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ABSTRACT 

A Comprehensive Python Toolkit for Harnessing Cloud-Based High-Throughput 
Computing to Support Hydrologic Modeling Workflows 

 
Scott D. Christensen 

Department of Civil and Environmental Engineering, BYU 
Doctor of Philosophy 

 
Advances in water resources modeling are improving the information that can be 

supplied to support decisions that affect the safety and sustainability of society, but these 
advances result in models being more computationally demanding. To facilitate the use of cost-
effective computing resources to meet the increased demand through high-throughput computing 
(HTC) and cloud computing in modeling workflows and web applications, I developed a 
comprehensive Python toolkit that provides the following features: (1) programmatic access to 
diverse, dynamically scalable computing resources; (2) a batch scheduling system to queue and 
dispatch the jobs to the computing resources; (3) data management for job inputs and outputs; 
and (4) the ability for jobs to be dynamically created, submitted, and monitored from the 
scripting environment. To compose this comprehensive computing toolkit, I created two Python 
libraries (TethysCluster and CondorPy) that leverage two existing software tools (StarCluster 
and HTCondor). I further facilitated access to HTC in web applications by using these libraries 
to create powerful and flexible computing tools for Tethys Platform, a development and hosting 
platform for web-based water resources applications. I tested this toolkit while collaborating with 
other researchers to perform several modeling applications that required scalable computing. 
These applications included a parameter sweep with 57,600 realizations of a distributed, 
hydrologic model; a set of web applications for retrieving and formatting data; a web application 
for evaluating the hydrologic impact of land-use change; and an operational, national-scale, high-
resolution, ensemble streamflow forecasting tool. In each of these applications the toolkit was 
successful in automating the process of running the large-scale modeling computations in an 
HTC environment. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Keywords: cloud computing, high-throughput computing, Tethys Platform, GSSHA, hydrologic 
modeling, Python  
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1 INTRODUCTION 

Water resources models are often used to provide information needed to support 

decisions affecting the safety and sustainability of society. Relative to traditional lumped 

parameter models, spatially distributed, physics-based models such as Gridded 

Surface/Subsurface Hydrologic Analysis (GSSHA) (Downer and Ogden 2004) have increased 

applicability and accuracy, allowing for better-informed decisions. However, these advantages 

come at a cost; sophisticated models are generally (1) more complex, and (2) require more time 

and computational resources to run. To handle the issue of increased complexity, including the 

often significant amount of data manipulation and file management in both the pre- and post-

processing, and to ensure that the process is repeatable, it is increasingly common to create 

scripted modeling workflows. When these workflows are integrated into web-based applications 

they become more broadly accessible and have more wide-reaching influence (Swain, Latu et al. 

2015). Still, addressing the issue of needing access to additional computational resources to run 

sophisticated models remains a challenge. The purpose of this research has been to investigate 

methods to facilitate access to sufficient resources in computationally demanding modeling 

workflows and web applications. 

Typically water resources models are run using powerful desktop workstations, yet there 

are many modeling applications that require a significant number (possibly millions) of model 

runs, such as calibration, parameter sweeps, uncertainty analysis, and parent-child models, which 
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can take hundreds of thousands of CPU hours and cannot reasonably be supported by even the 

most up-to-date hardware. To accomplish these modeling tasks, additional computing power is 

needed. To illustrate, it is often necessary to account for uncertainty in water resources models. 

Uncertainty is inherent in modeling because of natural variability and parameter uncertainty 

(Smemoe 2004), structural noise (Doherty and Welter 2010), or unknown future conditions. A 

common way to understand and characterize this uncertainty is to perform a stochastic analysis 

that necessitates hundreds or thousands of model runs. It is not uncommon for a single 

simulation to take several hours to run on a desktop workstation; to run several thousand 

simulations may take years! Without additional computational resources this type of modeling 

task would be unfeasible.  

The traditional approach for accessing large-scale computing resources is high-

performance computing (HPC) using supercomputers or computing clusters. However, for many 

organizations, acquiring, operating, and maintaining this type of hardware is not cost-effective, 

especially if the computational demand is sporadic and does not require near full-time utilization 

of the resources, as is often the case with modeling applications. Yet, without access to the 

necessary computing resources, scientists and engineers are limited in their ability to perform 

important modeling tasks (Humphrey, Beekwilder et al. 2012). An alternative method to get 

access to more computing without the need to invest in additional computing infrastructure is 

through high-throughput computing (HTC). HTC differs from HPC in that the objective is to 

optimize the long-term performance, or the amount of computing (or throughput) that can be 

done over a long time period (e.g. the number of jobs per month), rather than the short term 

performance (e.g. the number of operations per second) (Livny, Basney et al. 1997). Using 

HTCondor, a middleware used to configure HTC systems, this type of computing environment 
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can be set up with ordinary desktop computers (Litzkow, Livny et al. 1988). However, the 

number of local desktop computers that are available may not be sufficient to handle the 

computational load of some modeling tasks. Recent advances in cloud computing have made it 

an ideal resource for large-scale computing because it provides universal access to on-demand, 

scalable, and cost-effective computing resources. HTC systems can integrate both local desktop 

computers and cloud resources enabling scientists and engineers to leverage existing hardware 

while also providing the flexibility to scale using the cloud.  

To facilitate the use of HTC and cloud computing in modeling workflows and web 

applications a scripting toolkit is needed which meets the following requirements: (1) 

programmatic access to diverse, dynamically scalable computing resources, (2) a batch 

scheduling system to queue and dispatch the jobs to the computing resources, (3) data 

management for job inputs and outputs, and (4) the ability for jobs to be dynamically created, 

submitted, and monitored from the scripting environment. I created two Python libraries, 

TethysCluster and CondorPy, to meet these requirements. TethysCluster is based on another 

Python tool called StarCluster and automates provisioning cloud resources and configuring those 

resources into an HTC environment using HTCondor. CondorPy enables jobs to be created and 

run in that environment by providing an interface to HTCondor. Together these libraries meet all 

of the requirements listed above, and thus form a comprehensive Python computing toolkit.  

To further facilitate accessing HTC and cloud resources in web applications, I used this 

computing toolkit to add computing capabilities to Tethys Platform. Tethys Platform is a 

development environment designed to lower the technical barriers of creating web-based 

modeling applications (Jones, Nelson et al. 2014). I used TethysCluster and CondorPy as the 

core elements in building Tethys Compute, a module in Tethys Platform that provides developers 
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with a software development toolkit (SDK) for integrating large-scale computing into web-based 

modeling apps. 

I tested TethysCluster, CondorPy, and Tethys Compute by using them to support various 

other research applications including (1) pre-computing model results for flood scenarios using a 

Latin hypercube sampling parameter sweep of a GSSHA model (Canned GSSHA), (2) 

developing Tethys apps to access and reformat hydrologic data, (3) the GSSHA Index Map 

Editor app, which evaluates the hydrologic impact of land-use change, and (4) the Streamflow 

Prediction Tool, which performs ensemble streamflow forecasts. An overview of the software 

projects that I developed and the applications that I contributed to is shown in Figure 1-1. The 

arrows in the diagram indicate software that was used to support other projects. 

 
Figure 1-1. Overview of the software projects I created, and contributed 
to in my research. 
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This dissertation is organized as follows: Chapter 2 provides background and context, 

describes related work, and states how my research has built upon and expands previous work. 

The Python libraries TethysCluster and CondorPy are described in Chapters 3 and 4, 

respectively. Chapter 5 presents the Tethys Platform computing tools. Chapter 6 discusses 

several applications and test cases. And finally, I discuss the conclusions and contributions of my 

research, and possibilities for future research in Chapter 7. 
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2 BACKGROUND AND RELATED WORK 

This chapter provides background on computing technologies and tools relevant to this 

research and describes advances that have been made in their use for water resources modeling. 

First, a general background on distributed computing is provided with the goal of clarifying 

terminology, followed by a more in-depth description of cloud computing and its benefits for 

large-scale modeling. Next, some background is given on several tools that are of particular 

relevance to this research, including the resource management and job scheduling system 

(HTCondor), the cloud resource provisioning software (StarCluster), and the web-app 

development platform (Tethys Platform). Finally, previous work that has used HTC and cloud 

computing in water resources modeling is described while highlighting the need for a 

comprehensive toolkit to facilitate accessing HTC in modeling workflows and web applications. 

 Distributed Computing 

Large computing tasks, such as those often required by water resources models, generally 

depend on a distributed computing system. Distributed computing is a general term that refers to 

any system that allows the decomposition of computing tasks to be computed simultaneously on 

different processing elements (Buyya, Vecchiola et al. 2013). The field of distributed computing 

has evolved so quickly that it has outpaced the terminology used to describe it. As a result, many 

of the terms used in the field are overloaded and ambiguous (Foster, Zhao et al. 2008; Buyya, 

Vecchiola et al. 2013). Since I use HTC and cloud computing to enable large modeling tasks, 
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this section is included in an effort to be clear about computing terms and to provide some 

context for HTC and cloud computing. This section is organized into three subsections: 

distributed computing architectures, computing task classifications, and computing paradigms. 

2.1.1 Distributed Computing Architectures 

The architecture of a computing system is the configuration of hardware components and 

the software required to make it a functioning system. This subsection defines several terms used 

to describe distributed computing architectures.  

Supercomputers: Computers that are at the front line of computing hardware. They 

typically are parallel systems, meaning that there are multiple, identical processors that 

simultaneously operate on the same data using a single, shared memory space. This architecture 

is also known as symmetric multiprocessor systems (SMP) (Buyya, Vecchiola et al. 2013).  

Clusters: A form of parallel systems where computing nodes are tightly networked so 

they can function as a single system. They are generally composed of commodity hardware 

components and have distributed memory. Clusters are a low-cost alternative to supercomputers 

and are designed to be capable of the same type of workloads (Buyya, Vecchiola et al. 2013). 

Grids: A network of various computing components (traditionally supercomputers or 

clusters, but more generally any heterogeneous computing elements) that use a software element 

called middleware to combine the components into a unified system (Rouholahnejad, Abbaspour 

et al. 2012; Buyya, Vecchiola et al. 2013). Grids came about because there were many 

supercomputing clusters that were often idle and many computational tasks that required more 

capacity than could be offered by a single cluster. The term “grid” stems from the utility sector 
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and captures the idea that computing power can be offered on-demand as a public utility (Foster, 

Zhao et al. 2008).  

Cloud Computing: On-demand computing, network, and storage services, and 

applications delivered via the Internet with a pay-per-use pricing model (Amazon Web Services 

2014). Cloud computing relies heavily on the concept of virtualization, which enables raw 

hardware to be combined virtually to form a computing system (Buyya, Vecchiola et al. 2013). A 

more complete definition of cloud computing is given in Section 2.2. 

Utility Computing: The idea that computing is a utility that can be distributed like 

electricity or water (Foster, Zhao et al. 2008). This idea of computing was the inspiration for grid 

computing and became fully realized with cloud computing. 

There are a lot of overlaps and unclear boundaries among the different computing 

architectures noted above. Figure 2-1, reproduced from work by Foster, Zhao et al. (2008), 

shows the overlap of the various distributed system architectures.  

2.1.2 Computing Task Classifications 

Large computing tasks are often parallelized, or divided into sub-tasks, so they can take 

advantage of distributed computing architectures. These tasks can be classified based on how 

they are parallelized as either tightly coupled parallel or embarrassingly parallel. 

Tightly Coupled Parallelization: The class of computing tasks that can be broken into 

separate processing units, which can be run on separate processors, but where each unit is not 

independent of other units, and therefore information must be passed between processors. 

Information transfer often follows the Message-Passing Interface (MPI) specification that defines 



9 

how data are passed from one process to another (Lusk, Huss et al. 2012). This class of tasks 

must be run on a tightly integrated architecture like a supercomputer or computing cluster. 

 
Figure 2-1. Overview of distributed systems (Foster, Zhao et al. 2008) 

Embarrassingly Parallel: Denotes tasks that can be broken into sub-tasks that are 

completely independent from one another. Since each computing task is self-contained, there is 

no message passing between processes and, therefore, fewer restrictions on the architectures that 

can support this type of computing problem. Other names for this class of computing tasks are 

pleasingly parallel, perfectly parallel, happily parallel, or bag-of-tasks. 
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2.1.3 Computing Paradigms 

Several computing paradigms, or ways of handling various classes of computing 

problems, have been proposed over time. While these paradigms don’t define a particular 

architecture, they do have implicit hardware and middleware requirements (Buyya, Vecchiola et 

al. 2013). 

High-Performance Computing (HPC): Computing where the performance of the 

processing units is crucial and is typically measured in floating-point operations per second 

(FLOPS), or more commonly peta-FLOPS (a quadrillion FLOPS). Generally, HPC workloads 

are performed on supercomputers or clusters where parallel, tightly coupled tasks can be 

processed in a short period of time. While the strict definition of HPC refers to the performance 

of the processing units of a system, this term is commonly used in a more generic sense to mean 

any type of large or intense computing that cannot be done on a standard workstation and 

necessitates a distributed computing system.  

High-Throughput Computing (HTC): Computing where reliability and long-term 

performance are crucial. HTC is typically measured in cycles (or jobs) per week or month. HTC 

workloads are often embarrassingly parallel and are executed on heterogeneous distributed 

systems. Whereas in HPC the performance of the processing units is crucial, in HTC the number 

of processing units is of more concern. The main challenge of an HTC environment is 

maximizing the computational resources that are available (Livny, Basney et al. 1997).  

Many-Task Computing (MTC): A computing paradigm that seeks to bridge the gap 

between HPC and HTC. The goal is to leverage a large amount of computing resources 

(reminiscent of HTC), but over a short period of time to maximize the number of tasks per 

second (similar to HPC). Tasks are generally heterogeneous and loosely coupled, using a shared 
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file system to communicate, but may not be embarrassingly parallel. The main concern of MTC 

is scalability (Raicu 2009). 

 Cloud Computing 

Terms like “cloud computing” or “the cloud” have become quite commonplace and are 

used in so many different contexts that their exact meaning is a bit ambiguous. Many definitions 

have been proposed in the literature, yet the new and quickly evolving field has not yet 

converged on a stable definition. Armbrust, Fox et al. (2010) gave a concise definition of the 

cloud stating that it was “applications delivered as services over the Internet and the hardware 

and systems software in the data centers that provide those services.” Vaquero, Rodero-Merino 

et al. (2008) compiled early definitions in the literature and stated the most commonly included 

characteristics were scalability, virtualization, and pay-per-use utility model. Perhaps the most 

widely accepted definition is from the National Institute of Standards and Technology (NIST), 

which states that the essential characteristics of the cloud are: on-demand self-service, broad 

network access, resource-pooling, rapid elasticity, and measured service. The NIST definition 

also includes three service models: infrastructure as a service (IaaS), platform as a service 

(PaaS), and software as a service (SaaS); in addition to four deployments: public cloud, private 

cloud, community cloud, and hybrid. Of special note is the hybrid cloud—a combination of a 

private and public cloud—because it is often used to create the most cost-effective computing 

cloud with truly elastic scalability by first using local computing resources when available before 

using commercial cloud resources (Humphrey, Hill et al. 2011). This practice is termed cloud 

bursting.  
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Cloud computing is an attractive resource for water resources modeling because cost-

effective, scalable computing can be accessed ubiquitously on-demand. It opens the door to 

perform modeling at a scale that was previously only available to those with access to large 

computing centers. Furthermore, if a modeling workflow is deployed as a web app, the step to 

utilizing cloud computing is a natural one. Here a distinction is made between web apps that use 

the cloud only to deploy their software as a SaaS and hydrologic apps that use IaaS cloud 

computing to perform large computing tasks.  

 HTCondor 

HTCondor is a middleware that provides both job and computing-resource management 

and enables HTC through opportunistic computing. It is probably the most commonly used 

middleware for managing clusters, idle workstations, and grids (Buyya, Vecchiola et al. 2013). 

Since I use HTCondor as an essential part of the computing toolkit, it is described here in detail. 

HTCondor creates an HTC system by grouping, or “pooling”, network-connected 

computing resources. A common example of an HTCondor pool is a set of lab or office 

computers that are all on the same network and configured (through HTCondor) to be part of the 

same computing system. Each computer in the pool is assigned one or more roles such as 

matchmaker, resource, or agent. Background processes, called daemons, which are specified in 

the computer’s HTCondor configuration file determine the role(s) of a computer. Each pool has 

only one matchmaker, which serves as the central manager. All other computers in the pool are 

resources and/or agents and are configured to report to the central manager. A resource is also 

known as a worker, and is a computer designated to run jobs. And an agent, also known as a 

scheduler, is a computer designated to schedule jobs. Any computer in the pool (including the 
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central manager) may function as both a resource and an agent. Figure 2-2 shows a possible 

HTCondor pool configuration. 

 
Figure 2-2. Possible configurations of an HTCondor pool. 

To submit a job to the pool a user must create a file to describe the job requirements, 

including the executable and any input or output files. This file is known as a problem solver. 

The user submits the problem solver to an agent, which advertises the requirements needed to 

run the job to the central manager. Similarly, each resource in the pool also advertises its 

availability, capabilities, and preferences to the central manager. This advertising, from both the 

agents and the resources, is done using a schema-free language called ClassAds. Periodically the 

central manager scans the ClassAds from resources and from agents and try to match jobs and 

resources that are compatible. When a match is made, the central manager notifies the agent and 
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the resource of the match. It is then the agent’s responsibility to contact the resource and start 

the job. This interaction is handled by a process running on the agent, known as the shadow, 

which communicates with a process running on the resource, called the sandbox. The shadow 

provides all of the details required to execute a job, while the sandbox is responsible for creating 

a safe and isolated execution environment for the job.  

The entire sequence is known as the HTCondor kernel and is summarized in Figure 2-3 

reproduced from (Thain, Tannenbaum et al. 2005).  

 
Figure 2-3. Major processes in an HTCondor (Thain, Tannenbaum et al. 2005). 

HTCondor was originally conceived with the goal of scavenging processing time from 

idle desktop workstations (i.e. opportunistic computing) (Litzkow, Livny et al. 1988). This 

concept alone enables organizations to create HTC systems without the need to invest in 

additional computing resources by fully utilizing the computers they already own during times 

when they would otherwise be idle (e.g., nights, weekends, or other times when a user is away 

from the computer). However, the capabilities of HTCondor now extend beyond just 



15 

opportunistic computing. The core design philosophy of HTCondor, and the key that has given 

the project success, is flexibility (Thain, Tannenbaum et al. 2005), which has allowed HTCondor 

to expand to be able to combine diverse computing resources (including clusters, grids, and 

cloud resources in addition to desktop computers), managed by different organizations with 

differing goals and objectives, into one computing system. 

Additional features of HTCondor extend its flexibility and capabilities. For example, 

HTCondor is ideal for embarrassingly parallel batch jobs, but it also provides a way of executing 

workflows using directional acyclic graphs (DAGs) (Couvares, Kosar et al. 2007). A DAG 

specifies a series of jobs, referred to as nodes, that need to be run in a particular order and also 

defines the relationships between nodes using parent-child notation. This allows for the common 

situation where the output from a preliminary set of simulations is used as input for a subsequent 

set of simulations. An alternative scheduler called a DAG Manager (DAGMan) is used to 

orchestrate submitting jobs in the proper order to the normal scheduler. If a node in the DAG 

fails, the DAGMan generates a rescue DAG that keeps track of which nodes are completed and 

those that still need to run. A rescue DAG can be resubmitted, and it will continue the workflow 

from where it left off. This provides a robust mechanism for executing large workflows or a 

large number of jobs. 

HTCondor provides several runtime environments called universes. The two most 

common universes are the standard universe and the vanilla universe. The standard universe is 

only available on Unix machines. It enables remote system calls so the resource that is running 

the job can remotely make calls to the agent to open and read files, which means that job files 

need not be transferred, but can remain on the submitting machine. It also provides a mechanism 

called checkpointing. Checkpointing enables a job to save its state. Thus when a resource 
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becomes unavailable in the middle of executing a job (because, for example, a user starts using 

the computer where the job is running), the job can start on a new resource from the most recent 

checkpoint. The vanilla universe is the default universe and is the most generic. It requires that 

the computing resources have a shared file system or that files be transferred from the submitting 

machine to the computing resource. The vanilla universe does not provide the checkpointing 

mechanism, and thus, if a job is interrupted mid-execution, it must be restarted on a new 

resource. Various other universes are available and are described in greater detail in the user 

manual (Condor Team 2014).  

HTCondor also provides a mechanism, called flocking, for submitting jobs to more than 

one pool of resources. Flocking enables organizations to combine resources while maintaining 

control of their own pool. For a machine to be able to flock to a remote pool the remote 

scheduler must be identified in the configuration on that machine. Additionally, the remote 

scheduler must accept the machine to be flocked from in its own configuration. The submitting 

machine will first try to match jobs in its native pool, but when resources are not available then it 

will “flock” jobs to the remote pool. Generally, a remote pool will not have a shared file system, 

so jobs that are flocked must enable the file transfer mechanism.  

The standard way for interacting with HTCondor is through the command line interface 

(CLI). HTCondor also provides several APIs, including a set of Python modules that interact 

directly with ClassAds and the HTCondor daemons, allowing jobs to be created and submitted 

with Python scripts (Condor Team 2014). These Python modules, known as the HTCondor 

Python bindings, are currently only available for Linux and are targeted at a specialized audience 

of developers (Bockelman 2013). 
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 StarCluster 

StarCluster is a cluster provisioning software created at MIT for Amazon Web Services 

(AWS) (StarCluster 2014). It allows users to create groups (or clusters) of virtual machines 

(VMs) (or nodes) that are automatically configured to operate as a unified HTC system. Since I 

created TethysCluster as a modified version of StarCluster, in this section I describe the 

functionality of StarCluster before modification. 

StarCluster requires the use of pre-built Amazon Machine Images (AMIs) to provision a 

cluster of VMs, and currently only supports Ubuntu or CentOS images. The pre-build 

StarCluster AMIs are publicly available and can be customized to include any necessary 

software for a particular computing task.  

StarCluster is written in Python and contains several high-level classes that represent the 

cloud provider, computing clusters, individual nodes within the cluster, etc. It uses a plug-in 

framework to configure nodes with the necessary settings to activate various features, like a job 

management system. By default the Sun Grid Engine (SGE) plugin is included on all clusters for 

job management, but there is also a plugin for HTCondor. StarCluster is designed with a CLI so 

it can be used directly from a command line to set up and manage computing clusters. It also has 

an application programing interface (API) so that provisioning and setting up computing clusters 

can be automated with Python scripts. StarCluster code is open source and thus available for 

further customization and adaptation. 

 Tethys Platform 

Tethys Platform is a free and open source software (FOSS) written in Python and 

powered by the Django web framework (Jones, Nelson et al. 2014; Swain, Christensen et al. In 
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Press). It provides an environment for developing and hosting web-based, water resources 

applications or “web apps.” This platform links together components that are needed to support 

water resources web apps, including web geographic information systems (GIS), visualization, 

data management, and computational resources. It provides a Python scripting environment in 

the form of an SDK to lower the barrier to developing apps, and includes a web portal for easily 

deploying them.  

Tethys Platform leverages several other FOSS projects, which together make up the 

Tethys software suite. Included in the software suite are: the web GIS projects GeoServer for 

publishing spatial datasets as web mapping services (WMS), 52 North for providing 

geoprocessing tools as a web processing services (WPS), and the PostgreSQL database with the 

PostGIS extension for providing spatial data storage. In addition to the web GIS projects, the 

software suite also includes a number of JavaScript libraries like OpenLayers and HighCharts to 

help create interactive maps and charts in the browser. The computing capabilities of Tethys 

Platform, which I added, rely on HTCondor. 

Tethys Platform offers an SDK that helps developers interact with the various 

components of the software suite and facilitates other aspects of web app development. The 

Tethys SDK provides APIs to the components in the Tethys software suite as well as to several 

external resources including CKAN or HydroShare for data storage, and to cloud computing 

resources. In addition to these APIs, the SDK also has APIs powered by Django to facilitate 

various aspects of web development including building web pages, user workspaces, and app-to-

app communication. 

The Tethys Portal is a deployable web site that serves as the runtime environment for 

apps that are developed with Tethys Platform. Django provides all of the core components of a 
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website, including a user management system and admin pages where the site can be configured 

and customized. Different organizations can each host their own instance of a Tethys Portal, 

brand and customize it, and install the apps that are suitable for their needs (Figure 2-4).  

Figure 2-4. Customized instances of Tethys Portal. 

In summary, Tethys Platform is a development and runtime environment for web apps. 

Tools have been included specifically to support the needs of water resources web apps such as 

web GIS elements and computing resources. An SDK is provided to facilitate the use of the 

software suite included with Tethys Platform, in addition to external resources. In order for 

Tethys to provide support for large modeling tasks it needs access to HTC systems and on-
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demand, highly scalable computing resources. The Python toolkit developed by this research has 

been integrated into the Tethys SDK to provide this functionality. The runtime environment for 

the apps is powered by the Python web framework, Django, which also powers some of the 

development tools that are part of the SDK. The various components of Tethys Platform that 

have been described are shown in diagram in Figure 2-5. 

 
Figure 2-5. Component diagram for Tethys Platform. 

 Related Work 

The computing tools described in the previous sections have been leveraged to facilitate 

large-scale computing in various fields, and many examples are present in the literature (Li and 

Mascagni 2003; Huang and Yang 2011; Fisch, Meißner et al. 2014; Petri, Li et al. 2014; Harvey 

and Ji 2015). The water resources modeling community, however, has begun to adopt these tools 

more recently. Efforts that have been made in applying and modifying these tools for water 

resources applications are described below. 
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The use of cloud computing in water resources applications is an active field. Sun (2013) 

created a simple watershed management app using Google services like Fusion Tables and 

Google Maps. ModflowOnAzure is a cloud service built using the Microsoft Azure cloud and is 

able to run batch MODFLOW jobs using Dropbox to sync files from a local machine to the 

cloud (Liu, Sun et al. 2012). The ModflowOnAzure service was used in the CyberGIS project to 

expand the computing resources from grid computing to the cloud (Behzad, Padmanabhan et al. 

2011). Huang, Cao et al. (2014) created a similar system with Azure and Dropbox for running 

contaminant transport models (MODFLOW and MT3DMS). Wu and Khaliefa (2012) created a 

local cloud of commodity machines and linked them using Microsoft HPC Pack which they used 

to run pump scheduling optimizations through a web portal. Hunt, Luchette et al. (2010) also 

created an HPC Pack system for calibrating SWAT models, with the ability to cloud burst to 

Azure. Humphrey, Beekwilder et al. (2012) used BeoPEST to calibrate MODFLOW models on 

GoGrid. A Python module called cloudPEST created at the USGS facilitates provisioning 

resources for running PEST on the Elastic Compute Cloud (EC2) from AWS (Fienen, Masterson 

et al. 2013). Other similar cloud modeling applications are described in the literature (Wang, Tao 

et al. 2008; Juve, Deelman et al. 2009; Luchette, Nelson et al. 2009; Lu, Jackson et al. 2010; 

Subramanian, Liqiang et al. 2010; Kollet, Schumacher et al. 2011; Kim, Jung et al. 2012; 

Gunarathne, Zhang et al. 2013; Miras, Jiménez et al. 2013; Delipetrev, Jonoski et al. 2014). All 

of these cloud applications are specific to a particular modeling purpose, and in many cases a 

particular model or workflow, and also are created for a specific cloud provider.  

Glenis, McGough et al. (2013) created a more generic solution for running models in a 

cloud-based system that also incorporates HTCondor. A CLI was developed to simplify the task 

of provisioning a cloud computing cluster. They employ DeltaCloud to abstract the interface of 



22 

various clouds so their system is compatible with any cloud provider that is supported by 

DeltaCloud. A so-called Cloud Enactor manages the jobs and provisions the VMs. HTCondor is 

used for scheduling if the number of jobs submitted is larger than the number of VM instances. 

The study used the system to run various flooding scenarios using the model CityCat. The details 

of the system implementation were not described nor is the code openly available. However, this 

example serves to illustrate the possibility of using cloud computing and HTCondor to create a 

generic computing system to support water resources modeling. 

There is a relatively new tool developed by the Microsoft Research team, called 

SimulationRunner, that is designed for running parameter sweeps using either a Windows 

executable, or one of several other supported programs including Python and Matlab (Liu, Zou et 

al. 2015). It has a built-in batch scheduling mechanism, but currently only supports job 

submission through its web interface. Data management is all handled through Azure Storage, 

and input files can be uploaded through the web interface or retrieved from Dropbox. Output 

files are automatically stored in an Azure Storage Container. While there are no licensing 

restrictions for deploying an instance of SimulationRunner, it can only be deployed on Azure, 

and the code is not publically available. Additionally, there is no mechanism for 

programmatically provisioning resources or submitting jobs, and it is only capable of handling 

simple embarrassingly parallel problems. 

StarCluster (StarCluster 2014), while providing many of the same benefits as 

SimulationRunner, also provides a way for programmatically provisioning resources, and since it 

can use HTCondor, it has the ability to schedule embarrassingly parallel workflows as well as 

hierarchical job workflows. Unlike many of the other systems previously described, StarCluster 

creates generic HTC environments that are not specific to any modeling workflow or purpose. 
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However, it is limited in the type of VMs it can provision (only Linux), and it only works with a 

single cloud provider (AWS).  

In addition to the many examples of water resources applications that have leveraged 

commercial cloud computing, there are also several examples in the literature of using 

HTCondor to create HTC systems from local computing resources. For example, the 

Commonwealth Scientific and Industrial Research Organisation (CSIRO) in Australia is using 

HTCondor to capture idle time on their organization computers consisting of 5000 nodes and ran 

over 12,000 agricultural model jobs, each consisting of 325 different management scenarios, in 

just over 10 days, rather than the estimated 30 years it would have taken to run the simulations 

on a single computer (Zhao, Bryan et al. 2013). Furthermore, the agricultural model used in this 

study required a Windows environment to run, an operating system that is uncommon for high 

performance computing clusters, but was easily obtained using the existing desktop computers of 

the organization, which eliminated the need to purchase additional, specialized computing 

infrastructure. HTCondor has also been used to run hundreds of thousands of models while 

applying the Bayesian inverse modeling technique Method of Anchored Distributions (MAD) to 

find to find spatial random fields (Heße, Savoy et al. ; Osorio-Murillo, Over et al. 2015). These 

examples highlight the benefits of using HTCondor to perform large-scale environmental 

modeling, but they do not provide a way to use HTCondor in a scripting environment for 

automating modeling workflows or for use in web applications. Taylor (2013) used Python 

scripts to interact with HTCondor’s CLI in a Windows environment to automate the process of 

using HTCondor to perform a stochastic analysis with the hydrologic model GSSHA. However, 

these scripts were specific to the application and do not provide a general solution for scripting 

HTCondor. 
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As stated earlier, there are four major requirements that are needed to provide a 

comprehensive scripting toolkit for accessing HTC and cloud computing to support modeling: 

(1) programmatic access to diverse, dynamically scalable computing resources, (2) a batch 

scheduling system to queue and dispatch the jobs to the computing resources, (3) data 

management for job inputs and outputs, and (4) the ability for jobs to be dynamically created, 

submitted, and monitored from the scripting environment. None of the systems that were found 

in the literature review provide all of these requirements in a generic, reusable form; however, I 

leveraged some of these tools and previous work to provide a toolkit that does meet all four 

requirements.  

The features of the first requirement were met by building on the functionality already 

provided in StarCluster. The only aspect that StarCluster lacked was to provide the desired 

diversity of computing environments, which has two components: (1) diversity of supported 

operating systems, and (2) diversity of supported cloud providers. Since StarCluster is open 

source and written in Python, I modified it to enable creating clusters composed of both 

Windows and Linux VMs, using either AWS or Azure. The modified form of StarCluster is 

called TethysCluster and is described in Chapter 3. 

The second and third requirements of the computing toolkit, a scheduling system and data 

management, are both provided by HTCondor. TethysCluster uses HTCondor to configure the 

clusters it provisions so these features are already built in to these clusters. While there are other 

job management systems that could also have been chosen, HTCondor has the advantages of 

providing opportunistic computing in addition to various runtime environments and mechanisms 

of data management available through the different universes as explained in section 2.2.  
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The fourth requirement, a Python scripting environment for creating, submitting, and 

monitoring jobs, is the last component needed to provide a comprehensive computing toolkit. 

While HTCondor does have low-level Python bindings, they are only available on Linux 

operating systems and do not have the level of abstraction desired to target the scripting tools for 

scientists and engineers. In response, I created a higher-level, cross-platform Python interface for 

HTCondor, called CondorPy, which is described in Chapter 4.  
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3 TETHYSCLUSTER: AUTOMATED PROVISIONING AND CONFIGURATION OF 
CLOUD RESOURCES 

To support various modeling workflows and web applications with unpredictable 

workloads, a comprehensive computing toolkit needs to provide an automated way to provision 

scalable computing resources. Furthermore, water resources models have various computational 

requirements, so the tools need to be able to provide diverse resources to meet those 

requirements. The flexibility and virtually infinite scalability of the cloud offers the computing 

resources that are needed. However, provisioning cloud resources and configuring them into an 

HTC system capable of processing water resources models is a complex and time-consuming 

task. To make cloud-computing resources accessible from scripted modeling workflows and web 

apps, the process of provisioning and configuring cloud resources must be automated. 

StarCluster (described in section 2.4) is a Python tool that can automate provisioning cloud 

resources and configuring them with HTCondor to operate as an HTC system, but it does not 

provide the diversity of computing environments required for water resources applications since 

it can only provision clusters of Linux VMs on AWS (Figure 3-1). I created a modified version 

of StarCluster, called TethysCluster, that provides the necessary diversity (Figure 3-2).  
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Figure 3-1. StarCluster can provision an HTCondor pool 
of Linux virtual machines on Amazon Web Services. 

 Software Description 

TethysCluster is adapted from StarCluster to provide greater flexibility in setting up a 

computing environment by adding the capability to provision computing clusters with nodes 

running the Windows operating system and to provision clusters using Microsoft Azure (Figure 

3-2). It maintains backwards compatibility with AMIs that are created for StarCluster (although 

some of the default configuration has changed).  
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Figure 3-2. TethysCluster can provision HTCondor pools of Linux virtual machines on 
Microsoft Azure and both Linux and Windows Machines on Amazon Web Services. 

The StarCluster code is organized with high-level classes like EasyEC2, Node, and 

Cluster that represent the cloud provider, a single VM, and the group of VMs that form the 

computing system, respectively (Figure 3-3). StarCluster is designed to work only with Linux 

nodes on AWS, thus the Node class has elements that are specific to Linux, and the EasyEC2 

class is specific to the AWS EC2 API. TethysCluster maintains the abstraction used by 

StarCluster, but generalizes some of the classes so that they can provide a greater diversity of 

computing resources (Figure 3-4). 
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Figure 3-3. Unified Modeling Language (UML) diagram showing classes and their 
relationships in the StarCluster code.
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Figure 3-4. UML diagram showing classes that I modified and the classes and modules that I added in TethysCluster.
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3.1.1 The Node Class 

The Node class represents a single node in a computing cluster and has methods that 

handle the configuration of that node with the settings to make it function as part of the cluster. 

The TethysCluster code generalizes the Node class to serve as the base class from which 

operating system specific subclasses can be made. I extracted the methods of the Node class that 

had code that was specific to Linux and put then a LinuxNode subclass. These were methods that 

handled things like hostname configuration, managing user accounts, configuring Network File 

Systems (NFS), generating SSH keys, and package management. These methods became (in 

practice) abstract methods on the Node base class, meaning that subclasses would need to 

implement them with code specific to an operating system. To add support for Windows nodes, I 

created a WindowsNode subclass where I implemented these methods with code specific to the 

Windows operating system. For example, the set_hostname method in the StarCluster Node class 

used the Linux-specific program “hostname” to set the hostname of VM represented by the node. 

I moved this code into the LinuxNode subclass (Figure 3-5) and implemented the set_hostname 

method in the WindowsNode using the Windows Management Instrumentation Command-line 

(WMIC) tool (Figure 3-6). Additionally, Windows requires that the system be rebooted to reset 

the hostname, so the method also handles rebooting the system and waiting for it to come back 

up. A UML diagram with the inheritance relationship between the Node class and its subclasses 

is shown in Figure 3-7. 
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Figure 3-5. Implementation of the set_hostname method in the LinuxNode subclass. 

 
Figure 3-6. Implementation of the set_hostname method in the WindowsNode subclass. 
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Figure 3-7. UML inheritance diagram showing the subclasses of the Node class. 
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StarCluster used a NodeManager class to create new nodes. In TethysCluster I modified 

the make_node method of this class to determine the type of node that should be created based 

on the VM instance that is passed in (Figure 3-8). 

 
Figure 3-8. The make_node method in the NodeManager class determines the type of node 
that should be made based on the platform attribute of the VM instance that is passed in. 

Nodes are automatically configured into a unified computing cluster by running 

commands remotely using secure shell (SSH). Linux VMs come with SSH, so configuring them 

in this way is straightforward. Windows VMs, on the other hand, are generally not running SSH, 

and therefore a customized Windows image must be created and configured to do so. For the 

development of TethysCluster I configured the Windows VMs with the Linux emulator Cygwin, 

which provided the SSH service needed to connect to them remotely.  

Providing a Windows VM with SSH is only part of what is required to automatically 

connect and configure it. SSH keys or certificates must also be configured to authenticate a 

connection to a VM. Typically, cloud providers automatically configure Linux VMs with the 

SSH key needed for the user to automatically connect to it, but Windows VMs, which are not 
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typically provisioned with SSH, do not get configured with the key. AWS provides a mechanism 

to download instance metadata, including the necessary SSH public key, from the VM by 

accessing a well-known server with the following permanent URI: 

http://169.254.169.254/latest/meta-data/public-keys/0/ (Amazon Web Services 2016b). In the 

Windows Amazon Machine Image (AMI) that I created for TethysCluster, I added a startup 

script that downloads the SSH key from the well-known server location and adds it to the list of 

authorized keys. Unfortunately, Azure does not provide a way to automatically retrieve SSH 

keys on Windows VMs and therefore TethysCluster is not able to automatically configure 

Windows clusters on Azure. 

In summary, to allow TethysCluster to provision and configure Windows VMs (on 

AWS), I added a WindowsNode subclass to the TethysCluster code. I also created a custom 

Windows AMI and configured it with Cygwin, to provide an SSH connection, and with a startup 

script, to retrieve the SSH key required to automatically connect to and configure the VM.  

3.1.2 Cloud Providers 

StarCluster has a module called awsutils that is used to simplify using the AWS API in 

the ways that are needed by the StarCluster code. Generalizing this code to allow TethysCluster 

to function on multiple cloud providers was more complicated than generalizing the Node class. 

This is because the design of the StarCluster code is so tightly integrated with the AWS API and 

relies on features that were unique to EC2 that, to truly generalize it, would require redesigning 

the entire code base. Rather than pursuing this route, I wrote wrappers around the Azure API to 

give it the same interface as the AWS API in a module called azureutils (see Figure 3-3). Since 

there are fundamental differences between the architectures of the two clouds, there was not 
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always a perfect translation from the Azure API to the AWS API, but I made adaptations to 

allow Azure to function in at least the most vital ways for the purposes of TethysCluster. 

StarCluster relies on the following AWS API objects: SecurityGroup, PlacementGroup, 

Instance, and Reservation. In the azureutils module I created corresponding classes that act as 

wrappers for Azure API objects, but that have same interface (or partial interface, as needed by 

the TethysCluster code) as the AWS objects. The SecurityGroup object wraps the Azure 

HostedService object and is discussed in detail later. The PlacementGroup in AWS represents a 

group of VMs that are located on the same physical hardware. This is inherently part of an Azure 

HostedService, so the custom PlacementGroup object is just a wrapper around the custom 

SecurityGroup object. The Instance object is a wrapper around the Azure RoleInstance, and a 

Reservation in AWS represents a request to provision one or more VM instances, so the custom 

Reservation object just contains a list of the custom Instance objects. These relationships and the 

parallel organization of the awsutils and the azureutils moduels is shown in the UML diagram in 

Figure 3-9. 

The TethysClusterConfig class creates the object that represents the cloud provider. I 

modified the get_easy_ec2 method in the StarCluster code to be get_easy_cloud and made it 

determine the cloud provider class to instantiate based on the configuration file Figure 3-10. 
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Figure 3-9. Detail UML diagram of the azureutils module showing the parallel structure to the awsutils module. 
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Figure 3-10. Modified method in the TethysClusterConfig class that determines which 
cloud provider class to instantiate. 

A fundamental requirement that is at the core of the StarCluster design is that all the 

nodes in a cluster need to be able to communicate with each other. This requires that each node 

has a predefined hostname (e.g. master, node001, node002, etc.) and that the cloud provider 

allows network traffic between the nodes and handles hostname resolution (i.e. translating the 

hostname to the IP address). This way the images that nodes are made from can be pre-

configured with the hostnames (and hostname patterns) for other nodes in the cluster. The key to 

getting this to work is what AWS calls a security group (SG) (Amazon Web Services 2016a). 

SGs work like a virtual firewall where rules for network traffic are set up. StarCluster uses SGs 

for two purposes. First, they are used to set network traffic rules allowing all of the VMs in a 

cluster to communicate with one another; it is important to note that AWS automatically handles 

hostname resolution within a security group. Second, SGs are used as a way of labeling or 

tagging a group of VMs with a common name so that they can be identified as a cluster. When 

StarCluster is used to provision a new cluster, it first creates a corresponding SG. Any VMs that 

are then provisioned in that cluster are placed in that SG. 

Although Azure recently created what is called a network security group (NSG), which 

has many of the same purposes and functionality as an SG on AWS, there is a key difference: 
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hostname resolution is not handled automatically. This prevents TethysCluster from being able 

to use NSGs on Azure in the same way that SGs are used on AWS because the configuration of 

the clusters will not work without automatic hostname resolution. 

To circumvent this problem, TethysCluster relies on what Azure calls cloud services, 

which are represented by the HostedService class in the Azure API. This gets down to a 

fundamental difference between AWS and Azure. In AWS’s EC2 the basic computing unit is a 

VM instance, which is essentially a virtual server. On Azure the basic computing unit is a cloud 

service (formerly hosted service). Cloud services were designed to support scalable web apps, 

which traditionally have a web front end and a back end that handles the heavier computations. 

Reflecting this structure,  cloud services originally provided two roles (or types of VMs): a web 

role and a worker role, each of which were configured using code that was bundled into a special 

file called a cloud service package. Each role could have multiple instances, allowing the web 

app to scale as needed. Therefore, a cloud service is a container that can host a group of role 

instances; however, it only has a single public IP address and domain name. Eventually Azure 

added support for the more traditional virtual machine architecture but did this by just creating a 

new role type, called a VM role, in a cloud service. The implications of this are that there can be 

multiple instances of a VM role in a cloud service that are all grouped behind one public IP 

address (Plankytronixx 2014). Since Azure does handle hostname resolution automatically 

within a cloud service (Microsoft 2016), and since a cloud service naturally groups VM instances 

together, TethysCluster can use cloud services to accomplish the same two purposes that SGs do 

on AWS.  

However, a consequence of using cloud services is that although each VM instance has 

its own private IP address and hostname, which allows them to communicate with each other 
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internally, there is only a single public IP address and domain name for all of the VMs in the 

cloud service. This becomes problematic when connecting to individual nodes externally because 

port 22, the default port for SSH connections, can only be mapped to one of the VMs in the 

cloud service. TethysCluster solves this problem by mapping the local port 22 on each VM to a 

unique external port. The master node is mapped to the external port 22 and all other nodes are 

mapped using the pattern ‘22’ + [node-index], where node index is the index of the node (e.g. the 

index for node001 is 001). 

Another consequence of using cloud services is that the name of the cloud service is used 

as the domain name. This creates some problems with the naming convention used for SGs. 

StarCluster uses a naming convention to easily identify the SGs that represent clusters (i.e., that 

were created by StarCluster), and to ensure that the names are unique from other SGs that are 

created outside of StarCluster. The slightly modified convention used in TethysCluster is: @tc-

[cluster-name], where [cluster-name] is replaced by the name the user gives to the cluster. SG 

names must be unique within an AWS account, which means that a user cannot create two 

separate clusters with the same name. On Azure the name of the cloud service is also used as the 

domain name, thus the naming convention is invalid (the @ symbol cannot be used in a domain 

name). Moreover, domain names must be universally unique; so if a user of TethysCluster 

somewhere in the world created a cluster named ‘mycluster’ then the corresponding domain 

name would be taken and no other user of TethysCluster anywhere in the world could create a 

cluster with the same name. It is reasonable to expect a user to create unique names for clusters 

on their own account, but not have to create a universally unique name. To circumvent these 

challenges, TethysCluster translates between the naming convention used throughout the code 

and a separate naming convention used to name cloud services on Azure, which follows the 
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pattern: tc-[cluster-name]-[azure-subscription-id], where [azure-subscription-id] is a unique 

identifier for the subscription being used. 

StarCluster has utilities to aid in creating and verifying SSH keys that are required to 

provision and connect to VMs on AWS. Azure uses SSH keys as well as Secure Sockets Layer 

(SSL) certificates. I added utilities for working with SSL certificates to TethysCluster to 

facilitate working with VMs on Azure. 

To summarize, the design of the StarCluster code is so integrated with the AWS API that 

generalizing it would require an almost entire rewrite of the code. To avoid this, I added support 

for Azure by wrapping Azure API objects in custom objects that provide the same interface as 

the AWS API objects. These custom objects essentially translate between the Azure objects and 

the interface that is expected throughout the rest of the code and thus prevent the need to 

completely rewrite the code in TethysCluster. 

 Discussion 

The primary purpose of creating TethysCluster was to allow clusters to be created with 

Windows nodes so that computing resources could be automatically provisioned for models that 

required a Windows environment. While StarCluster offers a rich set of features for working 

with Linux nodes on AWS, TethysCluster currently only supports the most basic and essential 

features for Windows nodes. The major features that TethysCluster does not yet support for 

Windows nodes are being able to attach Elastic Block Store (EBS) volumes, configuring NFS, 

and running graphical applications with X Windows System (X11). Though these features would 

be useful on Windows nodes, they were not the primary focus of this research. Future research 

might look at the possibility of adding these features. 
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As was discussed earlier, there are a few customizations that are required in order for a 

Windows AMI to work with TethysCluster. This is not unusual since the Linux AMIs also 

require some pre-configuration. The standard configuration for Linux nodes requires installing 

some library dependencies, installing SGE and HTCondor, installing Python and any packages 

desired, configuring NFS, and configuring root login though SSH. The configuration for the 

Windows AMIs included installing Cygwin and several of the Cygwin packages (including 

SSH), configuring the SSH server and allowing root login, opening port 22, setting up a startup 

script to download the public SSH key, and installing HTCondor. Adding the features mentioned 

above will likely consist of mostly (if not entirely) additional configuration of the Windows 

AMI. 

It is unfortunate and a bit ironic that Windows nodes could not be configured to work on 

Azure. The only configuration step that is dependent on the cloud provider is getting the public 

SSH key. AWS provides a URI that can be accessed by the node to download the key; however, 

I was unable to find a comparable solution or work-around for Azure. Azure is a quickly 

evolving cloud platform, and has recently released preview versions of a new Python API. It is 

possible that a mechanism for retrieving the key will soon be available. 

If the primary purpose of TethysCluster was to create a way to provision a cluster of 

Windows nodes, which was successfully accomplished with AWS but not with Azure, then what 

was the benefit of providing support for Azure? While the primary purpose was to create 

diversity of computing environments, the underlying objective of a comprehensive computing 

toolkit is to make computing more accessible to modelers. It is possible that in some situations a 

modeler may have access to one cloud and not to another (for example, because of grants, 
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affiliation, or sponsorship). By making TethysCluster compatible with both Azure and AWS it 

becomes a more flexible tool that provides greater access to computing resources. 

So, if adding support for Azure was beneficial, why weren’t other cloud providers also 

supported? Ideally, TethysCluster would be compatible with any and all cloud computing 

providers. Unfortunately, because the cloud computing industry originated in the private sector 

and grew so rapidly, standards were not established, and each provider created their own 

infrastructure and API (Monteiro, Pinto et al. 2011). There are some efforts to create 

interoperable APIs that interface with multiple cloud provider APIs, such as DeltaCloud (Apache 

Software Foundation 2011); however, these currently only provide support for basic capabilities 

that are common among most providers (like provisioning and deleting a VM). Since 

TethysCluster has very specific requirements to enable it to configure VMs as a computing 

cluster, APIs like DeltaCloud do not provide the support needed. StarCluster was designed 

around the capabilities of AWS, and because of this research, suitable adaptations were made in 

TethysCluster to allow it to function with Azure. It is possible that there are other clouds that 

also have the features to support TethysCluster, but additional research would be needed to 

evaluate other clouds and write wrappers around their APIs to function in TethysCluster. 

 



44 

4 CONDORPY: A PYTHON INTERFACE TO HTCONDOR 

Modeling workflows and web applications need the capability to dynamically create, 

submit, and monitor jobs in a scripting environment. For example, a user of a modeling web app 

will enter job parameters into a web interface, and the server-side code of the app will need to 

package the parameters into a job and submit it to a scheduling system to be executed. 

HTCondor pools provisioned with TethysCluster as described in Chapter 3 provide the compute 

resources and scheduling system. The next step is to create a Python library that can take 

advantage of all of the necessary features of HTCondor to create, submit, and monitor jobs. 

While HTCondor currently has Python bindings that could be used in a scripting environment, 

they are only available on the Linux distribution, and they are designed to be low-level, targeting 

power users who have extensive knowledge of HTCondor’s ClassAds and daemons. For the 

objectives of a comprehensive computing toolkit, a high-level, cross-platform HTCondor 

interface is needed. Work done previously at Brigham Young University used high-level Python 

scripts for performing stochastic analysis with hydrologic models using HTCondor (Taylor 

2013). These scripts would use Python to write a job description file and then would submit it 

using the HTCondor CLI. This allowed HTCondor to be programmatically accessed from 

Windows through Python. I used this same pattern to develop CondorPy, but designed it to be 

more general and expandable.  
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 Software Description 

CondorPy is a simple Python interface to HTCondor that facilitates using HTC to execute 

large modeling tasks from a scripting environment. To accomplish this, I designed the code to 

meet the following objectives: (1) provide a high-level, job-centric abstraction; (2) have cross-

platform functionality; (3) allow remote job scheduling; and (4) offer a job template system to 

provide reasonable defaults and eliminate repetitive job configuration. The UML diagram in 

Figure 4-1 shows a class relationship diagram of the classes that I developed to meet these 

objectives. The following subsections describe how these classes were implemented. 

 
Figure 4-1. Class relationship UML diagram for the classes in CondorPy. 
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4.1.1 Job-Centric Abstraction 

CondorPy uses a high-level, job-centric abstraction, allowing the modeler to focus more 

intuitively on the computing job and not have to worry about the various system components of 

HTCondor, such as the scheduler, the job queue, etc. A job-centric abstraction means that a user 

of CondorPy can create a job object and perform all needed actions (i.e. submit, wait, status, 

remove, etc.) directly on that object. Figure 4-2 is a detailed UML diagram of the Job class 

showing its properties and methods. 

 
Figure 4-2. UML diagram for the CondorPy Job class. 
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The only required parameter when creating a job object is the name. The job name not 

only identifies the job, but also is used to create a job submission file, log files, and the initial 

directory for the job. The initial directory acts as the home base for that job and is where the job 

submission file and the log file(s) get written and where any files created by the job are copied 

back to (when using the file transfer option in HTCondor). The initial directory is automatically 

created in the job’s working directory, which is, by default, the system’s current working 

directory (CWD) when the code is executed, but can be set as any directory. The input files that 

are required for the job are referenced relative to the initial directory. It is possible to use a 

different name for the initial directory, and even the name of a directory that already exists, but 

by default a directory is created using the name given to the job. 

Additional job attributes can be passed in as a Python dictionary when creating a job 

object or added later. Job attributes are key-value pairs and can be any of the submit description 

file commands that are described in the HTCondor user manual (Condor Team 2014). The 

executable property, while not required when creating a job object, must be set before the job can 

be submitted. Unlike the input files, which are defined relative to the initial directory, the 

executable is defined relative to the job’s working directory. This is a result of the way 

HTCondor handles these parameters. 

The Job class in CondorPy provides as set of action methods, such as submit, wait, 

remove, and edit, that allow job objects to interact with HTCondor. The commands rely on the 

HTCondor CLI, which is discussed more in the following section. Objects created from the Job 

class also have several properties. Notably, the status property is dynamically updated by calling 

the appropriate CLI command. Since a job can be made up of multiple sub-jobs each with their 

own status, the status property represents the status of all of the sub-jobs. If the status of all of 
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the sub-jobs is the same, then that is the value of the status property. If the sub-jobs have 

different statuses, then the value of status will be ‘various’. There is an additional property called 

statuses that returns a list of the individual sub-job statuses so that the actual status of each sub-

job can be examined. 

In addition to the Job class, CondorPy also provides a Workflow class to represent a 

DAG. The Workflow class follows the same pattern as the Job class, but allows users to create a 

set of jobs, define hierarchical relationships among them, and submit them all as a single 

workflow. To define the relationships between jobs, CondorPy uses node objects. A node is a 

wrapper for a job object that has additional attributes to define parent and child relationships to 

other node objects. Figure 4-3 and Figure 4-4 show UML diagrams listing the properties and 

methods of the Workflow class and the Node class, respectively. The relationships among the 

jobs in a workflow can be as simple or complex as needed, or even have no relationship to each 

other at all (as would be the case for a simple parameter sweep. Figure 4-5 shows various 

diagrams of possible job relationships within a workflow. The purple boxes represent the nodes 

and the red arrows indicate a relationship going from the parent node to the child node. 

4.1.2 Cross-Platform 

One of the objectives of CondorPy is to be cross-platform so that it can be used in any 

environment that HTCondor can run in, which in many cases for water resources modeling is a 

Windows environment. This means that it cannot use the native Python bindings of HTCondor 

since these are only available on the Linux platform. For this reason, CondorPy is built around 

HTCondor’s CLI, which has the same interface on all platforms. Using the CLI also allows  
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Figure 4-3. UML diagram for the CondorPy Workflow class. 

 
Figure 4-4. UML Diagram for the CondorPy Node class. 
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Figure 4-5. Diagrams of various workflows showing the levels of complexity that can be 
represented in CondorPy. 

CondorPy to use the more intuitive language of the job description file, rather than the ClassAd 

language used by the native Python bindings.  

CondorPy wraps the HTCondor CLI commands that interact with the job in methods on 

the Job and Workflow classes. All of these methods provide reasonable default options, but can 

accept custom options. Any options that can be passed to the CLI commands can be passed to 

these methods as a string or list of strings. It is important that the system’s CWD is set as the 

job’s working directory when these methods are executed so that relative paths can be resolved 

properly. By default, the job’s working directory is the system’s CWD, but if a different working 

directory is defined for the job then CondorPy changes the system’s CWD to be the job’s 
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working directory before executing methods that require it and then change it back once the 

method returns. This is done using a custom Python decorator that I created (Figure 4-6). 

 
Figure 4-6. Code for the custom decorator that ensures HTCondor CLI commands are 
executed from the job’s working directory. 

To submit a job using the CLI, CondorPy must write the job description file to disk and 

then execute the CLI submit command. To identify and interact with the job later, CondorPy 

saves the job ID that is created when the job is submitted. Since the CLI is used to execute 

commands to HTCondor, getting feedback from the commands requires parsing the output from 

the command line. Regular expressions are used to match the output and extract the pertinent 

parts (e.g. the job ID). This is not as efficient as using the native Python libraries, but the 

overhead from doing this is generally small in comparison to the runtime of the job. 
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Figure 4-7. The submit method of the HTCondorObjectBase class, which parses the output 
of a submit command using a regular expression to get the cluster id. 

4.1.3 Remote Scheduling 

Remote job submission decouples the submitting machine from the HTCondor 

computing resources by not requiring that HTCondor be installed on the submitting machine. 

This feature of CondorPy accomplishes many of the same things as the HTCondor add-on 

package RemoteCondor (Condor Team 2010), but it does it in different ways. First, 

RemoteCondor is written in Bash, whereas the remote scheduling component of CondorPy is 

written in Python, allowing CondorPy to maintain cross-platform functionality. Secondly, while 

RemoteCondor is configured to work with a single remote scheduler, in CondorPy each job can 

be configured to submit to a separate scheduler. Both RemoteCondor and CondorPy execute 

HTCondor commands on the remote machine via SSH, however RemoteCondor uses SSH 

Filesystem (SSHFS) to mount the remote file system locally to accommodate file transfer, while 

CondorPy uses a Python implementation of Secure Copy Protocol (SCP) to transfer files to and 

from the remote scheduler, again to maintain cross-platform compatibility. RemoteCondor 

requires that all of the necessary files are located on the mounted remote file system. CondorPy 
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requires that the user provides a list of local paths to the files that will be copied over to the 

remote scheduler. This list is the remote_input_files property of a CondorPy job object. 

CondorPy creates a directory on the remote scheduler using a universally unique identifier 

(UUID) for the name, and all the files listed in the remote_input_files property are copied into 

that directory. The job’s initial directory is also created in that remote directory, so when 

specifying file paths in the job attributes, such as executable, or input_files, they should be the 

paths relative to the initial directory on the remote scheduler. 

The remote scheduling feature of CondorPy allows modelers to use an HTCondor 

computing pool without having to install and configure HTCondor on their computer. This is just 

one of the ways that CondorPy eases the burden of using HTCondor for modeling. Also, this is a 

valuable feature for integrating HTCondor into web applications where having HTCondor 

installed on the front end web server may not be desirable. 

All of the code that is needed to interact with the remote schedule is the 

HTCondorObjectBase class, which is the parent class for both the Job class and the Workflow 

class. This gives both subclasses the remote capability while keeping the code for handling 

remote interactions in one place. A UML diagram showing the properties and methods of the 

HTCondorObjectBase class is shown in Figure 4-8. 
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Figure 4-8. UML diagram for the CondorPy HTCondorObjectBase class. 

4.1.4 Job Templates 

To further simplify job creation, I created job templates, which make it easy to include a 

group of commonly used job description attributes together with reasonable defaults where 

possible. For example, the base template configures all of the logging files. The 

vanilla_transfer_files template builds on the base template and adds job attributes needed for a 

job running in the vanilla universe using the file transfer mechanism. By using job templates, a 

modeler need only worry about a few key job attributes such as the job executable and the input 

files, while attributes that deal with the Condor environment are abstracted away. The sample in 

Figure 4-9 illustrates how to create a job from a job template and submit it with CondorPy using 

a few short lines of Python code. 
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Figure 4-9. Code sample for submitting an HTCondor job with CondorPy. 

While Job templates ease the burden on the modeler by preconfiguring many job 

attributes, any attribute from a template can be overwritten. Thus templates can be used to 

simplify the process of creating a job, but they do not restrict the user from accessing any of the 

options of HTCondor. In addition to the job templates that I included in CondorPy, I also created 

a way for custom templates to be loaded from file. 

 Discussion 

I created CondorPy to facilitate automating modeling tasks that require HTC by 

providing a simple interface for HTCondor. In this section I describe the motivation and rational 

for the design choices and the broader implications of CondorPy. 

First, why does the hydrologic modeling community need a Python interface for 

HTCondor? Before addressing the specifics of this question it is helpful to first answer the more 

general question of why a scripting language is needed to access computing resources. As 

hydrologic models are becoming more sophisticated, they typically require larger amounts of 

data, and larger amounts of computing resources. The data are often spatially distributed and 

may come from many different sources and in many different formats. Creating scripts to 
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retrieve, combine, and reformat data can save a significant amount of time, especially if the 

process needs to be repeated. Also, these scripts document the provenance of the data that is used 

in a model, which is critical for research. When modeling requires large-scale computing, such 

as an HTC system, then the process of executing the models also becomes much more complex, 

and scripting the process yields the same benefits of time-savings and reproducibility. 

Furthermore, scripting the entire processes from data manipulation to model execution is 

necessary for automating modeling workflows, which can be deployed on the web to make them 

more easily accessible to end users. Thus, having a scripting interface to access computing 

resources facilitates the modeling processes. So, turning back to the original question of why a 

Python interface is needed for HTCondor, there are two specifics that still need to be addressed: 

why Python?, and why HTCondor?  

Python is a general-purpose, cross-platform language that has an expressive and easily-

readable syntax and is widely adopted by the scientific community for scientific computing, web 

development, and for “steering” workflows (Oliphant 2007; Pérez, Granger et al. 2011). Since 

CondorPy was designed to be used by scientists and engineers to facilitate accessing computing 

resources in modeling workflows and in a web environment, Python was a natural choice.  

HTCondor is one of many job scheduling and managing middleware that could be used to 

provide access to large-scale computing resources. It is a leader, however, in its ability to 

scavenge idle processing time from regular workstations, making it possible for modelers to gain 

access to an HTC system without the need to invest in additional infrastructure. Additionally, 

HTCondor is cross-platform and has the flexibility to be used with almost any computing 

resource including cloud resources. 
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If, as has been stated, the modeling community does indeed need a Python interface for 

HTCondor, then why aren’t the native Python bindings sufficient, or at the very least why 

doesn’t CondorPy use these bindings to build from? Although, the native Python bindings are 

more efficient than parsing the output from the CLI, they are only available on Linux. The CLI, 

on the other hand, has the same interface on all platforms allowing CondorPy to be cross-

platform, which is important as many hydrologic models natively run in Windows. The use of 

the CLI also allows CondorPy to use the notation of the submit description file, which is more 

human-readable than the ClassAd notation, making CondorPy more approachable by those not 

well-versed in HTCondor. 

I have explained the rationale for selecting the foundational components that I used to 

build CondorPy, and I will now focus on the design objectives. The four design objectives of 

CondorPy emerged while working to generalize the Python scripts created by Taylor (2013) for 

use in other modeling applications, including web-based applications, and I formed each 

objective with the goal of simplifying the process of working with HTCondor. The first 

objective, providing a job-centric abstraction, allows modelers to work with the code in a natural 

way, and makes the code easy for others to read and maintain. Next, having cross-platform 

functionality gives modelers the flexibility to work in the environment most suited to their 

model. Providing remote job scheduling has two purposes: First, it is common for modelers to 

work from laptops where it may not make sense to install HTCondor; remote job scheduling 

allows for jobs to be submitted from a computer where HTCondor is not installed as long as it 

can connect to a remote scheduler. The second reason is for using CondorPy in a web 

environment; remote submission allows the duties of an HTCondor agent (e.g. maintaining a job 

queue and advertising jobs to the central manager) to be offloaded from the main web server. 
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Finally, the job template system was created to eliminate the repetitive parts of creating a new 

job, such as setting up logging files, and to reduce the number of job settings that the user needs 

to specify. 
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5 COMPUTING TOOLS IN TETHYS PLATFORM 

One of the main motivations for creating a comprehensive computing toolkit is to provide 

a way for accessing computing resources in a web development environment. While it is 

increasingly popular to deploy complex modeling workflows as web applications (or web apps), 

integrating all of the components required for such apps can be a significant barrier (Swain, Latu 

et al. 2015). As part of a National Science Foundation-funded project, called CI-WATER, that 

enhanced the cyberinfrastructure for water resources, we developed a tool called Tethys Platform 

which lowers this barrier by providing a web development platform that incorporates many of 

the visualization, geospatial, and computational components needed in water resources web apps 

(Swain, Christensen et al. In Press). In addition to other contributions, I added the Tethys 

Compute module to Tethys Platform. Tethys Compute leverages TethysCluster and CondorPy to 

provide a comprehensive computing toolkit within the Tethys Platform development 

environment. Access to these tools is provided through the Compute API and the Jobs in the 

Tethys SDK as well as through the Tethys Compute admin pages in Tethys Portal. Figure 5-1 is 

an expanded Tethys Platform component diagram that indicates the specific components in 

Tethys Portal and the Tethys SDK that I created or contributed to as part of the Tethys Compute 

tools. 
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Figure 5-1. Expanded Tethys Platform component diagram showing the sub-components of 
Tethys Portal and the Tethys SDK. 

 Compute API 

I designed the Compute API to enable provisioning cloud computing resources and 

getting access to those resources. It is a fairly simple API that offers direct access to the 

TethysCluster API to support dynamic scalability of computing resources. Accessing those 
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resources is facilitated by Schedulers, which are database objects that contain the connection 

information of an HTCondor agent in a computing cluster. The Compute API offers functions to 

access the Scheduler objects, which are needed to submit jobs to the clusters. 

5.1.1 Using TethysCluster in Tethys 

The Compute API provides the function get_cluster_manager from the TethysCluster 

API, which returns a ClusterManager object. The ability to provision clusters and scale them up 

or down can all be done through the cluster manager. The get_cluster_manager function accepts 

the path to a TethysCluster configuration file as an optional argument. This allows Tethys apps 

to create custom configuration files for TethysCluster that contain specifications for clusters 

designed to meet the need of the app, such as the number and size of nodes, and the image ID 

from which to make the nodes. The configuration file must contain credentials for the cloud 

provider that will be used to provision the clusters. These can either be provided through 

configuration of the app by the administrator of the Tethys Portal where the app is installed, or 

the app can collect credentials from users so that the each user is paying for the resources that 

they use. This is a choice of the app developer. Tethys does not currently have a user payment 

system, so the only way for a user to pay for the resources he or she uses is to provide the 

credentials to his or her cloud account. Otherwise the cloud usage of all users will be charged to 

the account provided by the Tethys Portal administrator. 

In addition to being able to manage cloud-computing resources in Tethys apps through 

the Tethys SDK, resources can also be managed at a portal level through the admin pages. This 

is discussed more in section 5.3. Whether clusters are provisioned by apps or through the admin 

pages, accessing the clusters is facilitated through Schedulers. 
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5.1.2 Schedulers 

A scheduler represents an agent in an HTCondor pool, (i.e. a computer that has the ability 

to submit jobs to the pool). I used the Django’s Object Relational Model (ORM) to create 

database objects to represent schedulers. These scheduler objects store the IP address or 

hostname of the computer along with the credentials needed to connect to the computer through 

SSH. To be able to submit jobs to a computing cluster from a Tethys app a scheduler must be 

defined with the credentials for one of the nodes in the cluster. Creating schedulers can either be 

done in the app through the Compute API, or they can be created using the admin pages (see 

section 5.3). 

 Jobs API 

CondorPy already provides a scriptable interface for creating and submitting jobs to a 

compute pool. However, running computing jobs in a web environment introduces additional 

complexities such as dealing with asynchronous interactions, load balancing, and requiring a 

web-based user interface. This section describes how CondorPy is used in Tethys to address 

these challenges through the Jobs. 

5.2.1 Job Manager 

To facilitate the asynchronous nature of computing in the synchronous environment of 

web apps, I wrap CondorPy job objects in a database model using the Django ORM. The details 

of interacting with the database are abstracted through a job manager object. The job manager is 

part of the Tethys SDK and gives the developer a simple interface for creating and retrieving 

jobs. The job manager automatically filters jobs based on the app and user so the developer can 
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easily retrieve pertinent jobs. The details of creating new jobs, including the underlying 

CondorPy job, are also handled by the job manager and facilitated with the use of Tethys job 

templates. 

5.2.2 Tethys Job Templates 

In Tethys, jobs are defined through job templates. These are distinct from CondorPy job 

templates, but serve a similar purpose. Tethys supports multiple job types, but the principle job 

type is the CondorJob type, which serves as a wrapper for CondorPy Job objects. A job template 

in Tethys specifies the job type and defines any job parameters that will be common to all jobs 

created from that template. When creating a job, the name of the job template is passed to the job 

manager, which then returns a job object that has been initialized with from the job template. Job 

templates help to organize jobs and simplify the process of creating new jobs.  

The CondorJob type can take advantage of CondorPy’s remote scheduling capability to 

offload the task of maintaining the job queue from the main web server. This is done by setting 

the scheduler property in the job template. If a scheduler is not defined for a job, Tethys assumes 

that the local machine is configured as a scheduler and will attempt to submit the job locally, 

which requires that HTCondor be installed on the Tethys server. If a job does have a scheduler 

defined, then Tethys uses the remote scheduling capability of CondorPy to copy the required 

files to the scheduler (if needed) and submit the job to the scheduler’s HTCondor pool. 

5.2.3 Jobs Table Gizmo 

We developed Tethys Platform to simplify the process of creating a web application 

capable of running large computing jobs. One way we accomplished this is through Gizmos. 
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Gizmos are user interface elements that can be configured through the Tethys SDK. These 

elements have predefined HTML and JavaScript components that get included automatically. I 

created the jobs table gizmo to help users interact with their jobs (Figure 5-2).  

 
Figure 5-2. The Jobs Table gizmo. 

While the jobs table gizmo is accessed through the gizmos API in the Tethys SDK, it is 

closely connected with the Jobs API because it provides the user with information about 

computing jobs. The fields of the table are configurable so the app developer can decide which 

attributes of the jobs to display. The default configuration of the gizmo provides controls that 

allow a user to run or delete jobs, and a link to view the job results when jobs are completed. It 

also handles updating the job statuses automatically at a configurable interval. The jobs table 

gizmo handles much of the background code for creating a web interface for interacting with 

jobs while still giving developers the flexibility to configure it according to their needs. 
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 Tethys Compute Admin Pages 

Tethys Portal includes admin pages that allow administrators to manage database entries 

that are part of the Tethys Platform database model. I added a set of Tethys Compute admin 

pages that allow Tethys Portal administrators to create and manage portal-wide computing 

clusters and schedulers and to manage jobs from all of the apps in one place (Figure 5-3).  

 
Figure 5-3. Tethys Portal admin page for Tethys Compute. 

I created a simple interface for TethysCluster in the admin pages so that setting up a new 

cluster only requires a name (one that is unique among the clusters on the cloud provider account 

being used) and a size. Optionally, image IDs can be provided to create the cluster with 

customized images. I didn’t include all of the features and flexibility that are available through 

the TethysCluster API in the admin page because the purpose of the web interface was to provide 

a quick and easy way to create computing clusters. However, It is possible that additional 

features will be added to the cluster admin page in the future (Figure 5-4). 
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Figure 5-4. Tethys Portal admin page for creating/editing clusters. 

Additional settings that aren’t specific to a single cluster, such as cloud provider 

credentials and the default cluster template, are on the Tethys Compute Settings admin page 

(Figure 5-5). 
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Figure 5-5. Tethys Portal admin page Tethys Compute Settings. 

Adding portal-wide schedulers to allow jobs to be submitted to computing resources is 

done through the Tethys Compute Schedulers admin page (Figure 5-6). Only the name and the 

host properties are required. If a username is not provided then default, “root,” is used. Some 

method for authenticating the user on the scheduler is required whether that is a password, a 

private key, or a private key/passphrase combination. Schedulers do not necessarily have to be 

part of one of the clusters that is set up through the admin pages. They can be connected to any 

HTCondor pool that is accessible from the network where Tethys Portal is running, which can 

include on-premise pools. 

Jobs are also managed through the Tethys Compute admin pages. The Tethys Compute 

Jobs page (Figure 5-7) provides tools for editing or deleting jobs, but not for creating them; jobs 

can only be created using the Jobs in the Tethys SDK. Care should be taken when editing certain 
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properties, like the workspace, the subclass (i.e. the job type), or the status, as jobs may become 

invalid if these properties are changed. 

 
Figure 5-6. Tethys Portal admin page for creating/editing schedulers. 

 Discussion 

I used the comprehensive computing toolkit provided by TethysCluster and CondorPy to 

build Tethys Compute, which provides the development tools for HTC computing in a web 

environment. These tools are integrated into the Tethys SDK through the Compute API and the 

Jobs. The Compute API is essentially a direct interface to the TethysCluster API, but in the Jobs 

API I created a set of tools around CondorPy to provide the necessary functionality for the web.  
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Figure 5-7. Tethys Portal admin page for editing jobs. 

These additional tools around CondorPy were needed because the web environment adds 

complexities that require additional consideration. Some of these issues have already been 

addressed. However, the primary issue is that of persisting jobs beyond individual server-client 

transactions. To illustrate this problem, consider a web application that allows a user to execute a 

job by clicking a button on a web page. Behind the scenes, the browser sends a request to the 

server indicating that the button to run a job has been clicked. The server responds by executing 
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some code to process the request; in this case CondorPy is used to create a job and submit it to an 

HTCondor pool. The server can then wait for the job to finish running before sending a response 

back to the browser, but if the job takes longer than a minute or two, the connection with the 

browser will time out. Alternatively, if the server sends a response to the browser before the job 

is finished then the CondorPy job, which is in the server’s memory, is deleted and the server then 

knows nothing about the job and cannot check the job status or retrieve the job results. To get 

around this problem the server must save the information about the CondorPy job before it 

responds to the browser. In Tethys Platform the information from the CondorPy job is stored in a 

database. This way when another request is made to the server (for example, to check the status 

of the job), the server can reconstruct the CondorPy job from the information in the database and 

then use the CondorPy API to retrieve the job status. 
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6 APPLICATIONS 

I used TethysCluster, CondorPy and Tethys Compute to support other research projects. 

These projects illustrate the need and utility of a comprehensive computing toolkit. Four projects 

are described and represent research that I did in collaboration with others. I give enough 

background on each project to provide the context, but I mainly focus on the computing aspects 

of the projects that I performed.  

 Canned GSSHA: Pre-computed Modeling for Flood Warning 

Parameter sweeps are a common type of modeling task that help characterize the solution 

space that corresponds to a parameter space. The parameter space is defined by the permutations 

of a set of parameters that are varied over the possible range of values. Each permutation defines 

a different parameterization for the model. A parameter sweep involves running the model with 

each of the parameterizations to determine the distribution of the resulting solutions. One 

application of this type of modeling in water resources is to pre-compute a large set of 

parameterizations that represent a set of hydrologic conditions and archive the results so that they 

can be quickly retrieved to determine if and to what extent forecasted conditions will produce 

flooding. This requires that many (often tens of thousands) model scenarios (or 

parameterizations) be computed to adequately cover the parameter space. This method and the 

work represented here is discussed in grater detail in (Dolder, Jones et al. 2015). 
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6.1.1 Methods 

To demonstrate this application a GSSHA model of the Hobble Creek watershed was 

developed and a set of seven parameters were selected to vary: temperature, temperature 

amplitude, precipitation duration, precipitation intensity, rain start time, snow line, and snow 

gradient. The Latin hypercube method was used to divide each parameter distribution into 

quantiles. A different number of quantiles was used for different parameters to achieve greater 

resolution for those that are more important (i.e. have a grater influence on the result). Ultimately 

this resulted in 57,600 unique scenarios of randomly generated parameterizations that evenly 

cover the full parameter space. 

The GSSHA model I used takes between about a minute to almost a day to run, 

depending on the parameterization. I used an early version of CondorPy to facilitate creating and 

submitting jobs to compute each of the 57,600 model instances to an HTCondor pool made up of 

55 lab computers that each had 4 cores. At first all of the jobs were submitted into the queue 

simultaneously; however, this crashed the scheduling daemon on the submitting computer. To 

prevent the scheduler from becoming overloaded the remaining jobs were placed in a DAG 

(without any relationships), which enabled the number of jobs that were queued at a single time 

to be limited. Since the pool consisted of 220 cores the limit on the number of jobs queued was 

set at around 250, ensuring that there would be no delay in a computing resource from getting a 

new job from the queue when it became available. A Tethys app was created to visualize the 

results. The steps involved in this study are summarized in Figure 6-1, and the step that I 

performed is indicated with the red, dashed box.  
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Figure 6-1. Summary of the steps in the Canned GSSHA study. 

6.1.2 Results 

The results of the 57,600 model runs were archived and a Tethys app was designed to be 

able to explore the parameter space. There are sliders to select the value for each of the 

parameters. The resulting parameter set is represented by the yellow area on the radar plot. The 

green area on the plot shows the closest match from the 57,600 parameterizations that were 

computed. The pre-computed results of that simulation, including the hydrograph and a max 

flood map, are also shown (Figure 6-2).  

Due to the scheduler crashing, the scenarios were not all computed continuously. The 

computing took place in several stretches over a 46-day period. Figure 6-3 shows a timeline of 

the entire period with the periods of active computing marked. Table 6-1 summarizes the time 

statistics for the entire computing task. 
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Figure 6-2. The Canned GSSHA Tethys app allows users to explore the solution space of 
the 57,600 archived simulations. 

 
Figure 6-3. Timeline showing the active computing time for running 57,600 
GSSHA models using HTCondor. 

Table 6-1. Summary of Compute Time for the Canned GSSHA Parameter Sweep 

Unfortunately, due to the complications in finding the most stable way to run the jobs, the 

statistics for individual model runs were not saved for all 57,600 jobs. However, the order in 

Statistic Value Units 
Total Time 45.39 days 

Active Time 29.39 days 
Active Time 64.8 % 
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which the parameterizations were run was randomized so the statistics for the 37,244 jobs that 

were saved should be a representative sample. These statistics are summarized in Table 6-2.  

Table 6-2. Summary of Statistics for Individual Model Runs and the HTCondor Pool  

The statistics listed are specific to HTCondor and merit some explanation. Wall time is 

the total amount of time that the 37,244 jobs were being processed on the HTCondor pool. Good 

time is the total amount of time that actually contributed to completed jobs. If a job is evicted 

from a computing resource during the middle of execution (because the computing resource 

becomes unavailable) then the job must be restarted on a new resource. Any time that was spent 

computing the job on the original resources doesn’t contributed to the completion of the job, 

which is why the good time is lower than the wall time. The goodput is the percent of the total 

time that contributes to completed jobs, or the ratio of the good time to the wall time. The min, 

max, and average job times are calculated from the good time for the individual jobs. This 

includes in any overhead, such as time transferring files, in addition to the actual simulation time. 

The average CPU time is the wall time divided by the number of CPUs, and represents the 

average amount of time each CPU in the pool was actively being used for this task. The pool 

Statistic Value Units 
Jobs 37,244 count 

Wall Time 2,752.48 days 
Good Time 2,090.73 days 
Goodput 76.0 % 

Max Job Time 23.73 hours 
Min Job Time < 1 min 
Avg. Job Time 1.35 hours 

CPUs 220 count 
Avg. CPU Time 12.51 days 
Pool Utilization 42.6 % 
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utilization is the ratio of the average CPU time to the total active time, and represents the how 

much of the total capacity of the pool was used for this task.  

6.1.3 Discussion 

This study was done early on in the development of CondorPy and provided valuable 

insight in how to best run jobs of large magnitude, which directed the development of CondorPy. 

When the queue on the HTCondor scheduling node is larger than about 5,000 then it becomes 

unstable. By using a DAG to schedule a large number of jobs then the DAGMan can control how 

many jobs are submitted to the queue at one time. This keeps the scheduler stable, but also has 

the added benefit of allowing for recovery and resubmission of partially completed DAGs (using 

a rescue DAG) if for some reason the DAG is unable to complete all of the jobs. As a result of 

this study I added the Workflow capabilities to CondorPy to facilitate creating and submitting 

DAGs. 

The goodput indicates that only 76% of the compute time on the HTCondor pool actually 

contributed to completing jobs. This means that 24% of the compute time was spent on jobs that 

were evicted before they were completed. This wasted time comes because HTCondor cannot 

anticipate when a computing resource will become unavailable, or how long a particular job will 

take to complete. HTCondor has mechanisms that help increase the goodput such as 

checkpointing (only on Linux nodes), or by having a job that is interrupted mid-execution wait 

on that resource until the resources becomes available again and then the job will resume where 

it left off. Deciding whether to have a job wait on a resource or be rescheduled elsewhere is a 

function of how expensive it is to restart a job. If there is a significant amount of file transfers 

that have to happen, or if there is the potential for a job to be interrupted after a large amount of 
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wall time then it may be more advantageous to suspend the job on the current resources and have 

it wait until the resource becomes available again. 

The pool utilization is an indication of how available the pool was for running this task. 

Since 42.6% of the pool time was used to compute this task it means that 57.4% of the time it 

was claimed by users of the computers or by other HTCondor jobs. Because of HTCondor 

almost half of the processing time of 220 cores was made available for HTC tasks without 

needed to invest in any additional computing resources. However, if tasks are time critical or 

don’t lend themselves well to interruption, then dedicated resources, such as cloud resources, 

should be used. 

 Data Access/Formatting Apps 

Obtaining and formatting input data required by a model is part of any modeling process. 

Because data are now available from many different sources and in many different formats this 

part of the process can be quite complex and time consuming. As the spatial and temporal 

resolution of data increases, the computing requirements to process the data can be come large.  

The NASA Earth Observing System Data and Information System (EOSDIS) provides 

many datasets that are useful for water resources modeling. Since the datasets provided are 

national or global scale and often have a large temporal domain, NASA has an online tool for 

selecting subsets of the data both spatially and temporally, the Simple Subset Wizard (SSW) 

(Figure 6-4). 
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Figure 6-4. The Simple Subset Wizard web tool allows users to obtain subsets of large data 
sets.  

The SSW is a convenient way to get just the data needed without having to manage large 

datasets; however, the format the data are provided in is not as convenient. The SSW provides a 

link to download each time step of the requested data individually (Figure 6-5). If data spanning 

a long period of time are requested, then downloading and managing the data can become 

unwieldy.  

Precipitation and soil moisture data were used from the North American Land Data 

Assimilation System (NLDAS) data sets to populate GSSHA models for a research project 

looking at watersheds all over the United States. The data were accessed through the SSW, 

which provided them in netCDF format, but for the purposes of this project the data were 

ultimately needed in ASCII grid format so they could be loaded into Watershed Modeling 

System (WMS) to be used in as GSSHA input. Since the process of obtaining the datasets and 

reformatting them needed to be done for many watersheds and by many people, I automated the 
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process with Python scripts and then integrated them into two Tethys apps, which can be 

accessed by multiple users simultaneously.  

 
Figure 6-5. Links for downloading data from the SSW. 

6.2.1 Methods 

The first of the two Tethys apps, the SSW Downloader, is designed to download and 

aggregate data from the SSW. A URL that returns a list of the URLs for the data time steps is 

copied into the app and then a job is launched to download all of the data time steps and 

aggregate them into a single netCDF file. The Jobs was used to create a CondorJob that submits 

a Python script to an HTCondor Pool. The Python script downloads and aggregates the data and 

then the resulting netCDF file is made available to download or to pass to the second app. 
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Figure 6-6. SSW Downloader Tethys app. 

The second Tethys app, Convert NetCDF to GSSHA Input, takes a netCDF file passed 

from the SSW Downloader app and allows the user to select one of the variables to export as 

either a GRASS ASCII raster or an Arc/Info ASCII gird (Figure 6-7). The same method was 

used for this app as the previous app to submit a Python script as an HTCondor job using the 

Jobs. Since the ASCII grid format doesn’t support multiple time steps a new grid is generated for 

each time step and then the whole set is compressed into a zip archive, which is made available 

to download. 

To test the performance of the apps three datasets were downloaded that had the same 

spatial domain (bounding the state of Texas; see Figure 6-9), but different temporal domains 

ranging from two days to a month in April 2015. For each dataset both hourly precipitation and 
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soil moisture were included. That datasets were retrieved with the SSW Downloader app and 

then the precipitation was reformatted to ASCII grids using the conversion app.  

 
Figure 6-7. Convert NetCDF to GSSHA Input Tethys app. 

To compare the effect of the number of variables and the size of the domain two 

additional sets of three datasets were processed using the same time extents as the first set. One 

set had a smaller domain surrounding Austin, TX (Figure 6-10), and the other used the original 

spatial domain, but only downloaded the precipitation data. The processing time of each of the 

nine datasets were compared.  

The steps for developing these apps and using them to format data for GSSHA input is 

summarized in Figure 6-8 with the steps I performed boxed in the red, dashed line and the steps I 

helped with boxed in the blue dashed line. 
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Figure 6-8. Summary of steps in developing the data access and formatting apps for use in 
GSSHA models.  

6.2.2 Results 

The data sets resulting from the processing of the first app were netCDF files that 

contained both the soil moisture and the precipitation data. Figure 6-9 and Figure 6-10 show the 

soil moisture for April 1, 2015, on the large and small domains respectively, and Figure 6-11 

shows the hourly precipitation near Austin, TX for the whole month of April 2015.  

The times it took to download and aggregate each of the data sets are listed in Table 6-3 

and plotted in Figure 6-12.  

The processing times recorded on the Convert NetCDF to GSSHA Input app ranged from 

5 seconds to 25 seconds; however, the mechanism for timing only updated every 5 seconds, so it 

is likely that these times are not accurate. 
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Figure 6-9. Soil moisture data from the NLDAS data set over the larger domain. 

 
Figure 6-10. Soil moisture data from the NLDAS data set over the smaller domain. 
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Figure 6-11. Hourly precipitation for April 2015 near Austin, Texas. 

Table 6-3. Summary of Processing Time on the SSW Downloader Tethys 
App for Three Datasets 

6.2.3 Discussion 

From Figure 6-12 it appears that the size of the domain has a slight impact on the 

compute time, but the number of variables has a significant impact. There was a separate file to 

download for each variable for each time step, so the downloading time is likely the largest 

factor in the total time. 

 

Days 

Time to Process [sec] 
2 Vars.  

Large Domain 
2 Vars.  

Small Domain 
1 Var.  

Large Domain 
2 274 157 78 
7 732 596 665 

30 2661 2276 1234 
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Figure 6-12. Plot of the processing times for various datasets with 
1 or 2 variables on a large or small domain. 

If the end goal were only to reformat the data, then it would have been more efficient not 

to have aggregated the netCDF file for each time step into a single dataset since the ASCII grid 

format can only store a single time step in each file anyway. However, aggregating the datasets 

made it easier to download and visualize the data before converting it to the ASCII format. 

While these examples are not particularly compute intensive, the main benefit of 

automating the workflow in a web app is that multiple users can access it from anywhere at the 

same time. If multiple requests are made simultaneously then the computational load could 

become significant. Using the computing tools allows the computations to be offloaded to a 

distributed computing system that can queue and processes the jobs as necessary.  

 GSSHA Index Editor 

Predicting the change in a runoff hydrograph due to changes in land-use is a common 

modeling task that is important to consider when determining the impact of a new development 

in a city, or events, such as a forest fire, that significantly change the hydrologic characteristics 
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of a large area. Since the specific location of the land-use changes can play a large role in the 

how the hydrology is affected, it is useful to use a spatially-distributed model, like GSSHA 

(Downer and Ogden 2004), that can represent the spatial characteristics of the land-use change 

(Ogden, Raj Pradhan et al. 2011). However, distributed hydrologic models are generally more 

complex than their lumped-parameter counterparts and take more time and expertise both to 

modify and to run (Singh and Woolhiser 2002). Anderson (2015) addressed these challenges by 

developing a Tethys app, which provides a simple and straightforward workflow where the user 

selects an existing model, makes edits to the land-use maps, and submits the modified model to 

be run (the original is also run if the results have not already been saved). The interface of the 

app is shown in Figure 6-13. 

One of the challenges with running GSSHA in a web app is that it is compiled for a 

Windows environment, but it is common to use Linux servers to host websites. An additional 

challenge is that, due to the nature of the web, it is possible for many people to simultaneously 

access the app and submit jobs, causing a large computing load. These challenges are addressed 

with the Tethys computing tools.  

6.3.1 Methods 

The GSSHA Index Map Editor app interface was designed to allow users to manually 

draw polygons to change the land-use, or to upload shapefiles with new land-use polygons. A 

Python library called GsshaPy was used to load the GSSHA files into a PostGIS database. GIS 

functions on the database were used to update the land-use index map. 
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Figure 6-13. Map interface of the GSSHA Index Map Editor Tethys app. 

I added the capability for the app to use the Tethys Platform job manager to connect to 

computing resources that can be scaled to handle the workload and configured with the proper 

environment for the compute jobs. I used the job manager to create the GSSHA modeling jobs, 

which are then submitted to an HTCondor pool of Windows nodes that are configured to run 

GSSHA. CondorPy copies the GSSHA files that were modified through the app to the remote 

scheduler and then remotely schedules the job to run. Once the job is complete, CondorPy then 

copies the results back to the local Tethys server so they can be visualized. This file transfer 

configuration limits the size of the GSSHA models that the app can process to those that can 

reasonably be copied back and forth over the network.  

The steps for creating the GSSHA Index Map Editor app are summarized in Figure 6-14 

with the step that I performed boxed in the red, dashed line. 



88 

 
Figure 6-14. Summary of steps in creating the GSSHA Index Map Editor app. 

6.3.2 Results 

The result of interest for the GSSHA Index Map Editor is the difference in the 

hydrographs produced by the original and the modified models. Once the jobs have finished 

computing and the results of the models are copied back to the Tethys server, the app can graph 

both of the hydrographs for comparison.  Figure 6-15 shows an example of the results page of 

the app. 

6.3.3 Discussion 

The GSSHA models used here ran in approximately three minutes. As in the previous 

example the computation load is not particularly significant, but the main benefit of deploying 

this workflow as a web application is to allow ubiquitous and simultaneous access to a simplified 

modeling workflow where the computational environment only needs to be set up and 

maintained in one location. Because of the possibility of multiple users accessing the app and 

submitting jobs at the same time, the Tethys Compute tools are needed to offload the 

computation to an HTC system.  



89 

 
Figure 6-15. Example results of GSSHA Index Map Editor app workflow. 

In order for CondorPy to submit jobs to a remote Windows scheduler it is necessary to 

configure it with an SSH server. If TethysCluster is used to provision the cluster on AWS then 

the nodes will already have SSH configured. 

 Streamflow Prediction Tool 

As part of an effort led by the National Water Center to create high-resolution in-stream 

forecasts for rivers throughout the United States, Snow, Christensen et al. (In Press) developed a 

method for downscaling and routing global runoff ensemble forecasts generated by the European 

Centre for Medium-Range Weather Forecasts (ECMWF) using the Routing Application for 

Parallel computatIon of Discharge (RAPID) model (David, Maidment et al. 2011). This method 

processes a 52-member ensemble weather forecast by downscaling and routing precipitation 

runoff through the nearly 2.7 million reaches of the National Hydrography Plus Version 2 
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Dataset (NHDPlusV2), (Horizons Systems Corporation 2011). While the processing is 

computationally expensive, the ensemble members are independent of each other and thus can be 

processed in parallel in a distributed computing system making it an ideal application of HTC. 

Furthermore, a new forecast is released every 12 hours, requiring a scheduled and automated 

system to process the computations.  

6.4.1 Methods 

The NHDPlusV2, which covers the continental United States, is divided into 12 

hydrologically independent regions. Each of the 52 ensemble members of the runoff forecast was 

processed for each of the 12 regions, thus the computational load was subdivided both by region 

and by ensemble member, creating 624 subtasks that needed to be computed every 12 hours. The 

process of downscaling and routing the forecasted runoff consists of running a geoprocessing 

tool to map the runoff from the coarse grid to catchments defined by the NHDPlusV2 and then 

running the RAPID model to route the runoff through a stream network using Muskingum 

routing. We configured each of the compute nodes, or HTCondor resource nodes, with the 

geoprocessing script, the RAPID model code, and a shared file system that contained the static 

input files for each region. We created a Python script to download ECMWF ensemble forecast 

to the shared file system, thus eliminating the need to transfer a large amount of data between the 

compute nodes and the scheduling node. The Python scripted used CondorPy to create and 

submit jobs to process the 52-member ensemble forecast for each of the 12 regions. The script 

was scheduled to run every 12 hours on the scheduler node. 

The steps for setting up the streamflow prediction tool are summarized in Figure 6-16 

with the steps that I helped with boxed in the blue, dashed line. 
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Figure 6-16. Summary of steps for setting up the Streamflow Prediction Tool. 

6.4.2 Results 

This process was tested using a local compute cluster and using a computing cluster on 

AWS. The time to compute the same jobs serially was estimated based on the individual 

computation times to determine the savings of using distributed computing vs. serial computing. 

The results from each region are listed in Table 6-4. 

The modeling workflow for each region results in 52 point netCDF files that contain the 

15 day in-stream flow prediction for each reach in that region. The netCDF files are uploaded to 

a data repository where they are accessible to a Tethys app that was created to visualize the 

results (Figure 6-17). 
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Table 6-4. Results of Computation Time Based on Area and the Number of Reaches 

6.4.3 Discussion 

The increased performance of using AWS relative to the local cluster is likely due to 

faster hardware. The estimated serial run time for the NFIE Mississippi Region alone is much 

longer than 12 hours (43,200 seconds). Thus the distributed computing, facilitated through 

CondorPy, is necessary to process the forecasts on the 12-hour release cycle. 

Even though a Tethys app was created to visualize the results of the app, the modeling 

workflow is run as a scheduled service on a cluster that is independent of Tethys; CondorPy is 

used as a stand-alone library to facilitate submitting jobs to the HTC clusters in the workflow. 

While not run operationally, we developed a script that has the ability to use 

TethysCluster to dynamically provision the clusters needed every 12-hours, and then shut them 

down once the jobs were finished computing. If AWS or Azure were used to run the forecasts 

operationally then this could significantly reduce the cost of the computing resources. 

  

Watershed Name 

    Compute Time [sec] 

Area [sq km] Number of Reaches Serial AWS Local Cloud 
NFIE Souris-Red-Rainey Region 213,488 29,053 7,343 49 141 
NFIE Rio Grande Region 564,840 55,854 9,083 64 175 
NFIE New England Region 169,445 65,858 10,906 63 210 
NFIE Texas-Gulf Region 464,493 66,373 10,417 68 200 
NFIE Great Basin Region 367,058 96,269 8,589 43 165 
NFIEGreat Lakes Region 324,434 104,645 15,873 115 305 
NFIE Mid-Atlantic Region 277,755 125,398 16,900 109 325 
NFIE California Region 421,995 140,759 22,367 164 430 
NFIE Colorado Region 660,454 187,010 28,105 210 540 
NFIE Pacific Northwest Region 814,493 231,806 24,325 180 468 
NFIE South Atlantic-Gulf Region 675,734 323,096 41,083 319 790 
NFIE Mississippi Region 3,302,913 1,242,008 316,930 1,558 6,095 
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Figure 6-17. The Streamflow Prediction Tool displaying streamflow forecasts for a reach in 
the Great Basin Region. 
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7 DISCUSSION AND CONCLUSIONS 

The objective of this research has been to facilitate the use of HTC and cloud computing 

in modeling workflows and web applications. I accomplished this by creating a comprehensive 

Python toolkit consisting of the two libraries, TethysCluster and CondorPy, which together meet 

the following requirements: (1) programmatic access to diverse, dynamically scalable computing 

resources; (2) a batch scheduling system to queue and dispatch the jobs to the computing 

resources; (3) data management for job inputs and outputs; and (4) the ability for jobs to be 

dynamically created, submitted, and monitored from the scripting environment. This chapter 

discusses the contributions that this research has made and describes future work that could be 

done to expand upon the research presented here. 

 Technical Contributions 

With the adaptations that I made to StarCluster to create TethysCluster I was able to 

successfully meet the first three requirements that I defined. The main contribution of 

TethysCluster is adding the ability to provision cloud-computing clusters composed of Windows 

VMs on AWS and add the ability to provision Linux VMs on Microsoft Azure. This makes 

TethysCluster a more flexible tool, able to provide the diverse computing environments that are 

needed to support water resources modeling. By using HTCondor as the middleware for 

configuring an HTC system on the clusters configured by TethysCluster I meet the second two 

requirements. I integrated TethysCluster into Tethys Platform in the Compute API as well as 
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through admin tools to allow HTC clusters to easily be provisioned from a web app development 

platform. TethysCluster can also be used to dynamically scale computing resources to support 

scheduled workflows, as demonstrated with the Streamflow Prediction Tool. 

I created CondorPy as an object-oriented interface for HTCondor to meet the last 

requirement by enabling programmatic creation and submission of HTC jobs. I used CondorPy 

to facilitate executing 57,600 instances of a GSSHA model for the Canned GSSHA project and 

helped with the development of a scripted workflow that uses CondorPy to process 624 forecasts 

for the Streamflow Prediction Tool. To further facilitate the use of CondorPy in web apps, I 

created the Jobs API in Tethys Platform, which I then used to create two data management apps 

and to add the ability to submit GSSHA models to be run in the GSSHA Index Map Editor app.  

TethysCluster and CondorPy are free and open source software. TethysCluster maintains 

the GNU Lesser General Public License that StarCluster was licensed under, and CondorPy is 

licensed under the BSD 2-clause license. Tethys Compute was contributed to the Tethys 

Platform open source project (under the BSD 2-clause license). All of these code repositories are 

on GitHub (see Appendix A).  

 Future Work 

Because of the contributions made by this research there are numerous possibilities to 

either leverage these contributions or expand upon them in future research. Several of these 

possibilities are described here. 
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7.2.1 Enhancements to TethysCluster 

TethysCluster provides the basic functionality needed to support hydrologic modeling 

workflows. Additional features could provide further benefit. Since Microsoft Azure is in the 

process of developing a new Python API, it may become possible to access the public SSH key 

that is necessary to support Windows nodes. Also, additional research could find ways to extend 

the full set of features that are supported on Linux nodes, to Windows nodes. Also, StarCluster 

supports automated load balancing (i.e. the ability to scale the cluster size) based on the job 

queue when using SGE. This feature is not supported when using HTCondor. Additional 

research could extend this feature to both TethysCluster and StarCluster. TethysCluster 

diversifies the available computing resources that can be used by supporting Azure in addition to 

AWS. Adding support for additional cloud providers would increase the flexibility of 

TethysCluster. While not all cloud providers currently support all of the features needed by 

TethysCluster, a likely candidate that should be explored is OpenStack, which is used by the 

commercial cloud provider RackSpace, but also is used by many private clouds. 

7.2.2 Enhancements to Tethys Compute 

Tethys Compute has been proven to support HTC in web applications. However, there 

are enhancements that could make it an even more powerful and flexible set of tools. A 

WorkflowJob in the JobsAPI would allow users to take advantage of CondorPy Workflows to 

provide support for hierarchical jobs in Tethys. Additional options and tools could be integrated 

into the Tethys Compute admin pages to allow the web interface to take advantage of all of the 

flexibility in creating cluster that is provided by TethysCluster.  
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7.2.3 Additional Applications 

The comprehensive computing toolkit has supported several research applications that 

needed programmatic access to HTC resources. Additional research applications could also make 

use of these tools.  

One such application, parent-child modeling with GSSHA, is currently being researched. 

Hydrologic modeling often requires modeling large domains because downstream locations of 

interest are dependent on the hydrologic processes of the watershed upstream. When using 

advanced hydrologic models that are spatially-distributed and physically-based, like GSSHA, 

modeling large domains can be computationally demanding and time consuming. For some 

models this problem can be partially alleviated by having a variable discretization with higher 

resolution over areas of greatest interest. However, many models only support uniform grid size 

and therefore if a high-resolution grid is desired over part of the model it must be used over the 

whole domain. While GSSHA only supports uniform grids it does have a mechanism for 

handling differing grid sizes over a domain through parent-child models.  

Parent-child modeling is a method for decomposing a large domain into cascading, 

hierarchical sub-domains. First level sub-basins, in the highest part of the watershed can all be 

run independently from each other, and thus in parallel. Second level sub-basins rely on input 

from the first level sub-basins but are independent from one another. A watershed may be broken 

into various hierarchical levels ending at the base level, which relies on all previous levels. When 

the domain is broken up into various sub-domains, each represented by its own model, the sub-

domains can have differing grid sizes, making it possible for there to be higher resolution only in 

the area of interest. 
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Since the model is structured in a hierarchical way, with sub-basins at the same level 

being independent of each other, it is a perfect application for a CondorPy workflow. By 

implementing the parent-child models in a workflow the computation can be more efficient since 

sub-basins can be run in parallel while sill keeping the necessary parent-child order. 

Another application that could facilitate additional research would be to develop a Tethys 

app to run stochastic GSSHA models. Many study areas could benefit from a stochastic analysis 

to understand and characterize uncertainty, but the challenge of getting enough computational 

resources to run the models hundreds or thousands of times is prohibitive. A Tethys app that 

would allow any model to be uploaded and then run stochastically would allow modelers to 

spend more time focusing on the hydrologic questions that the model should answer rather than 

focusing on the modeling process. This research has produced the tools necessary to build this 

type of application, and it could just as easily be done for models other than GSSHA. 

Related research could develop methods for managing, analyzing, and summarizing the 

large amounts of data that result from a stochastic analysis in a web environment. Tethys 

Platform provides many tools for visualizing data, but research is needed to find meaningful and 

manageable ways to visualize large amounts of data produced by stochastic modeling in this 

environment. 

My research has produced tools to support dynamically accessing computing resources 

for large water resources modeling tasks, which meet the four requirements that I identified. 

These tools have been shown to support the computing needs of research that has pushed the 

boundaries of water resources modeling, and have the potential to continue to do so in many 

other applications.  
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APPENDIX A SOFTWARE AVAILABILITY 

The software described in this document is open source and publicly available to use and 

enhance. Links to access each project is listed below: 

 TethysCluster 

Project Home Page: http://www.tethysplatform.org/TethysCluster/ 

Code Repository: https://github.com/tethysplatform/TethysCluster/ 

Documentation: http://tethyscluster.readthedocs.org 

 CondorPy 

Project Home Page: http://www.tethysplatform.org/condorpy/ 

Code Repository: https://github.com/tethysplatform/condorpy/ 

Documentation: http://condorpy.readthedocs.org 

 Tethys Compute (Tethys Platform) 

Project Home Page: http://www.tethysplatform.org 

Code Repository: https://github.com/tethysplatform/tethys/ 

Documentation: http://docs.tethysplatform.org 

http://www.tethysplatform.org/TethysCluster/
https://github.com/tethysplatform/TethysCluster
http://tethyscluster.readthedocs.org/en/dev/
http://www.tethysplatform.org/condorpy/
https://github.com/tethysplatform/condorpy/
http://condorpy.readthedocs.org/en/latest/
http://www.tethysplatform.org/
https://github.com/tethysplatform/tethys/
http://docs.tethysplatform.org/

