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a b s t r a c t

Autophagy and mitophagy are important cellular processes that are responsible for breaking down

cellular contents, preserving energy and safeguarding against accumulation of damaged and aggregated

biomolecules. This graphic review gives a broad summary of autophagy and discusses examples where

autophagy is important in controlling protein degradation. In addition we highlight how autophagy and

mitophagy are involved in the cellular responses to reactive species and mitochondrial dysfunction. The

key signaling pathways for mitophagy are described in the context of bioenergetic dysfunction.

& 2013 The Author. Published by Elsevier B.V. Open access under CC BY-NC-ND license. 
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Introduction

Cellular damage occurs in response to genetic perturbations,
nutrient deprivation, aging, and environmental toxins. The task of
managing general and specific cellular damage is largely under the
control of the highly regulated process called autophagy. The term
autophagy is used to describe lysosomal-mediated degradation of
intracellular contents, which can be divided into 3 basic mechan-
isms: (1) chaperone-mediated autophagy, (2) microautophagy,
and (3) macroautophagy (Fig. 1). Chaperone-mediated autophagy,
initiated by chaperone Hsc70, recognizes one protein at a time, and
Hsc70 carries the protein to the lysosomes via binding to the
lysosomal associated membrane protein (LAMP2A). The proteins
r B.V. Open access under CC BY-NC-ND
recognized by Hsc70 contain the KFERQ consensus sequence [1].
Whether additional chaperones and lysosomal receptors participate
in chaperone-mediated autophagy is unknown. Microautophagy is
achieved by invagination of lysosomal membranes. Lipid, protein or
organelles can be degraded through this pathway. Recent studies
have shown that proteins containing the KFERQ consensus
sequence may also be recruited to the lysosomes via phosphati-
dylserine, and degraded by microautophagy [1]. Whether lipid,
organelles and other proteins are marked by specific modifications
to be recognized by the lysosomes is highly likely but the majority
of these have yet to be defined.

Macroautophagy is the most extensively studied autophagy
process [2]. It was first described using electron microscopy as
unique morphological structures with double membranes encir-
cling amorphous or partially degraded materials including mito-
chondria and endoplasmic reticulum. Early studies noted that
these structures are enriched in response to glucagon and starva-
tion in the liver [3]. During the past 2 decades, more than 35 genes
have been identified in yeast and most of the corresponding
 license. 
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Fig. 1. Autophagic and mitophagic degradation of proteins and organelles. Autophagy is a term used to describe lysosomal-mediated degradation of proteins, lipids, and

organelles. Three major autophagy pathways have been described. (1) Chaperone-mediated autophagy involves chaperone protein heat shock protein, Hsc70 recognizing target

proteins that have a KFERQ consensus sequence, followed by binding to lysosomal-associated membrane protein LAMP-2A, and transport of the targeted protein to the lysosomes

to be degraded. (2) Microautophagy involves invagination of lysosomal membranes to encircle cellular contents that may include proteins and lipids. (3) Macroautophagy is the

most extensively studied autophagy, which involves formation of double membrane structures that encircle proteins, lipids, and organelles. Degradation of mitochondria through

the macroautophagy pathway is also termed mitophagy. Degradation of other cellular structures, such as fragments of the nucleus, lipid droplets, peroxisomes, ribosomes and

endoplasmic reticulum, have also been called, nucleophagy, lipophagy, pexophagy, ribophagy, and reticulophagy. The macroautophagy pathway can perform bulk degradation of

cellular contents in response to starvation and more than 35 Autophagy-Related Proteins (ATGs) are involved in this process. Fusion of the double membrane autophagosomes

with the lysosomes resulted in autophagolysosomes that degrade the inner membrane of the autophagosomes and the contents inside the autophagosomes.
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Fig. 2. Autophagic clearance of aggregation-prone proteins. Due to either genetic predisposition, aging or environmental perturbations, specific proteins may become unfolded,

abnormally modified, or mis-targeted. If accumulated, these protein species may cause further cellular damage and induce cell death. This is particularly important in post-

mitotic cells which cannot divide and so dilute out these toxic species. Protein aggregates or inclusions accumulate in neurodegenerative diseases, including Alexander disease,

multiple system atrophy, Alzheimer’s, Parkinson’s and Huntington’s diseases. One such protein is a-synuclein, which may exist in 3 different forms: (1) synaptic vesicle-

associated form that may be involved in synaptic neurotransmitter release, (2) cytosolic form which may target to the mitochondria and is able to inhibit mitochondrial

complex I activity, and (3) a-synuclein modified by reactive species or phosphorylation. Plasma membrane associated protein can be degraded by the endosomes. Cytosolic

unmodified a-synuclein can be degraded by both the proteasome pathway and the lysosomal-mediated autophagy pathway. Wildtype a-synuclein can also be recognized by

chaperone protein Hsc70 and transported to the lysosomes for degradation through the chaperone-mediated autophagy. However, a-synuclein modified at serine 129 which

accumulates in Parkinson’s disease Lewy Bodies, and mutated a-synuclein as appears in familial Parkinson’s disease, cannot be degraded through the chaperone-mediated

autophagy. They further contribute to cytotoxicity by inhibition of chaperone-mediated autophagy preventing removal of a-synuclein and other protein targets. For this

reason mutated, oligomerized and abnormally modified a-synuclein can only be degraded through macroautophagy. If the macroautophagy pathway is overwhelmed, then a-

synuclein accumulates in the neurons. Recent work demonstrated that lysosomal cathepsin D is important for degradation of a-synuclein, and human patients with cathepsin

D mutation, cathepsin D knockout mice, as well as sheep with cathepsin D mutation, exhibit pronounced a-synuclein accumulation in the brain. Other lysosomal cathepsins,

such as cathepsin B, have been shown to be important for attenuating accumulation and toxicity of b amyloid and mutant huntingtin.
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mammalian homologs have been identified [4]. The mTOR path-
way plays a major role in sensing free amino acids, cellular
bioenergetic deficits, hypoxia and DNA damage, and thereby
regulate macroautophagy [5]. The sensing of free amino acids by
mTOR seems to be dependent on localization of the mTOR complex
to the lysosomes [5].

One major function of macroautophagy is the control of accumu-
lation of over-produced, long-lived or damaged proteins. Deficiencies
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of macroautophagy may contribute to accumulation of protein
aggregates, which are apparent in a number of neurodegenerative
diseases, including Alexander disease, multiple system atrophy,
amyloid lateral sclerosis, Alzheimer’s, Parkinson’s, and Huntington’s
diseases. Increased appearance of autophagosomes is a consistent
feature in aging and Parkinson’s disease brains [6,7]. The accumula-
tion of these structures is consistent with a failure or overwhelming
of the autophagy pathway. The accumulation of Lewy Bodies and
protein aggregates is generally thought to indicate that autophagy is
unable to meet the demands for protein clearance in the disease. One
such prototype aggregation-prone protein is a-synuclein. a-synu-
clein gene triplication and mutation have been found to be respon-
sible for a subset of familial Parkinson’s disease [8]. Furthermore,
a-synuclein accumulates in a majority of sporadic Parkinson’s
disease brains [8]. Both chaperone-mediated autophagy and macro-
autophagy have been shown to participate in a-synuclein degrada-
tion, along with proteasomes [9] (Fig. 2). However, a-synuclein that
is phosphorylated at serine 129 as appears in Lewy Bodies in
Parkinson’s disease, and a-synuclein that is mutated in familial
Parkinson’s disease cannot be degraded by chaperone-mediated
autophagy [10], and is thus presumably highly sensitive to blockade
of macroautophagy. The proteases within the lysosome can be
limiting in the degradation of aggregated proteins. We and others
have shown that lysosomal cathepsin D deficient mice, sheep and
patients exhibit a-synuclein accumulation, indicating that autophagy
is important for a-synuclein turnover [11,12]. Additional examples of
autophagy playing important roles in decrease protein accumulation
include the involvement of cathepsin B in amyloid beta accumulation
[13], and the involvement of autophagy protein Atg5 and Atg7 in
ubiquitinated protein accumulation [14,15].

Cellular damage can arise both from accumulation of toxic species
of proteins that may be detrimental to redox signaling or even
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regulation of autophagy and mitophagy in disease pathogenesis may aid in the developm
directly inhibitory to mitochondrial function, and as a consequence
of mitochondrial dysfunction. Indeed, mitochondria are major hub in
the cell integrating energy demand, reactive species and apoptosis
signaling. Mitochondrial dysfunction and accumulation of oxidative
damage contribute to pathogenesis of a variety of diseases, including
neurodegenerative diseases, liver steatosis, lung and cardiovascular
diseases, and cancer [16–31] (Fig. 3). Specific examples include
decreased complex I activity, increased mitochondrial and nuclear
DNA damage, and decreased reduced glutathione [32–37]. Of parti-
cular interest to redox biology, oxidative stress can either be a signal
to activate autophagy, or exert damage to the autophagy machinery
to inhibit autophagy. For example, oxidative stress may increase DNA
damage, activate p53 and AMPK which in turn inhibits mTOR and
activates autophagy [38]. On the other hand, Atg4 is activated in
reduced conditions, and inactivated in response to oxidative stress
[39]. Reciprocally, autophagy may decrease cellular oxidative stress
by clearance of reactive species generating organelles, reactive species
damaged proteins, or alternatively, decrease specific antioxidants
[40]. A similar relationship between mitochondrial activities and
autophagy also exists. Mitochondria-deficient cells or cells treated
with oligomycin or antimycin A, exhibit attenuated autophagic gene
induction and autophagic flux in response to starvation [41]. Further-
more, mitochondrial contribution to activation of macroautophagy
may include generation of reactive species [42], providing mem-
branes for autophagosomal formation [43], or providing a platform
for membrane-associated complexes to engage the autophagy pro-
cess [44].

Autophagic removal of mitochondria is important for mitochon-
drial quality control. Poor quality mitochondria may enhance
cellular oxidative stress, generate apoptosis signals, and induce
cell death. The bioenergetic crisis may also be further exacerbated
by reactive species damage to glycolytic and glutathione-mediated
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Fig. 4. Mitophagy in mitochondrial quality control. (1) Reactive oxygen species (ROS) and reactive nitrogen species (RNS) can target the mitochondrion and induce damage

to proteins, DNA and lipids. (2) ROS and RNS may also be part of the signaling mechanism for autophagy and mitophagy regulation. (3) Furthermore, ROS and RNS may lead

to modification of the glycolytic pathway, and perturbation of the cellular redox status. (4) Mitochondrial damage results in a decrease in mitochondrial membrane

potential or an increase in mitochondrial fission, and both have been shown to signal mitophagy. Elongated mitochondria or increase of mitochondrial fusion have been

shown to protect mitochondria from mitophagy. (5) Mitochondrial PINK1 is unstable due to presenilin-associated rhomboid-like (PARL) protease activities. A decrease of

mitochondrial membrane potential will inhibit PINK1 degradation by PARL. Stabilized PINK1 recruits Parkin to mitochondria, where Parkin has been shown to be able to

ubiquitinate Mitofusin (Mfn1/2), VDAC, and TOM proteins, and lead to enhanced mitophagy. (6) Clearance of damaged mitochondria by mitophagy may facilitate

mitochondrial biogenesis and enhance cell survival. (7) Activation of autophagy and mitophagy by rapamycin and other newly developed small chemical compounds have

been investigated for their potential to enhance cell survival in response to ROS/RNS induced damage. Autophagy and mitophagy can be inhibited by (8) 3-methyladenine

(3-MA) or Wortmannin that are PI3K inhibitors; by (9) bafilomycin and chloroquine that alter vacuolar and lysosomal pH, prevent autophagosomal–lysosomal fusion; or

by E64 and pepstatin A that inhibit lysosomal protease activities. Inhibition of autophagy usually leads to enhanced cell death but in some circumstances autophagy can

contribute to cytotoxicity. Identification and testing compounds that modulate autophagy and mitophagy is needed for treatment of a variety of diseases in which

oxidative protein modification accumulates in the cell.
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antioxidant pathways. Because healthy mitochondrial function is
essential for cell survival, selective removal of a subset of dysfunc-
tional mitochondria is a highly regulated process and requires
coordinated functions of mitochondrial and cytosolic proteins
(Fig. 4). This is controlled by a complex array of proteins which
are constantly being revised and enhanced. For example, recent
studies demonstrated that PINK1 is stabilized in the mitochondria
in response to lowered membrane potential, recruits Parkin, which
can ubiquitinate Mfn1 and 2, VDAC, TOMs, Fis1 and MIRO, and
induce mitophagy [45]. Controlled mitophagy may coordinate with
mitochondrial biogenesis to sustain cell survival and function [46].

Pharmacological activators and inhibitors, such as rapamycin,
3-methyladenine (3-MA) and chloroquine have aided research
into autophagy regulation and consequence of altered autophagy
and mitophagy regulation in health and diseases. Derivatives or
additional compounds identified through high throughput screening
may provide new, safe and effective compounds that target to
autophagy and mitophagy pathway as treatment of cancer, neuro-
degenerative diseases, and diseases in the liver, heart, lung, kidney
and b cells [47].
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