
Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2007-03-22

On-the-Fly Dynamic Dead Variable Analysis
Joel P. Self
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Self, Joel P., "On-the-Fly Dynamic Dead Variable Analysis" (2007). All Theses and Dissertations. 886.
https://scholarsarchive.byu.edu/etd/886

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F886&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F886&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F886&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F886&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F886&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F886&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/886?utm_source=scholarsarchive.byu.edu%2Fetd%2F886&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

ON-THE-FLY DYNAMIC DEAD VARIABLE ANALYSIS

by

Joel Self

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computer Science

Brigham Young University

April 2007

Copyright c© 2007 Joel Self

All Rights Reserved

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Joel Self

This thesis has been read by each member of the following graduate committee and
by majority vote has been found to be satisfactory.

Date Eric G. Mercer, Chair

Date Michael D. Jones

Date Eric K. Ringger

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the thesis of Joel Self in its
final form and have found that (1) its format, citations, and bibliographical style are
consistent and acceptable and fulfill university and department style requirements;
(2) its illustrative materials including figures, tables, and charts are in place; and
(3) the final manuscript is satisfactory to the graduate committee and is ready for
submission to the university library.

Date Eric G. Mercer
Chair, Graduate Committee

Accepted for the
Department Parris K. Egbert

Graduate Coordinator

Accepted for the
College Thomas W. Sederberg

Associate Dean, College of Physical and Mathematical
Sciences

ABSTRACT

ON-THE-FLY DYNAMIC DEAD VARIABLE ANALYSIS

Joel Self

Department of Computer Science

Master of Science

State explosion in model checking continues to be the primary obstacle to

widespread use of software model checking. The large input ranges of variables used

in software is the main cause of state explosion. As software grows in size and com-

plexity the problem only becomes worse. As such, model checking research into data

abstraction as a way of mitigating state explosion has become more and more im-

portant. Data abstractions aim to reduce the effect of large input ranges. This work

focuses on a static program analysis technique called dead variable analysis. The goal

of dead variable analysis is to discover variable assignments that are not used. When

applied to model checking, this allows us to ignore the entire input range of dead

variables and thus reduce the size of the explored state space.

Prior research into dead variable analysis for model checking does not make

full use of dynamic run-time information that is present during model checking. We

present an algorithm for intraprocedural dead variable analysis that uses dynamic

run-time information to find more dead variables on-the-fly and further reduce the

size of the explored state space. We introduce a definition for the maximal state space

reduction possible through an on-the-fly dead variable analysis and then show that

our algorithm produces a maximal reduction in the absence of non-determinism.

ACKNOWLEDGMENTS

I would like to thank my advisor Dr. Eric G. Mercer for his help and un-

derstanding in finishing this document. Even though I presented a less than ideal

situation of trying to finish my research and thesis from a remote location while

working a full-time job, he stuck with me and never became frustrated with my situ-

ation. I would also like to thank Dr. Mike D. Jones for teaching me and helping me

finish my thesis. I can also confidently say that I was only able to obtain the job that

I now have because of all that I learned while working for both of these gentlemen at

the Software Model Checking lab.

I am also grateful to my co-workers at the lab for their help and support

throughout the last 3 years. I would especially like to thank Neha Rungta for her

help in getting acclimated to doing research in model checking. I also appreciate

her witty updates on recent happenings at the lab. I would like to thank Joseph

Edelman for being a friend and helper in the classes and work we’ve done together.

Additionally, I would like to thank my other labmates including Rahul Kumar, Peter

Lamborn, Tonglaga Bao, and Micah Lewis.

Lastly, I would like to thank my family for their help and support throughout

my life. It was only because my parents taught me the importance of education that

I even considered coming this far. Most importantly I would like to thank my wife,

Ashleigh, for her love and caring the whole time I worked on my Master’s degree. If

it were not for her I would not have made it through the toughest times.

Contents

0.1 Introduction . 1

1 Related Work 6

2 DVA Maximal Reduction 9

2.1 Maximal Dynamic Dead Variable Analysis 12

2.2 Results . 18

3 Conclusions and Future Work 24

viii

0.1 Introduction

Model checking is a way to automatically verify properties of a system [1, 2, 3, 4, 5].

The model of a system is a directed graph containing a set of vertices and a set

of edges. In explicit state model checking, vertices represent states of the system

and edges represent transitions between states. When used to verify software, model

checking can discover subtle errors in deep execution traces that are easily passed over

in traditional software testing techniques. Since model checking is a form of formal

verification, the output of a model checker is a proof that the system does or does

not satisfy the specified property.

When model checking software, a state is a snapshot of the program at a

single program location. The state contains the value of the program counter and

the values of all of the variables in the program. The program is used to generate

successor states given a current state. Every state generated is stored in a V isited set,

and every newly generated state is checked against the set to determine if the state is

new. A breadth-first or depth-first search is used to explore the entire state space and

ultimately verify or disprove the specified property. A single state may have multiple

successors due to non-determinism in the program. Non-determinism represents input

from an outside source such as user input from a keyboard or input from a sensor.

The model checker must generate successor states that represent all possible input

values in order to explore all possible scenarios when running the program. Since the

size of the reachable state space is exponential in the branching factor of the model,

the state space becomes large rather quickly, even for programs with relatively few

variables. This rapid growth of the state space is called the state explosion problem.

An important technique for mitigating the state explosion problem in veri-

fication is data abstraction [6]. Data abstraction reduces the size of the generated

state space by abstracting away data values; in other words, it removes variables

from the state to make their value unconstrained. Variables that receive values from

1

a non-deterministic input often have such large domains that removing even a single

variable can greatly reduce the effect of state explosion.

Dead variable analysis is a type of data abstraction that determines when the

values of variables do not matter in order to simplify a program state. Variables

can be either live or dead with respect to a program location. A variable is live at

a location when its current value is used. A variable is dead at a location when it

is redefined before it is used in some future location, or it is not used in any future

location. When a variable is dead at a program location its value does not affect the

behavior of the program since it is not used. Static dead variable analysis (SDVA) has

been implemented in several model checkers including SPIN, XMC, Bandera, IF, and

Bebop [7, 8, 9, 10, 11]. When SDVA discovers that a variable is dead at a location,

it becomes unnecessary for the model checker to track values for that variable.

We use a simple program to illustrate how SDVA helps reduce the cost of

state exploration. Figure 1(a) is a simple program with labeled locations. We must

assume that any possible value may be passed into the function; however, for the

sake of brevity, we only consider four input patterns. The reachable state space of

the program from the four input patterns is shown in Figure 1(b). There are 11

states in the state space of this program when no dead variable analysis is used.

SDVA marks c dead at locations 2, 3, and 4, since c is reassigned at location 4, and

it marks b dead at location 3, since b is reassigned at location 3. We can coalesce

multiple states into a single state by ignoring dead variables since the values of these

variables do not matter. For example, the states s1 and s2 in Figure 1(b) become

equivalent when the dead variable c is ignored. We combine these into one state in

Figure 2(a). Similar reductions to Figure 1(b) are applied to states (s5, s6), (s7, s8),

and (s10, s11). The final reduced state space from SDVA is shown in Figure 2(a).

SDVA, being a static analysis technique, does not use any of the dynamic

run-time information available during model checking. For this reason, SDVA is

2

1: f (int a, int b, int c);

2: if (a > 0) then

3: b = 3;

4: c = 5;

5: print a, b, c;

2:a = 0
 b = 1
 c = 3

2:a = 1
 b = 1
 c = 2

2:a = 1
 b = 2
 c = 3

3:a = 1
 b = 1
 c = 2

5:a = 0
 b = 1
 c = 5

4:a = 1
 b = 3
 c = 3

4:a = 1
 b = 3
 c = 2

2:a = 0
 b = 1
 c = 2

3:a = 1
 b = 2
 c = 3

4:a = 0
 b = 1
 c = 2

4:a = 0
 b = 1
 c = 3

S0

S1 S2 S4S3

S5 S6 S7 S8

S9 S10 S11

(a) (b)

Figure 1: A small example program and state space generated from it. The program
fragment in Figure 1(a) contains dead variables at various locations that can be
discovered by a dead variable analysis . Figure 1(b) is a small state space generated
from the program fragment.

conservative and only considers a variable dead if its current value is not used on any

future paths including infeasible paths that are unreachable in any program execution.

Additionally, when there is a pending pointer dereference in the program, the variable

referenced cannot be known until run-time. Variable aliasing in general cannot be

computed statically; therefore, in order to be safe, SDVA must assume all variables

could be used at the pointer dereference and declare all variables as live. These two

issues cause the SDVA to not find the true dead variable set for a state; however,

run-time information that is readily available during model checking resolves memory

aliasing allowing variables to be positively marked as live and other variables to be

marked as dead. Run-time information also reveals the exact path taken through

the program. A dead variable analysis that uses run time information during model

3

checking is able to discover a more true dead variable set for each state and possibly

generate smaller state spaces. This is the idea behind dynamic dead variable analysis

(DDVA).

An example of the effects of DDVA can be seen in Figure 2(b). This state

space is generated when variable valuations in addition to program location are used

to refine dead variable analysis. When the variable a is greater than zero, it causes the

program to go to location 3 which makes b dead at locations 2 and 3. This allows s3

and s4 from Figure 2(a) to be represented with just a single state, s3, in Figure 2(b).

Recent work in DDVA labels variables live or dead dependent on specific future

execution paths and is tied directly to the reachable state space of the system [12].

During model checking, [12] simulates single procedure programs forward to discover

a partial future path and the variables that are referenced at pointer dereferences.

The paths in the program that are not taken in the future are removed from the

program. A dead variable analysis on this new program marks more variables as

dead because of the missing paths; however, the DDVA algorithm requires user input

to determine how far forward to simulate the program in order to achieve the greatest

reduction in the state space. Without the correct input value, the algorithm achieves

little to no reduction with a substantial increase in verification time and memory

used. It is not possible to know what the best explore depth is a priori without

further analysis. Additionally, the algorithm does not handle programs with loops

and non-determinism making DDVA as implemented in [12] impractical to use.

This paper presents a definition of the maximal state space reduction possible

from a dead variable analysis and a new algorithm for intraprocedural dynamic dead

variable analysis that yields a maximal reduction on single procedure programs with

no non-determinism. By triggering analyses only after each trace has been fully

determined and by updating states in the reachable state space with new dead variable

information, our new algorithm discovers the true set of dead variables for any state.

4

2:a = 0
 b = 1

2:a = 1
 b = 1

2:a = 1
 b = 2

4:a = 0
 b = 1

5:a = 0
 b = 1
 c = 5

4:a = 1
 b = 3

3:a = 1

S0

S1 S3 S4

S5 S7

S9 S10

2:a = 0
 b = 1

2:a = 1

4:a = 0
 b = 1

3:a = 1

4:a = 1
 b = 3

5:a = 0
 b = 1
 c = 5

S0

S1 S3

S5 S7

S9 S10

(a) (b)

Figure 2: The effect of dead variable analysis on the state space in Figure 1(b) is
illustrated in this figure. A reduction of several states from using SDVA is shown in
Figure 2(a). The additional reduction of another state from using a DDVA is shown
in Figure 2(b).

Without non-determinism, the future of an execution path is fixed; however, with

non-determinism, the future path is uncertain. A single state can have a future that

causes one of its variables be dead and another future where that same variable is

live. Variables that become dead after a point of non-determinism cannot be reliably

marked as dead before the point of non-determinism without first analyzing the entire

reachable state space. In the presence of non-determinism, our algorithm yields the

maximum state space reduction that is possible from an on-the-fly dead variable

analysis.

5

Chapter 1

Related Work

There are currently two relevant works on dead variable analysis in model

checking known to us. The work in [10] focuses primarily on showing that live variable

analysis defines an equivalence stronger than bisimulation equivalence. Static live

variable analysis comes at virtually no cost compared to the cost of model checking

and is completely orthogonal to other techniques used to attack the state explosion

problem. Although SDVA is relatively quick, it only considers program locations

in its analysis and can only discover unconditionally dead variables. An analysis

that makes use of variable valuations available during model checking, in addition to

program locations, can determine more precise paths through the program and find

variables that are conditionally dead.

The dynamic dead variable analysis in [12] uses run time information to resolve

conditional branches and pointer dereferences. In order to do this, the DDVA in [12]

stops the model checker just before conditional branch points and pointer derefer-

ences are processed and runs a forward analysis. This forward analysis determines a

partial path that the program takes in the future and resolves memory aliasing. This

forward analysis is terminated either at a user-specified explore depth or at a state

with a non-deterministic assignment to a variable. Non-determinism causes states

to have uncertain futures thus future information cannot be used to determine dead

variables before a point of non-determinism. Having a partial path through the CFG

allows the analysis to use program locations and variable valuations to more precisely

6

determine dead variable sets. The algorithm prunes off portions of the program that

are now known to be unreachable given the observed program locations and variable

valuations. The normal SDVA is then run on this reduced program to find more

precise sets of dead variables.

Although the DDVA in [12] may find more precise sets of dead variables than

SDVA, it presents two issues. The first issue is that there is no correlation between

explore depths and state space reductions. This is a consequence of the starting point

for each forward analysis and the fact that states cannot have their dead variable sets

updated once they have been stored in the V isited set. The algorithm does not

run a new forward analysis until the model checker runs past the end of the last

forward analysis. Consequently, smaller explore depths have shorter analyses but the

analyses happen more often. Whereas bigger explore depths have longer analyses,

but the analyses are less frequent. An example of such a situation is illustrated in

Figure 1.1.

Figure 1.1 demonstrates how longer explore depths do not always translate to

greater state space reductions. In the figure, each box on the left represents a state

in the search stack in the model checker. Of particular note are states 10 and 18,

where a is defined and then redefined such that a is dead from state 10 to state 17.

In the DDVA of [12], the forward analysis needs to reach state 18 to discover that a

is dead. The way the algorithm is designed, it can only declare a dead in the window

of states generated after the start of the forward analysis and before the next non-

deterministic assignment. In the forward analysis patterns on the right, each empty

rectangle represents the window of states explored by a single forward analysis. The

analysis pattern with the smaller explore depth finds that a is dead on the second

analysis, and since the analysis starts at state 10, can declare a dead in states 10

through 17. The pattern with the bigger explore depth also finds that a is dead on its

second analysis, but since the analysis starts at state 17, it can only declare a dead

7

a is defined

is redefineda

start

exit

1

17
18

10

State Generation
Along a Path depth = 9 depth = 17

Figure 1.1: On the left is the search stack with the variable a defined at state 10 and
then redefined at state 18. On the right are two patterns of forward analyses with
different explore depths. Highlighted regions show where each analysis marks a as
dead.

at state 17; thus, it is impossible to know a priori the explore depth to produce the

best state space reduction without further analysis of the program structure.

The second issue with the DDVA in [12] is that the true dead variable set

for a state is not discovered no matter what explore depth is used. Once states

are generated and stored in the V isited set they cannot have their dead variable sets

updated even if more dead variables are discovered. Any new information about dead

variables discovered in a dynamic dead variable analysis is only applied to a small

window of states that begins at the start of a forward analysis and ends at a point of

non-determinism or the explore depth. This limitation is due to the data structure

used to store states and prevents the DDVA algorithm in [12] from achieving the

maximal state space reduction even when the best explore depth is used. The goal

of this work is to formally define the maximal reduction from DDVA and present an

on-the-fly algorithm for computing it.

8

Chapter 2

DVA Maximal Reduction

The dead variable abstraction in this work relies on the states and execution

paths in the reachable state space and the control flow graph (CFG) of the system

being verified. A state s is a mapping of variables to a finite domain or >, s : V −→

D ∪ {>}, where V is the set of all variables in the system, D is a finite domain,

and > represents an unconstrained or abstracted variable. We use the symbol S

to represent the set of all possible mappings of variables to the domain or >. For

simplicity, we assume a single initial state, denoted by s0, that contains the initial

mapping; although, the results readily extend to systems with multiple initial states.

A control flow graph is a tuple, (N, E), where N is a set of nodes and E ⊆

N × N is a set of edges connecting nodes. Each node α in the CFG represents a

transition that executes atomically in the system. A transition α ⊆ S × S relates a

state with its next state. A transition is enabled in s if and only if there exists an

s′ such that α(s, s′) holds. A transition is deterministic if and only if for every state

s there is at most one s′ such that α(s, s′) holds. The CFG is used in an iterative

dataflow analysis to find dead variables [13]. SDVA and the DDVA in [12] use a CFG

to find dead variables in the program. This work uses execution paths for the analysis.

An execution path, π = s0
α0→ s1

α1→ · · · , is a finite or infinite sequence of states

and transitions such that s0 is the initial state and for every i, αi(si, si+1) is a valid

transition and (αi, αi+1) ∈ E is a valid edge in the CFG. A path suffix πi is the suffix

of the execution trace π starting at si. The set of all states that are in traces that

9

begin with s0 and contain only the transitions in E constitute the reachable state

space of the system SR.

The formal definition we use to mark live and dead variables in a trace makes

use of some basic predicates. The predicate def(v, α) is true when the variable v is

defined by the transition α. Similarly, used(v, α) is true when v is used by α. We

now give the definition of a variable being live in a state of an execution path:

Definition 1 A variable v is live in a transition αi of an execution path πi = si
αi→

si+1
αi+1→ · · · if and only if:

- there exists a j ≥ i such that used(v, αj) and

- ¬def(v, αk) for all i < k < j

We use this definition of live variables in the function live(πi, v), which takes πi, the

suffix of the execution trace π starting at si, and returns whether the variable v is

live in the first state on the trace. If a variable is not live in a state then it is dead.

Intuitively, a dead variable is a variable whose current valuation is not used on any

future path.

Variables mapped to > are abstracted and unconstrained. In this way, a

state that has abstracted variables can represent many different states. The set of

all abstracted variables in a state s is abstract(s) = {v | s(v) = >} and the set of

concrete variables is concrete(s) = {v | s(v) ∈ D}.

In order to compare and match states that have differing sets of abstracted

variables we define a relation between two states called contains denoted �c.

Definition 2 A state s′ is contained in s, denoted s′ �c s if:

- abstract(s′) ⊆ abstract(s) and

- For all variables v in concrete(s′), s′(v) = s(v)

10

A state is contained in another state if the set of dead variables of the first state are

a subset or equal to the set of dead variables of the second state and variables that

are live in both states are equal.

SDVA only uses the information available in the CFG of the program to do the

analysis. Because of this, SDVA admits infeasible paths and produces an imprecise

set of dead variables. Dead variable analysis is more precise if it uses data available

during run-time, such as variable valuations and next state information, in addition to

information in the CFG to determine exactly which path through the CFG is feasible

in an execution trace and then only use this path to find dead variables. When a

precise execution path through the CFG is used to find dead variables, the true dead

variable sets for every state on the trace can be calculated. Finding the true dead

variable set for each state in the reachable state space produces an abstract state

space that is a DVA maximal reduction of the concrete state space.

Definition 3 An abstract state space S ′
R is a DVA maximal reduction of the

concrete state space SR if and only if:

- For every reachable execution trace starting at the initial state π = s0
α0→ s1

α1→

· · · in the concrete state space, there exists an abstract execution trace π′ =

s′
0

α0→ s′
1

α1→ · · · such that for all i, si �c s′
i and s′

i ∈ S ′
R

- For all states s′ in S ′
R, and for all variables v in V , if the value of v in s′ is not

>, then there exists a reachable concrete trace π = s0
α0→ s1

α1→ · · · and an i ≥ 0

such that si �c s′ and live(πi, v)

The original DDVA in [12] uses some runtime information to refine SDVA and

find more dead variables; however, it is not able to construct a DVA maximal reduc-

tion of a concrete state space and occasionally creates an abstract state space that

is no smaller than the state space produced using SDVA. The dynamic dead variable

analysis in this work implements Definition 4 on-the-fly to produce a DVA maximally

11

reduced state space in the absence of non-determinism. In the presence of non-

determinism, our dynamic dead variable analysis produces the closest approximation

to a DVA maximally reduced state space that is possible to produce on-the-fly.

2.1 Maximal Dynamic Dead Variable Analysis

Our DDVA algorithm achieves a DVA maximal reduction by analyzing fully deter-

mined execution paths through the program instead of partial future paths generated

from a forward analysis. Our algorithm is not maximal when non-determinism is

present in the program being verified because non-determinism makes the future

paths uncertain. A greater treatment of the effect of non-determinism can be found

at the end of this section. A fully determined execution path is a single execution path

that has been fully explored; it generates no more unique states. An execution path

that has reached the exit of the program or a path that has reached an already visited

state (representing a path that has entered an infinite loop or merged into an already

explored path) are the two kinds of fully determined execution paths. Whenever the

search generates a fully determined path, a dead variable analysis is performed. The

equation in Definition 2 is used to calculate the new sets of dead variables for each

state in the path starting with the last state in the path. The exception to this is

when a prefix for a trace is unique but all states in its suffix are already in the V isited

set. In this case, we can use the dead variable information we already calculated for

the suffix to start calculating the dead variables at the last state of the prefix.

When the model checker fully resolves an execution path through the program,

the dead variable analysis may find more dead variables for states that have already

been explored. A full execution path reveals dynamic run time information of all of

the states in the path, allowing the analysis to positively declare variables live or dead.

Updating the dead variable sets of visited states requires that they be re-stored in

the V isited set. In order to avoid storing states that are later found to be duplicates

12

when their dead variable sets are updated, we use the contains relation to ascertain

whether a state is unique even before its final dead variable set is generated. In our

algorithm, if s′ �c s, s′ is a newly generated state, and s ∈ Visited , then s′ is not

inserted into Visited , because it is contained in s. We do not need to add s′ to the

V isited set because once its true dead variable set is discovered, it is a duplicate of

s. This pre-emptive duplicate detection saves us from having to generate and store

states that are later found to be duplicates.

The new algorithm to dynamically find dead variables, shown in Figure 2.1,

is remarkably simpler than the work in [12]. The function dfs performs a standard

depth first search to enumerate the entire state space of the model. Stack is the

depth first search stack. An entry in Stack consists of (s, A), with s being a state

that includes the location and A being a set of transitions that can be applied to the

state to get a next state and location. For our V isited set, we use a hash table that

implements the contains relation to compare states. The function a(s) takes a state

s and returns the set A, a : s −→ A. A transition α ∈ A maps a current state onto a

next state as defined previously. When a duplicate state is generated (line 11) or the

exit is reached (line 16), model checking is suspended and a dead variable analysis is

run. In the case that the exit of the program is reached, updateDeadVars is called

with null because the entire trace is contained in Stack. When a duplicate state is

reached, updateDeadVars is called with the state in the hash table that matched

the newly generated state.

The equation used in updateDeadVars to calculate dead variables sets in a

state requires as input the previous state’s set of dead variables. The variable used

for this, PreviousDeadV ars, is initialized to all variables at line 22 when the exit is

reached due to the fact that all variables are dead at the exit. When a partial path is

in Stack and a path suffix is in V isited, we initialize PreviousDeadV ars to be the

dead variables in the state we matched on, line 24. Finally, in cases where the exit

13

is not reached because the modeled program enters an infinite loop, the analysis is

started with PreviousDeadV ars being empty, line 26, as we cannot determine what

the previous state’s dead variable set is without entering into an infinite loop ourselves.

When a state maps to a non-deterministic assignment in the program, as indicated by

the return value of nonDeterminism(strace), PreviousDeadV ars is set to the empty

set, because dead variables discovered after a point of non-determinism cannot be

used to calculate the set of dead variables for states before the non-determinism.

This point is explained in greater depth at the end of this section.

The equation for the definition of a dead variable is applied at line 31 of

updateDeadVars to find the set of dead variables for each state in the trace. The

function def(A) = {v | ∀α ∈ A, def(α, v)} returns the set of variables that are defined

in a set of transitions and the function used(A) = {v | ∀α ∈ A, used(α, v)} returns

the set of variables that are used by a set of transitions. If the analysis finds more

dead variables than are currently in the state, the states in Stack are updated with

their new dead variable sets. Variables that are always live, such as the location,

are never abstracted. The updated states are re-stored in the hash table using the

function replace(V isited, strace, s
′) (line 34).

The following is an example run of the algorithm in Figure 2.1 that produces

the state space shown in Figure 2(b). Since some states shown in Figure 2(a) are

produced and then later have their dead variable sets updated to become the states

in Figure 2(b), we add a superscript a or b to states that differ between the two

figures. Our model checking run starts with s0 as our start state. The state s0 is

pushed onto Stack at line 2 and then the depth-first search is called at line 3. In the

main loop of dfs, s0 is retrieved from Stack. Line 8 chooses a transition α from s0’s

transition set, if there is more than one transition, and removes the transition from

the set. Then line 9 uses the transition to produce s1 from program location 1 of

Figure 1. We check for uniqueness of the newly generated state in lines 10 and 11.

14

If the state is not contained in any other state in V isited, then it is a unique state.

The new state in this example is unique so we add it to V istited and then push it

onto Stack at lines 14 and 15. We need to perform a dead variable analysis on each

trace after it has been generated, so we check if this trace has finished at line 16 by

checking to see if the current state’s location is the program exit.

The current trace has not reached the exit so we return to the top of the loop

and take s1 off of the top of Stack. The state s1 has a single action in its action set.

This action is used to produce s5 which is added to V isited and Stack. The third

time through the main loop of dfs, s5 is retrieved from Stack at line 6. The state s8,

the successor of s5, is generated and pushed onto Stack. Since s8 is generated at the

exit location, we call updateDeadVars at line 17. All variables are dead at the end

of the program so the set PreviousDeadV ars is set to contain all the variables in

the program at line 22. We iterate backwards through the trace calculating the dead

variables for each state starting at the last state. The dead variables of the current

state are calculated using the formula on line 31 and then the appropriate variables

are marked as dead at line 32. In this example, no new dead variables are found, so

we return from updateDeadVars. The third time through the main dfs loop, s8 is

at the top of Stack. It does not require a dead variable analysis, and it has an empty

action set, so it is left off of Stack, and we look at s5. The state s5 also has no more

children, so it is also popped off Stack and then the same process occurs for s1.

The next action in s0’s action set produces sa
3. The state sa

3 does not trigger

a dead variable analysis and the successor of sa
3, sa

6, also does not trigger an analysis.

The next state, s9, is at the exit, so another dead variable analysis is run. This time

the variable b is found to be dead at program locations 2 and 3. Marking b as dead

in sa
3 and sa

6 produces the states sb
3 and sb

6 which replace the previous states at lines

33 and 34.

After returning from updateDeadVars, s9, s6, and s3 are popped off of Stack.

15

The next successor of s0 is s4 which is contained in sb
3, so it is not added to the Stack

or V isited. Only s0 is in Stack when updateDeadVars is called so no new dead

variables are found. Now that s0’s action set is empty, it is popped from Stack and

state generation has completed.

Our DDVA algorithm is designed on the definitions in the previous section.

As such, we claim that using our algorithm to model check single procedure programs

without non-determinism produces DVA maximally reduced state spaces on-the-fly

by implementing Definitions 2 - 4. However, the presence of non-deterministic as-

signments to variables can affect the future path from a state so that a state with a

non-deterministic assignment can have more than one possible future. These multiple

futures of a single state may cause the state to have different sets of dead variables.

It is possible that the non-determinism does not actually affect the state’s dead vari-

able set, but the only way to know for sure is to examine the entire reachable state

space; however, once the entire reachable state space is produced, model checking has

finished and there is no longer a need to find more dead variables.

An example of how an execution path can affect states produced before the

point of non-determinism is presented in Figure 2.2. The function get input repre-

sents non-deterministic input from an outside source that ranges over a large finite

domain. The variable a is dead at location 2 if c is greater than 2 and the path

goes through location 4. A state generated at location 2 could not have a marked as

dead because c might be assigned a value less than or equal to 2, making a live. It

is possible that every single value returned by get input at location 2 during model

checking is greater than 2, which means we can mark a dead at location 2; however,

the only way to check if get input always returns a value greater than 2 is to finish

generating the entire reachable state space. Once the entire state space is produced,

it is no longer longer necessary to find new dead variables, because model checking is

finished.

16

1: verify ((l0, s0))
2: push(Stack , s0, a(s0red)))
3: dfs()

4: dfs ()
5: while Stack 6= � do
6: (s, A) := peek(Stack)
7: if A 6= � then
8: choose and remove transition α from A
9: s′ := α(s)

10: for all si ∈ V isited do
11: if s′ �c si then
12: updateDeadVars(si)
13: goto: line 5
14: V isited := V isited ∪ {s′}
15: push(Stack , (s′, a(s′)))
16: if s is at ExitLocation then
17: updateDeadVars(null)
18: else
19: pop(Stack)

20: updateDeadVars (si)
21: if Stack.LastState is at ExitLocation then
22: PreviousDeadV ars := V
23: else if si 6∈ Stack then
24: PreviousDeadV ars := abstract(si)
25: else
26: PreviousDeadV ars := �
27: for strace := Stack.LastState to Stack.F irstState do
28: if nonDeterminism(strace) then
29: PreviousDeadV ars = �
30: A := a(strace)
31: DeadV ars := (PreviousDeadV ars ∪ def(A)) ∩¬used(A)
32: s′ = setAbstract(strace, DeadV ars)
33: if s′ 6= strace then
34: replace(V isited, strace, s

′)
35: PreviousDeadV ars := DeadV ars

Figure 2.1: Pseudocode of the new DDVA algorithm.

17

1: a = get input();
2: c = get input();
3: if c > 2 then
4: a = 5;
5: print a, b, c;

Figure 2.2: A program fragment that has a point of non-determinism that affects
what can be declared dead above it.

In order to not incorrectly mark variables as dead in the presence of non-

determinism, dead variable knowledge gained after a non-deterministic assignment

cannot be used on states generated before the assignment unless we first generate

every possible assignment and future path for the analysis. It is possible that on

some models this strategy does find the DVA maximal reduction as it may be the

case that the non-determinism in a particular model does not affect dead variable

sets in preceding states. We cannot determine on-the-fly whether this is the case, so

our algorithm produces state spaces that are not technically DVA maximally reduced

when non-determinism is present; however, for on-the-fly model checking without

non-determinism, our algorithm produces the maximal possible state space reduction

from dead variable analysis.

2.2 Results

We implemented our DDVA algorithm in the Estes model checker developed at the

BYU Software Model Checking Lab [14]. Estes uses the GNU debugger as a state

generator in order to verify software at the object code level. Since a single line

of code from a high level language can easily translate into 2 or more object code

instructions, ways to reduce the size of the explored state space are invaluable. The

specific simulator we use as our state generator is based on the Motorola 68hc11

processor and can be found in the Gnu Debugger (GDB) [15]. We use the tools found

in the GEL collection of libraries [16] to compile C source code into the binary files

18

that run in the simulator.

In order to implement the contains relation, we need to be able to compare

new states with existing states to see if the new state is contained in another state;

however, comparing each new state with all the existing states in the V isited set is

too unwieldy as the set becomes larger. In order to mitigate this problem, we use a

chained hash table, where each chain has a subset of variables that are all equal and

that can never be dead. Since we need to compare states to other states that may

have a larger set of dead variables, we only use variables that are never dead to hash

into the correct chain. In all of our examples, we mark the registers and location as

the set of variables that are never dead and hash on this set to find the correct chain.

Once the correct chain is found, the state is compared to each of the states in the

chain until an exact match or containing state is found, or the end of the chain is

reached. If a match or containing state is found, then the new state is discarded. If

the new state is unique, it is simply appended to the end of the chain.

We compare the implementation of our DDVA algorithm against normal model

checking, model checking with SDVA, and the best and worst runs of the DDVA

in [12]. We compare the different techniques running on 6 different models in the

following areas:

• States generated : Size of the V isited set at the end of model checking.

• Wall clock time: Total time taken to finish model checking. This includes the

time used by the operating system and other services running on the computer.

• Total memory used : The total amount of memory used by the model checker

to complete a model checking run.

• Abstraction time: Total amount of time taken in the dead variable analyses.

We test the algorithms on a number of artificial and real world tests including the main

test used to benchmark the DDVA in [12]. The first three models are artificial with

19

no real world objective other than to showcase the kind of state space reductions that

are possible with a dynamic dead variable analysis. The last three models are mock-

ups of real world functions or programs than can be found in embedded platforms or

general purpose computers. The results are shown in Figure 2.3 and Figure 2.4.

The data in Figure 2.3 and Figure 2.4 show how the DDVA in [12] either

results in no better reduction than SDVA or has widely varying results depending on

the explore depth. Our DDVA on the other hand always has a smaller state space

than SDVA, and thus, always has lower memory usage than all of the other methods.

For smaller models, the reduced state count results in faster run times; however, on

larger models, the chains in the hash table become very long and cause the algorithm

to take longer than the other methods. For simplicity, the DDVA algorithm in [12] is

referred to as original in the tables, while our algorithm is referred to as maximal.

The easy3 model is a program with several global integer variables that non-

deterministically receive a value at the beginning of the program. The rest of the

program contains conditional branches and, depending on values of the variables, all

but one variable becomes dead in each branch. The results are shown in the top table

of Figure 2.3. This is an example that benefits greatly from dead variable analysis.

The original DDVA discovers dead variables at the exact same point that SDVA finds

dead variables in this example and incurs the time penalty of extra analyses for no

state space reduction. Our DDVA reduces the state space and is only slightly slower

than SDVA. The original DDVA performs more analyses and thus takes almost twice

as long as our DDVA to do its abstraction and yet gains nothing over the static

analysis. Our DDVA produces a 35% smaller state space and correspondingly has a

lower peak memory usage.

The littleBranch model is similar to easy3 although it contains nested con-

ditionals which the original DDVA can take advantage of with the right explore depth.

The results are shown in the middle table of Figure 2.3. This model, however small,

20

Model Name: easy3, Lines of Code: 38

Explore States Total Memory Abstraction
Analysis Depth Generated Time Used (MB) Time

None N/A 34640 0m12.764s 34.5 0.0s
Static N/A 15814 0m6.605s 33.80 0.001s

Original best 2 15814 0m10.765s 34.46 3.792s
Original worst 2 15814 0m10.765s 34.46 3.792s

Maximal N/A 10330 0m8.105s 25.5312 2.017s

Model Name: littleBranch, Lines of Code: 57

Explore States Total Memory Abstraction
Analysis Depth Generated Time Used (MB) Time

None N/A 864 0m0.442s 30.9 0.0s
Static N/A 721 0m0.405s 31.4 0.001s

Original best 6 658 0m0.344s 31.43 0.074s
Original worst 2 721 0m0.34s 31.43 0.0492s

Maximal N/A 530 0m0.223s 23.79 0.0138s

Model Name: multiBranch, Lines of Code: 140

Explore States Total Memory Abstraction
Analysis Depth Generated Time Used (MB) Time

None N/A 294515 1m49.170s 87.1 N/A
Static N/A 217454 1m21.780s 74.87 0.002s

Original best 16 176651 1m41.458s 75.79 42.67s
Original worst 5 217478 2m10.965s 83.46 46.35s

Maximal N/A 145440 2m36.640s 57.99 7.513s

Figure 2.3: Results for 3 artificial models. All 3 models are disgined to showcase the
benefits of using DDVA.

illustrates the difficulty in achieving a good result with the original DDVA. Our

DDVA, on the other hand, gives the largest state space reduction, takes the least

time to complete, and is able to do this every time without a user specified depth

bound.

The multiBranch model shown in Figure 2.3 is a much larger version of the

littleBranch model that is used to test the original DDVA. In addition to having

deeper nesting than littleBranch, multiBranch makes use of local variables that are

referenced as an offset from the frame pointer. Whenever there is an upcoming pointer

21

dereference, SDVA is forced to declare all variables live. The results from this model

are shown in the lower table of Figure 2.3. This is a good example of a situation

where DDVA is engineered to surpass the performance of SDVA; however, again

the performance of the original DDVA is unpredictable, and at its worst, generates

more states than the static analysis due to the strict state comparison in the hash

table. Please note that although our DDVA generates the smallest state space in this

example it incurs a higher run time due to the long chains in the chained table.

Figure 2.4 gives the results from the lexer, robot and bintree models. The

lexer model is patterned after a function in a simple lexical analyzer. The model

simulates input as a string of characters which the function reads and then returns a

token based on what is in the first one or two characters. The robot model simulates

a line following robot with three sensors. The robot changes the speed of its left and

right motors based on input from the three sensors. In both of these models, our

DDVA has the smallest state space and lowest memory usage while taking equal or

less time to complete. The bintree model is the only model with a loop in it. This

model searches a binary tree for a specific node. Due to algorithmic limitations, the

original DDVA typically does not perform well on models with loops. Our DDVA

does much better because it analyzes entire traces through the program which is

equivalent to unrolling the loop as many times as needed and then performing dead

variable analysis on the unrolled loop as shown in the bottom table of Figure 2.4.

22

Model Name: lexer, Lines of Code: 92

Explore States Total Memory Abstraction
Analysis Depth Generated Time Used (MB) Time

None N/A 262843 1m28.391s 66.9 0.0s
Static N/A 226169 1m17.633s 66.32 0.002s

Original best 2 225370 1m51.479s 71.30 31.66s
Original worst 3 226172 1m53.866s 71.13 33.46s

Maximal N/A 74024 1m45.56s 37.69 4.898s

Model Name: robot, Lines of Code: 55

Explore States Total Memory Abstraction
Analysis Depth Generated Time Used (MB) Time

None N/A 35865 0m12.838s 35.3 0.0s
Static N/A 27940 0m10.377s 35.6 0.002s

Original best 2 27940 0m18.675s 36.21 7.947s
Original worst 2 27940 0m18.675s 36.21 7.947s

Maximal N/A 27784 0m11.494s 29.21 0.552s

Model Name: bintree, Lines of Code: 31

Explore States Total Memory Abstraction
Analysis Depth Generated Time Used (MB) Time

None N/A 157828 1m0.608s 66.5 0.0s
Static N/A 154084 1m1.061s 68.4 0.005s

Original best 6 150964 2m14.807s 73.74 72.09s
Original worst 2 154084 2m7.356s 71.47 64.87s

Maximal N/A 103839 1m7.530s 52.62 16.34s

Figure 2.4: Results for 3 real-world models. The lexer model is a simple lexical
analyzer. The robot model simulates a line following robot. The bintree model
searches a binary tree for a specific node.

23

Chapter 3

Conclusions and Future Work

Dead variable analysis is an effective means of reducing the size of the explored

state space in model checking while retaining all relevant behaviors of the system.

Dynamic dead variable analysis provides a way of finding a larger set of dead variables

for each state resulting in even smaller state spaces than those generated using SDVA.

Our DDVA greatly improves upon the ideas set forth in the original DDVA of [12]

by eliminating the dependence on a user specified explore depth and by producing

a DVA maximally reduced state space for models with no non-determinism and the

closest possible approximation to a DVA maximally reduced state space in models

that contain non-determinism. This results in state spaces that, at worst, are no

larger than those generated by SDVA, and are often much smaller.

Our maximal DDVA algorithm is currently limited to single procedure pro-

grams. Future work focuses on modifying our DDVA algorithm to work on multi-

procedural programs. The easiest way to do this is to declare all global variables as

live, and treat every procedure and its local variables as a separate program. As the

program returns from a procedure, a dynamic dead variable analysis is run on the

trace of states generated through the procedure and dead variables sets for states

generated in the procedure are updated.

Other areas of future work include finding ways to speed up run time, adapting

the algorithm to different searches, and using a more efficient way of representing dead

variables. The current implementation of the algorithm suffers from an increase in run

24

time on large models that can make state space exploration infeasible. This increase

in run time comes from the use of a chained hash table and the contains relation. An

avenue for future work would be to look into ways to mitigate this problem. Another

direction for future work adapts DDVA to work with other search algorithms such as

breadth-first search. The benefit of breadth-first search is that paths that reach an

error state are guaranteed to be the shortest path to the error. Lastly, the current

data structure used to mark dead variables is highly inefficient. Some future work

could be dedicated to creating data structures that take less memory to store dead

variable information.

25

Bibliography

[1] G. J. Holzmann, The Spin Model Checker: Primer and Reference Manual.

Addison-Wesley, 2003.

[2] A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri, “NUSMV: A new

symbolic model verifier,” in Computer Aided Verification, 1999, pp. 495–499.

[Online]. Available: citeseer.ist.psu.edu/cimatti99nusmv.html

[3] M. Robby and J. Dwyer, “Bogor: an extensible and highly-modular software

model checking framework,” 2003. [Online]. Available: citeseer.ist.psu.edu/

dwyer03bogor.html

[4] T. A. Henzinger, R. Jhala, R. Majumdar, , and G. Sutre, “Software verification

with Blast,” in Proceedings of the 10th International Workshop on Model Check-

ing of Software (SPIN), ser. Lecture Notes in Computer Science, T. Ball and

S. Rajamani, Eds., vol. 2648, Portland, OR, May 2003, pp. 235–239.

[5] K. Havelund and T. Pressburger, “Model checking java programs using java

pathfinder,” 1998. [Online]. Available: citeseer.ist.psu.edu/havelund98model.

html

[6] E. M. Clarke, O. Grumberg, and D. E. Long, “Model checking and abstraction,”

ACM Trans. on Programming Languages and Systems, vol. 16, no. 5, pp. 1512–

1542, September 1994.

[7] G. J. Holzmann, “The engineering of a model checker: the gnu i-protocol

case study revisited,” in Proc. of the 6th Spin Workshop, ser. Lecture Notes

in Computer Science, vol. 1680. Toulouse, France: Springer Verlag, 1999.

[Online]. Available: citeseer.ist.psu.edu/holzmann99engineering.html

[8] Y. Dong and C. R. Ramakrishnan, “An optimizing compiler for efficient model

checking,” in FORTE XII / PSTV XIX ’99: Proceedings of the IFIP TC6 WG6.1

Joint International Conference on Formal Description Techniques for Distributed

Systems and Communication Protocols (FORTE XII) and Protocol Specification,

Testing and Verification (PSTV XIX). Kluwer, B.V., 1999, pp. 241–256.

26

citeseer.ist.psu.edu/cimatti99nusmv.html
citeseer.ist.psu.edu/dwyer03bogor.html
citeseer.ist.psu.edu/dwyer03bogor.html
citeseer.ist.psu.edu/havelund98model.html
citeseer.ist.psu.edu/havelund98model.html
citeseer.ist.psu.edu/holzmann99engineering.html

[9] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Păsăreanu, R. Zheng,

and H. Zheng, “Bandera: extracting finite-state models from Java source

code,” in International Conference on Software Engineering, 2000, pp. 439–448.

[Online]. Available: citeseer.nj.nec.com/corbett00bandera.html

[10] M. Bozga, J. Fernandez, and L. Ghirvu, “State space reduction based on live

variables analysis,” in Static Analysis, 6th International Symposium, SAS ’99,

Venice, Italy, September 22-24, 1999, Proceedings, ser. Lecture Notes in Com-

puter Science, A. Cortesi and G. Filé, Eds., vol. 1694. Springer, 1999, pp.

164–178.

[11] T. Ball and S. K. Rajamani, “Bebop: A symbolic model checker for boolean

programs,” in 7th International SPIN Workshop, ser. Lecture Notes in Computer

Science, K. Havelund, J. Penix, and W. Visser, Eds., vol. 1885. Springer, August

2000, pp. 113–130. [Online]. Available: citeseer.nj.nec.com/ball00bebop.html

[12] M. S. Lewis and M. D. Jones, “A dead variable analysis for explicit model check-

ing,” in ACM SIGPLAN 2006 Workshop on Partial Evaluation and Program,

2006.

[13] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: principles, techniques, and

tools. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1986.

[14] E. G. Mercer and M. Jones, “Model checking machine code with the GNU de-

bugger,” in 12th International SPIN Workshop, ser. Lecture Notes in Computer

Science, vol. 3639. San Francisco, USA: Springer, August 2005, pp. 251–265.

[15] “The gnu project debugger,” Available at http://sources.redhat.com/gdb/, 2006.

[16] “Gnu embedded libraries for 68hc11 and 68hc12,” Available at

http://gel.sourceforge.net/, 2005.

27

citeseer.nj.nec.com/corbett00bandera.html
citeseer.nj.nec.com/ball00bebop.html

	Brigham Young University
	BYU ScholarsArchive
	2007-03-22

	On-the-Fly Dynamic Dead Variable Analysis
	Joel P. Self
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Table of Contents
	Introduction
	Related Work
	DVA Maximal Reduction
	Maximal Dynamic Dead Variable Analysis
	Results

	Conclusions and Future Work

