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ABSTRACT 

Text Identification By Example 

 

 

Daniel Joseph Preece 

Department of Computer Science 

Master of Science 

 

The World-Wide Web contains a lot of information and reading through the web 

pages to collect this information is tedious, time consuming and error prone.  

Users need an automated solution for extracting or highlighting the data that they 

are interested in.  Building a regular expression to match the text they are 

interested in will automate the process, but regular expressions are hard to create 

and certainly are not feasible for non-programmers to construct.  Text 

Identification by Example (TIBE) makes it easier for end-users to harvest 

information from the web and other text documents.  With TIBE, training text 

classifiers from user-selected positive and negative examples replaces the hand-

writing of regular expressions.  The text classifiers can then be used to extract or 

highlight text on web pages. 
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CHAPTER 1 – INTRODUCTION 

The World-Wide Web contains a lot of information.  There are many reasons 

to want to harvest that information.  Genealogists want to extract information 

about the lives of the people they are researching.  A stock broker wants to 

extract information about stocks that he might want to invest in.  A user 

researching cameras wants to extract price and feature information about digital 

cameras.  Reading through the web pages is tedious, time consuming and error 

prone.  What these users really want is an automated solution to extracting or 

highlighting the data that they are interested in.  Building a regular expression to 

match the text they are interested in will automate the process, but regular 

expressions are hard to create and certainly are not easy for non-programmers to 

construct (see Figure 1-1). 

The goal of Text Identification by Example (TIBE) is to make it easier for end-

users to harvest information from the web and other text documents.  Training 

text classifiers from user-selected examples replaces hard-coded regular 

expressions like Figure 1-1 with a user interface where the text identification can 

be built through user examples as in Figure 1-2.  

Regex for Email:  
^([a-zA-Z0-9_\-\.]+)@((\[[0-9]{1,3}\.[0-9]{1,3}\.[0-

9]{1,3}\.)|(([a-zA-Z0-9\-]+\.)+))([a-zA-Z]{2,4}|[0-

9]{1,3})(\]?) 

 

Date: DD MMM YYYY 
^((31(?! (FEB|APR|JUN|SEP|NOV)))|((30|29)(?! FEB))|(29(?= FE 

B (((1[6-9]|[2-9]\d)(0[48]|[2468][048]|[13579][26])|((16|[24 

68][048]|[3579][26])00)))))|(0?[1-9])|1\d|2[0-8]) (JAN|FEB|M 

AR|MAY|APR|JUL|JUN|AUG|OCT|SEP|NOV|DEC) ((1[6-9]|[2-9]\d)\d{ 

2})$ 

 

Date Time: MM/DD/YYYY HH:MM:SS AM|PM 
(?n:^(?=\d)((?<month>(0?[13578])|1[02]|(0?[469]|11)(?!.31)|0 

?2(?(.29)(?=.29.((1[6-9]|[2-9]\d)(0[48]|[2468][048]|[13579][ 

26])|(16|[2468][048]|[3579][26])00))|(?!.3[01])))(?<sep>[-./ 

])(?<day>0?[1-9]|[12]\d|3[01])\k<sep>(?<year>(1[6-9]|[2-9]\d 

)\d{2})(?(?=\x20\d)\x20|$))?(?<time>((0?[1-9]|1[012])(:[0-5] 

\d){0,2}(?i:\x20[AP]M))|([01]\d|2[0-3])(:[0-5]\d){1,2})?$) 

 
Figure 1-1: Various hard-coded regular expressions. 
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Figure 1-2: Trained dollar amounts are highlighted. 

This process of training a text classifier is intuitive and simple for end-users.  

As text classifiers are trained within the user interface, instant classifier feedback 

is provided, allowing the user to quickly and accurately train the classifier.  

Classifiers are trained by the user selecting positive and negative examples.  

These classifiers are then used to identify other instances of the text class the user 

is training.  As other instances of the text class are identified by the classifier, the 

user adds additional text examples that were missed by the classifier and marks 

as negative any text examples that were identified in error by the classifier.  The 

trainer uses the additional positive and negative examples to fine-tune the 

classifier until the user is satisfied that it is classifying the text properly.  

Using TIBE to train a text classifier simplifies the process of automating the 

extraction of text from data rich web pages compared to manually browsing web 

pages or manually creating hard-coded regular expressions.  In A conceptual-

modeling approach to extracting data from the web [Emb98B], a document is 

considered data rich if it has a number of identifiable constants such as dates, 

names, account numbers, ID numbers, part numbers, times, currency, values and 

so forth.  For these data rich documents, browsing is not suitable for locating 

items to extract because following links is tedious, it is easy to get lost, and 

browsing is not cost-effective as users must read the whole document to find the 

desired data [Emb98B].  Automating the extraction by creating hard-coded 

regular expressions is difficult.  The regular expression language is commonly 
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called the world’s most popular “write-only” language because it is so hard to 

read.  TIBE solves both of these problems. 

1.1 TIBE and Automated Data Extraction 

There has been considerable research into building other tools that automate 

the extraction of meaningful information from documents on the Web.  

Conceptual-models and ontologies [Emb98A], [Emb98B], [Emb99], [Emb04A], 

[Emb04B] are two methods used to extract data and to relate the data together.  

In each of the methods of extraction, there is a step where regular expressions 

must be hand-coded to identify the individual elements of their models.  In 

Figure 1-3, this is the “Constant/Keyword Recognizer” step in the data extraction 

and structuring process.  In Ontology-Based Extraction [Emb98A], Embley et al. 

state that their process uses a domain expert to tune their system.  A domain 

expert is an individual that is familiar with hard-coding regular expressions to 

act as the Constant/Keyword Recognizers for the domain of documents that they 

are extracting data from. Because the output of TIBE is a classifier (i.e. 

recognizer), TIBE could be used to build those recognizers to extract text from 

data-rich documents such as advertisements, movie reviews, weather reports, 

travel information, sports summaries, financial statements, obituaries, etc. that 

are fed into the process in Figure 1-3.   
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To overcome the need to have the end user hard-code regular expressions, a 

fixed set of regular expressions can be pre-programmed by the regular 

expression experts, but there are infinite types of data classifications and it is not 

feasible to pre-program every possible one.  Adding an interface to be able to 

modify and add new regular expressions would allow for additional data 

extraction, but would still require a regular expression expert to program them.  

Again TIBE would replace these pre-coded regular expressions with a much 

more flexible and easier interface for a non-expert to use.  The conceptual-models 

and ontologies have made it possible to extract data from web pages in a 

meaningful way and TIBE makes it more accessible to an end-user by replacing 

hand-coded regular-expressions created by domain experts with text classifiers 

created by end-users. 

Figure 1-3:  Model for Conceptual-Model-Based Data Extraction  
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1.2 Applications of TIBE 

 Using TIBE to train text classifiers has a number of applications.  For 

example, there might be a user that watches certain financial web sites on a 

regular basis for stocks that are mentioned in their articles.  Reading through the 

page can be tedious and time consuming and this user does not have the time or 

the patience to scan the page for stock quotes or mentions of the stocks.  With 

TIBE, he could train a text classifier to recognize the stock quotes and have them 

highlighted or have the paragraphs that contain mentions of the stocks extracted 

(see Figure 1-4).  

 

An end user might want to research different cameras offered on Amazon.  

On the Amazon pages for cameras there are several pieces of information that he 

might want to collect in order to compare the cameras: List Price, Sale Price, 

Discount Percent, Mega-Pixels, Optical Zoom, LCD Display Size, ISO, Shipping 

Weight, Model Number, Sales Rank, etc. (see Figure 1-5).  If he tries to collect this 

information himself, he must scan the page for the information and manually 

transfer it to a spreadsheet or a document to compare the cameras.  He could 

create regular expressions to automate the extraction of this data and be able to 

process several pages in the time that it would have taken him to manually scan 

one, but he’s a photographer, not a programmer and has no idea what regular 

Figure 1-4: Stock symbols that could be trained by TIBE. 
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expressions are.  With TIBE, within a few minutes he could have each of the data 

elements trained and then the classifiers could be used to extract the data just 

like the regular expressions would have. 

 

Similarly, a genealogist researching names on web sites could also use TIBE.  

The genealogist could train several text classifiers for data that he is looking for.  

For example he could train dates and other genealogical related information and 

even specific instances of a general type like birth dates, death dates and 

marriage dates (See Figure 1-6). 

 
Figure 1-6: Genealogical information from genealogical or obituary sites.  

Figure 1-5: Data items on an Amazon camera page. 
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1.3 Delimitations of the Thesis 

TIBE’s focus will be primarily the user interface, the algorithm for training 

text classifiers, and using the classifiers to match the appropriate data being 

classified.  It will not address the conceptual-models, ontologies, or relating 

matched text to other elements on the page.  After a classifier is trained by TIBE, 

it could be used in a highlighter or a text extractor or within the conceptual-

model process, but these applications will not be the focus of this thesis, and 

neither are the steps to hook the TIBE classifier into these processes as that would 

be fairly straight-forward. 

Because TIBE’s interface is browser-based, there has been some work done to 

be able to train text within Windows Internet Explorer, but this is more of a 

proof-of-concept than a full implementation.  TIBE’s implementation in 

Windows Internet Explorer is good enough to demonstrate how the user 

interface works, but it is not part of this thesis to make it production quality. 

1.4 Training Scenario 

There are relatively few elements that are part of TIBE’s user-interface.  This 

helps make TIBE simple to use and quick to learn.  The main function of the 

interface is to facilitate the training of text classifiers.  There is also the ability 

within the interface to organize the text classifiers into different projects to 

support multiple types of web pages.   

The process to train a classifier is straightforward.  For example, suppose a 

user is on an Amazon book page and wants to train the book price.  He chooses 

the “Amazon Book Pages” project and creates the “Price” text class.  Because this 

class has not been trained yet no text in the browser is highlighted.   
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The user then highlights the book price with the mouse and presses the 

“Add Example” button.  The TIBE trainer creates a classifier and highlights other 

text on the page that the classifier matched (See Figure 1-7). 

 

There are several dollar amounts that were matched that are not the book 

price that is being trained and so the user highlights one of wrong matches and 

clicks the “Add Negative Example” button.  This results in the trainer creating a 

new classifier and the classifier highlighting its matches (See Figure 1-8). 

 

After adding the negative training example, several of the dollar amounts 

that had been highlighted previously are no longer highlighted but there are still 

some dollar amounts that are erroneously being classified as a book price.  Next 

the user selects one of them and clicks the “Add Negative Example” button again 

Figure 1-8: “$4.78” is added as a negative training example. 

Figure 1-7: The user adds the first training example. 
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which results in the trainer creating a new classifier and the classifier 

highlighting its matches again (See Figure 1-9). 

 

This new negative training example results in a couple of the dollar amounts 

being matched again by the classifier so the user selects one of them and adds it 

as another negative training example and the training and classification occur 

once again.  This time though, the trainer creates a classifier that classifies the 

book price correctly and does not match any of the other dollar amounts as book 

prices (See Figure 1-10).  

 

1.5 Training TIBE 

TIBE’s training of a classifier is non-trivial.  Generating minimal classifiers 

from text examples is generally computationally intractable [Wit93] and so 

Figure 1-10: “$9.00” is added as a negative training example. 

Figure 1-9: “$14.95” is added as a negative training example. 
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TIBE’s generalization algorithm has novel optimizations to reduce the problem 

size and for finding minimal classifiers. 

1.6 Measuring TIBE 

The TIBE algorithm’s precision and accuracy is measured by running it 

against a gold standard of pre-marked-up text.  The pre-marked-up text consists 

of several different types of web sites with several text classes unique to each 

one.  Some of the websites consist of computer generated content while others 

are human generated.   
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CHAPTER 2 – PRIOR WORK 

TIBE’s algorithms build upon concepts that have been around for a while.  It 

is a concept learning algorithm that builds a classifier based on positive and 

negative examples.  There are two groups of prior work that TIBE either builds 

upon or solves the problem in a different way.  The first group of prior work 

deals with material that was used as building blocks to the algorithms in TIBE.  

The second group deals with material that is similar to TIBE and we explain how 

they are similar and what makes TIBE different. 

2.1 Concept Learning 

Concept learning is defined as acquiring the definition of a general category 

given a sample of positive and negative training examples of the category 

[Mit97].  TIBE uses a machine learning algorithm to generalize positive and 

negative training examples to train a classifier that will match other text 

fragments for that class and thus can be considered a concept learning algorithm.    

Concept learning algorithms have a hypothesis space that is the list of 

hypotheses that are consistent with the positive and negative training examples 

given.  It is usually ordered from a most general boundary to a most specific 

boundary.  In TIBE, the hypothesis space for a text class would be all patterns 

that match all of the positive examples and none of the negative examples. 

From the positive and negative training examples, TIBE’s learning algorithm 

produces the subset of the patterns in the hypothesis space that are on the most 

general boundary.  These patterns are guaranteed consistent with the training 

examples, but the ultimate goal is to have a set of patterns that are consistent 

with the entire set of instances of the data.  This means that the classifier created 

from the patterns should recognize all of the text that is part of the text class 
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being trained and none of the text that is not part of that text class.  Since the only 

data available to the TIBE learning algorithm is the training data, it can at most 

guarantee that the output classifier from the patterns recognizes the training 

data.  Lacking any further information, our assumption is that the best patterns 

regarding unknown instances of a text class are the patterns that best fit the 

observed training data.  This is the fundamental assumption of inductive 

learning. 

The inductive learning hypothesis. Any hypothesis found to 

approximate the target function well over a sufficiently large set of 

training examples will also approximate the target function well over 

other unobserved examples. [Mit97] 

For example, suppose the text class “Date” was being trained.  Given one 

positive example “4/4/1977”, there are several hypotheses that could be generated.  

The most specific hypothesis is “4/4/1977” and the most general is “<char>*”.  The 

most specific hypothesis matches the training examples but does not match other 

dates such as “7/2/1980” or “12/30/2005”.  However, the most general hypothesis 

matches other dates like “7/2/1980” or “1/1/2004” as well as all characters and so is a 

better classifier to match unobserved examples, but it  matches other text like 

“Hospital” or “12:04 am”; therefore there must be an even better classifier.  Adding 

additional negative training examples could make the most general hypothesis 

eventually converge to “<digit><symbol><digit><symbol><digit>+”.  Now the pattern matches 

the given positive training example and no negative training examples but it 

does not match some dates such as “12/30/2005”.  If “12/30/2005” is added as a positive 

example, then its most general hypothesis evaluates to 

‚<digit>+<symbol><digit>+<symbol><digit>+” which not only matches all of the training 

examples, but also matches all dates with single or double digit months or days 

such as “7/2/1980”, “12/4/1978”, “12/30/2005” or “1/10/1955”.  With the additional positive 
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training example, the resulting classifier does a pretty good job matching other 

dates beside the given positive training examples. 

Chapter 2 of Machine Learning [Mit97] reviews “Concept Learning” and 

several algorithms: Find-S, List-Then-Eliminate and Candidate-Elimination.  The 

Find-S algorithm [Mit97] uses only the positive training examples and generates 

the most specific hypothesis that generalizes the training examples.  The most 

specific hypothesis in Find-S is found by generalizing the most specific possible 

hypothesis (which is a hypothesis that matches nothing).  Generalization occurs 

by replacing constraints in the hypothesis with more general constraints until the 

specific hypothesis matches all positive training examples.  If Find-S were used 

with TIBE and “12/4/1978” and “12/30/2005” were the two positive examples, it would 

generate a specific hypothesis of “<digit><digit>/<digit><digit>/<digit><digit><digit><digit>” 

which would match the positive training examples and several other dates, but 

not dates like “4/4/1977” or “1/10/1955”.  Therefore we would not want to use the 

Find-S algorithm for TIBE because we want to find the most general hypotheses 

for our classifiers (with rules on how far we will generalize a pattern) rather than 

the most specific ones, and in order to approximate the general hypothesis 

boundary, negative training examples might need to be used in addition to the 

positive ones. 

The List-Then-Eliminate algorithm [Mit97] uses both the positive and 

negative training examples to get a list of hypotheses.  It first initializes the 

hypothesis space to contain all possible hypotheses and then eliminates any 

hypothesis found inconsistent with any training example.  Ideally this would 

reduce the hypothesis space to just one hypothesis that remains consistent with 

the training examples, but if the training examples are sparse, there could be 

more than one hypothesis in the resulting set.  The subset of hypotheses that are 
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consistent with the training examples is called the version space with respect to 

the hypothesis space because it contains all plausible versions of the target 

concept.  Although the List-Then-Eliminate algorithm is guaranteed to output all 

hypotheses consistent with the training data, it requires exhaustively 

enumerating all hypotheses in the hypothesis space.  For TIBE this would not be 

trivial as the hypothesis space would be too large to compute for almost any text 

class.   

A third concept learning algorithm is the Candidate-Elimination algorithm 

[Mit97].  This is a more compact representation of the List-Then-Eliminate 

algorithm.  The version space is represented by its most general and least general 

members.  These members form general and specific boundary sets that delimit 

the version space within the partially ordered hypothesis space.  This algorithm 

starts with a general hypothesis that matches everything and a specific 

hypothesis that matches nothing and uses the positive and negative training 

examples to make the general boundary more specific and the specific boundary 

more general.   

TIBE’s training algorithm is most similar to the candidate-elimination 

algorithm except for a few notable differences.  The TIBE learning algorithm only 

gets the general boundary instead of getting both the general and specific 

boundaries.  It also has specific generalization rules that only generalize letters, 

numbers, whitespace, strings of the same pattern category and other text class 

patterns that are matched within the current pattern.   

The Candidate-Elimination learning algorithm assumes that all positive 

examples are relatively the same, whereas in TIBE we have to accommodate 

training text classes that may have two items with totally different structures.  

For example, a date text class might be formatted as “9/23/2006” or “September 
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23, 2006” or even “23 Sept. 2006”.  In this case, the TIBE learning algorithm will 

detect that some of the positive training examples cannot be generalized with the 

other positive examples and will generalize them separately.  With this 

algorithm, TIBE starts at the generic hypothesis boundary and uses other 

positive and negative examples to make the generic boundary more specific.  For 

example, a positive example of the “Birth Date” class might be “Birth: 

12/30/2005”, which would be generalized in TIBE to “<digit>+/<digit>+/<digit>+”.  

The “Birth: ”  part of the example would be generalized off as it is not needed to 

match the positive example.  This pattern also happens to match “Death: 

11/23/1999” because it has been generalized too far.  If that death date is added as 

a negative training example, this would force the general hypothesis boundary to 

“rth:<whitespace><digit>+/<digit>+/<digit>+”, which would match all the positive 

examples and none of the negative examples and would also match any other 

birth date that is proceeded with “Birth: “. 

2.2 TELS: Learning Text Editing Tasks from Examples 

TELS generalizes the steps that a user makes when editing text into a 

program that automatically edits the text [Wit93].  This is often called 

“Programming by Demonstration”.  Similar to most other “Programming by 

Demonstration” systems, TIBE generalizes the positive and negative training 

examples that the user enters to create a classifier to match text.  The problem 

that TELS is solving is different from the problem that TIBE is solving. TELS is 

dealing with generalizing editing tasks into an editing routine whereas TIBE is 

generalizing text examples into a classifier for recognizing the text.   

The general algorithm for TELS could not be used for TIBE, but part of the 

TELS generalization involves generalizing character strings and some of these 

concepts were used within the TIBE generalization algorithm.  In generalizing 
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character strings within the TELS algorithm, it seeks the smallest regular 

expression that satisfies the examples given.  This can be found by enumerating 

all expressions from the smallest up, but unfortunately this is computationally 

intractable; therefore, TELS generalizes character strings using a heuristic that 

finds common subsequences.  Individual characters are related by a class 

hierarchy with categories such as letter, digit, punctuation, lower-case, non-

alphanumeric, and this relationship is extended to strings of consecutive 

characters from the same class.  TIBE uses pattern categories similar to TELS’s 

character categories.  TIBE’s pattern categories include letter, digit, whitespace 

and other TIBE trained classifiers as well as strings of consecutive pattern 

categories to aid in the generalization of training examples into a classifier. 

2.3 LAPIS and Multiple Selections in Smart Text Editing 

LAPIS is a prototype system that uses an approach to matching text called 

lightweight structured text processing [Mil99].  Within LAPIS, a user can use a 

pattern language called text constraints to aid in selecting text to be highlighted, 

extracted, sorted or edited.  Text constraints describe text structure in high-level 

terms, with region relationships like before, after, in and contains.  They also have 

the concept of domains like HTML, JAVA source code or English text which 

include parsers and sets of common patterns to aid in the pattern matching.   

The LAPIS prototype system is extended to enable Multiple Selections in 

Smart Text Editing [Mil01], [Mil02].  This extension to the prototype enables a 

user to simultaneously edit multiple regions in a document.  Whereas previous 

techniques for repetitive text editing generally separated records on the line 

boundary or something similar, Smart Text Editing allows the user to define the 

record set that the editing works on.  After defining the records, the user makes a 

selection in one record using the mouse or keyboard, and the system makes an 
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equivalent selection in all other records.  Subsequent editing operations – such as 

typed text, deletions, or cut-and-paste – affect all records simultaneously, as if 

the user had applied the operations to each record individually.   

Smart Text Editing is trying to solve the same problem as other 

“Programming by Demonstration” (PBD) techniques such as TELS [Wit93], 

except the user’s demonstrations affect all records simultaneously.  After the 

demonstration part of a transformation, the user can scan through the file and 

see how the other records were affected by the partial transformation.  In TELS, 

each demonstration affects only a single example.  In order to see what the 

inferred program will do to other examples, the user must run the program on 

other examples. 

Smart Text Editing is similar to TIBE in a few ways.  Both allow the user to 

give positive and negative training examples to train the generalizer and get 

instant feedback on the generalizer’s results.  Both have a concept of domains.  

Smart Text Editing and LAPIS use domains to define the parser and other 

patterns that can aid in the training and pattern matching.  TIBE has classifier 

domains, which contain text classes that are found in a set of related web pages.  

Similar to LAPIS, the text classes in a classifier domain can aid in the training and 

pattern matching of additional text classes in that domain. 

Although the selection guessing portion of Smart Selections is similar to the 

training that TIBE does, it is trying to solve a different problem than TIBE and 

therefore, its implementation is not entirely suited to the problem that TIBE is 

trying to solve.  Since Smart Selections is targeted towards editing rather than 

just text identification, the smart selections work upon records that the user 

defines (which might be lines, java methods, paragraphs, etc).  This enables the 

user to enact the same editing command across all the records in the document.  
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It also enables Smart Selections to preprocess the records to aid in making the 

generalizing quicker.  Since TIBE is not used for editing, it has no reason to 

divide sections of a page into records and so works on the page as a whole.  It 

also does not need to preprocess the page.  Another limiting factor of their 

algorithm is that if it cannot find a hypothesis that is consistent with all of the 

positive and negative text examples, it just does not produce a hypothesis and 

asks the user to adjust his examples.  This might happen if they were training a 

date and had two positive examples of “10/31/2006” and “Oct. 31, 2006”.  The 

TIBE algorithm detects that these might require different hypotheses and 

generates them appropriately.   

2.4 Roadrunner 

Roadrunner [Cre01] is a tool for automating the extraction of information 

from web pages.  It is similar to TIBE in that both aid in extracting useful 

information from web pages.  Roadrunner analyzes a set of web pages and 

attempts to derive data fields on the web pages by comparing the web pages to 

each other.  The data fields are not classified but rather organized into fields 

which have no specific class associated with them.  Roadrunner also depends 

upon the pages being generated by a relational database and upon the pages’ 

structure to be relatively the same.  Roadrunner is also focused on automating 

the extraction of web pages (where a user would not even need to be involved in 

identifying the important fields on a web page).   

Unlike Roadrunner, TIBE is able to classify the text on the web page.  TIBE 

would require a user to identify text classes up front before the automated text 

extraction but this has the benefit of having classified fields extracted.  TIBE also 

works on pages that were not necessarily generated by a relational database and 

which do not necessarily have relatively the same structure.  While Roadrunner 
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analyzes several whole pages together, TIBE trains a single class over several 

pages using specific training examples. 

2.5 Conclusions 

The very nature of using “Programming by Demonstration” to teach a 

program how to edit text requires the algorithm to be able to learn patterns of 

text in order to detect where edits should occur in subsequent records.  Both 

TELS and Smart Selections generalize text or selections in order to match similar 

text in other records.  From TELS we got the idea of how to generalize individual 

characters and from Smart Selections we see the idea of instant feedback on 

selections.  Both implementations ultimately are optimized for editing rather 

than text extraction and as a result have limitations that TIBE does not have. 

The TIBE training algorithm most closely follows the Candidate-Elimination 

concept learning algorithm.  This enables our algorithm to be able to 

approximate the general boundary of its version space without having to 

enumerate every possible combination of generalizations that a text example 

pattern could have. 

The Roadrunner project is also focused on extracting data from web pages 

but it is focused more on automating the process rather than allowing users to 

interactively identify the data that they want to extract.  It would not require a 

user to identify data to extract, but it also cannot classify the data it is extracting 

and depends on the web pages being generated by relational databases.  TIBE 

classifies the data that it is identifying and it can work on all types of web pages 

whether they were generated from relational databases or not. 
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CHAPTER 3 – OVERALL APPROACH 

There are three key challenges for TIBE: the user-interface, the training 

algorithm, and the classifier.  The user-interface is important because TIBE is 

aimed at making it easier for an end-user to be able to create classifiers for data 

on web pages.  The user-interface needs to be easy to learn, easy to use and 

intuitive to end users.  It would also be nice to have the interface built so that it 

was plugged-in to a popular browser, rather than a program with a web browser 

embedded in it, so that it could be called up at any point while a user is 

browsing. 

The main component of TIBE is the training algorithm.  It is what allows a 

user to be able to select positive and negative training examples and train them 

into a classifier.  The training algorithm is where much of the novel algorithms 

are in TIBE. 

The classifier is important because how we choose to represent a classifier 

affects how the training algorithm may be implemented.  In Machine Learning 

[Mit97] Mitchell states that by selecting a hypothesis representation, the designer 

of the learning algorithm implicitly defines the space of all hypotheses that the 

program can ever represent and therefore can ever learn.  The classifier defines 

what hypotheses the TIBE training algorithm needs to handle and it is important 

that it is represented in a way that is broad enough to reliably generalize text 

classes, but also not so broad as to make the problem intractable. 

In addition to the three main key challenges there are a few other necessary 

parts of TIBE.  There is not necessarily anything novel about them but they are 

mentioned for completeness.   
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One feature of TIBE is that the user-interface is extensible.  Other training 

algorithms can be plugged into the user-interface.  In order to allow for 

extensibility, programming interfaces are defined for training and classifying 

text.  The TIBE training algorithm is accessed through these interfaces. 

The abstract programming interfaces have several requirements.  They need 

to be abstract enough to allow for other training and classifying algorithms 

besides TIBE to be built on top of them.  They need to be built so that the training 

and classification can be performed through them without knowledge of the 

underlying implementation.   

There are two interfaces and one inheritable class that make up the 

programming interfaces for TIBE.  The two interfaces are for a classifier domain 

and for a classifier.  The inheritable class is a default implementation of a trainer.  

The classifier domain represents a collection of the training examples and 

classifiers for a project.  A classifier for a specific text class can be requested of the 

classifier domain and it will return a classifier (which implements the classifier 

interface).  The classifier interface has a method to classify text that returns a list 

of locations that the classifier matched.  The classifier domain also has a method 

to get a trainer for a text class.  The trainer has two methods: one to add 

additional training examples to the class within the classifier domain and one to 

get the classifier for the current text class.   

In order to use this interface, an instance of the classifier domain must be 

created.  Once the program has a classifier domain instance, it calls the method to 

get the trainer for a specific class.  The trainer is able to accept positive and 

negative training examples and generate the classifier for the text class.  The 

classifier can be passed text and return a list of text locations that it classified as 

the current text class.  From these three programming interface elements the 
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user-interface or automated interface can load a project, train the classes in the 

project and classify text without knowledge of the underlying algorithm for 

training and classifying. 
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CHAPTER 4  – THE TIBE USER-INTERFACE 

TIBE’s user-interface is contained in a sidebar plug-in to Windows Internet 

Explorer.  It has access to the web browser to be able to classify the text of the 

current web page and allow the user to add additional training examples.  TIBE’s 

user-interface does several things to make the training of classifiers easy for a 

user to do.  It allows the user to straightforwardly add positive and negative 

training examples and gives instant classifier feedback after each training 

example is added so the user can plainly see what other training examples need 

to be added.  Through the UI users can define their own lists of text classes that 

they want to train.  It also allows the user to organize text class lists into separate 

projects and it auto-saves changes to the projects so that the user does not have to 

worry about it.  Since it is a sidebar plug-in to Windows Internet Explorer, the 

user is able to train new or existing text classes while browsing (Figure 4-1). 

 

Figure 4-1: The TIBE User Interface 
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Implementing TIBE within a sidebar to Windows Internet Explorer has 

several challenges and limitations.  Highlighting text that is classified changes 

the underlying HTML, so we make sure that training examples do not include 

the highlighting markup.  Identifying the text and the surrounding text that was 

is added as a training example also needs special handling, since we do not get 

an index to the text within the body of the HTML.  We are also careful to keep 

the UI responsive during training, which could otherwise take several seconds at 

times. 

The procedure to train text classes within TIBE is simple and intuitive.  The 

user selects the class that he wants to train and starts out by selecting a positive 

example of that class within the current web page.  The TIBE trainer will create a 

classifier, and the classifier will be used to highlight everything on the page that 

it recognizes.  At this point the user will continue to add additional positive and 

negative examples from the page until only the positive examples are 

highlighted.  Once this happens, he might go to another similar page on the site 

to see how well the classifier recognizes the class on the new page and add 

additional positive and negative examples.  He will continue this until he has 

visited enough of the pages to be satisfied that the classifier is recognizing the 

text class correctly.  The user may train another class in the class list in the same 

manner. 

4.1 Training Example 

For example, suppose a user wants to extract the “Buy New” price, “Sale 

Price” and the “Used & New” prices for several types of books on Amazon.com.  

He decides to use the book search functionality because it gives him a list of 

books and allows him to get the prices for multiple books on one page.  The first 

books that he wants to search are “Harry Potter” books and so his search brings 
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up a listing of different “Harry Potter” books.  The first thing the user does is to 

train dollar amounts since this is going to be the basis for the other price fields. 

 

In order to train the “Dollar Amount” text class, the user first selects it in the 

text class selection list and then selects one of the dollar amounts in the book 

listing web page and adds it as a positive training example (Figure 4-2).  After it 

is added, the TIBE training algorithm generates a classifier and highlights all the 

other instances of “Dollar Amount” on the page that it recognizes (Figure 4-3).  

The user scans through the highlighted values (the “Dollar Amount” class is 

highlighted in green) and the rest of the page to verify that none of the “Dollar 

Amounts” were missed and that nothing was misclassified as a “Dollar 

Amount”.  He also checks several other book search web pages to verify that 

none of them result in any misclassifications either.  

Figure 4-2: Training “Dollar Amount”. 
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Now the user is ready to train the “Buy new” price and so he selects the 

“Buy new” item in the text class list box and selects one of the “Buy new” prices 

on the book list and adds it as a positive example (Figure 4-4).  This results in the 

TIBE trainer creating a new classifier and the classifier highlighting in yellow all 

the text on the page that it recognizes.  This time there are several 

misclassifications because the training example resulted in the classifier 

recognizing all “Dollar Amounts” as “Buy new” prices (Figure 4-5). 

Figure 4-4:  Training the “Buy new” price. 

Figure 4-3:  Classified “Dollar Amounts” are 

highlighted in green. 
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The user recognizes that this is not right and so adds one of the misclassified 

amounts as a negative example.  In this case, he adds one of the sale prices as a 

negative example (Figure 4-6). 

 

After the TIBE trainer is done training the new classifier that resulted from 

the additional negative example, the “List Price” and “Used & New” prices are 

no longer highlighted, but there are a couple of “Buy new” prices that are not 

highlighted either (Figure 4-7).  The user spots this and adds one of the un-

highlighted “Buy new” prices as a positive example (Figure 4-8).  

Figure 4-6: A misclassified “Buy New” added as a negative training example. 

Figure 4-5: The “Buy new” prices that were recognized by the trained 

classifier. 
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The TIBE trainer now created a classifier that appropriately classifies all of 

the “Buy new” prices (Figure 4-9), but it is also classifying some of the “Used & 

new” prices as well and so the user selects one of them and adds it as a negative 

example (Figure 4-10).  Now the TIBE trainer creates a classifier that almost has 

the “Buy new” classifier working correctly. 

Figure 4-8: Another “Buy new” price is added as a positive example. 

Figure 4-7: Some “Buy new” prices still have not been correctly classified. 
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There are just two misclassified dollar amounts near the bottom of the listing.  

The user adds one of these misclassified fragments as a negative example (Figure 

4-11) and the TIBE trainer creates another classifier.  This new classifier correctly 

classifies the “Buy new” price on the current book listing for “Harry Potter”. 

 

Figure 4-11: One of the remaining misclassified amounts is added 

as a negative training example. 

Figure 4-10: Another negative example added to further train the “Buy new” classifier. 

Figure 4-9: Current “Buy new” classifier results. 
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The user now wants to check the classifier on other search pages to verify 

that it appropriately classifies the text on those pages as well.  In order to do this, 

the user searches for books by author “Robert Asprin”, books on software 

security and books on programming and the trained classifier correctly 

Figure 4-12: The “Buy new” amount is being correctly classified on several additional search lists. 
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recognizes the “Buy new” price on each of the resulting search pages (Figure 4-

12).  It was able to train the “Buy new” text class with two positive examples and 

three negative examples.  Each of the four search pages had around 15 results 

with “Buy new” prices.  This means that 5 training examples were able to build a 

classifier that was able to match around 60 instances of the text class. 

Within the TIBE user-interface, a user trains one text class at a time.  They 

specify which class they want to train by selecting it in the text class list box 

(Figure 4-13).  The list box shows the list of current text classes available to train 

along with their highlight color.  The selected item in the list box is the text class 

that is currently being trained.  If a text class already has training examples 

associated with it and it is selected, the TIBE trainer will create a classifier from 

them and highlight all of the text that was recognized on the current page.   

There is also a simple way to add additional classes to be trained.  Defining a 

new class requires the user to specify the name of the class and its highlight 

color.  A default highlight color is chosen for each new class so that the user does 

not need to change the highlight color unless he wants to.  Once a text class is 

selected, the training examples already added to it are shown in another list box.  

This list allows the user to view what they have already trained for the current 

text class as well as the ability to delete training examples that may have been 

added in error.  This allows the user to have some control over the training 

process and to undo mistakes within their training examples.  
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Since not all web pages are the same, a user is likely to want to be able to 

train text classes using different sets of training examples depending on the type 

of page.  For example, training the “Buy new” price on Amazon.com is likely to 

require different training examples than training a similar price on 

barnesandnoble.com.  There may also be different text classes that a user wants 

to train depending on the type of page.  The data that a user wants to collect 

from a genealogy site differs from the data on a site with stock quotes or with 

prices on books or other electronics.  In order to accommodate this, text classes 

can be grouped into projects within the interface.  When a user opens the TIBE 

user-interface, he would choose the project that corresponds with the type of web 

page that he is working with and the text classes associated with that project 

would be loaded and ready to be trained. 

4.2 Implementation Details 

Although the TIBE user-interface has access to the HTML within the web-

browser control, it is not necessarily a trivial task to highlight recognized text or 

to extract the training examples from user selections.  In order to highlight the 

recognized text, an HTML element needs to be added to the markup to surround 

the appropriate text so that it will show up highlighted within the web browser.  

For example, if “$17.37” is selected by the user as a positive text example or 

identified by the classifier as a “Dollar Amount”, it will be replaced with ‚<span 

class=tibe_DollarAmount>$17.37</span>‛ in order to have the “$17.37” show as highlighted in 

Figure 4-13: The Text class list box lists text classes that 

are available to train and what their highlight color is. 
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the browser.  Adding this additional text has the side-effect of modifying the text 

that is being used when adding additional training examples.  Also, the classifier 

returns a list of indexes to the recognized text, and when the highlighting 

markup is inserted, the indexes of the recognized texts also change so some work 

has to be done to overcome this. 

Extracting a training example from a user’s selection is particularly tricky.  

Optimally we would be able to get the index and length of the selection within 

the body of the HTML and use that information for the training example, but this 

information is not provided within the selection API of the web browser control.  

What is available is the ability to get the HTML text of the current selection as 

well as the HTML surrounding the selection.  Using this feature of a selection, we 

are able to create a fairly reliable algorithm to get the text surrounding the user’s 

selection as well as the index and length within the surrounding text of the user’s 

selection.  Additionally we add some code to remove the TIBE highlighting 

markup from the surrounding text of the user’s selection so that it will not be 

included in the training example as it would negatively bias the trained classifier. 

Another feature of the user-interface is that the training of a new classifier 

occurs in a non-user-interface thread so that the user-interface is still responsive 

while it is training.  We do this because sometimes the training can take a couple 

of seconds and we do not want the user-interface to be unresponsive during this 

time.  We also include a visual indicator on the user-interface that the training is 

running so that the user knows when it is training. 
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CHAPTER 5 – TIBE TRAINING ENGINE 

The TIBE training engine was the main challenge in making Text 

Identification by Example work.  The TIBE training engine takes as inputs 

positive and negative training examples and produces a classifier that recognizes 

the positive examples and does not recognize the negative examples.  Hopefully 

the classifier will also recognize other text that is part of the current text class and 

not misclassify text that is not the current text class.  The patterns resulting from 

the concept learning algorithm used within the TIBE trainer are on the general 

boundary of the version space for the text class.  We will call these patterns 

“minimal patterns” because they are general patterns with the minimum amount 

of specificity to make them match all of the positive examples, but none of the 

negative examples.  The set of minimal patterns for a text class should not have 

any pattern in it that is more general than or more specific than any other pattern 

in the set.   

We will review the rules that the TIBE training engine uses when it takes the 

positive and negative training examples and generalizes the positive training 

examples into minimal patterns.  These rules determine which generalized 

patterns are considered minimal, which ones are generalized further and how 

newly generalized patterns affect the previously derived minimal patterns. 

Finally, we will review several training scenarios such as training user 

entered dates, “List Prices”, and “Book Bindings” so that we can get a close-up 

look at how the algorithm works and how its rules help it make decisions at each 

step of the training process. 
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5.1 TIBE Patterns 

The TIBE training algorithm depends on being able to generalize the training 

examples into a general classifier.  The training examples are essentially very 

specific patterns in the version space and the general classifier’s regular 

expression is generated from the minimal patterns for the text class.  The TIBE 

training algorithm is what derives the minimal patterns from the positive 

training examples. 

Since the TIBE classifier is a regular expression, the TIBE patterns could have 

been modeled to use regular expression syntax but this did not offer the 

flexibility needed to implement the TIBE training algorithm.  Instead of regular 

expressions that are represented by a string of characters, we opted to define a 

set of categories that could make up a pattern.  Each category can have several 

properties associated with it (like whether it represents multiple instances of that 

category) and can be easily converted into a regular expression pattern to create 

a classifier.  In addition, each category has rules as to what is more specific or 

more general than it.  The ability to calculate “is_more_general_than” and 

“is_more_specific_than” between patterns is important to the TIBE training 

algorithm and would have been more difficult to calculate with the regular 

expression syntax. 

TIBE’s patterns are implemented as a list of pattern elements.  Each pattern 

element can be one of several pattern categories.  The general pattern categories 

include literals, letters, digits and whitespace (Table 5-1).  All pattern categories 

can be flagged as representing multiple (one or more) of the same category and 

Table 5-2 shows the specific-to-general relationships between the pattern 

categories.  
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Pattern Category Symbol 

Specific Literal 
(Escaped Character) 

(ie ‚A‛ = ‚A‛ but ‚<‛ = ‚\<‛) 

Any Letter <lt> 

Any Digit <dg> 

Any Whitespace <ws> 

Table 5-1: The symbolic representation of each of the pattern 

categories in TIBE. 

In order for the TIBE training algorithm to use training examples, they must 

be converted into patterns.  Since a training example is essentially a specific 

pattern of the text class, the text from a training example is converted into a 

pattern by representing each of the characters as a literal pattern category in its 

list of elements.  Then as the training example (now represented as a pattern) is 

generalized during the algorithm, additional more general patterns are 

generated by replacing the literal pattern categories with other more general 

pattern categories as shown in Table 5-2.  We support the “+” or one or more 

relationship, but do not support the “*” or zero or more relationship as that 

introduced an additional training complexity that we did not want to resolve at 

this time. 

Specific-To-General Relationships between Pattern Categories 

Literal Letter <lt> <lt>+ 

Literal Digit <dg> <dg>+ 

Literal Whitespace <ws> <ws>+ 

Table 5-2: Pattern category specific-to-general relationships. 

In additional to pattern categories listed in Table 5-1, there is a special 

pattern category called TIBE Text Class which is represented symbolically as the 
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name of the text class with “<<>>” surrounding it (ie <<Date>> or <<Dollar Amount>>).  The 

TIBE Text Class pattern category can represent any text class within the same 

classifier domain.  A classifier domain contains all the classifiers for the text 

classes that the user defines as related to each other.  For example, if a user was 

trying to train several text classes on a book page on Amazon.com, he would 

have a classifier domain setup in the user interface with text classes like “List 

Price”, “Sales Price”, “ISBN” and “Dollar Amount”.  The classifiers for each of 

these text classes would be contained within a classifier domain.  When a pattern 

is being generalized, other text classes are checked within the same classifier 

domain to see if any of them match (ie “are more general than or equal to”) 

elements within the current pattern.  If a match is found, the matched pattern 

elements are replaced by a single pattern category that represents the TIBE text 

class within the pattern.  For example, a text class “Date” which has generalized 

to <dg>+/<dg>+/<dg>+ might replace 9/12/2005, 10/14/1975, <dg>/<dg>/<dg><dg><dg><dg>, and 

<dg>+/<dg>+/<dg>+ with <<date>> within a pattern because it is “more general than or 

equal to” the replaced pattern elements. 

Another type of generalization that can reduce the number of pattern 

elements within a pattern is the “multiples” generalization.  When there are 

strings of the same generalization class, the string can be generalized to a single 

pattern element of the same category with its multiple flag set.  For example ‚aaaa‛ 

could be generalized to ‚a+‛, and ‚<dg><dg><dg>‛ could be generalized to ‚<dg>+‛.   

...List Price: $7.99 \nSale Pr...

Pre-Text Post-TextSelected-Text

 Figure 5-1: The three parts of a TIBE Training Example. 
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When training examples are converted to patterns for the TIBE training 

algorithm, the text preceding and following the selected text is also included in 

the pattern.  A TIBE pattern consists of three parts: the text preceding the training 

example (pre-text), the text which is the training example (selected-text), and the 

text following the training example (post-text) (Figure 5-1).  The fragment 

boundary pattern categories (represented symbolically as ‚<frag>‛) are used to 

separate the pre-text, selected-text and post-text parts of the pattern so that when 

the patterns is compared to other patterns or converted to classifiers, the 

different parts can be handled appropriately (Figure 5-2). 

<lt>+<ws><lt>+<ws><frag>$<dg>+.<dg>+<frag><ws>+<lt>+<ws><lt>+ 

Pre-Text Selected-Text Post-Text

 

The pattern “is more general than” test compares two patterns by first 

splitting the patterns into their three parts and testing each part separately.  If 

any part fails the “is more general than or equal to” test, the whole training 

example fails the test.  

There are some specific rules that apply to the parts of a pattern that 

represent the pre-text or post-text of a training example.  For these, a pattern part 

“is more general than or equal to” another pattern part if it is shorter than the 

longer pattern part and the shorter pattern part is “more general than or equal 

to” the longer pattern part for the length of the pattern part.  For pre-text the 

shortness applies to the left side of the pattern part and for the post-text it applies 

to the right side of the pattern part.  Table 5-3 shows examples of Pre-Text and 

Post-Text “is more general than” comparisons.  In each example, Pattern 1 “is 

more general than” Pattern 2. 

Figure 5-2: The Pre-Text, Selected-Text and Post-Text of a TIBE pattern. 
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Pre-Text Post-Text 

Pattern 1 Pattern 2 Pattern 1 Pattern 2 
Date:<frag> Birth Date:<frag> <frag>year <frag>years old 

<lt>:<frag> Birth Date:<frag> <frag><lt> <frag>years old 

<ws><lt>+:<frag> Birth Date:<frag> <frag><lt>+<ws> <frag>years old 

th:<frag> Birth:<frag> <frag> <frag>years old 

th:<frag> Death:<frag> <frag>\</<lt+> <frag>\</font\> 

Table 5-3: A more-general-than comparison between pre-text and post-text pattern parts. 

Another important comparison between two patterns is the “is more specific 

than” comparison.  The “is more specific than” comparison is performed by 

reversing the “is more general than” comparison on the two patterns.  For 

example, if P1 and P2 are two patterns and P1 “is more general than” P2, then 

conversely, P2 “is more specific than” P1.   

5.2 Converting a Pattern into a Classifier 

Once a training example has been trained into a minimal pattern, it needs to 

be converted into a regular expression so that it can become a classifier for the 

current class.  Converting a pattern into a regular expression is fairly 

straightforward.  With the exception of a single special-case, the conversion of a 

pattern category is direct (See Table 5-4).  The single exception is for the TIBE text 

class pattern category which gets converted into the regular expressions that 

make up its classifier.  For example, if the <<Date>> text class is embedded in the 

death date text class (for example: ath: <<Date>>), the <<Date>> text class would be 

converted to the full regular expression that makes it up rather than just a single 

regular expression like the other pattern categories.  There are also mechanisms 

to prevent recursive TIBE text classes within a generalization to prevent endless 

loops when expanding TIBE text class pattern categories into their classifiers. 
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Pattern Category Regular Expression 

Literal  
(ie abc, 123, \[]) 

Literal (Possibly escaped) 
(ie abc, 123, \\\[\]) 

Letter [A-Za-z] 

Digit \d 

Whitespace \s 

Multiple [A-Za-z]+, \d+, \s+ 

Table 5-4:  The conversion from generalization classes into 

regular expressions is straightforward. 

Since a pattern has a pre-text, selected-text and a post-text part, each part is 

converted to its own regular expression separately and then combined into one 

regular expression.  The pre-text regular expression is put into a zero-width 

positive look-behind assertion group (represented as (?<=  )) and the post-text 

regular expression is put into a zero-width positive look-ahead assertion 

(represented as (?=  )).  These regular expression constructs require that the 

regular expression within their groups be matched on the left or right of the 

current position without including those characters in the match.  Figure 5-3 

demonstrates how a minimal pattern is converted into a regular expression. 
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<lt>"\><frag><<Dollar Amount>><frag><ws>+

(?<=([A-Za-z]‛>))(\$\d+\.\d+)(?=(\s+))

([A-Za-z]‛>) (\$\d+\.\d+) (\s+)

Minimal Pattern

Classifier Regular Expression

 

Figure 5-3: Conversion from a minimal pattern into a classifier regular expression. 

5.3 TIBE Training Algorithm 

The TIBE training algorithm takes the list of positive and negative training 

examples and creates two separate lists for them.  The positive training examples 

need to be generalized and the positive and negative training examples need to 

be referenced by the generalization algorithm.  One at a time, each positive 

training example is sent through the generalization algorithm to get their list of 

minimal patterns.  When the generalization is completed on a positive training 

example, its set of minimal patterns is compared against each of the positive 

training examples that remain and compared against the minimal patterns that 

have already been generated. 

When comparing against the other positive training examples, if the minimal 

patterns are more general than a positive training example, the training example 

is removed from the list of training examples to generalize because its minimal 

patterns would be “more specific or equal to” the current minimal patterns and 

so there is no need to generalize it.  For example suppose the positive training 

examples were three dates like ‚12/30/2005‛, ‚4/4/1977‛ and ‚1/29/1985‛.  If ‚12/30/2005‛ was 
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the first training example to be generalized, it would generalize to ‚<dg>+/<dg>+/<dg>+‛ 

which is more general than the other two training examples.  The other two 

training examples would generalize to ‚<dg>/<dg>/<dg>+‛ and ‚<dg>/<dg>+/<dg>+‛ 

respectively and both of those minimal patterns are more specific than 

‚<dg>+/<dg>+/<dg>+‛ and so we see that we would not need to generalize them.  This is 

one way that the algorithm attempts to reduce the amount of work necessary in 

order to generate minimal patterns for a set of training examples. 

The minimal patterns are also compared against the other minimal patterns 

that have been generated previously.  Any of the previous minimal patterns that 

are more specific than the current patterns are removed since they would no 

longer be considered minimal for the text class.  For example if the positive 

training examples were three dates like ‚12/30/2005‛, ‚4/4/1977‛ and ‚1/29/1985‛ but this 

time ‚12/30/2005‛ was generalized last instead of first, then when it was generalized 

to ‚<dg>+/<dg>+/<dg>+‛, the minimal pattern would be compared to ‚<dg>/<dg>+/<dg>+‛ 

because it would be the current minimal pattern.  The minimal pattern 

‚<dg>/<dg>+/<dg>+‛ would be replaced by ‚<dg>+/<dg>+/<dg>+‛ because it is more specific 

than the new minimal pattern.  If another positive training example was added 

as ‚Aug. 21, 1999‛, it would generalize to ‚<lt>+. <dg>+, <dg>+‛ which is neither more 

general nor more specific than ‚<dg>+/<dg>+/<dg>+‛ and so would be added as another 

minimal pattern in the text class’s set of minimal patterns.   Although this part of 

the algorithm does not necessarily reduce the amount of work performed to 

calculate the minimal patterns, it ensures that we do indeed end up with a list of 

minimal patterns and it makes it so that the order in which the training examples 

are generalized does not matter in calculating the minimal patterns. 
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5.4 Pattern Generalization 

Within a concept learning algorithm like the TIBE training algorithm, there is 

a hypothesis space that consists of all patterns that could represent a text class.  

For a TIBE pattern, this would be all the combinations of literal, letter, digit, 

whitespace and TIBE text class pattern generalizations.  It also includes 

combinations of these with their multiple options set and differing numbers of 

them within the pre-text, selected-text and post-text parts of the pattern.  The 

number of these combinations can easily be a very large number, but when 

generalizing a training example, we only need to work with the small subset of 

these which are in the version space of the training example.  Figure 5-4 shows 

what the version space might look like for a date like ‚10/31/1999‛.  The version 

space is the patterns that exist between the specific boundary and the general 

boundary.  In this simple example the specific boundary is ‚10/31/1999‛ and the 

general boundary is ‚<dg>+/<dg>+/<dg>+‛.   

10/31/1999

<dg>+/<dg>+/<dg>+

10/31/19+<dg><dg>/<dg><dg>/<dg><dg><dg><dg>

<dg><dg>/<dg><dg>/<dg><dg>+

Specific Boundary

General Boundary
 

Figure 5-4: The patterns that exist within the version space for “10/31/1999”. 

Adding negative training examples generally makes the general boundary 

more specific.  For example if we were training “Birth Date” we might add ‚Birth: 

4/4/1977‛ as a positive training example.  This would generalize to ‚<<Date>>‛ 

(assuming that the “Date” text class has already been trained) which would 
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match all dates instead of just birth dates.  A negative training example of 

‚Marriage: 8/21/1999‛ could be added as a negative example which would cause the 

birth date text class to generalize to ‚h:<ws><<date>>‛ which no longer match dates 

that do not start with ‚h:<ws>‛ but there are still some dates that are not birth dates 

that start with ‚h:<ws>‛ like ‚Death: 9/10/2006‛.  When ‚Death: 9/10/2006‛ is added a negative 

example, the birth date generalizes to ‚rth:<ws><<date>>‛ which now only matches 

dates that start with ‚rth:<ws>‛ which is still general enough to find several birth 

dates, but certainly more specific than the original minimal pattern of ‚<<date>>‛. 

Adding negative training examples can also result in multiple minimal 

patterns on the general boundary.  For example suppose we were training birth 

dates like in the previous example.  In those examples we only had pre-text but 

usually there is also post-text in the example as well.  The first positive training 

example might be ‚Birth: 4/4/1977\n‛ which would generalize to ‚<<date>>‛ just like it 

did originally.  The first negative training example might be something like 

‚Marriage: 8/21/1999 ‛ which would cause the text class to generalize to ‚h:<ws><<date>>‛ 

and ‚<<date>>\n‛.  Both patterns will match the birth date as well as other dates that 

start with ‚h:<ws>‛ or end with ‚\n‛.  In this case there might be dates like ‚Death: 

9/10/2006 ‛ that are matched because they start with ‚h:<ws>‛ or dates like ‚Baptism: 

5/4/1985\n‛ that are matched because they end with ‚\n‛.  Both of these would need 

to be added as negative training examples since they are not birth dates.  The 

resulting minimal pattern would now be ‚rth:<ws><<date>>‛ just like before. 

Adding positive training examples can reduce the number of general 

boundary patterns if they are similar to other positive training examples.  In the 

previous example, after a positive and a negative training example were added, 

the resulting minimal patterns were ‚h:<ws><<date>>‛ and ‚<<date>>\n‛.  If another 

positive training example of ‚Birth: 7/2/1980 ‛ was added, the minimal patterns 
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would be reduced to just ‚h:<ws><<date>>‛ because it matches more of the positive 

examples than ‚<<date>>\n‛. Thus, it is given more weight in the generalization 

algorithm. 

 If a positive training example is different from the other positive training 

examples, it can create a separate pattern space that must be generalized.  This 

would occur in the date example if another positive training example was ‚Apr. 23, 

2005‛.  Figure 5-5 shows the version space for this type of date.  Because its version 

space does not overlap the ‚mm/dd/yyyy‛ version space, it just adds the additional 

minimal pattern ‚<lt>+.<ws><dg>+,<ws><dg>+‛ to the set of minimal patterns for the 

“Date” text class. 

Apr. 23, 2005

<lt><lt><lt>. 23, 2005 Apr. <dg><dg>, <dg><dg><dg><dg> Apr. 23, 20+5

<lt>+. 23, 2005

<lt><lt><lt>. <dg><dg>, <dg><dg><dg><dg>

<lt><lt><lt>. 23, 20+5

Apr.<ws>23,<ws>2005

<lt><lt><lt>.<ws>23,<ws>2005

Apr. <dg>+, <dg>+

Apr.<ws><dg><dg>,<ws><dg><dg><dg><dg>

Apr.<ws>23,<ws>20+5

Apr. <dg><dg>, <dg><dg>+<dg>

<lt>+. <dg><dg>, <dg><dg><dg><dg>

<lt>+.<ws>23,<ws>2005
<lt>+. <dg>+, <dg>+

<lt>+.<ws><dg>+,<ws><dg>+

<lt>+. 23, 20+5

<lt>+.<ws>23,<ws>20+5

<lt>+. <dg><dg>, <dg><dg>+<dg>

<lt>+.<ws><dg><dg>,<ws><dg><dg>+<dg>

<lt>+.<ws><dg><dg>,<ws><dg><dg><dg><dg>

<lt><lt><lt>.<ws><dg><dg>,<ws><dg><dg><dg><dg>

Apr.<ws><dg>+,<ws><dg>+

<lt><lt><lt>. <dg>+, <dg>+

<lt><lt><lt>. <dg><dg>, <dg><dg>+<dg>

<lt><lt><lt>.<ws><dg><dg>,<ws><dg><dg>+<dg>

<lt><lt><lt>.<ws>23,<ws>20+5

Apr.<ws><dg><dg>,<ws><dg><dg>+<dg>

<lt><lt><lt>.<ws><dg>+,<ws><dg>+

<lt><lt><lt>.<ws>23,<ws>20+5

Specific Boundary

General Boundary

 

Figure 5-5: Version space for “Apr. 23, 2005”. 

In order to obtain the general boundary of a text class’s version space, 

usually we start with the most general pattern in the pattern space and then 

make it more specific until it still matches the positive training examples, but not 

the negative training examples.  Technically, the most general pattern would be 

one that matches anything, but the TIBE pattern space does not have a way to 
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represent a “match anything” pattern and so the most general pattern for a 

training example is the pattern that results from applying the TIBE 

generalization rules on a pattern until no more general patterns are generated 

from a pattern.  In the date example, ‚10/31/1999‛ is not the general pattern because 

when the generalization rules are applied to it, two more general patterns result: 

‚10/31/19+‛ from the “strings” generalization and ‚<dg><dg>/<dg><dg>/<dg><dg><dg><dg>‛ from 

the digit generalization.  Neither of these patterns are the most general pattern 

because further generalization can occur on both.  Eventually generalization of 

these patterns will result in a pattern like ‚<dg>+/<dg>+/<dg>+‛, which cannot be 

generalized further using the TIBE generalization rules.  This is the most general 

pattern for the training example ‚10/31/1999‛. 

5.4.1 Deriving the minimal pattern 

The most general pattern is important to the concept learning algorithms like 

TIBE because they start with the most general pattern and then test it against the 

negative training examples and make the most general pattern more specific if it 

matches any of them.  In the TIBE algorithm, we do not implicitly know the most 

general pattern of a given training example and so must derive it by generalizing 

the training example.  While deriving the most general pattern, if a pattern is 

found to match a negative example, generalization on that pattern is stopped and 

its parent pattern is added to a list of possible minimal patterns.  For example, if 

we were training a year with a positive training example of ‚1985‛, it would 

generalize to ‚<dg><dg><dg><dg>‛ and then to ‚<dg>+‛.  If we had a negative training 

example of ‚Pg. 35‛, this would cause the generalization to stop at ‚<dg><dg><dg><dg>‛ 

because ‚<dg>+‛ matches the ‚35‛ in ‚Pg. 35‛ and so ‚<dg><dg><dg><dg>‛ would be added as a 

minimal pattern for the “Year” text class.  If there were not any negative training 

examples, or the most general pattern did not match any of them, then the most 

general pattern becomes one of the minimal patterns for the text class. 



47 

The minimal pattern for a positive training example is found by trying to 

derive its most general pattern.  The pre-text and post-text are initially removed 

from the positive training example’s initial pattern since the selected-text alone is 

more general than the selected-text with its pre-text and post-text.   For instance, 

suppose a positive training example for “List Price” is ‚List Price: $15.98‛.  The 

selected-text ‚$15.98‛ is more general than the full training example and the TIBE 

algorithm starts by generalizing it.  If there were no negative training examples, 

this would result in the most general pattern being generated as: ‚$<dg>+.<dg>+‛.  

However, if there was a negative training example of ‚Sales Price: $10.98‛, then the 

generalization of the selected text would not have proceeded past ‚$15.98‛ because 

its first generalization ‚$<dg><dg>.<dg><dg>‛ would have matched the “Sales Price” 

dollar amount.  In addition, since it matched a negative training example, it is not 

generalized further because all subsequent generalizations would also match the 

negative training example.  So the minimal pattern generated so far is ‚$15.98‛ 

which is more general than the positive training example with its pre-text and 

post-text, but it is not likely to be a very good classifier. 

5.4.2 Making the general boundary more specific 

When generalizing just the selected-text portion of a positive training 

example, the TIBE algorithm is considered to be in level 0 of the generalization.  

If any negative training examples were matched during a level’s generalization, 

the algorithm will proceed on to the next level of generalization.  The next level 

generalizes more specific versions of the positive training example by adding 

additional elements from its pre-text and post-text.  Table 5-5 shows the levels 0 

through 4 seed patterns for the positive training example ‚List Price: $15.98\nSales ‛.  
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Level 0 Level 1 Level 2 Level 3 Level 4 
$15.98  $15.98 : $15.98 e: $15.98 ce: $15.98 

 $15.98\n  $15.98\n : $15.98\n e: $15.98\n 

  $15.98\nS  $15.98\nS : $15.98\nS 

   $15.98\nSa  $15.98\nSa 

    $15.98\nSal 

Table 5-5: The level 0 through level 4 pattern seeds for “List Price: $15.98\nSales ”. 

The TIBE algorithm stops generalizing a training example once it reaches a 

level where none of its generalizations matched a negative example.  Since none 

of the generalizations at that level matched a negative training example, we 

know that any more specific patterns would also not match a negative training 

example and since we are trying to derive the general boundary in the pattern 

space, we know that we do not need to generalize any more specific versions of 

the positive training example. 

5.4.3 TIBE Training Rules 

So far we have discussed how the most general boundary of a level in the 

pattern generalization is calculated and how we determine the highest level to 

generalize, but in this process there are several rules that determine which of the 

intermediate generalized patterns are added to the list of minimal 

generalizations for a positive text example.  At each step of generalization, the 

generalized pattern is checked against the list of generalized patterns that have 

already been generated.  As can been seen in the version space for ‚Apr. 23, 2005‛ in 

Figure 5-5, several intermediate patterns may generalize to the same generalized 

pattern, but we only need to run the generalization on that new generalized 

pattern once.  If the generalized pattern has not been generated previously, then 

it is added to a stack of patterns to generalize further.   

After generating all generalized patterns from a pattern, the top of the “To-

Generalize” pattern stack is popped off.  Before we generalize this next pattern, 
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we first check it against the list of already generalized patterns in case a similar 

pattern had been generalized after this one had been added to the “To-

Generalize” pattern stack.  If it has not been generalized yet, then we add it to the 

list of already generalized patterns in anticipation of its generalization.  Next, the 

TIBE generalization algorithm attempts to add the current pattern to the list of 

minimal patterns for the current positive training example.  The result of this 

determines whether the pattern will be further generalized or not. 

Adding a pattern to the list of minimal patterns for the current positive 

training examples consists of several checks that determine whether the pattern 

should be added and whether the pattern should be generalized further.  The 

first check is to see if the pattern matches any of the negative training examples.  

If it does, then it indicates that this pattern is too general and any further 

generalizations of it would also match the negative example and so we do not 

add it as a minimal pattern and we indicate that it should not be generalize 

further.  For example, suppose that a “Sales Price” was being trained and within 

the algorithm, the current pattern was ‚$<dg><dg>.<dg><dg>‛ and that one of the 

negative training examples was a “List Price” that looks like ‚List Price: $14.95‛.  The 

current pattern matches the negative training example and so it is not added as a 

minimal pattern and is not generalized further because any more general pattern 

would still match the negative example.  The next generalization of the pattern 

would have resulted in ‚$<dg>+.<dg>+‛ which still matches the negative example. 

If the pattern did not match any of the negative training examples, it 

becomes a minimal pattern candidate but we still have a few more checks to 

make.  First we compare the pattern against the positive training examples 

giving more weight to patterns that match more positive examples.  If a pattern 

matches more positive examples than another pattern that is currently in the list 
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of minimal patterns for the current positive training example, then it replaces 

that pattern in the list and the pattern is generalized further.  For instance, a 

positive training example for a birth date might be ‚…was born on 4/4/1977 in Provo, UT…‛, 

which given the right negative training examples might have as its minimal 

patterns: ‚born on <<date>>‛ and ‚<<date>> in‛.  If another positive training example of 

‚…born on 7/2/1980.  The hospital…‛ was added to the text class, then this rule would cause 

the ‚born on <<date>>‛ to replace ‚<<date>> in‛ as a minimal pattern because it matches 

more positive training examples and so is more likely to create a classifier that 

will match more of the text class. 

If the pattern matches fewer positive training examples than the current 

minimal patterns, then it is not added to the list of minimal patterns, but it is still 

generalized further.  For example, similar to the previous example, suppose the 

positive training examples for birth date are ‚…was born on 4/4/1977 in Provo, UT…‛, ‚…born on 

12/30/2005 on a cold night…‛ and ‚…born on 7/2/1980.  The hospital…‛.  Assuming the appropriate 

negative training examples were added to make it happen, the current pattern 

being evaluated might be ‚born on <dg><dg>/<dg><dg>/<dg><dg><dg><dg>‛ and the current 

minimal pattern might be ‚<<date>> <lt><lt>‛.  The current minimal pattern matches 

two of the positive training examples and the pattern being evaluated only 

matches one of them.  But if the pattern is further generalized, it could result in a 

pattern ‚born on <<date>>‛ which matches all three positive training examples and 

would replace ‚<<date>> <lt><lt>‛ in the list of minimal patterns for the positive 

training example. 

If the pattern matches the same amount of positive training examples as the 

current minimal patterns, then it replaces any of the current minimal patterns 

that it is more general than and is generalized further.  This rule makes sure that 

‚<dg><dg>/<dg><dg>/<dg><dg><dg><dg>‛ replaces ‚12/30/2005‛, ‚<dg>+/<dg>+/<dg>+‛ replaces 
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‚<dg><dg>/<dg><dg>/<dg><dg><dg><dg>‛ and that ‚<<date>>‛ replaces ‚<dg>+/<dg>+/<dg>+‛ as minimal 

patterns.  Since we are trying to derive the general boundary of the version 

space, if there is a more general pattern than what is currently in the minimal 

pattern list, then it will replace the more specific versions and we want to 

continue to generalize it further to see if a more general pattern can be found. 

If it is not more general than any of the current minimal patterns, it will be 

added to the list of minimal patterns and generalized further if none of the 

minimal patterns are more general than it.  However, if any of the minimal 

patterns are more general than it, then it does not get added to the list minimal 

patterns for the current positive training example since a more general pattern 

has already been derived that does not match a negative training example.  

When not many positive training examples have been added to aid in training, 

several alternate minimal patterns often result.  For example, if “List Price” is 

being trained and the positive training example is ‚List Price: $12.99\n‛ and a 

negative training example might be ‚…the item is sold for $11.25 at the auction…‛.  The 

trainer is going to first try to generalize to ‚<<dollaramount>>‛ but that matches the 

negative training example and so the algorithm proceeds from level 0 into level 

1.  At this level both ‚:<ws><<dollaramount>>‛ and ‚<<dollaramount>>\n‛ are minimal patterns 

since both match the positive training example and neither are more general than 

the other.  Now let’s assume that another negative training example of ‚Discount: 

$3.00 off ‛ is added.  This would cause the ‚:<ws><<dollaramount>>‛ pattern to match a 

negative training example and need to be made more specific.  The result would 

be ‚e:<ws><<dollaramount>>‛ as one of the minimal patterns.  The other pattern 

‚<<dollaramount>>\n‛ would remain as a minimal pattern because it would be more 

general than any of the more specific patterns that are tested against  it such as 

‚<ws><<dollaramount>>\n‛, ‚:<ws><<dollaramount>>\n‛ or ‚e:<ws><<dollaramount>>\n‛. 
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When a pattern is found to be more specific than one of the current minimal 

patterns, it will be generalized further if it is composed of all literals.  This due to 

the fact that while testing, there were several cases where generalization stopped 

prematurely if the literal pattern was not generalized further.  For example, 

suppose that “list price” was being trained again and ‚List Price: $12.99\n‛ and ‚List 

Price: $8.59\n‛ are positive training examples and ‚Sales Price: $9.99\n‛ is a negative 

training example.  Within the level 0 generalization, the first positive training 

example would generalize to ‚$<dg><dg>.<dg><dg>‛ because both ‚$<dg>+.<dg>+‛ and 

‚<<dollaramount>>‛ would match a negative training example.  Generalization would 

stop immediately on the next level without this additional rule.  This is because 

‚$<dg><dg>.<dg><dg>‛ is more general than all other combinations of ‚$12.99‛ and its pre-

text and post-text, therefore generalization would stop with the first seeds of 

‚ $12.99‛ and ‚$12.99\n‛, not giving it a chance to match a negative training example 

and continuing on.  With the addition of this rule, generalization would continue 

on each level, because although ‚ $12.99‛ would not be added as a minimal pattern, 

it would be further generalized to ‚ <<date>>‛ which would match a negative 

training example and force the algorithm to continue on to level 2.  Each level 

would match a negative training example until it came across the pattern ‚t Price: 

<<dollaramount>>‛ which does not match a negative training example and actually 

matches both positive training examples and so would remove ‚$<dg><dg>.<dg><dg>‛ 

from the list of minimal patterns because it only matched one positive training 

example.  We suspect that in addition to generalizing further if the pattern is all 

literals, we might always want to generalize further when a pattern is more 

specific than a current minimal pattern but could not test the impact that this 

would have on the algorithm for this thesis. 
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5.5 TIBE Trainer Scenarios 

In this section we will review several different training scenarios and what 

the TIBE training algorithm would do in each one.  The first scenario is training 

dates on a genealogy site where the entries are human entered and so the dates 

come in several different formats.  The second scenario is training a “List Price” 

on a set of pages on Amazon.com related to digital cameras.    In each example, 

we are going to assume that all the necessary positive and negative training 

examples have been already added in order to train the correct classifier.  In this 

section we are more interested in how the algorithm derives the appropriate 

classifiers given the correct positive and negative examples, rather than the 

process by which those classifiers are chosen by the user.  We will also assume 

that other text classes that might be used by the current text class have already 

been trained.  For example ‚<<dollaramount>>‛ will already have been trained when 

training the “List Price” text class.  Although each of these scenarios are based 

upon actual training scenarios on real web pages, we are going to simplify the 

training examples in order to explain how the algorithm works without being 

weighed down by all the gory details. 

5.6 Training Dates on a Genealogy site. 

This example demonstrates the training of dates on a genealogy site where 

people enter genealogical queries.  Most entries on the site are by people looking 

for more information on a relative and often have dates related to birth dates and 

death dates.  Because the entries are entered by humans, the dates are entered in 

a variety of different formats.  This example will show how the TIBE training 

algorithm handles a variety of different positive training examples for the same 

text class.  The dates trained in this example also do not need any pre-text or 

post-text in order to make the patterns specific enough to not match any negative 

training examples. 
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The demonstration of the training of this text class is split into three sections.  

The first section just takes one of the positive training examples and 

demonstrates how it was generalized.  The second section demonstrates what 

happens when a generalized pattern matches more than one positive training 

example.  The final section will demonstrate what happens when the 

generalization of the training example matches a negative training example. 

5.6.1 Generalizing a “Date” Positive Training Example 

In the process of generalizing the “Date” text class, several positive and 

negative training examples have been added to fully train the classifier.  In 

generalizing the “Date” text class, the outer loop of the training algorithm begins 

by attempting to generalize each positive training example in order to get their 

minimal patterns.  Generalization of ‚Posted: <frag>09-Sep-2006<frag>‛ begins by 

generalizing just the selected-text portion of the example: ‚09-Sep-2006‛.  The first 

possible minimal pattern that is added for this positive training example is ‚09-Sep-

2006‛ because there are no other possible minimal patterns that are more general 

than it and it does not match any negative training examples.   

After ‚09-Sep-2006‛ is added to the list of possible minimal patterns, it is 

generalized by applying the letter, digit, whitespace and multiple character 

generalizations to it.  The multiple character generalization is applied first and 

results in a new more general pattern of ‚09-Sep-20+6‛ which is placed on the “To-

Generalize” stack of patterns to be tested for inclusion in the list of minimal 

patterns.  The whitespace generalization is applied next, but because there is not 

any whitespace in this pattern, the generalization results in the same pattern.  

Next the digit generalization is applied resulting in a more general pattern of 

‚<dg><dg>-Sep-<dg><dg><dg><dg>‛ which is placed on the “To-Generalize” stack.  The last 
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generalization performed on the initial pattern is the letter generalization 

resulting in ‚09-<lt><lt><lt>-2006‛ which is also placed on the “To-Generalize” stack. 

The “To-Generalize” stack now has 3 patterns on it that need to be 

generalized further and the current possible minimal pattern is ‚09-Sep-2006‛.  Since 

generalization on the previous pattern is complete, generalization proceeds on 

the next pattern that is popped from the top of the “To-Generalize” stack which 

results in the pattern ‚09-<lt><lt><lt>-2006‛.  This pattern is first checked to see if it is a 

possible minimal pattern.  During this check it is checked against the negative 

training examples and does not match any of them.  Then it is checked against 

the positive training examples to give it more weight if it matches more positive 

training examples.  In this case it only matches one positive training example (the 

positive training example that it was generalized from).  Next it is compared 

against each of the current possible minimal patterns to see if it is more specific 

or more general than any of them.  It is more general that the current possible 

minimal training example of ‚09-Sep-2006‛ and so replaces it in the list of minimal 

training examples. 

Since ‚09-<lt><lt><lt>-2006‛ was added as a possible minimal training example, it 

is generalized further.  Applying the standard generalizations to this pattern 

result in two additional patterns being added to the “To-Generalize” stack: ‚09-

<lt>+-20+6‛ and ‚<dg><dg>-<lt><lt><lt>-<dg><dg><dg><dg>‛. 

Generalization continues with ‚<dg><dg>-<lt><lt><lt>-<dg><dg><dg><dg>‛ being popped 

from the “To-Generalize” stack and checked as a possible minimal pattern.  It 

does not match any negative training examples and matches only one positive 

training example and is more general that the only other pattern in the possible 

minimal patterns list and so replaces ‚09-<lt><lt><lt>-2006‛ as a possible minimal 

pattern.  When this new pattern is generalized only one more pattern is added to 
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the “To-Generalize” stack: ‚<dg>+-<lt>+-<dg>+‛.  When ‚<dg>+-<lt>+-<dg>+‛ is popped from 

the “To-Generalize” stack and checked as a possible minimal pattern, it replaces 

‚<dg><dg>-<lt><lt><lt>-<dg><dg><dg><dg>‛ as a possible minimal pattern because it is more 

general.   

Generalizing ‚<dg>+-<lt>+-<dg>+‛ results in no more general patterns to add to the 

“To-Generalize” stack and so the next pattern popped from the stack is ‚09-<lt>+-

20+6‛.  When this pattern is checked as a possible minimal pattern, it is found to be 

more specific than the current possible minimal pattern ‚<dg>+-<lt>+-<dg>+‛ and so is 

not added or generalized further.  Each of the remaining items on the “To-

Generalize” stack (‚<dg><dg>-Sep-<dg><dg><dg><dg>‛ and ‚09-Sep-20+6‛) are also found to be 

more specific than the current possible minimal pattern and so are not added or 

generalized further either.  Ultimately, the “To-Generalize” stack becomes empty 

indicating that all generalizations have been performed for this level of 

generalization.  Since no negative training examples were matched during the 

generalization of this level, generalization does not need to continue to level 1 

and so the current possible minimal patterns can be returned as the minimal 

patterns for the current positive training example.  In this case, ‚<dg>+-<lt>+-<dg>+‛ is 

what is returned as the minimal pattern for the positive training example 

‚Posted: <frag>09-Sep-2006<frag>‛.   

Within the outer loop of the TIBE trainer, before the next positive training 

example is generalized, the minimal pattern ‚<dg>+-<lt>+-<dg>+‛ is added to the list of 

minimal patterns for the text class and then compared against the positive 

training examples that have not been generalized yet.  It matches the positive 

training example that it was derived from and so that positive training example 

is removed from the list of training examples that still need to be generalized and 

then the next item in that list is put through generalization. 
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5.6.2 Matching more than one positive training example 

In the list of positive training examples for the “Date” text class, sometimes 

there would be two dates with similar structure.  For example, suppose 

‚s born on <frag>March 5, 1972<frag> at Cott‛ was trained first in the list of positive training 

examples.  Its minimal pattern when generalized would be ‚<lt>+<ws><dg>,<ws><dg>+‛.  

Subsequently, the positive training example ‚n on <frag>November 28, 1968<frag>.  It‛ is 

generalized.  This positive training example is similar in structure to the previous 

one, but has a two digit day instead of just a single digit.  This positive training 

example eventually generalizes to the minimal pattern ‚<lt>+<ws><dg>+,<ws><dg>+‛ which 

matches these two positive training examples.  When this minimal pattern is 

returned to the outer loop, it still only removes its positive training example from 

the list of patterns to generalize since the other positive training example that it 

matches (‚s born on <frag>March 5, 1972<frag> at Cott‛) has already been generalized and 

removed previously.  However, when its minimal pattern is compared against 

the current list of minimal patterns for the current text class, it is found to be 

more general than ‚<lt>+<ws><dg>,<ws><dg>+‛ and so replaces it in the list. 

5.6.3 Matching a Negative Training Example 

Some of the positive training examples for “Date” result in more than one 

minimal pattern.  Suppose the positive training example is ‚n <frag>23 April 2006<frag>. 

S‛ and the negative training examples are ‚n <frag>1972 or 1973<frag>. ‛ and ‚19<frag>55 or 

1956<frag>. ‛.  After applying several generalizations to this positive training 

example, eventually the pattern ‚<dg><dg><ws><lt><lt><lt><lt><lt><ws><dg><dg><dg><dg>‛ is 

encountered.  The only generalization that can still be applied to this pattern is 

the “string” generalization which results in the pattern ‚<dg>+<ws><lt>+<ws><dg>+‛ which 

matches the negative training example ‚n <frag>1972 or 1973<frag>. ‛.  This prevents 

this pattern from being a minimal pattern so the prior pattern remains in the list 

of minimal patterns. 
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Within the pattern space of this positive training example, the 

‚23<ws><lt>+<ws>20+6‛ pattern occurs and is neither more general nor more specific 

than the current minimal pattern of ‚<dg><dg><ws><lt><lt><lt><lt><lt><ws><dg><dg><dg><dg>‛.  If 

this pattern is generalized further by applying the “digit” generalization, the 

pattern ‚<dg><dg><ws><lt>+<ws><dg><dg>+<dg>‛ results which matches the negative training 

example ‚19<frag>55 or 1956<frag>. ‛.  Since a negative training example is matched, this 

pattern cannot be considered minimal and so the previous pattern is added to 

the list of minimal patterns for this positive training example resulting in two 

minimal patterns: ‚<dg><dg><ws><lt><lt><lt><lt><lt><ws><dg><dg><dg><dg>‛ and ‚23<ws><lt>+<ws>20+6‛.  

The list of resulting minimal patterns that were trained is listed in Table 5-6. 

Minimal Patterns for the “Date” Text 

Class 
<dg>+-<lt>+-<dg>+ 

<lt>+<ws><dg>+,<ws><dg>+ 

<dg><dg><ws><lt><lt><lt><lt><lt><ws><dg><dg><dg><dg> 

23<ws><lt>+<ws>20+6 

Table 5-6: The minimal patterns for the “Date” text 

class. 

5.7 Training List Price on Camera Pages 

Training the list price on an Amazon.com camera page demonstrates a few 

more of the features of the TIBE training algorithm.  In the previous example 

with the dates, we were training an element that naturally generalizes to 

something that is general enough to match text that is similar to it, but specific 

enough to not match text that is not part of the text class of date.  Because of this, 

the TIBE algorithm did not need to include any pre-text or post-text in its 

minimal patterns.  This is more likely to happen when there are a variety of 

numbers, letters and symbols within the selected-text of the text-class.  In this 

example we still have a selected-text that naturally generalizes (“Dollar 

Amount”), but we are trying to train a more specific variation called “List Price”.  
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This means that the classifier is going to need pre-text and/or post-text in order to 

specify what “Dollar Amounts” are of the “List Price” class. 

The HTML within web pages adds additional markup that often helps in the 

classifying of text classes.  Although HTML is useful in this respect, it is not 

necessary in order to demonstrate the algorithm, and so the positive and 

negative training examples that we list for our demonstration will not include 

any HTML.  The set of positive and negative training examples for this 

demonstration are listed in Table 5-7.  The negative training examples represent 

several of the cases where there was a dollar amount that was not a list price. 

Positive Training Examples Negative Training Examples 
1 List Price: <frag>$199.99<frag> \n\n 1 Sale Price: <frag>$25.99<frag> \n\n 

2 List Price: <frag>$37.25<frag> \n\n 2 on Price: <frag>$83.99<frag>\n          

  3 s $175 to <frag>$199.99<frag>.\n     

Table 5-7: The Positive and Negative Training Examples for the “List Price” text class. 

The outer loop of the algorithm starts generalizing the first positive training 

example.  The level 0 generalization of ‚List Price: <frag>$199.99<frag> \n\n‛ starts with 

just the selected-text ‚$199.99‛ which  immediately matches negative training 

example #3 and so generalization at that level halts and the algorithm continues 

on to the level 1 generalization. 

During the level 1 generalization the pattern ‚ <frag>$199.99<frag>‛ immediately 

matches negative training example #3 and so is not generalized any further but  

‚<frag>$199.99<frag> ‛ is added as a possible minimal pattern.  It is soon replaced by 

the more general ‚<frag>$199.99<frag><ws>‛.  This can be further generalized to 

‚<frag>$<dg><dg><dg>.<dg><dg><frag><ws>‛ without matching a negative training example, but 

when this is generalized to ‚<frag>$<dg>+.<dg>+<frag><ws>‛ or ‚<frag><<Dollar Amount>><frag><ws>‛, 

the patterns match negative training examples #1 and #2. 
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Since negative training examples were matched during the level 1 

generalization, the algorithm continues on through the level 2 generalization.  At 

this point, ‚<frag>$<dg><dg><dg>.<dg><dg><frag><ws>‛ is the only pattern currently in the list of 

minimal patterns for this text class.  The next pattern to be added to the list of 

minimal patterns is ‚:<ws><frag>$<dg><dg><dg>.<dg><dg><frag>‛.  Further generalization of this 

pattern results in ‚:<ws><frag>$<dg>+.<dg>+<frag>‛ and ‚:<ws><frag><<DollarAmount>><frag>‛ which 

both match negative training examples #1 and #2.   

Level 3 Seeds Current Minimal Patterns 
1 e: <frag>$199.99<frag> 1 <frag>$<dg><dg><dg>.<dg><dg><frag><ws> 

2 : <frag>$199.99<frag>  2 :<ws><frag>$<dg><dg><dg>.<dg><dg><frag> 

3  <frag>$199.99<frag> \n   

4 <frag>$199.99<frag> \n\n   

Table 5-8: Current Minimal Patterns and Seeds for Level 3 generalization. 

For the level 3 generalization, the seeds and current minimal patterns are 

listed in Table 5-8.  Each of the Level 3 seeds is more specific than the current 

minimal patterns and so none of the seeds are generalized further and since no 

negative training examples are matched, the generalization halts for the current 

positive training example and its minimal patterns are added to the list of 

minimal patterns for the text class.  The current minimal patterns only match the 

current positive training example and so the second positive training example 

remains in the list of examples to be further generalized. 

Generalization in the outer loop continues by generalizing the second 

positive training example.  The initial seed for the level 0 generalization 

‚<frag>$37.25<frag>‛ does not match any negative training examples, but when it is 

generalized to ‚<frag>$<dg><dg>.<dg><dg><frag>‛ or ‚<frag><<DollarAmount>><frag>‛, both match 

negative training examples and so generalization continues to level 1. 
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The level 1 generalization starts with ‚<frag>$37.25<frag>‛ as the current minimal 

pattern and ‚ <frag>$37.25<frag>‛ and ‚<frag>$37.25<frag> ‛ as seeds.  The current minimal 

pattern is more general than either of these seeds, but because it consists entirely 

of literal pattern categories and the seeds do not match any negative training 

examples, the seeds will be further generalized.  With these two seeds, each of 

their possible generalizations either match negative training examples or are 

more specific than the current minimal pattern: ‚<ws><frag>$37.25<frag>‛, 

‚ <frag>$<dg><dg>.<dg><dg><frag>‛, ‚ <frag><<DollarAmount>><frag>‛, ‚<frag>$37.25<frag><ws>‛, 

‚<frag>$<dg><dg>.<dg><dg><frag> ‛ and ‚<frag><<DollarAmount>><frag> ‛.   

In each of the next few levels, the current minimal pattern remains 

‚<frag>$37.25<frag>‛ because it continues to be more general than the initial seeds and 

further generalization of these seeds results in negative training example 

matches.  Finally, in the level 9 generalization, the pattern ‚t Price: <frag>$37.25<frag>‛ 

is generalized to ‚t Price: <frag>$<dg><dg>.<dg><dg><frag>‛, then  ‚t Price: <frag>$<dg>+.<dg>+<frag>‛, 

then ‚t Price: <frag><<DollarAmount>><frag>‛ and finally to 

‚t<ws>Price:<ws><frag><<DollarAmount>><frag>‛.  None of these patterns match negative 

training examples and are therefore allowed to be further generalized.  They also 

match more positive training examples than ‚<frag>$37.25<frag>‛ and so replace it in 

the list of minimal patterns.  The final pattern becomes a minimal pattern 

because if it is further generalized to 

‚<lt><ws><lt><lt><lt><lt><lt>:<ws><frag><<DollarAmount>><frag>‛ it matches negative training 

examples #1 and #2.  

Generalization continues to level 10 because negative training examples were 

matched in level 9, but because of our current minimal patterns, each of the seeds 

for this level are found to be more specific and are not generalized further and 
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therefore no negative training examples are matched and generalization stops for 

this positive training example. 

The minimal pattern is returned to the outer loop which matches the positive 

training example and removes it from the list of positive training examples to 

generalize.  The minimal pattern ‚t<ws>Price:<ws><frag><<DollarAmount>><frag>‛ is then added 

to the list of minimal patterns for the text class because it is found to be neither 

more specific nor more general than either of the existing minimal patterns: 

‚<frag>$<dg><dg><dg>.<dg><dg><frag><ws>‛ and ‚:<ws><frag>$<dg><dg><dg>.<dg><dg><frag>‛. 

Minimal Patterns for the “List Price” 

Text Class 
<frag>$<dg><dg><dg>.<dg><dg><frag><ws> 

:<ws><frag>$<dg><dg><dg>.<dg><dg><frag> 

t<ws>Price:<ws><frag><<DollarAmount>><frag> 

Table 5-9: The minimal patterns for the “List Price” text 

class. 
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CHAPTER 6 – THE TIBE CLASSIFIER 

In order for TIBE to be able to highlight or extract text from web pages, it 

needs to generate a classifier that can match the appropriate text.  In order to do 

this, TIBE generates regular expressions that act as the classifier for the current 

text class.  To reduce the complexity of the training algorithm, the regular 

expressions generated by TIBE only use a small subset of the patterns and 

expressions possible in the regular expression grammar.  When a classifier for a 

text class is generated, more than one regular expression may result; therefore a 

consumer of the matches must combine the matches from each individual 

regular expression and eliminate the duplicate matches between them. 

6.1 Classifying Text 

Given positive and negative training examples, a simple classifier could be 

generated that would match all of the positive examples and none of the negative 

examples.  This simple classifier would be just the positive training examples 

that were selected by the user.  For example if the user was training “Dollar 

Amounts” and had added “$9.99” and “$12.37” as positive examples, the 

classifier could just match all instances of “$9.99” and “$12.37” within the 

document.  This would not be very interesting and would not be very useful to 

the user.  They would need to select every instance of the text class in all 

documents that they wanted to have it highlighted in. 

So instead of matching the literal text of the positive training examples we 

would like a classifier that could match additional instances of the text class 

without those instances having to be specifically added as positive training 

examples.  Regular expressions do really well at matching text for a given pattern 

and so can be used to do matching for the classifier.  The TIBE classifier is 
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essentially creating a regular expression to do the matching rather than the 

harder way of creating the regular expression by hand.   

Regular expressions are essentially a programming language for matching 

text and support many operations and matching patterns.  The TIBE classifier 

only generates regular expressions that have a small subset of the operations and 

patterns in the regular expression language.  This simplifies the matching process 

and the generation of a regular expression classifier from the TIBE training 

algorithm.  Table 6-1 lists the regular expression patterns that could be included 

in a regular expression generated by a TIBE classifier.   

Character Class Regular Expression Pattern 

Literal Character 
(ie ‚a‛, ‚b‛, ‚c‛, ‚1‛, ‚2‛, ‚3‛) 

Literal Character 
(ie ‚a‛, ‚b‛, ‚c‛, ‚1‛, ‚2‛, ‚3‛) 

Any Letter [A-Za-z] 

Any Digit \d 

Any Whitespace \s 

Multiple [A-Za-z]+, \d+, \s+ 

Zero-Width Positive Look-Behind 
Assertion 

(?<= ) 

Zero-Width Positive Look-Ahead 
Assertion 

(?= ) 

Table 6-1:  The regular expression matching patterns that the TIBE 

classifier uses in its generated regular expressions. 

The Zero-Width Positive Look-Behind Assertion and the Zero-Width 

Positive Look-Ahead Assertion aid in matching the pre-text and post-text 

respectively of a classifier.  The pre-text or post-text regular expressions are 

placed in one of those assertions to add additional contextual constraints to the 

text to be matched without being included in the match.  This is an important 

part to the TIBE classifier because often the pre-text and/or the post-text parts of 
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the classifier help differentiate one text class from another.  For example birth 

dates and death dates both have dates within them, but birth dates tend to be in 

the form “Birth: {date}” or “Birth Date: {date}” where death dates look like 

“Death: {date}” or “Death Date: {date}”.  The many prices on a page on 

Amazon.com is another example where the pre-text and post-text are important 

to the TIBE classifier.  A list price might look like “<span 

class=’listprice’>$9.99</span>”, a sales price like “<span 

class=’salesprice’>$9.99</span> and a shipping amount like “<span 

class=’shipping’>$9.99</span>”.  The only way to not match a salesprice and a 

shipping amount when searching for a list price is to include some of the pre-text 

in the regular expression (ie “(?<=(‘listprice’>))($\d\.\d\d)” ). 

6.2 Classifying/Recognizing Engine 

More than one regular expression can be generated by the TIBE trainer for 

the classifier from a given set of positive and negative examples.  Because of this, 

the consumer of the regular expressions generated by the TIBE classifier must 

combine the matches of each regular expression and eliminate duplicate match 

locations.  For example, if the TIBE trainer produced a classifier that included 

both ‚Death:<dg>+/<dg>+/<dg>+‛ and ‚<dg>+/<dg>+/<dg>+<ws>‛ as minimal patterns, the resulting 

regular expressions would both match ‚Death:12/14/2005 A.D.‛.  The duplicate match 

would need to be filtered out so that each match in the resulting list of matches 

was unique. 
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CHAPTER 7 – EVALUATION 

7.1 Introduction 

In order to evaluate the TIBE training algorithm, we developed a program 

that would allow us to test how well the algorithm converged on a classifier that 

would match the text class being trained.  The training algorithm was tested on a 

variety of different web pages using text classes associated with each type of 

page.  The first three pages test the algorithm on pages with computer-generated 

content: Amazon.com Book Pages, Amazon.com Camera Pages and 

Amazon.com Book search list pages.  The last two pages test the algorithm on 

pages with human-generated content: Obituaries and Utah Genealogical Search. 

7.2 TIBE Analyzer 

In order to evaluate the training algorithm, it needs to be run on a golden 

standard of marked-up text.  All of the text for each of the text classes being 

trained is annotated so that the analyzer can select one of them as a positive 

training example and can verify whether the classifier has matched all examples 

of the text class and not matched any text that is not part of the text class.   

Through our analyzer we are able to load the raw HTML of web pages and 

annotate it for the text classes related to the page.  Then from the same interface, 

a text class could be analyzed against a specific page or a set of pages of the same 

type.  The analyzer would start by adding one of the examples of the text class as 

a positive training example which would cause the algorithm to create a 

classifier.  The classifier would then be used to find all matches within the text 

and the number of positive and negative matches would be recorded.  If there 

were any positive examples that had not been matched by the classifier, then one 

of the missing examples would be added in the next round as another positive 

training example.  If there were any negative matches amongst the classifier’s 
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matches, one of them would be added as a negative training example for the next 

round. 

Once the positive and negative training examples had been added, the 

analyzer proceeds to retrain its classifier and re-classify the text.  The analyzer 

continues this cycle until all positive text class examples have been matched and 

the classifier does not match any non-text-class examples.  During this process, 

several metrics are measured along the way in order to be able to evaluate the 

performance of the algorithm. 

7.3 Computer Generated Webpage Content 

The first sets of web pages that we analyze are web pages that are primarily 

computer-generated content.  There is some human generated content on these 

pages, but we are not training any text that would be contained within them.  

Computer generated content is different from human-generated content in that it 

is usually much more uniform and often has very identifiable pre-text and post-

text.  This especially occurs on web pages as content is often times put into tables 

or has markup surrounding it that indicates how it should be displayed. 

The computer generated content that we are analyzing has come from 3 

different locations on the Amazon.com website.  The first type of web page is 

Amazon Book pages.  These are the pages that a user would be directed to in 

order to find out more detailed information about a book.  The next type of web 

page is Amazon Camera pages.  These are similar to the Amazon Book pages in 

that they show detailed information about specific cameras that Amazon has for 

sale.  They are different from the Amazon Book pages because they have some 

different types of information that can be trained.  The third type of web page 

being analyzed is the Amazon Book Search pages.  These are the search list page 

that one might encounter on Amazon.com when searching for different types of 
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books.  Instead of giving detail around specific books, each page has a summary 

of several books on the same page. 

There were several text classes that we trained on the computer generated 

web pages.  Table 7-1 lists the text classes and short descriptions for each. 

Text Class Related To Description 

Dollar Amount  A decimal amount preceded by a $ symbol. 

List Price Dollar 

Amount 

A “Dollar Amount” that indicates the regular 

price of products on the Amazon.com web pages.   

Sales Price Dollar 

Amount 

A “Dollar Amount” that indicates the on-sale 

price of products on the Amazon.com web pages. 

Savings Dollar 

Amount 

A “Dollar Amount” that indicates amount saved 

off of the list price of the product. 

Buy New Dollar 

Amount 

A “Dollar Amount” indicating how much the 

product costs new. 

Used & New Dollar 

Amount 

A “Dollar Amount” indicating how much the 

product is selling for in the third-party market. 

Date  A date of the form “January 31, 2007”. 

First Available 

Date 

Date 

 

The “Date” when the product was first available 

on Amazon.com. 

ISBN-10  A 10 digit ISBN of the form “156222105X” or 

“0439139597”. 

ISBN-13  A 13 digit ISBN of the form “978-0439139595”. 

Weight  How much the product weighs. 

Sales Rank  Indicates the popularity of a product in its same 

category within Amazon.com. 

ASIN  The Amazon Standard Identification Number and 

is 10 characters that can be numbers or letters. 

Model Number  The model number of a product. 

Shipping Weight  The weight of the product when being shipped. 

Product 

Dimensions 

 The height, width and length of the product given 

in a Length x Width x Height notation. 

Book Binding  A string indicating what the book binding is (ie 

Paperback, Hardbound, etc) 
Table 7-1: Text classes for computer generated content. 
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7.3.1 Summary of Results 

The TIBE training algorithm did well against the computer generated 

content.  The time to generate the classifier once all the positive and negative 

training examples had been chosen averaged 1.89 seconds with 64% of the 

trainings taking less than 1.5s.  There is still much that could be done to optimize 

the inner workings of the training algorithm but these numbers indicate that the 

algorithm itself reduces much of the possible work.   

 

 

Figure 7-1: Graphical Summary of the training results for computer-generated content. 

Figure 7-1 shows the results of the training using four metrics.  The “Final 

Classifier Time” measures the time to generate the classifier once all of the 

necessary positive and negative training examples had been selected.  The 
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“Classifier Rounds” indicates the number of rounds of choosing positive and/or 

negative training examples it took to fully train the classifier.  The “Positive 

Examples” and “Negative Examples” show how many positive and negative 

training examples were necessary in order to fully train the classifier. 

The number of rounds that it took to train each text class averaged around 8 

rounds with 64% of the trainings requiring 6 or less rounds to fully train the 

classifier.  An end-user is going to want to be able to classify a text class in as few 

rounds as possible.  64% requiring 6 or less rounds is not as high as we would 

have liked, but it is still a majority. 

On average, 2.36 positive training examples and 7.4 negative training 

examples were needed to train each text class.  88% of the text classes required 4 

or fewer positive training examples and 60% of them required 4 or fewer 

negative training examples.  For many simple text classes, only one positive 

training example would be needed if it was picked to be fairly representative of 

its text class.  Because the TIBE analyzer just picked a random positive text 

example, sometimes it did not choose one that represented its text class well.  For 

example it might pick a dollar amount of ‚$8.37‛ which would generalize to 

‚$<dg>.<dg>+‛, but a better positive training example would be ‚$37.56‛ which would 

generalize to ‚$<dg>+.<dg>+‛.  More negative training examples were needed for these 

text classes because they were necessary in order to make the minimal patterns 

for the text class more specific so that they would only match their patterns. 

Several of the text classes took more than ten rounds to train.  These text 

classes include the ISBN-10, Sales Rank, Book Binding, ASIN and Model 

Number.  One can see from the graphs that these text classes also required 

several negative training examples to train.  Most of these text classes have fairly 

generic selected text.  The selected text is either all numbers or all letters.  When 
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the positive examples were generalized, they ended up matching many 

selections of text that were not part of the current text class and therefore 

required more negative examples in order to make the pre-text and/or post-text 

more specific. 

7.4 Human-Generated Webpage Content 

Compared to computer-generated web content, human-generated web 

content is much harder to train because of the variability of how humans enter 

information on a web page.  For example, if a computer is outputting dates on a 

web page, it has pre-defined formats and often times will use a single format for 

all dates on a set of web pages.  Humans are much less predictable.  One human 

may type his dates in the format “January 2, 2004” while another human may use 

the format “1/2/2004”.  What makes it even more complicated is that some dates 

may be formatted like “January 2,2004”, “Jan. 2, 2004” or “Jan.2, 2004”.  We 

would want to train each of these as a date, but each would probably need to be 

a separate positive training example because it differs slightly from the other 

dates.  In our evaluation, we train fewer text classes per set of web pages because 

training the text classes is complex enough to offer a good evaluation of the TIBE 

trainer. 

The good news for the TIBE training algorithm is that it was able to train a 

classifier for all of the text classes that we tested against in the two types of 

human-generated web pages that we evaluated (although the minimal patterns 

were not always optimal).  The first set of web pages are a collection of 8 

obituaries and the second set of web pages are a collection of 8 pages of entries 

for a Utah genealogical query.  Table 7-2 lists the text classes trained along with 

descriptions of each. 
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Text Class Related To Description 

Date  A date in several formats (MM/DD/YYYY, DD MMM 

YYYY, MMM. DD, YYYY, etc) 

Birth Date Date A “Date” that represents a birth date. 

Death Date Date A “Date” that represents a death date. 

Date Range  A range of years in the form 1977 ~ 2007. 

Age  A number indicating the number of years a person 

was alive. 
Table 7-2: Text classes for human generated content. 

7.4.1 Summary of Results 

Figure 7-2 shows the results of the training using the same four metrics 

measured with the computer-generated content. 

 

Figure 7-2: Graphical Summary of the training results for human-generated content. 

Once the text classes were fully trained, 71% of them trained in less than 1 

second.  Despite this though, the average training time was 15.35 seconds 

because the Age text class took 22 seconds to train and Birth Date text class took 

83 seconds to train on the Utah Genealogical Query pages.  For Age, this is 

probably because there are not many identifying features for numbers that are 

ages so therefore it required several positive training examples and many more 

negative training examples.  For Birth Date, most of the time was spent 
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generalizing two of the positive training examples.  One of the positive training 

examples had to test 7,010 patterns and the other had to test 12,113 patterns.  This 

is probably due to the birth date text class needing to use much of its pre-text and 

post-text in order to properly classify it. 

The number of rounds to fully classify the text classes averaged 12 rounds 

with 57% of the text classes needing 8 rounds or less to train.  The average is 

again skewed by two of the text classes that required more than 20 training 

examples to train and so required more rounds to train.  Considering that the 

human generated content varies in format much more than the computer 

generated content, these numbers show fairly good performance on human-

generated content. 

In order to train the human generated text classes, an average of 7.86 positive 

training examples were needed and an average of 7.28 negative training 

examples were needed.  71% of the text classes needed 7 or fewer positive and 

negative training examples in order to be fully trained.  The high positive 

training example count can be attributed to the variability of human-generated 

content (especially with dates which is one of the main text classes trained).  The 

number of negative training examples required to train is actually quite low 

compared to the positive training examples.  This again could be attributed to the 

variability of the human generated content.  Because the human generated 

content varies so much, items within one text class are not likely to be similar 

enough to other text outside that text class to cause the classifier to misclassify it. 

7.5 Conclusions 

Although there certainly is room for improvement, the TIBE training 

algorithm has done fairly well in most cases in training the text classes tested.  In 

the majority of text classes, it classifies in less than 1.5 seconds, fully classifies in 8 
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rounds or less, and needs fewer than 8 positive and negative training examples.  

It performed very well with the computer generated content and performed 

decently with the human generated content.  In all cases, it was able to 

eventually derive a classifier that would fully classify the text class. 
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CHAPTER 8 – SUMMARY 

8.1 What was the problem? 

There is a lot of information that can be harvested from web sites on the 

internet, but manually extracting this information is tedious, slow and error 

prone.  Users want to be able to automate the extraction of this information and 

there are tools like regular expressions and conceptual-modeling that help 

automate this extraction of information.  The problem with these methods of 

extracting information is that regular expressions are hard to write and have a 

high learning-curve and conceptual-modeling ultimately uses regular 

expressions in order to extract information from web pages.  This means that 

either the end-user must learn regular expressions or use a program with a set of 

regular expressions pre-programmed.  The first option is not realistic for most 

computer users and the second option is very limiting because web pages are 

very diverse in their ways of representing information.  End users need an easy 

way to extract information from web pages that would not require them to learn 

regular expressions or be limited by a pre-programmed set of regular 

expressions. 

8.2 The TIBE Solution 

TIBE solves this problem by making it possible for an end-user to train the 

computer to recognize the text that he is trying to extract.  This is accomplished 

through an easy-to-use user-interface that allows the user to quickly train a 

classifier by selecting positive and negative training examples and giving the 

user instant feedback on the quality of the classifier by highlighting the 

recognized text after each training example is added.  The TIBE training 

algorithm is built to be able to take the positive and negative training examples 

provided by the end-user and generate a classifier that will be able to extract the 
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positive training examples as well as other text that would also fit into that text 

class. 

8.3 What remains to be done? 

Although the TIBE training algorithm was able to ultimately derive a set of 

minimal patterns that would classify all examples of the text class in each of our 

evaluations, there are several things that we feel could be tried to optimize the 

number of minimal patterns generated, the time to generate them and the 

number of rounds to fully train a classifier.  These are all things that as we were 

evaluating the algorithm, we noticed might help the algorithm to be more 

efficient, but did not have time to implement and evaluate. 

During each round of the evaluation, the generalization of the positive 

training examples would essentially start over.  This was because another 

positive or negative training example was added and might affect the outcome of 

the generalization of the previous positive training examples.  One optimization 

here might be to save the information on the previous run and instead of re-

generalizing the positive training examples use some of the previously known 

information to make the previous minimal patterns more specific so that they 

don’t match the negative training examples any more.   

For the text classes that we were training, the first round of generalization 

generalizes to the most general form of the selected-text.  For a date this might be 

‚<dg>+/<dg>+/<dg>+‛ but for a year it would be ‚<dg>+‛ and for any one word text class, it 

would be ‚<lt>+‛.  The last two minimal patterns are not likely to be the classifiers 

that one is trying to train and the first would match any number on the web page 

and the second one would match every word on the web page.  This creates a lot 

of negative matches which would overwhelm the web page as every word 

would be highlighted.  One proposal to fix this would be to have some 
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permanent negative training examples like ‚<dg>+‛ and ‚<lt>+‛ that would prevent 

these patterns from being considered for the minimal patterns. 

As can be seen in several of the evaluations that we did in chapter 7, often 

times several minimal patterns are generated from one positive training example.  

Some of these minimal patterns are obviously more optimal and more likely to 

match other examples of the text class.  One of the optimizations that could be 

evaluated would be to figure out metrics to rate how general a pattern is and to 

drop some of the patterns that are the most specific of the bunch.  Several things 

would probably need to be looked at here.  What is the “specific” threshold at 

which a pattern should be dropped and how does that affect the evaluation of 

the text class?  Does it increase the number of rounds to fully train the classifier 

because we are not matching all of the annotated examples of the text class? 

In the TIBE training algorithm, we split training examples into a pre-text, 

selected-text and post-text and generalized each of these parts of the training 

examples separately.  One of the problems that this presented to the training is 

when the pre-text or post-text of a training example is the same amongst the 

positive training examples, but the selected-text was slightly different.  This 

could be like an ISBN number that has different combinations of letters and 

numbers, or it might be like the book binding where some of the selected-text 

had three words but others only had one word.  Instead of generalizing the pre-

text, post-text and selected-text, another possibility would be to generalize the 

starting position and the ending position of the training examples.  This should 

make it so that if the selected-text is similar across positive training examples, it 

would be included in the minimal patterns and not included if it is not similar 

across training examples. 
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One thing that we noticed during the evaluations was that our logic for 

giving more weight to patterns that matched more positive training examples 

often times did not get used and therefore the minimal patterns were frequently 

not as optimal or general as they should have been.  This was because once a 

positive training example had been added, the classifier usually matched all 

other similar text fragments and so did not need to add another positive training 

example that would also be matched by the minimal patterns to give them more 

weight.  In order to help this part of the algorithm, we might try adding text 

fragments that were matched by the classifier to a list of pseudo-positive training 

examples.  Patterns that match more items in this list would get more weight 

than patterns that match fewer items while training. 

As was mentioned a few times in the evaluation, there were times when it 

appeared that we might be able to get a better set of minimal patterns if we 

allowed the algorithm to further generalize patterns that are found to be more 

specific than existing minimal patterns.  For example, ‚on<ws><frag>12/31/2006<frag>‛ is 

more specific than ‚<ws><frag>12/31/2006<frag>‛, but if we let it be generalized further, 

‚on<ws><frag><<date>><frag>‛ might match more positive training examples and is no 

longer more specific than ‚<ws><frag>12/31/2006<frag>‛.  The only problem with 

generalizing further is that it might mean that we will be testing many more 

patterns as minimal patterns and there are many cases where generalizing 

further will not result in a better minimal pattern and so we will want to figure 

out if there are ways to determine whether we should generalize further or not.  

This might depend on how general or specific the current minimal patterns are. 

The last thing that could be done to optimize the training algorithm might be 

to store the generalization tree for generalizing the selected-text since currently it 

is re-generalized on each level several times as it is tested with different 
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combinations of the pre-text and post-text.  By saving the generalization tree, we 

would be able to save some of the time spent applying the different 

generalization rules against each of the patterns. 

There is still much that could be done to help optimize the TIBE training 

algorithm, but this thesis has shown that it can be done and with more research 

and development, it could be made into a feature that could be included in web 

browsers to aid regular users in their text extraction needs. 
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