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ABSTRACT

MACHINE CODE VERIFICATION USING THE BOGOR

FRAMEWORK

Joseph R. Edelman

Department of Computer Science

Master of Science

Verification and validation of embedded systems software is tedious and time

consuming. Software model checking uses a tool-based approach automating this pro-

cess. In order to more accurately model software it is necessary to provide hardware

support that enables the execution of software as it should run on native hardware.

Hardware support often requires the creation of model checking tools specific to the

instruction set architecture. The creation of software model checking tools is non-

trivial. We present a strategy for using an ”off-the-shelf” model checking tool, Bogor,

to provide support for multiple instruction set architectures. Our strategy supports

key hardware features such as instruction execution, exceptional control flow, and

interrupt servicing as extensions to Bogor. These extensions work within the tool

framework using existing interfaces and require significantly less code than creating

an entire model checking tool.
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Chapter 1

Introduction

Model checking software is necessary to compensate for shortcomings in less

formal testing practices that leave a majority of the potential behavior or state space

of software untested. Within these untested areas lie the potential for software defects

that can result in inconvenient calculations or complete system failure. As software

increases in complexity, the divide between tested behavior and unknown behavior

increases along with the cost associated with fixing software defects. The use of formal

methods complements current testing practices by providing conclusive evidence of

the actual software program behavior.

Model Checking is a type of formal verification that uses a software tool to

automatically verify that a system is a model of the specified property. The system is

modeled as a directed graph where a node represents the current state of the system

(variable values) and the edges connecting nodes are transitions that transform one

state into another. The tool performs the tedious and repetitive task of exhaustively

exploring the state space of the system to conclude that a property holds, or it

produces a counter-example invalidating the property.

Model checking software at the machine code level exposes meaningful infor-

mation to a software developer for embedded systems. At this level, the specifics

of how the software runs on the target hardware are visible. The main obstacles

to model checking machine code are modeling a complex processor and exceptional

control flow. Exceptional control flow is a change in control flow due to run-time
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conditions. These conditions may be handling an interrupt or executing a jump in-

struction that uses run-time information to calculate the destination. Every processor

supports basic classes of instructions: arithmetic, logical, load and store, testing and

branching, and input and output operations. The implementation for individual in-

structions is vastly different depending on the intended application, size of memory,

and addressing modes. Exceptional control flow occurs when the currently executing

program is pre-empted due to interrupts. When an interrupt occurs, the current state

of the running program is saved off and the interrupt service routine is given prior-

ity. Intuitively, this can be visualized as a scheduled event, key press on a keyboard,

reading from a sensor, or any number of possible inputs. Modeling this behavior is

difficult because each Instruction Set Architecture (ISA) services interrupts differ-

ently and the representation for the model may not lend itself to dynamic changes to

control flow. In order to verify this type of software accurately, the model checking

tool must support the ISA and exceptional control flow.

A current strategy for supporting an ISA and exceptional control flow is to

create a new tool for each ISA using existing software simulators. The simulator

supports the ISA and exceptional control flow. These tools are tightly coupled with

an existing simulator or Virtual Machine, making them extremely powerful tools for

the supported architectures. They operate directly on compiled code by substituting

the input language of the model checking tool with an interface into the simulator.

Use of existing simulators lessens the overall cost, but the cost to develop and main-

tain a model checking tool is beyond the capabilities of most software development

organizations. Creating a new tool for each architecture is not feasible.

Another approach to supporting an ISA and exceptional control flow is to

work within the input language of a general purpose model checking tool that allows

the user to supply the necessary ISA semantics. Certain model checking tools have

input languages that are nearly as expressive as high-level development languages.
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Expressing the necessary data structures and mechanisms to simulate a processor

is possible. Exceptional control flow is difficult due to a lack of explicit control

over the program control flow. Input languages do not necessarily use the current

state of the model to determine control flow. Some languages dictate the transition

system directly through the structure of the model, with little or no dependence on

the changes in state that occur at a vertex. Unless there is some mechanism to

dynamically determine or alter the control flow of the model an expressive language

is not enough.

The architecture of general purpose model checking tools simplify the manip-

ulating of language semantics to model exceptional control flow. General purpose

model checking tools divide the model checking problem into cohesive components

that can be overridden to achieve the desired behavior. Customizing general pur-

pose model checking tools provides a more stable platform for verification and the

added flexibility of using the same tool across multiple projects. The Bogor Frame-

work, developed by Kansas State University, is one choice for verifying machine code

containing exceptional control flow using user-defined ISA semantics.

The Bogor Framework can be extended to support an ISA by defining the

processor simulator as a new data type in the system model using the Language

Extension feature. The Language Extension feature allows the user to define new

data types and services. The processor simulator models the data structures and

semantics of the target architecture through user defined modules that work within

the Bogor Framework rather than customizing the model checking tool. Exceptional

Control Flow is handled by an additional module, the Location Changed Listener,

that correctly guides the model checking tool through a statically directed model of

the software. These additional modules enable the Bogor Framework to accurately

and efficiently verify machine code containing exceptional control flow for a target

architecture.
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We show through the verification of a thread scheduler that the Bogor Frame-

work is a viable solution to the problem of modeling ISAs containing exceptional

control flow. A thread scheduler manages a collection of threads by using timer

based interrupts to periodically change the currently active thread. The scheduler

we verify schedules two threads in a round-robin scheme where each thread is given

the same amount of time to execute. The correct execution of a thread scheduler

is entirely dependent on the hardware mechanisms that service interrupts, resulting

in exceptional control flow. Without precise support for both the instruction set ar-

chitecture and exceptional control flow it is not possible to correctly model a thread

scheduler implementation.
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Chapter 2

Scope

The scope of this work is to demonstrate that the Bogor Framework can be

extended to provide hardware support allowing the formal verification of software

compiled for a target architecture. Extension through the Framework decouples the

development and maintenance of the tool from the state space generation. Bogor

Framework Extensions compartmentalize the development task and allows the user

to switch between supported architectures while using the same model checking tool.

Ideally this approach could be used for any processor architecture. In practice, the key

limitations are the transition granularity or timing model used, program extraction

from compiled code, and the size of the resulting model. Under these guidelines we

support the Motorola M68hc11 microprocessor.

Implementing hardware as a finite state machine with a high-level develop-

ment language (Java) means it is feasible that a simulator can be created for most

architectures. The transition granularity or timing model determines the amount of

detail present. Representing time as single clock ticks verses pulses with rising or

falling clock edges determines the perspective that is available when following tran-

sitions or examining the state of the system. At clock ticks portions of the processor

are at various stages of executing the current instruction. While at rising and falling

clock edges gates and cells are being populated. The appropriate timing model to

expose the necessary system state is critical. We are interested in providing a tool for

software developers so we specifically target the class of microprocessors that process
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interrupts following the currently executing instruction in a non-pipelined architec-

ture. This allows us to to model time more coarsely than single clock ticks. Our unit

of time is the complete execution of an instruction.

Our timing model breaks down under the circumstances that additional back-

ground processing such as interrupts resolution requires multiple clock cycles and

might span the execution of several instructions. A separate but related issue is in-

struction pipelining. Instruction pipelining increases the throughput of the processor

by executing multiple instructions in stages, effectively filling the processing pipe

by utilizing more of the processor per clock cycle. The M68hc11 does not support

pipelining. Support for both of these features is possible but requires changing the

transition granularity to be a single cycle or less.

The Timer Input Compare and Timer Output Compare features of the

m68hc11 present a complexity obstacle closely related to the timing model. Timer

Input Compare records the current free running counter value when an input event

is triggered. Timer Output Compare is used by a program to store a value corre-

sponding to a future event that will be triggered when the free running counter value

exceeds that of the store value. In explicit state model checking any increase in the

number of variables or size of the state vector impacts the state space exponentially.

We are able to mitigate the state space explosion problem involving the output com-

pare by applying an abstraction, that is described in detail in Section 6.2, and by

excluding software that uses the contents of the Timer Output Compare registers for

calculations. Unfortunately this same abstraction can not be applied to the Timer

Input Compare and so programs utilizing the Timer Input Compare registers are

excluded.

The program being verified must be extracted directly from compiled code. A

control flow graph of the possible execution paths in the program must be present

in the compiled code. This excludes all self-mutating or modifying code that dy-
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namically create or modify the program in memory. Self-modifying code is written

for the purposes of performance optimizations, obfuscation, and/or malicious intent.

Depending on the supporting hardware or operating systems, the capability to dy-

namically modify code may not be allowed due to the potential risk of abuse. This

area represents a special class of software that introduces new difficulties and ques-

tions. For now we confine our interest to typical, non self-modifying software in an

effort to keep the compiled code and the Bandera Intermediate Representation (BIR)

model in a user readable form and satisfy the requirement that a BIR model is well-

formed prior to model checking. BIR is Bogor’s input language and is used to specify

a model.

The size of the program being verified should be under 10,000 assembly in-

structions. Observed performance of the Bogor Framework degrades significantly as

the model size increases. This is based solely on observed behavior and does not

reflect the actual upper limit of the tool.

As a case study we implemented several key features found in the Motorola

m68hc11 microprocessor. It is an 8-bit data, 16-bit addressable system on a chip

microprocessor. Internally it has two Accumulators A and B, that combined act as

Accumulator D, Index Registers X and Y, a 16-bit Stack Pointer, Program Counter,

Condition Code Register, with main memory dependent on configuration. Six mem-

ory addressing modes are supported: Extended, Direct, Immediate, Inherent, In-

dexed, and Relative. The timing systems includes a main timer and real-time in-

terrupt support using Output compare to trigger an interrupt. The m68hc11 is a

full-featured microprocessor representative of a significant portion of the embedded

systems spectrum.

We feel that the Bogor Framework is best suited for providing hardware sup-

port for 8 to 16-bit addressable microprocessors with a modest amount of resources,

enough input/output to create a closed system, and running small programs that do
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not dynamically alter their instructions at run-time. Supporting an ISA from within

the Bogor Framework provides a common verification platform, removes the need to

rely on virtual machines or simulators developed externally, and can be re-used across

multiple projects and architectures.
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Chapter 3

Related Work

Model checking tools vary greatly according to their intended purpose. Most

model checking tools focus on a particular language, level of abstraction, or other

model checking strategy. The particular problem domain directly affects the archi-

tecture of the tool and determines the application of the tool. The following list

represents some relevant tools to the problem of verifying compiled software contain-

ing exceptional control flow for a target architecture.

Threaded-C Bounded Model Checking is a method for transforming a threaded

C program into propositional formulas that are conjuncted with properties and given

to a SAT solver that determines if a satisfying assignment exists [16]. As the depth

bound on recursive function calls and loops is incremented, the propositional formula

increases exponentially. This increase quickly exhausts system resources. The main

contribution of the work is in applying the bounded approach to context switches

between threads to expose concurrency and race conditions common to concurrent

software systems. The tool operates on source code and not low-level instructions

found in compiled software, requiring significant modification to solve the problem of

verifying machine code for a target architecture containing exceptional control flow.

Support for a target ISA could be included by creating a simulator for the architec-

ture and verifying that the simulator executes the program correctly. Verifying the

simulator implementation is a much larger and separate issue.
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The BLAST tool and SLAM toolkit verify safety properties of abstracted C

programs using predicate abstraction [10] [1]. Predicate abstraction is an iterative

process that attempts to define a set of conditional statements, or predicates, that

describe system behavior with respect to some property of the system. SLAM re-

quires a tool to perform the initial abstraction to a boolean program, another tool

that model checks Boolean programs, and a third tool to perform path feasibility

that aids in creating additional predicates to refine the abstracted model. BLAST

performs abstraction on-the-fly as needed. These tools also operate at the source

level, obscuring details specific to the target hardware.

SPIN is one of the most mature and efficient model checking tools available

[11]. The main application is the verification of asynchronous process interactions.

SPIN uses the Promela input language to specify models. Promela is capable of mod-

eling processes at both high and low levels of detail. Low-level interactions are made

possible by the embedding of C code directly into the Promela model. Additional

extensions have been made to the language and tool to support object-oriented tech-

niques [3]. SPIN may be used to verify machine code by creating a simulator for an

ISA in Promela using large amounts of embedded C code. This approach exposes

too much detail by verifing the inner working of the simulator and indirectly the pro-

gram of interest. Execution of a single instruction includes several operations within

the simulator. The model checking tool explores these transitions instead of grouping

them together into a single transition for the corresponding machine code instruction.

This requires a tool expert to perform the modifications.

StEAM is a model checking tool that verifies C++ machine code compiled

for the Internet C Virtual Machine (ICVM) [12] [14]. The ICVM is intended to be a

platform-independent virtual machine for the C++ language. Compiling to the ICVM

requires modifications to the GNU C-compiler. The ICVM is modified to support

multi-threading and special user commands used to assist in model exploration. The
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primary focus of StEAM is the verification of concurrency properties. The authors

propose that this low-level approach to creating a virtual processor can be extended to

other compiled languages. The generic and platform-independent approach removes

the interesting detail in verifying how a software system runs on its intended hardware.

Java PathFinder 2 (JPF) is a model checking tool that is tightly coupled with

a specialized version of the Java Virtual Machine (JVM) [18]. This tool enables the

verification of Java or other languages that compile to Bytecode. The JVM abstracts

any hardware dependencies. JPF verifies Bytecode as executed by the JVM. The

model checking tool directs the execution of the JVM. Interfacing with the JVM

overcomes difficulties found in the first JPF, when Java language features could not

be supported by the target translation language, Promela [9]. Hardware abstraction

removes the details necessary to verify machine code on target hardware.

NIPS uses a unique bytecode language and virtual machine as a state space

generation tool that can be embedded in a model checking tool [19]. This approach

creates a portable data model that can be re-used in multiple host model checking

tools. NIPS provides hardware support for an ATMEL ATmega processor to verify

embedded systems software. The translation from ATmega16 assembly to bytecode

is mostly automated by using specifications from the manufacturer. The remaining

hardware components (interrupts, timers, etc.) are replaced by non-determinisim or

abstractions. From the published research it is unclear if the verification of timer or

interrupt based software is possible. This approach presents an exceptional amount

of potential. Further investigation into the specifics of the bytecode language and

modeling of hardware is warranted.

Estes is a model checking tool that verifies machine code for a target architec-

ture by using a modified version of the GNU Debugger to execute machine code [15].

The GNU Debugger (gdb) supports a variety of processor hardware models [7][8]. The

tool requires a template for each processor model that indicates how to interpret the
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bytestream used to communicate between the model checking tool and the debugger.

Estes currently provides support solely for the Motorola M68hc11 processor. Estes is

capable of verifying software as it would actually run on target hardware. This tool

provides sound metrics for comparison. It serves as a reference tool for the work in

this document.

The Bogor Framework is a general purpose model checking tool. The input

language, Bandera Intermediate Representation (BIR), supports the Java develop-

ment language as well as user-defined data types as Language Extensions [6] [17].

BIR is capable of modeling a variety of systems ranging from design specifications,

to protocols, to systems written in industry standard development languages [5]. Bo-

gor is highly-modular, permitting the replacement and customization of core model

checking components for a specific problem domain.

The Bogor Framework provides the most effective path for extending the ca-

pabilities of a model checking tool to provide hardware support. Modifications to any

other tool would require significant changes to the input language and tool itself. The

benefit of the using the Bogor Framework is that most of the work is done within the

BIR language itself and any changes to the model checking tool are isolated to single

modular components. We now move on to the details of handling exceptional control

flow.
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Chapter 4

Modeling Exceptional Control Flow

Bogor requires that a BIR model be completely specified and well-formed prior

to exploration. This means that nodes along a control flow path must be connected

to be explored properly. Exceptional control flow uses run-time information that

is not available when the model is generated. We present a progression of possible

approaches, outline deficiencies, and conclude with a solution to the problem.

The Bogor Framework and BIR languge provide several mechanisms for re-

solving the problem of dynamically determining control flow: functions, guarded

transitions, and listener modules to augment exploration strategies. The use of func-

tions is not explored because this information is not present at the assembly level.

We explore the structure of the model, guarded transitions, and listener modules as

possibilities. Figure 4.1 illustrates the evolution of our solution through experience.

Figure 4.1(a) is the correct control flow behavior for the system being modeled.

The system is composed of a single process with instructions located at locations A,

B, C, and I. Location I represents an interrupt handling mechanism. Execution begins

at location A, follows to B. After the instruction at location B has been executed an

interrupt occurs, the current state of the processor is pushed onto the stack and control

flow passes to location I. The interrupt is serviced, the contents of the stack are used

to restore the state of the processor and execution continues with location C. After

the instruction at location C has been executed another interrupt occurs, the current

state of the processor is placed on the stack, and control flow passes to location I. The
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Figure 4.1: Exact control flow behavior and three possible solutions in the BIR lan-
guage ranging from over approximation to a precise model. (a) The exact behavior of
the actual program on the target hardware. (b) A conservative over approximation
that includes false behavior. (c) A precise model that relies on guarded transitions to
check the PC value for the correct transition. (d) The actual implementation using
the location changed listener that is an exact model of the actual behavior.

interrupt is serviced, the processor state is restored and the instructions at location

C are executed again. This is the correct behavior of the system. The difficulty in

specifying correct behavior in BIR is that the interrupt changes control flow from

Location B to I and C to I at run-time. This information is not available statically.

Figure 4.1(b) uses only the structure of the BIR model to determine control

flow. Exceptional control flow may occur between the execution of instructions so

a transition from Locations A, B, and C is made to location I. Following interrupt

handling at Location I, it is possible for execution to be returned to any of A, B,

or C depending on the context of the interrupt so additional transitions from I are

made to these Locations. For simplicity, expected execution follows from A to B to C

without any branching, so additional transitions are added to the graph. This is the

assumed behavior when observing the type of instructions in the program. When a

node contains multiple outgoing edges, each is treated as a point of non-determinism

and is explored individually by the model checking tool. The resulting graph, is now
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an over-approximation of the possible behavior of the model. Verifying this model

finds relevant errors, if any, in the execution of the program. Additional errors that

are not feasible are also reported.

The strategy in Figure 4.1(b) contains two main drawbacks: interrupt servicing

frequency and proper return from interrupt servicing. The figure in Figure 4.1(b)

demonstrates fully interleaved behavior between the program and interrupt servicing.

When the model checking tool follows edges on the graph the notion of successor and

predecessor information is implicit in the depth first search stack but not explicit in the

model description. It is currently not possible to transition to the interrupt resolution

node, pass control flow to the appropriate interrupt handler, and return control flow

to the correct node where the interrupt occurred. The dynamic information stored

in the model indicating how control flow should proceed is not accessible. Without

this information, Location I incorrectly contains non-deterministic transitions to each

node in the program. The current model does not demonstrate actual behavior of

the system.

The next logical step, illustrated by Figure 4.1, to more accurately represent

correct behavior is to use the Program Counter information that is stored in the state

of the system. Expanding on the strategy in Figure 4.1(b) the graph is now fully

connected. However, a guard is placed on every outgoing transition that requires the

Program Counter in the current state of the system be equal to the location label

of the next location to explore. Upon exploring a node, the model checking tool

evaluates the conditional statement on each outward transition, queueing up the next

set of nodes to explore. For example, after executing the instruction found at location

A, the Program Counter is set to B. Each guard on the three outgoing transitions:

A to B, A to C, and A to I are evaluated. Since the Program Counter has the value

B, only the guard for the transition A to B is satisfied, so Location B is placed on

the search stack. The use of guarded transitions and run-time information to prune
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infeasible paths to determine the next location correctly models the behavior of the

system. The only significant drawback to this approach is the cost associated with

guard evaluation at every location. The model checking tool evaluates the guard of

every outgoing transition on every visit to that location. As the size of the program

and/or memory increase the feasibility of using this solution lessens.

Figure 4.1(d) uses an additional user-supplied plugin module that registers

with the Location Changed Event in the model checking tool to perform post-

processing that correctly guides the search strategy. After processing a node and

calculating the next node, the Location Changed Event is triggered. The Location

Changed Listener extracts the current Program Counter from the current state of

the model, sets the next location to visit, and returns control to the search strategy.

The structure of the model is irrelevant and complicated transitions are unnecessary.

The Location Changed Listener maps the control flow behavior of the ISA to the BIR

model. This allows Bogor to correctly verify software containing exceptional control

flow while using a static model of the system in a more efficient manner than strictly

using BIR to specify transitions.

Having solved the problem of accurately representing system behavior in the

BIR language we can now address how to leverage the Bogor Framework to simulate

the ISA on which the software system runs.
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Chapter 5

Translation and Language Extension

BIR contains high and low level language constructs. High-level BIR more

closely resembles source code in other languages. Low level BIR is of particular

interest because it exposes the lowest level of transition granularity used by the model

checking tool. Low-level BIR is made of finite state machines containing nodes and

transitions. Primitive and user-defined data types, arithmetic, logical, and control

operators are available. Simulating the operations of hardware on compiled code at

this level is ideal.

Figure 5.1 illustrates a simple mutual exclusion algorithm and its equivalent

BIR model [2]. Figure 5.1(a) has a global variable, turn, that determines which

process is allowed to enter its critical section, labeled as CR0 and CR1 respectively.

A process consists of an infinite loop labeled as L0 and L1 that contains a busy wait

on the turn variable, labeled as NC0 and NC1 . Once the wait condition is satisfied, a

process is allowed to enter its critical section and modify the turn variable that allows

the other process to enter its critical section on the next context switch.

Translating Figure 5.1(a) into the BIR representation in Figure 5.1(b) begins

with defining the system that contains global variables and FSMs for each process.

The global turn variable used in (a) is mapped to a global variable in (b). To com-

pletely match model (a), model (b) should non-deterministically initialize turn to

both 0 and 1 during exploration. For simplicity we initialize turn to 0. To model

non-determinisim, an additional starting location would need to be added. A system
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P0:: L0: while True do

NC0: wait(turn = 0);

CR0: turn := 1;

end while;

P1:: L1: while True do

NC1: wait(turn = 1);

CR1: turn := 0;

end while;

system ProcessExample {

int turn := 0;

active thread P0() {

loc L0:

when (true) do {} goto NC0;

loc NC0:

when (turn == 0) do {} goto CR0;

loc CR0:

do {

turn := 1;

} goto L0;

}

active thread P1() {

loc L1:

when (true) do {} goto NC1;

loc NC1:

when (turn == 1) do {} goto CR1;

loc CR1:

do {

turn := 0;

} goto L1;

}

}

(a) (b)

Figure 5.1: A simple mutual exclusion algorithm where two processes rely upon a
shared global variable turn to arbitrate access to a critical section. (a) The algorithm
defined in a high-level language. (b) The BIR equivalent of the mutual exclusion
algorithm.

may have any number threads. At least one thread is active, indicated by the active

keyword. The first location of each active thread is the set of initial locations to

explore when model checking begins. Both P0 and P1 are mapped to active threads.

Threads are a collection of connected locations as seen with L0 , NC0 , CR0 and

L1 , NC1 , CR1 (b). Each line of (a) is mapped to a location in (b). A location is the

smallest unit of schedule-able work used by the model checking tool. Locations within

a thread have unique labels specified after the loc keyword. The when keyword may

be guarded by a boolean expression that must be satisfied prior to executing the do
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block. Locations L0 and L1 contain trivial guards but the guards for NC0 and NC1

are dependent on the value of the turn variable as in (a). The body of the do block

contains the operations to execute. Operations are executed in order. After execution

the tool transitions to the next location specified following the goto keyword.

The goto locations specified in (b) correspond to the control flow in (a). In

Figure 5.1(a) P0 execution begins at L0 , transitions to NC0 , then to CR0 , and finally

to L0 . P1 is similar in this regard. This mapping creates a set of very simple state

machines. The BIR model in (b) is identical to the behavior of (a) with the exception

of the initialization of turn.

Figure 5.2(a) is the assembly instructions for process P0 in Figure 5.1(a) on

a PowerPC G4 processor. Verifying this implementation of Figure 5.1(a) requires a

Language Extension to support the ISA of the target hardware and a location changed

listener to determine control flow. Assuming these are present, we outline the process

of using a Language Extension to simulate hardware.

The BIR model in Figure 5.2(b) introduces the interface for communicating

with the Language Extension. The interface, identified by the extension keyword,

defines the data type, a creation method for instantiating the data type, and a method

for executing instructions. The global variable data contains the reference to an

instance of the SimpleProcessor language extension. This instance stores the current

state of the processor (registers, memory, program counter).

The thread implementation for P0 in Figure 5.2(b) is organized in a similar

fashion as Figure 5.1(b) with individual instructions located within the do block of a

location labeled with the memory address. Language Extensions cannot be declared

and instantiated in a single statement so an additional location, labeled initialize, is

added to the active thread to instantiate the language extension. This location is

added to improve readability. Initialization must take place prior to use.
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2d20: 3c 4a 00 00 addis r2,r10,0

2d24: 38 42 03 08 addi r2,r2,776

2d28: 80 02 00 00 lwz r0,0(r2)

2d2c: 2f 80 00 00 cmpwi cr7,r0,0

2d30: 40 9e ff f0 bne+ cr7,2d20

2d34: 3c 4a 00 00 addis r2,r10,0

2d38: 38 42 03 08 addi r2,r2,776

2d3c: 38 00 00 01 li r0,1

2d40: 90 02 00 00 stw r0,0(r2)

2d44: 4b ff ff dc b 2d20;

system ProcessExample

{

extension Sim for SimpleProcessor {

typedef type;

expdef Sim.type create ();

actiondef exe (Sim.type data, String...);

}

int turn := 0;

Sim.type data;

active thread P0() {

loc initialize:

do {

data := Sim.create();

} goto {|2d20|};

loc {|2d20|}:

do {

Sim.exe(data, ”addis”, ”r2”, ”r10”, ”0”);

} goto {|2d24|};

loc {|2d24|}:

do {

Sim.exe(data, ”addi”, ”r2”, ”r2”, ”776”);

} goto {|2d28|};

...

}

...

(a) (b)

Figure 5.2: Assembly can be directly mapped to a BIR model that uses a language
extension to support a specific processor architecture. (a) The assembly instructions
for process P0 in Figure 5.1(a). (b) The BIR equivalent to (a) containing the language
extension interface, global variable turn, and the first two instructions of P0.

Following the initialization location, the location labeled as {|2d20|} contains

the first machine code instruction of the mutual exclusion program to execute. The

execute method accepts as parameters the current state of the processor stored in the

data variable and the string representation of the instruction and its arguments. In

practice it is easier to decode the machine code bytestream, as the human readable

text contains ambiguities in determining the addressing mode of operations. The

Language Extension executes the instruction and returns.

Prior to executing the instruction located at {|2d20|}, it is possible that an

interrupt has ocured and should be serviced. To handle this efficiently, a user-defined
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listener module has been attached to the Location Changed Event. This module

interacts with the instance of the language extension stored in the data variable to

obtain the Program Counter and correctly set the next location for the model checking

tool to explore. The control flow of the model is dictated by the current state of the

language extension regardless of the structure of the BIR model.

The language extension and location changed listener work together to cor-

rectly explore the BIR model as executed on target hardware. By working within

the BIR language and tool framework this approach can be used to simulate vari-

ous hardware models and reuse a common model checking tool. We now detail the

application of this strategy to verify a thread scheduling algorithm targeted for the

Motorola M68hc11 microprocessor.
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Chapter 6

Case Study

The presented strategies using the Bogor Framework to verify software com-

piled for a target architecture have been used to verify a thread scheduling program

targeted for the Motorola M68hc11 microprocessor. The Motorola M68hc11 is a

popular microprocessor found in network cards, controllers, and other everyday ap-

plications. The M68hc11 supports multiple addressing modes, I/O operations, a rich

instruction set, and has a good amount of documentation and software available. The

verification of a thread scheduling algorithm demonstrates that the Bogor Framework

is able to correctly simulate the necessary behavior of the M68hc11 and model dy-

namic control flow.

We describe the workings of the Language Extension that embodies the proces-

sor behavior, timing model, thread scheduler program, and a multi-threaded applica-

tion containing an error. The topics of language translation and supporting dynamic

control flow in a static model have been covered in previous sections. These items

are required to enable the Language Extension to function properly.

6.1 Motorola M68hc11 Language Extension

The Language Extension for the M68hc11 is composed of three logical pieces: the

data representation, a controller, and the individual instructions.
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The data component implements the necessary interfaces for a non-primitive

data type allowing it to be interrogated by the framework when being copied, lin-

earized, or some simple operation performed on data types. As a processor model it

contains representations for registers, program counter, free running counter, status

registers, main memory, and all other necessary features to support the executing

program. The model contains no processor logic and simply provides data storage

and access. The Bogor Framework passes the data component to its correspond-

ing Language Extension when performing an operation and the Language Extension

returns it and the information necessary to undo the operation.

The controller provides a simple interface to the BIR model for getting and

setting memory values during initialization and executing instructions. The controller

possesses a collection of objects that correspond to each assembly instruction found

in the hardware instruction set. When the execute method is invoked the controller is

given the data model, instruction label, and instruction arguments. The instruction

label is used to identify the data model and instruction arguments to the appropri-

ate instruction. The controller performs pre and post execution operations such as

checking for interrupts, stacking registers if necessary when transferring control, etc.

Each instruction implements the behavior described in the documentation for

the microprocessor and provides undo information used by the framework when per-

forming backtracking. For example, the ldd instruction loads a two-byte value into

the double Accumulator D, which is Accumulator A and B combined. LDD sup-

ports five addressing modes: Immediate, Direct, Extended, Index X, and Index Y.

Each mode uses the instruction arguments differently to load the data into the Ac-

cumulator and modifies the state of the processor differently with respect to timing.

The implementation for this instruction handles each of the five addressing modes,

their corresponding cycle count, and specific behavior. Each instruction implemen-
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tation returns the modified data model and corresponding backtracking information

for undoing the execution of the instruction.

6.2 Timing

Timing is necessary to support the Timer Output Compare (TOC) behavior. As

noted in the scope section, the representation of time presents a significant obstacle

in explicit state model checking. In explicit state model checking a snapshot of the

variables composing the system are stored as a state. These states or a representa-

tion of them is stored and accessed to determine when a state and its subsequent

paths have already been explored. Storing states ensures termination in a finite do-

main. Any increase in the number of variables or the range of a variable stored in

the state exponentially increases the number of configurations or states that might

exist. Knowledge of how information stored in the state is used in a program enables

the application of abstractions that lessen the state space explosion problem. We

specifically target the storage of explicit time and Output Compare registers.

The explicit inclusion of the free running counter in the state requires that

a given system configuration (ie., registers, memory) must occur at a specific time.

Real-time and embedded systems are typically reactionary by nature, ”running” for

long periods of time with their behavior dependent upon interaction with the envi-

ronment rather than a specific value in the free running counter. The TOC feature

compares the current clock value against the value in a TOC register and when the

current instruction has finished executing and the current clock value has surpassed

the compared registers value during that instruction, an interrupt is fired. Instead

of explicitly storing time and the TOCx registers, we apply an abstraction that ex-

cludes the free running counter from the state and only stores the offset value of an

output compare register. The offset value is the TOC value minus the free running

counter value. This offset is stored in the state vector. When restored from the state
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vector in the event of backtracking, the current free running counter value is added

to value of the output compare register. Due to unsigned arithmetic, the TOC value

”wraps” around zero and the clock overflow value. Now states that are identical with

respect to everything but timing yet only differ on the absolute clock value and not

the relative offset can be merged into one state. Collapsing these states reduces the

number of duplicate states and paths that must be explored when a state has events

scheduled at the same future offset.

The relative offset creates a set of equivalence classes based on the dynamic

range of the TOC register values. Figure 6.1 contains pseudo code that illustrates

three sample cases for calculating an output compare value: (a) an interval that does

not account for drift, (b) an interval that accounts for drift, and (c) a monotonically

increasing interval. The benefits of the abstraction are directly impacted by the

number of distinct values placed in the output compare registers. At best there is

a significant reduction in the number of unique states, at worst it is equivalent to

storing explicit time.

The code samples in Figure 6.1 each contain a main method that sets the TOC

1 register to the next clock value that will trigger an interrupt. Figures Figure 6.1(a)

and Figure 6.1(b) use the value 20,000 as the length of the desired interval between

interrupts. 20,000 clock cycles correspond to 10 milleseconds at the clock frequency

for the M68hc11. The OC1 handler is defined in the interrupt vector table to serve

the Output Compare 1 register. When the Output Compare 1 interrupt is signaled,

the OC1 handler is loaded to handle the event. The handler calculates the next

clock value to signal the next Output Compare 1 interrupt service. The set OC1

method sets the value of the Output Compare register. The TCNT method returns

the current value of the the clock. Figures (a), (b), (c) each calculate the interval in

a different manner that affects the abstraction.
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1: #define INTERVAL 20000

2: void main{

3: set OC1(TCNT() + INTERVAL);

4: }

5: void OC1 handler(){

6: set OC1(TCNT() + INTERVAL);

7: }

(a)

1: #define INTERVAL 20000

2: unsigned short time;

3: void main{

4: time = TCNT() + INTERVAL;

5: set OC1(time);

6: }

7: void OC1 handler(){

8: time += INTERVAL;

9: set OC1(time);

10: }

(b)

1: unsigned short INC INTERVAL;

2: void main{

3: time = 1;

4: set OC1(TCNT() + INC INTERVAL);

5: }

6: void OC1 handler(){

7: time += 1;

8: set OC1(TCNT() + INC INTERVAL);

9: }

(c)

Figure 6.1: Run-time calculation of interrupt timing determines the state space re-
duction provided by the timing abstraction applied to the output compare registers.
(a) Demonstrates a simple timing program that schedules the interrupt based on a
fixed number of cycles, disregarding the possibility of delay and results in a signifi-
cant reduction. (b) Accounts for delay or drift by using a sufficiently large interval
that may reduce to a single equivalence class. (c) A monotonically increasing interval
creates results in worst case behavior negating the abstraction.

Figure 6.1(a) shows an interrupt handler that sets the next interrupt service

time to be 20,000 cycles from the current clock value as shown on lines 3 and 6. This

does not take into account delay in servicing the interrupt routine due to priorities

or the time spent in the routine itself. Either of these can cause a slight shift forward

in time that causes the TOC register offset value to vary slightly around the 20,000

cycle interval value. There is a significant reduction in the number of states due to a

small number of equivalence classes grouped around the interval value.
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Figure 6.1(b) takes into account the possibility for delay by using a variable,

time defined on line 2, to maintain the next interval value rather than relying on

the current clock value. As long as the interval is large enough to account for these

delays and the configuration of the system is unchanged between interrupt servicing,

the abstraction creates a single equivalence class.

Finally, Figure 6.1(c) uses a monotonically increasing variable,

INC INTERVAL defined on line 1, that is added to the current clock value

when setting the next interrupt service time on lines 4 and 8. Since the abstraction

subtracts the current free running counter value from the TOC register, this negates

all savings. The TOC register now has a range that matches that of the free running

counter. This particular case requires a different approach to achieve a reduction in

the state space.

Storing the TOC register value as an offset most benefits the class of programs

that schedule interrupts on regular intervals. We focus on this particular abstraction

because it applies directly to the thread scheduling implementation that we verify.

6.3 Thread Scheduler Verification

The thread scheduler being verified is a preemptive round robin scheduler. The

source code is found in Figure 6.2. The scheduler is implemented as an interrupt

handler that occurs at an interval of 20,000 clock cycles. There is a global variable

labeled, QPtr, not shown, that references the currently executing thread. QPtr stores

a reference to the next thread datastructure, stack pointer, stack, and register values.

The collection of thread datastructures form a circularly linked list. When the TOC4

interrupt occurs, the currently executing thread’s register information is pushed onto

the stack. The scheduler stores the current thread’s stack pointer value in the QPtr

structure, lines 3-4. QPtr is advanced to the next thread, and the stack pointer is

restored, lines 6-7. The scheduler relies upon the interrupt handling mechanism to
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1: void attribute ((interrupt)) scheduler(void) {

2: unsigned short current time;

3: asm (” ldx QPtr \n”

4: ” sts 2,x”);

5: QPtr = QPtr–>Next;

6: asm (” ldx QPtr \n”

7: ” lds 2,x”);

8: io ports[M6811 TFLG1] |= M6811 OC4F;

9: current time = get timer counter();

10: set output compare 4(current time + 20000);

11: }

Figure 6.2: Source code for the Thread Scheduling implementation.

store the state of the currently executing thread, swap the stack pointer, and allow

the return from interrupt mechanism to restore the next thread. Lines 8-10 ensure

that the TOC4 interrupt is being actively monitored and sets the interval for the next

servicing.

The Bogor Framework is able to correctly simulate hardware and exceptional

control flow when verifying the thread scheduler. The Estes model checking tool is

used as a reference for determining correct state count and behavior in each state

[15]. Internally, Estes uses the GBD simulator for state generation and provides a

target for correctness as a reference implementation. The presented work builds upon

work done with Estes by extending Bogor to verify machine code for instruction set

architectures at a lower development cost. We verify the scheduler is correct but find

an error in our semaphore implementation for the threads.

Figure 6.3 details the verification results for an instance where an error lies in

the threads themselves and not the scheduler. Each state in the verification matches

directly with Estes. The difference of three states in the state count is due to extra

initialization states and counting the final state. The initial state of a Bogor model is

the value of the global variables without visiting the first location. Since non-primitive

data types are all initialized to null an additional state must be added to initialize the
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States Count Explore time
Bogor 24625 20.46s
Estes 24622 10.5s

Figure 6.3: The State Count and Exploration time reported by Bogor and Estes
verifying the Thread Scheduling program.

Language Extension prior to exploring the model resulting in two additional states.

Bogor adds the error state to the state count, whereas Estes excludes it.

The purpose of this work is to demonstrate an approach that enables software

developers to apply model checking as a tool user at the hardware level without

requiring a custom tool. Creating a model checking tool requires specific domain

knowledge pertaining to model checking as well as the problem domain, development

resources, and the time to verify the tool itself. The Estes model checking tool is more

than 20,000 LOC and requires a knowledge of the inner workings of GDB to extend

it to other instruction set architectures supported by GDB. Implementing the Bogor

Framework requires more than 70,000 lines of code, a knowledge of language design,

graph traversal algorithms, and reduction strategies. Extending the capabilities of

the Bogor Framework to support ISAs by working within the framework results in a

substantial savings of development effort. We qualify the savings in section 6.5

Now that we have a functional thread scheduler running on hardware we

present an example demonstrating a flawed weak semaphore implementation. This

example uses the detail available at the assembly level.

6.4 Multi-threaded Program with Error

The scheduler is the same used in Figure 6.2. The scheduler manages two threads

that use a semaphore implementation to arbitrate access to their critical sections.

Figure 6.4(a) shows the code for the semaphore datastructure, lines 1-4, and the wait

function of the semaphore implementation, lines 5-16. The semaphore has a flattened
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1: struct sema4 {

2: short lock;

3: short S;

4: } volatile sem;

5: void wait(sema4 *sem) {

6: int lock = 0;

7: while(!lock){

8: disableInterrupts();

9: if (sem–>lock == 0) {

10: sem–>lock = 1;

11: lock = 1;

12: }

13: enableInterrupts();

14: }

15: return;

16: }

f83d: ldx #0 load lock

f840: tpa

f841: sei disableInterrupts();

f842: ldd *c2 load sem–>lock

f844: bne f84e if (sem–>lock == 0)

f846: ldd #1 sem–>lock = 1;

f849: std *c2

f84b: lds #1 lock = 1;

f84e: cli enableInterrupts();

f84f: cpx #0

f852: beq f840 while(!lock)

(a) (b)

Figure 6.4: Differences in program behavior can emerge because source level opera-
tions translate into multiple assembly instructions. (a) Source code for a semaphore
implemenation’s wait function and shared datastructure. (b) Corresponding assembly
instructions for the wait function.

queue so each thread sits in a busy while loop when waiting. Both threads simply

call wait, do nothing in their critical section, and then signal. The omission of the

volatile keyword (line 4) on the sema4 datastructure introduces incorrect behavior

specifically at lines 8 and 9 that is the focus of the following paragraphs.

6.4.1 Figure 6.4(a) Walkthrough

Figure 6.4(a) shows the shared sema4 datastructure used in the mutual exclusion im-

plementation containing the volatile keyword in the struct declaration. The volatile

keyword instructs the compiler to not reorder the instructions as generated and to

always load data directly from memory. Without the volatile keyword, the com-

piler is allowed to reorder instructions according to efficiency and reuse registers that

may potentially contain stale values that differ from those actually in memory. In
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a multi-threaded or memory mapped input/output environment, the currently exe-

cuting process or thread is not guaranteed exclusive access to memory. At any time

another process, thread, or interrupt can modify a memory value, invalidating the

register value.

Lines 5-16 illustrate a simple busy wait. Execution begins with lock as 0, line 6.

As a local variable lock simplifies determining when the thread has been granted access

from the semaphore because it can be accessed without worrying about concurrency

issues. After initializing lock the thread enters a busy loop, line 7, disables interrupts,

line 8, and attempts to obtain access, line 9. If successful the sem–>lock and lock

values are updated, lines 10-11, interrupts are enabled, and the function exits. If

unsuccessful, interrupts are enabled and another iteration of the while loop begins.

The lock and unlock methods enable and disable the servicing of maskable

interrupts. When disabled, no other interrupts should be serviced.

6.4.2 Figure 6.4(b) Walkthrough

The assembly code in Figure 6.4(b) is the compiled version of (a). The corresponding

C source code is added to the right of the assembly (b). The assembly code strongly

resembles the source code with the noticeable difference that some source level state-

ments require multiple assembly instructions. A single source instruction translating

into multiple assembly instructions introduces the possibility of new behaviors as in-

terrupts are considered. The following list details instructions used in Figure 6.4(b),

Figure 6.5(a), and Figure 6.5(b).

LDX Load Index Register X - Loads an immediate value or a two-byte value from

memory into Register X. An immediate value is preceded by the # symbol.

LDY Load Index Register Y - Loads an immediate value or a two-byte value from

memory into Register Y. An immediate value is preceded by the # symbol.
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TPA Transfer from CCR to Accumulator A - Transfer the Condition Code Register

to Accumulator A.

SEI Set Interrupt Mask - Disables all maskable interrupts.

LDD Load Double Accumulator - Loads an immediate value or a two-byte value

from memory into Accumulator D. An immediate value is preceded by the #

symbol.

BNE Branch if Not Equal to Zero - Causes a branch if the Z bit of the Condition

Code Register is not set. Value is set by a previous load instruction.

STD Store Double Accumulator - Stores the contents of Accumulator D to a memory

address.

LDS Load Stack Pointer - Sets the Stack Pointer to a constant or memory value.

CLI Clear Interrupt Mask - Enables maskable interrupts.

CPX Compare Index Register X - Compares Register X to an immediate or memory

value.

BEQ Branch if Equal - Causes a branch if the Z bit of the Condition Code Register

is set.

The most important pieces of Figure 6.4(b) to understand are the placement

of the sei instruction at address f841 and ldd *c2 at address f842. The sei instruction

disables maskable interrupts and ldd *c2 loads the value of sem–>lock into Register

D. When the volatile keyword is removed this sequencing is altered and causes

deadlock. The omission of an optional, but important, keyword on a datastructure is

an easy mistake that might go unnoticed.

6.4.3 Figure 6.5 Walkthrough

Figure 6.4(b) has been copied and placed in Figure 6.5(a) for a side-by-side com-

parison. Figure 6.5(b) address f841 ldx *c2 shows that the compiler has reordered
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Volatile sema4

f83d: ldx #0 load lock

f840: tpa

f841: sei disableInterrupts();

f842: ldd *c2 load sem–>lock

f844: bne f84e if (sem–>lock == 0)

f846: ldd #1 sem–>lock = 1;

f849: std *c2

f84b: lds #1 lock = 1;

f84e: cli enableInterrupts();

f84f: cpx #0

f852: beq f840 while(!lock)

(a)

Non-Volatile sema4

f83d: ldy #0 load lock

f841: ldx *c2 load sem–>lock

f843: tpa

f844: sei disableInterrupts();

f845: cpx #0

f848: bne f851 if (sem–>lock == 0)

f84a: ldx #1 sem–>lock = 1;

f84d: ldy #1 lock = 1;

f851: cli enableInterrupts();

f852: cpy #0

f856: beq f843 while(!lock)

f858: stx *c2 store sem–>lock

(b)

Figure 6.5: The proper use of the volatile keyword on the sema4 datastructure
determines whether or not the wait function works correctly. (a) Correct access to
the sema4 datastructure. (b) The missing volatile keyword allows the compiler to
optimize instruction order and re-use registers, introducing incorrect behavior.

the instructions by moving the load of the sem–>lock data before the tpa and sei

instructions.

Loading the sem–>lock data before disabling interrupts potentially results in

using a stale memory value, as an interrupt can occur following the instruction at

f841 ldx *c2 but before disabling interrupts at f844 sei. When viewed from the source

code the program should never execute the if (sem–>lock == 0) statement before

disableInterrupts(). This new behavior is introduced with the instruction re-ordering

and is completely different from the source code. Address f858 stx *c2 also shows

that the store instruction that should occur within the critical section is placed after

f851 cli that enables interrupts. Whether or not the ordering of loads and stores is a

separate issue from the reuse of a register value, the net result is incorrect behavior

manifested by deadlock.

In this example we verified the presence of deadlock given a certain envi-

ronment and are able to trace the error to the absence of the volatile keyword.

33



Cyclomatic Complexity
Modules Classes Functions Lines of Code Min Max Median Average
Translation 15 113 1228 1 14 1 2.12
Location Changed Listener 2 12 124 1 8 1 2
Processor 6 202 1429 1 17 1 1.66
Instruction Set 142 372 4409 1 38 1 3.38

Total 119 698 7109 1 38 1 2.65

Table 6.1: Software Engineering metrics reporting the number of Classes, Functions,
Lines of Code, and Cyclomatic Complexity for each module. The Language Extension
is divided between the Processor and Instruction Set modules

Verification at the source level would not have exposed this type of behavior. Fig-

ure 6.3 details the state count and explore time for both Estes and Bogor in finding

this error. The difference in state count is due to additional initialization states and

including the error state in Bogor. The difference in time is due to the difference in

implementation languages.

6.5 Software Engineering

The Bogor Framework was selected to provide a platform that allowed tool-users to

verify machine code without incurring the cost of developing a custom tool. Table 6.1

details the software engineering metrics for the Language Extension implementation

that provides support for the M68hc11 processor using the Code Analyzer Pro tool [4].

The implementation has been grouped into: Translation, Location Changed Listener,

Processor, and the Instruction Set. The Translation and Processor components re-

quired the most development effort, while the Instruction Set and Location Changed

Listener are well defined by their purpose and existing documentation.

In total, there are 142 Classes, 698 Functions, and 7109 Lines of Code (LOC)

in our implementation. These numbers would classify the project as being small to

medium in industry, likely requiring 2-3 months for a small development team. Each

module is fairly cohesive and allows simultaneous development. The interfaces be-

tween Processor and Instruction Set are as simple as possible, relying on getters and
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setters. The Translation and Location Changed Listener modules operate indepen-

dently from the other modules.

The Cyclomatic Complexity (CC) or McCabe Complexity is provided as an

additional metric for evaluating the implementation difficulty[13]. Cyclomatic Com-

plexity, v(), is defined as:

v(G) = e − n + p

G is the control flow graph of the program

e is the number of edges

n is the number of nodes

p is the number of connected components

The resulting number indicates the maximum number of linearly independent

paths through a function. For testing purposes each path requires a test case. An

observation from McCabe states that functions scoring more than 10 should be refac-

tored if possible. Depending on the purpose of a function this is not always possible.

The motivation for maintaining a low score is an observed inverse relationship be-

tween increasing complexity and decreased cohesion that increases development and

maintenance cost of software. Table 6.1 shows that each module contains at least one

function with a high degree of complexity, but both the median and average scores

are manageable.

Combining the metrics of the LOC and CC it is apparent that the entire

process from translation to modeling the behavior of the processor is non-trivial.

However, creating a Language Extension and supporting modules requires 7000+

lines of code at a reasonable complexity level compared to writing 70,000+ lines of

code at a much higher complexity level to implement the Bogor tool.
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Chapter 7

Conclusions and Future Work

Verifying software compiled for a specific target architecture requires a signif-

icant investment of resources and often results in a custom tool. The Bogor Frame-

work, an ”off-the-shelf” general purpose model checking tool, combined with a Lan-

guage Extension to simulate hardware and module replacement to override default

tool behavior provides the benefits of a custom tool without the total development

overhead. Our approach allows a single tool to support multiple architectures.

Our current implementation supports key behavior of the M68hc11 processor.

Future work focuses on adding Timer Input Compare, Input Port, and Output Port

features. It is likely that the Timer Input Compare register value can be modeled

and abstracted similarly to the Timer Output Compare. The issue of how to model

rising clock edges, falling clock edges, or both still needs to be resolved. Rising and

falling clock edges occur in between our current time representation and may require

significant work. The Input and Output ports allow communication with peripheral

devices. These features are memory mapped making them easy to implement. The

more difficult part is simulating the sending or receiving devices. Each of these

features enhances the appeal of using the Bogor Framework to verify machine code

implementations.

Another area of future work involves generalizing the portion of the language

extension that implements the processor behavior. The execution of instructions is

trivial to generalize. If the user provides the instruction set and a mapping from
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opcodes to instructions then the execution engine becomes a hash table lookup that

applies the instruction. Interrupt resolution might contain a reasonable number of

classes that a user could select from and enhance as needed. Every tool user benefits

when templates and scaffolding are provided.
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