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ABSTRACT

SKUERY: MANIPULATION OF S-EXPRESSIONS USING XQUERY

TECHNIQUES.

Kevin Tew

Department of Computer Science

Master of Science

Data query operations inside programming languages presently perform their func-

tions through the use of domain-specific, declarative expressions and by way of

course-grain, API library calls. These methods of operation are practiced by rela-

tional databases as well as semistructured XML data stores. Layers of translation,

which are necessary to transform data and instructions from the domain of pro-

gramming languages to data query systems, negtatively effect the performance of

data query operations. Skuery resolves this impedance by adopting XML as a na-

tive data type with a native representation (SXML). Likewise, query operations

are defined in a general purpose programming language (Scheme in this case) not

in an external data query environment. Skuery increases programmer productiv-



ity by abstracting layers of translation and unifying computational and data query

operations under the auspices of a general purpose programming language.
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1 Introduction

As web systems continue to scale larger and larger, principles of design, construction,

and maintenance are re-implemented and re-knitted together each time a new web

system is created. Today’s large webs systems are only possible because of the

established theory and practice in the areas of data storage and computation. This

has been sufficient up to the present, however moving up the stack, the complexity

of integration between data storage, communication, and computation needs to be

addressed. Traditionally, large web systems have segmented computation and data

query into two separate architectural tiers. These two tiers are usually implemented

in different programming languages on separate platforms and following different

paradigms of thought. As a result, data query integration in programming languages

is painful and requires multiple layers of translation. Integration of data query and

computation research is part of the process of moving the principles of abstraction

and reuse up the stack of complexity exhibited by today’s web systems.

The separate worlds of computation and data storage have many differences.

Computational languages adopt the data types of the underlying architecture. This

usually consists of integer data type, floating, and a byte addressable string data

type, etc. Databases, while usually supporting these common computational data

types, offer a plethora of additional types such as fixed decimal, fixed size strings,

variable sized strings bounded by a max size, and non-indexable blobs of character

or binary data. Layers of translation decide how to map from computational types

to data storage types and vice versa. Unlike conventional programming languages,

databases permit primitive data types such as integers and floats to be nullable or

not defined. Nullability adds an extra dimension to data storage types that must

be further accounted for and accommodated by computational processes.
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Serialization routines and data marshaling are another example of a low-level

layer of translation. Data often has to be serialized to canonical formats to allow

for interchange between the disparate systems of computation and data query. This

can involve textualizing numbers and binary formatted data, changing byte and bit

ordering, converting between character encodings, etc. In many cases, further type

conversion/coercion is required to map the types of general purpose programming

languages to the types supported by data storage engines.

Until recently, relational databases and their associated structured query lan-

guage (SQL) have been the iconic systems for query based information extraction.

Computation and business logic systems typically build up a string of declarative

instructions to describe the data they wish to retrieve. These strings are just sen-

tences of a domain-specific query language (DSL). In the case of data query sys-

tems, the sentences are most often SQL expressions sent to remote query executors

that process the query and return the generated results. These domain-specific

sentences become opaque boxes to the computation and business systems that gen-

erated them. It becomes very difficult for the computational language to ensure

syntactic correctness, type correctness, and optimizability of the generated data

query statement.

XQuery [6], however, represents the potential power and value that the next

generation of data query and manipulation systems will deliver. XQuery supersedes

the computational limitations of relational calculus and generalizes query theory

from the rigidness of relational data to the more relaxed semistructured data model.

The isomorphism between S-expressions and XML makes the Scheme programming

language a ripe possibility for implementing XQuery-style data query as a native

feature of the language.
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Skuery, formed from the concatenation of the words Scheme and query, delivers a

reference implementation of integration between functional programming and data

query languages. By breaking the tight coupling between query operations and

relational storage systems, the query pattern becomes a generalized programming

language feature. Abstracting from the common medium of XML to other forms

of semistructured data such as parse trees, LDAP directories, file systems, bulk

container data types, etc, the query feature of programming languages can be re-

targeted to any data source rather than re-implemented for each data source.

1.1 Parts Query Example

Following is an introductory XQuery example implemented first in Java using the

Saxon library and then in Skuery. The reader can observe the XQuery syntax

and compare it to the corresponding Skuery syntax. The example demonstrates

increased programmer productivity with Skuery by reducing the quantity of code

needed to describe the query. Finally the example gives a brief tutorial of the

construction and execution of an XQuery.

The example XQuery transforms the linear parts list, Listing 1, to a hierarchical

tree, Listing 2, showing the parent-child relationship of the components. Imple-

mented in Java, the example requires the original query code in XQuery format

as well as Java utility code to construct and initialize the interpreter environment

that the query will execute in. In contrast, the Scheme implementation seamlessly

embeds XQuery functionality, encoded in S-expressions, allowing unrestricted inte-

gration and flow between query and computation realms.

The XML document shown in Listing 1 represents the data source for the query.

It consists of a simple container type partlist that encapsulates a collection of

3



1 <?xml version=” 1 .0 ” encoding=”ISO−8859−1”?>
2 <p a r t l i s t>
3 <part pa r t id=”0” name=” car ”/>
4 <part pa r t id=”1” pa r to f=”0” name=” eng ine ”/>
5 <part pa r t id=”2” pa r to f=”0” name=”door”/>
6 <part pa r t id=”3” pa r to f=”1” name=” p i s ton ”/>
7 <part pa r t id=”4” pa r to f=”2” name=”window”/>
8 <part pa r t id=”5” pa r to f=”2” name=” lo ck ”/>
9 <part pa r t id=”10” name=” skateboard ”/>

10 <part pa r t id=”11” pa r to f=”10” name=”board”/>
11 <part pa r t id=”12” pa r to f=”10” name=”wheel”/>
12 <part pa r t id=”20” name=”canoe”/>
13 </ p a r t l i s t>

Listing 1: partlist.xml - Original Semistructure data in XML format.

1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>
2 <pa r t t r e e>
3 <part pa r t id=”0” name=” car ”>
4 <part pa r t id=”1” name=” eng ine ”>
5 <part pa r t id=”3” name=” p i s ton ”/>
6 </ part>
7 <part pa r t id=”2” name=”door”>
8 <part pa r t id=”4” name=”window”/>
9 <part pa r t id=”5” name=” lo ck ”/>

10 </ part>
11 </ part>
12 <part pa r t id=”10” name=” skateboard ”>
13 <part pa r t id=”11” name=”board”/>
14 <part pa r t id=”12” name=”wheel”/>
15 </ part>
16 <part pa r t id=”20” name=”canoe”/>
17 </ pa r t t r e e>

Listing 2: Expected query result from XQuery execution.

part types. Each part has an identifier (partid), a description (name), and a

parent part identifier (partof) if it is a component of another part.

Listing 2 demonstrates the desired result a parttree element depicting the

part/sub-part relationships in a hierarchical fashion, The car part contains an engine

part and a door part. A window and a lock are parts that make up the door and

so forth.

4



1 de c l a r e namespace f=”my−functions . u r i ” ;

2 de c l a r e func t i on f : o n e l e v e l ( $p as element ( ) ) as element ( )
3 {
4 <part pa r t id=”{ $p/@partid }”
5 name=”{ $p/@name }” >

6 { f o r $s in doc ( ” p a r t l i s t . xml” )// part
7 where $s /@partof = $p/@partid
8 return f : o n e l e v e l ( $s ) }
9 </part>

10 } ;

11 <pa r t t r e e>

12 { f o r $p in doc ( ” p a r t l i s t . xml” )// part [ empty ( @partof ) ]
13 return f : o n e l e v e l ( $p ) }
14 </pa r t t r e e>

Listing 3: q1.xq - XQuery code required to generate the expected query result for
the Java implementation.

The part list XQuery in Listing 3, first declares a recursive user-defined function,

one level. The one level function then takes a single part as a parameter and

recursively returns all its sub-parts. The parttree element represents the query

body. The element content of parttree is constructed by an XQuery FLWOR [6]

expression. The FLWOR loop calls the one level function for each top level part

in the partlist. Top level parts are identified by the lack of a partof attribute.

Listing 2 is the result of executing the XQuery in Listing 3.

The Java configuration code, Listing 4, along with the XQuery code in Listing 3

constitute the code necessary to execute the part list example on the Java platform.

After using API calls to construct an XQuery interpreter, the Java configuration

code loads the query into the interpreter, compiles the query, then loads the query

input into the XQuery evaluation environment, and finally executes the query. The

StaticQueryContext compiles the query source text into a XQueryExpression.

The DynamicQueryContext is then created and initialized with the source XML

document partlist.xml. Finally the XQueryExpression, exp, is executed in the
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1 public class PartsXQuery {
2 public static void main ( St r ing [ ] a rgs ) {
3 Conf igurat ion c on f i g = new Conf igurat ion ( ) ;
4 StaticQueryContext s ta t i cContex t
5 = new StaticQueryContext ( c on f i g ) ;
6 try {
7 XQueryExpression exp = sta t i cContex t . compileQuery (
8 new Fi leReader (new F i l e ( ”q1 . xq” ) ) ) ;
9 DynamicQueryContext dynamicContext =

10 new DynamicQueryContext ( c on f i g ) ;
11 dynamicContext . setContextNode ( i
12 s ta t i cContex t . buildDocument (
13 new StreamSource(new F i l e ( ” p a r t l i s t . xml” ) ) ) ) ;
14 P r ope r t i e s props = new Prope r t i e s ( ) ;
15 props . se tProper ty (OutputKeys .METHOD, ”xml” ) ;
16 props . se tProper ty (OutputKeys .INDENT, ”yes ” ) ;
17 exp . run ( dynamicContext ,
18 new StreamResult ( System . out ) , props ) ;
19 } catch ( Exception e ) { e . pr intStackTrace ( ) ; } } }

Listing 4: Java code to load and execute the XQuery example above.

1 ( d e f i n e ( f : o n e l e v e l $p )
2 ‘ ( part (@ par t id , ( xpath $p ”/@partid” )
3 name , ( xpath ”$p/@name” ) )
4 , ( sxq : f o r ( ( $s ( xpath ( doc ” p a r t s l i s t . xml” ) ”// part ” ) ) )
5 ( sxq : where (eq? ( xpath ” $s /@partof ” )
6 ( xpath ”$p/@partid” ) ) )
7 ( sxq : return ( f : o n e l e v e l $s ) ) ) ) )
8
9 ‘ ( pa r t t r e e , ( sxq : f o r

10 ( ( $p ( xpath ( doc ( ” p a r t l i s t . xml” )
11 ”// part [ empty ( @partof ) ] ” ) ) ) )
12 ( sxq : return ( f : o n e l e v e l $p ) ) ) )

Listing 5: Native embedding of XQuery in Scheme.

DynamicQueryContext, dynamicContext, using Properties props, and the query

results are streamed to the System.out file handle.

Listing 5, demonstrates the conciseness of implementing data query as a native

operation in the Scheme programming language. Note the absence of foreign DSL

syntax, instantiation and initialization of an XQuery interpreter, and the need to

explicitly load and compile the query source. Code sharing between the computation

and data query layers is made possible because XQuery functions are defined using
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normal Scheme syntax. Finally, literal XML following the SXML convention is

constructed using simple S-expressions.

1.2 Thesis Statement

The XQuery language abstracts the low-level details of hierarchical queries, permit-

ting the software developer to focus on the application of XQuery techniques verses

their implementation [29]. S-expressions and XML share similar characteristics;

both are hierarchical, semistructured data formats and conform to a functional pro-

gramming style. Integration of data query processing and programming languages

increases programmer productivity by drastically reducing the code size and ancil-

lary structures needed to describe data query operations. Embedding the XQuery

standard in Scheme using list comprehension transformations improves the expres-

sive power of Scheme and simplifies the use of data query processing in software

products.
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2 Background

Programming is all about data manipulation. Without input or output computa-

tional processes have no influence. Early programming languages focused on the

mechanics of moving data from one location to another and the micro operations

needed to manipulate data. Extensive use of abstraction has helped programming

languages evolve away from the micro-mechanics of data manipulation to a broader

purpose of data transformation as it passes through a program. While much change

has occurred, widely used languages such as C and Java still require the developer

to manage much of the mundane mechanics of data manipulation. In the realm of

text processing, the programming language Perl is the counter example to C and

Java. Perl’s use of regular expressions allows the programmer to concisely declare

the pattern of data transformations to perform. Perl then takes care of actually

carrying out the work of string manipulation to accomplish the tasks described by

a regular expression. Likewise, advances in data query abstraction must relieve the

programmer from lower level complexities without segmenting data query opera-

tions from computational processes.

The rest of the chapter will proceed as follows. First data centric programming

is presented as an example of the cognitive patterns Skuery advocates. The field

of semistructured data is then briefly summarized after which XML is given as

a primary example of semistructured data. Semistructured data and XML are

contrasted, but shown to be interoperable. Next Scheme, a dialect of Lisp, is

introduced followed by a comparison between XML and S-expressions. Having built

a foundation of data centric programming, XML as a form of semistructured data,

and Scheme functional programming, XQuery is introduced as an encompassing

implementation of these ideas. Skuery will exploit and enhance the compatibility

8



and similarities between XML, S-Expressions, and data query processes to create

a larger abstraction between computation and data query systems. Last of all

List comprehensions are presented as the union of relational optimizability and

computational completeness.

2.1 Data Centric Programming

The philosophy of data centric programming encourages software developers to focus

on how programs transform and manipulate data. One method of becoming more

data centric is using functional programming primitives such as filter and map to

force the programmer to think directly about the data involved. The Python com-

munity is an excellent example of how a data centric programming mentality can

improve general purpose programming by introducing highly theoretical concepts

into commonplace programming [32]. Initial versions of Python contained higher

order map and filter functions. With version 2.0 Python added support for list

comprehensions which placed added focus on the data passing through the program

rather than the looping and conditional constructs needed to manipulate and pro-

cess data. One of Skuery’s primary objectives is to empower programmers with

tools to slice, dice, and manipulate data without having to constantly deal with

intricate and often repetitive details of subordinate data query processes. Applica-

tion programmers should be freed to spend time and resources contemplating how

to use data query operations, rather than how to implement and integrate data

query operations. Data centric programming stresses the core importance of data

and data manipulation in programming rather than distancing data query from

programming languages. It is this mentality that Skuery attempts to adopt from

data centric programming.
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2.2 Semistructured Data and XML

“Semistructured data is best described as a graph-based, self-describing object in-

stance model [13].” Common examples of semistructured data often result from

integrating two heterogeneous data types. The data structure for storing a photo-

graph is a good example; the title, caption, and date are textual while the image

itself is a JPEG encoding (binary data). The binary data formats of a JPEG

photograph or the MP3 encoding of a song are very different from the descriptive

string attributes of the structures they are associated with. The exact structure of

semistructured data can even be unknown or variant across particular instances of

a data type.

A primary example of semistructured data is the Extensible Markup Language

(XML). XML, a derivative of SGML, has become the universal format for data

exchange and the de facto standard for data representation and storage. Formally

described, XML is an unranked, labeled, ordered tree. An XML document is a

textual encoding of hierarchical containers and sub containers [22]. XML’s textual

format makes it human readable and approachable by a wider audience, while its

semistructured quality keeps it readable and parseable by machines as well.

Semistructured data is self-described; every data instance is annotated with

its own version of the schema. The static meta-data position of schema in the

relational model is relaxed with semistructured data to the point that in many cases

schema becomes data. Taking XML as a working example, its replicated schema

is represented in the form of element tags and attribute names. The element and

attribute names of XML that give the enclosed data both structure and type are

often interpreted as data themselves instead of as schema. Replication of schema,
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while convenient for data integration and on the fly schema evolution, results in

additional space cost for storage and time cost for processing.

Semistructured data, XML specifically, provides an abstraction for the myriad

of data types and data formats in existence. The lack of strong distinctions between

data and schema in the semistructured data model extends its applicability as an

abstraction. Skuery’s use of XML as a universal data format permits programmer

focus to move further up the stack of problem complexity. However XML does not

define a processing or query model for asking questions about the data it encodes.

2.3 Dissimilarities between Semistructured Data and XML

The semistructured data model is similar in many aspects to the XML Infoset data

model. However the models collide in a couple technical areas.

One of the small annoyances of XML to relational data researchers has been

the implicit order of XML elements. Its human readable textual format is a core

characteristic of XML. Text by nature has order, word order in prose, and element

order in XML. Hence every structure in an XML document has a document relative

position, often referred to as document order.

Semistructured data researchers have adapted their unordered graph data model

assumptions to accommodate XML. An ordered tree best represents the textual

format of an XML Document. Hierarchical tree structures in their primitive form

are unable to directly encode graphs, trees being a proper subset of graphs. XML

remedies this problem with element IDs and attributes that can contain a list of

IDREFs. Elements become nodes in the graph and IDREF attributes become lists

of peer nodes, which share an edge with the parent element of the attribute.
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Disregarding order and viewed semantically through the use of IDs and IDREFs,

XML can be easily transformed into data models fully expressing graph structure.

Conversely, maintaining document order as a property of each element/node allows

relational engines to order query results by document order and retain the ordered

nature of the XML data model [16]. While XML diverges slightly from relational

researcher’s view of what semistructured data should look like, XML is sufficiently

dynamic and moldable to represent the unordered graph structure of semistructured

and relational data.

2.4 Scheme

Scheme [35], a dialect of LISP [25], was initially developed at MIT by Guy L. Steele

Jr. and Gerald Jay Sussman. At the time of its conception, Scheme was a radical

derivative of LISP, due to the introduction of static lexical scoping. Programs

in Scheme are constructed using symbolic expressions (S-expressions or sexprs) to

express both data and execution instructions, just as LISP programs are.

Features such as first class and higher order functions, closures, continuations,

etc loosely define functional programming. While adopting static lexical scop-

ing from Scheme, Common Lisp has branched beyond the definition of functional

programming adopting constructs and techniques from a variety of programming

methodologies. Proponents describe the current evolution of Common Lisp as a

multi-paradigm programming language rather than just a functional style language.

Scheme has stayed true to its roots as a functional language and is much more pure

than Common Lisp. Skuery’s extensive use of higher order functions abstracts

the complexity of data query operations and make their presence in Scheme seem

natural.
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Scheme S-expressions representing data, often also have execution semantics that

can be evaluated directly by the Scheme interpreter, without prior transformations.

The opposite is also true. Because the code of Scheme programs is constructed as S-

expressions, it also often has significance as data and can be manipulated in Scheme

just as data is. The blurriness between code and data in the Scheme programming

language is very analogous to the weak distinction between schema and data in the

semistructured data model.

Because of the similarities between XML and S-expressions, Scheme is able to

represent XML internally as simple S-expressions. This enables Scheme to manip-

ulate XML natively just as if it was simply a list. However Scheme does not have

a query language or a standard persistence framework.

2.5 XQuery

Just as semistructured data can be seen as an abstraction for the varying types

of data, XQuery represents an abstraction of various data query languages. The

language design of XQuery is modeled from functional language theory. At its most

primitive level, XQuery sees the data it manipulates as simple sequences of primitive

data values, much like Lisp sees everything as a list of symbols. Functional language

features adopted by the XQuery standard are best represented by a few core ideas

[10].

• Purity: expressions and function applications do not exhibit side effects.

• Compositionality: the ability to create new functions composed of previous
more primitive functions.

• Recursion: the ability of a function to call itself with a smaller subset of values
than with which it began.
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XQuery is strongly typed and requires dynamic typing at runtime. While not

required by the specification, design decisions were made to explicitly allow for

static type checking during query analysis. Like Scheme, XQuery expressions are

pure. An XQuery user however is not prohibited from introducing side effects in

user-defined functions.

Being the most recent standard for XML query/manipulation, XQuery incor-

porates many principles and features from its predecessors. It is a companion, not

a competitor technology, to previous XML manipulation languages such as XSLT

and XPath. XQuery is the first XML manipulation language that natively supports

function compositionality. It also supports user-defined functions, functions as first

class objects, and higher order functions. Through the support of recursive func-

tions, XQuery is not only relationally complete, but also computationally sound [8].

Philip Wadler [14] has proposed an algebra for XQuery and Torsten Grust [19] has

shown that XQuery expressions can be translated into the relational algebra.

The basic structure of XQuery is the FLWOR (For, Let, Where, Order, Return)

loop that processes data and performs computation. XQuery also includes all of

the XPath 2.0 specification enabling path traversals and structure based matching.

Furthermore, XQuery fully supports the XML Schema 1.0 specification for type

specification.

XQuery was designed principally for XML data or data that can be easily trans-

formed into XML. Its use and influence however have extended well beyond just

XML. XQuery has become widely adopted in the relational model community as a

next generation query language. “XQuery can be considered as a generalized inter-

face for querying hierarchical data [29].” While not widely utilized with non-XML
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data, the XQuery specification can and has been applied to other semistructured

data formats besides XML.

• File systems - hierarchical path matching and enhanced Unix find utility func-
tionality [30]

• Compiler and Interpreter parse trees - optimization and instruction reordering
[30]

• Directories (LDAP) - query employees whose certification has expired.

• Code Reflection - query the source code s-expressions of lisp language style
programming languages.

In theory, XQuery should be applicable to any data container model that is

iterable [39]. XQuery is well suited to hierarchical data and was principally created

for XML manipulation. However it is not confined to these domains.

XQuery succeeds in providing a query language for XML and accommodating

the varying data formats and types that XML often encodes. Its applicability to

a wide range of data types makes XQuery an excellent abstraction for data query

operations. XQuery however is still an external query language. While it has

incorporated more computational features than its predecessors, XQuery is not a

general-purpose computing language.

2.6 List Comprehensions

List comprehensions are a syntactic feature of many functional languages. The

syntactic and semantic forms of list comprehensions are derived from set compre-

hensions described in Zermelo-Frankel set theory. However, “they add no funda-

mentally new [computational] power [21].” Instead, list comprehensions provide

concise expression of complicated looping behavior, the basis of query.

List comprehensions have the basic form of [< expression > | < qualifier >+].

Qualifiers are either generators (x ← list) or filters (x < 10). The result of the
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list times 2 xs = {times2(x)|x⇐ xs, even(x)}
list times 2 [4, 5, 6, 7] = [8, 12]

Figure 1: List comprehension example with filter qualifier.

vector3 xs ys zs = {(x, y, z)|x← xs, y ← ys, z ← zs}
vector3 [4, 5] [6, 7] [3, 2] = [ (4, 6, 3), (4, 6, 2),

(4, 7, 3), (4, 7, 2),
(5, 6, 3), (5, 6, 2),
(5, 7, 3), (5, 7, 2)]

Figure 2: Nested list comprehension example.

vector3 xs ys zs = {(x, y, z)|x← xs, y ← ys, divisible by 2(x, y), z ← zs}
vector3 [4, 5] [6, 7] [3, 2] = [ (4, 6, 3), (4, 6, 2)]

Figure 3: Lexical scoping in list comprehensions.

< expression > for each generated tuple, that is not filtered, is appended to an

output result list Figure 1.

Multiple generators in sequence left to right, as in Figure 2 are functionally

equivalent to nested for blocks in imperative style programming. Subsequent quali-

fiers can reference previous variable definitions, but not later ones, which in essence

provides lexical scoping Figure 3. Pattern matching on the left hand side of a

generator can also be used as an additional filtering mechanism [21].

SQL statements are easily optimized because their expressions operate with

respect to (are closed under) relational algebra. Database processing languages,

which express queries as procedures instead of expressions, trade easy optimiza-

tion for computational power. List comprehensions are intriguing in that they are

defined in terms of lambda calculus, yet easily optimized. Further more, list com-

prehensions have been shown to be relationally sound, expressively equivalent to

relational calculus [39].
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List comprehensions are the theoretical foundations for the abstractions made

by Skuery. Skuery integrates the computational completeness of Scheme with re-

lational data query processes. Optimized performant abstractions, such as Skuery,

are possible because of list comprehensions.
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3 Current State of Data Query

Data query has evolved from the Indexed Sequential Access Method (ISAM) of

mainframes and minicomputers to the relational and semistructured data stores of

today. Looking to the recent past, relational calculus and object persistence through

object-relational bridges have been the most successful data storage abstractions.

SQL, the current de facto data query standard, is examined first. The CRUD

methodology, which descends from SQL, is then compared and contrasted with

XQuery. Finally the successes and shortcomings of object persistence are examined

and groundwork for Skuery’s contributions is laid out.

3.1 SQL

SQL, originally Structured English Query language (SEQUEL)[7], was created by

Donald D. Chamberlin and Raymond F. Boyce at IBM as the query component

for their relational database system, “System R [26]”. Modern SQL is best de-

scribed as a set-based, declarative, domain-specific, data query language. System

R’s relational model came from Dr. Edgar F. Codd and his seminal paper “A Re-

lational Model of Data for Large Shared Data Banks [12]”. Pure standard SQL is

not Turing complete, principally because of its lack of recursion. When used as a

general-purpose language, SQL is tedious because of its lack of support for encapsu-

lation, modularity, and reuse. The latest editions of the SQL standard have begun

to include non-relational features such as object orientation and early support for

XML. Many database vendors have extended their implementations of SQL to in-

clude general computability features [41]. These extensions, however, are neither

standardized nor interoperable.
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XQuery, a core component of Skuery, is built directly on top of the contributions

of SQL. Following the integrating model of list comprehensions, Skuery’s FLWOR

implementation can express the set of queries described by the relational calculus.

Skuery goes beyond SQL’s contributions by integrating a full set of both query and

general purpose programming constructs.

3.2 XQuery/CRUD comparison

Database driven web applications follow a data query cycle of create, read, update,

and delete operations, commonly referred to using the acronym CRUD. The CRUD

methodology stems from the basic SQL operations INSERT, SELECT, UPDATE,

and DELETE. The similarities between CRUD and XQuery leads to an informal

mapping between the two data query methodologies.

List Comprehension
CRUD XQuery Course Grain Fine Grain
Create XML Element Construction Result Output Generating Qualifiers
Read XML Query Result Output Generating Qualifiers
Update Function w/ side effects - Result Expression
Delete Function w/ side effects - Filter Qualifiers

Figure 4: CRUD, XQuery, and List Comprehension Similarities

The create operation of CRUD is usually thought of as a series of SQL INSERT

statements that creates a record in a relational data store. In the XQuery model,

XML element construction is comparable to CRUD’s create operation. As shown

in Listing 6, new XML fragments can be created by XQuery queries and functions.

The function generate product info shows XML construction best by taking an

array of values and creating an XML fragment, where element names describe the

data being encapsulated.
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1 de c l a r e func t i on
2 g ene r a t e p r oduc t i n f o ($ i )
3 {
4 <product name=”{$ i [ 0 ] } ”
5 <product manager name=”{$ i [ 1 ] } ”
6 <product ass t manager name=”{$ i [ 2 ] } ”
7 <product ion quota>{$ i [ 3 ] }</ product ion quota>
8 <ac tua l p roduc t i on>{$ i [ 4 ] }</ ac tua l p roduc t i on>

9 <d e f e c t r a t i o>{$ i [ 5 ] }</ d e f e c t r a t i o>

10 <nex t p e r i o d g o a l>{$ i [ 6 ] }</ nex t p e r i o d g o a l>
11 </product>
12 } ;
13 <r epo r t>
14 <manager name=”Roger”>
15 <r epo r t f r e quency>qua r t e r l y</ r epo r t f r e quency>

16 { f o r $p in product ion data ( ) ]
17 return g ene r a t e p r oduc t i n f o ($p) }
18 </ r epo r t>

Listing 6: XQuery code that creates XML element construction examples.

XML element construction is analogous to the creation of a database record

or table row in the CRUD model of data query. In XQuery, XML elements are

primitive data types; no special purpose XML construction and manipulation library

is needed. XML elements can be constructed in XQuery as easily as integers and

strings are constructed in other programming languages.

The read operation of CRUD denotes information retrieval or query. In SQL,

CRUD reads are SELECT statements. CRUD reads can be as simple as a returning

a single row of a relational table or a complex composition of joins, filters, and sub-

selects. In a likewise manner, XQuery’s FLWOR and XPath expressions can slice,

dice, and rearrange any subset of XML source data presented to it.

Looking at the update and read operations of CRUD, the analogy with XQuery

starts to weaken. The CRUD model of data query evolved from the transactional

style of state change driven by imperative computation. Hence, update and delete

operations change or remove previously created program state. An XQuery update

standard is currently being developed, primarily motivated by the need for update
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interaction with transactional, relational databases. The CRUD semantics of up-

dates and delete can be modeled in XQuery as side effects of user-defined functions.

However, all programming models are inherently just transitions between states.

Functional paradigms, such as XQuery model state transitions by create new state

from previous program state. In contrast, imperative paradigms transition to new

state by changing or deleting the current program state.

Looking at CRUD from a slightly different angle, CRUD operations can be

compared to the operations of list comprehension. At a course-grain level, the

results of a list comprehension can be seen as create and read CRUD operations.

From a finer-grained perspective read and create operations can be compared to

the generating terms of a list comprehension. The update operation is simply the

execution of a list comprehension’s transformational expression. Finally CRUD’s

delete operation can be expressed in list comprehensions through the use of filtering

qualifiers.

The well know web development model of CRUD translates into XQuery syntax.

CRUD operations, when viewed as functional transformations, are also expressible

as list comprehensions. While there is some impedance between the imperative

model of CRUD and the functional model of XQuery, equivalent semantics exist in

both models.

3.3 JDBC and Java Persistence Engines

Java based persistence and query methods deserve mention when discussing data

query operations in programming languages, especially in regards to large-scale web

applications. The earliest member of this family is the Java Database Connectivity

API (JDBC). In simplest terms JDBC is the Java client side implementation of
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SQL based database interactions. JDBC consists of Java API calls for constructing,

executing, and processing the results of SQL defined data query operations. Using

JDBC, data query instructions are written in the external data query language

SQL. In contrast, Skuery data query instructions are written in native Scheme S-

Expressions.

Using JDBC as a building block, developers started creating custom Java object

persistence libraries. Building upon the basics of JDBC, Java developers quickly

wanted transparent object persistence. Seeing the need for a standardized, trans-

parent object persistence, Sun Microsystems introduced Container Managed Persis-

tence (CMP) Entity Beans as a part of EJB 2.0, which permitted easy storage and

retrieval of Java objects. Persistent engines since then have done an excellent job

of abstracting the details of serializing and deserializing an object back and forth to

the data storage layer. They have mastered the art of object persistence, but have

struggled to offer innovative solutions to the more general problem of data query.

The EJB attempt is a feature called finders which makes possible simple query op-

erations such as: return the object with primary key 12, return objects where the

name attribute equals George, return all objects of the type Person, etc. More com-

plicated finders require the developer to write vendor specific SQL that provides the

persistence engine with the list of object ids to retrieve to form the result. Queries

or finders that do not return predefined objects have to be implemented in using

JDBC constructs.

3.4 Lisp Persistence Solutions

Elephant [5], an object database for Common Lisp, is an open source project that

employees BerkeleyDB as its primary back end store. Initial support exists for
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PostgreSQL and SQLite3 as well. Elephant provides simple storage and retrieval of

Lisp values and Common Lisp Object System (CLOS) slot values. All serialization,

object mapping, and data marshaling operations are completely transparent and

require no developer intervention. Except for lambdas, closures, packages, and

streams, Elephant is able to store most Lisp primitives Concurrent multiple database

access as well as rudimentary cursors and transactions are also supported.

AllegroCache [1] from Franz Inc. is a commercial persistence product for use

with Allegro CommonLisp. Instead of using BerkeleyDB, AllegroCache uses it own

Lisp native B-tree implementation for data storage. AllegroCache supports the

persistence of most data types including maps, sets, and CLOS objects. One of

AllegroCache’s attractive features is a prolog dialect permitting complex logic and

recursive query ability. The added computational power of the embedded prolog

interpreter makes implementing complex data query operations more intuitive for

the developer. The prolog features of AllegroCache are implemented external to

Common Lisp. While powerful, the prolog features are not syntactically and se-

mantically integrated into Common Lisp. Skuery on the other hand makes data

query operations syntactically native features in general-purpose programming lan-

guages.

23



4 Design, Implementation, and Methods

Skuery’s architecture and construction proceeds from the layered design pattern.

To accomplish its goals, Skuery must first be able to parse both native XQuery

1.0 syntax and S-Expression encoded XQueries. This requires the development of

an XQuery 1.0 lexer, parser, and abstract syntax tree for Scheme. The XQuery

1.0 specification includes an XPath 2.0 implementation as a required dependecy.

Currently only an XPath 1.0 implementation exists for Scheme, so modifications

are necessary to meet XQuery’s requirements. The most crucial component needed

is a FLWOR implementation for Scheme. Code examples and diagrams illustrate

design choices and methods of implementation. The chapter concludes with control

XQuery implementation that Skuery will be compared with.

4.1 Skuery Processing Pipeline

State sensitive Lexical Analyzer

XQuery 1.0 Parser that emits a XQuery Abstact Syntax Tree

Tree Transformation Engine
(Rewrites the AST into valid Scheme S-Expressions)

Macro Expansion
(FLWOR and KSXPath 2.0)

Semantic Runtime Library
Written on top of Scheme Functions

And, Or, No, +,  -, *, /, &
Type coercion, etc

XQuery 1.0 / XPath 2.0
Functional Runtime Library

Figure 5: Skuery Processing Pipeline
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1 l e t $auct ion := doc ( ” auct ion . xml” ) return

2 f o r $b in $auct ion/ s i t e / people / person [ @id = ”person0” ]
3 return $b/name/ tex t ( )

Listing 7: XQuery FLWOR For Clause Implementation.

1 ( begin
2 ( sxquery :FLOWR
3 ( ( sxquery : l e t auct ion ( doc ” auct ion . xml” ) ) )
4 ( sxquery : return

5 ( sxquery :FLOWR
6 ( ( sxquery : f o r b ( ( sxpath2
7 ‘ ( s i t e people ( person ( ( equal? (@ id ∗ t ex t ∗)
8 ”person0” ) ) ) ) ) auct ion ) ) )
9 ( sxquery : return ( ( sxpath2 ‘ ( name ( ( t ex t ) ) ) ) b ) ) ) ) ) )

Listing 8: Skuery FLWOR For Clause Implementation.

As depicted in Figure 5 the Skuery extension to Scheme operates in a pipeline

fashion. Skuery accepts two forms of initial input: native XQuery 1.0 syntax (Listing

7) and S-Expression encoded XQuery syntax (Skuery syntax Listing 8).

In the case of native XQuery 1.0 syntax, Figure 7, is lexed and parsed into an

XQuery abstract syntax tree described in Appendix A. Taking an abstract syntax

tree as input, the tree transformation engine generates valid Scheme S-Expressions.

FLWOR loops are expressed using macros while XPaths are represented in a S-

Expression based domain language. At this point all XQuery and XPath syntax

has been transformed to S-Expression, allowing full inter-operation with Scheme

functions, macros, modules, etc. In order to provide stronger feature for feature

compatibility with the XQuery specification, Skuery provides a runtime library of

functions with XQuery semantics. The semantic runtime library contains explicit

type casting functions, implicit type coercion behavior, primitive arithmetic and

boolean logic operations, etc. While, Skuery operations can and do use Scheme

operations natively, the runtime library provides additional compatibility for inter-

facing with other XQuery implementations. Skuery also implements, in Scheme, a
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subset of the functions and operators defined in the W3C’s XQuery 1.0 and XPath

2.0 Functions and Operators specification such as fn:empty, fn:equal, fn:zero-or-one,

and fn:count [24].

4.2 Parsing XQuery 1.0

Parsing XQuery syntax is a little more complicated than the traditional infix ex-

pression parsing example. XQuery token types are dependent on the current state

of the parser. Sometimes a double quoted string is just a normal string of text.

XQuery however allows XQuery expressions to be embedded inside value strings of

XML attributes. Unlike other uses of double quoted strings in XQuery, strings used

as attribute values cannot always be lexically analyzed as a single string token.

PLT Scheme comes with pre-packaged schemized versions of the Lex and Yacc

parsing tools in a module called “parser-tools”. PLT’s lexer library helped simplify

the representation of XQuery tokens, because it uses basic regular expressions to de-

scribe lexing rules. Unfortunately the regular expression support in “pareser-tools”

falls considerably short of Perl Compatible Regular Expressions (PCRE) function-

ality. While named after Perl, PCRE is an independent C library implementation

of Perl’s regular expression functionality.

Support for captures is one of the most valued features of PCRE. Captures

allow subsequent access to tagged sub-parts of a regular expression match, upon

a successful match. The regular expression /(\w+) \s+ (\w+)/ represents two

words separated by white space. The pairs of parentheses specify the presence

of two sub captures within the regular expression. The lexer generated using the

“parser-tools” package does not support captures, so it returns the entire match

as one string. PCRE on the other hand returns the entire match as a string, but
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also allows callbacks to return the sub-parts of the regular expression indicated by

the pairs of parentheses. A natural extension for PLT would be to allow post-

match access to the string segments that represent the matches of these named

sub-expressions.

A second missing feature of PLT’s lexer is the ability to easily exchange state be-

tween the generated lexer and parser. When parsing XQuery, the reference OCaml

implementation employs a meta-lexer which maintains a stack of pushed lexer states.

During normal operation the parser repeatedly asks the meta-lexer for subsequent

tokens. The meta-lexer examines the top of the lexer state stack and dispatches

lexing duties to the appropriate sub-lexer corresponding to the state at the top of

the stack. Lexing state transitions are accomplished by lexing rules that modify the

lexer state stack upon successful matches.

Parsers generated using the “parser-tools” package, obtain tokens by calling a

0-arity token-generator function passed to the parser instance during instantiation.

PLT Lexers on the other hand are 1-arity functions. They take an input stream

as their only argument. In order to satisfy the 0-arity requirement of the parser, a

lambda abstraction is used to close over the lexer function with input stream value

resulting in a 0-arity token generating function.

1 lexerFunc ( inputSream )
2 myInputStream
3
4 tokenGeneratingFunc = lambdaAbstraction ( )
5 {
6 lexerFunc ( myInputStream )
7 }
8
9 parserFunc ( tokenGeneratingFunc )

Listing 9: Use of closures to permit stateful lexing.
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Because lambda abstractions in Scheme are closures, they preserve access to

lexical variables referenced in their body. The lexer state stack and meta-lexer

operations can be defined lexically and preserved by the closure, just as the input

stream is in the example Listing 9.

In order to support both native XQuery expressions and S-Expression expressed

XQuery syntactical front ends, Skuery translates each syntactic form to a common

XQuery abstract syntax tree. Initially, Skuery represented XQuery abstract syntax

as just inline lists. Theses lists were constructed by the parser recognition actions

using native Scheme list operations such as cons, list, append, etc. As Skuery

grew in supported features, the abstract syntax format converted from a primitive

list format to a linked abstract data type format using a modified version of the

Essentials of Programming Languages datatype module [15]. By implementing an

XQuery lexer, parser, and abstract syntax tree in Scheme, Skuery can use pre-

existing XQuery code and libraries in their original format. Developers are free to

integrate existing XQueries with the more powerful features of Skuery abstractions.

4.3 KSXPath: Scheme Syntax for XPath 2.0

XPath 1.0 [11] can be simply described a domain-specific language for specifying

tree traversals and sub-tree selections. XPath 2.0 [4] builds upon version 1.0 by

adding more powerful looping constructs, decision flow control, and user-defined

combinators. The XQuery 1.0 specification includes the XPath 2.0 specification

as its tree traversal description language. Most importantly to Skuery, XPath 2.0

supports user-defined node filtering and selection functions during tree traversals.

Having an XPath 2.0 implementation in Skuery would allow developers to use the

full power of Scheme to write XPath filtering and selection predicates.
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The Scheme XPath implementation (SXPath) [23] is architected using a layered

approach as depicted in Figure 6

Low Level Operation Execution Engine

XPath Parser

XPath 1.0 Text Format
XPath1.0 S-expr Format

Common Low Level AST/Operations

SXPath 1.0 Architecture

Figure 6: SXPath Architecture

SXPath like Skuery, processes both the original plain text form of the language

as well as a S-expression encoded form. The S-expression form for SXPath denotes

paths as nested lists of symbols representing XML element and attribute names.

Both initial forms of XPath, plain text and S-expression based, are translated by

SXPath into a sequence of low-level primitive operations.

Related Syntax XPath Axis Function Description
ELEMENT-NAME ::child select-kids selects child elements that

have ELEMENT-NAME or
satisfy a user-defined predi-
cate

ELEMENT-NAME ::descendant node-closure selects all descendants that
child elements that have
ELEMENT-NAME or sat-
isfy a user-defined predicate

Figure 7: Example SXPath Low Level Functions

Further functions such as node-join, node-reduce, node-union, and filter provide

the core functionality of the primitive SXPath operations. The elegance of SXPath
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and XPath in general is the realization that each step in the path can be represented

as a projection, selection, transitive closure or a filter operation. An XPath expres-

sion can then be evaluated by combining steps as chains of sequential operations or

as parallel union operations.

XPath Expression Input Nodesets 
and Sequences

XPath Execution Engine

Output Nodesets or Sequences

Figure 8: SXPath Architecture

Unfortunately the Scheme SXPath library only supports XPath 1.0 functionality.

However the XPath 1.0 and 2.0 standards share the same low-level XML path

traversal, selection, and iteration operations as their basis.

Skuery implements XPath 2.0 expressions present in XQuery 1.0 traditional syn-

tax by transforming XQuery AST segments into a super SXPath 1.0 S-expression

syntax called KSXPath 2.0. Likewise when writing Skuery queries, KSXPath S-
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Expression syntax is used. KSXPath S-Expression syntax can also be used inde-

pendent of Skuery as a native Scheme syntax for XPath 2.0.

XPath 1.0 Low Level Operations Execution Engine

XPath 2.0 Operations 
Evaluation Engine

XQuery 1.0 Parser

XPath 2.0 Text Format Embedded in XQuery 1.0

XQuery AST to KSXPath 2.0 S-expr
Translator/Generator

KSXPath 2.0 Architecture

Figure 9: KSXPath 2.0 Architecture

KSXPath reuses the low-level implementation functions of SXPath and injects

its own combinators into the evaluation pipeline to implement XPath 2.0 function-

ality. XQuery 1.0 / XPath 2.0 permits node filtering using either a plethora of

predefined functions or user-defined functions. Of course these functions must be

defined in XQuery. Skuery extends this functionality by allowing arbitrary Scheme

functions to be used as XPath filtering functions as long as they abide by the func-

tional contracts specified by KSXPath. Filter functions, being predicates, have a

very simple functional contract. They take a single node as an argument and return

either true or false depending on whether or not the predicate represented by the

filter is satisfied.
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1 <People>
2 <Person Name=”George” Age=25 />
3 <Person Name=”Mike”/>
4 <Person Name=”Jane” Age=23 />
5 <Person Name=” J i l l ” Age=22 />
6 </People>

Listing 10: Expected query result from XQuery execution.

Given the XML document in Listing 10, the XPath expression "/Foo/Bar/@Baz"

would be represented as (Foo Bar @ Baz) in SXML and would return the node set

[ Name="George", Name="Mike", Name="Jane", Name="Jill" ]. A filter, such

as return all the People/Person elements that have an age attribute, would be

constructed as "/People/Person[@Age]" using the plain XPath text encoding or

as (People (Person @Age )) using SXPaths S-expression encoding. In the S-

expression encoded version, the outer parentheses demarcate the entire XPath ex-

pression. The inner set of parentheses demarcate a filter operation where only

Person elements, which have an attribute named Age, are returned.

KSXPath extends the function calling syntax of SXPath to support the exe-

cution of user-defined filter functions in XPath 2.0 expressions. "/People/Person

[empty(@Age)]", which returns all People/Person elements without an age at-

tribute would be encoded as (People (Person ((empty (@Age ))))) in KSX-

Path. Similarly "/People/Person[two vowels(@Name)]" or (People (Person ((

two vowels (@Name ))))) might return People/Person elements whose name at-

tribute value has two vowels. In this last example, using KSXPath, two vowels

could be a business logic filter predicate defined in Scheme instead of XQuery.

Complete implementation of XPath 2.0 requires the use of a contextual state ob-

ject to store current traversal location information. During path execution, XPath

2.0 can call and execute user-defined functions acting as node selectors, filter pred-
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icates, etc. User defined XPath 2.0 functions in turn can call sub-path contextual

expressions, which are dependent upon the current traversal position of parent call-

ing traversals. A dynamic path context is usually employed to maintain this state

information. SXPath 1.0 has no notion of a dynamic context, and hence Skuery’s

KSXPath implementation is deficient in this area of XPath 2.0 support.

SXPath lack of support for XPath 2.0 features made it unsuitable for use in

Skuery. KSXPath adds the needed support of user-defined XPath 2.0 functions by

building upon XPath 1.0 functionality taken from SXPath. Skuery’s contribution

of KSXPath 2.0 improves SXPath’s XPath 2.0 conformance and enables broader

support of XQuery semantics.

4.4 FLWOR Implementation

Skuery implements FLWOR using syntax-case Scheme macros. The Skuery FLWOR

syntax, Listing 11, is a single block of imperative commands. The top level sxquery:

FLWOR form delineates the FLWOR block. The first terms inside a FLWOR block

are usually a list of sxquery:for terms, sxquery:let terms, or both.

1 ( sxquery :FLWOR
2 ( ( sxquery : f o r b ’ (1 2 3 4 5 6 7 8 9 10 11 1 2 ) ) )
3 ( sxquery : where (eq? 0 (modulo b 2 ) ) )
4 ( sxquery : return (∗ b b ) ) )

Listing 11: FLWOR Block Example

1 ( sxquery :FLOWR
2 ( ( sxquery : f o r b ’ (1 2 3 4 5 6 7 8 9 10 11 12))
3 ( sxquery : f o r c ’ (1 2 3 4 5 6 7 8 9 10 11 1 2 ) ) )
4 ( sxquery : orderby (− 12 b ) ) )
5 ( sxquery : return ( l i s t b c ) ) )

Listing 12: FLWOR Block Example with two For Clauses
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The sxquery:for and sxquery:let forms are analogous to generators in the

list comprehension model of computation. Following the for clause in the Listing

11 is a where clause which provides FLWOR with filtering capabilities which are

analogous to the filtering qualifiers of the list comprehension model. The last form

in the two examples above is the sxquery:return form, which specifies the returned

result or generated tuple for each iteration through the loop. Borrowing from SQL

terminology, the return form describes the format of each row in the result set. The

return clause is analogous to the expression clause of the list comprehension model.

Continuing to barrow from the SQL relational model, FLWOR statements can

have an optional sxquery:orderby clause, which allows ordering based on user-

defined expressions. Skuery order by operations are specified inside the scoping

block of enclosing for and let blocks, allowing ordering on terms and expressions

that may not even be present in the final result set. Skuery deviates from the

XQuery specification by executing the where and order by clauses inside the FLWOR

loop where XQuery specifies that they should be evaluated before evaluating the

return clause for any tuple in the processing stream.

Listing 11 and Listing 12 demonstrate, in the most primitive form, the ability to

use functions and forms from Scheme’s runtime library inside data query expressions

such as FLWOR. eq?, modulo *, -, list, and quote(’) are all Scheme runtime

functions.

The sxquery:FLWOR statement macro is executed recursively in order to evaluate

each clause. Each recursive evaluation peels off and evaluate a clause, and the

proceeds to recurse on the remaining clauses. There are two variations of the for

clause that are almost nearly identical except for the prev2 argument present in

the second variation. The first variation is used when the for clause is the top level
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or first called FLWOR clause in the recursive evaluation. The second variation

is used when the for clause is nested inside a parent for or let clause. In this

second variation, prev2 represents the partial result stream up to the current point

in execution. foldl or left fold is used as the looping or iteration construct for

Skuery’s FLWOR implementation. foldl is tail recursive, using constant stack

space during execution. The for-loop term is simply a lambda abstraction that

binds the iterator variable for each execution of the loop. expr is the value generator

for the sxquery:for clause. It generates a list of values, one of which is bound to the

iterator variable for each pass through the sxquery:for clause. The sxquery:for

clause has two other post-processing features of interest. Because of the use of space

conservative foldl, the return sequence of results is in opposite order of evaluation.

The reverse-unless-node assures that the returned result is in fact a sequence and

then calls reverse to restore the sequence to its correct order. If the returned result is

just a singleton XML node, reverse is not called and the result is returned untouched.

sort-result is the other post processing step. If the FLWOR statement contains

an sxquery:orderby clause, the result stream contains a sequence of orderresult

structures instead of just the pure results of each iteration. sort-result

The sxquery:let clause is really just a sxquery:for clause striped of it iter-

ation ability. sxquery:let simply provides variable bindings through the use of

lambda abstractions.

The sxquery:where clause is just a simple filter implemented using Schemes

standard if form. If the filter evaluates to true nested FLWOR expressions and

clauses are executed and added to the result set. If the filter evaluates to false the

sxquery:where clause returns the current result stream without appending to it.
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1 ( def ine−syntax ( sxquery :FLOWR stx )
2 ( syntax−case s tx
3 ( sxquery : f o r sxquery : where
4 sxquery : return sxquery : orderby ORDERBYCLAUSE)
5
6 ( ( ( ( sxquery : f o r v a r i a b l e expr ) r e s t 2 . . . ) rest . . . )
7 ( syntax
8 ( s o r t− r e s u l t ( reverse−unless−node
9 ( l e t ( ( for− loop ( lambda ( va r i a b l e prev )

10 ( sxquery :FLOWR prev ( r e s t 2 . . . ) rest . . . ) ) ) )
11 ( f o l d l for− loop ’ ( ) expr ) ) ) ) ) )
12
13 ( ( prev2 ( ( sxquery : f o r v a r i a b l e expr ) r e s t 2 . . . ) rest . . . )
14 ( syntax
15 ( reverse−unless−node
16 ( l e t ( ( for− loop ( lambda ( va r i a b l e prev )
17 ( sxquery :FLOWR prev ( r e s t 2 . . . ) rest . . . ) ) ) )
18 ( f o l d l for− loop prev2 expr ) ) ) ) )

Listing 13: Skuery FLWOR For Clause Implementation.

1 ( ( ( ( sxquery : l e t va r i a b l e expr ) r e s t 2 . . . ) rest . . . )
2 ( syntax
3 ( s i n g l e f y ( l e t ( ( v a r i a b l e expr ) )
4 ( sxquery :FLOWR () ( r e s t 2 . . . ) rest . . . ) ) ) ) )
5
6 ( ( prev2 ( ( sxquery : l e t va r i a b l e expr ) r e s t 2 . . . ) rest . . . )
7 ( syntax
8 ( l e t ( ( v a r i a b l e expr ) )
9 ( sxquery :FLOWR prev2 ( r e s t 2 . . . ) rest . . . ) ) ) )

Listing 14: Skuery FLWOR Let Clause Implementation.

1 ( ( prev ( sxquery : where t e s t ) rest . . . )
2 ( syntax
3 ( i f t e s t
4 ( sxquery :FLOWR prev rest . . . )
5 prev ) ) )

Listing 15: Skuery FLWOR Where Clause Implementation.

The sxquery:orderby clause is a little confusing at first glance. When a

sxquery:orderby clause is present, the code in Listing 16 gets executed for each

iteration. Further inner clauses and expressions are executed and the intermediate

result is stored in the temporary variable named result. ORDERBYCLAUSE is a re-

cursive macro that creates a list of sorting values for each result. It is an internal
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1 ( ( prev ( sxquery : orderby expr props o r d e r i ng s . . . ) rest . . . )
2 ( syntax
3 ( l e t ( ( r e s u l t ( sxquery :FLOWR rest . . . ) )
4 ( o r d e r c l a u s e
5 ( sxquery :FLOWR ORDERBYCLAUSE expr props o r d e r i ng s . . . ) ) )
6 ( i f ( null ? r e s u l t )
7 prev
8 (cons ( make−orderresult o r d e r c l a u s e r e s u l t ( quote props ) )
9 prev ) ) ) ) )

10 ( ( ORDERBYCLAUSE expr props o r d e r i ng s . . . )
11 ( syntax (cons expr ( sxquery :FLOWR ORDERBYCLAUSE o rde r i ng s . . . ) ) ) )
12 ( ( ORDERBYCLAUSE )
13 ( syntax ( ) ) )

Listing 16: Skuery FLWOR Order By Clause Implementation.

utility function to the sxquery:FLWOR macro. ORDERBYCLAUSE is never seen nor

written by a normal application developer. There is a sorting value for each defined

ordering e.g. (primary, secondary, tertiary). Finally an orderresult structure is

created from the list of sorting values and the actual result to be returned. This

structure is then appended onto the result stream.

Listing 17 contains three functions that accomplish the actual work of sort-

ing. make-sorter creates the comparator function that is feed as a parameter

to the higher-order mergesort function. sortorderresult executes the sorting

on the stream of orderresult structs and then projects the embedded FLWOR

results using map and the orderresult-result member selection function. The

sort-result function, as described above just tests to see if the result stream is a

stream of orderresult structures, if so it passes control to the sorting functions.

Otherwise sort-result just returns the result stream as is.

The sxquery:return clause is the simples of all the FLWOR clauses. It just

evaluates expr, the body of the FLWOR statement, and returns the results. Null

results or empty sequences in XQuery terminology are filtered out by the second
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1 ( de f ine− s t ruc t o r d e r r e s u l t ( o r d e r c l a u s e r e s u l t props ) )
2 ( d e f i n e ( make−sorter x )
3 ( l e t ( ( x ( take x 3 ) ) )
4 (cond

5 ( ( equal? x ’ (ASCEND #t GREATEST) )
6 ( lambda ( x y ) ( l e t ( ( x ( o r d e r r e s u l t−o rd e r c l a us e x ) )
7 (y ( o r d e r r e s u l t−o rd e r c l a us e y ) ) )
8 ( i f ( null ? x ) #t ( i f ( null ? y ) #f ( sxq :< x y ) ) ) ) ) )
9 ( ( equal? x ’ (ASCEND #t LEAST) )

10 ( lambda (x y ) ( l e t ( ( x ( o r d e r r e s u l t−o rd e r c l a u s e x ) )
11 (y ( o r d e r r e s u l t−o rd e r c l a u s e y ) ) )
12 ( i f ( null ? x ) #f ( i f ( null ? y ) #f ( sxq :< x y ) ) ) ) ) )
13 ( ( equal? x ’ (DESCEND #t GREATEST) )
14 ( lambda (x y ) ( l e t ( ( x ( o r d e r r e s u l t−o rd e r c l a u s e x ) )
15 (y ( o r d e r r e s u l t−o rd e r c l a u s e y ) ) )
16 ( i f ( null ? x ) #t ( i f ( null ? y ) #f ( sxq :> x y ) ) ) ) ) )
17 ( ( equal? x ’ (DESCEND #t LEAST) )
18 ( lambda (x y ) ( l e t ( ( x ( o r d e r r e s u l t−o rd e r c l a u s e x ) )
19 (y ( o r d e r r e s u l t−o rd e r c l a u s e y ) ) )
20 ( i f ( null ? x ) #f ( i f ( null ? y ) #t ( sxq :> x y ) ) ) ) ) )
21 ( e l s e ( error ”Hmmmm” ”FORMAT DOES NOT MATCH ˜a” x ) ) ) ) )
22 ( d e f i n e ( s o r t o r d e r r e s u l t x )
23 ( l e t ( ( s o r t e r ( make−sorter ( o rde r r e su l t−props ( car x ) ) ) ) )
24 (map o r d e r r e s u l t− r e s u l t ( mergesort x s o r t e r ) ) ) )
25 ( d e f i n e ( s o r t− r e s u l t x )
26 ( i f (and ( pa i r ? x ) ( o r d e r r e s u l t ? ( car x ) ) )
27 ( s o r t o r d e r r e s u l t x )
28 x ) )

Listing 17: Skuery FLWOR Order By Utility Functions.

1 ( ( ( sxquery : return expr ) )
2 ( syntax expr ) )
3 ( ( prev ( sxquery : return expr ) )
4 ( syntax ( l e t ( ( r e s u l t expr ) )
5 ( i f ( null ? r e s u l t )
6 prev
7 (cons expr prev ) ) ) ) )
8 ( ( prev ( ) rest . . . )
9 ( syntax

10 ( sxquery :FLOWR prev rest . . . ) ) )
11 ( ( rest ) ( syntax rest ) ) ) )

Listing 18: Skuery FLWOR Return Clause Implementation.

variant of the sxquery:return clause. The last two clauses show in Listing 18, are

just the recursive termination rules for the sxquery:FLWOR macro.
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The sxquery:some or existential qualification operator in Listing 19 is simply

a recursive function that implements logical or semantics. If expr evaluates to true

with variable bound to a value from sequence, the existential qualifier returns true.

Otherwise the operator returns false.

Universal qualification, sxquery:every in Listing 20, is implemented in the

same form as existential qualification except that all the #f are inverted to #t, all

the #t are inverted to #f, and the (if (expr) and (if (sxquery:every are negated to be-

come (if (not (exr) and (if (not (sxquery:every. This simple transformation turns the

logical or semantics of sxquery:some into logical and semantics for sxquery:every.

1 ( def ine−syntax ( sxquery :some s tx )
2 ( syntax−case s tx ( sxquery : s a t i s f i e s )
3 ( ( ( ( v a r i a b l e sequence ) ) sxquery : s a t i s f i e s expr )
4 ( syntax
5 ( l e t loop ( ( seq sequence ) )
6 ( i f ( null ? seq )
7 #f
8 ( ( lambda ( va r i a b l e )
9 ( i f ( expr )

10 #t
11 ( loop ( cdr seq ) ) ) ) ( car seq ) ) ) ) ) )
12
13 ( ( ( ( v a r i a b l e sequence ) rest . . . ) r e s t 2 . . . )
14 ( syntax
15 ( l e t loop ( ( seq sequence ) )
16 ( i f ( null ? seq )
17 #f
18 ( ( lambda ( va r i a b l e )
19 ( i f ( sxquery : some ( rest . . . ) r e s t 2 . . . )
20 #t
21 ( loop ( cdr seq ) ) ) ) ( car seq ) ) ) ) ) ) ) )

Listing 19: Skuery FLWOR Some Clause Implementation.
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1 ( def ine−syntax ( sxquery : every s tx )
2 ( syntax−case s tx ( sxquery : s a t i s f i e s )
3 ( ( ( v a r i a b l e sequence ) sxquery : s a t i s f i e s expr )
4 ( syntax
5 ( l e t loop ( ( seq sequence ) )
6 ( i f ( null ? seq )
7 #t
8 ( ( lambda ( va r i a b l e )
9 ( i f (not ( expr ) )

10 #f
11 ( loop ( cdr seq ) ) ) ) ( car seq ) ) ) ) ) )
12
13 ( ( ( ( v a r i a b l e sequence ) rest . . . ) r e s t 2 . . . )
14 ( syntax
15 ( l e t loop ( ( seq sequence ) )
16 ( i f ( null ? seq )
17 #t
18 ( ( lambda ( va r i a b l e )
19 ( i f (not ( sxquery : every ( rest . . . ) r e s t 2 . . . ) )
20 #f
21 ( loop ( cdr seq ) ) ) ) ( car seq ) ) ) ) ) ) ) ) )

Listing 20: Skuery FLWOR Every Clause Implementation.

4.5 Using quasiquotes for escaping from SXML literals into

XQuery Expressions

Scheme’s quoting operators quote (’), quasiquote (‘), unquote (,) and unquote-

splicing (@,) proved essential in implementing Skuery. One of XQuery’s prominent

features is the presence of literal XML as first class syntax in the XQuery gram-

mar. Literal XML as a primitive data type allows for very natural and intuitive

construction of XML fragments. Much like Perl or Ruby’s string interpolation,

XQuery expressions can be embedded in literal XML allowing for dynamic content

generation.

Listing 21 demonstrates how quasiquoting permits the escaping and embedding

of language expressions inside the literal XML syntax of SXML.
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1 <person id=12 name=”George Tanner” age=”{25 + 24 / 2}”>
2 <parents >{ f i ndPar ent s ()}</ parents>

3 <s i b l i n g s >{ f i n dS i b l i n g s ()}</ s i b l i n g s >

4 </person>

5
6 ‘ ( person (@ ( id 12) (name ”George Tanner” )
7 ( age ,(+ 25 (/ 24 2 ) ) ) )
8 ( parents , ( f i ndPar ent s ) )
9 ( s i b l i n g s , ( f i n dS i b l i n g s ) )

10 )

Listing 21: Quasiquote escaping of XQuery expression markers {}.

4.6 XQuery Conformance Tests

While Skuery was closely modeled after the semantics of XQuery, strict bug for

bug or feature for feature conformance to XQuery specification was not a Skuery

objective. Skuery has aimed to support and adopt a large portion of XQuery func-

tionality. Another one of Skuery’s goals was the ability to translate native XQuery

syntax into Scheme executable S-expressions. To that end, sections of the XML

Query Test Suite were executed against Skuery during development to ensure cor-

rectness of functions and operators.

4.7 Control XQuery Implementations

4.7.1 Saxon

Saxon (http://saxon.sourceforge.net/) is a compliant implementation of XQuery

1.0, XSLT 2.0, and XPath 2.0 written in Java. A .Net port is also available by

cross-compiling the Java code to MSIL using the IKVMC compiler. Michael Kay is

the principle developer behind Saxon. Saxon comes in two flavors: Saxon-B, which

implements the basic conformance levels of XSLT 2.0 and XQuery and Saxon-SA,

which is XML Schema aware. Saxon-B is an open source product, while Saxon-

SA is a commercial product sold by Saxonica (http://www.saxonica.com/). Saxon
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is an optimizing XQuery interpreter that uses rewriting concepts from relational

algebra to significantly improve query performance. Saxon-B is the principle control

implementation of XQuery with which Skuery is compared.

4.7.2 WebIt!

WebIt! is an XML manipulation library for Scheme, developed by Jim Bender.

The primary features of WebIt! are XML pattern matching and a macro based

XML transformation system. Jim Bender created a very primitive prototype of

FLWOR expressions to be used with his WebIt! framework. WebIt!’s FLWOR

implementation is incomplete and no where near robust enough to run the XMark

Benchmark suite. However, being an example of integrated use of FLWOR with

Scheme code a few custom benchmarks where create to compare performance with

Skuery.
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5 Results and Analysis

The performance results and an example use case, Section 5.4, demonstrate the

accomplishment of the thesis statement. Skuery performance is shown to be com-

petitive even as a prototype implementation. The CDDB example use case demon-

strates the power of language native data query operations. Skuery is able to exe-

cute FLWOR statements drawing input data from heterogeneous source locations.

The data query operations in Skuery appear as just another transformational step

through the program. Last of all Skuery’s CDDB implementation compared against

a corresponding Java implementation.

A couple initial tests were conducted, in an attempt to understand the start

up overhead of the different FLWOR implementations. In the first initial test,

execution time was measured for one of the simplest queries possible, returning the

constant 1. During experimentation Skuery and WebIt! ran in the PLT Scheme

v301.16 virtual machine, while Saxon executed inside the Java 1.5.0.06 JVM. By

just returning the constant 1, a feel for the overhead of loading and initializing

the respective VMs was obtained. Also included in this first test was the time to

load the query modules, parse the query, evaluate the constant “1”, and return the

result.

As shown in Figure 5, WebIt! had the smallest start up costs followed by Saxon

and then Skuery. While WebIt! and Skuery execute on the same virtual machine,

Skuery is much larger and comprehensive than WebIt! in terms of implemented

features, quantity of modules, and raw code size. Times for launching the Java

and Scheme VMs are also shown for comparison. The other initial test conducted

was a comparison between the XML parse times of Skuery and Saxon for various

XMark test sizes. Because it uses the same XML parser as Skuery, WebIt! was not
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VM Startup Time Seconds
Skuery 2.033
Saxon 1.043
WebIt! 0.892

Only Java 0.396
Only PLT Scheme 0.119

Figure 10: Startup Overhead
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included. Figure 11 contain the parse time for Saxon and Skuery for both the 11M

and 1M XMark data samples.

5.1 WebIt! Results

Some slight massaging was required to get WebIt!’s FLWOR prototype to run with

current versions of WebIt! and PLT Scheme. WebIt!’s FLWOR prototype came with

three example queries. The examples access a parts catalog database, consisting

of three simple tables: catalog.xml, parts.xml, and suppliers.xml. All three of the
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queries perform a join operation across all three tables. The example tables where

too small to provide significant query times. The time to parse the input XML

documents along with the noise of VM start up and tear down was much larger

than the time require to execute the actual example queries. To remedy the small

table sizes source documents were parsed once and then each example query was

executed 10,000 times.

The first comparison result, Figure 12, shows the performance of Skuery and

WebIt! on the three example queries provided with the WebIt! FLWOR prototype.

The gap between Skuery and WebIt! widens a bit from 13% on first two examples

to close to 18% on the last example. Both wall clock (real) time and user time are

shown in the graph.
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5.2 XMark: An XQuery Benchmark

The database research community has created several new benchmarks for XML

Queries in order to characterize the XML performance of both query execution

and storage mapping techniques. The intent of the XMark designers was to create

a concise, yet comprehensive set of benchmark queries. XMark covers the major

features of XQuery including textual features, data analysis queries, and ad hoc

queries. The developers of XMark cite query performance and the XML storage

organization as the metrics of successful XML implementations and have built their

benchmark to characterize the metrics.

XML Query processors have been implemented on top of a wide variety of data

stores. XMLDB from Sleepycat Software is built upon the BerkeleyDB flat file

format. Products from Oracle, IBM and Microsoft use a relational model as the

underlying store for XML data. Object oriented databases as well as in memory

storage are other alternatives. The varying paradigms of storage and indexing have

a large effect on query performance. XMark attempts to stretch conventional DBMS

architectures using benchmarks that emphasize textual XML document order, large

deviation length strings, and hierarchical path expression queries [33].

One of the features of the XMark benchmark suite is xmlgen a document gen-

erator that generates test data sets of variable sizes. xmlgen takes a scaling factor

command line parameter that determines the data size of the generated test data

set. The XMark test data set sizes in Figure 5.2 were used to characterize Skuery’s

performance. Figure 5.2 provides a brief description of each benchmark.

Skuery was primarily compared against Saxon, a Java implementation of XQuery.

In order to ensure correctness of query results, the outputs from running the XMark

benchmarks on each implementation were compared against each other. Unfortu-
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Name Size in Bytes xmlgen scaling factor
20k 26713 .00001
33k 33924 .0001
110k 116095 .001
1M 1161652 .01
11M 11669748 .1

Figure 13: XMark Data Sets

nately in most cases, textual comparison of XML cannot determine equality. XML

outputs can often be ambiguous due to different rendering styles. Unless present

in an attribute string value or a CDATA node, white space is usually insignif-

icant and generally ignored. Some XML engines render XML elements without

children as <element_name attr1="value"/> while others render the same value

as <element_name attr1="value></element_name>. Attributes of XML elements

are not ordered, so XML producers often render attributes in different orders. All

these and other factors complicate testing for equality between two XML fragments.

The Perl XML canonicalization module, XML::SemanticDiff, was able to determine

XML equality in most cases, except for differing attribute order.
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# Detailed Description Benchmark Emphasis
1 Returns a list of names of persons who have

an id of ”person0”
For loop, XPath selects

2 Returns a list of constructed increase ele-
ments containing the increase of the first bid
in each open auction.

XML element construction, cost
of array lookups

3 Returns the first and last increases in all open
auctions where the last increase is less than
or equal to two times the first increase.

filtering using where clauses

4 Returns a list of reserves for open auctions
where ”person20” bid before ”person51”.

existential qualification, filtering
using where clauses

5 Returns the quantity of closed actions that
sold for more that 40.

string to integer casting

6 Returns the quantity of items sold on each
continent

descendant XPath expressions

7 Returns the quantity of textual descriptions
in the auction database

descendant XPath expressions

8 Returns a list of buyers and the number of
items they purchased

join between buyers and closed
auctions

9 Returns a list of buyers and the name of the
items they purchased in Europe.

join between buyers, items, and
closed auctions

10 Returns a list of people (reconstructed using
french markup) grouped by interest profile.

extensive XML element construc-
tion, join between people and in-
terest categories

11 Returns a list of people’s names and the num-
ber of items for sale that have a price less that
0.02% of income of that person.

join using calculated values

12 Returns a list of people’s names that have an
income greater than 50000 and the number
of items for sale that have a price less that
0.02% of income of that person.

join using calculated values

13 Returns a list of items in Australia. XML element construction
14 Returns all items that have the word gold in

the item description
full-text searching

15 Returns a list of emphasized keyword in an-
notations of closed auctions.

deep non wild card path traver-
sals

16 Returns a list of seller ids that have empha-
sized keywords.

deep non wildcat path traversals,
return shallow portions of the
path

17 Returns a list of people that do not have a
homepage.

test for the absence of elements

18 Converts the reserves of all open auctions
from one currency to another.

efficiency of user-defined func-
tions

19 List of all items ordered alphabetically by
their location

sorting

Figure 14: XMark Benchmark Descriptions
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5.3 Skuery and Saxon XMark Results

Figures 15 through 24 contain comparison results for Skuery and Saxon using 11M,

1M, 110k, 33k, and 20k XMark data sets The data points for each benchmark in

each of the figures are the cumulative total of 5 consecutive runes. The 1M data

set, Figures 15 and 16, show that for benchmarks 1-7 and 13-19 Skuery, while

slower, remains within reach of Saxon. Skuery’s performance is acceptable in most

regards given its early prototype nature. Saxon is a commercially sold and supported

product, developed over a period of years. Saxon also reaps the benefit of the widely

used Java platform, which has received thousands of man-years of optimization and

tuning. Queries 8-12 are where Skuery fails to measure up. These queries contain

nested FLWOR loops that act like database joins. Performant join operations are

achieved through query optimizers that use relation algebra, data size characteristic,

and schema information to produce optimal query plans. Such a query optimizer

was not within the proposal scope of Skuery. However, Skuery’s design makes

future integration of a query optimizer straightforward. Later results in Figures 28

and 29 show vast improvements in benchmarks 8-12 by pushing projections outside

FLWOR loops. Equivalent performance to Saxon however, will require complex

query optimizations only provided by a query optimization engine.

Two graphs are presented for each experimental data set size: 11M, 1M, 110k,

33k, and 20k. All the graphs are identical except for scale and data set size. In each

graph the y-axis represents query time measured in seconds and the x-axis is the

XMark benchmark identification number. The first figure in each two-figure set has

a linear scale y-axis while the second image has a logarithmic scale y-axis. Greater

intuitional feel for the data is gained by contrasting the different scaled axes.
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Each graph contains the same 4 measurements for both the Saxon and Skuery

implementations. The first data series for each implementation measures the total

runtime of the particular benchmark. This metric serves as an all-encompassing

comparison between Saxon and Skuery. It includes all test startup, teardown, and

VM initialization costs.

The second data series measures the total internal query execution time. This

series excludes startup, teardown and VM initialization time costs. The third data

series is the time to parse the input XMark XML data set. The last data series is

the difference between the second and third data series. Labeled as “Internal Minus

XML Parse” this data series represents solely the query execution time.

Figure 15 shows that excluding benchmarks 8-12 Skuery’s runtimes hover right

at 20 seconds while Saxon’s hover at 10 seconds. Looking at the Skuery Internal

Minus XML Parse data series, the data points floats right around 10 seconds.

In contrast, Saxon Internal Minus XML Parse floats around at about 4 seconds.

Skuery follows the Lisp central dogma: everything is a list. However list processing is

not the most effective approach to every query. Intelligent choice of data structures

during query execution should improve Skuery’s performance.

Also of interest is the comparison between the Saxon and Skuery’s XML parsers.

The SXML parser Skuery uses hangs about 10 seconds while Saxon’s parser hovers

at 4 seconds. From these results, a portion of Skuery’s lagging performance can be

attributed to its XML engine, SXML.

Figure 18 illustrates how the bad performance on benchmarks 8-12 in Figure

15 is exacerbated by an increase in data set size from 1M to 11M. Benchmarks 8,

11, and 12 hover together as expected; they each contain one join operation. The

jump between benchmarks 8 and 9 is explained by an additional join operation in
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benchmark 9. Where benchmark 8 had one join operation across two data sets,

benchmark 9 has two join operations across three datasets.
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Figure 19 shows a slight increase in Skuery run time for queries 7-12. The 110k

data set size is barely big enough to show the performance costs associated with

queries 8-12. Figures 21 - 24 for the 33k and 20k data sets do not give any hint

to the complexity in queries 8-12. Starting in Figure 19 and more profoundly in

Figures 21 - 24, erratic behavior exhibits itself due to the small data set sizes. Noise

and overhead begin to out weigh the measured indicators, especially Skuery parse

time which becomes very fast for small data sizes. Interestingly, Saxon parse time

lands at about 1 second and never decreases below that threshold.

The first attempt at reducing the runtimes of benchmarks 8-12 was to cache

intermediate results that were recalculated repeatedly. This attempt did not modify

the original queries in any way. The cost of calculating hash values and storing

and looking up cached results negated any speed gained by eliminating repeated

calculations. In fact runtimes often increased by a small amount.
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Instead of trying to detect and cache intermediate results, the second attempt

moved repeated calculations outside of iteration loops. Where possible, projections

were moved outside of FLWOR selection loops. Although this optimization was

achieved by rewriting the queries by hand, this is a well-known method implemented

by automated query optimizers.

Figures 25, 26, and 5.3 show the timing results for unmodified and hand-

optimized queries on benchmarks 8-12. It is interesting to note that the hand-

optimized queries also improved the Saxon performance of a couple of the bench-

marks. While Saxon is obviously rewriting and optimizing queries internally, bench-

marks 8, 11, and 12 show that further optimization is possible.

The Skuery timings results from Figure 25 were divided by the corresponding

Saxon timing results to obtain the slowdown factors shown in Figure 28.
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Description 8 9 10 11 12
11M Unmodified Saxon 25.09 27.05 7.37 31.032 12.57
11M Modified Saxon 11.08 25.93 7.21 18.19 10.06

11M Unmodified Skuery 242.51 618.59 76.69 273.08 274.45
11M Modified Skuery 65.15 378.96 75.99 115.37 113.53

1M Unmodified Saxon 8.74 2.78 2.76 2.81 2.54
1M Modified Saxon 2.42 3.26 2.47 2.72 2.57

1M Unmodified Skuery 11.17 14.31 8.16 7.73 7.94
1M Modified Skuery 5.38 9.92 7.93 5.81 5.56

Figure 27: Hand-Optimized Queries
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Figure 29 illustrates the percentage of improvement of hand-optimized queries

over the unmodified queries from Figure 28. Finally Figure 5.3 presents the results

of Figure 28 and Figure 29 in table form for closer inspection.

Realizing that Skuery is an early prototype of integrating data query as a native

feature of programming languages, the presented results are promising. Compar-
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Description 8 9 10 11 12
Unmodified Skuery/Saxon 9.66 22.87 10.41 8.80 21.84
Modified Skuery/Saxon 5.88 14.61 10.54 6.34 11.28
% Improvement 0.39 0.36 -0.012 0.28 0.48

Figure 30: Optimized Queries Skuery vs Saxon

isons for non-nested queries between Skuery and Saxon were competitive. Skuery

struggled with the nested queries (join operations) in benchmarks 8-12. Not hav-

ing a built-in query optimizer, Skuery executes these joins as full cross-product

joins. While a %30 to %50 improvement is gained by pushing projections outside

of FLWOR selections, a 6x to 14x slowdown is still seen when compared to Saxon.

Saxon’s performance comes from further optimizing join operations using on the fly

indexing and query rewriting which reduces brute force O(n2) cross-product com-

plexity. Adding well know database optimization techniques to Skuery would close

the remaining gap with Saxon.
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5.4 CDDB Example using Skuery

This example shows increased programmer productivity gained by using Skuery.

Skuery reduces the lines of code needed to implement the query in Java by almost

half. Compare Appendix B with Appendix C. The transparency and native feel

of Skuery abstractions enables attention to be focuses on competitive advantages

further up the stack.

The CD database (CDDB) is a repository of meta-data for compact discs. Typi-

cal stored information includes CD title, artist, and a list of track titles. Ti Kan was

the creator of the CDDB idea including using the Internet to give global access and

allow anyone to submit entries to the shared database. Steve Scherf continued the

work of CDDB by developing cddbd the server side software that powers CDDB.

The cddb software was release as open source under the GNU Public License. Users

believed that their contributions to the database would also be freely available. In

1998 Gracenote commercialized the CDDB database and changed licensing terms

to restrict access to the user-contributed content. In response the user community

created freedb.org a CDDB replacement in which both the software and content are

protected by the GPL and are freely available to all.

CDDB works by creating a near unique signature from simple characteristics

of an audio CD. The signature consists of a 8 digit hexadecimal number generated

from the number of tracks on the CD, the starting offset of each track, and the

total playing time of the CD in seconds. This signature is then used to query a

remote CDDB site, normally over the Internet. The remote CDDB service then

replies with the CD title, artist, and a list of track titles.

This example illustrates the use of Skuery query functionality in a simple Scheme

CDDB client. Two databases are queried in the example to produce a list of CD
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tracks that have been listened to more than 30 times by the user. The first database

depicted in Listing 22, represents the attention data of the user, possibly downloaded

from a semi-intelligent personal disc-man. Recoded information includes a signature

of the CD in terms of number of tracks, each tracks starting offset, and the total

length of the CD in seconds. A listen counter for each track is also maintained in

the personal disc-man attention database. Each time the user listens to a track the

associated listen counter is incremented.

The second database used in the example is the freedb.org CDDB. A simple

Scheme client side library for accessing CDDB was developed to retrieve CD meta-

data in an XML format.

Listing 23 is the Skuery query that actually combines the data from the lis-

tening attention database and the CDDB database. attn-source is the attention

database in XML format. The first sxquery:for statement loops over each CD in

the attention database using attn-cd as the current CD in the iteration. The fol-

lowing sxquery:let statement retrieves the CDDB meta-data for attn-cd into the

cddb-data variable. The next three sxquery:let statements are just simple projec-

tions on cddbd-data using XPath expressions. These projected values will be used

later in the query. The next sxquery:for statement loops over each track in the

current attn-cd. The subsequent two sxquery:let statements project the track

number and listen counter for the current attn-track. The sxquery:where clause

filters out tracks that have been listened to 30 or less times. The sxquery:return

clause builds the track description list. Using the tracknum of the attn-track, the

letrec statement assigns the corresponding cddb track meta-data information to

cddb-track. The tracktitle is then projected from cddb-track.
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1 <c o l l e c t i o n>

2 <cd id=”900bc00b” t r a ck s=”11” seconds=”3010”>
3 <track number=”1” o f f s e t=”183” numbero f l i s t ens=”10”/>
4 <track number=”2” o f f s e t=”25405” numbero f l i s t ens=”60”/>
5 <track number=”3” o f f s e t=”46255” numbero f l i s t ens=”40”/>
6 <track number=”4” o f f s e t=”68468” numbero f l i s t ens=”80”/>
7 <track number=”5” o f f s e t=”88893” numbero f l i s t ens=”30”/>
8 <track number=”6” o f f s e t=”107990” numbero f l i s t ens=”20”/>
9 <track number=”7” o f f s e t=”130000” numbero f l i s t ens=”90”/>

10 <track number=”8” o f f s e t=”143303” numbero f l i s t ens=”100”/>
11 <track number=”9” o f f s e t=”159225” numbero f l i s t ens=”10”/>
12 <track number=”10” o f f s e t=”180455” numbero f l i s t ens=”50”/>
13 <track number=”11” o f f s e t=”202453” numbero f l i s t ens=”100”/>
14 </cd>

15 <cd id=”b10dec0d” t r a ck s=”13” seconds=”3566”>
16 <track number=”1” o f f s e t=”183” numbero f l i s t ens=”10”/>
17 <track number=”2” o f f s e t=”15935” numbero f l i s t ens=”90”/>
18 <track number=”3” o f f s e t=”35195” numbero f l i s t ens=”70”/>
19 <track number=”4” o f f s e t=”51198” numbero f l i s t ens=”30”/>
20 <track number=”5” o f f s e t=”64188” numbero f l i s t ens=”50”/>
21 <track number=”6” o f f s e t=”84758” numbero f l i s t ens=”80”/>
22 <track number=”7” o f f s e t=”113530” numbero f l i s t ens=”100”/>
23 <track number=”8” o f f s e t=”135323” numbero f l i s t ens=”20”/>
24 <track number=”9” o f f s e t=”157313” numbero f l i s t ens=”40”/>
25 <track number=”10” o f f s e t=”186675” numbero f l i s t ens=”100”/>
26 <track number=”11” o f f s e t=”209520” numbero f l i s t ens=”10”/>
27 <track number=”12” o f f s e t=”231050” numbero f l i s t ens=”60”/>
28 <track number=”13” o f f s e t=”250953” numbero f l i s t ens=”30”/>
29 </cd>

30 <cd id=”b907e20e” t r a ck s=”14” seconds=”2020”>
31 <track number=”1” o f f s e t=”150” numbero f l i s t ens=”90”/>
32 <track number=”2” o f f s e t=”10425” numbero f l i s t ens=”20”/>
33 <track number=”3” o f f s e t=”21975” numbero f l i s t ens=”80”/>
34 <track number=”4” o f f s e t=”31575” numbero f l i s t ens=”60”/>
35 <track number=”5” o f f s e t=”42975” numbero f l i s t ens=”50”/>
36 <track number=”6” o f f s e t=”52650” numbero f l i s t ens=”30”/>
37 <track number=”7” o f f s e t=”62850” numbero f l i s t ens=”10”/>
38 <track number=”8” o f f s e t=”77325” numbero f l i s t ens=”70”/>
39 <track number=”9” o f f s e t=”88875” numbero f l i s t ens=”40”/>
40 <track number=”10” o f f s e t=”97425” numbero f l i s t ens=”100”/>
41 <track number=”11” o f f s e t=”109350” numbero f l i s t ens=”30”/>
42 <track number=”12” o f f s e t=”121275” numbero f l i s t ens=”20”/>
43 <track number=”13” o f f s e t=”130800” numbero f l i s t ens=”50”/>
44 <track number=”14” o f f s e t=”140250” numbero f l i s t ens=”30”/>
45 </cd>

46 </ c o l l e c t i o n>

Listing 22: CD Listener Attention Database

Listing 24 shows the result of executing the query in Listing 23 on the attention

data in Listing 22.
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The CDDB example shows the conciseness and elegance of XQuery semantics in

S-expression form. In the Skuery implementation, Listing 23 and Appendix B, of the

CDDB the data query operation is transparent, appearing as just another language

construct. The Java implementation, Appendix C, on the other hand implements

XQuery as an external domain-specific language. The XQuery code sentences are

embedded in Java’s string data type. With the omnipresent low cost of data ac-

quisition, data query operations appear in every facet of business and influence

decisions. Skuery seamlessly integrates heterogeneous business data sources with-

1 ( require ” skuery−runtime . s s ” )
2 ( require ( p r e f i x cddb : ”cddb . s s ” ) )
3 ( require ( l i b ” pr e t ty . s s ” ) )
4 ( require ( only ( l i b ” 1 . s s ” ” s r f i ” ) drop ) )
5 ( require ( p lanet ”sxml . s s ” ( ” l i z o r k i n ” ”sxml . p l t ” 1 3 ) ) )
6
7 ( d e f i n e attn−source ( doc ” cds . xml” ) )
8
9 ( pretty−pr int

10 ( sxquery :FLOWR
11 ( ( sxquery : f o r attn−cd ( ( sxpath ”/ c o l l e c t i o n /cd” ) attn− source ) ) )
12 ( ( sxquery : l e t cddb−data ( cddb : query−cd−data attn−cd ) ) )
13 ( ( sxquery : l e t t i t l e
14 ( car ( ( sxpath ”/ @t i t l e / tex t ( ) ” ) cddb−data ) ) ) )
15 ( ( sxquery : l e t a r t i s t
16 ( car ( ( sxpath ”/ @ar t i s t / t ex t ( ) ” ) cddb−data ) ) ) )
17 ( ( sxquery : l e t t r a ck s ( ( sxpath ”/ track ” ) cddb−data ) ) )
18
19 ( ( sxquery : f o r attn−track ( ( sxpath ”/ track ” ) attn−cd ) ) )
20 ( ( sxquery : l e t tracknum
21 ( str ing−>number ( car ( ( sxpath ”/@number/ tex t ( ) ” ) attn−track ) ) ) ) )
22 ( ( sxquery : l e t l i s t e n s
23 ( str ing−>number ( car ( ( sxpath ”/ @ l i s t e n s / tex t ( ) ” ) attn−track ) ) ) ) )
24 ( sxquery : where (> l i s t e n s 30))
25 ( sxquery : return

26 ( l e t r e c ( ( cddb−track ( car ( drop t r a ck s (− tracknum 1 ) ) ) ) ) )
27 ( t r a c k t i t l e ( car ( ( sxpath ”/@name/ tex t ( ) ” ) cddb−track ) ) ) )
28 ( l i s t t i t l e
29 a r t i s t
30 t r a c k t i t l e
31 l i s t e n s ) ) )

Listing 23: Example CDDB Query using Skuery
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1 ( (” Help ! ” ” Bea t l e s ” ”Dizzy miss L i z z i e ” 40)
2 (” Help ! ” ” Bea t l e s ” ”Yesterday ” 50)
3 (” Help ! ” ” Bea t l e s ” ” Te l l me what you see ” 40)
4 (” Help ! ” ” Bea t l e s ” ”You l i k e me too much” 100)
5 (” Help ! ” ” Bea t l e s ” ” It ’ s only l ove ” 40)
6 (” Help ! ” ” Bea t l e s ” ”Act na tu r a l l y ” 70)
7 (” Help ! ” ” Bea t l e s ” ”Another g i r l ” 50)
8 (” Help ! ” ” Bea t l e s ” ” I need you” 60)
9 (” Help ! ” ” Bea t l e s ” ”You ’ ve got to hide your l ove away” 80)

10 (” Help ! ” ” Bea t l e s ” ”Help ! ” 90)
11 (”The Joshua Tree” ”U2” ”Mothers o f the d i sappeared” 100)
12 (”The Joshua Tree” ”U2” ”Exit ” 50)
13 (”The Joshua Tree” ”U2” ”Trip through your w i r e s ” 100)
14 (”The Joshua Tree” ”U2” ” In God ’ s country” 90)
15 (”The Joshua Tree” ”U2” ” Bu l l e t the blue sky” 80)
16 (”The Joshua Tree” ”U2” ”With or without you” 40)
17 (”The Joshua Tree” ”U2” ” I s t i l l haven ’ t found what
18 I ’m look ing f o r ” 60)
19 (”THE BEST OF EAGLES” ”EAGLES” ”PEACEFUL, EASY FEELING” 90)
20 (”THE BEST OF EAGLES” ”EAGLES” ”DESPERADO” 70)
21 (”THE BEST OF EAGLES” ”EAGLES” ”BEST OF MY LOVE” 50)
22 (”THE BEST OF EAGLES” ”EAGLES” ”LYIN’ EYES” 80)
23 (”THE BEST OF EAGLES” ”EAGLES” ”TAKE IT TO THE LIMIT” 100)
24 (”THE BEST OF EAGLES” ”EAGLES” ”HOTEL CALIFORNIA” 40)
25 (”THE BEST OF EAGLES” ”EAGLES” ”NEW KID IN TOWN” 100)
26 (”THE BEST OF EAGLES” ”EAGLES” ”HEARTACHE TONIGHT” 60))

Listing 24: List of Tracks Listened to more than 30 times

out abandoning the power and comfort of a general purpose programming language.
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6 Future Work

6.1 Perpetual and Subscription Queries

Skuery provides the basis for a variety of future research directions. The limitation

of bandwidth and size of the Internet has resulted in a data set where the notion of

computability must be rethought [3]. The problem is further complicated by the fact

that during the time that it takes to crawl the web, much of the content changes.

In this environment, questions about the data set as a whole at any given point in

time are unanswerable. New simplified query models such as RSS subscriptions and

Google alerts provide users with a continuous stream of result sets. Managing and

innovating upon this new data framework is one approach to future research.

6.2 Relevance Queries

Adam Bosworth gave the he best description of the Google queries millions of peo-

ple perform each day, when he called them relevance queries. Relational research

and products have focused on optimizing queries that have an exact computable an-

swer. The relational calculus and accompanying operational semantics of relational

algebra are the elegant and powerful solutions to such problems. Unfortunately,

exact computable answers do not scale to the magnitude of information available

from the World Wide Web. Even if scalability were possible, Google users are not

interested in the comprehensive computable questions that relational queries have

traditionally answered. Instead users are interested in relevance.

Characteristics of a relevance query are distinct from those of traditional rela-

tional queries. First, exact repeatability is not required. Need for ad hoc histori-

cally repeatability is extremely infrequent. Historical repeatability when important
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is almost always predictable and known in advance. Periodically archiving query

result sets, rather than maintaining re-computability can most often meet such

needs. With respect to time, relevance queries often fall into two common cate-

gories. First, near real time relevance such as what has been associated with the

terms of the query in the past hour, 24 hours, week. Second, long term popularity,

query responses that are accepted repeatedly by users.

Relevance information needs to be filtered to suit the querier. But the filter-

ing mechanism is more prepositional than conditional. The relational term where

should be replaced with with respect to when attempting to filter relational

data. Common with respect to terms include geographical locality, spheres of

influence, time periods, employers, buddy lists, blog roles, peer groups, entities, etc.

These with respect to terms are difficult to index in the relational sense, pri-

marily because there is no authoritative catalog of with respect to terms. With

respect to terms are self-assigned by queriers, most powerfully in the form of

tagging. So given the fact that filtering terms of relevance data are defined and as-

sociated outside the presence of the query provider, the only way to efficiently filter

is by using inverse full text indexes. Google gives best effort queries service based on

only two or three words supplied from a user’s tagging folksonomy. The key words

normally come from the mental tagging folksonomy inside the brain. However better

with respect to filtering is transparently available, by using XQuery to augment

mentally recalled folksonomies with personal folksonomy storage services such as

del.icio.us.

The insight here is to note that mental folksonomy tags can serve as personal

triggers, automatically and transparently enhanced by a record of our previous at-

tention, instead of global triggers across the creations and attention of the whole
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web. The systems of interest here, Google and Del.icio.us, are largely data storage

facilities with a query interface. The logic to tie the two systems together using

user generated key words, would most likely be recursive in nature, as queries are

sent to Google, then to Delicious, then to Google, etc. Given the opaque nature

of the Google query interface, the integration described above would certainly re-

quire computational completeness that relational algebra systems cannot provide.

The principles of XQuery coupled with a general purpose programming language

create the perfect tool to solve such relevance query problems. Skuery successfully

demonstrates the viability of such an idea.

6.3 Distributed Query Optimizers

The CDDB example in Section 5.4 pulls the source data for its query from two

disparate data sources: a web service and an XML database. Ownership and main-

tenance of these two sources are completely independent. In fact the two data

source are completely unaware of each other. The query in the CDDB example

is really a distributed query between three entities: the CDDB web service, the

XQuery process, and the CD listening attention database. The entities in the sim-

ple CDDB example interact using trivial simple selection queries. As queries become

more involved, additional details such as the data set schema, filtering criteria, and

physical storage attributes enable dramatic optimizations that reduce query time

and resources. The CDDB example query demonstrates the distributed tendency of

semistructural data such as XML. Better understanding of distributed optimization

for non-relational queries may be a rich area of future study and innovation.
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6.4 Data Query Features for Dynamic Languages

One of the principle reasons for having adopted Scheme, as the general-purpose

language for Skuery was the power provided through its simplicity. A minimal

syntax and lists as the core data type, allows Scheme and other Lisp dialects to

represent XML as a primitive data format. Scheme’s powerful macro facility frees

developers from the dogmas of Lisp’s original designers and allows for transparent

extension of the syntax and features of Scheme itself. These two features of Lisp

dialects allow Skuery to become an integrated feature of the core language rather

than a bolt on set of data query APIs.

The lessons learned during development and design of Skuery can easily be

adopted by the next generation of dynamic languages, such as Perl6. Perl5 has

already proven itself as an excellent tool for manipulation of plain text and web

site generation. The next major version, Perl6, will add several features to enhance

Perl’s current ability to integrate with more structured relational and hierarchical

data. Perl6 will include a feature called Rules that enables developers to dynami-

cally modify the syntax of the core language to adopt the data processing model of

Skuery. Much like Schemes Macros, Perl6 will allow parse time and compile time

intervention by user code to expand syntactic extensions written using the Perl6

Rules feature. The Perl6 Rosetta project aims to integrate the fundamental data

query and object relational principles of The Third Manifesto. The Third Mani-

festo advocates that returning to the fundamental theories of the relational model

restores representational power to data models, enables model evolution, and more

powerful machine based query optimization.

Perl6 will be build upon Parrot, a JIT-able byte code compiled virtual machine,

specifically designed for dynamic languages such as Perl5, Perl6, Python, PHP,
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Ruby, Lisp, XQuery, etc. One of the promises of Parrot is the ability to share

libraries across programming languages. Shared code is attractive, to the extent that

core implementations of FLWOR, XPath, and other data query operations could be

shared across languages. Skuery argues that data query operations should be first

class syntactic features of a programming language and not just an appendage API

library. By providing shared data engine primitives and leaving syntactic integration

to individual language implementers, the Parrot engine could reduce the complexity

and cost of natively integrating data query into programming languages.

6.5 Data and Business Process Orchestration Languages

Another area of interest is the utilization of XQuery as a data orchestration language

for lower level use in enterprise data storage tiers. In this scenario an XQuery

engine could become a core infrastructure piece providing amalgamated data in the

fabric of a service-oriented architecture. XQuery will continue as the progenitor of

successive generations and dialects of abstract integration between data query and

computational operations.
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7 Conclusion

Skuery demonstrates that integration of data query operations as a native feature

in general purpose programming languages increases programmer productivity by

reducing code size. Data query representation using Skuery in Scheme renders

concisely and with a natural aesthetic. Skuery achieves its native feel because of

its full integration with Scheme’s syntactic form, S-expressions. The performance

of Skuery’s abstractions is within reach of commercial XQuery implementations.

Building upon the standards of XML and XQuery and the theoretical insights of

functional programming, Skuery returns the focus of the programmer from the

details of micro data manipulation to influential orchestrations of data transfor-

mations. Upon these premises, Skuery stands as an example and sets a bar of

expectations for future innovations integrating computation and data query.
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A XQuery Abstract Syntax

(module abstract-syntax mzscheme

(provide (all-defined))

(require (file "datatype.ss"))

(define-datatype ModuleAST

(ModuleMainASN Version Main)

(ModuleLibraryASN Version Library)

(ModuleMainNoVersionASN Main)

(ModuleLibraryNoVersionASN Library))

(define-datatype MainAST (MainASN Prolog QueryBody))

(define-datatype LibraryAST (LibraryASN ModuleDecl Prolog))

(define-datatype VersionAST (VersionASN Version Encoding))

(define-datatype ModuleDeclAST (ModuleDeclASN Name URI))

(define-datatype PrologAST (PrologASN))

(define-datatype QueryBodyAST (QueryBodyASN Expr))

(define-datatype BaseURIDeclAST (BaseURIDeclASN URI))

(define-datatype CollationDeclAST (CollationDeclASN Collation))

(define-datatype DefaultNamespaceDeclAST (DefaultNamespaceDeclASN Namespace))

(define-datatype FunctionDeclAST (FunctionDeclASN Name Params Type Body External))

(define-syntax FunctionDeclASNCons

(syntax-rules ()

((_ Name Params Type BodyOrExternal)

(if (eq? BodyOrExternal ’EXTERNAL)

(FunctionDeclASN Name Params Type () #t)

(FunctionDeclASN Name Params Type BodyOrExternal #f)))))

(define-datatype FunctionBodyAST (FunctionBodyASN Body))

(define-datatype ParamListAST (ParamListASN))

(define-datatype ParamAST (ParamASN Name Type))

(define-datatype NamespaceDeclAST (NamespaceDeclASN Name URI))

(define-datatype DeclaredVariableAST (DeclaredVariableASN Name Type Expr))

(define-datatype ExprListAST (ExprListASN))

(define-datatype FLOWR_AST (FLOWR_ASN))

(define-datatype ForAST (ForASN ForVarsList))

(define-datatype ForVarAST (ForVarASN Variable Type PositionVariable Expr ))

(define-datatype LetAST (LetASN LetVarList))

(define-datatype LetVarAST (LetVarASN Variable Type Expr))

(define-datatype WhereAST (WhereASN Expr))

(define-datatype OrderByAST (OrderByASN))

(define-datatype OrderSpecAST(OrderSpecASN Expr Modifiers))

(define-datatype OrderSpecModifiersAST

(OrderSpecModifiersASN Ascend/Descend Empty Greatest/Least Collation))

(define-datatype ReturnAST (ReturnASN Expr))

(define-datatype QuantifiedAST

(SomeASN QuantifiedList Expr)

(EveryASN QuantifiedList Expr))

(define-datatype QuantifiedVarAST (QuantifiedVarASN Variable Type Expr ))

(define-datatype TypeswitchAST (TypeswitchASN MatchExpr CaseList Variable ReturnExpr))

(define-datatype CaseClauseAST (CaseClauseASN Variable SequenceType Expr))

(define-datatype IfAST (IfASN Test TrueCase FalseCase))

(define-datatype OrAST (OrASN Left Right))

(define-datatype AndAST (AndASN Left Right))
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(define-datatype InstanceOfAST (InstanceOfASN Left Right))

(define-datatype TreatAsAST (TreatAsASN Left Right))

(define-datatype CastableAsAST (CastableAsASN Left Right))

(define-datatype CastAsAST (CastAsASN Left Right))

(define-datatype <eq>AST (<eq>ASN))

(define-datatype <ne>AST (<ne>ASN))

(define-datatype <lt>AST (<lt>ASN))

(define-datatype <le>AST (<le>ASN))

(define-datatype <gt>AST (<gt>ASN))

(define-datatype <ge>AST (<ge>ASN))

(define-datatype <=>AST (<=>ASN))

(define-datatype <!=>AST (<!=>ASN))

(define-datatype <<>AST (<<>ASN))

(define-datatype <<=>AST (<<=>ASN))

(define-datatype <>>AST (<>>ASN))

(define-datatype <>=>AST (<>=>ASN))

(define-datatype <IS>AST (<IS>ASN))

(define-datatype <<<>AST (<<<>ASN))

(define-datatype <>>>AST (<>>>ASN))

(define-datatype RangeAST (RangeASN From To))

(define-datatype UnaryAST

(PositiveASN Value)

(NegativeASN Value))

(define-datatype UnionAST (UnionASN Left Right))

(define-datatype SetAST

(IntersectASN Left Right)

(ExceptASN Left Right))

(define-datatype PathAST (PathASN))

(define-datatype RelativePathAST (RelativePathASN))

(define-datatype StepAST (StepASN Axis NodeTest))

(define-datatype StepPredicateAST (StepPredicateASN Step PredicateList))

(define-datatype AbbrevStepAtAST (AbbrevStepAtASN Step))

(define-datatype FilterStepAST (FilterStepASN Expr PredicateList))

(define-datatype WildcardAST

(WildcardASN Wildcard)

(WildcardNameASN Wildcard Name))

(define-datatype PrimaryExprAST (PrimaryExprASN Expr))

(define-datatype PredicateAST (PredicateASN Expr))

(define-datatype ValidationAST (ValidationASN Expr SchemaMode SchemaContext))

(define-datatype SchemaContextAST (SchemaContextASN Context))

(define-datatype FunctionCallAST (FunctionCallASN Name Args))

(define-datatype XMLElementAST (XMLElementASN Name Attributes Content))

(define-datatype XMLCommentAST (XMLCommentASN Comment))

(define-datatype XMLProcessingInstructionAST (XMLProcessingInstructionASN Name Details))

(define-datatype XMLCDataAST (XMLCDataASN Data))

(define-datatype CompareDocCtorAST (CompareDocCtorASN Expr))

(define-datatype CompareElementCtorAST (CompareElementCtorASN Name Expr1 Expr))

(define-datatype CompareAttributeCtorAST (CompareAttributeCtorASN Name Expr1 Expr))

(define-datatype CompareTextCtorAST

(CompareTextEmptyCtorASN)

(CompareTextCtorASN Text))

72



(define-datatype CompareNamespaceCtorAST (CompareNamespaceCtorASN Name Expr))

(define-datatype CompareCommentCtorAST (CompareCommentCtorASN Expr))

(define-datatype ComparePICtorAST

(ComparePICtorEmptyASN)

(ComparePICtorASN Expr1 ExprA))

(define-datatype XMLElementContentAST (XMLElementContentASN))

(define-datatype XMLAttributeListAST (XMLAttributeListASN))

(define-datatype XMLAttributeAST (XMLAttributeASN Name Value))

(define-datatype EnclosedExprAST (EnclosedExprASN Expr))

(define-datatype AtomicTypeAST (AtomicTypeASN Type))

(define-datatype SequenceTypeAST

(SequenceTypeASN Type Occurance)

(EmptySequenceTypeASN))

(define-datatype ItemTypeAST (ItemTypeASN))

(define-datatype ElementTestAST

(ElementTestEmptyASN)

(ElementTestASN SchemaContextPath Name)

(ElementTestNodeNameASN NodeName TypeNAme))

(define-datatype AttributeTestAST

(AttributeTestEmptyASN)

(AttributeTestASN SchemaContextPath Name)

(AttributeTestNodeNameASN NodeName TypeNAme))

(define-datatype ProcessingInstructionsTestAST

(ProcessingInstructionsTestEmptyASN)

(ProcessingInstructionsTestASN Detail))

(define-datatype DocumentTestAST

(DocumentTestEmptyASN)

(DocumentTestASN Name))

(define-datatype CommentTestAST (CommentTestASN))

(define-datatype TextTestAST (TextTestASN))

(define-datatype NodeTestAST (NodeTestASN))

(define-datatype SchemaContextLocationAST (SchemaContextLocationASN Path Name))

(define-datatype SchemaImportAST (SchemaImportASN Prefix Name Location))

(define-datatype SchemaGlobTypeAST (SchemaGlobTypeASN Name))

(define-datatype SchemaPrefixAST

(SchemaPrefixASN Name)

(SchemaPrefixDefaultElementNamespaceASN))

(define-datatype VariableAST (VariableASN Name))

(define-datatype NOT_IMPLEMENTED_AST (NOT_IMPLEMENTED_ASN))

(define-datatype AddAST (AddASN arg1 arg2))

(define-datatype SubtractAST (SubtractASN arg1 arg2))

(define-datatype MultiplyAST (MultiplyASN arg1 arg2))

(define-datatype DivideAST (DivideASN arg1 arg2))

(define-datatype IntegerDivideAST (IntegerDivideASN arg1 arg2))

(define-datatype ModuloAST (ModuloASN arg1 arg2))

(define-datatype StringConcatAST (StringConcatASN))

(define-datatype INTEGER_AST (INTEGER_ASN integer))

(define-datatype DOUBLE_AST (DOUBLE_ASN double))

(define-datatype DECIMAL_AST (DECIMAL_ASN decimal))

(define-datatype EmptySequenceAST (EmptySequenceASN))

)
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B Skuery CDDB Support Code

(module cddb mzscheme

(require (lib "pregexp.ss"))

(require "kprelude.ss")

(require (planet "sxml.ss" ("lizorkin" "sxml.plt" 1 3)))

(provide (all-defined))

(define (connect x)

(tcp-connect x 8880))

(define (send port message)

;(printf message)

(fprintf port message)

(flush-output port))

(define (until-end func x state)

(let ((line (read-line x)))

(if (not (string=? line ".\r"))

(until-end func x (func line state))

state))

)

(define (print-read-line x)

(printf (read-line x)))

(define (print-until-end stream)

(until-end

(lambda (line state)

(display line))

stream

()))

(define (process-result stream)

(let ((result (reverse (until-end parse-it stream ()))))

;(display result)

result))

(define (print-and-return x)

(printf "~a~n" (if (pair? x) (cdr x) x))

x)

(define (match-DTITLE x)

(pregexp-match "^DTITLE=(.*)\\s+/\\s+(.*)\\s+$" x))

(define (match-TTITLE x)

(pregexp-match "^TTITLE(\\d+)=(.*)\\s+$" x))

(define (parse-it line state)

;(display line)

(let ((result (match-DTITLE line)))

(if result

(cons result state)
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(let ((result (match-TTITLE line)))

(if result

(cons result state)

state)))))

(define (make-cd-xml TITLE ARTIST TRACKS)

‘(cd

(@ (title ,TITLE ) (artist ,ARTIST))

,@TRACKS

))

(define (make-track-xml TRACK NAME)

‘(track (@ (track ,TRACK) (name ,NAME))))

(define (cd-list->xml x)

(let ((TITLE (caddar x))

(ARTIST (cadar x))

(TRACKS (track-list->xml (cdr x))))

(make-cd-xml TITLE ARTIST TRACKS)))

(define (track-list->xml x)

(map (lambda (x)

(make-track-xml (+ (string->number (cadr x)) 1) (caddr x)))

x))

(define (query arg)

(let-values (((in out)(connect "us.freedb.org")))

(read-line in)

(send out "cddb hello tewk tewk.com schemeCDDB 0.0.1~n") (read-line in)

(send out (format "cddb query ~a~n" arg))

(letrec ((match (pregexp-match "\\d+\\s+(\\S+)\\s+(\\S+)" (read-line in)))

(genre (cadr match))

(id (caddr match)))

(send out (format "cddb read ~a ~a~n" genre id)))

(let ((result (cd-list->xml (process-result in))))

(send out "quit~n") (read-line in)

result

)))

(define (gen-search-string cd)

(let ((ID (car ((sxpath "/@id/text()") cd)))

(TRACKS (car ((sxpath "/@tracks/text()") cd)))

(SECONDS (car ((sxpath "/@seconds/text()") cd)))

(OFFSETS (map (lambda (track) (car ((sxpath "/@offset/text()") track)))

((sxpath "/track") cd))))

(format "~a ~a ~a ~a" ID TRACKS (print-list OFFSETS) SECONDS)))

(define (query-cd-data arg)

(query (gen-search-string arg)))

)
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C jCDDB Implementation

package jcddb;

import java.net.Socket;

import java.io.*;

import java.util.regex.*;

import java.util.Properties;

import org.w3c.dom.*;

import javax.xml.transform.*;

import javax.xml.transform.dom.*;

import javax.xml.transform.stream.*;

import javax.xml.parsers.*;

import javax.xml.transform.OutputKeys;

import javax.xml.transform.stream.StreamResult;

import javax.xml.transform.stream.StreamSource;

import net.sf.saxon.Configuration;

import net.sf.saxon.query.DynamicQueryContext;

import net.sf.saxon.query.StaticQueryContext;

import net.sf.saxon.query.XQueryExpression;

import net.sf.saxon.om.*;

public class Main

{

Socket socket;

BufferedReader in;

BufferedWriter out;

Pattern dTitle;

Pattern tTitle;

Pattern trackInfo;

Document doc;

public Main()

{

try

{

socket = new Socket("us.freedb.org", 8880, true);

in = new BufferedReader( new InputStreamReader( socket.getInputStream() ));

out = new BufferedWriter( new OutputStreamWriter( socket.getOutputStream() ));

dTitle = Pattern.compile("DTITLE=(.*)\\s+/\\s+(.*)$");

tTitle = Pattern.compile("TTITLE(\\d+)=(.*)$");

trackInfo = Pattern.compile("\\d+\\s+(\\S+)\\s+(\\S+)");

}

catch (IOException ioe)

{

}

}

public static void main(String[] args) {

Main main = new Main();

main.example();

}
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public static Element cddb_query_cd_data(Element x)

{

String trackoffsets = "";

NodeList ns = x.getChildNodes();

for (int e = 0; e < ns.getLength(); e++)

{

Node n = ns.item(e);

if (n.getNodeType() == Node.ELEMENT_NODE)

{

trackoffsets += ((Element) ns.item(e)).getAttribute("offset") + " ";

}

}

String keystring = String.format("%s %s %s %s",

x.getAttribute("id"),

x.getAttribute("tracks"),

trackoffsets,

x.getAttribute("seconds"));

Main main = new Main();

return main.query(keystring).getDocumentElement();

}

public void example()

{

Configuration config = new Configuration();

StaticQueryContext staticContext = new StaticQueryContext(config);

try

{

XQueryExpression exp = staticContext.compileQuery(

"declare namespace jcddb=\"java:jcddb.Main\";\n" +

"for $x in doc(\"cds.xml\")/collection/cd \n" +

"let $cdtextdata := jcddb:cddb_query_cd_data($x) \n" +

"let $title := $cdtextdata/@title \n" +

"let $artist := $cdtextdata/@artist \n" +

"let $tracks := $cdtextdata/track \n" +

"for $y in $tracks \n" +

"let $tracktitle := $y/@title \n" +

"let $tracknum := $y/@tracknumber\n" +

"let $numlistens := $x/track[$tracknum + 1]/@numberoflistens \n" +

"where $numlistens > 30 \n" +

"return ( string($title), string($artist), string($tracknum + 1), " +

"string($tracktitle), string($numlistens), \"\n\") \n"

);

DynamicQueryContext dynamicContext =

new DynamicQueryContext(config);

Properties props = new Properties();

props.setProperty(OutputKeys.METHOD, "text");

props.setProperty(OutputKeys.INDENT, "yes");

exp.run(dynamicContext, new StreamResult(System.out), props);

}

catch (Exception e)

{

e.printStackTrace();
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}

}

public Document query(String arg)

{

readline();

write("cddb hello tewk tewk.com kjavaCDDB 0.0.1\n");

readline();

write(String.format( "cddb query %s\n", arg));

Matcher matcher = trackInfo.matcher(readline());

matcher.lookingAt();

write(String.format( "cddb read %s %s \n", matcher.group(1), matcher.group(2)));

Document xmlDoc = processResult();

System.out.println();

write("quit\n");

readline();

// Serialisation through Tranform.

try

{

DOMSource domSource = new DOMSource(xmlDoc);

StreamResult streamResult = new StreamResult(System.out);

TransformerFactory tf = TransformerFactory.newInstance();

Transformer serializer = tf.newTransformer();

serializer.setOutputProperty(OutputKeys.ENCODING,"ISO-8859-1");

serializer.setOutputProperty(OutputKeys.INDENT,"yes");

//serializer.transform(domSource, streamResult);

}

catch (TransformerException te)

{

}

return xmlDoc;

}

void write(String string)

{

try

{

//System.out.println(string);

out.write(string);

out.flush();

}

catch (IOException ioe)

{

}

}

String readline()

{

try

{

78



String indata = in.readLine();

//System.out.println(indata);

return indata;

}

catch (IOException ioe)

{

return "";

}

}

Document processResult()

{

try

{

DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance ();

DocumentBuilder db = dbf.newDocumentBuilder ();

doc = db.newDocument ();

Element root = doc.getDocumentElement();

String data = readline();

data = readline();

while (!data.equals("."))

{

Element result = parseIt(data);

if (result != null)

{

if (result.getNodeName() == "cd")

{

doc.appendChild(result);

root = doc.getDocumentElement();

}

else

{

root.appendChild(result);

}

}

data = readline();

}

}

catch (ParserConfigurationException pce)

{

}

return doc;

}

Element parseIt(String line)

{

Matcher dM = dTitle.matcher(line);

if ( dM.lookingAt() )

{

Element el = doc.createElement ("cd");
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el.setAttribute("artist", dM.group(1));

el.setAttribute("title", dM.group(2));

return el;

}

else

{

dM = tTitle.matcher(line);

if ( dM.lookingAt() )

{

Element el = doc.createElement ("track");

el.setAttribute("tracknumber", dM.group(1));

el.setAttribute("title", dM.group(2));

return el;

}

else

{

return null;

}

}

}

}
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