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ABSTRACT 

Evaluation of Passive Force on Skewed Bridge Abutments  
with Controlled Low-Strength Material Backfill 

 
 

Kevin Bjorn Wagstaff 
Department of Civil Engineering, BYU 

Master of Science 
 

Although its use has become more widespread, controlled low-strength material, or 
CLSM, has fallen through the crack between geotechnical engineering and materials engineering 
research. The National Ready Mix Association states that CLSM is not a low strength concrete, 
and geotechnical engineers do not consider it as a conventional aggregate backfill. The use of 
CLSM as a bridge abutment backfill material brings up the need to understand the passive force 
versus backwall displacement relationship for this application. 

To safely account for forces generated due to seismic activity and thermal expansion in 
bridge design, it is important to understand the passive force versus backwall displacement 
relationship. Previous researchers have pointed out the fallacy of designing skewed bridges the 
same as non-skewed bridges. They observed that as the bridge skew angle increases, the peak 
passive force is significantly diminished which could lead to poor or even unsafe performance. 
The literature agrees that a displacement of 3-5% of the wall height is required to mobilize the 
peak passive resistance. The shape of the passive force displacement curve is best represented as 
hyperbolic in shape, and the Log Spiral method has been confirmed to be the most accurate at 
predicting the peak passive force and the shape of the failure plane. All of the previous research 
on this topic, whether full-scale field tests or large-scale laboratory tests, has been done with 
dense compacted sand, dense granular backfill, or computer modeling of these types of 
conventional backfill materials. However, the use of CLSM is increasing because of the 
product’s satisfactory performance as a conventional backfill replacement and the time saving, or 
economic, benefits.   

To determine the relationship of passive force versus backwall displacement for a CLSM 
backfilled bridge abutment, two laboratory large-scale lateral load tests were conducted at skew 
angles of 0 and 30°. The model backwall was a 4.13 ft (1.26 m) wide and 2 ft (0.61 m) tall 
reinforced concrete block skewed to either 0 or 30°. The passive force-displacement curves for 
the two tests were hyperbolic in shape, and the displacement required to reach the peak passive 
resistance was approximately 0.75-2% of the wall height. The effect of skew angle on the 
magnitude of passive resistance in the CLSM backfill was much less significant than for 
conventional backfill materials. However, within displacements of 4-5% of the backwall height, 
the passive force-displacement curve reached a relatively constant residual or ultimate strength. 
The residual strength ranged from 20-40% of the measured peak passive resistance. The failure 
plane did not follow the logarithmic spiral pattern as the conventional backfill materials did. 
Instead, the failure plane was nearly linear and the failed wedge was displaced more like a block 
with very low compressive strains. 
 

Keywords: CLSM, backfill, passive force, abutment, backwall, residual strength  
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1 INTRODUCTION 

Lateral earth pressure is an essential parameter to understand for the safe design of retaining 

walls, basement walls, anchor blocks, laterally loaded pile caps, and bridge abutment backwalls 

(Das 2014). The lateral earth pressures stabilize these structures and resist their movement and 

rotation. Passive lateral earth pressures are generated when structural elements are forced into the 

backfill material supporting them. In bridge design, an important parameter is the passive force-

displacement relationship at the abutment backwall-backfill interface. This relationship provides 

an estimate of the amount of passive resistance supplied by the backfill material for a given 

amount of backwall displacement.  

When thermal expansion or seismic loadings cause the backwall to displace into the backfill, 

the backfill is required to produce adequate support in the form of passive resistance. The bridge 

design practices currently in use assume that the peak passive force is the same for skewed 

bridges as for those that are non-skewed (AASHTO 2011). Research and field tests have clearly 

pointed out that this assumption is not valid. The previous observations and test results have 

shown that skewed bridges do not perform as well as non-skewed bridges when subjected to 

loads due to earthquakes (Elnashi 2010, Toro 2013) or thermal expansion (Sandford and Elgaaly 

1993). All prior research on the passive force-displacement relationship has been done on 

abutments with a conventional sand or gravel backfill. The purpose of this research is to define 

the passive force-displacement relationship for bridge abutments using a backfill consisting of 
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controlled low-strength material (CLSM) and to assess the effect of bridge skew angle on that 

relationship.    

 Background 

Previously, large-scale lateral load tests have been performed (Duncan and Mokwa 2001, 

Rollins and Sparks 2002, Rollins and Cole 2006, Lemnitzer et al. 2009) for the purpose of 

analyzing the passive force versus backwall displacement relationship for dense sand and gravel 

backfill against non-skewed bridge abutments. These tests evaluated the results of using the three 

most common passive earth pressure theories to calculate the peak passive pressure. They are the 

Coulomb (Coulomb 1776), Rankine (Rankine 1857), and Log Spiral (Terzaghi 1943) theories. 

The results from Duncan and Mokwa (2001), Rollins and Cole (2002), Rollins and Sparks 

(2006), and Lemnitzer et al. (2009) agree that the peak passive pressure generated in the backfill 

is most correctly predicted using the Log Spiral method. Rollins and Sparks (2006) noted that the 

Rankine method significantly underestimates the peak passive pressure, and the Coulomb 

method overestimates it. Furthermore, it was observed that the peak passive pressure was fully 

mobilized when the backwall longitudinal displacements were in the range of 3-5% of the 

backwall height (Rollins and Cole 2006). Duncan and Mokwa (2001) further concluded that the 

passive force versus longitudinal displacement relationship could be described using a 

hyperbolic shape. To make the design process simpler, most bridge design specifications use a 

bi-linear passive force versus longitudinal displacement relationship (AASHTO 2011, CalTrans 

2010).   

As mentioned previously, the bridge design practices currently in use assume that the peak 

passive force is the same for skewed bridges as for those that are non-skewed (AASHTO 2011). 
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Research and field tests have clearly pointed out that this is not the case. Several lateral load tests 

were done on skewed abutment backwalls to evaluate the effect of skew angle on the peak 

passive resistance (Rollins and Jessee 2012, Marsh 2013, Franke, 2013, Rollins et al. 2015). 

Also, numerical models were created to predict the outcomes of future lateral load tests with 

skewed abutments (Shamsabadi et al. 2006). In-service bridges were analyzed under thermal 

expansion and after earthquakes. The load tests and numerical models confirmed that the peak 

passive resistance was significantly reduced as the skew angle increased. It was also concluded 

that skewed bridges do not perform as well as non-skewed bridges when subjected to loads due 

to earthquakes (Elnashi 2010, Toro et al. 2013) or thermal expansion (Sandford and Elgaaly 

1993, Steinberg et al. 2004). However, it was found that the displacement required to mobilize 

the peak passive resistance was still 3-5% of the wall height. 

The previous research described above was performed using conventional sand and gravel 

backfill materials. However, CLSM has begun to be used as a cost effective and time saving 

replacement for these backfill materials on bridge abutment applications. No research has 

previously been done in regard to the passive force-displacement relationship for CLSM backfill. 

Using CLSM as a backfill has attractive possibilities, but the passive force-displacement 

relationship needs to be characterized for safe and efficient abutment design when using CLSM 

as the backfill material. 

 Research Objectives 

The objectives of this research investigation are as follows: 

1. Define bridge abutment passive force-deflection relationships for CLSM backfill 

from large-scale laboratory testing. 
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2. Determine the influence of skew angle on the passive resistance of CLSM backfill. 

3. Develop simple design models based on laboratory tests and numerical simulations. 

4. Characterize the strength behavior of CLSM. 

5. Examine the failure plane shape for the lateral load tests on CLSM. 

 Order of Presentation 

This section outlines the order of this thesis. First, the literature review describes the current 

state of knowledge with regards to the use and characteristics of CLSM. It also assesses the 

current state of knowledge of the passive force-displacement relationship for skewed and non-

skewed bridge abutments. Finally, it describes the need for new research with regard to using 

CLSM as a bridge abutment backfill material. Next, the test layout and procedures and CLSM 

backfill properties are described. Following the test description, the test results are given in the 

order of passive force-displacement curves, backwall movement and rotation, variation of forces 

with skew angle, failure surface geometries, and backfill surface heave. The test results are then 

compared with numerical models to analyze the results. Finally, conclusions from the tests and 

numerical models are discussed and the need for additional research is outlined. 
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2 LITERATURE REVIEW 

 This chapter addresses the current state of knowledge relating to the passive force-

deflection relationship for skewed bridge abutments using controlled low-strength material 

(CLSM) backfill. First, CLSM is defined and its properties and applications are discussed. 

Second, passive earth pressure theories are outlined. Third, non-skew passive force-deflection 

tests are presented. Fourth, the forces developed within a skewed bridge abutment structure are 

illustrated. Fifth, the results of passive force-deflection tests with skewed abutment backwalls are 

analyzed. Finally, the chapter concludes by discussing the current limitations in the state of 

knowledge on this subject and how they are to be incorporated into this study. 

 Controlled Low-Strength Material (CLSM) 

 CLSM is a self-leveling and self-consolidating cementitious fill typically used as an 

alternative to conventionally compacted aggregate backfill.  It is also known as flowable fill, 

unshrinkable fill, liquid dirt, controlled density fill (CDF), and various other trademark names. It 

has been used in the construction industry since the 1960s (PCA 2015) on applications such as 

pipeline backfill, but it is currently used in backfill, pavement bases, structural bases, utility 

embedment, void fill, trenching, and repair fill applications (Puppala et al. 2007). There are 

many advantages to using CLSM fill on a project, and the American Concrete Institute (1999) 

summarizes these in Table 2-1.  
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Table 2-1. Cited Advantages of Controlled Low-Strength Materials (ACI 1999). 

 

 

CLSM is a versatile product with a wide range of strengths and characteristics dependent 

on the application and mix design. It is made by mixing various amounts of portland cement, fine 

aggregate, coarse aggregate, and water, but some mix designs include fly ash or other industrial 

by-products and various admixtures to reduce the cement required. For a mix design including 
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fly ash with a targeted 28-day compressive strength of 75-150 psi (517-1034 kPa), the cement 

content is only 3-5 % by weight. A typical cement content for structural concrete is 10-15%, but 

fly ash or other cementitious substitutions can replace up to 50% of the cement. The American 

Concrete Institute (ACI) considers flowable fill as a low-strength material as long as the 

compressive strength is less than 1,200 psi (8270 kPa) (FHWA 1997, Gabr and Bowders 2000).  

However, lower strengths are often required to ensure that the fill can be excavated without 

excessive effort. As described in Table 2-1, CLSM can be placed with a chute, conveyor, pump, 

or bucket, and it requires little spreading or compacting when at the appropriate slump. In 

contrast, placement and compaction of a conventional backfill requires large amounts of energy 

from heavy equipment and personnel. Furthermore, CLSM is typically cured in the ambient 

environment (ACI 1999), whereas structural concrete typically requires some type of cover or 

moisturizing equipment to properly cure to its design strength.    

2.1.1 Physical Properties 

The majority of the benefits of CLSM come from its properties of flowability and 

excavatability. These two properties allow it to be a versatile and effective fill material in lieu of 

conventional aggregate backfill when conditions make standard compaction methods difficult or 

impossible.  

2.1.1.1 Flowability 

As its name implies, flowable fill is able to flow into, around, and between areas that 

would be difficult to consolidate and compact were conventional aggregate backfill to be used 

(Türkel 2007). This ease of placement is what helped initiate the use of CLSM as an effective 

backfill for utility lines, trenches, abandoned tunnels and manholes, and other difficult-to-reach 
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void spaces (ACI 1999). In some instances, flowable fill is the only possible alternative to 

achieve the desired results. The flowability is measured using the slump test according to ASTM 

C143 standards where the slump is specified to be 6-8 in. (150-200 mm) in order for the CLSM 

to consolidate under gravity flow only (FHWA 1997). Another test that is performed to measure 

flowability is the ASTM D6103 flow cone test. The fresh CSLM is placed into a 6 in. (0.15 m) 

tall, 3 in. (0.076 m) diameter cylinder, and the top is leveled off with a trowel. The cylinder is 

quickly lifted upwards, and the diameter of the spread-out CLSM specimen is measured. To have 

appropriate flowability and self-leveling capability, the diameter of the CLSM spread when 

emptied from the flow cone must be 8 in. (200 mm) as a minimum (FHWA 1997, Howard and 

Hitch 1998). 

2.1.1.2 Excavatability 

The excavatability of CLSM allows for the material to be excavated with relative ease, 

either by hand or using machinery, after placement, unlike typical structural concrete mixtures. 

The compressive strength of flowable fill material is specified to be in the range of 20-1200 psi 

(140- 8270 kPa), but the upper range is only used for applications where the fill is not likely to 

be removed. At strengths higher than approximately 300 psi (2070 kPa), excavation becomes 

akin to removing structural concrete. For this reason, many state DOT specifications call for 

CLSM mix designs with a design 28-day compressive strengths much less than this. The 

Portland Concrete Association (2015) states that the upper compressive strength limit for 

excavatable CLSM fill is 200 psi (1380 kPa). The Utah Department of Transportation (UDOT) 

and the National Ready Mixed Concrete Association specify a maximum compressive strength 

of 150 psi (1035 kPa) (NRMCA 2015) to keep CLSM fill excavatable. Finally, Howard and 

Hitch (1998) state that the maximum 28-day compressive strength should be less than 100 psi for 
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CLSM fill that will be excavated in the future. Though the specifications differ, they give a range 

of strengths that are assumed to be the upper limits of excavatability. Figure 2-1 shows a bar 

chart of the upper and lower specified unconfined compressive strength (UCS) limits for CLSM 

in the states sponsoring this study. 

 

 

Figure 2-1. Limits of CLSM strengths for sponsor states. 

 

2.1.2 Engineering Properties 

The performance of CLSM lies between conventional aggregate backfill and structural 

concrete in most of the measured engineering properties. The cement content gives it higher 

strengths than aggregate backfill, but for most CLSM mix designs the cement content is much 

lower than that typically used for structural concrete and therefore yields lower strengths. Several 

of the engineering properties of CLSM are discussed in the following sections. The properties 
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that will be discussed are UCS, unit weight, hardening time, permeability, bleeding and 

shrinkage, bearing strength, modulus of subgrade reaction, and shear strength.  

2.1.2.1 Unconfined Compressive Strength 

 The UCS of CLSM is tested in accordance with ASTM D4832 standards. Depending on 

the mix design and the desired application, the compressive strength can be as high as 1200 psi 

(8270 kPa). Depending on the type of aggregate used, conventionally compacted aggregate 

backfill can be compared to compressive strengths of 50-100 psi (345-690 kPa) (Rajendran 

1994), but not in an unconfined state. CLSM can have compressive strength similar to that of 

regular aggregate backfill, but most mix designs and applications specify strengths that can be 

much greater. The difference in strengths is generally dependent on the cementitious material 

content of the mix design (Rajendran 1994). Higher cement content gives it higher strength, but 

some mix designs replace a portion of cement with fly ash to increase the workability. As 

mentioned before, 1200 psi (8270 kPa) is the industry threshold for the compressive strength of 

CLSM, whereas structural concrete is normally specified for strengths in the range of 3,000-

4,000 psi (20.7-27.6 MPa).  

 The strains required to reach the peak passive force for conventional backfill material in 

bridge abutment applications has been agreed to be approximately 3-5% of the abutment 

backwall height. However, research on soil-cement used in deep mixing applications has shown 

that these strains are much lower for stabilized or cemented materials. In a UCS test, strains of 

less than 1% were generally exhibited at the peak UCS for soil-cemented materials (Filz et al. 

2015, Kitazume and Terashi 2013). These smaller strains were attributed to the higher stiffness 

caused by the cementitious material. These materials are very similar in nature to CLSM. 
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2.1.2.2 Unit Weight 

 The unit weight, or density, of the in-place CLSM is quite similar to that of in-situ 

aggregate backfill but lower than that of conventional concrete (145 lb/ft3 or 22.8 kN/m3). The 

in-place unit weight depends on the weight of the filler or aggregate material. Typical mix 

designs using fly ash as the filler material have a unit weight of about 90-120 lb/ft3 (1500-1900 

kg/m3); however, with the aid of foaming agents, CLSM densities have been lowered to 20 lb/ft3 

(325 kg/m3) when reduced weight is required (PCA 2015).  In contrast, the unit weight of 

conventional aggregate backfill with sand filler content is normally in the range of 115-145 lb/ft3 

(1900-2350 kg/m3) (FHWA 1997). 

2.1.2.3 Hardening and Curing Time 

 CLSM mixes containing 5% cement harden enough to support the weight of an average 

person within 1-4 hours. Within 24 hours, construction equipment is usually able to move across 

the CLSM without causing apparent damage to the CLSM surface (FHWA 1997). Increasing the 

cement content can also speed up the setting time of the CLSM. However, ambient temperature 

and water content in the surrounding soil can affect the setting time of the CLSM. In colder and 

wetter environments, the time to harden or set can be greatly increased (Schmitz et al. 2004).  

 Curing of CLSM is generally monitored using the same procedures applied to structural 

concrete. The 7-day strength of test cylinders gives an early strength estimate, and the 28-day 

strength is measured just as with structural concrete. However, the CLSM strength typically 

continues to increase over time, so the long-term strength should be monitored. This is especially 

the case when slow-reacting fly ash is included in the mix design. CLSM is generally cured 
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without any plastic sheeting or curing techniques (FHWA 1997). However, it should be insulated 

if exceedingly hot or cold temperatures will cause issues before it can set (Rajendran 1994). 

2.1.2.4 Permeability 

 The permeability of CLSM mixes is dependent upon the amount of fly ash and cement 

content. In mixes with high fly ash content, the hydraulic conductivity values range from  

2.8x10-3-2.8x10-4 ft/day (10-6-10-7 cm/sec), which would be similar to a compacted clay (Gabr 

and Bowders 2000). The low end of the range of permeability is in mixes with higher cement and 

fly ash content. Mixes with lower fly ash content have higher hydraulic conductivity values in 

the range of 2.8x10-1-2.8x10-6 ft/day (10-4-10-6 cm/sec), which is more typical of a compacted 

sandy silt (FHWA 1997).   

2.1.2.5 Bleeding and Shrinkage 

 Bleeding and shrinkage is possible in CLSM mixtures with high water content. When the 

bleed water evaporates, lateral and vertical shrinkage can occur. This may be manifested on the 

surface by shrinkage cracks in the flowable fill. With cracks at the surface, water infiltrating the 

fill and creating freeze-thaw problems is the major concern. However, once the fill has set, no 

shrinkage or settlement will occur within the CLSM itself (FHWA 1997).   

2.1.2.6 Bearing Strength 

The bearing strength of the CLSM fill is directly related to the UCS. For example, a mix 

design with a 28-day UCS of 150 psi (1035 kPa) typically has a bearing strength of 

approximately 10 tons/ft2 (9000 kg/m2) (FHWA 1997). This is approximately three times greater 

than a well compacted aggregate backfill material.  
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2.1.2.7 Modulus of Subgrade Reaction 

 The modulus of subgrade reaction for most soils used in a rigid pavement design usually 

ranges from 50-300 lb/in3 (8.2 to 49.2 N/cm2) and is about 500 lb/in3 (82 N/cm2) for a quality 

granular subbase material (FHWA 1997). In contrast, the modulus of subgrade reaction for 

flowable fill is approximately 5000 lb/in3 (820 N/cm2). This high modulus makes it a suitable 

road base material.  

2.1.2.8 Shear Strength 

In triaxial shear strength testing, CLSM fill has shown internal friction angles ranging 

from 20-30° (FHWA 1997). The FHWA (1997) also reported cohesion of approximately 30-35% 

of the UCS. However, other researchers have found different results for the angle of shearing 

resistance because of the highly variable mix designs. Howard and Hitch (1998) found the 

friction angle to be a minimum of 38° at 16 hours for their CLSM mix design. They also stated 

that the cohesion increased from 0.2-6.3 psi (0.0014-0.043 MPa) from the 16-hour mark to 28 

days. However, the angle of shearing resistance has been found to be in the range of 43-54° at 7 

days, and the cohesion ranged from 5.4-7 psi (0.037-0.048 MPa) (Türkel 2007). According to 

Türkel (2007), the friction angles of CLSM are similar to those of medium-sized gravelly soil. 

The variations in the values found by these researchers are due to the different mix designs that 

were used in each study and the amount of time that each specimen was allowed to cure. 

Another product very similar to CLSM is the deep-mixed soil-cement used in soil 

stabilization applications. This material is simply the native soil material mixed with a stabilizing 

agent consisting of typically lime or cement. Filz et al. (2015) reported that the cohesion value is 

generally estimated as 0.7 times 50% of the UCS. The authors stated that the 50% of the UCS 
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accounts for the shear strength of the material, and the 0.7 factor provides the mass strength in 

terms of the small-sample strength. The design process also assumes a friction angle of 0°. It was 

also commented that the shear strength of the soil-cement was unaffected by the consolidation 

pressure applied in the tests. (Filz et al. 2015, Kitazume and Terashi 2013). Filz et al. (2015) 

proposed a strength failure envelope with example values shown in Figure 2-2. The tension in 

the direct tension Mohr’s circle for the soil-cement material was said to be estimated as 

0.12*UCS (Filz et al. 2015).    

 

 

Figure 2-2. Proposed example strength envelope for deep-mixed soil-cement including 
tension (Filz et al. 2015). 
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2.1.3 Economic Benefits 

The major cause of the increase in use of CLSM in recent years is the economic benefit 

available. CLSM is more expensive per cubic yard than conventional aggregate backfill material, 

but it only requires the use of a ready mix truck to place the fill into the desired volume. With the 

highly fluid CLSM, the ready mix truck can dispense the material very quickly. Within a few 

hours, traffic or previous activity can resume over the CLSM fill. Though the aggregate backfill 

material is cheaper than CLSM fill, the equipment, manpower, and time required for its proper 

installation and compaction are enough to make CLSM fill an economically viable alternative.  

Furthermore, the improper compaction and placement of compacted aggregate fill can 

cause serious damage to structures, roadways, or utilities from large settlements. The self-

consolidating CLSM fill is not prone to significant settlement so utility and structural damage 

due to settlement is less likely to occur (PCA 2015). The bump that is commonly felt before and 

after crossing a bridge can be virtually eliminated with no settlement, and pavement 

reconstruction costs can be reduced (Wilson 1999). These potential savings from avoiding repair 

and replacement work increase the potential economic benefits. 

 Passive Earth Pressure Theories 

Lateral earth pressures are an essential parameter to understand for the safe design of 

retaining walls, basement walls, anchor blocks, laterally loaded pile caps, and bridge abutment 

backwalls (Das 2010). As shown in Figure 2-3, the lateral earth pressures stabilize these 

structural elements and resist their movement. The two types of lateral earth pressures are the 

active and passive cases. Passive lateral earth pressures are generated when structural elements 

are forced into the surrounding material by seismic loadings, thermal expansion, or simply as 
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part of their intended design. This research addresses laterally loaded abutment backwalls being 

displaced into a backfill material, so only the passive earth pressure theories are discussed. 

 

 

Figure 2-3. Passive earth pressure illustrations (Duncan and Mokwa 2001). 

 

There are three commonly evaluated passive earth pressure theories used to estimate the 

passive earth pressures exerted on a structure. The two most commonly used in practice are the 

Coulomb theory (1776) and the Rankine theory (1857). Both of these theories are explained in 

nearly every soil mechanics textbook. The third commonly used method is known as the Log 

Spiral theory (Terzaghi 1943).  The Log Spiral theory most accurately represents the passive 

earth pressures but is utilized less in practice because of its complexity and the time and effort 

required for its use (Duncan and Mokwa 2001). The equation for peak passive pressure per unit 

of wall width, Pp, reduces to the same form in all three theories and is given in Equation 2-1 as 
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𝑃𝑃𝑝𝑝 = 1
2
𝐾𝐾𝑝𝑝𝛾𝛾𝐻𝐻2 + 2�𝐾𝐾𝑝𝑝𝑐𝑐′𝐻𝐻          (2-1) 

where 

 𝐾𝐾𝑝𝑝 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 

 𝛾𝛾 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 

 𝐻𝐻 = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡, and 

 𝑐𝑐′ = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛. 

In cemented materials, the strength is likely to be determined by the cohesion in the specimen, 

and the friction angle is assumed to be zero. With a friction angle of zero for the backfill, the 

passive earth pressure coefficient, Kp, is equal to 1 according to all three theories. This is the case 

for this thesis, as a cemented CLSM backfill is used. For this case, Equation 2-1 can be 

simplified to Equation 2-2 to obtain the peak passive pressure Pp as 

 𝑃𝑃𝑝𝑝 = 1
2
𝛾𝛾𝐻𝐻2 + 2𝑐𝑐′𝐻𝐻         (2-2). 

The variations in Coulomb, Rankine, Terzaghi, and many other researchers’ theories are mainly 

reflected in their different approaches for estimating the passive earth pressure coefficient, Kp. 

The following sections describe the different ways that these common theories estimate Kp.  

2.2.1 Coulomb and Rankine Theories 

The Coulomb and Rankine passive earth pressure theories vary in that the Coulomb 

theory typically overestimates passive pressures while the Rankine theory usually gives very 

conservative estimates of passive earth pressures. The difference stems from the fact that 

Rankine’s theory uses the Mohr-Coulomb failure criteria and does not consider the interface 
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friction between the structure and the backfill (Das 2010). This interface friction tends to 

increase the passive pressure, so disregarding it typically leads to a conservative passive force 

prediction.   

Both the Coulomb and Rankine theories derive equations for the passive earth pressure 

coefficient, KP. As was mentioned previously, Coulomb’s equation considers wall friction 

whereas Rankine’s does not. The Coulomb theory is also used in situations with an inclined wall 

and irregularly sloped backfill conditions. The Coulomb and Rankine solutions are shown in 

Equation 2-3 and Equation 2-4, respectively.  

𝐾𝐾𝑃𝑃 = 𝑠𝑠𝑠𝑠𝑠𝑠2(𝛽𝛽−𝜙𝜙′)

𝑠𝑠𝑠𝑠𝑠𝑠2𝛽𝛽sin (𝛽𝛽+𝛿𝛿′)�1−�sin�𝜙𝜙
′+𝛿𝛿′�sin (𝜙𝜙′+𝛼𝛼)

sin�𝛽𝛽+𝛿𝛿′�sin (𝛽𝛽+𝛼𝛼)
�

2      (2-3) 

𝐾𝐾𝑃𝑃 = cos𝛼𝛼+�cos2 𝛼𝛼−cos2 𝜙𝜙′

cos𝛼𝛼−�cos2 𝛼𝛼−cos2 𝜙𝜙′       (2-4) 

where 

 𝛽𝛽 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣, 

𝜙𝜙′ = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 

𝛿𝛿′ = 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, and 

𝛼𝛼 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏. 

 Both theories assume a planar or linear failure surface that starts at the bottom of the wall 

and progresses at an angle up to the backfill surface. This angle is defined by Rankine to be 

inclined 45°- ϕ/2 from the horizontal as shown in Figure 2-4. The Coulomb theory uses an 
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iterative process involving force polygons to determine the angle of inclination. Graphical 

solutions to determine this angle were developed by Culmann (1875), but it can now be done 

quickly and easily with a computer (Das 2010). With the assumption of a linear failure surface, 

both theories tend to be inaccurate when the wall friction, δ, is greater than 40% of the internal 

friction angle, ϕ (Duncan and Mokwa 2001). 

 

Figure 2-4. Rankine failure plane portrayal. 

 

2.2.2 Log Spiral Theory 

The Log Spiral theory has been commonly regarded as the best method for correctly 

predicting the passive earth pressure coefficient, Kp (Duncan and Mokwa 2001). Several 

researchers have developed different methods for determining Kp, and they typically report that 

their results are in agreement with the Log Spiral method (Kumar and Subba Rao 1997, Zhu and 

Qian 2000, Soubra 2007). The Log Spiral approach is much more complicated than the Coulomb 

and Rankine theories and is, consequently, less commonly used. The theory uses a limit 
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equilibrium approach like the Coulomb theory, so it is also an upper bound estimate (Kumar and 

Rao 1997).  

The log-spiral-shaped failure wedge is not considered to be linear as the Coulomb and 

Rankine theories suggest. Terzaghi (1943) suggests a failure wedge with two distinct failure 

zones. The first is the Prandtl zone, which has the shape of a logarithmic spiral, and the second is 

the Rankine zone, which follows the linear failure surface that the Rankine theory predicts. 

Figure 2-5 shows the assumed log-spiral-shaped failure wedge. 

 

 

Figure 2-5. Log Spiral failure geometry [(Marsh, 2013) adapted from Terzaghi (1943)]. 

  

The process involved in the Log Spiral theory is to iteratively determine the mathematical 

center of the logarithmic spiral that will minimize the passive force calculated (Marsh 2013). 

This can be a very complex process, and there have been several different methods produced to 

complete the iterations quickly. There are three general ways that the Log Spiral theory is  
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typically employed (Duncan and Mokwa 2001). First, there are many tables and charts 

developed by Caquot and Kerisel (1948) that can be found in NAVFAC (1982) to quickly find 

the KP value for simple conditions in cohesionless soil. Second, there is a graphical method that 

was established and is fully explained by Terzaghi (1943) and Terzaghi et al. (1996). However, 

these solutions can be very tedious. Finally, the solution can be determined using numerical 

analyses on a computer. Duncan and Mokwa (2001) created a numerical analysis program called 

PYCAP that can quickly and easily calculate the passive earth force. Its limitations are that it 

refers to a vertical wall and horizontal backfill with uniform surcharge (Duncan and Mokwa 

2001). Despite its limitations, it makes the time and effort required to complete the iterative 

process of the Log Spiral theory much more manageable. A similar program known as ABUT 

was developed by Shasabadi et al. (2006) and produces Kp values similar to those from Duncan 

and Mokwa (2001).   

 The curved failure surface predicted by the Log Spiral theory is much more probable for 

conditions when the wall friction, δ, is greater than 40% of the angle of internal friction of the 

backfill, ϕ (Duncan and Mokwa 2001). For values of δ/ϕ < 0.4, the Kp values predicted by the 

Coulomb and Log Spiral theories are essentially the same. Once the wall friction angle increases 

past 0.4ϕ, the Coulomb theory begins to predict much higher values of Kp than the Log Spiral 

theory. Table 2-2 from Duncan and Mokwa (2001) shows the calculated Kp values for the 

Rankine, Coulomb, and Log Spiral theories for different magnitudes of wall friction.  
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Table 2-2. Comparison of Kp Values Computed by the Rankine, Coulomb, and                
Log Spiral Theories for Level Ground Surface with ϕ = 40°                                                     

(Reproduced from Duncan and Mokwa 2001) 
        

Wall 
Friction 

Rankine 
Theory 

Coulomb 
Theory 

Log 
Spiral 
Theory 

(δ/φ) (KP) (KP) (KP) 
0 4.6 4.6 4.6 

0.2 NA 6.3 6.6 
0.4 NA 9.4 9.0 
0.6 NA 15.3 11.9 
0.8 NA 30.4 15.5 
1 NA 92.6 17.5 

Note: NA=Not Applicable  
 

As the data show, all the results are the same for the case with no wall friction. As δ 

increases, the Rankine theory becomes invalid, and the Coulomb theory over-predicts Kp by a 

large margin. The effects on the predicted failure surfaces are displayed in Figure 2-6 from 

Marsh (2013). 

 
Figure 2-6. Failure surface geometries predicted by the Rankine, Coulomb, and Log Spiral 
theories (Marsh 2013). 
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2.2.3 Factors Governing Passive Earth Pressures 

Passive earth pressures are generated in the backfill zone of a bridge abutment when the 

abutment backwall is forced laterally into the backfill. The magnitude, direction, and distribution 

of the passive pressure within the abutment-backfill system are dependent upon many different 

soil and structure parameters. According to Duncan and Mokwa (2001), the four principal 

parameters are as follows: (1) magnitude and direction of structural movement, (2) strength and 

stiffness of the soil, (3) friction and/or cohesion between the structure and the soil, and (4) shape 

of the structure. The following subsections discuss these four factors in greater detail. 

2.1.3.1 Amount and Direction of Movement 

In passive earth pressure conditions, the structure is typically moved horizontally into the 

resisting soil. If the structure movement is enough to cause failure of the material resisting its 

motion, a failure plane develops. When the resisting material fails, the failed wedge moves along 

its failure plane, which contains both a vertical and a horizontal component. The upward 

movement of the soil with respect to the structure creates a vertical shear force at the soil-

structure interface. Duncan and Mokwa (2001) stated that, because there is both a horizontal and 

vertical force generated by the structural and soil movement, the resultant passive force, Ep, acts 

at an angle, δmob, to the soil-structure interface. The angle, δmob, at which the passive force, Ep, 

acts is known as the interface friction angle. If the structure is restrained either by its own weight 

or through a construction method, then the vertical forces on the soil-structure interface are able 

to fully mobilize, and the interface friction angle is maximized.  If the structure is not sufficiently 

restrained, then the soil and the structure will move upward together, and the vertical force is not 

fully generated nor the interface friction angle fully mobilized. Figure 2-7 shows the structure 
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and soil movements, free-body diagram, and forces required for equilibrium in the case where 

the interface friction angle, δmob, is fully mobilized.  

 

 

Figure 2-7. Movements, forces, and equilibrium requirements for passive pressure 
conditions (reproduced from Duncan and Mokwa 2001). 
 

2.1.3.2 Strength and Stiffness of the Backfill 

The development of passive force is dependent upon both the strength and the stiffness of 

the backfill. The passive force generated in the backfill is proportional to the strength of the 

material used. Higher backfill strength allows for the development of higher maximum passive 

earth pressures. Furthermore, higher backfill stiffness allows for higher passive force to be 

developed for a given amount of movement. For these reasons, it is important to properly 

consider these backfill parameters in design.  Duncan and Mokwa (2001) provide tables with 

ranges for stiffness of sand and clay, but values for CLSM backfill are not generally available.  
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2.1.3.3 Soil-Structure Interface Friction and Adhesion 

As previously mentioned, the resultant passive force acts at an angle inclined upward 

from normal to the soil-structure interface. This angle is called the interface friction angle, or δ. 

The resistance to vertical backfill movement relative to the structure is dependent on the 

magnitude of the interface friction angle. The development of δ is based on the nature or 

roughness of the interface material, the backfill material properties, and the amount of shear 

displacement across the interface.   

The mobilized interface friction angle, δmob, is determined by both the roughness of the 

structural interface and the backfill material properties. Researchers have often expressed δmax as 

a ratio of δmax/ϕ, where ϕ is the angle of internal friction of the backfill material. Based on many 

studies, Potyondy (1961) created conservative tables of the δmax/ϕ ratios for different types of 

structural and backfill materials. Those results are shown in Table 2-3. 

 

Table 2-3. Minimum values for δmax/ϕ (Potyondy 1961) 

      
   Structural Material  
  Steel Concrete Wood  
 Soil Type (δmax/ϕ) (δmax/ϕ) (δmax/ϕ)  
 Sand  0.54 0.76 0.76  
 Silt and Clay 0.54 0.50 0.55  
      

  

As the backfill material begins to move vertically relative to the structural interface, the 

interface friction, δmob, begins to mobilize. With continued movement, the interface friction 

development increases until a maximum friction angle, δmax, is reached. Researchers agree that 
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the required amount of shear displacement at the soil-structure interface to fully mobilize the 

maximum interface friction, δmax, is typically very small. Duncan and Mokwa (2001) suggest that 

displacements on the order of 0.1-0.25 in. (0.25-0.64 cm) fully mobilize the friction angle. If 

shear displacements are smaller than the required values, then the mobilized interface friction 

angle can safely be assumed to be less than or equal to the value of δmax. 

 In addition to the friction between the structural and backfill materials, cohesive soils 

may also have an added amount of shear resistance due to adhesion. Duncan and Mokwa (2001) 

specify that the maximum amount of adhesion, ca, is equal to the cohesion, c, of the backfill 

material. They also state that the adhesion can be characterized in terms of α = ca/c. The range of 

adhesion values varies from 0.5 for stiff soils to about 0.9 for soft soils (Duncan and Mokwa 

2001). In the case of a cemented backfill material like CLSM, it is unclear whether the 

interaction between an abutment wall should be modeled using a wall friction factor or an 

adhesion factor or what appropriate values would be for each parameter. 

2.1.3.4 Structure Shape 

Conventional earth pressure theories are based on a two-dimensional cross section of the 

structure and soil. Inherent in these theories is the assumption that the passive pressure condition 

at each cross section is identical along the entire length of the structure. Various researchers have 

pointed out the fallacy of these assumptions and noted that the passive pressure conditions shift 

from two-dimensional at the wall center to three-dimensional at the ends of the wall (Ovesen 

1964, Hansen 1966, Rollins and Cole 2006, Shamsabadi 2006) as shown in Figure 2-8. The 

three-dimensional effects at the ends of the structure can cause a large variance in the expected 

passive resistance (Duncan and Mokwa 2001). The difference in the passive pressure predicted 
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by the conventional methods and those actually measured is manifested particularly in structures 

of shorter length (Ovesen 1964, Duncan and Mokwa 2001). The failure surface illustrated in 

Figure 2-8 shows how the passive pressure conditions vary from two-dimensional to three-

dimensional from the center to the boundary of the structure. 

 
Figure 2-8. Three dimensional passive pressure failure surface [Shamsabadi, 2006 (after 
Rollins and Cole, 2006)]. 
 

 

Ovesen (1964) conducted a series of passive pressure tests, and from those results he 

concluded that the actual passive pressures for shorter structures is higher than those predicted by 

conventional theories. With reference to Figure 2-8, the volume of soil displaced per unit wall 

length is much greater on the ends than in the center. The extra width that adds to the resistance 

is known as the effective backwall width, be. The dimensions in Figure 2-8 show that, although 

the backwall width, w, is 5.18 m, the effective backwall width, be, is 1.2*w or 6.21 m. The 

additional, or effective width, causes passive resistance to be higher in structures of finite length 

than would be the case for a structure of infinite length. The three-dimensional end effects can be 
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accounted for in design by using an equation giving a shape correction factor developed by 

Hansen (1966) that ranges from 1.0 for a structure of infinite length to maximum of 2.0 for 

shorter structures ( Rollins and Jessee 2012).    

 Passive Force-Displacement Tests for Non-Skewed Abutment Walls 

 Many researchers have studied the passive force-deflection relationship for laterally 

loaded pile caps or abutment backwalls. Their studies have included laboratory and large-scale 

field tests and finite element computer modeling in an effort to correctly predict the passive 

force-deflection relationship. This section summarizes the results found by Duncan and Mokwa 

(2001), Rollins and Sparks (2002), Rollins and Cole (2006), and Lemnitzer et al. (2009). 

2.3.1 Duncan and Mokwa (2001) 

 The authors performed two passive pressure load tests on a reinforced concrete anchor 

block near Blacksburg, Virginia. They performed the tests on two different backfill materials. 

The first test was performed with the anchor block bearing against the natural ground material 

consisting of desiccated sandy silt (ML) and sandy clay (CL). The second was performed with 

the anchor block bearing against a mechanically compacted, well graded gravel backfill. A 

summary of the passive pressure calculated by the Rankine, Coulomb, Log Spiral with three-

dimensional correction, and Log Spiral with no three-dimensional correction methods, compared 

to the measured passive pressure is shown in Table 2-4. Their findings state that the Log Spiral 

method with correction for three-dimensional effects most accurately modeled the measured 

values. Furthermore, they evaluated the results of the measured passive force-deflection curve 

compared with the curve calculated by their numerical analysis program, PYCAP. They found 

reasonable agreement between their numerical analyses and the measured results.  
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Table 2-4. Comparison of Computed and Measured Passive Resistances (kips) 
(Reproduced from Duncan and Mokwa 2001) 

 Natural Soil Gravel Backfill 
Method High  Low Average High  Low  Average 

Rankine 110 94.8 102 43.9 35.4 39.6 
Coulomb 119 103 111 59 49.4 54.2 
Log Spiral, without 
3D correction 

120 102 111 58 48.4 53.3 

Log Spiral, with 3D 
correction 

173 139 156 104 82.3 93.2 

Measured ----- ----- 138 ----- ----- 91.7 
 

2.3.2 Rollins and Sparks (2002) 

 Rollins and Sparks completed a full-scale lateral load test on a 4.0 ft (1.22-m) high and 

9.0 ft (2.74-m) square pile cap that encased a 3x3 pile group. The test was performed at the Salt 

Lake Airport with a soil profile consisting of low-plasticity silts and clays underlain by a sand 

layer. The test was performed by loading the pile cap into a sandy gravel backfill material. The 

authors concurred with Duncan and Mokwa (2001) that the log-spiral method yielded values 

nearest to the measured passive force. They stated that the Rankine method underestimated the 

peak passive force by a factor of 3.5 and that the Coulomb method overestimated the peak 

passive force by a factor of 2. The pile cap displacement required to mobilize the peak passive 

resistance was approximately 6% of the pile cap height. It was noted that this is on the high end 

of the typical estimate of displacement required to mobilize the peak resistance, and this was 

attributed to the soft clay layer beneath the backfill.  
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2.3.3 Rollins and Cole (2006) 

 Rollins and Cole performed several full-scale static and cyclic lateral load tests on a 4x3 

pile group encased in a 3.67 ft (1.12 m) high, 17.0 ft (5.18 m) wide, and 10.0 ft (3.05 m) long 

pile cap. The tests consisted of the pile cap being laterally loaded into several backfill materials. 

The backfill materials were clean sand, fine gravel, coarse gravel, and silty sand. These materials 

had friction angles of 39, 27, 34, and 40°, respectively. The authors state that the Log Spiral 

method most correctly predicted the failure surface geometry and that the failure wedge 

increased in length with increasing friction angle. Finally, they observed that the peak passive 

force was mobilized at displacements of 3-5.2% of the backwall height.    

2.3.4 Lemnitzer et al. (2009) 

 This research was conducted at the University of California, Los Angeles, and it 

consisted of the lateral loading of a full-scale model of a bridge abutment backwall that 

represented a typical California bridge design. The backwall model was 8.5 ft (2.6 m) high by 

14.7 ft (4.5 m) wide by 3.0 ft (0.9 m) thick and was laterally loaded into a well-graded sand with 

silt (SW-SM) backfill material known in the construction industry as sand equivalent 30 (SE30). 

However, the backfill was only filled to a height of 5.5 ft (1.7 m) on the backwall face. 

 The test was set up in such a manner that both horizontal and vertical passive forces were 

monitored. Peak passive pressure was determined to have been reached at a horizontal 

displacement of approximately 3% of the backwall height. The authors concluded that the peak 

passive force was most accurately predicted by the log-spiral method and the method of slices 

developed by Shamsabadi (2007). The horizontal load-deflection curve was estimated using the 
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hyperbolic model based on the research of Duncan and Mokwa (2001) and was shown to be 

consistent with the general shape of the measured horizontal-load deflection curve.   

2.3.5  Passive Force-Displacement Tests Summary 

From these tests, several conclusions were drawn. First, the method that best estimated the 

passive force-deflection relationship was the Log Spiral method. It was best at predicting both 

the peak passive force and the failure surface geometry. Second, the displacements required to 

mobilize the peak passive force were found to be consistently 3-5%. However, no passive force-

displacement tests have been conducted using CLSM as the backfill material. It remains to be 

seen whether its strength should be characterized as frictional or cohesive. Furthermore, the 

displacement required to mobilize the peak passive force in a CLSM backfill is unknown.   

 Movements and Forces for Skewed Bridges 

The previous sections explain how the magnitude of the passive force acting on a structure 

and backfill are affected by the structural movement, backfill properties, backfill-structure 

interface conditions, and structure shape. This thesis is focused on the passive forces acting on an 

abutment backwall, and in these structures the passive force generation is also affected by the 

skew angle of the backwall (Rollins and Cole 2006, Shamsabadi 2006, Rollins and Jessee 2012, 

Marsh 2013). This section illustrates the forces generated at the interface between the bridge 

abutment and the backfill soil upon thermal expansion or seismic action. It also describes the 

required relationships to be satisfied for equilibrium and safe performance of the bridge. 

Burke (1994) describes the forces that are present in a passive pressure condition at the 

bridge abutment backwall and backfill interface. All the forces that interact at the interface can 
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be expressed in terms of PL, the total longitudinal force, and its components parallel and 

perpendicular to the abutment face. Figure 2-9 illustrates these forces. 

 

 

Figure 2-9. Typical interaction of forces on skewed bridges (Adapted from Burke, 1994). 

 

The component of the longitudinal force normal to the interface has to be resisted by the 

passive earth force, Pp, given by Equation 2-5. The parallel, or shearing, component of PL in 

Equation 2-6 is denoted as PT.  PT has to be resisted by the shear resistance of the backwall-

backfill adhesion and interface friction force, PR. It is shown in Equation 2-7. The passive earth 

force applied on a skewed bridge resulting from a longitudinal load is calculated as 

𝑃𝑃𝑃𝑃 = 𝑃𝑃𝐿𝐿 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃          (2-5), 

while the transverse shear is calculated as 
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𝑃𝑃𝑇𝑇 = 𝑃𝑃𝐿𝐿 sin𝜃𝜃          (2-6) 

where  

𝜃𝜃 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏. 

The resistance to the transverse shear is given by  

𝑃𝑃𝑅𝑅 = 𝑐𝑐𝑐𝑐 + 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡          (2-7), 

where  

𝑐𝑐 = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 

𝐴𝐴 = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, and 

𝛿𝛿 = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎. 

Summing the forces transverse to the interface, the inequality required to keep the backwall and 

backfill from moving relative to each other is derived in Equation 2-8 as 

 𝑐𝑐𝑐𝑐+𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝐹𝐹𝑆𝑆

≥ 𝑃𝑃𝐿𝐿 sin𝜃𝜃         (2-8). 

The bridge skew angle creates an offset for the passive forces, which results in a force couple. 

The couple causes the bridge to rotate about its vertical axis, so the moment exerted from the 

shear resistance forces must counteract the passive force moment. Equation 2-9 shows this 

inequality in terms of forces and lengths: 

 (𝑐𝑐𝑐𝑐+𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)𝐿𝐿 cos𝜃𝜃
𝐹𝐹𝑆𝑆

≥ 𝑃𝑃𝑃𝑃𝐿𝐿 sin𝜃𝜃        (2-9). 

 All of these forces and inequalities are based on the assumptions that the structure 

remains stable and that there is a linear pressure distribution on the backwall face (Burke 1994, 

Marsh 2013). If the bridge experiences movement or rotation, the described forces are no longer 

valid. Burke (1994) noticed that, if the cohesion of the backfill was ignored, then the inequality 
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governing the rotational restraint of the bridge structure would be independent of length and 

passive force. Burke (1994) also assumed a factor of safety of 1.5. This allowed the inequality 

for rotational potential to be simplified to Equation 2-10, 

𝜃𝜃 ≤ tan−1 �𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
1.5

�          (2-10) 

where 

 𝜃𝜃 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 and 

 𝛿𝛿 = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎. 

Based on a typical backfill-backwall interface friction angle of 22°, this no-cohesion assumption 

suggests that unstable conditions exist for bridges with skew angles greater than 15° (Burke 

1994, Rollins and Jessee 2012, Marsh 2013). In reality, the critical skew angle depends on the 

interface friction angle mobilized in the structure.    

 Tests and Observations for Skewed Abutment Walls 

 Data from instrumented bridges, laboratory tests, and full-scale field tests have pointed 

out that skewed bridges do not perform as well as non-skewed bridges when subjected to lateral 

loads that can occur from seismic activity, thermal expansion, waves, wind, impacts, and other 

circumstances. In recent years, several tests have been performed with the intent of determining 

the passive force versus backwall deflection relationship for skewed bridge abutments.  

This section discusses the results of laboratory and field results obtained from the 

research of Rollins and Jessee (2012), Marsh (2013), Franke (2013), and Rollins et al. (2015). It 

also describes the available numerical modeling from Shamsabadi (2007), discusses results 

obtained by Sandford and Elgaaly (1993) about the performance of skewed bridges they 
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instrumented, and provides observations of skewed bridge performance in an earthquake 

(Elnashi et al. 2010, Toro 2013).  

2.5.1 Rollins and Jessee (2012) Laboratory Results 

 Rollins and Jessee (2012) performed a laboratory-scale passive force test on a 4.13 ft 

(1.26 m) wide and 2 ft (0.61 m) high concrete wall used to model a bridge abutment backwall. 

The concrete backwall was displaced into a dense sand backfill material just slightly wider than 

the backwall itself to induce a two-dimensional or plane-strain geometry. The backfill was a 

poorly graded washed concrete sand (SP) compacted to 98% of the maximum relative density. 

The test was repeated for backwall skew angles of 0, 15, 30, and 45° to evaluate the effect of the 

skew angle on the passive force-deflection relationship. As depicted in Figure 2-10, the peak 

passive force was found to be significantly reduced as the skew angle increased. However, the 

peak passive force still occurred at a longitudinal displacement between 3-5% of the wall height. 

 
Figure 2-10. Laboratory test passive force-displacement results (Rollins and Jessee 2012). 
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From the data acquired from their tests, they proposed a correction factor, Rskew, for 

skewed bridge design. The correction factor, given by Equation 2-11, relates the passive force 

for a non-skewed bridge, Pp-no skew, and the passive force for a skewed bridge, Pp-skew, as a 

function of skew angle, θ. The authors’ proposed reduction based on backwall skew angle is  

𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑃𝑃𝑝𝑝−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑃𝑃𝑝𝑝−𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

= 8.0 ∗ 10−5𝜃𝜃2 − 0.018𝜃𝜃 + 1      (2-11). 

Based on their reduction equation, a 30° skew angle produces a peak passive force that is 

approximately 53% of the peak passive force for a non-skewed bridge abutment.  

 Furthermore, Rollins and Jessee (2013) found that, even for the skewed tests, the peak 

passive force occurred at longitudinal displacements between 2.5 and 3.5%, which agrees with 

previous research done on non-skewed bridge abutments. However, the higher skew angle tests 

had passive force plateaus for longer displacements than the non-skew test. These force plateaus 

are presented in Figure 2-10. 

2.5.2 Marsh (2013) Full-Scale Test Results 

The author performed several large-scale, unconfined lateral load field tests at a test site 

near the Salt Lake City Airport. The abutment backwall was 11 ft (3.35 m) wide by 5.5 ft (1.68 

m) high. Testing consisted of laterally loading the backwall into a backfill material consisting of 

dense compacted sand. Backwall skew angles of 0, 15, and 30° were tested, and the passive 

force-deflection relationships for each test were acquired. Marsh concurred with previous 

skewed abutment test results that as skew angle increased the peak passive force decreased 

significantly.  The peak passive force for the 15° and 30° skew angle tests were reported to be 
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73% and 58%, respectively, of the peak passive force obtained for the 0° skew case. The passive 

force-deflection curves for the three skew angles are shown in Figure 2-11.  

 

 

Figure 2-11. Passive force-deflection curves for the 0°, 15°, and 30° tests (Marsh 2013). 

 

From these relationships, the author proposed that for a skew angle of 30° a peak passive 

force that is approximately 56% of the peak passive force for a non-skewed bridge abutment can 

be expected. This is very similar to the laboratory test results found by Rollins and Jessee (2012).   

This proposed reduction factor would allow bridge designers to estimate a peak passive force for 

a non-skewed bridge abutment and then use the Rskew factor and the skew angle, θ, to calculate 

the peak passive force for a skewed bridge abutment. The tests showed that, at low skew angles, 

the Log Spiral method most accurately estimated the peak passive force, the Coulomb method 

significantly overestimated it, and the Rankine method significantly underestimated it.  

They also stated that the lateral displacement required to achieve the peak passive force is 

between approximately 3% and 5% of the backfill height. This displacement amount agrees with 
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previous research done on laterally loaded, skewed and non-skewed backwalls alike. Again, the 

Log Spiral method most accurately predicted the failure wedge geometry.    

2.5.3 Franke (2013) Full-Scale Test Results 

At the same test site and in conjunction with Marsh (2013), Franke (2013) performed 

several large-scale lateral load field tests on the same 11 ft (3.35 m) wide by 5.5 ft (1.68 m) high 

abutment backwall that was mentioned in the previous section. The difference between the two 

tests was the backfill set up. While Marsh used a dense, compacted sand backfill, Franke used 

mechanically stabilized earth (MSE) wingwalls in the backfill as shown in Figure 2-12. Similar 

to the tests performed by Marsh, lateral load tests were performed with backwall skew angles of 

0, 15, and 30°.  

 

 

Figure 2-12. Diagram of MSE wingwall layout and configuration (Franke 2013). 
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 Franke (2013) reported peak passive force reductions of 38% and 51% for skew angles of 

15° and 30° respectively, as compared to the peak passive force generated by the 0° skew test. 

These values are comparable to the reductions due to skew angle found by previous researchers 

and fit the reduction curve proposed by Rollins and Jessee (2012) very well. Figure 2-13 shows 

the passive force-deflection curves for the lateral load tests with the MSE wingwalls installed.  

 

 

Figure 2-13. Passive force-deflection curves for all skew angles (Franke 2013). 

 

For the non-skew test, the peak passive force was achieved at a displacement of 

approximately 5% of the wall height. In the skewed test, the peak passive force was mobilized at 

a displacement of approximately 3% of the wall height. Franke (2013) also noted that the skewed 

tests showed a substantial loss in the rate of strength gain after this deflection of approximately 

3% of the backwall height. The hyperbolic methods for predicting the passive force-deflection 



40 

curve proposed by Duncan and Mokwa (2001) and Shamsabadi et al. (2007) most correctly 

modeled the measured passive force-deflection curve from Franke’s tests.  

2.5.4 Rollins et al. (2015) Full-Scale Test Results 

The tests performed by Rollins and Jessee (2012), Marsh (2013), and Franke (2013) were 

all performed with abutment width-to-height ratios of about 2.0, but in typical construction 

practice this ratio is usually much higher. To evaluate the effect of the width-to-height ratio on 

laterally loaded, skewed abutments, Rollins et al. (2015) performed unconfined lateral load tests 

using the same 11 ft (3.35 m) wide by 5.5 ft (1.68 m) tall pile cap, but they used a backfill depth 

of 3 ft (0.9 m) instead of the full 5.5 ft (1.68 m). This nearly doubled the width-to-height ratio 

from 2.0 to 3.7. These authors performed the field tests on the same dense, compacted sand (SP) 

backfill with abutment skew angles of 0, 15, and 30°. 

The findings from these tests provided similar results as the large and full-scale results 

obtained by the aforementioned researchers, with the confirmation that increased abutment skew 

angle dramatically decreases the peak passive force despite the increase in width-to-height ratio. 

Figure 2-14 shows the passive force-deflection curves resulting from these tests. The reductions 

in passive force due to skew angle were found to be closely approximated by Equation 2-11 

given by Rollins and Jessee (2012). A peak passive force reduction of about 50% can be 

expected for a 30° skew angle according to their results. 
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Figure 2-14. Passive force-deflection curves for 0, 15, and 30° skew angle (Rollins, Palmer, 
and Fredrickson 2015). 
  

The authors stated that the peak passive force was achieved with displacements of 3.5% 

of the backfill height for the no-skew case and approximately 2.75% for the 15 and 30° skew 

cases. These results fell in the range that has been reported in the literature by almost all previous 

researchers. Though the peak passive force decreased with increasing skew angle, the initial 

stiffness was said to be unaffected by the skew.  

2.5.5 Shamsabadi et al. (2006)-3D Numerical Modeling Results 

Shamsabadi et al. (2006) created several three-dimensional, nonlinear finite-element 

models to estimate soil capacities behind non-skewed and skewed abutment backwalls as a 

function of wall displacement. Using Plaxis 3D (Brinkgreve 2004), the authors calibrated their  
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finite-element model using the backfill parameters and data obtained from the research done by 

Rollins and Cole (2006). The modeled backfill was a silty-sand typical of what is used for 

structural backfill in California. Table 2-5 summarizes the input parameters used in their Plaxis 

3D finite-element model.  

 

Table 2-5 Shamsabadi et al. (2006) Backfill Finite Element Model Parameters 

           

Soil Type γ φ c δ E50ref Eurref ν 
kN/m3 (lb/ft3) kPa (lb/ft2) Mpa (kip/ft2) Mpa (kip/ft2) 

Silty Sand 18.8 (119.7) 34° 25 (54.4) 23° 100 (2,089) 200 (4,177) 0.35 
           

 

The model that was created represented an actual bridge abutment backwall that was 75 ft 

(22.8 m) wide by 5.5 ft (1.68 m) tall. With a backwall width to height ratio of nearly 14, they 

assumed two-dimensional or plane strain conditions for the non-skew case. However, for the 

skewed cases, there are three dimensional effects involving bridge rotation during dynamic 

loading. They used their models to compare the passive force-deflection relationship on backwall 

skew angles of 0, 30, 45, and 60°, and the resulting passive force-deflection curves, shown in 

Figure 2-15, were obtained. The results indicated that the passive soil capacity decreased with 

increasing skew angle.   
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Figure 2-15. Passive force-deflection curves for 0, 30, 45, and 60° skew angles (Shamsabadi 
et al. 2006). 
 

On the right side of Figure 2-15, the pressure distribution that was assumed to be acting 

on the backwall for each skew angle is shown. The pressure was assumed to be acting at an angle 

equal to the backwall skew angle with the maximum pressure acting on the obtuse corner of the 

backwall and decreasing linearly to zero pressure at the acute corner.  The finite-element model 

results of the failure wedge due to a 45° skew angle are shown in Figure 2-16. Because of the 

asymmetric pressure distribution, the superstructure tends to rotate about a vertical axis in the 

center of the deck. This rotation of the superstructure forces primarily the obtuse corners of the 

deck into the backfill and forms an asymmetrical passive wedge. The finite element analysis of 

the passive wedge is shown in Figure 2-16.  
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Figure 2-16. Passive soil wedge behind a 45° skew backwall (Shamsabadi et al. 2006). 
 

  

To further model the interaction of a skewed bridge deck with a skewed abutment, the 

authors created a global three-dimensional nonlinear dynamic model of a 45° skewed, two-span, 

pre-stressed concrete box-girder bridge. The results of this global model confirmed that the 

pressure distribution on the face of the abutment backwall truly was nonlinear with the maximum 

pressures occurring at the obtuse corner of the bridge deck and that the superstructure underwent 

a significant rotation about a vertical axis shown in Figure 2-17. As previously mentioned, this 

bridge deck rotation causes an asymmetrical passive wedge behind the abutment. The authors 

concluded that the asymmetrical passive soil wedge results in a reduced mobilized soil capacity 

as compared to ordinary non-skewed abutments. 
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Figure 2-17. Skewed box-girder bridge used in global bridge analysis (Shamsabadi et al. 
2006). 
 

 

2.5.6 Sandford and Elgaaly (1993)-Skew Effects on Backfill Pressures at Frame Bridge 

Abutments   

These authors installed total pressure cells and temperature indicators on a previously 

constructed bridge in Maine for a period of 33 months. Their objective was to monitor the effects 

of skew angle and temperature on the backfill pressures. The bridge had a skew angle of 20°, and 

the soil pressure and temperature data were monitored four times per day on both the obtuse and 

the acute sides of the bridge abutment. When warmer temperatures caused the bridge to expand 

into the backfill, the pressures measured on the obtuse side reached nearly three times the 

pressures on the acute side. These pressures were then relieved when the weather cooled and the 

bridge superstructure contracted.  

However, the authors stated that the effects of skew angle diminished over time and 

claimed that the skew angle effects diminished because of greater permanent deformation of the 

backfill on the obtuse side than the acute side. The cause of this permanent deformation was the 
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rotation of the superstructure into the backfill. Sandford and Elgaaly concluded that the obtuse 

side of the bridge was forced into the backfill significantly more than the acute side.  

Finally, they commented that the lateral variation of pressure due to thermal expansion was 

higher than the vertical variation of pressure due to thermal expansion. As a cause of this, they 

proposed a new horizontal soil envelope to be considered when designing a skewed bridge. As 

shown in Figure 2-18, the envelope used the Rankine active pressure on the acute side and the 

Rankine passive pressure on the obtuse side.  

 

 
Figure 2-18. Proposed design soil pressure envelope (Sandford and Elgaaly 1993). 
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2.5.7 Steinberg et al. (2004)- Forces in Wingwalls of Skewed Semi-Integral Bridges 

Steinberg et al. studied the forces developed in abutment wingwalls due to thermal 

expansion and consequent rotation of the superstructure of two skewed semi-integral bridges. 

The first bridge had a span of 87.0 ft (26.5 m) and was 32 ft (9.8 m) wide with a skew angle of 

65°. The second was a four-span semi-integral bridge with outer spans of 70.0 ft (21.3 m) and 

inner spans of 87.0 ft (26.5 m) and was 40.0 ft (12.2 m) wide with a skew angle of 25°. Load 

cells and thermocouples were installed to monitor the forces and temperature changes. 

In addition to the field tests done on these two bridges, the authors used a finite element 

computer program called SAP 2000 to analyze the bridges. They also analyzed fictitious bridges 

with skew angles of 25, 35, and 45° and spans of 100, 200, and 400 ft (30.5, 61, and 122 m) with 

this software. Their findings were that the monitored bridges experienced significant forces in 

the wingwalls due to backwall displacements and bridge rotation, and they cautioned that bridge 

designers should be aware of these forces in skewed bridges. Furthermore, their numerical 

analysis showed that lower skews and lower backfill stiffness values generated lower magnitudes 

of force in the wingwalls compared to higher skew angles and stiffer backfill.   

2.5.8 Elnashi et al. (2010a)- The Maule (Chile) Earthquake of February 27, 2010  

Elnashi et al. (2010) were part of a team sent to assess the damage produced by the Mw 8.8 

2010 earthquake in Chile. Among other structural failures, they examined the damage done to 

bridges. The authors state that the most commonly observed bridge damage was due to unseating 

or displacement of the superstructure. This damage was especially prevalent in skewed bridges. 

Elnashi commented that the skewed bridges tended to rotate about a vertical axis, which resulted 

in the unseating of the bridge girder or failure of the shear keys. This rotation can be seen in 
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Figure 2-19. Furthermore, the newer bridges performed worse than the older bridges because of 

new bridge design code modifications that permitted smaller shear keys and transverse lateral 

restraint systems that were thought to simplify design and construction procedures. 

 

 

Figure 2-19. Bridge superstructure translation (Elnashi et al. 2010). 

 

2.5.9 Toro et al. (2013) Bridge Damage Analysis from 2010 Maule, Chile Earthquake 

These researchers analyzed the performance of 88 overpasses in the Mw 8.8 Maule, Chile 

earthquake in 2010. They aimed to find a correlation between bridge characteristics and the 

damage level resulting from the earthquake. Their findings were that the damage level and 

collapse rate for skewed bridges were much higher than for non-skewed bridges. They concluded 



49 

that the skew angle facilitated the bridge deck rotation and displacement. Finally, they stated that 

the percentage of the initial total construction cost to repair the skewed bridges was an average of 

26% and only 7% for the non-skewed bridges.  

2.5.10 Summary of Skewed Bridge Tests and Observations 

The results of the studies and observations done on skewed bridges indicate that the 

performance of skewed bridges is worse than that of non-skewed bridges. Passive resistance is 

reduced significantly as skew angle increases, but the displacement required to reach the peak 

passive resistance is still found to be 3-5%. Furthermore, the skew angle causes the bridge deck 

to rotate about a vertical axis. This rotation causes additional forces to be exerted on bridge shear 

keys and wingwalls compared to a non-skewed bridge. 

 Literature Review Summary 

There has been a large amount of time spent and research performed to determine the 

effect of skew angle on the passive force-displacement relationship for laterally loaded bridge 

abutment backwalls. As explained in Section 2.4.8, the improper design of skewed bridges can 

have very costly impacts on their performance when loaded in an earthquake, thermally, etc. The 

research that has been done can be implemented to safely and efficiently design skewed bridges 

to withstand rotation and the forces exerted on the structure that result from their displacement. 

Previous work has been performed exclusively with conventional backfill materials typically 

used on a bridge abutment construction site.    
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Using CLSM as an alternative backfill material has its merits, but it also has uncertainties. 

The uncertainties relating to the passive force-deflection relationship for an abutment backwall 

displaced into CLSM backfill include the following topics:  

• Strength characterization of CLSM in computing passive force  

• Displacement required to develop ultimate passive resistance in CLSM 

• The effect of backwall skew angle 

• CLSM backfill failure plane geometry compared to conventional backfill materials 

• Shape of the passive force-deflection relationship 

All of these uncertainties are addressed in the following chapters. 
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3 LABORATORY TEST LAYOUT AND CLSM BACKFILL PROPERTIES 

 Test Layout 

Figure 3-1 shows the plan view layout of the passive force-deflection tests, and Figure 3-2 

shows an elevation view of the cross section through the middle of the wall. The two tests were 

performed with backwall skew angles of 0 and 30°. The simulated abutment backwalls were two 

reinforced concrete blocks with one square face to connect to the actuator, and the opposite face, 

which was to be forced into the backfill, was skewed to either 0 or 30°. The blocks were 49.5 in. 

(1.26 m) wide and 24 in. (0.61 m) tall. They were placed on top of a 12 in. (0.30 m) tall support 

block that consisted of an 11 in. (0.28 m) tall wooden support block with 1 in. (2.54 cm) 

diameter steel rollers placed on top to reduce the friction between the abutment backwall and the 

wooden support.  

Behind the backwalls, the backfill was comprised of CLSM. It was mixed and delivered in 

a ready mix truck and poured into the form with a concrete bucket hoisted from an overhead 

crane. The backfill zone was made just wider than the backwall to create a two-dimensional or 

plane strain condition. In other words, the configuration was designed to eliminate the three-

dimensional or end effects described in Section 2.1.3.4. In total, the backfill was 51 in. (1.29 m) 

wide, 96 in. (2.44 m) long, and 36 in. (0.91 m) deep. Double sheeted plastic liners with lubricant 

between them lined the inside of the form walls to allow the CLSM to displace with minimal 

friction on the floor and form walls.  
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Figure 3-1. Plan view of test layout. 

 

 

 

Figure 3-2. Elevation view of test layout. 
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The CLSM was poured to the level of the top of the backwall and it extended 12 in. (0.30 

m) below the backwall base to allow for failure plane development below the backwall as would 

be expected with the Log Spiral failure theory. The reaction for the backfill was provided by a 5 

ft (1.52 m) square, 4 ft (1.22 m) tall concrete block bolted to the floor.  Three-dimensional 

models of the 0 and 30° test setup are shown in Figures 3-3 and 3-4.  

 

 

Figure 3-3. Three dimensional 0° skew test setup model. 
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Figure 3-4. Three dimensional 30° skew test setup model. 

 

 Instrumentation 

The load test was instrumented to measure the following parameters: longitudinal load, 

longitudinal backwall displacement, transverse backwall displacement, backfill longitudinal 

compressive strain, backfill surface heave, and CLSM backfill thermocouple data as described in 

the following sections. 
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3.2.1 Longitudinal Load Instrumentation 

The longitudinal load was measured by pressure transducers installed by the manufacturer 

within the MTS actuator. With the actuator attached to the backwall, these pressure transducers 

measured the longitudinal load applied on the backwall, and this load was used to calculate the 

passive earth pressure generated within the CLSM backfill. As the tests were conducted, this 

load was recorded four times each second and saved into a text file. 

3.2.2 Longitudinal Displacement Instrumentation 

Four string potentiometers were installed on each of the corners of the backwall to measure 

the longitudinal displacement. As shown in the simplified Figure 3-5, the string pots were 

attached to an independent reference frame that ensured a measurement of strictly backwall 

movement.  This system could also be used to determine rotations of the wall about a vertical or 

horizontal axis through the wall. 

 

 

Figure 3-5. Longitudinal displacement instrumentation. 
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3.2.3 Transverse Displacement Instrumentation 

Along with the longitudinal string potentiometers, two transverse string potentiometers were 

connected to the top and bottom of one side of the backwall. They provided information on the 

transverse displacement of the backwall as a test progressed. 

3.2.4 Compressive Strain Instrumentation 

Seven more longitudinal string potentiometers were installed near the center of the 

independent reference frame. Figure 3-6 shows how each one was connected to the backfill 

surface using the head of a screw that was inserted into the CLSM backfill at intervals of 1 ft (0.3 

m). This allowed data to be recorded that showed the ground surface displacement at different 

distances from the backwall face, and thus the longitudinal compressive strain at these locations 

could be computed. 

 

 

Figure 3-6. Compressive strain instrumentation. 
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3.2.5 Backfill Surface Heave Measurement 

A 6 in. by 6 in. (0.15 m by 0.15 m) square grid was painted on the surface of the CLSM 

backfill using marking spray paint. A survey level was set up alongside the CLSM form, and the 

intersection points of each gridline row and column were surveyed before and after the tests. 

These data allowed for the calculation of the change in elevation, or heave, at each grid point.  

3.2.6 Thermocouple Instrumentation 

A four-channel thermocouple data recording device was used to record the temperature and 

CLSM aging data at four different locations. The first thermocouple lead wire was placed in a 4 

in. (0.10 m) diameter by 8 in. (0.2 m) tall CLSM cylinder placed on the concrete reaction block 

at the rear of the backfill zone. The other three lead wires were placed directly into the CLSM as 

it was being poured at depths of 6 in. (0.15 m), 18 in. (0.45 m), and 27 in. (0.69 m) from the 

surface. This was done to monitor the CLSM curing process at different depths in the backfill 

zone.   

 Load Test Procedure 

The tests were conducted by bolting a 110 kip (490 kN) capacity hydraulic actuator to the 

concrete backwalls and displacing them longitudinally into the CLSM backfill. The previously 

mentioned plastic sheeting prevented the form wall and laboratory floor from providing friction 

that could alter the results. The actuator was set to a displacement rate of 0.1 in/min (0.25 

mm/min), and the tests were continued until clear failure planes had been developed and 

longitudinal displacements were near 3 in. (76.2 mm). Between the actuator and the steel 

reaction frame, load cells were installed, as shown in Figures 3-1 and 3-2, to measure the top and 

side loads on the actuator as the displacement of the backwall progressed.   
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 CLSM Engineering Properties 

This section addresses the measurement of the following CLSM properties: unit weight, 

UCS, shear strength, interface shear strength, and curing rate. Each test was performed on the 

CLSM used in both the 0 and 30° skew tests. Figure 3-7 shows the mix design that was used in 

the two tests. 

 

 

Figure 3-7. CLSM mix design 
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The CLSM used for these tests was taken from the middle of the truck unloading process 

to get an accurate representation of the material. The slump and flow cone diameter were 

measured according to ASTM C143 and ASTM D6103 standards (mentioned in Section 2.1.1), 

respectively. In both batches, the diameter for the flow cone did not reach the FHWA specified 

minimum for flowability of 8 in. The lower flow diameters were determined to be acceptable 

because the slump was already in the desired range and the addition of excess water was avoided 

to prevent negatively affecting the cementitious properties of the CLSM. The slump and flow 

diameter for the 0 and 30° skew test batches are shown in Table 3-1.  

 

Table 3-1. Slump and Flow Cone Measurements for CLSM  

 CLSM Batch ASTM C143 ASTM D6103 
Slump (in.)  Flow Diameter (in.) 

0° Skew Test 7.0 7.25 
30° Skew Test 8.0 6.00 

 

3.4.1 Unit Weight 

On the same 7-day intervals at which the cylinders were to be tested for their UCS, their 

unit weights were also measured. This was accomplished by weighing each cylinder on a scale 

and then measuring the height of the cylinder on opposite sides using a set of digital calipers. 

The diameter of each cylinder always remained at 4 in. (0.10 m). Based on the average of the 

two height measurements and the constant diameter, the volume of the cylinder was calculated, 

and the wet unit weight was determined using the Equation 3-1 

γm = Weightcylinder
Volumecylinder

         3-1.  
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After the cylinders had been tested in compression for their UCS, a large portion of each cylinder 

was weighed and then placed in an oven to dry. After thoroughly drying, the cylinder was 

weighed again, and the water content, in percent, was found using Equation 3-2 

w = wet cylinder weight−dry cylinder weight
dry cylinder weight

 (100%)      3-2. 

With the two different curing methods, the water contents were expected to be significantly 

different for the open-air cured cylinders and the fog room cured cylinders.  Using the moisture 

content, the dry unit weight was obtained to make a comparison between the cylinders that was 

more representative. The dry unit weight in Equation 3-3 was calculated as 

γd =  γm
1+w

          3-3 

where 

γd = 𝑑𝑑𝑑𝑑𝑑𝑑 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡, 

𝛾𝛾𝑚𝑚 = 𝑤𝑤𝑤𝑤𝑤𝑤 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡, and 

𝑤𝑤 = 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. 

 The water content of the specimens cured in open air averaged approximately 1%, while 

the specimens cured in the fog room typically had a water content closer to 10%.  Tables 3-2 and 

3-3 show the average moist unit weight, the average moisture content, and the average dry unit 

weight for the cylinders tested in each of the 7-day, 14-day, 21-day, and 28-day unconfined 

compression tests for the 0 and 30° skew test cylinders. Table 3-2 shows the fog room cured and 

open-air cured data side by side. It was noted in the first passive force-displacement test that the 

strength of the CLSM in the load test was better represented by the open-air cured cylinders. 
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Thus, the second set of cylinders that were cast only contained open-air-cured cylinders as 

shown in Table 3-3.  

 

Table 3-2. Unit Weight and Moisture Content Data for 0° Skew Test Cylinders 

   Open-Air Cured Fog Room Cured 

7-Day 
Cure 

γm (lb/ft3) 124.2 135.9 
w (%) 2.76% 11.59% 

γd (lb/ft3) 120.8 121.8 

14-Day 
Cure 

γm (lb/ft3) 121.4 136.1 
w (%) 1.16% 10.84% 

γd (lb/ft3) 120.0 122.8 

21-Day 
Cure 

γm (lb/ft3) 121.9 135.3 
w (%) 0.89% 10.75% 

γd (lb/ft3) 120.8 122.2 

28-Day 
Cure 

γm (lb/ft3) 120.5 135.9 
w(%) 0.70% 9.78% 

γd (lb/ft3) 119.6 123.8 

 

The average open-air cured moist unit weight for the 30° skew test CLSM was 112.5 

lb/ft3 (17.7 kN/m3). This is nearly 10 lb/ft3 (1.5 kN/m3) lower than the open-air cured average 

moist unit weight of 122 lb/ft3 (19.17 kN/m3) for the CLSM used in the 0° skew test. The same 

mix design was ordered from the same ready mix supplier for both tests, and the rodding and 

casting of the cylinders were done by the author in the same manner for both tests according to 

ASTM D4832 standards. It is unclear what the determining factor was for the difference in unit 

weights of the two batches. 
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Table 3-3. Unit Weight and Moisture Content Data for 30° Skew Test Cylinders 

All Cylinders Open-Air Cured 

7-Day Cure 
γm (lb/ft3) 113.4 

w (%) 2.03% 

γd (lb/ft3) 111.2 

14-Day Cure 
γm (lb/ft3) 111.9 

w (%) 1.33% 

γd (lb/ft3) 110.4 

21-Day Cure 
γm (lb/ft3) 113.2 

w (%) 0.84% 

γd (lb/ft3) 112.2 

28-Day Cure 
γm (lb/ft3) 111.5 

w (%) 0.70% 

γd (lb/ft3) 110.8 
  

3.4.2 Unconfined Compressive Strength 

To measure the UCS, several CLSM cylinders were cast every time a passive force-

displacement test was prepared. Unconfined compression testing was performed in general 

agreement with ASTM D4832. The cylinders were cast in greased plastic molds that measured 4 

in. (0.10 m) in diameter and 8 in. (0.20 m) in height. They were left in the plastic molds for three 

days with the lids on. After the initial three day curing period, they were removed from their 

plastic molds using a compressed air nozzle inserted over a hole pre-drilled into the bottom of 

each mold. Once removed, the curing methods differed. The cylinders were either cured in a fog 

room environment or in the ambient laboratory environment with exposure to air from all sides. 

This was done in order to see what strength difference could be expected for the cylinders cured 
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in the fog room versus the cylinders cured in the ambient laboratory environment because the 

CLSM backfill that was used in the passive force-displacement tests was also simply cured in the 

ambient laboratory conditions.  

On the day of the CLSM pour for the 0° skew test, a total of 25 cylinders were cast. 

Twelve were cured in the fog room, 12 in the laboratory, and one was left in its mold next to the 

CLSM backfill form with a lead wire inserted to obtain thermocouple data. Each week, the 

cylinders were tested following the ASTM D4823 specification. The tests were performed in an 

unconfined compression test machine with the strain rate set to 0.04 in/min. The cylinders were 

capped using gypsum cement as per the ASTM specification. A test cylinder just after testing is 

shown in Figure 3-8. The unconfined compression test results for the CLSM used in the 0° skew 

test are shown in Table 3-4.  

 

Table 3-4. Average Unconfined Compressive Strength  
(*Note that the bold row indicates passive                                                                                      

force–deflection test day) 
 

0° Skew Test 

Curing Time 
(days) 

Curing Environment 
Open-Air Fog Room 

Avg Comp. Strength (psi) 
7 32.36 40.58 

14 45.23 84.62 
21 41.51 114.46 
28 36.47 136.61 

 

The difference in UCS was very significant for the two different curing methods. The 

measured strength of the CLSM backfill for the 0° skew test was better represented by the UCS 

of the open-air-cured cylinders. For this reason, when the CLSM backfill for the 30° skew test 
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was poured, all the test cylinders were cured in ambient laboratory conditions. Table 3-5 shows 

the UCS test results for the CLSM used in the 30° skew test.  

 

 

Figure 3-8. Gypsum Cement capped CLSM cylinder after failure. 
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Table 3-5. Average Unconfined Compressive Strength  
(Note* bold row indicates passive                                                                                          

force-deflection test day) 
 

30° Skew Test 
All Cylinders Open-Air Cured 

Curing Time 
(days) 

Strength 
(psi) 

7 53.81 
8 58.75 
14 69.23 
21 78.98 
28 67.84 

 

 Tables 3-4 and 3-5 show that the CLSM used for the 30° skew test gained strength much 

faster than the open-air-cured cylinders of the CLSM used in the 0° skew test. The average open-

air-cured UCS on test day for each of the 0 and 30° skew tests were 45.2 psi ( 311.8 kPa) and 

58.7 psi (405.1 kPa), respectively. In a material like CLSM with a very low cement content, even 

tiny differences in the amount of cement in the mix can make a significant difference in the UCS. 

Though the mix design for the two tests was the same, there was likely some slight variation that 

caused the difference.  

Figure 3-9 provides a plot of the CLSM UCS versus time for the different tests and 

curing methods.  The shape of the strength gain curves for the samples cured in the laboratory 

are quite similar and show a peak in strength after 14 to 21 days.  However, the cylinders cured 

in the fog room continued to gain strength with time up to 28 days and the trend was still upward 

at that point. Furthermore, the strength of the laboratory cured cylinders was significantly less  
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than the strength obtained by curing the same CLSM in the fog room. Figure 3-10 shows the 

UCS values normalized by the 28-day fog room-cured UCS. It is notable that the UCS values for 

the laboratory-cured specimens achieved strengths of only approximately 35% and 58% of the 

28-day strength of the cylinders cured in the fog room for the 0 and 30° skew test CLSM 

batches, respectively.   

    

 

Figure 3-9. Unconfined compressive strength vs. time. 
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Figure 3-10. Normalized UCS vs. time. 
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in place when the CLSM was poured. Figures 3-11 and 3-12 show the described pour set-up and 

Figure 3-13 illustrates the loading set up for the direct shear test.  

  

 

 

Figure 3-11. Photograph of CLSM direct shear boxes. 
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Figure 3-12. CLSM being poured into direct shear boxes. 

 

 

Figure 3-13. Direct shear test set-up. 
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On the day of the passive force-displacement tests, the tack welds holding the pairs of 

steel boxes together were ground off. On top of each direct shear box, a 0.50 in. (1.27 cm) thick 

steel plate was placed to spread the normal stress evenly over the entire surface of the direct 

shear box. The plate was cut just smaller than the inside dimensions of the box so that the load 

inducing the normal stress would rest entirely on the CLSM and not on the edge of the steel box. 

As shown in Figure 3-13, numerous steel weights were then loaded onto the plate until the 

desired load was achieved. Loads of differing magnitude were used for each of the three direct 

shear boxes. The first box was placed under a normal load of 866 lbs (393 kg). The second and 

third boxes were scaled to have two thirds and one third of the first test’s load. The 

corresponding normal stresses for each of the tests were 6.02 psi (41.5 kPa), 4.06 psi (28.0 kPa), 

and 2.10 psi (14.5 kPa). 

A load cell was placed between a hand-pumped hydraulic jack and the direct shear boxes 

to measure the load applied to the structure. Furthermore, a string potentiometer was attached to 

the back of the boxes and to the reaction block in order to measure the displacement of the direct 

shear box as well as the global displacement of the entire support structure. A stop watch and a 

computer screen displaying the load and displacement were used to monitor the strain rate of the 

direct shear tests. With the aid of a stopwatch, the operator of the hand-pumped hydraulic jack 

adjusted the loading rate to keep the strain rate at approximately 0.1 in/min.  

 The direct shear test process was performed on the CLSM used for both the 0 and 30° 

skew tests. The process, set-up, normal loads, normal stresses, and displacement rates were the 

same for both tests. The only variation was that the UCS of the CLSM used in the 30° skew test 

was higher than for the 0° skew test. The results of the direct shear tests are summarized in Table 

3-6. The three different normal stresses, σ, are listed in the left column, and the shear stresses at 
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failure, τf, for both tests are listed in the right two columns. Figure 3-14 is a plot of shear stress at 

failure versus normal stress for both the 0 and 30° skew CLSM batches.  

 

Table 3-6. Normal Stresses vs. Shear Stresses at Failure 

  0° Skew Test 30° Skew Test 
U.C. Strength (psi) 45.23 58.75 

σmax (psi) 6.02 τf max (psi) 18.01 17.38 
σ2/3 (psi) 4.06 τf 2/3 (psi) 18.17 21.63 
σ1/3 (psi) 2.10 τf 1/3 (psi) 16.48 15.83 

 

 

 

Figure 3-14. Plot of normal stress vs. peak shear stress. 
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Figure 3-14 shows that the shear strength of the CLSM was relatively unaffected by 

normal stress. This is in agreement with previous research done on soil-cement mixtures (Filz et 

al. 2015, Kitazume and Terashi 2013) and the 0° friction angle assumption. Based on this 

assumption the shear strength would be equal to the cohesion or the UCS divided by two. Figure 

3-15 shows the normal stress versus shear stress normalized by the UCS for each test.   

 

 

Figure 3-15. Plot of normal stress vs. normalized peak shear stress.  
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strengths are likely attributable to the fact that the direct shear boxes were not able to be 

constrained to be loaded perfectly in shear. This caused a moment to be applied to the direct 

shear boxes, which compelled them to rotate, and the applied moment at the CLSM interface 

aided in the initial cracking of the CLSM and likely lowered the measured shear strengths. This 

occurred much more visibly during the tests with lower normal stresses, because they had less 

weight resisting the rotation of the box. Figure 3-16 illustrates the applied moment causing the 

apparent reduction in shear strength. 

 

 

Figure 3-16. Moment application on the direct shear test set up (rotation exaggerated for 
illustration). 



74 

3.4.4 Interface Shear Strength 

For each of the passive force-displacement tests, two direct shear tests were performed in 

an effort to evaluate the interface shear strength between formed concrete (the concrete reaction 

block) and the CLSM. The CLSM was poured into two 18 in. (0.46 m) square, 8 in. (0.20 m) tall 

direct shear boxes that sat on top of the concrete reaction block as shown in Figure 3-17. In 

contrast to the previous direct shear tests where shear occurred within the CLSM, the shear 

surface in these tests was constrained to occur at the interface between the concrete and the 

CLSM at the base of the box. 

 

 

 

Figure 3-17. Interface shear boxes being filled with CLSM. 
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The testing procedures and equipment used were identical to those used in the direct 

shear tests mentioned in the previous section. However, the interface shear strength shear boxes 

were larger and had to be loaded with more weight to achieve the desired normal stresses. The 

first box was placed under a normal load of 1958 lbs (888 kg). The second shear box was scaled 

to have two thirds of the first test’s load. The corresponding normal stresses for each of the tests 

were 6.04 psi (41.5 kPa) and 4.03 psi (28.0 kPa). This set up was repeated for the 0 and 30° skew 

CLSM batches. Figure 3-18 shows one of the interface shear strength tests ready to be 

performed. 

 

 

Figure 3-18. Interface shear strength test set up. 
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 The results for the interface shear strength tests were also lower than the anticipated 50% 

of the UCS. Table 3-7 shows the interface shear strength results for the two tests performed for 

each of the CLSM batches. Figure 3-19 plots the interface shear strength versus normal stress 

and Figure 3-20 is a plot of the interface shear strength normalized by its corresponding UCS 

versus normal stress.  

 

Table 3-7. Normal Stresses vs. Shear Stresses at Failure 

  
0° Skew 

Test 
30° Skew 

Test 
U.C. Strength (psi) 45.23 58.75 

σmax (psi) 6.04 τf max (psi) 15.35 12.35 
σ2/3 (psi) 4.03 τf 2/3 (psi) 14.61 10.54 

 

 

 

Figure 3-19. Plot of normal stress vs. peak interface shear stress.  
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Figure 3-20. Plot of normal stress vs. normalized peak interface shear stress. 
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fractures tend to occur. Mindess (2003) states that the structure of the ITZ is different from the 

bulk of the cement paste in that it has less unhydrated cement, higher porosity, lower density, 

and less calcium-silicate-hydrate (primary cementing product). In this research, the occurrence of 

a weak zone along the interface failure plane likely affected the interface shear strength 

detrimentally.  It should also be noted that the reaction blocks were swept clean of dust and 

debris prior to CLSM placement, but the cleaning process may not have removed the finer dust 

or any grease that may have been present on the surface. This may have also reduced the 

adhesion of the CLSM to the concrete reaction block. All of these factors contributed to the 

lower-than-expected interface shear strength.  

The shear strength envelope referred to in Figure 2-2 for soil-cement materials was 

plotted and then the results from these direct and interface shear tests were imposed on top of it 

to examine the correlation between the two. Figure 3-21 shows the results of these tests placed 

on the shear strength envelope proposed by Filz et al. (2015).  It can be seen that the results from 

the shear tests done on CLSM compare very well with the proposed lower-bound shear envelope 

for soil-mixed material, though the direct shear strength of CLSM plotted slightly higher than the 

soil-cement, and the interface shear tests plot slightly lower for the reasons explained in the 

previous paragraph. As mentioned previously, the assumed cohesion for soil-cement material is 

generally assumed to be 0.7 * 50% of the UCS. Filz et al. (2015) stated that the 50% was to 

account for the shear strength of the material, and that the 0.7 was to account for the mass 

strength in terms of the small-sample strength. The assumed cohesion was not corrected by the 

0.7 factor for the passive force displacement tests that are outlined in Chapter 4. The cohesion 

was assumed to simply be 50% of the UCS of the CLSM. This was done because CLSM is 

mixed thoroughly in a truck or at a batch plant, and should theoretically have no mass effects like 
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soil-mixed cement. This assumption gave much more accurate predictions of the passive force 

than when corrected by the 0.7 factor. 

 

Figure 3-21. Direct and interface shear strengths compared to soil-cement shear strength 
envelope proposed by Filz et al. (2015). 

 

3.4.5 Curing Rate  

Thermocouple data were collected for the CLSM used in both tests with a four-channel 

thermocouple data recording device. As mentioned in Section 3.2.6, the thermocouple lead wires 

were installed into four locations: a test cylinder still in its plastic mold, the upper third of the 

CLSM backfill, the middle third of the backfill, and the lower third of the backfill. The data-

recording device measured the internal temperature of the CLSM and also calculated the 

maturity. These measurements give information about the curing process within the backfill and 

any differences in the curing process at the various depths. Figure 3-22 shows a plot of the 

maturity versus time for the 0° skew test CLSM batch, and Figure 3-23 is the same plot for the 
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30° skew test batch. The maturity is simply the area under the time versus temperature curve, and 

the baseline for the curve is -10°C, which is the lower limit for cement hydration to occur. So, 

maturity is the temperature above -10°C multiplied by the time interval to obtain a maturity 

value with units of °C-hr. It should be noted that recording of the thermocouple data was 

concluded for the 30° skew test much earlier than for the 0° skew test. This was done because the 

30° skew test was performed after just 8 days rather than 14 as with the 0° test. The CLSM used 

in the 30° skew test reached the anticipated test strength much faster than that used for the 0° 

skew test, so it was tested sooner, and the thermocouple data recording was terminated sooner as 

well. To keep the graphs comparable, the data for the 0° skew test is cut off at 300 hours. 

 

 

Figure 3-22. Maturity vs. time for the 0° skew test CLSM. 

 

0

2000

4000

6000

8000

10000

12000

0 50 100 150 200 250 300

M
at

ur
ity

 (⁰
C

-h
r)

Time (hr)

Cylinder Lower Third Middle Third Upper Third



81 

 

Figure 3-23. Maturity vs. time for the 30° skew test CLSM. 
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times is plotted at the three depths within the CLSM backfill for both the 0° and 30° skew tests in 

Figures 3-24 and 3-25, respectively.  

 

 

Figure 3-24. Temperature vs. depth at varying times for 0° skew test CLSM backfill. 
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laboratory, and that the middle section was insulated and kept the warmest. This CLSM also 

cooled uniformly to ambient temperatures of 25-26°C (77-79°F) after approximately 200 hours. 

 

 

Figure 3-25. Temperature vs. depth at varying times for 30° skew test CLSM backfill.  
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at the same time as the 7-day and 14-day UCS values were obtained. However, because the 30° 

skew test was performed after only 8 days of curing, the maturity data were only recorded at the 

time of the 7-day UCS tests. However, after 8-10 days the temperature, and thus the additional 

maturity per hour, remained constant. So, the maturity data were extrapolated for the 21-day and 

28-day UCS tests using Equation 3-4. 

 𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑚𝑚𝑓𝑓 + 𝑡𝑡 ∗ 36         (3-4), 

where 

 𝑚𝑚𝑓𝑓 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,  

and 

 𝑡𝑡 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡 14, 21, 𝑜𝑜𝑜𝑜 28 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. 

The number of hours from the final reading to the specific curing time is multiplied by 36 

because the ambient temperature to which the measurement normalized for the instrumented 

cylinder was 26°C for both tests, so the height from the baseline of -10°C was a constant of 

36°C. Thus, every hour, the maturity increased by 36°C-hr. The results of the maturity and 

extrapolated maturity versus strength data are tabulated in Table 3-8. To generate a maturity 

versus UCS curve, the averages of the maturity and UCS for the two CLSM batches at the 7-day, 

14-day, 21-day, and 28-day curing times were calculated. The resulting plot is shown in Figure 

3-26. 
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Table 3-8. Maturity versus UCS Data 

Curing Time 
(days) 

Curing Time 
(hrs) 

0° Skew Test CLSM 30° Skew Test CLSM 
Maturity UCS Maturity  UCS 

7 167 5927 32.36 5906 53.81 
14 336 11949 45.23 11990 69.23 
21 504 17997 41.51 18038 78.98 
28 672 24045 36.47 24086 67.84 

*note: mf 0 skew taken at t=397 hr 
mf 30 skew taken at t=263 hr 

 

 

 

Figure 3-26. Maturity vs. UCS curve. 
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This curve is very crude because of the few available data points and the extrapolation of 

the data, but for the same type of CLSM cured in ambient conditions Figure 3-26 could provide 

an estimate of the CLSM UCS based on maturity data only. Including more data points would 

give greater definition to the curve and then it could be used to determine when a specified 

strength is achieved without having to break cylinders so often. Instead, the maturity data from 

the thermocouple device would give an estimate of when the designated strength is reached, and 

then cylinders could be tested to verify the estimate.  However, the sample size of the data in this 

thesis did not provide for a curve with such high resolution.  

 In summary, the thermocouple data gave valuable information regarding the curing of the 

CLSM backfill as a whole. The data suggest that the mass of CLSM cured relatively uniformly 

with depth, and that the temperature gradient was never excessive through the backfill. Finally, 

the data also allow for a crude estimation of the UCS based on the maturity reading from a 

thermocouple device. 
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4 PASSIVE FORCE TEST RESULTS 

 Passive Force-Deflection Curves 

The passive force-deflection curves were created from the actuator longitudinal load and 

string pot longitudinal displacement data collected during each test. The passive force, PP, acting 

on the abutment backwall was computed using the actuator longitudinal load data and Equation 

2-5. Longitudinal displacement, ∆, was taken as the average of all four longitudinal string pot 

measurements. Figure 4-1 shows the longitudinal force plotted against deflection for the two 

tests, and Figure 4-2 is a plot of the longitudinal force versus displacement, ∆, normalized by the 

wall height, H, of 24 in. (0.61 m). 

 

 

Figure 4-1. Longitudinal load versus displacement curves. 
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Figure 4-2. Longitudinal load versus normalized displacement. 
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Equation 2-5 was used to calculate the passive force, PP, from the longitudinal load data, 

and Figure 4-3 shows the plot of passive force versus displacement for the two tests. The 

concave up portion of the 0° skew test was shifted towards the origin and the plot begins at the 

linear-elastic portion of the curve. In Figure 4-4, the passive force-displacement curve has its 

displacement, ∆, normalized by the wall height, H, of 24 in. (0.61 m). 

 

 

Figure 4-3. Passive force versus displacement. 
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Figure 4-4. Passive force versus normalized displacement. 
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𝑘𝑘 �𝑘𝑘𝑘𝑘𝑘𝑘
𝑖𝑖𝑖𝑖
� ≈ 30 ∗ 𝑈𝑈𝑈𝑈𝑈𝑈 (𝑝𝑝𝑝𝑝𝑝𝑝)         (4-1). 

The higher magnitude of stiffness for the CLSM used in the 30° skew test likely caused it 

to fail at a smaller displacement than for the 0° skew test. The displacement required to reach the 

peak passive force for the CLSM backfill used in the 0 and 30° skew tests was approximately 2.0 

and 0.75% of the backwall height, respectively. This agrees with research done on soil-cement 

material which reported strains less than 1% to reach the peak UCS in their testing (Filz 2015, 

Kitazume and Terashi 2013). On average displacement required to reach the peak passive 

pressure for the CLSM material used in these two tests was approximately 1.4% of the backwall 

height. Previous research has agreed that displacements of approximately 3-5% are typically 

required to reach peak passive pressures using conventional backfill materials (Rollins and Cole 

2006, Rollins and Jessee 2013).  The smaller displacement in the CLSM tests was likely due to 

the brittle nature of the CLSM. It has a higher modulus than conventional backfill, so smaller 

strains have a much more pronounced effect on CLSM.   

The passive force-displacement relationship follows the hyperbolic shape suggested by 

Duncan and Mokwa (2001), but the initial slope was nearly linear. Using Equation 2-2, the peak 

passive forces were estimated for the two different CLSM batches. The inputs for Equation 2-2 

were the average unit weight, UCS, wall width, wall height, and cohesion. The cohesion was 

assumed to be 50% of the average UCS of the CLSM. Table 4-1 shows the inputs for predicting 

the peak passive force, and the results of the predicted versus measured peak passive forces are 

shown in Table 4-2.  

 



92 

Table 4-1. Equation 2-2 Input Parameters 

  0° Skew Test  30° Skew Test  
γm (pcf) 122.0 112.5 

B (in) 49.5 49.5 
H (ft) 2 2 

UCS (psi) 45.23 58.75 
c (psf) 3257 4230 

 

 

Table 4-2. Measured and Predicted Peak Passive Forces 

  Pp max   
Test Measured Predicted Error 

0° Skew  60911 54740 10.1% 
30° Skew  62740 70723 -12.7% 

 

 It can be seen that there is very good agreement with the prediction given by Equation 2-

2 and the measured peak passive forces. The error ranges from a 10% underestimate for the 0° 

skew test, to a 12.7% overestimate for the 30° skew test.  These results suggest that the average 

resistance is appropriately estimated using the Rankine equation for passive force.  Using the 

peak predicted passive forces, the passive force data were normalized and plotted against 

displacement in Figure 4-5. Figure 4-6 shows the normalized passive force versus normalized 

displacement curve. 

 Figures 4-5 and 4-6 also show the residual strength of the CLSM, and the displacement 

required to reach the residual strength. For the 0° skew test, the residual strength was  
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approximately 40% of the predicted peak passive force, and approximately 20% of the peak for 

the 30° skew test. The displacement required to reach the residual strength was approximately 4-

5% for the CLSM used in these two tests. These results are in agreement with results found when 

testing soil-cement materials which were stated to also have residual strengths of 20% of their 

UCS within strains of 3-5% (Filz et al. 2015, Kitazume and Terashi 2013).   

 

 

Figure 4-5. Normalized passive force-displacement curve. 
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Figure 4-6. Normalized passive force vs. normalized displacement. 
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cohesion strength. This is attributable to the significant loss in strength observed in the passive 

force-displacement curves. 
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Table 4-3. Percent of Unconfined Compressive Strength Required for Residual Strength 

 

 Backwall Movement and Rotation 

String potentiometer data that displayed both the transverse and vertical backwall 

displacement was examined for both tests to find the maximum displacement for each direction. 

Table 4-4 shows the maximum transverse and vertical backwall displacements for each test. To 

summarize, the maximum displacements in the transverse and vertical directions were 0.16 in. 

(4.06 mm) and 0.14 in. (3.56 mm), respectively. Contrary to typical skewed abutment test 

results, the transverse displacement was in the direction of the obtuse side of the backwall for the 

30° skew test. The maximum vertical displacement was upward for the 0° skew test. The high 

shear resistance of the CLSM on the backwall made it reasonable to see the 30° skew test’s 

transverse displacement in the direction of the obtuse side of the backwall. Also, the movement 

was so small it was nearly insignificant. Furthermore, it was expected that the lighter backwall 

used in the 0° skew test would be displaced vertically more easily than the heavier 30° skewed 

backwall, and this was the observed result.   

 

 

 

Test Pp measured peak (lbs) γ (pcf) Pult/Pp Pult (lbs) Soil Weight (lb) Cohesion (lb) UCS measured (psi) UCS req'd (%)
0⁰ Skew 60911 122 40% 24364 1008 23357 45.23 43%

30⁰ Skew 62740 112.5 20% 12548 929 11619 58.75 17%
AVERAGE: 30%

 Contributions to Eqn 2-2
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Table 4-4. Maximum Backwall Movements 

Backwall Movement (in.) 

Test Transverse Displacement Vertical Displacement 

0° Skew 0.07 0.14 

30° Skew 0.16 0.06 

Max: 0.16 0.14 
 

Despite the stiffness of the actuator-backwall loading system, there was differential 

displacement in each direction. The differential displacement resulted in rotation about each axis. 

Each of the transverse, longitudinal, and vertical axes are displayed in Figure 4-7. 

 

 

Figure 4-7. Backwall axes of rotation. 
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The maximum rotations about each axis are listed in Table 4-5. To summarize, the 

maximum rotation about the transverse axis, caused by differential longitudinal displacement at 

the top and bottom of the backwall, was 1.92°. In both tests, longitudinal displacement was 

greater at the bottom than at the top. Rotations about the longitudinal and vertical axes were 

considerably less. The maximum rotation about the longitudinal axis was due to differential 

transverse displacement, and was 0.34°. Maximum rotation about the vertical axis was due to 

differential longitudinal displacement on the right and left sides of the backwall, and resulted in a 

0.22° rotation. The rotation about the vertical axis was maximum with a skewed backwall. The 

rotation was in the direction of the obtuse side of the 30° skewed backwall, which is in 

agreement with the results discussed in Section 2.4 by Sandford and Elgaaly (1993). However, 

rotations about each axis were very small.     

 

Table 4-5. Maximum Backwall Rotations 

Backwall Rotation ( ° ) 

Test 

Transverse 
Axis 

Rotation 

Longitudinal   
Axis 

Rotation  

Vertical       
Axis 

Rotation 
0° Skew -1.92 -0.16 +0.12 
30° Skew -1.15 +0.34 -0.22 

Max: -1.92 +0.34 -0.22 
 

 Variations of Forces with Skew Angle  

The forces PL, PP, PT, and PR that were defined in Section 2.3 were plotted against 

backwall skew angle and the results are shown in Figure 4-8. The longitudinal force, PL, was 

simply the load output from the actuator load cell. PP, the passive force, was calculated using 
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Equation 2-5. The transverse shear force, PT, which was applied on the backwall-backfill 

interface was calculated with Equation 2-6, and the shear resistance, PR, of the backfill was 

determined using Equation 2-7. In Figure 4-8, the forces are normalized by the corresponding 

predicted peak passive forces shown in Table 4-2 for each test. They are then normalized again 

by the longitudinal force/predicted peak passive force ratio so that the plot starts at 1. 

 

 

Figure 4-8. Normalized longitudinal, passive, transverse shear, and shear resistance forces 
vs. skew angle. 

 

 It can be seen in Figure 4-8 that the backwall skew angle may have caused a slight 

reduction in the peak longitudinal and passive forces if it is assumed that the lower passive force 

is due to skew rather than variation in the UCS. In the worst case, the reduction in peak passive 
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force would be approximately 20% for a skew angle of 30°. This is much less of an influence 

than predicted by previous research done on conventional backfill material, which suggests a 

reduction of peak passive force of approximately 53% for the same skew angle (Rollins and 

Jessee, 2012).  

 Furthermore, it was noted that the shear resistance increased with skew angle. Shear 

resistance, PR, was calculated using Equation 2-7, but with the zero friction angle assumption the 

shear resistance was simplified to be cohesion multiplied by the backwall surface area. The 

surface area increased with skew angle because the length of the backwall-backfill interface was 

longer for the skewed backwall. This resulted in the shear resistance increasing with skew angle 

despite the apparent decrease in passive force, Pp. The transverse shear force, PT, started out at 

zero with the 0° skew test (as it is a function of the skew angle, θ) and increased for the 30° skew 

test. However, the shear resistance force, PR, was still much greater than the transverse shear 

force, PT. The very large shear resistance relative to the imposed shear stress explains why the 

backwall transverse displacements were negligible for both tests.  

 Failure Surface Geometries 

The failure surface geometries varied for the 0 and 30° skew tests. In both tests, the failure 

planes weren’t manifested on the surface until the peak passive force had been reached and 

passed. They appeared when the loads were decreasing towards the residual shear strength and 

the displacements were high. The following subsections will describe and illustrate the failure 

surface geometries of the two tests. 
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4.4.1 Zero Degree Skew Failure Surface Geometry 

The 0° skew test failure surface included two failure planes that appeared at the surface as 

shown in Figure 4-9 (Note: each surface square is 6 in. x 6 in.).  The first failure plane occurred 

at approximately 4 ft from the backwall, and it was relatively parallel to the transverse axis. The 

second failure plane occurred at an angle of approximately 25° relative to the transverse axis. It 

started along the south wall approximately 5 ft from the backwall face. As the backwall 

displacement fully mobilized the CLSM failure wedge, the failure surface propagated at the 

aforementioned angle to a distance of 7 ft from the wall face. From the center of the wall to the 

failure surface was approximately 6 ft. The failure surface was anticipated to appear nearly 

parallel to the transverse axis. The rotation about the vertical axis mentioned in Table 4-5 was 

0.12° in the counterclockwise direction. This rotation forced the backwall to displace at a slight 

skew angle with the north side of the backwall slightly ahead of the south side. The diagonal 

nature of the failure plane may be explained partially by this rotation. Furthermore, the CLSM 

itself was very stiff and cohesive, so it is possible that the true failure plane was actually closer to 

parallel with the transverse axis than shown in Figure 4-9. The diagonal portion of the failure 

plane along the north side could be just a shallow section of still in-tact CLSM that branched off 

the true failure plane. Either the rotation of the backwall or the nature of the CLSM itself may 

have contributed to the diagonal nature of the failure plane.  
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Figure 4-9. Failure surface geometries at ground surface for 0° skew test. 

  

The frame that was built to restrain the actuator and the CLSM required a great deal of 

labor to install because of space constraints in the laboratory. Consequently, it was left intact 

after the 0° skew test was concluded to avoid any set up alterations to the 30° skew test. This, 

however, prohibited examination of the failure surface profile propagating through the CLSM 

backfill. Hand removal of the backfill required percussion hammer equipment, shovels, and pick 

axes. The violence of the hand removal process crumbled the brittle CLSM as it was removed, so 

that no subsurface failure planes could be examined.   
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4.4.2 Thirty Degree Skew Failure Surface Geometry 

Unlike the 0° skew test, the 30° skew test only had one failure plane manifest itself at the 

surface. It began approximately 3.5 ft from the acute point of the abutment backwall and 

continued towards the obtuse side at an angle of approximately 20° relative to the transverse axis 

as shown in Figure 4-10.  In the center of the shear area, the failure plane is about 6.0 ft behind 

the backwall face, which is the same distance where the failure plane ultimately daylighted for 

the 0° skew.  

  

 

Figure 4-10. Failure surface geometries at ground surface for 30° skew test.  

 

With no further scheduled tests, one side of the reaction frame was removed to examine the 

failure surface profile propagating through the backfill. The failure surface did not extend below 

the bottom of the backwall as the Log Spiral lateral earth pressure theory predicts. Instead, 
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Figure 4-11 shows that the failure plane was nearly linear at an inclination of approximately 23°. 

With the 0° friction angle assumption, the angle of inclination would be expected to be 45°. The 

variation in the failure plane inclination could be attributed to the anisotropy of the aggregate in 

the CLSM mix. The variation of strength depending on the aggregate orientation may have 

contributed to the difference in the failure plane angle of inclination.  

 

 

Figure 4-11. Failure surface profile. 

 

Figure 4-12 shows the internal cracks and failure plane with markers placed to highlight 

them. The middle set of markers is the assumed failure plane, and the top set of markers outlines 

a crack that propagated off the failure plane. The horizontal set of markers along the bottom 

show the crack that is evidence of the CLSM being displaced as a block before the failure 

developed fully. Figure 4-13 shows an isometric view of the described cracks and failure plane. 
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Figure 4-12. Highlighted failure planes. 

 

 

 

Figure 4-13. Isometric view of the failure planes. 
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 After the failure planes were examined, the hardened CLSM was removed using a forklift 

and an overhead crane. The forklift forks were inserted in the failure plane then were used to lift 

the backfill above the failure plane enough to get rigging underneath it so that the crane could 

remove large blocks of the upper segment CLSM above the failure surface. Once the upper 

portion was removed, the three-dimensional view of the failure plane could be observed as 

shown in Figures 4-14 and 4-15.  

 

 

Figure 4-14. Photograph of the three-dimensional failure surface from the south side. 
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Figure 4-15. Photograph of the failure wedge from the front or East side. 

  

From the shape of the failure plane, it appears that the skew failure wedge was pushed 

like a block with no skew.  A triangular wedge adjacent to the obtuse side of the wall appears to 

have moved with the wall and then the failure plane sheared in more of a two-dimensional plane 

beyond this triangular wedge. As mentioned previously, the shear resistance, PR, along the 

backwall was much higher than the applied transverse force, PT, and this likely caused the CLSM 

trapped against the obtuse side of the backwall to act as an effective extension of the backwall, 

which created an effective skew angle closer to 0°. Figure 4-16 shows an illustration of this 

theory where a triangular block moves longitudinally along with the backwall and reduces the 

effective skew angle. 
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Figure 4-16. CLSM acting as an extension of the backwall. 

 

 Displacement and Strain within Failure Wedge 

As mentioned in Section 3.2.2, seven longitudinal string potentiometers were installed at 1 

ft (0.3 m) increments to monitor the displacement on the ground surface at different distances 

from the backwall face. The distance from the backwall face was measured at the ground surface 

from the center of the backwall-backfill interface. Figure 4-17 is a plot of the normalized 

displacement as a function of the normalized distance from the backwall face. The maximum 

displacement at each distance was normalized by the maximum longitudinal displacement of the 

backwall. The longitudinal distance from the backwall was normalized by the height of the wall.  
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Figure 4-17. Distance from backwall relative to wall height (X/H) versus normalized 
ground surface displacement. 

  

As can be seen in Figure 4-17, the normalized displacement at a small distance from the 

backwall face was slightly reduced from the maximum displacement of the wall for both tests. It 

was reduced to about 85% for the 30° skew test at a distance of 6 in. (0.15 m) from the backwall 

face, and 80% for the 0° skew test at a distance of 1 ft (0.30 m) from the backwall face. For the 

30° skew test, the normalized displacement at greater X/H ratios remained almost constant near 

80%. This indicates that the failure wedge moved like a stiff or rigid mass and that the 

compressive strains within the failure wedge were very low. However, the difference in 

longitudinal displacements at various X/H ratios was more apparent for the 0° skew test, and 

thus the results showed more compressive strain within the failure wedge than for the 30° skew 

test. It should be noted that the normalized displacement in Figure 4-17 decreased to nearly zero 

once the X/H ratio was beyond where the failure plane reached the surface. This result shows 
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that there was essentially no movement in the CLSM beyond the failure surface. This occurred at 

an X/H ratio of approximately 3.0 for both tests. So, both tests’ failure planes reached the surface 

at a distance of approximately three times the wall height from the center of the backwall. 

The compressive strain at each point was calculated as the difference in displacement 

between two adjacent points divided by their initial separation of 1 ft (0.3 m). Figure 4-18 is a 

plot of the compressive strain as a function of distance from the center of the backwall. 

 

 

Figure 4-18. Distance from backwall relative to wall height (X/H) versus compressive 
strain. 

 

 The plot shows how the strain variation was very similar for the two tests. The zone 

nearest to the backwall experienced strains of approximately 5 and 8% for the 0 and 30° skew 

tests, respectively. Then, the strains decreased significantly through the middle of the failure 

wedge (typically 1% or less) as it moved more like a block. Once a failure plane developed, the 

differential movement on either side of the failure plane was significant. This caused the string 

potentiometer data to calculate high strains where the failure planes appeared at the surface. The 
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strain values at X/H equal to 3.0 in Figure 4-18 are very high, and likely represent only the strain 

on the surface but not through the entire wedge. Again, it is interesting to note that the failure 

surface for both cases appears to be located at about the same normalized distance behind the 

backwall face. 

 CLSM Backfill Surface Heave 

A 6 in. x 6 in. (0.15 m x 0.15 m) grid was surveyed with a level promptly before and after 

the passive force tests were completed. Heave was calculated at each grid point as the difference 

in the measured elevations before and after the test. The grid point data were input to ArcMap to 

interpolate heave between grid cells and create the heave contours. Surface heave was greatest 

where the failure planes cracked the top of the backfill surface. When displacements were large, 

there was a significant change in elevation at these cracks on the surface. The contours shown in 

Figures 4-19 and 4-20 show the surface heave from the top view for the 0 and 30° skew tests, 

respectively. It is worth noting that the surface heave in the triangular area at the obtuse side of 

the backwall in Figure 4-20 is very low. This strengthens the hypothesis described in Figure 4-16 

that the CLSM in this zone acted as an effective extension of the backwall. It should be pointed 

out that some of the grid points near the surface cracks were actually covered by the displaced 

failure wedge, so the survey was taken at the closest possible point to the covered grid point. 

However, in the zone beyond these surface cracks there was almost always nearly zero measured 

heave. This explains why some of the contours for the 0° skew test in Figure 4-19 show zero 

heave right along the surface crack. Generally, the contours show the locations of the failure 

planes fairly well and illustrate the two-dimensional failure surface parallel to the transverse axis. 
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Figure 4-19. Surface heave contours for the 0° skew test. 

 

 

 

 

Figure 4-20.  Surface heave contours for the 30° skew test. 
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5 ANALYSIS OF TEST DATA 

The passive force-displacement curves were generated using the program PYCAP (Duncan 

and Mokwa 2001). The program uses the Log Spiral method to predict the curves, but with the 

assumption that the friction angle of the CLSM is 0°, the passive earth pressure coefficient, Kp, is 

equal to 1.0 regardless of the method used. Thus, the Rankine, Coulomb, and Log Spiral methods 

all predict the same passive earth pressures based on Equation 2-2. This chapter describes the 

input parameters used in the analysis and compare the results from PYCAP to the results 

measured in the actual tests.  

 Computer Program Input Parameters 

Table 5-1 summarizes the input parameters used to calculate the passive force-

displacement curves in PYCAP. Many of the inputs were found using trial and error within the 

program to get the best agreement with the measured passive force-displacement curves. The 

estimates of the spring constant, k, from Section 4.1 were used to provide initial soil modulus 

estimate values for the two tests. Moduli values of 2500 ksf (120 MPa) and 3100 ksf (148 MPa) 

for the 0 and 30° skew tests, respectively, were found to give the best agreement with the 

measured curves. The UCS for the 30° skew test was higher than for the 0° skew test, so it is 

reasonable that the modulus would be somewhat higher. The cohesion values were simply taken 

as 50% of the measured UCS as previously discussed. The major difference between  
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conventional materials and the CLSM was the input for Δmax/H (displacement to reach the peak 

passive resistance). Duncan and Mokwa (2001) recommend a Δmax/H of 3-4%. This parameter is 

what governs how much displacement is required for the hyperbolic passive force-displacement 

curve to reach its peak. Using the recommended range of Δmax/H for conventional, compacted 

soils produced curves with initial slopes that were much too low and did not peak until the 

measured curves had nearly reached their residual strengths. The Δmax/H that gave the best 

agreement with the measured curves was 0.5%. The Poisson’s ratio of the CLSM was input as 

0.15 as is typical for cement-treated base used in concrete pavement design (Huang 2003). 

 

Table 5-1. PYCAP Input Parameters 

Input Parameters 
Test 

0° 
Skew  30° Skew 

cap width, b (ft)  4.13 4.13 
cap height, H (ft)  2 2 

embedment depth, z (ft)  0 0 
surcharge, qs (psf)  0 0 

cohesion, c (psf)  3257 4230 
soil friction angle, φ (deg.)  0 0 

wall friction, δ (deg.)  0 0 
initial soil modulus, Ei (kip/ft2)  2500 3100 

poisson's ratio, ν  0.15 0.15 
soil unit weight, γm (pcf)  122 112.5 
adhesion factor, Α 1 1 

Displacement, Δmax/H 0.005 0.005 
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 Analysis of Computer Program Results 

The passive force-displacement curves computed by PYCAP are plotted together with the 

measured curves in Figure 5-1. The results show that there is good agreement between the 

PYCAP prediction and the measured results until the peak is reached. In the measured passive 

force-displacement curves, the strength dropped to a residual or ultimate value very quickly after 

peaking, but the PYCAP spreadsheet, which uses a hyperbolic curve to model the passive force-

displacement curve, cannot account for this drop in strength. The resulting spring constant, k, 

values for the 0 and 30° tests were 1500 kip/in (2.6 MN/cm) and 1890 kip/in (3.3 MN/cm), 

respectively. The initial estimates of k from the measured data were approximately 1300 kip/in 

(2.3 MN/cm) for the 0° skew test and 1900 kip/in (3.3 MN/cm) for the 30° skew test. There was 

good agreement between the PYCAP computed stiffness values and the measured values. 
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Figure 5-1. PYCAP vs. measured passive force displacement curves. 
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The stiffness for the CLSM is much higher than for typical sand and gravel backfill materials. 

Table 5-2 is reproduced from Duncan and Mokwa (2001) and it shows the recommended initial 

moduli, Ei, values for sands and gravels at shallow depths. 

 

Table 5-2. Typical Modulus Values for Sands and Gravels (Duncan and Mokwa 2001) 

Density Dr N60 Normally Loaded Preloaded or Compacted 
Loose 40% 3 Ei = 200 - 400 ksf Ei = 400 - 800 ksf 

Medium 60% 7 Ei = 300 - 500 ksf Ei = 500 - 1000 ksf 
Dense 80% 15 Ei = 400 - 600 ksf Ei = 600 - 1200 ksf 

 

 

Table 5-2 shows that the modulus values of 2500-3100 ksf (120-148MPa) that were used 

as the input parameters in PYCAP were approximately two to three times the highest modulus 

recommended by Duncan and Mokwa for even dense, compacted sand or gravel. This high 

stiffness and small displacement to reach the peak passive force are signs of the brittle nature of 

CLSM. The ratio of the UCS of the CLSM to the modulus value computed in PYCAP was nearly 

identical for the two tests. On average the UCS/E ratio was 0.27% for the two tests. Equation 5-1 

relates the modulus value to UCS in a linear form, but Equation 5-2 relates the two parameters 

using the square root format commonly used for structural concrete. The linear equation 

𝐸𝐸 (𝑝𝑝𝑝𝑝𝑝𝑝) ≈ 375 ∗ 𝑈𝑈𝑈𝑈𝑈𝑈 (𝑝𝑝𝑝𝑝𝑝𝑝)         (5-1) 

approximates the modulus when the CLSM still has a relatively low UCS strength. This value 

agrees very well with the correlations made for soil-cement materials of E50 approximately 300-

380 times the UCS (Filz et al. 2015). However, it is likely more appropriate to approximate the 
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non-linear behavior of the modulus at higher UCS strengths using the square root equation 

 𝐸𝐸(𝑝𝑝𝑝𝑝𝑝𝑝) ≈ 2696 ∗ �𝑈𝑈𝑈𝑈𝑈𝑈(𝑝𝑝𝑝𝑝𝑝𝑝)        (5-2). 

 Analysis of Skew Effects 

The reduction of passive force for CLSM backfill caused by the backwall skew angle is 

much less than the reduction for conventional backfill materials previously reported (Rollins and 

Jessee 2012, Marsh 2013). Figure 5-2 shows the normalized displacement versus the normalized 

passive force. As previously discussed, the passive force was normalized by the peak predicted 

passive force for each test. With the 0° friction angle assumption, the predicted passive forces 

were the same for the Rankine, Coulomb, and Log Spiral methods. This caused the two 

normalized curves in Figure 5-2 from PYCAP to be the same and to peak at exactly 1.0, because 

PYCAP predicted the same peak passive force as Equation 2-2.  

Figure 5-2 shows that the passive force reduction from the 30° skew angle is minimal 

compared to the results of previous research on conventional granular materials (Rollins and 

Jessee 2012, Marsh 2013, Franke 2013, Rollins et al. 2015). It is possible that the reduction was 

not due to the skew angle whatsoever, but that it was actually due to errors in the assumptions 

made about the CLSM backfill. Assuming that the cohesion was equal to 50% of the UCS and 

that the backfill cohesion was perfectly represented by the measured strength of the test cylinders 

may have been the actual contributors to the apparent reduction of passive resistance for the 30° 

skew test.  
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Figure 5-2. Normalized passive force vs. normalized displacement curves. 

 

 Figures 5-3 and 5-4 show the measured passive force displacement curves plus three 

different curves computed by PYCAP. The figures plot the computed curve from PYCAP shown 

in Figure 5-1, and they also plot the computed curves assuming a 10% increase and decrease in 

UCS. Figure 5-3 shows that the 10% overestimate agrees very well with the measured passive 

force-displacement curve for the 0° skew test, and Figure 5-4 shows that the 10% underestimate 

agrees very well with the measured passive force-displacement curve for the 30° skew test. This 

agreement shows that predicting the passive force-displacement curves for CLSM should 

account for a 10% variation in strength. 
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Figure 5-3. Measured and computed passive force-displacement curves for 0° skew test. 

 

 

Figure 5-4. Measured and computed passive force-displacement curves for 30° skew test. 

0

10

20

30

40

50

60

70

0 0.2 0.4 0.6 0.8 1 1.2

P P
(k

ip
s)

Displacement (in.)
Measured Computed PYCAP
Computed PYCAP +10% Computed PYCAP -10%

0

10

20

30

40

50

60

70

80

90

0 0.2 0.4 0.6 0.8 1 1.2

P P
(k

ip
s)

Displacement (in.)

Measured Computed PYCAP
Computed PYCAP +10% Computed PYCAP -10%



119 

 Prediction of Passive Force-Displacement Relationship 

Figure 5-5 shows an attempt to empirically model the passive force-displacement 

relationship for CLSM. Equations were derived and their results plotted to give a visual 

representation of the equations. The data were limited to only two tests, but Equations 5-3 and 5-

4 can provide a very crude estimate of the passive force-displacement curves for abutment 

backwalls displaced into CLSM.  

 

 

Figure 5-5. Measured and empirically estimated curves. 
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As shown in Figure 5-5, the empirical curve is made up of three segments: one linear 

portion, the plateau, and one asymptotic portion. The linear portion of the curve was used from 

X/H of 0-0.003 and is given as  

 𝑦𝑦 = 𝐴𝐴 ∗ 𝑋𝑋/(0.003𝐻𝐻)          (5-3) 

where 

 𝐴𝐴 = 𝑃𝑃𝑝𝑝 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 2 − 2, 

 𝑋𝑋 = 𝑑𝑑𝑑𝑑𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑒𝑒𝑒𝑒, and 

 𝐻𝐻 = ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏. 

The inputs used in Equation 2-2 when creating the empirically estimated curve in Figure 5-5 

were the average of the two tests’ unit weights and cohesion measurements. The width and 

height remained the same for both.  

The plateau portion of the curve is used from X/H of 0.003-0.015. The 1.5% of the wall 

height was the average displacement required for failure for the two tests. However, the length of 

this plateau section is the variable with the least clarity. The passive resistance along the plateau 

was simply the constant value given by Equation 2-2, once again using the average unit weights 

and cohesion values for the two tests.  

The asymptotic portion of the curve is used from X/H of 0.02 and beyond and is given as 

 𝑦𝑦 = (0.2 ∗ 𝐴𝐴 ∗ 𝑋𝑋)/(𝑋𝑋 − 0.015𝐻𝐻)       (5-4), 

and the inputs are the same as for Equation 5-3. The 0.2 factor in Equation 5-4 is what 

determines the residual strength. This value was found using trial and error with the measured 

curve. It also corresponds with the observed residual strength of the 30° skew test. It should be 
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noted that between X/H of 0.015 and 0.02 is where the asymptotic portion of the curve 

approaches infinity, so it was chosen to start the asymptotic curve x/H of 0.2 and create a smooth 

curve from X/H of 0.015-0.20. 

Though the effect of skew angle was minimal on passive force reduction, it appears to 

have had a negative impact on the residual strength of the CLSM. These curves and equations 

provide very crude estimates for the passive force-displacement relationship when using CLSM 

backfill and their results should be confirmed with further testing. As a whole, the CLSM may 

provide a good alternative to conventional backfill materials. 
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6 CONCLUSIONS AND RECOMMENDATIONS 

 Summary 

The passive force-displacement relationship at the backwall-backfill interface is an 

important parameter in the design of bridge abutments for seismic loads as well as thermal 

expansion. Increasing the skew angle of the abutment backwall has been shown to cause a 

reduction in the peak passive resistance for conventional backfill materials. However, no 

research had been done to examine the passive force-displacement relationship, nor the effect of 

skew angle on this relationship, when using CLSM as a backfill material. Two large-scale lateral 

load tests were performed using a 4.13 ft (1.26 m) wide by 2 ft (0.61 m) tall concrete backwall 

with skew angles of 0 and 30°. The resisting backfill material was CLSM with an average UCS 

of 45.2 psi (312 kPa) for the 0° skew test and 58.7 psi (405 kPa) for the 30° skew test. The 

assumptions made about the CLSM were that it had a friction angle of 0°, that the shear strength 

was due entirely to the cohesion of the cemented CLSM, and that the cohesion was equal to one 

half of the UCS. Using 50% of the UCS as the approximate cohesion, the cohesion was 3257 psf 

(156 kPa) for the 0° skew test and 4230 psf (203 kPa) for the 30° skew test.  

 Observations and Conclusions 

Several conclusions can be made from these lateral load tests using CLSM and they are 

listed in the following discussion. 
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1. The effect of the backwall skew angle had much less of an influence on the peak passive 

resistance in the CLSM backfill as compared to conventional backfill. Though the CLSM 

may reduce the negative impact of skew angle on passive resistance, the CLSM had a very 

significant drop off to residual strength. The residual strength was generally 20-40% of the 

peak passive force, whereas conventional backfill materials have a much less significant 

drop off to its residual strength.  

2. The displacements required to mobilize the peak passive resistance of the CLSM backfill 

were from 0.75-2% of the wall height. This is much lower than the anticipated 3-5% 

displacement suggested in the literature for peak passive resistance in a backfill consisting 

of conventional backfill material.    

3. The passive force-displacement relationship was hyperbolic in shape up to the peak 

resistance. Both tests showed a similar shaped curve where the load climbed almost 

linearly with little displacement until it reached the peak passive resistance. The load then 

dropped off significantly to its residual or ultimate strength. The residual strength was 

generally reached within displacements of 4-5% of the wall height. 

4. The assumption that the shear strength of the CLSM was due entirely to cohesion (the 

cohesion being approximated as 50% of the UCS) with a friction angle of 0° predicted 

peak passive pressures that were within ±10-12% of the measured values. It was concluded 

that the cohesion equal to 50% of the UCS is a good approximation for characterizing the 

shear strength of the CLSM backfill.  This conclusion is consistent with experience for 

soil-cement materials and other cemented soils. 

5. The greatest compressive strain in the failure wedge was apparent very close to the 

backwall face, but it decreased to a constant of approximately 1-2% throughout the 
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majority of the wedge until the failure surface daylighted. This indicates that the failure 

wedge moved rigidly with little internal compressive strain.  

6. The spring constant or stiffness, k, was calculated as the initial slope of the passive force-

displacement curve. The lateral load test data gave stiffness values of approximately 1300 

lb/in. (2.3 MN/cm) and 1900 lb/in. (3.3 MN/cm) for the 0 and 30° skew tests respectively. 

Using PYCAP to match the measured curves gave back-calculated initial moduli values, 

Ei, of 2500-3100 ksf (120-148 MPa). This is two to three times the stiffness expected for a 

dense, compacted conventional backfill. The ratio of UCS to modulus was almost identical 

for the two tests. The relationship was derived to be calculated as  𝐸𝐸 (𝑝𝑝𝑝𝑝𝑝𝑝) = 2696 ∗

�𝑈𝑈𝑈𝑈𝑈𝑈 (𝑝𝑝𝑝𝑝𝑝𝑝) , or 𝐸𝐸 (𝑝𝑝𝑝𝑝𝑝𝑝) = 375 ∗ 𝑈𝑈𝑈𝑈𝑈𝑈 (𝑝𝑝𝑝𝑝𝑝𝑝). 

7. Both tests had failure planes that exited the CLSM fill at a distance from the center of the 

backwall of approximately 6 ft (1.8m). This gives a distance to backwall height ratio, X/H, 

equal to 3.0. From observation of the 30° skew test failure wedge, it was noted that the 

angle of inclination was much flatter than the expected 45° with the 0° friction angle 

assumption. 

 Recommendations for Future Research 

To supplement the results of the tests conducted in this study, further research should be 

done to verify the results and increase the understanding of CLSM even further. First, only two 

lateral load tests were performed at skew angles of 0 and 30°, so the effect of skew angle on the 

passive force-displacement relationship when using CLSM as a backfill should be examined at 

more skew angles. Furthermore, the laboratory tests were constrained to fail in a two-

dimensional manner, so tests performed with a backfill zone wider than the abutment will allow 



125 

for study of the three-dimensional effects on the passive force–displacement relationship for 

CLSM. The results from this study should also be verified with lateral load tests simulating a 

full-scale bridge abutment backwall to evaluate any potential scale effects that might need to be 

considered. 

Laboratory testing of the CLSM should be more in depth. Strain should be monitored 

during the UCS tests. Also, the anisotropy of the CSLM should be considered by testing the 

compressive strength in perpendicular directions. Furthermore, the shear strength of the CLSM 

should also be examined in a triaxial compression test to further examine the frictional versus 

cohesive strength characterization. The characterization of residual strength due to internal 

friction could also be analyzed using a critical state soil mechanics model. More precise 

calculation of the CLSM’s modulus value should be verified using a free-free resonant column 

test that calculates the modulus based on p-wave velocity. Also, the CLSM mix design could 

include polypropylene fibers to examine how the fibers can increase the amount of strain before 

failure of the CLSM. Lastly, moisture content should be examined with depth within the backfill 

zone to monitor the uniformity of curing process
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