the categories (e.g., address) in D1, a certain set of

preferences needs to be applied to that statement. In an actual configuration, each

22

6.3. SERVER PREFERENCE MODEL

Figure 6.1: Alice’s recipients preference graph, with A and C cutoff frontiers.

group is assigned a retention, recipients and purpose graph. For simplicity, in this

example we only specify that Group D1 is assigned the recipients graph shown in

Figure 6.1. The cutoff nodes for this graph are A = {same, delivery} and C =

{others}. These cutoff nodes indicate that Alice has no problem with the server

sharing her sensitive data with organizations that only use it for fulfilling her requests

(ours), but is hesitant about the server sharing it with other organizations that might

use it in other ways (same, delivery, others). Alice also does not want her sensitive

information shared with the public or with organizations that have unknown privacy

policies (unrelated).

6.3 Server Preference Model

The server side preference model is much simpler, this is the result of several

factors. First, clients use the web for many distinct purposes, from shopping to

web-mail to research. In contrast to clients, servers execute a relatively limited set

of functions, all of which are governed by a given purpose or business model. The

server preferences, therefore, are much more static then client preferences and are

determined by the function of the server and the business requirements for the site

23

CHAPTER 6. PREFERENCES

collecting data from visitors. Also, since the object of the negotiation is the personal

data of the clients, of which there are many, the client’s preference model naturally

needs more granularity and flexibility than the servers. This being the case, the server

model groups preferences into just 2 categories:

1. Req - Because of technical or business model constraints, these terms must be

in the final policy or the negotiation will fail.

2. Pref - These terms should be included in the final policy if possible, but if they

cannot be, negotiation can still succeed.

We call members of Req required and members of Pref preferred.

Each of these categories is a set of pairs of the form Category = {K1, ...Km}

where each Ki is a pair of the form (Di, ti) where Di is a set of data elements and ti

is a preference tag. Again, to simplify notation, we assume in what follows that all

references to these categories refer to a single term and the data set D and are all of

the same type X. Therefore, we treat references to Category as though it where the

set of tags: {t | ∃K = (D, t) ∧K ∈ Category}.

The server’s utility function is much simpler than the client’s. First, the server

may not accept any term which does not contain all of its required tags. Also, for any

term T which contains all of the server’s required tags, UC(T) is proportional to the

number of preferred tags contained in the term. These constraints make it possible

to fully specify the server’s ordinal utility function over terms.

24

6.3. SERVER PREFERENCE MODEL

Definition 6. The ordinal utility function over terms for the server is:

UO(Ti, Tj) =

0 if (| Ri |=| Rj |) ∧ (| Pi |=| Pj |)

1 if (| Ri |>| Rj |) ∨ ((| Ri |=| Rj |) ∧ (| Pi |>| Pj |))

−1 if UO(Tj, Ti) = 1

where Ti and Tj are the terms to be compared, Req and Pref are the server’s preference

sets, Ri = {x | x ∈ Ti ∧ x ∈ Req}, Pi = {x | x ∈ Ti ∧ x ∈ Pref }, and Rj and Pj are

defined similarly for Tj.

That is, two terms have equivalent utility if they contain the same number of

required tags and the same number of preferred tags. If two terms have different

numbers of required tags, the term with more required tags has higher utility. Also,

if two terms contain the same number of required tags, the one with the highest

number of preferred tags has the greatest utility.

With the server utility function, the terms with maximal utility, and those that

have utility less than FAILURE U for the server can be identified.

Definition 7. The maximal utility term for the server is any term, T , that contains

all required and all preferred tags:

UC(T) = MAX U ⇐⇒ Req ⊆ T ∧ Pref ⊆ T.

Definition 8. A server would rather a negotiation fail than accept any term T that

does not contain all required tags:

UC(T) < FAILURE U ⇐⇒ Req * T.

25

CHAPTER 6. PREFERENCES

6.3.1 Bob’s Preferences

This is the portion of Bob’s preferences that relates to recipients tags as applied

to his customer’s sensitive data:

physical, purchase and financial:

Required: delivery, others

Preferred: ours, same, public

These preferences mean that Bob must be able to give Alice’s physical, purchase

and financial information, if collected, to entities that will use it for delivery and,

potentially, other purposes (delivery). He also must be allowed to share it with

companies that are accountable to him, but who may have privacy policies that he is

not familiar with (others). Bob would also like the option of sharing that data with

organizations that only use it to help fulfill any orders placed by the user (ours), and

partners having similar privacy policies (same). Finally, he would prefer having the

option to share it with other visitors, when appropriate (public).

26

Chapter 7 — Negotiation Strategy

Agent Agent task Preference constraints Protocol constraints

Client Accept proposal Reject policies containing

unacceptable tags

None

Client Counter-proposal Remove all unacceptable

nodes

Term should have highest

possible utility and only

contain Ideal tags

Server Accept proposal Only accept policies con-

taining all the server’s re-

quired tags

None

Server “Best offer” Ensure that the policies

contains all required tags

and as many preferred

tags as possible

Server not decrease client

utility any more than nec-

essary for the negotiation

to succeed

Table 7.1: Constraints on agent behavior.

Agents are constrained in the formulation of proposal policies in that they must

follow strategies that are consistent with the preferences of the party they represent,

while at the same time fulfilling the guidelines specified by the protocol. Table 7.1

outlines these constraints. Any agent that acts within these constraints can engage

in OBO negotiations. However, not all strategies that are consistent with these con-

straints are guaranteed to be fair (produce Pareto-optimal policies). Here we describe

a set of rules that meet these constraints and that, when followed by both parties,

are sufficient to always produce Pareto-optimal results. This set of rules is the “OBO

27

CHAPTER 7. NEGOTIATION STRATEGY

Pareto-optimal strategy”.

Rule 1 (Initial Offer Rule). The server’s initial offer term is T = Req ∪ Pref .

Rule 2 (Early Acceptance Rule). In rounds 1 and 2, a party, A, may only accept a

proposal term T from party B if UA
C (T) ≥ UA

C (T ′), where T ′ is the counter-proposal

term that A would send to B upon rejection of T .

Rule 3 (Client Counter-proposal Rule). Given an initial proposal term T from the

server and client preference graph G, the client formulates a new term

T ′ = {t | t ∈ T ∧ t ∈ Ideal according to the A cutoff frontier for G}.

Rule 4 (Server Best-offer Rule). Given a proposal term T from the client, the server

formulates its best-offer term T ′′ in two stages. First, the server inserts all of its Req

tags into the term, creating a new set T ′ = Ti ∪Req. Next, it adds all of its preferred

tags into the set that it can, without decreasing the utility of the term for the client

by creating a new set T ′′ = T ′ ∪ {t | t ∈ Pref ∧ ∃s ∈ T ′ s.t. t ≺ s}.

Rule 5 (Client Final Acceptance Rule). Given a best-offer proposal term T and client

preference graph G, the client accepts the term only if T∩Unacc = ∅ according to the

C cutoff frontier of G and rejects otherwise.

7.1 Alice and Bob Negotiate

Based on their established preferences, Alice and Bob apply the rules of the Pareto-

optimal strategy, in the negotiation over the recipients of Alice’s address information

as follows.

In Round 1, Bob sends this term (Rule 1):

TRec
1 = (D1, { ours, delivery, same, others, public})

28

7.1. ALICE AND BOB NEGOTIATE

Alice chooses not to accept (Rules 2 and 3), instead sending her preference graphs,

data groupings (with an indication of which graphs apply to each), and the following

policy (Rule 3):

TRec
1 = (D1, { ours})

This counter-proposal decreases the number of recipients with which Alice’s sensitive

information can be shared.

In the final round Bob does not accept Alice’s proposal (Rules 2 and 4). Instead,

he formulates the “best offer” policy shown here (Rule 4):

TRec
1 = (D1, { ours, delivery, same, others})

This term re-introduces Bob’s required tags delivery and others that were removed

by Alice. Also, the preferred term same was re-introduced because same ≺G others .

At this point, Alice accepts the policy and the negotiation succeeds (Rule 5).

29

CHAPTER 7. NEGOTIATION STRATEGY

30

Chapter 8 — Protocol Evaluation

As discussed in Chapter 3, a viable privacy policy negotiation protocol must be com-

plete, fair and secure. The OBO protocol is complete by definition; all negotiations

are guaranteed to terminate within the three rounds specified. This chapter shows

that the protocol is also fair and secure. Fairness is evaluated by proving that terms

resulting from a successful OBO negotiation are Pareto-optimal. The security of the

protocol is analyzed as well, using a threat model to identify potential problems in the

security of the protocol, and then presenting implementation design considerations

that could mitigate these problems.

8.0.1 Fairness Analysis

Pareto-optimality, or Pareto-efficiency is a property of some game and negotiation

end-states. It is often used as an indication that the benefits of successful negotiations

are balanced for both parties [13, 24, 19]. For a state to be Pareto-optimal, it must

be the case that there is no other state that is better for all parties in the negotiation,

or better for at least one party and not worse for all the others.

Definition 9. Given two negotiating parties P1 and P2, a policy term T is Pareto-

optimal if for all other T ′ the following holds:

(UP1
C (T ′) = UP1

C (T)) ∧ (UP2
C (T ′) = UP2

C (T))∨

((UP1
C (T ′) < UP1

C (T)) ∨ (UP2
C (T ′) < UP2

C (T))).

Recall that the cardinal utility function, UC , for a negotiating party is implicitly

defined by a corresponding ordinal utility function, UO, that effectively orders any

two related terms in a negotiation (see Definition 1). A Pareto-optimal term is thus

a term for which all other related terms are less desirable for one negotiating party

31

CHAPTER 8. PROTOCOL EVALUATION

or have the same utility for both negotiating parties according to their respectively

defined ordinal utility functions.

As usual, all terms referred to here are assumed to be related, meaning they are

defined on a common data set and tag type. This means that we can treat references

to T = TX
i = (Di, Xi) as references to Xi. To enhance readability, we therefore

refrain from writing out the entire contents of each term, and allow their constituent

tag sets to stand in for the term itself in the discussion that follows. We are now

ready to state the main theorem of the paper:

Theorem 1. If the parties in an OBO negotiation both follow the OBO Pareto-

optimal strategy defined in Chapter 7, then a successful negotiation always produces

a Pareto-optimal term.

Proof. There are three cases in which an OBO negotiation may succeed. Let T

be a term produced by a successful negotiation and G be the corresponding client

preference graph partitioned appropriately. We show that, in each of these cases,

T is Pareto-optimal. We distinguish client and server utility functions by adding

superscripts of C and S respectively.

1. Client Accepts Server’s Initial Offer

The term has maximal utility for the client and the server because the initial

offer contains only ideal tags for the client and all of the required and preferred

tags for the server (see Rules 1, 2, 3, and Definitions 4 and 7). Because both

parties are at maximal utility, T is Pareto-optimal.

2. Server Accepts Client’s Counter-Offer

Assume for contradiction that T is not Pareto-optimal. By Rules 2 and 3, the

counter offer contains strictly fewer tags than the initial offer and all of the tags

32

in the counter offer are ideal for the client. This means that UC
C (T) = MAX U .

If T is not Pareto-optimal, then

∃t : UC
C (T ∪ {t}) ≥ MAX U ∧ US

C(T ∪ {t}) > US
C(T)

By Rules 2, and 4, T contains all of the server’s required tags. The only tags

that the server can add to T are therefore preferred tags removed from the initial

proposal; however, adding any removed preferred tag decreases the utility of T

for the client since these tags are not ideal (see Rule 3). Formally:

∀t ∈ Pref \ T, t 6∈ Ideal ∧ US
C(T ∪ {t}) >

US
C(T) ∧ UC

C (T ∪ {t}) < MAX U

This contradicts the assumption that T is not Pareto-optimal, since there is no

tag that we can add to T that maintains the utility of the term for the client

and increases the utility of the term for the server.

3. Client Accepts Server’s Best Offer

Again, for contradiction assume that T is not Pareto-optimal, meaning that

either:

∃t : UC
C (T \ {t}) > UC

C (T) ∧ US
C(T \ {t}) ≥ US

C(T)

or

∃t : UC
C (T ∪ {t}) ≥ UC

C (T) ∧ US
C(T ∪ {t}) > US

C(T)

We will examine these statements in order.

First, we know that there is some tag in both T and Acc such that

UC
C (T \ {t}) > UC

C (T)

33

CHAPTER 8. PROTOCOL EVALUATION

(by Definition 3), because otherwise the server would not have required an

additional round by Rules 2 and 4. However, by Definition 3,

∀t ∈ T, US
C(T \ {t}) < US

C(T)

meaning that the first statement is false.

Next, we also know from Rule 4 that T already contains all of the server’s

required tags, and all of the preferred tags that it could add without decreasing

the utility for the client below that of the term T ′ = Req . So, any tag that the

server could add to increase its own utility is either less preferred for the client

than some tag already in the least-preferred set of T or it increases the size of

the set of least-preferred tags. This means that

∀t ∈ Pref \ T, US
C(T ∪ {t}) > US

C(T) ∧

UC
C (T ∪ {t}) < UC

C (T)

by Definition 3, making the second statement false.

The fact that both statements are false contradicts the assumption that T is

not Pareto-optimal.

8.0.2 Security Analysis

Each side in an OBO negotiation must keep certain information secret, so that the

other cannot act in ways that are inconsistent with the intentions of the protocol. For

the client, this means hiding the A and C node sets for each graph from the server.

Conversely, the client should also not be able to ascertain whether each tag in a term

is required or preferred from the server’s point of view.

34

If the server knows the set C for a given graph, it can add as many of its preferred

tags as it would like, up to and including the members of C, meaning that it has no

reason to make an effort to meet the client’s preferences as closely as possible.

The most obvious threat to either client or server is that of a probing attack,

which can only be carried out if one party is able to convince the other party to

engage in multiple instances of OBO negotiations. The attacker tries to determine

the other side’s secrets by carefully formulating its various proposals. For example,

to discover the cutoff frontier C of a given client, a server might include in its best

offer proposal only one tag that is least preferred according to the client’s preference

graph. If this offer is refused, the server knows that that tag is definitely a member of

the unacceptable set of tags. The next time the client attempts to connect, the server

picks a node that is the direct ancestor of the least preferred tag. In this fashion,

the server ascertains, over a relatively small number of negotiations, every member of

the unacceptable set and thus can know exactly what the user’s cutoff nodes are for

that graph. The fact that the client has an ordered graph, detailing the preference

gradient, means that the server-side probing attack can be much more effective than

it would be if the server had to use a brute-force technique to deduce C.

The risk of probing can be mitigated in implementations of the OBO protocol,

however. For example, clients can keep a cache of negotiated privacy policies, indexed

by the identity of the sites with which they were negotiated. Then, when visiting

a site with which the client already has a relationship, it can refuse to engage in

additional negotiations, insisting instead that the previously negotiated policy be

used. This sort of caching system must be carefully implemented, however, as website

data collection requirements may change over time as enterprise policies change, or as

the relationship between the client and the enterprise changes. For example, corporate

mergers may require websites to adopt new data collection and use policies. Also, a

35

CHAPTER 8. PROTOCOL EVALUATION

user who has habitually visited an online commerce site without making purchases

might need to accept the fact that the privacy contract between herself and the site

must change in the event that she decides to actually buy something. This is because

the relationship between herself and the site has changed and the site must now collect

more information about her and share that information with other entities, such as

a shipping company.

On the server side, probing attacks are harder to defend against for two reasons.

First, the number of clients that connect to a given server can be much greater than

the number of servers that any one client connects to. In addition, while many

servers have distinct domain names and certificates issued by trusted third-parties

to authenticate their identity, individual clients have no such unique identification

mechanism, as clients can share or create new credentials. However, the ease with

which probing attacks can be carried out against servers is offset by the relatively

small gains that such attacks yield. The preferences of the server are already mostly

public, as they will almost always be expressed in the natural language privacy policy

of the server.

36

Chapter 9 — Conclusions and Future Work

The Or Best Offer privacy policy negotiation protocol is complete, fair and secure.

Its formal underpinnings provide properties not found in prior negotiation protocols.

The protocol is backwards-compatible with current P3P negotiation approaches.

A significant contribution of this work is the novel graphical model for expressing

client privacy preferences and utility functions, derived from preference models, that

allow for the comparison of policy terms. In addition, the definition of utility functions

allows for the application of game theoretical concepts to analyze the properties of

the protocol, such as the proof of Pareto-optimality in Chapter 8. This formalism

allows conjecture about alternative negotiation strategies and algorithms for clients

and servers. As new strategies are envisioned, fairly simple analysis using concepts

such as Pareto-optimality and Nash equilibrium would yield an understanding of their

potential performance.

One interesting point of the protocol is that the messages in the first round can be

replaced with a more standard privacy policy exchange procedure, like that used in

P3P today. This would allow for the gradual deployment of OBO capable agents on

the Internet, as OBO enabled agents can seamlessly interact with clients and servers

that do not support OBO negotiations. Clients and servers that do not support

OBO negotiations would not be able to distinguish OBO-enabled agents from any

other entities. OBO-enabled servers could indicate their negotiation capabilities by

embedding meta-data in their default policies.

The graphical model has the potential to offer an improvement over rule-based

preference models in terms of usability, as graphical user interfaces could allow users

or administrators to edit such models without any prior knowledge of the privacy

37

CHAPTER 9. CONCLUSIONS AND FUTURE WORK

policy language syntax. A prototype implementation of such an interface can be

built to evaluate the hypothesized improvement in usability.

An important area for future work is to increase the expressiveness of the client

preference model. The current model is less expressive than a rule based system, for

example. It precludes the ability to express higher-ordered preferences that involve

complex interactions between tags of different types. For example, using a rule-based

system it would be possible to express the preference “It is never acceptable for my

address to be stored indefinitely, unless the collecting enterprise never shares it or

sells it to anyone else.” In the current OBO client preference model, this type of

preference cannot be expressed.

Future work might also focus on producing a richer preference model for the

server, which would permit the specification of more complex preferences, in which

combinations of tags in conjunctions and disjunctions could be specified together

as being required or preferred. To accomplish this, the server could send a list of

alternative policies representing its best offer, one for each grouping in a disjunction.

The client could select the alternative that it prefers most and respond with an

acceptance message for the chosen alternative.

38

References

[1] Paul Ashley, Satoshi Hada, Gunter Karjoth, and Matthias Schunter. E-P3P pri-

vacy policies and privacy authorization. In Proceedings of the Workshop on Pri-

vacy in the Electronic Society Washington, Washington, D.C., November 2002.

[2] AT&T. AT&T privacy bird tour.

http://privacybird.com/tour/1 2 beta/tour.html, 2003.

[3] Michael Backes, Gunter Karjoth, Walid Bagga, and Matthias Schunter. Efficient

comparison of enterprise privacy policies. In Proceedings of the ACM Symposium

on Applied Computing, Nicosia Cyprus, March 2004.

[4] M. Bennicke and P. Langendorfer. Towards automatic negotiation of privacy con-

tracts for internet services. In 11th IEEE International Conference on Networks,

Sydney, Australia, October 2003.

[5] Lorrie Faith Cranor. Web Privacy with P3P. O’Reilly & Associates, Inc., Se-

bastopol, CA, first edition, 2002.

[6] Nicholas Fehlberg. P3P, cookies and ie6.0: A case study. March 2004.

[7] Simson Garfinkel and Lorrie Cranor. P3P: Privacy primer.

http://www.oreillynet.com/pub/a/network/excerpt/p3p/p3p.html?page=1,

February 2002.

[8] Simson Garfinkel and Gene Spafford. Web security, privacy & commerce.

O’Reilly, second edition, 2001.

39

REFERENCES

[9] H. Hochheiser. The platform for privacy preference as a social protocol: An

examination within the U.S. policy context. ACM Transactions on Internet

Technology, November 2002.

[10] Tatsuro Ichiishi. Game Theory for Economic Analysis. Academic Press, 1983.

[11] Gunter Karjoth, Matthias Schunter, and Els Van Herreweghen. Translating

privacy practices into privacy promises – how to promise what you can keep. In

Proceedings of the 4th International workshop on policies for distributed systems

and networks, Como, Italy, June 2003.

[12] Gunter Karjoth, Matthias Schunter, and Michael Waidner. Platforms for en-

terprise privacy practices: privacy-enabled management of customer data. In

Proceedings of the 2nd workshop on privacy enhancing technologies, San Fran-

cisco, California, April 2002. Springer Verlag.

[13] Raymond Lau. Adaptive negotiation agents for e-business. In Proceedings of

the 7th international Conference on Electronic Commerce, Xi’an, China, August

2005.

[14] Michael Maaser and Peter Langendoerfer. Automated negotiation of privacy

contracts. In 29th Annual International Computer Software and Applications

Conference (COMPSAC’05), July 2005.

[15] Microsoft. Microsoft P3P implementation in Internet Explorer 6.0 and Windows

XP fact sheet.

http://www.microsoft.com/presspass/press/2001/mar01/privacytoolsiefs.asp,

March 2001.

40

REFERENCES

[16] Nua.com. Consumer internet barometer: More americans online, but trust still

an issue.

http://www.nua.com/surveys/index.cgi?f=VS&art id=905358466&rel=true,

Oct 2002.

[17] Stephanie Olsen. Doubleclick seeks input on new policy.

http://news.com.com/DoubleClick+seeks+input+on+new+policy/2100-

1023 3-267828.html?tag=st.rn, June 2004.

[18] Birgit Pfitzmann and Michael Waidner. Privacy in browser-based attribute ex-

change. In Proceedings of the Workshop on Privacy in the Electronic Society,

Washington, D.C., November 2002. ACM press.

[19] Valentin Robu, D.J.A. Somefun, and J.A. La Poutré. Modeling complex multi-

issue negotiations using utility graphs. In Proceedings of the 4th interna-

tional joint Conference on Autonomous Agents and Multiagent Systems, Utrecht,

Netherlands, July 2005.

[20] Sarah Spiekermann, Jens Grossklags, and Bettina Berendt. E-privacy in 2nd

generation e-commerce: privacy preferences versus actual behavior. In 3rd ACM

conference on Electronic Commerce, Tampa, Florida, October 2001.

[21] Robert Thibadeau. Privacy server protocol: Short summary.

http://yuan.ecom.cmu.edu/psp/SummaryInterop.pdf, November 2000.

[22] W3C. A P3P preference exchange language 1.0 (APPEL 1.0).

http://www.w3.org/TR/P3P-preferences, 2002.

[23] W3C. The platform for privacy preferences 1.1 (P3P1.1) specification.

http://www.w3.org/TR/2005/WD-P3P11-20050701, 2005.

41

REFERENCES

[24] Shih-Hung Wu and Von-Wun Soo. Game theoretic reasoning in multi-agent

coordination by negotiation with a trusted third party. In Proceedings of the

3rd international Conference on Autonomous Agents, Seattle, Washington, May

1999.

[25] Ting Yu, Ninghui Li, and Annie I. Anton. A formal semantics for P3P. In ACM

Workshop on Secure Web Services, Fairfax, VA, October 2004. ACM Press.

42

	Brigham Young University
	BYU ScholarsArchive
	2007-07-12

	Or Best Offer: A Privacy Policy Negotiation Protocol
	Daniel David Walker
	BYU ScholarsArchive Citation

	Title Page
	Copyright Page
	Graduate Committee Approval
	Acceptance Page
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	1 Introduction
	2 Related Work
	3 OBO Protocol Specification
	3.1 Overview
	3.2 Message Definitions
	3.3 Message Flow

	4 Running Example
	5 Policies
	6 Preferences
	6.1 Utility Functions
	6.2 Client Preference Model
	6.2.1 Alice's Preferences

	6.3 Server Preference Model
	6.3.1 Bob's Preferences

	7 Negotiation Strategy
	7.1 Alice and Bob Negotiate

	8 Protocol Evaluation
	8.0.1 Fairness Analysis
	8.0.2 Security Analysis

	9 Conclusions and Future Work
	References

