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a b s t r a c t

Neurons rely on the release and subsequent cleavage of GSH to cysteinylglycine (CysGly) by astrocytes in
order to maintain optimal intracellular GSH levels. In neurodegenerative diseases characterised by
oxidative stress, neurons need an optimal GSH supply to defend themselves against free radicals released
from activated microglia and astroglia. The rate of GSH synthesis is controlled largely by the activity of
γ-glutamyl cysteine ligase. Expression of γ-glutamyl cysteine ligase and of the Xc- system, which facilitates
cystine uptake, is regulated by the redox-sensitive transcription factor, nuclear factor erythroid-2-related
factor 2 (Nrf2). Compounds that can activate the Nrf2-ARE pathway, referred to as ‘Nrf2 activators’ are
receiving growing attention due to their potential as GSH-boosting drugs.

This study compares four known Nrf2 activators, R-α-Lipoic acid (LA), tert-butylhydroquinone (TBHQ),
sulforaphane (SFN) and Polygonum cuspidatum extract containing 50% resveratrol (PC-Res) for their effects on
astroglial release of GSH and CysGly. GSH levels increased dose-dependently in response to all four drugs.
Sulforaphane produced the most potent effect, increasing GSH by up to 2.4-fold. PC-Res increased GSH up to
1.6-fold, followed by TBHQ (1.5-fold) and LA (1.4-fold). GSH is processed by the ectoenzyme, γ-glutamyl
transpeptidase, to form CysGly. Once again, SFN produced the most potent effect, increasing CysGly by up to
1.7-fold, compared to control cells. TBHQ and PC-Res both induced fold increases of 1.3, followed by LAwith a
fold increase of 1.2. The results from the present study showed that sulforaphane, followed by lipoic acid,
resveratrol and Polygonum multiflorum were all identified as potent “GSH and Cys-Gly boosters”.

& 2013 The Authors. Published by Elsevier B.V.

Introduction

Oxidative stress, defined as an imbalance between the produc-
tion and detoxification of reactive oxygen species (ROS), is thought
to play a significant role in the neurodegeneration evident in
Alzheimer's disease (AD) [15].

Glutathione (GSH), a tripeptide consisting of glutamate, cysteine
and glycine is the key regulator of the intracellular redox state. It can
non-enzymatically detoxify ROS, such as superoxide and hydroxyl
radicals, as well as act as an electron donor for the reduction of
peroxides, catalysed by glutathione peroxidase [4]. GSH is synthe-
sised from its constituent amino acids by the sequential action of two
enzymes, the rate-limiting enzyme γ-glutamyl cysteine ligase and
glutathione synthetase [24].

In the brain, neurons rely on the release and subsequent cleavage
of GSH by astrocytes in order to maintain optimal intracellular GSH
levels [9]. Extracellular GSH released from astrocytes is metabolised
by γ-glutamyl transpeptidase to form the dipeptide, cysteinylglycine
(CysGly), which is then processed by the neuronal ectopeptidase,
aminopeptidase N, allowing neurons to immediately take up the
resultant cysteine and glycine.

In neurodegenerative diseases such as AD, neurons need an
optimal GSH supply to defend themselves against free radicals,
such as superoxide and nitric oxide, released from activated
microglia and astrocytes [2,32]. Therapeutic strategies enabling
astrocytes to provide neurons with sufficient substrates for GSH
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synthesis is of particular interest as reductions in neuronal GSH
levels may contribute to neuronal cell death in a pro-oxidative,
pro-inflammatory environment.

The rate of GSH synthesis is controlled largely by the activity
of γ-glutamyl cysteine ligase, the first enzyme required for
GSH synthesis, and by the availability of cysteine/cystine [10,12,3].
Expression of the catalytic and modulatory subunits of γ-glutamyl
cysteine ligase and of the Xc-system, which facilitates cystine uptake,
are regulated by the redox-sensitive transcription factor, nuclear
factor erythroid-2-related factor 2 (Nrf2) [8]. Under basal conditions,
Nrf2 interacts with Kelch-like ECH-associated protein 1 (Keap1) in
the cytoplasm and undergoes ubiquitin-mediated proteasomal degra-
dation [25]. Upon oxidative modification of cysteine residues within
Keap1, Keap1 dissociates from Nrf2, permitting Nrf2 translocation
into the nucleus. Once in the nucleus, Nrf2 binds to antioxidant
response elements (ARE) present in the regulatory regions of a range
of phase II antioxidant defence genes, including numerous GSH
related genes. In addition to γ-glutamate cysteine ligase and the
Xc-system, Nrf2 also regulates the expression of glutathione synthe-
tase, the second enzyme required for synthesis of GSH, multidrug
resistance protein transporters which export GSH from the cell and
γ-glutamyl transpeptidase, the ectoenzyme responsible for cleavage
of glutamate from GSH to form CysGly [28,18].

Therefore, compounds that can activate the Nrf2-ARE pathway,
referred to as ‘Nrf2 activators’ are receiving growing attention due
to their potential as GSH-boosting drugs for application to a wide
range of oxidative stress related diseases [6,33,34].

This study compares four known Nrf2 activators, R-α-lipoic acid,
tert-butylhydroquinone, sulforaphane and Polygonum cuspidatum
extract containing 50% resveratrol for their effects on astroglial
release of GSH and production of CysGly. R-α-lipoic acid (LA) is a
naturally occurring dithiol compound with a broad neuroprotective
capacity that appears to slow cognitive decline in AD patients [13].
Sulforaphane (SFN) is an organosulphur compound that is extracted
from edible plants such as broccoli, brussels sprouts and cabbage and
has been described as possessing anticarcinogenic, anti-inflammatory
and antioxidant properties [21]. The roots of Polygonum cuspidatum
(PC), commonly known as Japanese knotweed, are used in Traditional
Chinese medicine for treatment of inflammatory diseases, hepatitis
and tumours [7]. Polygonum cuspidatum contains resveratrol (trans-
3,5,4′-trihydroxystilbene), a polyphenolic compound that has gained
wide attention due to its purported anti-cancer properties [16]. Tert-
butylhydroquinone (TBHQ) is an aromatic organic compound, which
is used as a synthetic food grade antioxidant.

Although all four of these compounds have previously been
shown to increase intracellular GSH synthesis via the Nrf2-ARE
pathway [17,23,27,29], this is the first study to investigate the
effect of Nrf2 activators on astrocytic production of the neuronal
GSH substrate, CysGly. Furthermore, we also monitored the effect
of Nrf2-activation on the levels of homocysteine (HCys), a thiol
compound that is metabolically related to GSH, but is toxic to
neurons at elevated levels [20,35].

Materials and methods

Cell culture and experimental protocols

The U373-MG human astrocytoma cell line was kindly pro-
vided by Dr. Peter Lock (The Royal Melbourne Hospital, Australia).
U373 cells were maintained in Dulbeccos's Modified Eagle Med-
ium (DMEM) containing 25 mM glucose, supplemented with
200 U/ml penicillin, 200 mg/ml streptomycin, 2.6 μg/ml fungizone,
200 mM glutamine and 5% foetal bovine serum (FBS). Cells were
grown in 175 cm2 tissue culture flasks and incubated at 37 1C in 5%
CO2. Cells were harvested with a solution containing 0.05% trypsin

and 0.02% EDTA in phosphate buffered saline (PBS: 137 mM NaCl,
2.7 mM KCl, 10.1 mM Na2HPO4, 1.8 mM KH2PO4, pH 7.4) and
seeded into 96 well, flat-bottom, tissue culture plates at a density
of 9�103 cells/well. FBS concentration was reduced to 3% to
minimise the proliferation and the total volume of media in each
well was 100 ml. After 24 h incubation, the media was replaced
with fresh media containing different concentrations of potential
GSH booster drugs for 48 h. All cell culture materials were from
Invitrogen (Mulgrave, Australia).

Preparation of “GSH booster” drug solutions

LA, TBHQ and SFN were dissolved in 10% ethanol to produce
stock solutions of 1 mg/ml. Polygonum cuspidatum extract (stan-
dardised to contain 50% resveratrol: PA-Res) was dissolved in
dimethylsulphoxide to produce a stock solution of 100 mg/ml.
Stock solutions were diluted in DMEM to give concentrations of
12.5–50 mM, 2.5–10 mM, 2.5–10 mM and 1–3.9 mg/ml of LA, TBHQ,
SFN and PA-Res, respectively.

Analysis of cell viability

Cell viability was assessed in terms of the metabolic capability
of cells to convert the fluorogenic redox indicator, resazurin, into
its highly fluorescent product, resorufin. A modified version of the
resazurin-reduction assay was used [5]. Resazurin was dissolved in
PBS to give a concentration of 0.001% (w/v). This solution was
sterile filtered (0.22 mm), protected from light with aluminium foil
and stored at 4 1C for up to six months. To determine cell viability,
incubation media was removed from wells and replaced with 100 ml
of resazurin solution. Plates were incubated at 37 1C, with 5% CO2

for 45 min and then fluorescence was measured with excitation at
530 nm and emission at 590 nm in a POLARstar Omega microplate
reader (BMG Labtech). For every plate, background fluorescence
determined in cell-free wells was subtracted from all wells, and values
were expressed as a percentage of untreated control cells.

Determination of extracellular GSH and related thiols by high
performance liquid chromatography and fluorescence detection

A Dionex HPLC system consisting of an ASI-100 automated
sample injector, a P680 solvent pump, a TCC-100 thermostatted
column compartment and an RF-2000 fluorescence detector was
used for all chromatographic analyses. The system was equipped
with a Luna C18(2) column (150 mm�4.6 mm id, 3 mm) protected
by a SecurityGuardC18 Cartridge (4.0 mm�3.0 mm) in a Secur-
ityGuardCartridge Holder supplied by Phenomenex. The Chrome-
leon 6.8 Chromatography Data System from Dionex was used to
control instruments, acquire data and quantify peak areas.

Detection of thiols was performed as described previously [31].
Briefly, media taken from U373 cells treated for 48 h with LA,
TBHQ, SFN or PC-Res was centrifuged at 200g for 5 min at 4 1C to
pellet cellular debris. Following centrifugation, the supernatant
was mixed with an equal volume of 1% 5-sulfosalicylic acid
containing 1 mM EDTA, centrifuged at 14,000g for 10 min at 4 1C
to precipitate protein, and the resulting supernatant placed in
fresh tubes and stored at �80 1C until analysis. Upon thawing of
samples and standard solutions, fresh microcentrifuge vials were
placed in a heating block at 35 1C and 50 ml of sample or standard
added. To reduce all disulphide bonds, 30 ml of a 1 mM solution of
the reducing agent Tris(2-carboxyethyl)phosphine hydrochloride
was added. For the derivatisation reaction, vials were incubated
for 5 min at 35 1C before the addition of 100 ml of borate buffer
(0.1 M, pH 9.3, with 1 mM EDTA) and 30 ml of the derivatising
agent 4-fluoro-7-aminosulfonylbenzofurazan (ABD-F; Novachem)
(1 mg/ml in 0.1 M borate buffer). Samples were incubated at 35 1C
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for 10 min, before the reaction was stopped by addition of 50 ml of
2 M hydrochloric acid. Vials were then centrifuged at 14,000g for
5 min at 4 1C in order to pellet any particulates that could
potentially damage the HPLC system. Supernatants were placed
into fresh vials and loaded into an autosampler. The autosampler
maintained sample temperatures at 8 1C to prevent evaporation
and injected 10 ml aliquots for analysis. The mobile phase used for
separation of ABD-F-derivatised thiols was 0.1 M acetate buffer
(pH 4)-methanol [86:14]. An isocratic programme with a flow rate
of 1 ml/min was used and column temperature was maintained at
35 1C. The fluorescence detector was set to an excitation and
emission wavelength of 390 nm and 510 nm, respectively, with
high level sensitivity.

Statistics

Data presented are the mean of three independent experiments
and error bars denote standard deviation (SD). Significant differ-
ences were assessed by one-way ANOVA with Dunnett's post hoc
tests and shown as npo0.05, nnpo0.01, and nnnpo0.001.

Results

U373 cell viability was assessed using the resazurin assay after
48 h treatment with increasing concentrations of LA, TBHQ, SFN and
PC-Res to enable selection of non-toxic concentrations for further
experiments (data not shown). To test the effect of Nrf2 activation on
the release of total extracellular GSH and its derivatives, U373
astroglial cells were treated with 12.5–50 mM LA, 2.5–10 mM TBHQ,
2.5–10 mM SFN or 1–3.9 mg/ml of PC-Res for 48 h. The concentrations
of total extracellular GSH, CysGly and HCys in the media were then
determined by HPLC with fluorescence detection.

As shown in Fig. 1, GSH levels increased dose-dependently in
response to all four drugs. SFN produced the most potent effect,
increasing GSH by up to 2.4-fold compared to control cells. PC-Res,

the second most potent drug, increased GSH up to 1.6-fold,
followed by TBHQ (1.5-fold) and LA (1.4-fold).

Extracellular GSH is processed by the ectoenzyme, γ-glutamyl
transpeptidase, to form CysGly, an important substrate for neuro-
nal GSH synthesis. Therefore, we tested whether Nrf2 activation of
U373 cells resulted in elevated CysGly in the media. Once again
SFN produced the most potent effect, increasing CysGly by up to
1.7-fold, compared to control cells. TBHQ and PC-Res both induced
fold increases of 1.3, followed by LA with a fold increase of 1.2
(Fig. 2).

While the order of drug potency remained almost the same for
boosting GSH and CysGly, all drugs were able to increase GSH
levels between 1.2 and 1.4 times more than they were able to
increase CysGly (Table 1).

HCys is another thiol compound that is metabolically related to
GSH, however it has been shown to be toxic to neurons at elevated
concentrations [20,35]. We have previously shown that
inflammation-stressed astroglial cells increase their release of
HCys [30]. Therefore, we were also interested in whether Nrf2
activation resulted in increased HCys in the media. When HCys
was measured in the media of cells treated with 12.5–50 mM LA,
2.5–10 mM TBHQ, 2.5–10 mM SFN or 1–3.9 mg/ml PC-Res, and in
non-treated control cells. Although a trend for HCys increase for
LA was observed, no significant differences were found between
any of the conditions (data not shown, but fold-changes are
summarised in Table 1).

Discussion

The main aim of this study was to determine whether activa-
tion of Nrf2 in astrocytes results in increased GSH release by
astrocytes as well as elevated levels of extracellular CysGly.
Treatment of U373 cells with four known Nrf2 activators, LA,
TBHQ, SFN and PA-Res, resulted in elevated levels of both GSH and
CysGly (not significant for PC-Res) in the media. For both thiols, SFN

Fig. 1. Nrf2 activators increased extracellular GSH levels. U373 cells were treated with R-lipoic acid (LA), tert-butylhydroquinone (TBHQ), sulforaphane (SFN) or Polygonum
cuspidatum containing 50% resveratrol (PC-Res) for 48 h. The concentration of glutathione (GSH) in the media was then determined by HPLC with fluorescence detection.
Data points represent mean values from three independent experiments, while error bars represent SD. n and nnn designate significant differences (po0.05 and po0.001) to
the non-treated control.
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followed by TBHQ, produced themost potent effects. When comparing
the extent of the increase in GSH compared to the extent of the
increase in CysGly, a larger increase was seen for GSH compared to
CysGly in all four cases. It showed that, although in total more CysGly
is produced by Nrf2 activated cells, a smaller percentage of extra-
cellular GSH is being converted to CysGly in the Nrf2 activated cells
compared to control cells. This finding is supported by a publication
from 1996, which showed that γ-glutamyl transpeptidase (GGT) and
γ-glutamate cysteine ligase (GCL) are differentially enhanced by TBHQ
in rat lung epithelial L2 cells. The highest mRNA level of GGT occurred
after 12 h treatment with 50 μM TBHQ, after which it decreased back
to the control level by 24 h. On the other hand, GCL-mRNA level
peaked after 6 h treatment with 50 μMTBHQ but was still significantly
elevated after 24 h. Under the same conditions, GCL activity increased
significantly after 6 h, whereas an increase in GGT was not observed
until after 16 h. From nuclear run-on experiments that confirmed that
the increase in GCL-mRNA, but not GGT-mRNA, was due to increased
transcription, the authors suggested that the increase in GGT-mRNA
probably results from a decreased degradation rate [21].

Importantly, despite a reduced rate of increase compared to
extracellular GSH, significant increases in total CysGly were
observed for SFN, TBHQ and LA, therefore suggesting their suit-
ability for use as GSH booster drugs, capable of increasing delivery
of GSH precursors to neurons.

When levels of HCys were analysed in media collected from
cultures of U373 cells treated with LA, TBHQ, SFN and PC-Res, no
changes in HCys levels were observed. HCys, a sulphydrul-containing
amino acid that is metabolically linked to GSH via the transulfuration
pathway is recognised as an independent risk factor for a variety of
chronic diseases, including AD [11,19,22,26]. It has previously been
shown that HCys exported from astrocytes is harmful to adjacent
neurons through the activation of neuronal NMDA-type glutamatergic
receptors and induction of oxidative stress and apoptosis [1,14,20].
The absence of an increase in HCys levels observed in response to the
selected Nrf2 activators can therefore be considered as a positive
outcome.

Conclusions

Based on the results presented here, LA, TBHQ, and especially
SFN increase astroglial provision of GSH and CysGly, without rising
extracellular levels of HCys. They therefore represent promising
candidates as Nrf2-activation based drugs (if therapeutic concen-
tration can be achieved in the target tissue) for the treatment of
AD and related diseases. Additionally, based on our observation
that Nrf2 activation in astroyctes increased CysGly in the media,
but at a slightly reduced rate compared to GSH, co-application of
direct neuronal GSH precursors such as CysGly or other cysteine
homologues might also be useful.

Submission declaration

This work has not been published previously or submitted
elsewhere.

Fig. 2. Nrf2 activators increase extracellular CysGly levels. U373 cells were treated with R-lipoic acid (LA), tert-butylhydroquinone (TBHQ), sulforaphane (SFN) or Polygonum
cuspidatum containing 50% resveratrol (PC-Res) for 48 h. The concentration of cysteinylglycine (CysGly) in the media was then determined by HPLC with fluorescence
detection. Data points represent mean values from three independent experiments, while error bars represent SD. n and nnn designate significant differences (po0.05 and
po0.001) to the non-treated control.

Table 1
Fold differences of thiol concentrations in media between cells treated with highest,
non-toxic concentrations of drugs and non-treated control cells.

Drugs GSH CysGly Hcys Ratio GSH:CysGlya

LA 1.4nn 1.2n 1.6 1.2
TBHQ 1.5nn 1.3n 0.9 1.2
SFN 2.4nn 1.7nn 1.0 1.4
PC-Res 1.6nn 1.3 1.0 1.2

Concentrations of lipoic acid (LA), tert-butylhydroquinone (TBHQ), sulforaphane
(SFN) and Polygonum cuspidatum extract containing 50% resveratrol (PC-Res) used
to treat cells were 50 mM, 10 mM, 10 mM and 3.9 mg/ml.

a Ratio represents fold change in glutathione (GSH) divided by fold change in
cysteinylglycine (CysGly).

n Designate significant differences (po0.05) to the non-treated control.
nn Designate significant differences (po0.001) to the non-treated control.
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