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ABSTRACT 

Design, Development and Testing of Web Services  
for Multi-Sensor Snow Cover Mapping 

 
 

Jiri Kadlec 
Department of Civil and Environmental Engineering, BYU 

Doctor of Philosophy 
 

This dissertation presents the design, development and validation of new data integration 
methods for mapping the extent of snow cover based on open access ground station 
measurements, remote sensing images, volunteer observer snow reports, and cross country ski 
track recordings from location-enabled mobile devices.  

The first step of the data integration procedure includes data discovery, data retrieval, and 
data quality control of snow observations at ground stations. The WaterML R package developed 
in this work enables hydrologists to retrieve and analyze data from multiple organizations that 
are listed in the Consortium of Universities for the Advancement of Hydrologic Sciences Inc 
(CUAHSI) Water Data Center catalog directly within the R statistical software environment. 
Using the WaterML R package is demonstrated by running an energy balance snowpack model 
in R with data inputs from CUAHSI, and by automating uploads of real time sensor observations 
to CUAHSI HydroServer.  

The second step of the procedure requires efficient access to multi-temporal remote 
sensing snow images. The Snow Inspector web application developed in this research enables the 
users to retrieve a time series of fractional snow cover from the Moderate Resolution Imaging 
Spectroradiometer (MODIS) for any point on Earth. The time series retrieval method is based on 
automated data extraction from tile images provided by a Web Map Tile Service (WMTS). The 
average required time for retrieving 100 days of data using this technique is 5.4 seconds, which 
is significantly faster than other methods that require the download of large satellite image files. 
The presented data extraction technique and space-time visualization user interface can be used 
as a model for working with other multi-temporal hydrologic or climate data WMTS services. 

The third, final step of the data integration procedure is generating continuous daily snow 
cover maps. A custom inverse distance weighting method has been developed to combine 
volunteer snow reports, cross-country ski track reports and station measurements to fill cloud 
gaps in the MODIS snow cover product. The method is demonstrated by producing a continuous 
daily time step snow presence probability map dataset for the Czech Republic region. The ability 
of the presented methodology to reconstruct MODIS snow cover under cloud is validated by 
simulating cloud cover datasets and comparing estimated snow cover to actual MODIS snow 
cover. The percent correctly classified indicator showed accuracy between 80 and 90% using this 
method. Using crowdsourcing data (volunteer snow reports and ski tracks) improves the map 
accuracy by 0.7 – 1.2 %. The output snow probability map data sets are published online using 
web applications and web services. 

Keywords: crowdsourcing, image analysis, interpolation, MODIS, R statistical software, snow 
cover, snowpack probability, Tethys platform, time series, WaterML, web services, winter sports  
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1 INTRODUCTION  

Snowpack data are important in climatology (Groisman et al. 2006; Karl et al. 1993), 

hydrology (Barnett et al. 2005), and recreation (Braunisch et al. 2011; Ghaderi et al. 2014). 

Snowpack is a spatio-temporal field that changes in place and time primarily as a result of the 

interaction of several variables including: air temperature and precipitation (Henderson and 

Leathers 2010), topography (Lapena and Martz 1996), and vegetation cover (Veatch et al. 2009). 

Global, regional and local databases of snow depth, snow water equivalent and spatial extent of 

snow covered area exist in the form of ground measurements (Pohl et al. 2014), remote sensing 

images (Rees 2005), and models (Koivusalo et al. 2001). Many studies highlight the importance 

of open standards for sharing spatial and temporal climate data (Bai et al. 2012; Bambacus et al. 

2008) and hydrological data (Salas et al. 2012). However, outside North America, much of the 

snow data is not yet easily accessible to the public (Henderson and Leathers 2010) or the access 

is very restricted (Nativi et al. 2014; Triebnig et al. 2011). The available snow datasets with 

global coverage are relatively low detail (Tedesco et al. 2015), incomplete (Callaghan et al. 

2011), in many heterogeneous formats (Karl et al. 1993), coordinate systems, and time 

resolutions. Some of the remote sensing-based snow datasets require specialized expert tools to 

find (Delucchi 2014) and visualize (Blower et al. 2013). This dissertation explores several 

techniques to improve the global availability of high quality snow cover data. Specifically of 

interest are ground station data, remote sensing data, and crowdsourced data.  
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Crowdsourcing is a process of taking a task traditionally performed by a designated agent, 

and outsourcing it to an undefined, large group of people (Howe 2008) often using online 

technologies (Schenk and Guittard 2011). Mobile phone users send thousands of reports, 

photographs, messages and other information about snow conditions on social networks and 

community web sites (Wang et al. 2013; Yang et al. 2012). When linked to geographic location, 

these snow reports become part of volunteered geographic information (VGI) (Goodchild 2007). 

There are multiple open research issues in using VGI in snow cover or other environmental 

mapping: The volunteer-contributed data are not a representative random sample (Havlik et al. 

2013), have a fuzzy character (Amintoosi et al. 2015) and high uncertainty (Yang et al. 2012). In 

spite of the data quality issues, collaborative projects like OpenStreetMap (Haklay 2010) and 

OpenWeatherMap (Ramos et al. 2014) have shown that participatory mapping is a successful 

method for making environmental data available online (D’Hondt et al. 2013).  

Data integration is defined by Lenzerini (2002) as “the problem of combining data residing 

at different sources, and providing the user with a unified view of these data”. In meteorology 

and hydrology, a key element of data integration is data assimilation. Data assimilation is the 

process by which observations of the actual system are incorporated into the model state of a 

numerical model of that system (Houser et al. 2012; Walker and Houser 2005). In spite of 

growing volume of public VGI data, only a few studies have tested data integration of VGI for 

snow data assimilation and snow mapping. Examples of using crowdsourcing for snow cover 

mapping are documented by Wang et al. (2013) using photograph sharing networks, Muller 

(2013) using the Twitter network, and Muller et al. (2015) using multiple social networks. These 

studies indicate that VGI from social networks represents a potentially highly informative dataset 

for updating continuous snow cover maps.  

2 



This dissertation builds up on the work of Salas (2012) who proposes a distributed, 

interoperable network of web services for sharing and integrating hydrological and climate data 

from multiple sensors. The research contributes towards bridging the “digital divide” that exists 

between the grid-based remote sensing datasets, and the point-based time series observation 

networks. The aim to lower the learning curve that is required to view, access, analyze and re-use 

snow maps and snow time-series from multiple sensors and sources. As a test platform for 

testing the data retrieval and integration procedures, I have selected the R statistical computation 

environment (R Core Team 2015). I have selected the R statistical software environment because 

it is multi-platform, open source, and widely used by hydrologists and environmental scientists 

studying the snowpack. The first hypothesis driving this work is that using interoperable web 

services will reduce the time and effort required to access snow data from ground stations, 

remote sensing platforms, and social networks in the R environment. 

This dissertation also builds up on the work of Muller (2013) and explores the potential of 

combining open data from ground stations, remote sensing datasets, and user-contributed reports 

from social networks to create a new snow probability map dataset. The dataset is published as a 

free, online snow cover web mapping service. The second main hypothesis driving this work is 

that the integration of user contributed data and/or social-network derived snow data together 

with other open access data sources results in more accurate and higher resolution – and hence 

more useful snow cover maps than government agency produced data by itself.  

The remainder of this dissertation is structured as follows: Chapter 2, entitled “WaterML R 

Package for Managing Observation Data through CUAHSI Web Services” addresses the issue of 

connecting scripting environments with online sensor data management systems. Through a new 

WaterML R package (Kadlec et al. 2015), it enables access to point-based snow measurements 
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from the global Consortium of Universities for Advancement of Hydrologic Science (CUAHSI) 

Hydrologic Information System (HIS) from inside R statistical software. The R statistical 

software (R Development Core Team 2015) then can be used for spatial analysis and time series 

analysis of the point observations, and for comparing the observations with other sources. 

Chapter 3, entitled “Extracting Snow Cover Time Series Data from Open Access Web 

Mapping Tile Services” presents the design, development, and testing of a new open source 

script and web application for snow cover probability time series extraction from map images. 

The script is deployed as a web app using the Tethys framework (Jones et al. 2014) making it 

accessible to novice users through a user interface. A WaterML web-API gives access to third 

party applications for automation and embedding in modeling tools. The full design of the script 

is presented such that it can serve as a model for similar or extended tools that may be developed 

by others. A set of use case experiments is presented demonstrating the full functionality of the 

script and its limitations, and an example application for ground validation of the MODIS snow 

cover dataset is discussed. 

Chapter 4, entitled “Using Crowdsourced and Station Data to Fill Cloud Gaps in MODIS 

Snow Datasets” builds up on the previous two chapters by including crowdsourcing data in the 

snow mapping solution. Using a custom inverse distance weighting method, measurements from 

meteorological stations, volunteer snow reports, and cross-country ski track reports are combined 

to fill cloud gaps in remotely sensed snow cover products based on Moderate Resolution 

Imaging Spectroradiometer (MODIS) satellite data. The method is demonstrated by producing a 

continuous daily time step snow probability map dataset for the Czech Republic region. For 

validation, the ability of the method to reconstruct MODIS snow cover under cloud by 

simulating cloud cover datasets and comparing estimated snow cover to actual MODIS snow 

4 



cover is tested. The output data sets are available on the HydroShare website (Horsburgh et al. 

2015) for download and through a web map service API for re-use in third-party interactive map 

applications. 
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1 WATERML R PACKAGE FOR MANAGING OBSERVATION DATA 
THROUGH CUAHSI WEB SERVICES 

Essential to the successful execution of any data intensive research study is the 

management of data and data collection in a formal, organized and reproducible manner. 

Ecological data collection and storage has evolved in many instances into a large, complex task 

that demands automation for accuracy in acquiring, managing, analyzing, and long-term 

verification of data by the researchers themselves (Michener and Jones 2012). Small independent 

ecology lab groups, and scientists who lead those labs focus not only on their own unique 

scientific questions and procedures, but now must learn data processing techniques and database 

development so that their work is not thwarted long term by poor storage or access (Conner et al. 

2013). Those who are performing an experiment and those who hope to understand the data 

coming from the experiment may not have the financial means necessary to develop their own 

data management system. Shared data hosting websites using international standards (WaterML) 

and open-source software solutions for data management (HydroServer for Windows or 

HydroServer Lite for Linux), archiving (ODM database), and publication (WaterOneFlow web 

service) can be an effective way for independent researchers to remain competitive in a future 

world of data deluge in scientific research. The Consortium of Universities for the Advancement 

of Hydrologic Science (CUAHSI) provides support for scientists and independent ecology lab 

groups and helps them to manage and organize their experimental data using open-source 

technology. 

6 



A particular problem faced by ecological researchers is integrating a data management 

system with a computational analysis environment such as Matlab, Stata, or R. A common 

feature of these computational analysis environments is that they provide capabilities for 

exploratory analysis (plots, graphs), and statistical inference (hypothesis testing). Typically data 

analysis steps are all recorded in a script, making the steps reproducible (Gentleman and Lang 

2007). A system that links computational analysis software with standards-based cloud data 

management would allow researchers to automate the retrieval of raw sensor data or previously 

processed data directly from the data management system into their analytical environment. The 

system would also allow researchers to post data and analysis results back to the system for both 

archival and sharing purposes. 

A number of existing tools have been constructed that meet various parts of the 

overarching goals stated above. For example, two R packages for retrieving water quantity and 

quality data from USGS National Water Information System (NWIS) have recently been 

introduced in the R Comprehensive R Archive Network (CRAN) package repository including 

the “dataRetrieval” and “waterData” packages (De Cicco and Hirsch 2013; Ryberg and Vecchia 

2012). These R packages provide useful data download functions that could support ecological 

research in terms of the U.S. national water information systems, however they are not intended 

for data upload or for managing data associated with laboratory research. 

For laboratory research, it is possible to use, database drivers that link the R statistical 

software package to major relational database platforms. The “RObsDat” package (Reusser 

2014) is one such driver that is specifically designed for connecting to any environmental 

observations database compliant with the Observations Data Model (ODM) schema using the 

Structured Query Language (SQL) mechanism. Other more general-purpose examples of 
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packages that link R to a relational database using SQL are “RMySQL” (James and DebRoy 

2012) and “RSQLite” (James and Falcon 2011). 

The drivers noted above require a direct SQL connection to an associated ODM database 

using an IP address and port number. The problem with a direct SQL connection using IP 

address and port number is that institutional firewalls block the necessary ports in most cases, 

making the connection only possible inside of the institution’s local network.  In the common 

case of multi-institutional collaborations, such firewalls can restrict direct database access – 

hence another approach is required. Also, not all HydroServer instances use the ODM database 

schema. A solution to these problems is to abstract the physical database by only exposing a 

layer of web services (also called web application programming interface or web API). The web 

API usually uses the Hyper Text Transfer Protocol (HTTP) to pass information between a client 

tool and a database using JavaScript Object Notation (JSON) or Extensible Markup Language 

(XML) encoded text. Such a web service solves the firewall issue and allows access to the data 

across institutions, though compared to the expressive power of SQL, the web service typically 

only enables a limited set of pre-defined queries. If well defined (i.e. as in the case of the 

CUAHSI HIS web services), this limited subset of queries can readily satisfy the requirements of 

most database management use cases. 

Within the environmental sciences, the most widely-used standards for communicating 

with a database using web services include Sensor Observation Service (SOS), and 

WaterOneFlow web service (Ames et al. 2012; Tarboton et al. 2009; Valentine et al. 2007). SOS 

has received widespread adoption in ocean and marine sciences. In hydrology, the 

WaterOneFlow service is widely used, with around 100 public database servers registered 

worldwide at http://HISCentral.cuahsi.org/ including ecological research labs (Conner et al. 
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2013; Whitenack 2010). The “sos4r” package (Nüst et al. 2011) facilitates connecting to the SOS 

web service from R. Another tool, HydroR, is a plugin for the open source HydroDesktop 

software that can analyze data retrieved via WaterML (Horsburgh and Reeder 2014). This tool 

requires installation of a separate software, HydroDesktop (Ames et al. 2012) to perform the 

search, discovery, and download of data before it can be analyzed in R. HydroDesktop and 

HydroR require the Windows operating system, which can be a disadvantage for users of other 

operating systems. No software tools presently exist to push analytical result from R directly to 

the CUAHSI HIS via web services. The “RObsDat” package overcomes several of these 

challenges since it is cross-platform and can both read and write data in an ODM formatted 

database using SQL database connection. The key limitation of the “RObsDat” package is that it 

is not suitable for situations where multi-institution access to a single HydroServer is required 

and where institutional firewalls block direct connections to SQL databases. 

It is useful to note that out of the 98 data management systems registered on the HIS 

Central catalogue, none provides a public open direct back-end connection to the entire database 

but all provide a method to query their database through the WaterML web services API. In 

short, although WaterML is a widely used international standard, there is currently no easy 

method of accessing the WaterML web service from the R environment. 

The remainder of this chapter presents the design, development, and testing of a new 

WaterML R package that addresses these problems by supporting download of data directly from 

any HydroServer instance and upload of data to a special version of HydroServer Lite using R 

and a web service interface. The data values from multiple sites or variables are retrieved as an R 

“data frame” that can be directly used in R. Because it is integrated directly into the R statistical 

software, our package can be installed and used on any operating system with an internet 
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connection.  To test the usability of the package, three case studies are presented: (1) uploading 

observations from wireless sensors to HydroServer Lite, (2) exploratory and statistical analysis 

of continuous observation data from a large scale ecological manipulation experiment, and (3) 

Snowpack model setup and validation using online data from the CUAHSI HIS WaterOneFlow 

web services. 

The work presented here is a significant extension of previous work that presented the 

PHP-based HydroServer Lite software tool as a system for managing ecological experiment data 

(Conner et al. 2013). The first issue addressed by this work is simplifying access to HydroServer 

data through the WaterOneFlow web service from within the R environment. Using the 

WaterML R package, any HydroServer that implements the WaterOneFlow web service can be 

accessed from R. The second issue addressed by this work is enabling the upload of analytical 

results from R to the HydroServer Lite through a web service application program interface 

(API). While the data editing capabilities currently only work with instances of the HydroServer 

Lite software, the work presented here serves as a model for future efforts for creating 

connections between analytical software tools and distributed, web services based data 

management systems. Also, the HydroServer Lite data upload capabilities are expected to be 

added to the general HydroServer software stack in the near future, which will immediately 

enable use of this WaterML R package for both data download and upload on any CUAHSI 

HydroServer. 

 Material and Methods 

The following section describes the changes made in the HydroServer Lite online database 

to facilitate management of ecological experiment data from wireless field sensors. The design, 
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development and testing of a new R package for downloading observations from CUAHSI Web 

services is also presented. Finally, this section introduces three use cases for testing the newly 

designed software. 

1.1.1 Software Design and Development 

In my design I chose an open source solution using the MySQL relational database and 

HydroServer Lite software. The HydroServer Lite software installation package and source code 

are available on the website: http://hydroserverlite.codeplex.com. It can be installed and hosted 

on any web server or shared webhosting account that supports PHP (version 5.4 or higher) and 

MySQL. I hosted the database and web server on the shared webhosting site 

http://worldwater.byu.edu, which provides web space and database space for any independent 

research group to publish their open access data. A centralized web-based database such as this 

has the benefit of allowing ecologists to both store data and easily share it with coworkers on the 

project. As a primary method for statistical analysis of experimental results I chose the R 

computational environment because it is also open source, cross platform, and widely used in 

ecological research. In R, every step of data processing is stored as a script, making it possible 

for coworkers to reproduce the analysis. Its script-based nature also makes R a good candidate 

for building an integrated database and analysis system since the database web-services will also 

need to be used through scripted code. 

For the centralized, web-based database and data model the Observations Data Model 

(ODM) (Horsburgh et al. 2008) was selected because it is designed specifically for observational 

data, it is well-integrated with the HydroServer software to make the data accessible on the 

Internet by multiple users, and it is well-documented.. Previous studies (Izurieta et al. 2010; 
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Mason et al. 2014) demonstrated that the ODM can be successfully used to represent an 

ecological site. Besides storing data observations, the ODM organizes metadata information 

about the units, geographic locations, measurement methods, variables, time, and sources. The 

complete ODM database with all its tables was used. Figure 2-1 shows the ODM database 

schema and highlights specific tables that were important for the experiment. 

 

Figure 2-1: Key Tables of the ODM Data Model Used in the Experiment with Field Details 
Listed for the Tables that were Important for the Study. 

1.1.2 HydroServer 

HydroServer is an open-source software stack developed by CUAHSI that includes both 

a Windows-server (Horsburgh et al. 2009) implemetation and an open source Linux-server 

implementation named HydroServer Lite (Conner et al. 2013; Kadlec and Ames 2012). The 
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functionality, complete source code and installation files of HydroServer Lite have been 

described by Conner et al. (2013) and published on the website 

http://hydroserverlite.codeplex.com.  

All versions of HydroServer come with a back end WaterOneFlow web services API that 

allows other websites and software to query the data and get results in the WaterML format. 

WaterML is an international Open GIS Consortium (OGC) standard for publishing hydrologic 

observations. There are three widely used versions of WaterML: WaterML 1.0, WaterML 1.1 

(Valentine et al. 2007) and WaterML 2.0. (OGC 2012a). All WaterOneFlow web services 

implement WaterML 1.0 or 1.1. WaterOneFlow web services can be registered with the HIS 

Central Catalog (http://hiscentral.cuahsi.org). Once registered in the catalog, the data from the 

experimental sites becomes available for searching and query by other researchers on the catalog 

website (data.cuahsi.org). Other software that can be used for visualizing data from the 

WaterOneFlow web services include HydroDesktop (Ames et al. 2012) and HydroExcel 

(Whiteaker et al. 2009). 

For the purpose of this experiment, I extended the original HydroServer Lite software 

(Conner et al. 2013) by adding a web service API for data uploading. I included these changes in 

the open-source release and code of HydroServer Lite version 3.0. The changes are documented 

and available on the website (http://hydroserverlite.codeplex.com). I have hosted the 

HydroServer instance on a cloud computing web space with other HydroServers at the URL 

(http://worldwater.byu.edu/app/index.php/rushvalley). 
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1.1.3 HydroServer Data Upload API 

To facilitate data upload from the WaterML R package into HydroServer, I extended the 

existing HydroServer Lite codebase by creating a new JSON data upload web API that 

supplements the existing web-form based data entry tools in HydroServer Lite. If the 

HydroServer Lite server hosts multiple ODM databases, there is a separate upload service for 

every ODM database. I implemented the JSON API using the open-source CodeIgniter Model-

View-Controller (MVC) PHP web framework. For each table in the ODM database, the MVC 

framework defines a model class with query functions. For example the Sites table has a Sites 

model with functions GetAllSites, GetSitesByBox, AddSite, EditSite, and DeleteSite. The API 

controller defines the new data upload API for HydroServer works as follows: The client sends a 

hypertext transfer protocol (HTTP) POST request with the user name, password, site, variable, 

method, and an array of (time, value) pairs in the JSON format in the POST request body. The 

HydroServer first checks if the user is authenticated by verifying the user name and password. A 

limitation of the API is that it requires sending the user name and password in plain text over an 

HTTP POST request. To keep the user credentials secure during transport over the network, I 

recommend securing the HydroServer Lite data upload by the HTTPS protocol where the user 

name and password are encrypted. If the user name and password belong to an authorized user, 

then it checks if the posted data is in the JSON format and looks for the valid site code, valid 

variable code, valid method id and valid source id. For example, a site code is valid if the site 

with the code already exists in the database. The combination of site, variable, method source 

and quality control level is known as a “Time Series” in the ODM. The Time Series information 

in the SeriesCatalog table also stores the begin time, end time and value count of the series. 

Finally, the data values are checked. By default, only data values whose site, variable, method, 
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source, quality control level or time are different than in the existing time series, are inserted to 

the DataValues table. This check prevents the insertion of duplicate data values. I have provided 

examples how to access the API from different programing languages: Python, C# and R. The 

examples are available on the website 

http://worldwater.byu.edu/app/index.php/rushvalley/services/api/ and they are also documented 

on http://hydroserverlite.codeplex.com. The JSON API has been added to HydroServer Lite 

version 3. The installation package and the complete source code of HydroServer Lite has been 

published as open-source on the website (http://hydroserverlite.codeplex.com) under the New 

BSD License which allows for liberal reuse in both commercial and non-commercial settings. 

1.1.4 WaterML R Package 

I designed a new WaterML R package with three goals: (1) to enable data discovery in R 

by connecting to the CUAHSI HIS Central search catalog, (2) to simplify the connection to any 

WaterOneFlow web service on any HydroServer through the R statistical software interface and 

(3) to automate the uploading of data from R to HydroServer Lite through the new HydroServer 

Lite JSON data upload API. The first functional requirement is supported by the functions 

GetServices, HISCentral_GetSites, and HISCentral_GetSeriesCatalog. 

These functions allow discovering public HydroServers, sites, and time series in the user’s study 

area. The search can be refined by specifying a geographic bounding box, keywords, and time 

range. 

The second functional requirement of the WaterML R package was to support connecting 

to five web methods defined in the WaterOneFlow web service protocol that are important for 

retrieving data from the HydroServer: GetSites, GetVariables, GetSiteInfo and 
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GetValues by including an R function that corresponded to each WaterOneFlow web method 

(Table 2-1).  

Table 2-1 Functions of the WaterML R Package and Their Parameters 

Function Name Parameters Usage 
GetSites Server Get a table of all sites from the 

HydroServer 
GetSiteInfo Server, site code Get a table of all variables, methods and 

quality control levels at a specific site 
GetVariables Server Get a table of all variables from the 

HydroServer 
GetValues Server, site code, variable code, 

begin time, end time, method 
(optional), quality control level 

(optional), source (optional) 

Given a site, variable and time range, get 
a table of the time series of data values. 

AddSites Server, table of sites, user 
credentials 

Add new sites to the HydroServer 

AddVariables Server, user credentials, table of 
variables 

Add new variables to the HydroServer 

AddValues Server, user credentials, table of 
times and values, site code, 

variable code, method code, 
source code 

Add new data values to the HydroServer 

AddMethod Server, user credentials, table of 
methods 

Add new methods to the HydroServer 

AddSource Server, user credentials, table of 
sources 

Add new sources to the HydroServer 

GetServices No parameters Find the URL’s of all public 
HydroServers 

HISCentral_GetSites North latitude, west longitude, 
south latitude, east longitude 

Find the sites in a given geographic region 
from all registered HydroServers 

HISCentral_GetSeriesCatalog North latitude, west longitude, 
south latitude, east longitude, 
keyword (optional), start time 
(optional), end time (optional) 

Find a list of sites, variables and time-
series in a given geographic region, time 

period and keyword 

 

Some WaterOneFlow web service methods such as GetSiteInfoMultpleObject, 

GetVariableInfo and GetValuesForASiteObject, were not supported through new R package 

methods, but rather were supported adding optional parameters to the four core methods. Each of 

the data retrieval methods creates a table in a data.frame format. The data.frame structure can be 

used as input for data analysis functions in R. For example, if researchers need to compare the 

mean soil water potential at multiple sites, they would first call the GetVariables function to 
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get the table of all available variables. From this table, they would find details about the variable 

that represents “soil water potential”. Next, they would call the GetSites function to get a 

table of sites. To find out which sites measure the selected “soil water potential” variable, the 

GetSiteInfo function can be used. Next, they would call the GetValues function for the 

selected time range, selected variable, and selected sites. The return value of the GetValues 

function is a data.frame object, which can be used as input for various statistical analysis 

operations in R. For example, the data values in the data frame can be grouped by different 

attributes, and the differences between group means can be analyzed using the one-way ANOVA 

method. 

The third functional requirement of the WaterML R package was to support the uploading 

of data from R to HydroServer Lite through the new HydroServer Lite JSON data upload web 

service API. To facilitate this requirement, I included five functions in the package: AddSites, 

AddVariables, AddMethods, AddSources, and AddValues. These functions have the 

following inputs: The server URL, the HydroServer user name, the HydroServer user password, 

and a data frame with the data to be uploaded. The documentation specifies the required and 

optional columns in the data frame for each function. For example the AddMethods function 

requires the mandatory “MethodDescription” column and the optional “MethodLink” and 

“MethodID” columns. Additionally, the AddValues function requires a data frame with 

“Time” and “DataValue” mandatory columns, and extra input parameters that identify the site, 

variable, method, source and quality control level associated with the time series data in the data 

frame. 

The WaterML R package requires the packages XML, RCurl and httr. It can be installed 

by any user of R in the “install packages” menu. The package has been accepted for publication 
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on CRAN, the R online package repository (https://cran.r-project.org/web/packages/WaterML/). 

When a package is on CRAN, it can be installed by any R user from inside the R environment. 

The WaterML R package is open source under the MIT license. I maintain the source code on 

the github repository (http://github.com/jirikadlec2/waterml). The source code can be readily 

retrieved by any interested individuals. 

1.1.5 Great Basin Experimental Case Study 

In 2011, a factorial experiment was installed in Rush Valley, Utah (40.1 N, -112.3 W).  

The experiment tests the interactions between fire history, small mammal reductions, and 

changes in precipitation amount in the Great Basin Desert.  Half of the research plots were 

burned in September 2011. Fences were constructed that restrict the movement of small 

mammals, and on half of the plots small mammals were removed, creating a factorial burn X 

small mammal treatment combination that was replicated 5 times. In addition, 2-m X 2.5-m 

passive rainout shelters were constructed that created 30% reduction, 30% addition, and control 

precipitation treatments. Of particular interest was the establishment of invasive species in the 

post-fire treatments. In summer 2014 the Brigham Young University Gill Lab team (Richard 

Gill, Bryn StClair) installed a wireless sensor network that measures soil water potential, soil 

water content, soil and air temperature, precipitation, wind speed and direction, solar radiation, 

and canopy greenness using normalized difference vegetation index (NDVI)(Decagon, Inc., 

Pullman, WA). The case study experimental site is equipped with 20 EM50g data loggers 

(Decagon, Inc., Pullman, WA). Each data logger has 5 ports used for receiving data via the SDI-

12 connector from the sensors in the form of a time stamp and a 32-bit integer that contains up to 

3 responses. All the transmitted data must be acquired, organized, and stored in a relational 

database that is accessible to numerous scientists on the project.  The long term goal is to 
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monitor and use the data in the database to statistically validate hypotheses from the project and 

to store and publish the data, and make it accessible to those who want to reproduce my 

hypothesis tests. 

1.1.6 Data Transmission and Storage 

Once connected with the mobile network, the EM50g sends its data to the Decagon’s 

internet server twice daily. On the Decagon’s internet server, the most recent data from each 

logger can be queried using the Decagon EC2Data API.  To connect to the API, a user specifies 

the user name, user password, device ID, device password, and time. The response is a .dxd file 

which contains the metadata about the data logger, ports and sensors in the <metadata> section 

and the measured raw data values in the <data> section. Connection of the data loggers to the 

HydroServer via the Decagon API and the HydroServer Lite JSON API is shown in Figure 2-2. 

1.1.7 Data Analysis 

Once the data has been acquired and uploaded to the ODM database using the WaterML 

R package and the HydroServer Lite JSON data upload API, the goal was to analyze the data 

collected so as to test the hypothesis that soil water potential controls the productivity of invasive 

annual plants in Great Basin ecosystems after a fire. NDVI can be used as a proxy for 

productivity in this invaded ecosystem. In the experiment, the investigators began to look at the 

site and compare the treatments imposed on the study. Having the data grouped by treatment, 

allowed to test the hypothesis and learn about the interactions between soil processes and plant 

productivity. The process started with exploratory data analysis, followed by statistical inference.  

For exploratory data analysis, there was a need to develop a way to graphically display the data 

that are being stored in the database. 
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Figure 2-2 Data Acquisition Flowchart from Data Loggers to HydroServer 

 

A useful graphical display of the data was to compare the maximum daily NDVI over a 

given period using a time series plot with error bars, and include a box plot to compare the 

distributions of the two groups. A useful statistical test was the T-test for testing the null 

hypothesis “the difference between the mean NDVI at sites with small mammals and at sites 

without small mammals is equal to zero”. The R computational environment provides functions 

for both exploratory analysis and statistical inference. 

Because the experiment is a randomized controlled block experiment, used the paired t-test 

to test the null hypothesis: the difference between the mean NDVI at sites with mammals and 
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sites without mammals is equal to zero. For setting up the paired t-test, I identified the sites by 

block and by treatment. If two sites are in the same block and they have a different mammal 

treatment, I considered the two sites as a matched pair. The table has six rows (one per paired 

study plot) and the following columns: block, NDVI-mammals, NDVI-no-mammals, and 

difference. This table, as encoded in R, allowed can be used with the standard R t-test command: 

Result = t.test(NDVI-mammals,NDVI-no-mammals, paired=TRUE) 

The expectation of this analysis was to indicate whether there is a statistically significant 

difference between the mammal and no-mammal study plots. 

1.1.8 Snowpack Modelling Case Study 

Accurate information about snow depth and snow water content is important for water 

management, transportation, and recreation activities in snow-dominated regions. The 

accumulation of seasonal snowpack depends on the energy balance (incoming and outgoing solar 

radiation, air and soil temperature) and the water balance (solid or liquid precipitation, snowmelt, 

snow sublimation). Examples of conceptual and physically based snowpack models have been 

presented by Anderson (1973), Koivusalo et al. (2001), Walter et al. (2005), Lehning et al. 

(2006) and many other authors. The EcoHydRology R software package (Fuka et al. 2013) 

includes various process based hydrological modelling procedures, including the function 

SnowMelt for calculation of snowpack accumulation and melt. The SnowMelt procedure uses 

a simplified energy balance model (Walter et al. 2005). Unlike other commonly used energy 

balance models, it estimates the required energy balance parameters (net incident solar radiation, 

atmospheric long wave radiation, terrestrial long wave radiation, sensible heat exchange, energy 

flux associated with the latent heats of vaporization and condensation at the surface, ground heat 
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conduction to the bottom of the snowpack, heat added by rainfall, and change of snowpack heat 

storage) using only the day of the year, daily minimum and maximum temperature, and 

geographic latitude. This makes it an ideal model for initial testing of snow depth and snow 

water equivalent prediction using real-time data from distributed sensors. The goal of this case 

study was to demonstrate the use of online data from the CUAHSI HIS web services to setup a 

snowpack energy balance model within the R environment. The steps tested in this case study 

included data discovery, data quality control and gap filling, model simulation, and model 

validation. 

 Results 

The following section introduces the deployment and testing of the WaterML R package. 

Three use cases demonstrating applications of the WaterML R package and the HydroServer Lite 

API for managing ecological experiment data are also presented: (1) Using the WaterML R 

package to upload real-time observations from field sensor to the HydroServer Lite online 

database, (2) Data analysis of experimental observations, and (3) Snowpack energy balance 

modeling in R using online data from CUAHSI web services. 

1.2.1 Software Design and Development Results 

The WaterML R package has been published on the CRAN (http://cran.r-

project.org/web/packages/WaterML/). Any R user can find and install the WaterML R package 

in the “Install Packages” menu of the R environment. Another method of installation is using the 

R command line interface: 

install.packages("WaterML") 
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Before being published on CRAN, the code had to be approved by running the automatic 

check on each function, checking the documentation of all function parameters, checking the 

code examples in the documentation, and a review by the CRAN team. The package has two 

dependencies: XML and RCurl. Both dependencies will be automatically installed when 

installing the WaterML R package. I successfully tested the installation on three different 

operating systems: Windows, Mac and Linux. When the user installs the package, the 

documentation and examples become available by typing the text: ??WaterML in R.  

For testing the ability of the WaterML R package to access data from different 

HydroServers I randomly selected 10 HydroServers registered at the HIS Central catalog. For 

each HydroServer I ran the GetSites and GetVariables functions to retrieve the table (data frame) 

of all sites and variables at the HydroServer. Then I chose 10 random site-variable combinations 

and called the GetValues function to get the observational data. Testing of the WaterML R 

package using existing CUAHSI HydroServers had the following results. The GetValues 

function returned the table (data frame) of observation times and values in 9 out of 10 

HydroServers. The one failed case was due to server timeout on the HydroServer. It is not clear 

exactly why the 10th HydroServer had a timeout failure, though I expect it was due to server side 

problems on the individual HydroServer. Of course this illustrates one of the known challenges 

with implementing any distributed server based system: if any one server becomes inaccessible it 

can make the rest of the system less useful. 

Overall the user experience proved functional in most aspects of the new WaterML R 

package.  Two of the scientists on the project downloaded and ran the package in R.  They were 

able to access the data that was desired.  They were able to load it into R and analyze it.  As the 
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researchers become more familiar with the functionality of R they will be able to use their data in 

other research questions and analyses. 

1.2.2 Case Study Results – Adding Data to HydroServer 

The HydroServer used in the case study is hosted on the MySQL and PHP cloud web 

hosting site http://worldwater.byu.edu/app/index.php/rushvalley. For the Rush Valley 

experiment, I had to decide how to represent the experimental design and measurements within 

the predefined ODM database schema. While I used the complete ODM database schema, the 

following tables in the ODM were the most important to the presented use case: Sites, Variables, 

Units, Methods, Sources, QualityControlLevels, SeriesCatalog and DataValues. To identify the 

block, treatment and depth of each site, I assigned a unique site code for each site (Table 2-2). 

For example the code Ru1BMP5 means: Ru - Rush Valley, 1 - Block 1, B - Burned, M - 

Mammals, P - Plus water, 5 - 5 cm depth. I also used the “Comments” field in the Sites table to 

explain the meaning of the abbreviations in the code of each site. 

Table 2-2 Code of Site by Block, Treatment and Depth 

 Area Block Burned 
treatment 

Mammal 
exclusion 
treatment 

Water 
treatment 

depth 

Possible 
values 

Ru (Rush Valley) 1-5 B – Burned 
N – Not 
burned 

M – 
mammals 
N – no 
mammals 

P – plus 
water 
M – minus 
water 

5 – 5 cm 
30 – 30 cm 

 

After setting up the ODM database and installed the HydroServer Lite software, the next 

step was to set up the uploading of observations to the ODM database via the web service API. 

Two types of data loggers deployed on the site had to be considered: online data loggers and 

offline data loggers. New data from the online data loggers becomes available via the Decagon 
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API every hour. Data from the offline loggers can be retrieved by visiting the experimental site 

and connecting the logger to a PC. Special 3rd party software “echo2o utility” can be used to 

convert the raw data from the data loggers to a spreadsheet file in .Microsoft Excel (xls) or tab-

delimited text (txt) format. An example converted data table is shown in Table 2-3.  

Table 2-3 Example of First Three Rows of the Data File from the Logger after Conversion 
of the Raw Data with Echo2utility 

Measurement.Time Port.1.MPS.2. 

Water.Potential.Temp. 

kPa.Potential 

Port.1.MPS.2. 

Water.Potential.Temp. 

.C.Temp 

Port.2.MPS.6. 

Water.Potential.Temp. 

kPa.Potential 

9/4/2014 18:00 -340.6 26.6 -387.5 

9/5/2014 0:00 -565.8 23.7 -480.4 

9/5/2014 6:00 -962.6 19.1 -630.1 

 

As a prerequisite for automated transfer of observations from the data files to the ODM on 

the HydroServer I also needed to make a lookup table (Table 2-4).  

Table 2-4 Example Lookup Table to Associate the Decagon Logger and Response to the 
Time Series 

Logger ID Response SiteCode Variable 

Code 

Method 

ID 

Source 

ID 

Quality 

ID 

5G0E3559 Port.3.SRS.Nr.NDVI..630.nm Ru1BMP5 SRS-NDVI 72 1 1 

5G0E3559 Port.1.MPS.2.Water.Potential Ru1BMP5 MPS6-WP 60 1 1 

5G0E3562 Port.4.GS3.Moisture.VWC Ru5BMM5 GS3-RH 62 1 1 

 

The lookup table associates each (logger, response) pair with an ODM time series 

identified by the Site, Variable, Method, Source, and Quality Control Level attributes. With the 

data file and the lookup table in place, R can be used to automatically upload the data to the 

server. In the first step the data file is read into an R data frame. Because the time date/time 

column was not recognized by R automatically, I needed to specify the exact format of the 
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“MeasurementTime” column. The lookup entries corresponding to the logger ID are read from 

the lookup table 

data = read.table("5G0E3559-processed.txt", sep="\t", 
header=TRUE, stringsAsFactors=FALSE) 
data$time = strptime(data$Measurement.Time,"%m/%d/%y %I:%M %p", 
tz="GMT") 
Lookup = read.table("lookup.csv", header=TRUE) 
LoggerInfo = Lookup[Lookup$LoggerID=="5G0E3559",] 
 
 

Using a loop, I cycle through all columns in the logger data file. The column header in 

the logger data file contains the response name. For each data column, I found an entry in the 

lookup table corresponding to the logger id, and the response name to find out the relevant ODM 

SiteCode, VariableCode, MethodID, SourceID and QualityControlLevelID. Then I prepared a 

table with “time” and “DataValue” columns, and I called the AddValues function from the 

WaterML R package, passing in DataValues table together with the user name, password, 

SiteCode, VariableCode, MethodID, SourceID and QualityControlLevelID:  

library(WaterML) # load the WaterML R package 
Username = "admin" # specify user name 
Password = "my-Password-6031" # specify password 
serverURL = 
"http://worldwater.byu.edu/app/index.php/rushvalley/api/ 
columns = names(data) # get the data column names from the data 
table 
for (i in 1:length(columns)-1) {  
    ColumnName = columns[i] 
    DataColumn = data$ColumnName 
    timeColumn = data$time 
    DataToUpload = cbind(DataColumn, timeColumn) 
    #find entry in the lookup table data logger info 
    info = LoggerInfo[LoggerInfo$response == ColumnName] 
    #send data to HydroServer Lite 
    Status = AddValues(server=ServerURL, user=Username, 
password=Password, 
                                       siteCode=info$SiteCode, 
variableCode=info$VariableCode, 
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                                       methodID=info$MethodID, 
sourceID=info$SourceID, 
                                       qcID=info$QualityID) 
} # end of the loop 
 

The near real-time data from online data loggers are automatically updated to the 

HydroServer ODM database on a daily basis. A researcher also visits the site every few weeks to 

transfer data from the offline loggers to a laptop and to HydroServer Lite using the data upload R 

script. Once the data has been uploaded to HydroServer Lite, the locations of the sites can be 

viewed in the HydroServer Lite web user interface in an interactive map (Figure 2-3).  

 

Figure 2-3 HydroServer Map Page 

 

Each site has a details page for viewing and editing the measured data values (Figure 2-4). 

The WaterOneFlow web service of the HydroServer has also been registered in the HIS Central 

catalog, making it possible to discover sites and display them alongside sites from other research 

organizations. 
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Figure 2-4 HydroServer Site Details Page Showing Soil Moisture at Selected Sensor 

 

Because the data uploading functions in the WaterML R package relied on the 

HydroServer Lite data upload API, it could not be tested it with any randomly selected 

HydroServers from the HIS Central catalog. As an alternative method to test the data uploading 

functions, I created three new HydroServer Lite instances hosted on different web servers and I 

used the WaterML R package to create up to 10 random sites, variables, methods, sources and 

quality control levels. Then I chose 10 random combinations of site, variable, method, source 

and quality control level, and uploaded between 1 and 100 data values using the AddDataValues 

function. After each upload, I used the GetValues function to retrieve the data and check if the 

values are equal. The data upload was successful for all test cases. 
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1.2.3 Case Study Results – Data Analysis of Experimental Observations 

For exploratory data analysis I examined the effect of small mammal exclusion treatment 

on the NDVI. I compared the time series of maximum daily NDVI values at sites with and 

without the mammal exclusion treatment. In the first step I used the GetVariables function 

to check all available variables and to find which variable name stands for the “NDVI”: 

library(WaterML) 
server =  
"http://worldwater.byu.edu/app/index.php/rushvalley/services/cua
hsi_1_1.asmx" 
variables = GetVariables(server) 
 
 

From the table of available variables, I find that the name for “NDVI” is 

“SRS_Nr_NDVI”. In the second step I used the GetSites function of the WaterML R package 

to obtain a table of all available sites: 

#get the sites 
all_sites = GetSites(server) 
 
 

In the next step I use the GetSiteInfo function in a loop to find out which sites have 

measurements of the SRS_Nr_NDVI variable. 

all_site_info = NULL 
for (i in 1:nrow(all_sites)){ 
  all_site_info = rbind(all_site_info, GetSiteInfo(server, 
all_sites$FullSiteCode[i])) 
} 
NDVI_sites = 
all_site_info[all_site_info$VariableCode=="SRS_Nr_NDVI",] 
 
 

Once the sites are selected, I call GetValues function for each selected site, passing in 

the SiteCode, VariableCode, StartDate and EndDate parameters. The result of this step is a 

data.frame table in the “long” format with SiteCode, Time and DataValue columns.  
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#get the values from all sites that measure NDVI 
variable = "SRS_Nr_NDVI" 
startDate = "2014-10-07" 
endDate = "2014-10-15" 
data = NULL 
for (i in 1:nrow(NDVI_sites)){ 
  site = NDVI_sites$SiteCode[i] #the site code 
  var = NDVI_sites$VariableCode[i] #the variable code 
  values = GetValues(server, site, var, startDate,  endDate, 
daily="max") 
  #check for missing data 
  if (is.null(values)) next 
  #add the siteCode colum 
  values$siteCode = site 
  data = rbind(data, values)   
} 
 

The treatment code (mammal or no mammal) can be identified from the 5th position of the 

SiteCode according to Table 2-2 and I added it as an extra column to the downloaded data values 

table. 

data$treatment = substring(data$siteCode, 5, 5) 
 
 

In the final step I summarized the data by day and by treatment using the ddply function 

from the plyr package. 

library(plyr) 
data.summarized = ddply(data, ~time+treatment, summarise, 
mean=mean(DataValue), sd=sd(DataValue)) 
names(data.summarized)[3] = "daily.max.NDVI" 
 

For visualization I used the ggplot function from the ggplot2 package to create the error 

bar plot (Figure 2-5). The error bars show plus or minus one standard deviation of the daily 

NDVI at all sensors in the group. The group (mammal treatment or no mammal treatment) is 

indicated by the color of each NDVI error bar. 

library(ggplot2)  
# Plot: errorbars using position_dodge to move overlapping bars  
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pd = position_dodge(0.25) 
ggplot(data.summarized, aes(x=time, y=daily.max.NDVI, 
ymax=max(daily.max.NDVI), colour=treatment)) +  
geom_errorbar(aes(ymin=daily.max.NDVI-sd, 
ymax=daily.max.NDVI+sd),     width=.5, position=pd) + 
  geom_line(position=pd) + 
  geom_point(position=pd) 
 

 

Figure 2-5 Daily Time Series Plot with Error Bars 
Showing the Maximum Daily NDVI at Sites with and 
without Mammal Exclusion Treatment 

 

For testing the hypothesis “there is no difference in the NDVI value at sites with and 

without mammal treatment” I used the two-sample t-test in R. Figure 2-6 shows a side-by-side 

box plot and the p-value. The p-value is 0.193, meaning there is no significant difference 

between the means of the two groups. The following R-code creates the box-plot and the t-test: 

boxplot(DataValue~treatment, data=data) 
data.mammal = data[data$treatment == "M",] 
data.nonmammal = data[data$treatment == "N",] 
t.test(data.mammal$DataValue, data.nonmammal$DataValue, 
var.equal=TRUE) 
 
 
The test gives the following results: 
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data:  data.mammal$DataValue and data.nonmammal$DataValue 
t = 1.3078, df = 142, p-value = 0.193 
alternative hypothesis: difference in means is not equal to 0 
95 percent confidence interval: 
 -0.0149902  0.0735992 
sample estimates: 
mean of x mean of y  
0.4037878 0.3744833 
 

 

 

Figure 2-6 Box Plot and P-Value for Comparing 
Mean Differences in NDVI between Groups 

 

By transferring data from the HydroServer WaterOneFlow web service to R, the WaterML 

R package makes it possible to use the built-in functions of R or third-party R packages to check 

for outliers or to detect data errors. Once the data errors have been detected, a new quality-

controlled version of the data can be sent back to HydroServer Lite using the AddValues 

function in of the WaterML R package. The ODM database schema allows to associate a 

“quality control level” attribute with each data value. Both the raw data and the quality 

controlled data can be kept in the same ODM database, preserving the quality control process 

history.  
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1.2.4 Case Study Results: Snowpack Modelling in R 

To test the SnowMelt snow energy balance model from the EcoHydRology R package 

with data inputs from WaterOneFlow web services, I chose a study area in the Jizera Mountains 

near the border of the Czech Republic and Poland. The watersheds in this area are largely snow-

dominated, and provide water supply for the nearby city of Liberec. The proximity to large urban 

areas makes the Jizera Mountains a popular region for winter recreation. At the same time, a 

relatively low elevation (800 – 1100 m above sea level) makes the existence of the seasonal 

snowpack vulnerable to the effects of global warming. 

Before setting up the model, I need to find sites with available input data. At minimum the 

SnowMelt model requires three daily time series: precipitation sum, maximum air temperature, 

and minimum air temperature. I define the geographic extent of the study area (longitude 

between 15°E and 15.4°E, latitude between 50.7°N and 50.9°N), and use the 

HISCentral_GetSeriesCatalog function from the WaterML R package to search for 

time series with keywords “snow depth”, “precipitation”, and “temperature” in the time period of 

October 2014 – May 2015.  

# specify geographic extents of the study area 
lonR=c(15.0, 15.4) 
latR=c(50.7, 50.9) 
 
# search snow depth sites 
snowSites = HISCentral_GetSeriesCatalog(lonR[1], latR[1], 
lonR[2], latR[2],beginDate="2014-10-01", endDate="2015-05-01",  
keyword="snow depth") 
 
# search precipitation and temperature sites 
precipSites = HISCentral_GetSeriesCatalog(lonR[1], latR[1], 
lonR[2], latR[2],beginDate="2014-10-01", endDate="2015-05-01", 
keyword="precipitation") 
tempSites = HISCentral_GetSeriesCatalog(lonR[1], latR[1], 
lonR[2], latR[2],beginDate="2014-10-01", endDate="2015-05-01", 
keyword="temperature") 
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The results show that 3 time series of snow depth, 18 time series of air temperature, and 23 

time series of precipitation were found in the study area. In the next step I need to select sites that 

have observations of all three variables. To check the locations of the sites and the available 

variables at each site, I can use the RGoogleMaps package (Loecher and Ropkins 2015) for 

simple map visualization. The GetMap.bbox function retrieves a background map image from 

the Google Maps satellite layer, the PlotOnStaticMap displays point symbols for sites with 

different variables, and the TextOnStaticMap shows the labels of snow measuring sites. The 

cex, pch and col parameters control the size, shape, and color of each point symbol. The resulting 

map plot is shown in Figure 2-7. 

mymap = GetMap.bbox(lonR, latR, maptype="satellite") 
PlotOnStaticMap(mymap, lat=snowSites$Latitude, 
lon=snowSites$Longitude, cex=2.1, pch=19, col="red", FUN=points) 
 
PlotOnStaticMap(mymap,lat=tempSites$Latitude, 
lon=tempSites$Longitude, cex=1.4, pch=19, col="yellow", 
FUN=points, add=TRUE) 
 
PlotOnStaticMap(mymap, lat=precipSites$Latitude, 
lon=precipSites$Longitude, cex=0.8, pch=19, col="blue", 
FUN=points, add=TRUE) 
 
TextOnStaticMap(mymap, lat=snowSites$Latitude+0.01, 
lon=snowSites$Longitude, labels=snowSites$SiteName, col="white", 
add=TRUE) 
 

As seen in Figure 2-7, there are two sites in the study area that measure air temperature, 

precipitation and snow depth at the same site (Bedřichov and Desná – Souš). Having snow depth 

observations will allow to verify the results of the model simulation run. For this case study I 

selected the site Bedřichov (820 m above sea level). After filtering the discovered snow depth, 

precipitation and air temperature time series to entries with SiteName="Bedrichov", the 

ServiceURL, FullSiteCode and FullVariableCode fields can be used as parameters of the 
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WaterML GetValues function to download the time series data from Bedrichov from the 

2014/2015 winter season. 

  

 

Figure 2-7 Google Map Plot Showing Variables Measured at Sites (Red: Snow, 
Yellow: Temperature, Blue: Precipitation) 

 

startDate = "2014-11-01" 
endDate = "2015-04-30" 
 
snowSite = snowSites[snowSites$SiteName=="Bedrichov",] 
precSite = precipSites[precipSites$SiteName=="Bedrichov" & 
precipSites$TimeUnits=="hour",] 
tempSite = tempSites[tempSites$SiteName=="Bedrichov" & 
tempSites$TimeUnits=="hour",] 
 
snowData = GetValues(snowSite$ServiceURL[1], 
snowSite$FullSiteCode[1], snowSite$FullVariableCode[1], 
startDate, endDate) 
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precData = GetValues(precSite$ServiceURL[1], 
precSite$FullSiteCode[1], precSite$FullVariableCode[1], 
startDate, endDate) 
 
tempData = GetValues(tempSite$ServiceURL[1], 
tempSite$FullSiteCode[1], tempSite$FullVariableCode[1], 
startDate, endDate) 

 

The resulting snow, precipitation and temperature data frames contain 180, 4320 and 4320 

rows, respectively. This is because the snow data are daily, and the precipitation and temperature 

data are hourly. After downloading the observations, the next step is to check the time series for 

possible errors and missing data. This step is necessary because the SnowMelt model requires a 

continuous input time series for all three parameters. A widely used R library for time series 

operations is the eXtensible Time Series (xts) package (Ryan and Ulrich 2011). To convert the 

data frames to xts objects, I use the xts function with the time column as the ordered index. The 

plot function can then be used to display the time series chart and visually inspect the time series 

plots for data gaps (Figure 2-8). 

snowTS = xts(snowData$DataValue, order.by=snowData$time) 
precTS = xts(precData$DataValue, order.by=precData$time) 
tempTS = xts(tempData$DataValue, order.by=tempData$time) 
 
layout(matrix(1:3, 3, 1)) 
plot(tempTS, main="temperature (C)") 
plot(precTS, main="precipitation (mm/h)") 
plot(snowTS, main="snow depth (cm)") 
 

As shown in Figure 2-8, there is a period of missing data in November – December 2014. 

It also appears that the snowpack only started to accumulate by end of December 2014, and 

completely melted in the first half of April 2015. 
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Figure 2-8 Temperature, Precipitation and Snow Depth at Bedřichov in 
Winter 2014/2015 

 

Therefore I limited the model simulation time period to 25th December 2014 – 15th April 

2015 by using the xts time series subset operation. To check if there is any missing data in the 

limited time period, I used the is.na function that selects the observations with value labeled as 

NA (NA is the symbol for missing or unavailable data in R).  

snowTS = snowTS["20141225/20150415"] 
precTS = precTS["20141225/20150415"] 
tempTS = tempTS["20141225/20150415"] 
precMissing = precTS[is.na(precTS)] 
tempMissing = tempTS[is.na(tempTS)] 
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This shows that there are 38 missing precipitation values, and 46 missing temperature 

values. Therefore it is necessary to apply a gap filling function. Several interpolation and gap 

filling functions are available in R. To interpolate missing temperature values, I chose a 

polynomial interpolation method using the na.spline function. The polynomial interpolation 

is appropriate for time series with a frequent periodic cycle, such as air temperature with daily 

oscillation (Baltazar and Claridge 2006). The interpolated hourly air temperature values are 

shown in Figure 2-9. For precipitation a linear or spline interpolation would only be appropriate 

during a continuous precipitation event. As I did not have other data to suggest it was raining 

continuously before, during or after the missing hours, I replaced the missing precipitation values 

by zeros. 

 
Figure 2-9 Using Spline Interpolation to Replace Missing Temperature Values 

 

# replace missing values by zeros for precipitation 
prec <- precTS 
prec[is.na(prec)] <- 0 
# use spline polynomial interpolation for temperature 
temp <- na.spline(tempTS) 
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plot(tempTS["20141225/20150204"], ylab="temperature", main="") 
points(temp[is.na(tempTS)], col="red") 
 

The final step before running the model is to convert the hourly precipitation and 

temperature values to daily precipitation sum, daily maximum temperature, and daily minimum 

temperature using the xts apply.daily function. 

precDaily <- apply.daily(prec, sum) 
tmaxDaily <- apply.daily(temp, max) 
tminDaily <- apply.daily(temp, min) 

 

For launching the SnowMelt simulation I load the EcoHydRology package. The SnowMelt 

function requires the following five mandatory input parameters: Date, precip_mm, Tmax_C, 

Tmin_C and lat_deg. The lat_deg is the latitude of the site in decimal degrees, which is 

contained in the output from the HISCentral_GetSeriesCatalog function call. The 

precip_mm, Tmax_C and Tmin_C parameters need to be numeric vectors and they can be easily 

obtained from the daily time series using the as.numeric function. Other optional parameters 

of the SnowMelt function include wind speed, ground albedo, slope and aspect. In this case study 

I kept the default values of all optional parameters. 

dates = strftime(as.Date(index(precDaily)), "%Y-%m-%d") 
latitude = precBedrichov$Latitude[1] 
tmax = as.numeric(tmaxDaily) 
tmin = as.numeric(tminDaily) 
precip = as.numeric(precDaily) 
modeledSnow = SnowMelt(Date=dates, precip_mm=precip, 
tmax_C=tmax, tmin_C=tmin,lat_deg=latitude) 
 
 

The output of the SnowMelt function is a data frame with the following state variables: 

rainfall, snowfall water equivalent, snow melt, new snow depth, total snow depth, and total snow 
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water equivalent. For comparing the simulation result with observations, I can plot a time series 

of the modelled and observed snow depth (Figure 2-10). 

modeledDepths = xts(modeledSnow$SnowDepth_m * 100, 
order.by=as.Date(dates)) 
plot(modeledDepths, ylim=c(0, 60), ylab="snow depth (cm)") 
points(snowTS, col="red") 
legend("topright", 
       legend=c("observed", "simulated"), 
       pch=c(1, NA), 
       col=c("red", "black"), 
       lty=c(NA, 1)) 

 

Figure 2-10 Comparison of Observed and Simulated Snow Depth using the SnowMelt 
Model 

 

Figure 2-10 shows that the energy balance model provides a good prediction of the timing 

of snow accumulation and snow melt periods. The model underestimates the overall snow depth, 

which may be due to the missing precipitation values that were set to zero. The model also 
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underestimates duration and snow depth of the late season snow event in April 2015. The 

regression plot of observed and simulated values is shown in Figure 2 11. The coefficient of 

determination (R2) is 0.76, suggesting a good fit.  

# regression analysis for validating model 
m = lm(observed~simulated, data=comparison) 
rsquared = round(summary(m)$r.squared, digits=4) 
title1 <- paste("R²", "=", rsquared) 
 
library(ggplot2) 
ggplot(comparison, aes(y=simulated, x=observed)) +geom_point() + 
  geom_abline(intercept=0, slope=1) + 
  xlab("Observed snow depth (cm)") + 
  ylab("Simulated snow depth (cm)") + 
  xlim(0, 60) + 
  ylim(0, 60) + 
  ggtitle(title1) + theme_grey(base_size = 16) 
 

 

Figure 2-11 Regression Plot of Simulated and Observed Snow Depth at 
Bedřichov Using the R SnowMelt Model 
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In the study area there are only three sites with snow depth observations, but 14 sites with 

simultaneous precipitation and temperature observations (see Figure 2 7). The WaterML R 

package together with the R SnowMelt model could be used to simulate snow depth for these 14 

sites to improve the spatial resolution and accuracy of snow depth maps of the study area. 

 

 Discussion and Conclusions 

Ecological data management combined with data analysis presents a number of challenges 

for practicing researchers. In particular, there is a need for tools that link commonly used desktop 

analytical software tools with distributed cloud based data sharing networks. This paper presents 

a new WaterML R package that crosses the divide between local computation and network based 

data sharing. The new package, described here, has been successfully deployed in the context of 

a case study for a large scale ecological manipulation project. 

The case study used to test the new WaterML R package required the ability to acquire, 

store, manage, and analyze data from new wireless Decagon sensors that were installed in the 

Rush Valley experiment in central Utah, and make it available to all researchers on the project.   

Another requirement was to integrate R with the data management system through a web service 

interface because researchers and external collaborators use R for statistical analysis and 

graphical display of the experimental data. 

Every time the logger sends in new data, it becomes available for viewing on the 

HydroServer. Anyone interested in the data can find the HydroServer WaterOneFlow web 

service on the HIS Central Catalog (hiscentral.cuahsi.org), discover the sites and variables on the 

hydrologic data search website (data.cuahsi.org), and access the data for analysis in R. 
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The HydroServer instance also provides a backup of the data. In a small lab such as ours, 

there is limited support for transferring data from real-time sensors to HydroServer.  For the 

initial model creation I entered manually the sites, variables, source and methods. 

For uploading data values, I initially considered several methods: (1) add values using the 

HydroServer Lite web user interface, (2) add values using database connection, or (3) add values 

using HydroServer web API. Method (1) was not practical due to the large quantity of data 

because new observations are taken every hour. Method (2) required a remote connection 

directly to the database which was not accessible to collaborators outside the university campus. 

Therefore I chose method (3): Add values using the newly constructed HydroServer Lite web 

API. 

The complete source code and documentation of the HydroServer Lite including the 

upload API is available on the website (http://hydroserverlite.codeplex.com). Because it is open-

source, the API can be customized for other implementations of the ODM database and the 

HydroServer. The documentation includes an example R script showing how to use the upload 

API. This script can be easily customized for connecting other data loggers to HydroServer Lite. 

One limitation encountered while creating the ODM database for the experimental site was 

describing the treatment method. Because the ODM has established tables designed primarily for 

observational data, I had to be creative in organizing the experimental results. I included the code 

of the experimental treatment in the name of the site in the sites table, because I determined it 

was important to preserve the “Methods” table strictly for data collection method, not treatment 

method. Two different treatments are represented as two different sites, although the sites might 

be in the same physical location. It was necessary for to carefully label sites so that I would 

know that they are not sites, but sensors. 
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With HydroServer and the WaterML R package, I was able to access and analyze 

HydroServer data directly in R. The R script can be shared with others, making the analysis 

easier to reproduce. Without the R package, it would be necessary to download the files from 

each data logger and sensor, convert the data logger files, link them to the treatment method and 

import them to statistical software. The R environment provides numerous tools for ecological 

and hydrological modelling. Using a simple snow melt example demonstrated how to find model 

input data, replace missing values, and perform model validation using online data from 

CUAHSI WaterOneFlow web services within the R environment. All steps of the analysis are 

saved in a script, making it easy to share the script with other users. For example, another user 

may be interested in testing the SnowMelt model in a different study area. Provided that 

CUAHSI HIS temperature, precipitation and snow depth data is available in the new study area, 

the only required modification is changing the study area bounding box and the selected site 

name. 

I encountered a few limitations in developing the WaterML R package. For example, the 

WaterOneFlow web service does not have a query function for finding all sites that measure a 

specific variable. Therefore, the WaterML R package had to issue multiple web requests to the 

GetSiteInfo WaterOneFlow web method for each site to find out which sites have data for the 

given variable.  The user of the WaterML R package must know how I described each treatment 

method in the site name to accurately group the data for the analysis. Therefore it is important to 

publish a documentation of the experimental design setup including detailed description of the 

experimental treatment methods on the HydroServer website. 

Another limitation of the data upload functions (AddSites, AddVariables, 

AddMethods, AddSources, AddValues) in the WaterML R package is that these functions 
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only work with the HydroServer Lite (hydroserverlite.codeplex.com) PHP and MySQL 

implementation of the CUAHSI HydroServer. The Windows version of the CUAHSI 

HydroServer (hydroserver.codeplex.com) does not presently have a data upload API, and 

therefore the WaterML R package cannot be used with the CUAHSI HydroServer. Until a data 

upload web API is developed for the Windows HydroServer, other R packages like RObsDat 

must be used instead (requiring direct database access). The CUAHSI Water Data Center is 

presently considering the development of a data upload web service API for the Windows / SQL 

Server version of the HydroServer. This implementation of the HydroServer Lite data upload 

API in connection with the WaterML R package can serve as a prototype for creating two-way 

connections between analytical software tools like R and web services based data management 

systems like HydroServer. 

The open source R package presented here is expected to support a wide variety of data 

sets, sites, and experiments, allowing scientists in small research labs to acquire, store, manage, 

and analyze data in a centralized location that is accessible to all scientists involved. At the same 

time, by integrating with HydroServer, these data will become discoverable by other researchers 

and potential collaborators globally. 
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2 EXTRACTING SNOW COVER TIME SERIES FROM OPEN ACCESS WEB 
MAPPING TILE SERVICES 

On average between 4 mil km2 and 47 mil km2 of Earth’s northern hemisphere’s land 

surface is covered by snow (Brown and Robinson 2011). Information about the extent of the 

snowpack is important in climatology (Groisman et al. 2006; Karl et al. 1993), hydrology 

(Barnett et al. 2005), and recreation (Braunisch et al. 2011). Snowpack is a spatial and temporal 

field that rapidly changes in both place and time. Accurate information regarding the presence or 

absence of snow can improve the quality of hydrologic model forecasts (Barnett et al. 2005). 

A snow monitoring sensor can be installed at any site. However, if the site is remote or the 

cost of the sensor is high, then external snow data sources need to be used. These sources are 

typically remote sensing images or outputs of snowpack models (Rees 2005). The external data 

sources differ in type of sensor, scale and time support. Therefore it is important to be able to 

compare how the output of the different sensors changes in time. Ideally, for any point (location) 

or sub-area (watershed) in the study area should have a time series of snow probability at the 

highest available time support from all available sensors. Many studies highlight the importance 

of web-based tools (Bambacus et al. 2008), open standards (Bai et al. 2012), and web services 

(Salas et al. 2012) for making climate data products, including snow data, accessible to the users. 

Having accessible information about data origins and history is also necessary in ecological 

research, especially when the data go through multistep processes of aggregation, modeling and 

analysis (Reichman et al. 2011). 
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Maps of present and historical snow cover have been published for many regions of the 

world. The sources of these maps are: classified satellite images, interpolated ground 

observations, predictions of snowpack simulation models, or a combination of the above. The 

U.S. National Snow and Ice Data Center (NSIDC) provides open access to global daily, 8-day 

and monthly snow cover datasets created by classifying images from the Moderate Resolution 

Imaging Spectroradiometer (MODIS) at 500 m resolution (Hall et al. 2006c). The NSDIC also 

publishes the Interactive Multi-Sensor Snow and Ice Mapping System (IMS) with daily Northern 

Hemisphere snow and ice analyses at 4 km and 24 km resolution (Helfrich et al. 2007; Ramsay 

1998).  

A variety of file formats and web service interfaces are being used for distribution of 

spatio-temporal snow cover data. For interoperability, standardized web services recommended 

by the Open Geospatial Consortium (OGC) include the Web Coverage Service (WCS), Web 

Map Service (WMS), and Web Map Tile Service (WMTS). The WCS (OGC 2012b) is a web 

service protocol specially designed for web-based retrieval of digital geospatial information 

representing space/time varying phenomena. Using a GetCoverage request, the WCS defines 

access to a subset of the digital dataset in the space or time dimension. The WMS (OGC 2006) is 

a web service protocol for delivering map images over the Internet that are generated by a map 

server. It is mainly used for visualization purposes. For more efficient delivery of multi-temporal 

earth observation data, several extensions of the WCS and WMS standard have been proposed, 

such as EO-WCS (Schiller et al. 2011) and EO-WMS (Baumann et al. 2015). 

The Cryoland Consortium (Triebnig et al. 2011) provides access to snow extent and snow 

water equivalent data products from Europe. These include daily fractional snow cover from 

MODIS optical satellite data with uncertainty estimation and daily snow water equivalent data 
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based on observations of the SSM/I microwave radiometer and selected ground-based weather 

stations. Cryoland uses the EO-WMS web service standard for data visualization and the EO-

WCS standard for data download. A limitation of the Cryoland interface is that it only provides 

data for the European continent. While the web map interface of Cryoland enables the user to 

select a polygon and download data from the polygon in GeoTiff format, the underlying EO-

WCS web service does not allow it to retrieve a multi-temporal time series of fractional snow 

cover or snow water equivalent for a specific location in one request (Triebnig et al. 2011). 

The Web Map Tile Service (WMTS) has become popular for multi-dimensional 

geographic data visualization on the Internet (Sample and Ioup 2010). In the tile system, the data 

are organized at a number of pre-defined scales. For each scale, the mapped area is divided into 

many square tiles with a size of 256 by 256 pixels. Each tile is stored as an image on the internet 

server (Batty et al. 2010). Using the tiles to enable rapid visualization in interactive maps at 

multiple scales is demonstrated by the National Aeronautics and Space Administration (NASA) 

Global Imagery Browse Service (GIBS) documented by (Cechini et al. 2013) at 

http://earthdata.nasa.gov/labs/worldview/. The GIBS provides highly responsive and scalable 

access to near real-time imagery. The wide adoption of the WMTS standard for publishing snow 

data is illustrated by the ArcGIS Online (arcgis.com) search catalog, where more than 50 

different snow-related WMTS datasets are discoverable. The WMTS can be accessed using the 

web browser and in geographic information systems (GIS).  

Extracting time series from multi-temporal snow cover satellite datasets has been applied 

in many studies (Dozier et al. 2008; Gascoin et al. 2014; Parajka and Blöschl 2006; Rittger et al. 

2013; Şorman et al. 2007). These studies examine the accuracy of one or more snow cover 
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products for specific study areas, different seasons, type of vegetation, climate zones, or terrain. 

A major challenge is filling the gaps in the snow data on cloudy days (Hall et al. 2010). 

Several applications have been developed to simplify the distribution of MODIS snow 

cover data. One application that has the goal of simplifying access to MODIS snow data is 

Cryoland (www.cryoland.eu). They provide an interactive web map interface with a time slider 

to view and download European snow cover datasets from multiple remote sensing data sources.  

Another web based application is LifeWatch (http://maps.elie.ucl.ac.be/lifewatch). The 

LifeWatch application uses the eight-day maximum snow extent product of NASA as input data 

that has a spatial resolution of 500 m (MOD10A2). These data were filtered in the frame of the 

ESA Land Cover CCI project to derive weekly snow probability products (Basset and Los 2012). 

However, LifeWatch is limited in that it only provides data for Europe and it only supports 

extraction of long-term mean seasonal snow cover percentage. The National Aeronautics and 

Space Administration (NASA) have developed the Reverb ECHO interactive map 

(reverb.echo.nasa.gov) for search, discovery, and download of various Earth observation datasets 

including MODIS snow cover data. The user selects the geographic area and a time period to 

search and download all data files that overlap it. Typically each time step is downloaded as a 

separate file covering the area of interest. While the reverb allows the user to download multiple 

files, the user still needs to manually process each downloaded file for every time step to get a 

time series for any selected pixels. 

This paper presents the design and development of a new web-based automated script for 

the extraction of snow cover probability directly from WMTS published by numerous open 

access data sources. The script is deployed as a web application using the Tethys framework 

(Jones et al. 2014) and includes both a user interface and an application programmer interface 
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(API) for external third party access. The script is developed such that it can extract snow cover 

probability time series based on the specification of a point location. The user can access an 

interactive map to select the point of interest, select the time range, and display and download the 

time series. An external application can use a web API to send the feature of interest and retrieve 

the time series.  

The remainder of this paper is organized as follows. A methods section describes the 

design of the script as well as the design of a case study experiment for testing and validating the 

script using the MODIS fractional snow cover data retrieved through the NASA GIBS WMTS 

web service. A results section presents the finalized tool in user interface and web-API form as 

well as the results of the case study. Finally, I present conclusions and discussion regarding the 

application of the script to hydrologic and climate modeling scenarios. Opportunities for creating 

new tools following a similar approach are also presented, highlighting potential broader 

implications of this work. 

 Material and Methods 

The following section starts with an overview of the MODIS snow cover data acquisition 

process. The algorithm used for automated WMTS time series data extraction is described. The 

software design and testing methods are outlined, and an application use case of the software for 

ground validation of the MODIS snow dataset is presented. 

2.1.1 MODIS Snow Cover Data Acquisition 

The original MODIS data are acquired by the Terra and Aqua satellite sensors and go 

through a number of processing steps and intermediate products (Riggs et al. 2006): 

50 



1. The raw dataset (Level-1A) is received from the satellite sensor with radiance 

counts for 36 MODIS channels, along with instrument status and spacecraft ancillary data. 

2. The calibrated radiance data products (MOD02HKM and MOD021KM), the 

geolocation product (MOD03) and the cloud mask product (MOD35_L2) are created. 

3. The Normalized Difference Snow Index (NDSI) is used to identify pixels as 

snow, snow-covered water body, land, water, cloud or other condition, and to calculate fractional 

snow cover in each pixel. The Normalized Difference Vegetation Index (NDVI) is used to 

improve snow detection in forested areas (Klein et al. 1998). The swath product (MOD10_L2) 

has a 500 m spatial resolution and it is archived in a Hierarchical Data Format – Earth Observing 

System (HDF-EOS). These datasets are archived online at: 

ftp://n5eil01u.ecs.nsidc.org/SAN/MOST/MOD10_L2.005/ with one file for each day, 

observation time, and swath region (Hall et al. 2006a). They can also be downloaded using the 

National Aeronautics and Space Administration (NASA) Reverb ECHO interactive download 

website (http://reverb.echo.nasa.gov)  

4. The MODIS swath source data are continuously updated due to ongoing missions 

and the latest data become available within 3 hours of observation. The source data have also 

been updated after reprocessing campaigns and they are labeled by a version number. The 

version number used in this study is version 5. 

5. Web applications (NASA Worldview; https://earthdata.nasa.gov/labs/worldview/) 

and web services such as the Global Imagery Browse Service (GIBS; 

https://wiki.earthdata.nasa.gov/display/GIBS/GIBS+API+for+Developers) managed by NASA’s 
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Earth Observing System Data and Information System (EOSDIS) have been developed for 

visualization of the MOD10_L2 dataset together with other Earth observation datasets.  

6. Additional corrections are applied to create the daily (MOD10A1) and eight-day 

(MOD10A2) composite snow cover products from the MOD10_L2 dataset. These datasets 

consist of 1200 km by 1200 km tiles of 500 m resolution data gridded in a sinusoidal map 

projection (Hall et al. 2006b). The MOD10A1 and MOD10A2 datasets are available online for 

download in the HDF-EOS format through FTP 

(ftp://n5eil01u.ecs.nsidc.org/SAN/MOST/MOD10A1.005). Similar to other MODIS datasets, 

they can also be downloaded through the NASA Reverb ECHO interactive download website. 

Several stand-alone software tools such as the MODIS reprojection tool (Dwyer and Schmidt 

2006) and software developer libraries such as PyMODIS (Delucchi 2014) have been developed 

to simplify and automate data access to the MOD10A1 and MOD10A2 data products. However, 

these datasets are not currently available through a WCS, WMS or WMTS web service interface. 

This study specifically uses the processed MODIS Terra Snow Cover imagery layer from 

the NASA EOSDIS GIBS web service that is based on the reprojected MOD10_L2 data product. 

This web service has available data in 500 m resolution with temporal range from May 2012 

until present, published and described at: 

https://wiki.earthdata.nasa.gov/display/GIBS/GIBS+Available+Imagery+Products. 

2.1.2 WMTS Data Extraction Design 

Extracting time series data from the WMTS consists of four main steps: (1) construct the 

uniform resource locator (URL) address of a tile image that overlaps the point of interest at a 

given time step, (2) download the tile image, (3) find the coordinates of the pixel corresponding 
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to the point of interest inside the downloaded image, and (4) convert the pixel color to the 

observation units. These four steps are repeated for each time step in the time series (Figure 3-1). 

 

Figure 3-1 Snow Data Retrieval Function Loop for a Point Location 

 

The WMTS specification, also known under the name “TMS” (tile map service), is a web 

service protocol for retrieving tiled map images which has been defined by the Open Geospatial 

Consortium (Masó et al. 2010). The WMTS request is in the format: 

[server]/[layer]/[time]/[x]/[y]/[zoom].png       (3-1) 

 

where x is the Tile x (horizontal) index and y is the Tile y (vertical) index. 

The zoom number (typically between 1 and 20) indicates the scale of the map. It must not 

be higher than the maximum supported zoom level of the WMTS web service. Given the 

latitude, longitude and zoom number, the tile x index and tile y index can be calculated as: 

𝒙𝒙𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 = (𝒕𝒕𝒍𝒍𝒍𝒍+𝟏𝟏𝟏𝟏𝟏𝟏)
𝟑𝟑𝟑𝟑𝟏𝟏 

∗ 𝟐𝟐𝒛𝒛𝒍𝒍𝒍𝒍𝒛𝒛         (3-2) 

𝒚𝒚𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 =
𝟏𝟏−𝒕𝒕𝒍𝒍𝒍𝒍�𝐭𝐭𝐭𝐭𝐭𝐭(𝒕𝒕𝒍𝒍𝒕𝒕_𝒓𝒓𝒍𝒍𝒓𝒓)+ 𝟏𝟏

𝐜𝐜𝐜𝐜𝐜𝐜 (𝒕𝒕𝒍𝒍𝒕𝒕_𝒓𝒓𝒍𝒍𝒓𝒓)�

𝟐𝟐𝟐𝟐
∗ 𝟐𝟐𝒛𝒛𝒍𝒍𝒍𝒍𝒛𝒛       (3-3) 
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where lon represents longitude in decimal degrees, lat_rad represents latitude in radians, zoom is 

the zoom number, xtile is the x column (x) index, and ytile is the tile row (y) index. The integer 

part of the xtile or ytile number is the tile x or tile y index. The fractional part is the position of 

the pixel inside the tile. 

Once the pixel value is retrieved, it needs to be converted to the snow cover category. The 

category is represented as a unique color in the image. If the image is in the .png or .gif file 

format, the color information is often stored as “indexed color” to reduce the file storage. In 

indexed color the raw value of each pixel is a number (typically in the range 0-255), and the 

color legend is stored in a color table section of the file. Knowing the color legend of the WMTS 

web service and the color table, a lookup mapping the raw pixel values to the snow categories 

can be created. Table 3-1 shows an example lookup table for the IMS Snow Mapping web 

services. There are 5 categories: Snow-Free, Snow, Ice, Cloud, and No Data represented by the 

raw values 0, 1, 2, 3, and 255. Other WMTS services define a larger number of categories. For 

example the MODIS - Terra Daily Snow Cover has the categories: “cloud”, “no data”, and a raw 

value between 0 and 100 to represent the fractional snow cover percent inside the pixel. 

Table 3-1 Example Lookup Table for Converting Raw Pixel Values to Snow  
Categories 

Raw Pixel Value Color (R, G, B) Transparency Snow Category 

0 Transparent (255, 255, 0) 0 Snow-free 

1 White (255, 255, 255, 255) 255 Snow 

2 Blue (102, 255, 255, 255)  255 Ice 

3 Gray (224, 224, 224) 255 Cloud 

255 Transparent (0, 0, 0) 0 No Data 
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The lookup table, the latitude and longitude coordinates, the list of times, and the URL 

template of the WMTS web service are the required inputs of the WMTS snow retrieval 

function. If the WMTS data have a regular time step, then the begin time and the end time can be 

supplied instead of the list of times. The snow retrieval function uses a loop. For each time step, 

the URL of the tile is constructed. A web request is issued to the WMTS server, which returns an 

image in response. The raw pixel value is extracted from the image, and the lookup table is used 

to convert the raw pixel value to the snow category (percent snow cover in pixel). Finally, the 

snow category value is saved to an ordered list of (time, value) pairs. The output list can be saved 

to a file or database, or passed to other functions for time series visualization. 

The script can be implemented as a function in the Python programming language. By 

using Python, the script can be executed on multiple operating systems for both desktop and 

server. The script requires a library for efficiently extracting a pixel value from an image. In 

Python I used the open source library pypng (http://pythonhosted.org/pypng; for reading png 

format). 

2.1.3 Tethys Framework 

To make the Python data extraction functionality available to end users, I designed an 

interactive web application in the Tethys framework. Tethys (Jones et al. 2014) is a platform that 

can be used to develop and host water resources web applications. It includes a suite of free and 

open source software: PostgreSQL, GeoServer, and Web Processing Service. One advantage of 

Tethys over a custom web application is that it provides a plug-in architecture (Heineman and 

Councill 2001) for relatively easy implementation of new applications. The web page graphical 

style, layout, navigation bar, user management, and data storage management are all handled by 

55 

http://pythonhosted.org/pypng


Tethys. A Tethys plugin is known as “app” and it has four components: Persistent Storage, 

Controller, Template, and Gizmo. The persistent storage is used for storing user settings, for 

example the favorite location. The controller handles computations and application business 

logic. Tethys provides a base controller with built-in functionality for connecting to the model. 

The template defines the position of text, buttons, charts, tables and maps in the user interface. 

The Gizmo is a customizable user interface component. It can be a button, date time picker, 

drop-down list, chart, table, or map. The map and chart template are responsible for display of an 

interactive map and chart on the app’s landing page.  

2.1.4 Snow Inspector User Interface Design 

The Snow Inspector web user interface consists of two views: “snow map” and “snow 

graph”. The map uses the OpenLayers version 3 (openlayers.org) interactive map control. The 

user can add a point anywhere on the map by mouse click. When the user finishes working with 

the map, the coordinates of the user defined shapes are passed to the map controller. The map 

controller passes the coordinates and other input parameters (time range, WMTS service) to the 

snow controller. The snow controller launches the data retrieval script. As the data retrieval 

script is working, it has the option to save the downloaded data in a persistent storage time series 

cache. Using the Asynchronous JavaScript (AJAX) method, the map and chart template 

periodically checks the snow controller for progress status and updates the chart and a progress 

bar on the web page. Once the processing is finished, the controller retrieves the time series and, 

passes it to the chart template where the interactive chart is updated (Figure 3-2). The snow 

controller also includes a function to retrieve the pixel boundaries and pixel values for a 

specified area and date in the GeoJSON format. 
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Figure 3-2 Interaction of User, Template and Controller in the Snow Inspector 
Application 

2.1.5 Snow Inspector Data API Design 

Four other templates are used for showing the result time series in different formats: A 

comma-separated values (CSV), JavaScript Object Notification System (JSON), WaterML 1.1 

and WaterML 2.0 template. WaterML is an Open Geospatial Consortium (OGC) internationally 

approved standard for exchanging hydrological time series data (OGC 2012a; Valentine et al. 

2012). It contains not only the data values, but also the associated metadata including the site 

location, data source organization, and measurement units. The overall design of the Snow 

Inspector web application including the controller and the templates is shown in Figure 3-3. 
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Figure 3-3 Architecture of the Snow Inspector Web Application Showing Exchange of Data 
Objects between the Components 

The time series API can be accessed using the following query string parameters added to 

the URL (Table 3-2). 

Table 3-2 Parameters of the Snow Inspector API for Retrieving Time Series 

Parameter  Explanation 

latitude Latitude in decimal degrees 

longitude Longitude in decimal degrees 

start Start date in yyyy-mm-dd format 

end End date in yyyy-mm-dd format 

format The output format: csv, WaterML1, WaterML2, or json 
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For example, requesting the URL: http:/apps.hydroshare.org/apps/snow-

inspector/waterml/?lat=49.69095&lon=15.98980&start=2014-10-01&end=2015-05-31 retrieves 

a time series of percent snow cover from the MODIS Terra WMTS pixel at the location 

(49.69095 N, 15.98980 E) from October 2014 until May 2015. This web request can be used in 

scripting software such as R or Python to automate the retrieval of snow cover time series for 

multiple points of interest. 

2.1.6 Performance and Usability Testing 

For the usability of web application, the loading speed of the web page is an important 

factor. I tested the time required to complete loading of the snow cover time series using the 

following steps:  

(1) I selected 200 random time period lengths between 1 day and 1000 days. Although the 

MODIS images go back until the year 2000, the GIBS WMTS service for snow cover has only 

been available since May 2012 and the older data are not yet available through this web service, 

therefore I could not use a longer time period. 

(2) I used spatial random sampling to choose 200 random sample sites located on land in 

the Northern hemisphere (between 30°North and 70°North), and I assigned one of the random 

time period lengths to each random site. For each selected site and time period, I issued a web 

request to retrieve the snow data and create the time series graph. For each sample I also 

registered the number of cloudy days and number of snow-free days, to check if this factor has 

any effect on the data retrieval speed.  

(3) To test possible effects of caching on performance, I examined the differences in 

response time seen between initial requests and three subsequent requests. 
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2.1.7 Comparison of Estimated Snow to Ground Truth Observations 

To test the validity of the results of the Snow Inspector application and script, I conducted 

a ground truth experiment involving the collection of over 100 ground observations in and 

around Yellowstone National Park. This study area was chosen because of the relative ease of 

access to a wide variety of terrain and land cover regions (i.e. no private land barriers to access). 

Data were collected in the following manner: 1) Potential data collection locations were 

identified in the office using a combination of GIS data and fore-knowledge about accessible 

locations; 2) An individual traveled to each location previously selected and visually surveyed 

the immediate vicinity; 3) An area roughly 600m by 600m was examined and an estimate of 

percent snow cover was made; and 4) This information was recorded together with any other 

unique or distinguishing characteristics of the observation location such as tree cover information 

and tree canopy thickness Finally, once all manual data observations were made, I determined 

the Snow Inspector value for percentage coverage at each of the data collection locations and 

computed metrics indicative of the Snow Inspector accuracy. 

 Results 

The following section describes the results of performance and usability testing of the 

Snow Inspector web application. This application can be used for retrieving MODIS snow cover 

time series from any point on Earth. Results of the ground validation experiment using the Snow 

Inspector maps and time series data in the Yellowstone National Park are also presented. 

2.2.1 Web Application Deployment Results 

The name of the web application is “Snow Inspector”. It is available for registered users at 

the website http://apps.hydroshare.org. The source code is distributed under the MIT license on 
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the GitHub repository (http://github.com/jirikadlec2/snow-inspector). When a change is made in 

the source code, the administrator of the server http://apps.hydroshare.org can log-in to the server 

and run a command that retrieves the source code from the repository and updates the app. 

The Snow Inspector user interface has two parts: Snow Map and Snow Graph. In the Snow Map, 

the user can define a point location on the map (Figure 3-4) by clicking on the map or by 

entering the coordinates User can also define the date and the length of the time period. When 

the map is shown at a large scale, the boundaries of the reprojected MODIS satellite pixels for 

the selected date are shown, and a number showing the MODIS fractional snow cover inside the 

pixel (%) can be displayed (Figure 3-4).  

 

Figure 3-4 Snow Map Input Page with User Interface for Selecting the 
Point of Interest or Entering Latitude and Longitude Coordinates 

 

The satellite pixel overlay corresponds to the selected date. Once the locations have been 

selected, the program sends multiple requests to the WMTS snow cover web service. The time 

series chart is shown in the Snow Graph screen. While the data are being retrieved and 
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processed, a progress indicator is shown in the snow graph area. Selecting a data point in the 

time series chart displays the original processed MODIS Terra snow cover image, allowing the 

user to inspect the data in more detail (Figure 3-5). 

 

 

Figure 3-5 Snow Coverage Graph at a Selected Point 

 

2.2.2 Performance and Usability Testing Results 

In web-based application, the users expect a response in less than one second. The retrieval 

of multiple images, depending on network connectivity, may require more time. As a first step I 

added a “loading” animated image indicator that appears while the process is running. As a 

second step, I implemented a progress bar. The snow retrieval script saves the retrieved values 

from every time step to the application’s database table. By counting the rows in the database 

table, I know how many images have been processed and how many are remaining. Every five 

seconds, the web client user interface can post an AJAX request to a controller. The controller 
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checks the number of complete table rows and returns it to the client following which the client 

updates the progress bar. The second challenge is handling response errors in the WMTS service. 

Occasionally I found that there was a 5-second or longer delay in retrieving one single image. To 

eliminate this delay, I calculated the average image retrieval time and the standard deviation of 

that time. If one request exceeds the average retrieval time by more than three standard 

deviations, the retrieval of data for this time step is skipped and the user is notified that there is 

an error on the MODIS Terra WMTS server or an error in internet connection and therefore data 

for the time step is unavailable.  

To test the response time for different scenarios and to find the average retrieval time, I 

used spatial random sampling to choose 200 random sites on the land in the northern hemisphere 

(Figure 3-6). I have found that there is a linear relationship between the number of days 

requested and the total retrieval time (Figure 3 7). The linear regression equation is: 

Retrieval_time = -0.3523 + 0.0578 * number_of_days    (3 4) 

On average, it took 5.4 seconds to retrieve 100 days of data 

 

Figure 3-6 Spatial Random Sample of 200 Locations for Testing Response Time 
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Figure 3-7 Linear Regression Scatter Plot for Number of Requested Days 
versus Retrieval Time 

 

To examine the possible effect of server-side caching, I also performed four subsequent 

requests at all randomly selected sites using a 1000 day time series. Figure 3-8 shows the 

presence of a caching effect.  

 

Figure 3-8 Response Time for Repeated Requests  
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The mean response time of the first request was 56 seconds, which was greater than the mean 

response time of the second subsequent request (39 seconds). I also noticed a slight increase in 

the response times of the third and fourth subsequent request, indicating a possible expiration of 

the server side cache. Considering that the download of a 90 day time series of original MODIS 

Terra MOD10_L2 raster data takes several minutes, using the Snow Inspector presents a 

significant speed improvement in the access to multi-temporal MODIS Terra percent snow cover 

time series. 

2.2.3 Ground Validation Results 

To verify the results of the Snow Inspector tool, a ground survey was conducted. On May 

2 and May 9, 2015, Woodruff A. Miller visited and surveyed 36 sites in the Yellowstone 

National Park area (Figure 3-9). The Snow Inspector was used to identify the MODIS satellite 

pixel boundaries at a 1:10,000 scale (see example on Figure 3-10). For each location, between 1 

and 8 pixels were identified and the percentage of snow-covered area on the ground was 

estimated. Locations with open ground, partially tree-covered ground, and ice-covered lakes 

were selected.  

To examine the effect of trees on fractional snow cover estimates on partially tree-covered 

ground, tree canopy thickness was identified as “dense” or “sparse”. The total number of ground 

validation pixels was: 102 pixels on May 2, 2015, and 82 pixels on May 9, 2015. Out of the total 

184 pixels, 28 pixels were inspected both on May 2 and on May 9. The complete ground 

validation dataset is available online in the public HydroShare repository at: 

https://www.hydroshare.org/resource/05a29e4ddffd42b88f482bd5be46e88d/. 
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Figure 3-9 Map of Visited Sites in Yellowstone National Park 

 

 

 

Figure 3-10 Example Validation Site: MODIS Gridded Pixel 
Boundaries with Aerial Photo Map Background 
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On May 2, 2015, 94% of the inspected locations were cloud-free. On the previous day, 

May 1, 2015, 100% of the locations were cloud-free. Figure 3-11 shows the comparison of the 

May 2, 2015 ground observations with the May 1 and May 2 satellite observations and highlights 

differences in type of land cover. 

 

Figure 3-11 Comparison of Ground and Satellite Percent of Snow-Covered Area in the 
Pixel on May 1 and May 2, 2015 at Selected Locations in Yellowstone National Park 

 

The comparison shows a large number of sites where the satellite underestimated the 

observed snow cover. According to ground validation, the pixel was partially snow-covered, but 

no snow was detected by the satellite. It is noticeable that the majority of the pixels where no 

snow was detected by the satellite had less than 50% observed snow covered area on the ground. 

While Figure 3-11 shows good agreement for mountain sites above the tree line, it also shows 

significant underestimation and large day-to-day variation for snow on the ice-covered lakes. 

The large day-to-day variation on the ice-covered lakes could be explained by the start of an ice 

melting event that occurred in the first week of May 2015 (Niemi et al. 2012; Xin et al. 2012). 
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A closer look at the pixels with no detection of snow by the satellite revealed that these pixels 

had patchy snow and were located in areas of evergreen forest. Tree canopies partially obscure 

the MODIS view of the ground, so the satellite observed fraction of snow may be less than the 

true snow fraction (Rittger et al. 2013; Simic et al. 2004). Additionally tree shadows may further 

obscure the satellite view, especially in cases of large zenith angle (Niemi et al. 2012; Xin et al. 

2012). For the “other” pixels (not lake or mountain above tree line), the remaining pixels were 

divided in two categories to explore the effect of tree canopy thickness (Figure 3-12). 

 

Figure 3-12 Comparison of Ground and Satellite Percent of Snow-Covered Area in the 
Pixel on May 2 for Pixels with Dense (Left) and Sparse (Right) Tree Cover 

 

The “dense” category labels areas of live evergreen forest with generally thick tree canopy. 

The “sparse” category labels areas with thin tree cover, such as recently burned areas. As shown 

in Figure 3-12, the satellite generally underestimated snow cover in pixels with both dense and 

sparse tree cover. The satellite failed to detect patchy snow (with less than 15% observed snow 
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on the ground) in sparse tree cover areas. Similar observations where the MODIS sensor failed to 

detect patchy snow in forested areas in the melting season were made by Parajka et al. (2012). 

On the second visit on May 9, 2015, the satellite reported cloud cover for the majority of 

the sites. Therefore to get the satellite estimate of snow cover, I used two methods: (1) Nearest 

available previous date, (2) Nearest available next date. A similar approach like the two methods 

chosen is described by Hall et al. (2010) and Gao et al. (2010). They recommended using nearest 

non-cloud observations from prior days for filling data gaps in the snow cover product. 

Figure 3-13 shows the comparison of ground and satellite observations using the “nearest 

available date” method.  

 

Figure 3-13 Comparison of Ground and Satellite Percent of Snow-Covered Area in the 
Pixel on May 9, 2015 at Selected Locations in Yellowstone National Park with Cloud-Free 
Satellite Data Available within 3 Days before or after Ground Observation (Left) or within 
More than 3 Days before or after Ground Observation (Right) 

 

The nearest available cloud-free dates were between 0 and 7 days before or after the May 

9, 2015 visit. Figure 3-13 shows separately the pixels where cloud-free data were available 

within 3 days and within 4 – 7 days of the ground observation. 

69 



Similar to the first visit, there were a number of sites where the satellite underestimated the 

snow cover percentage. However, the proportion of sites with above-zero snow cover fraction on 

the ground and zero satellite snow cover fraction is smaller than in the first visit on May 2, 2015. 

The satellite also overestimated the percent of snow cover on lakes. This could be partially 

explained by the ice melt event that may have occurred between the last available cloud-free date 

and the ground observation date. The false identification of open water lakes as snow has also 

been noticed by Hall and Riggs (2007) especially if the water has high turbidity or if it is shallow 

with a bright bottom. As shown in Figure 3-13, the agreement between satellite and ground 

observation was much better for pixels with cloud-free data available within three days of the 

ground observations. For the time lag of four days or longer, there were cases when the satellite 

overestimated snow cover possibly due to snow melting in the period between the satellite and 

the ground observation. The same effect is apparent for tree-covered pixels, where a better match 

is seen for pixels with the shorter time lag (see Figure 3-14 and Figure 3-15).  

 

Figure 3-14 Comparison of Ground and Satellite Percent of Snow-Covered 
Area in the Pixel on May 9 for Pixels with Dense (Left) and Sparse (Right) Tree 
Cover, Using Pixels with Three Days or Less Time Lag Between Ground and 
Satellite Observation 
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Figure 3-15 Comparison of Ground and Satellite Percent of Snow-
Covered Area in the Pixel on May 9 for Pixels with Dense (Left) and 
Sparse (Right) Tree Cover, using Pixels with 4 - 7 Day Time Lag 
Between Ground and Satellite Observation 

 

Another method of ground validation is the “presence” and “absence” of snow. Here each 

ground and satellite observation was labeled as “presence of snow” if more than 50% of the 

ground was snow-covered. Table 3-3 and Table 3-4 show the confusion matrix of observed 

versus predicted values on May 2 and May 9, 2015. It is evident from these tables, that the 

specificity (true negatives) is higher than the sensitivity (true positives), indicating that snow-free 

ground is detected by the satellite more successfully than snow-covered ground. Table 3-5 shows 

the Percent Correctly Classified (PCC) indicator for the 50% snow cover threshold. 

Table 3-3 Comparison of Ground and Satellite Snow Covered Area on May 2, 2015 

 Ground 

Satellite 

 Snow No Snow 

Snow 13 9 

No Snow 19 61 
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Table 3-4 Comparison of Ground and Satellite Snow Covered Area on May 9, 2015 

 Ground 

Satellite 

 Snow No Snow 

Snow 10 8 

No Snow 12 52 

 

Table 3-5 Percent Correctly Classified (PCC) 

Date May 2, 2015 May 9, 2015 

PCC 0.73 0.76 

 

 

The results of the ground survey suggest that rapid melting of snow occurred in the 

Yellowstone National Park in the first week of May 2015. One application of the Snow Inspector 

API is finding the approximate snowmelt date. For this application the “pixel-borders” function 

in the API can be used. This function has the lonmin (minimum longitude), latmin (minimum 

latitude), lonmax (maximum longitude), latmax (maximum latitude), and date (the examined 

date) parameters and it returns the MODIS pixel boundaries together with the fractional snow 

cover number for each pixel for the specified date. For each pixel a time series of fractional snow 

cover in the pixel can be obtained, showing the snow melt date. The exact date of transition of 

the pixel from partially snow covered to snow-free might not be known due to cloud cover. 

However, the last available date with presence of snow and the first available date with absence 

of snow can be found from the time series. The following R code documents getting the snow 

data for each pixel in the Yellowstone National Park area for a selected date: 
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north = 45.13 
south = 44.02 
east = -109.25 
west = -111.17 
api_uri = "https://appsdev.hydroshare.org/apps/snow-
inspector/pixel-borders/" 
uri = paste0(api_uri, "?lonmin=",west, "&latmin=", south, 
"&lonmax=", east,"&latmax=", north, "&date="2015-01-01") 
 
#download geoJSON 
download.file(base_uri, "pixels.GeoJSON") 
pixels = readOGR("pixels.GeoJSON", layer="OGRGeoJSON) 
centroids <- coordinates(pixels) 
pixelvals = as.numeric(pixels$val) 
 
 

The approximate snow melt date is in the interval between these two dates. Figure 3-16 

shows a map of the Yellowstone National Park for the snow melt season (March – June) of 2015.  

 

Figure 3-16 Approximate Date of Snowmelt in 2015 in the Yellowstone National Park 
according to MODIS Satellite Data 
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The northern section of the national Park (Lamar Valley) already lost snow in March. The 

central sections of the park around Yellowstone Lake became snow-free during the course of 

April, while in the high elevation areas in the southern and eastern parts of the park the main 

snowmelt occurred in May. A part of the visited sites is located in the region with snow melting 

between 1st and 31st May. This is consistent with the quick changes in the snow-covered area that 

were observed in the 2nd May and 9th May field survey. 

 Discussion 

The goal of the Snow Inspector application was to design a fast and simple web-based 

interface for retrieving time series information regarding the presence or absence of snow that 

can be accessed from anywhere in the world. It is accessible on the website apps.hydroshare.org. 

The extracted time series data and the associated metadata are available not only through a user 

interface, but also in the CSV and WaterML format. Therefore it can be used to develop third-

party applications that require time series information about snow cover. The WaterML output 

for locations of interest can also be shared on public repositories such as HydroShare (Horsburgh 

et al. 2015). According to preliminary testing, the data retrieval duration is between 5 and 30 

seconds for a 90 day period of interest, which is faster than downloading and opening a series of 

large raster files through FTP from the original MODIS/Terra MOD10_L2 data source. This 

response time could be further reduced by making multiple parallel requests to the WMTS web 

service. A limitation is that only point-based data retrieval is supported. For applications in 

hydrology, it would be useful to add polygon-based retrieval functionality to get the percentage 

of a watershed covered by snow.  
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Ground validation of MODIS fractional snow cover data provided through the Snow 

Inspector during the 2015 snowmelt season in the Yellowstone National Park indicated a good 

accuracy for open ground (above tree line). However, the values shown by the Snow Inspector 

for lakes did not match well with ground observations. Therefore I do not recommend using this 

application for retrieving time series of lake ice cover.  

A large portion of the inspected pixels had the presence of trees. In some cases, the 

presence of snow was not detected in forested areas (omission error) possibly due to patchy 

snow, tree shadow effect, or obscured satellite field of view. Similar omission errors in evergreen 

forest in the snowmelt season were documented by Parajka et al. (2012), Rittger et al. (2013) and 

Xin et al. (2012). When the MODIS data were not available on the same day due to cloud cover, 

I found that satellite values from a previous or subsequent day could be used. However, the 

accuracy was limited when the time lag exceeded three days. One use of the Snow Inspector time 

series view is showing the nearest cloud-free observations for the selected pixel. Implementing 

this feature also in the map view could further improve the application’s usability for snow cover 

validation activities. 

Compared to other MODIS snow cover data distribution methods, the Snow Inspector has 

limited period of record and limited data accuracy. It only provides time series data since May 

2012, while the original MODIS data go back to year 2000. The data are based on the MODIS 

swath MOD10_L2 product. The MOD10_L2 swath product becomes available online within 3 

hours of observation, making it suitable for near real time monitoring. However, it has limited 

accuracy compared to the standard daily MOD10A1 daily snow cover product. Using the swath 

MOD10_L2 is complicated by the so-called “bowtie effect” of the MODIS instrument, which 

causes an overlap of the satellite field of view, producing a data repetition. This effect increases 
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with the distance from nadir and can be especially dramatic at the edge of the image (Gómez-

Landesa et al. 2004; Ren et al. 2010). Several studies therefore recommend using the MOD10A1 

daily or the MOD10A2 8-day data products for multi-temporal evaluation of changes in snow 

covered area (Gascoin et al. 2014; Hall and Riggs 2007; Parajka et al. 2012). In addition, it is 

possible that extra inaccuracies in the data may have been introduced during the re-gridding from 

the original MODIS swath to the WMTS spherical Mercator projection grid. For future studies it 

would be interesting to quantify these inaccuracies by comparing the WMTS output to the 

original MOD10_L2 swath and the processed MOD10A1 datasets. The reason why I used the 

less accurate MOD10_L2 swath product in this study is that it was the only MODIS snow 

product readily available through a standard WMTS web service interface. For future studies, I 

recommend publishing the more accurate MOD10A1 and MOD10A2 data product through a 

WMTS, WMS or WCS web service and making them accessible for online interactive snow 

cover time series extraction tasks. 

After the initial deployment of the application, several changes were requested by the users 

and added to the application. The users requested adding more details to the landing page about 

the source of the data, credit for its generation, and information on how to cite it. The time series 

shown by the Snow Inspector are the result of a chain of many derived data sets and data 

products. Therefore, special attention was paid to include correct and complete the citation and 

provenance information about the data origin and data processing steps in the metadata in the 

WaterML data download link. These changes simplified using the Snow Inspector application 

for MODIS ground validation activities. For any inspected location, the pixel boundaries with 

satellite-based snow cover values can be shown in the map and overlaid with an aerial 
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photograph or a topographic map layer. This detailed view assists in showing sub-pixel land 

cover variability and locating satellite pixel extent in the field. 

Currently the Snow Inspector application supports access to only one web service: The 

MODIS Terra daily snow cover data product published as WMTS on the GIBS web service. 

However it is possible to customize the data extraction technique and user interface to work with 

any other multi-temporal hydrologic or climate dataset that provides a WMTS or WMS web 

service interface. This customization would require setting up a lookup table associating each 

image color with an observed value or category, and finding out the pattern of how the time 

parameter is encoded in the WMTS tile URL or in the WMS GetMap request. In the case of 

WCS, the procedure for downloading multiple images and extracting pixel values could be 

replaced by a single web request to the WCS to extract a time slice for a selected pixel. Indeed I 

view the WCS as the recommended protocol for distributing spatio-temporal data such as snow 

cover fields. However, not all WCS currently support the time slice subsetting requests and only 

a limited number of publishers provide a WCS interface to access their snow data. With a 

growing need for data interoperability, I expect that more public snow cover datasets including 

the IMS and SNODAS will be published in one of the standard web service format (WCS, WMS 

or WMTS), enabling rapid access and comparison of hydrological and climate time series for 

any point on Earth. 
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3 USING CROWDSOURCED AND STATION DATA TO FILL CLOUD GAPS IN 
MODIS SNOW DATASETS 

Maps and time series datasets of snow-covered area, snow depth, and snow water 

equivalent are critical for water resources management (Mankin et al. 2015), climatology 

(Derksen and Brown 2012), transportation (Bica et al. 2012), and outdoor recreation (Ghaderi et 

al. 2014) in snow-dominated regions. The cross-country skiing community, in particular, has 

high interest in detailed snow coverage maps. For example in Czechia in 2015 there were 2305 

km of designated cross-country skiing routes (OpenStreetMap 2015), all of which relied on 

sufficient snow cover to be navigable. The existence of such extensive snow recreation trail 

networks creates an interesting opportunity to use crowd-sourced snow observation data to 

improve large scale spatial estimates of snow cover needed for water management and 

hydrologic applications. 

A number of observation and mathematical modeling methods are commonly used to 

estimate spatial snowpack extent. These methods include measuring snow depth or snow water 

equivalent with manual or automated sensors (Pohl et al. 2014), detecting snow physical 

properties through remote sensing (Metsämäki et al. 2012; Rees 2005), and calculating snow 

water balance using hydrological models (Anderson 1973; Koivusalo et al. 2001; Lehning et al. 

2006). The temporal and spatial continuity of spatially distributed estimates of snow-covered 

area (SCA) are limited by the availability of cloud-free satellite imagery (Molotch et al. 2004). 

Passive microwave and radar methods can detect snow at night and on cloudy days, however 
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their spatial resolution is limited due to large field size required to gather the electromagnetic 

energy at longer wavelengths (Dietz et al. 2012). Furthermore, reconstructing SCA and snow 

water equivalent (SWE) using water balance models is limited by availability and errors in the 

snow accumulation and snowmelt forcing inputs (Slater et al. 2013). 

A key part of snow cover estimation – particularly when using remotely sensed data – is 

filling in spatial gaps in snow cover maps caused by cloudy conditions. Existing gap filling 

methods include use of neighboring time steps (Hall et al. 2010), spatial-temporal filtering based 

on neighboring pixels (Parajka and Blöschl 2008; Yang et al. 2014), cubic spline time series 

interpolation (Dozier et al. 2008), and fusion of multiple remote sensing datasets (Foster et al. 

2011; Ramsay 1998; Sirguey et al. 2008; Tait et al. 2000). A sequence of multiple spatial-

temporal filtering steps is recommended to completely fill the cloud cover gaps (Gafurov and 

Bárdossy 2009). Information reconstruction via machine learning methods has also been used to 

automate the cloud removal process (Chang et al. 2015). 

To develop a continuous snow extent dataset, continuous ground station observations or 

other ancillary information is often used together with the discontinuous remote sensing 

observations. An example of this approach is the regional snowline method (Parajka et al. 2010), 

where cloud-free pixels are used to obtain the mean snowy pixel (snowline) and mean snow-free 

pixel (landline) elevations. The cloud-covered pixels are then reclassified as snow-free, snow-

covered, or partially snow-covered by comparing their elevation to the snowline and landline 

elevations. The regional snowline method provided best results when at least 15 % of the study 

area was cloud-free. Molotch et al. (2004) used air temperature measured at a high density 

station network, and the accumulated degree-day index to define snow-free areas under clouds. 

Spatially distributed, physically-based or conceptual snowpack models have also been used to 
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model SCA under cloud (Rodell and Houser 2004; Zaitchik and Rodell 2009). A review of 

spatial interpolation methods used for interpolation of snow depth measured at points is given by 

López‐Moreno and Nogués‐Bravo (2006) and Li and Heap (2014). Manual interpretation of 

satellite images (more than 15 geostationary and orbital satellite sensors) and ground station 

measurements has been  used by the U.S National Snow and Ice Data Center (NSIDC) to 

produce global daily-updated maps in the Interactive Multi-Sensor Snow and Ice Mapping 

System (IMS) at 4 km resolution (Ramsay 1998). The IMS operational product is continuously 

enhanced by including new data sources including new satellite sensors, ground sensors and 

snowpack models (Helfrich et al. 2007). 

Volunteer geographic information (VGI) is increasingly being used in real-time mapping 

such as flood mapping (Schnebele et al. 2014), routing navigation (Bakillah et al. 2014), 

detecting land use changes (Jacobson et al. 2015) and in mapping of air quality (Mooney et al. 

2013; Reis et al. 2015). According to Reis et al. (2015) the mobile phone owners can be 

considered as smart sensors producing ubiquitous data, which can be integrated with existing 

environmental models. Several studies have explored the potential of crowdsourcing snow and 

other weather related data from online social network sources. For example, snow depth related 

messages from the Twitter network have been used to update a real-time snow depth map of the 

U.K (Muller 2013). In a review of crowdsourcing approaches for gathering meteorological data, 

Muller et al. (2015) classify such methods as passive (an automated sensor operated by a 

volunteer and connected to a social network) or active (the volunteer actively connects and 

uploads data to a central hub). Wang et al. (2013) successfully tested the detection of snow on 

public photographs on the Flickr social network website.  This experience indicates that VGI 
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from snow-sports related social networks represents a potentially highly informative dataset for 

updating continuous snow cover maps.  

The goal of this study is to design, develop, and test an algorithm for updating probability 

maps of snow cover using publicly available crowdsourcing data from multiple data sources, 

including online VGI repositories. The paper is organized as follows: First I describe the 

volunteer data sources, and how to retrieve and organize these sources. Next I discuss automated 

data fusion methods for generating the snow cover maps. Finally, I run a validation of the models 

in the Czechia region of Europe, test the contribution of VGI (crowdsourcing) data to snow map 

accuracy, and also present an online interactive snow map extent application based on this 

approach. 

 Material and Methods 

The following section introduces the study area and the snow data sources: ground 

stations, MODIS snow cover datasets, volunteer snow reports, Strava GPS tracks, and Garmin 

GPS tracks. An interpolation method for generating snow probability maps is described. A 

validation method for evaluating map accuracy is presented. The software architecture and user 

interface design for making the generated maps available online are also discussed in this 

section.  

3.1.1 Study Area 

Located in central Europe region between 12°5 and 18°50 E, 48°33 and 51°3 N, Czechia 

(Czech Republic) falls into the humid continental climate zone according to the Köppen climate 

classification (Peel et al. 2007). The elevation range is between 115 and 1600 m (Figure 4-1). 
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The average number of days with snow cover is less than 40 days in the lowest elevations and up 

to 160 days in the highest mountains. According to Bednorz (2004), Czechia falls within the 

active region with snow-cover probability of between 10 and 90% during the winter season and 

the snow pack is intermittent in most of the area – typically the snowy period is interrupted 

several times. There is a large year-to-year variation in the extent and duration of snow-cover, 

influenced by atmospheric circulation patterns. A large and statistically significant negative 

correlation has been noted between the number of days with snow cover and the North Atlantic 

oscillation index (Bednorz 2004). As a region with a long tradition of snow recreation, high 

population density, and fast changes in the spatial and temporal extent of the snow, Czechia is an 

ideal study area for exploring the potential of crowd-sourced data in snow mapping.  

 

Figure 4-1 All Publicly Available Cross-Country Skiing Tracks (Garmin and Strava) 
and Volunteer Snow Report Locations from the Period 2013 - 2015 
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Currently snow depth maps are published by the Czech Hydrometeorological Institute 

(CHMI) on the website: http://portal.chmi.cz/files/portal/docs/poboc/OS/OMK/mapy/. These 

maps are updated daily and they are created using a two-step process with geographically 

weighted regression (elevation and snow depth), followed by inverse distance weighted (IDW) 

interpolation of the residuals (Stříž 2011). The maps are provided in the form of an image with 

pre-defined snow depth categories. This work can serve to improve these maps through the 

integration of multiple data sources as described below. 

3.1.2 Data Sources – Reports, Tracks and Stations 

For the purposes of this study I collected VGI point observations of snow presence and 

absence from an online open access web service provided by InMeteo Ltd. Located at http://in-

pocasi.cz. The methods presented here can be generically applied to any similar repository of 

VGI snow coverage data. The in-pocasi.cz web service provides an online form for submitting a 

snow observation location, snow depth, and text comments. The user can also send the report by 

text message from a cell phone. The reports for any selected date are accessible using a web 

address in the form www.in-pocasi.cz/pocasi-u-vas/seznam.php?historie=M-D-Y where M is the 

month, D is the day, and Y is the year. During the two-year period 1/2013 – 4/2015 a total of 

10,156 reports were submitted and approved. These reports are fairly consistently provided 

throughout the week (Table 4-1) but are significantly more common in January and February 

than other winter months (Table 4-2). VGI snow reports are also stratified by elevation with most 

reports occurring in the 200m to 500m elevation range and near population centers (Figure 4-1). 

The average elevation of the report locations is 410 m (slightly lower than the average elevation 

of the study area), and 90% of the reports are within the 115 – 617 m elevation range 

(Figure 4-2). 
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Table 4-1 Reports and Ski Tracks Distribution by Day of Week 

Day of Week Reports (% of total) Ski Tracks (% of total) 
Sunday 15.9 25.6 
Monday 14.3 7.9 
Tuesday 15.0 10.0 
Wednesday 13.2 9.8 
Thursday 13.2 9.1 
Friday 13.7 10.6 
Saturday 14.7 27.0 

 

Table 4-2 Reports and Ski Tracks Distribution by Month 

Month Reports (% of total) Ski Tracks (% of total) 
November 4.5 0.5 
December 14.8 17.8 
January 36.0 33.5 
February 26.5 33.8 
March 17.8 12.5 
April 0.5 1.8 

 

 

Figure 4-2 Elevation of Ski Tracks, Volunteer Reports and Stations 
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The skiing community uses location-enabled mobile devices and online websites to share 

information about cross country ski trips and associated snow conditions. Popular social 

networks used by cross-country skiers include Strava (www.strava.com) and Garmin Connect 

(www.connect.garmin.com). Using a Global Positioning System (GPS) receiver on the user’s 

mobile device, the route and velocity of each ski trip is recorded and uploaded to an online 

database. If the user marks the trip as “public”, the recording of the trip route can be viewed by 

anyone connected to the internet. Both Strava and Garmin Connect provide an application 

programming interface (API) for searching and downloading public routes by geographical area, 

time range, keyword, and type of activity. For this study, I used the Strava and Garmin Connect 

APIs to query all routes with activity type marked as “backcountry ski” or “cross-country ski” in 

Czechia and neighboring border regions in the period 2013 - 2015.  

All public cross-country skiing tracks retrieved from the Garmin and Strava websites 

during the time period of 2012 – 2015 are shown as a data layer in Figure 4-1. Initially some of 

the recorded GPS tracks contained errors (long straight lines), which were likely the result of 

switching off the device and activating it again in a different location before saving the track. To 

remove the straight line artifacts, I applied a quality control filter that deleted straight track 

segments that were 1 km or longer. A closer look at the cross-country ski tracks also revealed 

some tracks following a major road for a long distance. These cases were likely a result of the 

users continuing GPS recording of a ski trip after entering a motor vehicle. To filter out the 

motor vehicle sections, I removed track segments with speed greater than 50 km/h. Looking at 

spatial distribution of the tracks, one can note a higher concentration of tracks in the vicinity of 

the two largest cities (Praha, Brno) located to the east and to the west of the center of the country 

(Figure 4-1).  
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The highest density of ski tracks is found in mountainous regions above 1000 m elevation 

(Figure 4-2), with 90% of the tracks located above 600 m elevation. This is considerably higher 

than the mean elevation of the study area (433 m). Unlike in the volunteer snow report data, 

there is a distinct weekly fluctuation in the number of recorded tracks with a maximum on 

Saturdays and a minimum on Mondays (Table 4-1). The number of recorded cross-country 

skiing tracks was highest in January and February (Table 4-2). In the time period 2012 – 2015 

the total number of recorded tracks depended on the winter season: The number of tracks 

decreased in 2014, but again increased in 2015 possibly due to changes in snow-covered area 

(Figure 4-3). 

 

Figure 4-3 Number of Cross Country Skiing Tracks (from Garmin Connect) per Day 
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The Czech Hydro-meteorological Institute (CHMI) and the local watershed management 

authorities operate a network of professional synoptic and climatological stations in Czechia. 

Daily snow depth measurements from up to 56 of the stations are published on the Internet 

(Figure4). Historical measurements (2006 – 2015) from these selected stations are also available 

in the WaterML data exchange format using a public web service API at: 

http://hydrodata.info/chmi-d/ (Kadlec and Ames 2011). The station network is evenly distributed 

with samples in all elevation zones (Figure 4-4). However, only a part of the stations had data 

available for the whole period of interest (2012 – 2015), and there were frequent data gaps at 

some of the stations. 

 

Figure 4-4 Meteorological Stations with Publicly Available Snow Measurements during the 
Period 2013 – 2015 
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3.1.3 Data Sources: MODIS Satellite Snow Cover Maps 

The Moderate Resolution Imaging Spectroradiometer (MODIS) is a multispectral satellite 

sensor on board the Terra and Aqua polar orbiting satellites. After applying a cloud mask, the 

Normalized Difference Snow Index (NDSI) is used to identify pixels as snow and to calculate 

fractional snow cover in each MODIS pixel. The detailed procedure is described by Hall et al. 

(2002). In this study I use the web coverage service (WCS) from the CryoLand website 

(www.cryoland.org) to retrieve daily MODIS Terra fractional snow cover (MOD10A1) raster 

datasets covering the study area region. These raster data have been transformed to the WGS 

1984 UTM zone 33 coordinate system in a horizontal resolution of 500 meters. At a daily time 

step resolution, MODIS provides the most detailed observation of snow on the ground in the 

study area on cloud-free days. However, the presence of cloud cover in the winter months makes 

large parts of the study area invisible to the satellite optical sensor for most of the time. In the 

winter months (November – April) of 2012 – 2015 the mean cloud cover was 74% of the study 

area. As shown in Table 4-3, the area was nearly cloud-free (< 20% cloud cover) on 9.7 % of the 

winter days. On 58.9 % of the days, it was nearly overcast (> 80% cloud cover). Especially at 

lower elevations of Czechia, an inversion associated with low stratus cloud forms in the enclosed 

basin, and may last for many days of the winter season (see Figure 4-5). 

Table 4-3 Frequency of Cloud Cover in the Winter Season (November - April 2013 - 2015) 
in the Study Area According to MODIS data 

Cloud Cover (%) Frequency (%) 
0 - 20 9.7 
20 - 40 6.1 
40 - 60 9.8 
60 - 80 15.5 
80 - 100 58.9 
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The MODIS datasets occasionally contain isolated pixels (patches of one or two pixels) 

classified as “snow”. These pixels are typically considered as noise in the classification. Based 

on the recommendations of (Gafurov and Bárdossy 2009) I used a 3 x 3 moving window noise 

reduction filter with majority (mode) function to preprocess each MODIS raster for further 

analysis. 

 

Figure 4-5 Example of Inversion Low Cloud Situation (9th 
February 2015) 

 

3.1.4 Interpolation Method 

Our interpolation method begins by re-projecting to UTM Zone 33, each of the quality-

controlled input datasets (satellite snow raster, tracks, stations, volunteer report points). In the 

next step each dataset is classified in two categories: present and absent. For stations and 

volunteer snow reports the value is labeled as “present” if the reported snow depth is greater or 

equal to 1 cm. Reports of snow dusting or discontinuous snow are labeled as “absent”. All of the 

cross-country ski tracks are marked as “present”. If bicycle tracks are available from Strava or 

Garmin Connect for the selected date, the bicycle tracks are marked as “absent” tracks. For the 
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MODIS MOD10A1 snow dataset, a pixel is marked as “present” if the satellite fractional snow 

cover is greater than 50%. Pixels with cloud or other categories (open water, ice) are marked as 

“no data”. The next steps of the interpolation are shown in Figure 4-6. 

 

Figure 4-6 Interpolation Steps to Create Snow Probability Map 

 

Figure 6 shows the interpolation workflow in the case where the MODIS satellite raster, 

stations, and tracks are available. Additional reclassified input data sources (such as reports – 

present, reports – absent) can be added to the schema if they are available for the selected date. 

For each pixel in the study area, a distance to the nearest point of each “present” and “absent” 

dataset is calculated. The distance value is related to the influence of each snow observation on 
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its surrounding area. In this study I examined two different distance calculation methods. The 

first method uses the horizontal Euclidean distance and elevation-weighted least-cost path 

distance. The horizontal distance is calculated as: 

𝒓𝒓𝒕𝒕𝒅𝒅𝒕𝒕𝒍𝒍𝒍𝒍𝒅𝒅𝒕𝒕𝒕𝒕 = ��𝒙𝒙𝒕𝒕 − 𝒙𝒙𝒑𝒑�
𝟐𝟐

+ �𝒚𝒚𝒕𝒕 − 𝒚𝒚𝒑𝒑�
𝟐𝟐
       (4-1) 

 

where xi, yi are the coordinates of the center of each pixel and xp, yp the coordinates of the 

nearest point of the nearest dataset. At the scale of the study area, the horizontal distance value in 

the UTM projection is similar to the great circle distance, and therefore I did not consider Earth 

curvature in the distance calculation. 

The elevation weighted least cost distance takes into account topography and terrain 

configuration in the area (Van Etten 2012). For each raster cell I define a conductance value. The 

conductance is the inverse to the cost of passing through a cell or between neighboring cells. 

When searching for optimal path (least-cost path), a route through cells with high conductance is 

preferred. For each cell the conductance can be calculated using a transition function based on 

the cell and its neighbors: 

Conductance = 1 / elevationp         (4-2) 

 

where elevation is the mean elevation of a nine-cell neighborhood and p is an exponent for 

weighing the importance of elevation. For elevation of cells in the study area I used a digital 

elevation model (DEM) dataset from the Shuttle Radar Topography Mission (SRTM) with 500 

meter cell size. The elevation weighted least cost path distance is calculated from source cells 

(cells with snow observation) to destination cells (all other cells of the study area) using the 
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gdistance R software package (Van Etten 2012) to produce a cost surface with an elevation-

weighted distance at each destination raster cell. 

In the next step the confidence (inverse distance) is calculated as: 

𝐜𝐜𝐜𝐜𝐭𝐭𝐜𝐜𝐢𝐢 = 𝟏𝟏
𝒓𝒓𝒕𝒕𝒅𝒅𝒕𝒕𝒍𝒍𝒍𝒍𝒅𝒅𝒕𝒕𝒑𝒑

          (4-3) 

 

where confi is the inverse distance at each pixel, and p is the inverse distance exponent. I chose 

the exponent value p=3 (rather than the typical value 2 used in inverse distance weighted 

interpolation) to assign greater influence to values closest to the present or absent snow dataset. 

The resulting inverse distance raster datasets are combined to create a snow probability 

map as follows:  

𝒅𝒅𝒍𝒍𝒍𝒍𝒔𝒔 𝒑𝒑𝒓𝒓𝒍𝒍𝒓𝒓𝒍𝒍𝒓𝒓𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒚𝒚 =
∑ 𝒅𝒅𝒍𝒍𝒍𝒍𝒄𝒄𝒑𝒑𝒓𝒓𝒕𝒕𝒅𝒅𝒕𝒕𝒍𝒍𝒕𝒕 𝒕𝒕𝒍𝒍
𝒕𝒕=𝟏𝟏

∑ 𝒅𝒅𝒍𝒍𝒍𝒍𝒄𝒄𝒑𝒑𝒓𝒓𝒕𝒕𝒅𝒅𝒕𝒕𝒍𝒍𝒕𝒕 𝒕𝒕𝒍𝒍
𝒕𝒕=𝟏𝟏 +∑ 𝒅𝒅𝒍𝒍𝒍𝒍𝒄𝒄𝒍𝒍𝒓𝒓𝒅𝒅𝒕𝒕𝒍𝒍𝒕𝒕 𝒋𝒋

𝒛𝒛
𝒋𝒋=𝟏𝟏

     (4-4) 

 

where confpresent i is the inverse distance to a “present” dataset, n is the number of “present” 

inverse distance datasets, confabsent j is the inverse distance to an “absent” dataset, m is the 

number of “absent” inverse distance datasets. For example, if four different presence and 

absence datasets are available, then the snow probability would be calculated as: 

𝒅𝒅𝒍𝒍𝒍𝒍𝒔𝒔 𝒑𝒑𝒓𝒓𝒍𝒍𝒓𝒓𝒍𝒍𝒓𝒓𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒚𝒚 = 𝑷𝑷𝟏𝟏+𝑷𝑷𝟐𝟐+𝑷𝑷𝟑𝟑+𝑷𝑷𝑷𝑷
𝑷𝑷𝟏𝟏+𝑷𝑷𝟐𝟐+𝑷𝑷𝟑𝟑+𝑷𝑷𝑷𝑷+𝑨𝑨𝟏𝟏+𝑨𝑨𝟐𝟐+𝑨𝑨𝟑𝟑+𝑨𝑨𝑷𝑷

      (4-5) 

 

where P1 is the inverse distance to snow-covered MODIS pixels, P2 is the inverse distance to ski 

tracks, P3 is the inverse distance to stations with snow, P4 is the inverse distance to reports with 

snow, A1 is the inverse distance to snow-free MODIS pixels, A2 is the inverse distance to non-
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ski tracks, A3 is the inverse distance to snow-free stations, and A4 is the inverse distance to 

reports without snow. 

To create a final map, the snow probability map is overlaid with the MODIS satellite 

raster. Snow-covered MODIS pixels are assigned the value of 1, and snow-free MODIS pixels 

are assigned the value of 0. The remaining MODIS pixels with no data (cloud-covered pixels) 

are assigned the calculated snow probability value. Using a threshold of 0.5, the entire study area 

can be classified as “Snow” or “No snow”. 

3.1.5 Validation 

For validation of the created snow maps, I selected two random samples of 10 days with 

small cloud cover (< 25% cloud) and 10 days with high cloud cover (> 75% cloud). For each of 

the 10 cloud-free days, I combined the original MODIS raster with the cloud layer from each of 

the cloudy days.  I used the inverse distance method described above to predict snow probability 

inside the cloud-covered area, and compared the predicted probability with the observed (cloud-

free) snow presence or absence values. As a result, I obtain 100 comparisons (10 cloud-free days 

* 10 cloudy days). The model predicts a probability (between 1 and 0) and the validation cloud-

free pixels show an occurrence (either 1 or 0). To measure model performance, I used the 

following indicators: Commission Error, Omission error, Percent Correctly Classified (PCC), 

and Area under the curve (AUC). These indicators are based on the confusion matrix 

(Table 4-4). 

Table 4-4 Confusion Matrix 

 Observations 

 
Predictions 

 Present Absent 
Present True Positive False Positive 
Absent False Negative True Negative 
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The commission error indicates the overestimation of snow cover. It is calculated as: 

Commission Error = False Positive / (False Positive + True Positive)   (4-6) 

 

The omission error indicates the underestimation of snow cover. It is calculated as: 

Omission Error = False Negative / (False Negative + True Negative)   (4-7) 

 

The PCC indicator is calculated as:  

𝑷𝑷𝑷𝑷𝑷𝑷 = 𝒕𝒕𝒓𝒓𝒕𝒕𝒕𝒕 𝒑𝒑𝒍𝒍𝒅𝒅𝒕𝒕𝒕𝒕𝒕𝒕𝒑𝒑𝒕𝒕+𝒕𝒕𝒓𝒓𝒕𝒕𝒕𝒕 𝒍𝒍𝒕𝒕𝒍𝒍𝒍𝒍𝒕𝒕𝒕𝒕𝒑𝒑𝒕𝒕
𝑵𝑵

        (4-8) 

 

where N is the total number of validated points (pixels inside study are that were cloud-free on 

the validation day). To count the true positives and true negatives for the PCC, I need to define a 

threshold value. The threshold is the occurrence probability above which I consider the value as 

“present”. In the validation method I used the default threshold value of 0.5. 

To examine the effect of the threshold in more detail, I also used another indicator: the 

Area under the Curve (AUC). The AUC is extracted from the Receiver Operating Characteristic 

(ROC) by plotting the true positive rate (sensitivity), against the false positive rate (1-

specificity). The area under the curve is indicator of the model performance (Metz 1978). It has 

possible values between 0 and 1. The AUC value of 1 would be the best possible prediction with 

100% sensitivity (no false negatives) and 100% specificity (no false positives). 

3.1.6 Software Design 

To make the resulting snow extent maps available to the winter sports community, a web-

based software system was designed. The system has four main components: (1) Snow map 
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generation script, (2) Snow web processing service, (3) Snow web map service, (4) Snow map 

user interface. I have built these components using the Tethys platform (Jones et al. 2014) and 

HydroShare (Horsburgh et al. 2015). Tethys is an open-source software platform for developing 

interactive web-based hydrologic applications. It is built using existing open source web 

frameworks including Django, OpenLayers and GeoServer based on recommendations by Swain 

et al. (2015). HydroShare is a social network for publishing and viewing hydrology-related data 

sets that provides free space for storing large amounts of multidimensional data. A general 

schema of the software architecture is shown in Figure 4-7. 

 

Figure 4-7 Software Architecture for Online Snow Map with WPS, Tethys Platform and 
HydroShare 
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3.1.7 Snow Map Generating Script 

For automating the snow-covered area map creation, I used the R scripting language. The 

R computation environment (R Development Core Team 2015) is a multi-platform software for 

statistical analysis, and it uses a number of packages (rgdal, sp, raster, gdistance) for spatial 

analysis and geoprocessing tasks. In the first part of the R script the input datasets (MODIS snow 

cover raster, ski tracks, snow reports, snow station measurements) for the requested date are 

downloaded from the online sources. For downloading meteorological data from stations the 

WaterML R package (Kadlec et al. 2015) is used. In the second part of the script a data quality 

control is executed: The snow reports outside of expected range (negative values) are excluded, 

and the ski track data are checked for geometry errors. Finally, the interpolation procedure is 

executed, resulting in a snow cover probability raster with 500 x 500 m cell size. This cell size is 

same as the original MODIS snow dataset cell size. For better organization and maintenance, I 

organized the R source code as an R package. In the R package each function is placed in a 

separate .R script file, and documentation with input parameters and examples how to use each 

function are provided. 

3.1.8 Web Processing Service 

A web processing service (WPS) is a mechanism for executing geoprocessing operations 

on the Internet (OGC 2012). It defines the list of available processes, input data formats, and 

output data formats. In this design I used the 52North implementation of the WPS that is 

installed as part of Tethys. The WPS is configured to install and execute user-defined R-scripts. 

To be recognized as a valid process, the R-script uses a predefined annotation with names of 

input and output parameters (Hinz et al. 2013). The snow probability map R-script uses the 

following parameters (Table 5). 
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Table 4-5 Input Parameters of the Web Processing Service 

Parameter Description 
date The date in YYYY-mm-dd format 
stations One or more point feature sets with snow station data 
reports One or more point feature sets with snow depth report 
tracks One or more line feature sets with ski tracks 

 

3.1.9 Web Map Services for Accessing the Dataset 

The output of each web processing service run is a raster file in a GeoTiff file format and 

UTM zone 33 projection. The permanent disk space for storing the output raster file is provided 

by HydroShare (Horsburgh et al. 2015). Each raster file stored in HydroShare has the type 

“geographic raster resource”. It has a unique resource identifier, and is associated with resource 

metadata including geographic coverage, time coverage, author, original data source, and data 

processing method. HydroShare provides an Application Programming Interface (API) for 

automatically adding or updating a resource. This API is invoked from the WPS after completion 

of processing. After the resource is uploaded to HydroShare, it automatically becomes accessible 

to registered users and applications as a web map service (WMS). The WMS is a standard for 

publishing re-usable raster maps defined by the Open Geospatial Consortium (OGC). The 

address of the WMS web request is in the key-value pair format with multiple parameters 

(Table 4-6). The Coordinate Reference System (CRS) parameter specifies the output map 

projection name or code. The sld_body optional parameter can be specified in the Styled Layer 

Descriptor (SLD) format. It is used for defining the map color scheme and specifying map color 

categories. The transparency value can also be specified, allowing some categories to be 

displayed as fully or partially transparent. 
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Table 4-6 Web Map Service Request Parameters 

WMS Parameter Name WMS Parameter Description WMS Parameter Example 
REQUEST The type of request.  GetMap (for getting map image) or 

GetFeatureInfo (for getting snow probability 
value at specified pixel) 

FORMAT The output image format image/png 
LAYERS The identifier of the dataset and 

time step 
www.hydroshare.org/ 
983fd49c63d04ac091388490f8bdd689 

CRS Projection of the map EPSG:3857 
WIDTH Width of the image in pixels 500 
HEIGHT Height of the image in pixels 500 
BBOX Bounding box of the image in 

coordinates of the selected 
projection 

1702634, 6344731, 1879510, 6435539 

sld_body Color style of the map (color 
ramp, transparency) 

See Figure 4-8 

 

An example of a SLD specification is shown in Figure 4-8: 

 

Figure 4-8 Example of Styled Layer Descriptor (SLD) Specification 
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In this example the <ColorMapEntry> element specifies the color of the minimum (0.5) 

and maximum (1) displayed snow probability value. The pixels with snow probability of 0 are 

displayed as fully transparent (opacity=”0”) to make any background map layer visible. 

3.1.10 User Interface Design 

Each HydroShare resource type is associated with an interactive visualization application. 

In the case of the geographic raster resource type, the user can change the map background, 

projection, and color scheme. User can also change the map scale and view extent. The 

interactive map functionality in the raster viewer is enabled by using the Tethys map view 

component. This component is based on the OpenLayers Javascript library (openlayers.org). By 

default, the map component displays the map in the Mercator projection, because data from 

numerous Web Map Tile Services (WMTS) that are used as a background map (including 

Google Maps, OpenStreetMap and OpenSnowMap) are published in the Mercator spatial 

reference system. The snow probability map layer shown in the viewer is accessed from the 

HydroShare resource through a Web Map Service (WMS). The translation between the 

HydroShare resource file and the WMS is enabled by the Tethys platform GeoServer component.  

The HydroShare raster viewer was implemented using the Tethys platform and is available at 

https://apps.hydroshare.org.  

 Results 

The following section describes the validation results of the generated snow probability 

maps and discusses the effect of using crowdsourcing data on resulting snow extent map 

accuracy. The web services and web applications for accessing the maps are also presented. 
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3.2.1 Snow Map Validation Results 

For validation, I first randomly selected 10 dates from winter season (December 2014 – 

March 2015) with MODIS cloud cover more than 75% of the study area (Table 4-7).  

Table 4-7 Imposed Cloudy Dates  
(Cloud Cover > 75%) Used for  

Snow Map Validation 

 

 

In the next step I randomly selected 10 dates from the winter seasons (December – March) 

of 2013, 2014 and 2015 with MODIS cloud cover less than 25% of the study area (Table 4-8). I 

considered the snow extent on the cloud-free portion of the study area on these dates as “ground 

truth”. Table 4-8 also shows the number of stations, reports and tracks that were available for the 

selected date.  

Finally for each combination of the validation date and cloudy date, I added the cloud 

mask from the cloudy date to the original MODIS satellite image, and then used the interpolation 

method to reconstruct the snow map in the area under cloud based on the available stations, 

reports, tracks and remaining cloud-free MODIS pixels.  

cloudy date % cloud cover 
12/14/2014 92.0 
12/26/2014 83.6 
12/31/2014 91.9 

1/20/2015 99.8 
1/24/2015 88.0 
1/25/2015 91.2 
2/19/2015 82.1 
2/22/2015 92.4 
3/22/2015 92.7 
3/28/2015 98.4 
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Table 4-8 Selected Dates for Validation (Cloud Cover < 25%) 

trial # validation date # stations # tracks # reports cloud (%) 
1 3/17/2013 50 44 26 13.31 
2 12/16/2013 49 7 11 13.64 
3 3/2/2014 40 7 11 24.28 
4 3/8/2014 53 3 10 6.78 
5 1/13/2015 45 14 22 1.68 
6 2/7/2015 47 122 55 9.08 
7 2/16/2015 47 16 28 20.85 
8 2/20/2015 48 16 26 21.64 
9 3/21/2015 38 5 7 4.83 

10 3/24/2015 36 0 7 10.03 
 

The overall validation results (PCC, AUC, commission error and omission error) for each 

trial are summarized in Table 4-9. The PCC indicator varied from 0.77 to 0.99, and the AUC 

varied from 0.71 to 0.92. The commission error was higher than the omission error in 8 out of 

the 10 runs, indicating that the interpolation method has a tendency to overestimate the snow-

covered area.  

Table 4-9 Results of Validation for 10 Selected Dates using Station, MODIS, Tracks and 
Reports 

 
trial 

 
date 

PCC AUC commission error omission error 
min mean max min mean max min mean max min mean max 

1 3/17/2013 0.87 0.88 0.91 0.90 0.91 0.92 0.25 0.30 0.33 0.06 0.08 0.10 
2 12/16/2013 0.84 0.85 0.87 0.77 0.78 0.80 0.31 0.39 0.44 0.11 0.12 0.14 
3 3/2/2014 0.96 0.97 0.99 0.77 0.84 0.87 0.87 0.91 0.95 0.00 0.01 0.01 
4 3/8/2014 0.95 0.96 0.97 0.71 0.73 0.75 0.72 0.77 0.85 0.02 0.03 0.03 
5 1/13/2015 0.86 0.87 0.88 0.82 0.84 0.85 0.21 0.26 0.32 0.10 0.11 0.12 
6 2/7/2015 0.80 0.80 0.81 0.91 0.91 0.92 0.03 0.04 0.05 0.39 0.41 0.44 
7 2/16/2015 0.77 0.78 0.79 0.82 0.83 0.85 0.11 0.16 0.19 0.23 0.24 0.26 
8 2/20/2015 0.77 0.79 0.81 0.77 0.78 0.79 0.25 0.29 0.32 0.16 0.19 0.22 
9 3/21/2015 0.95 0.96 0.98 0.93 0.94 0.95 0.62 0.68 0.72 0.00 0.01 0.01 

10 3/24/2015 0.95 0.96 0.98 0.92 0.93 0.94 0.66 0.73 0.77 0.01 0.01 0.01 
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The following example shows the steps of the validation procedure for a selected cloud-

free / cloudy pair, using the date of 7th February 2015 as the cloud-free date (cloud cover 9 %, 

see Figure 4-9), and 24th January as the imposed cloudy date (cloud cover 88%, see Figure 4-10). 

 

Figure 4-9 Original Dataset with 9% Cloud (7th Feb 2015) 

 

 

 

Figure 4-10 Cloud Mask from Cloudy Date (24th Jan 2015) 
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The overlay of the ground truth and the cloud cover mask is shown in Figure 4-11. The 

stations, reports, tracks and MODIS snow-covered and snow-free areas are shown in 

Figure 4-12. 

 

Figure 4-11 Combination of Ground Truth (7th Feb 
2015) with Imposed Cloud Mask from 24th Jan 2015 

 

 

 

Figure 4-12 Using the Ski Tracks, Stations, and Reports 
from 7th Feb 2015 to Obtain Snow Probability Map 
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The resulting snow probability map (Figure 4-13) is reclassified using a threshold value of 

0.5 to define snow-covered and snow-free areas (Figure 4-14). The result is compared with 

values of the original ground-truth map (Figure 4-9) to obtain the confusion matrix, PCC and 

AUC error indicators. 

 

Figure 4-13 Calculated Snow Probability Map 

 

 

 

Figure 4-14 Calculated Snow Extent Map (Threshold = 0.5) 
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3.2.2 Effect of Crowdsourcing Data on Snow Map Accuracy 

To determine if the use of crowdsourcing data increased or decreased the overall snow 

cover probability map accuracy, I repeated the validation procedure described above using only 

MODIS and station data as inputs. The results of the comparison for mean values of PCC, AUC, 

commission error, and omission error for the 10 trials are shown in Table 4-10. 

Table 4-10 Results of Validation for 10 Selected Dates using Station and MODIS Only 

trial date PCC AUC Commission Error Omission Error 
  S+M S+M+R+T S+M S+M+R+T S+M S+M+R+T S+M S+M+R+T 

1 3/17/2013 0.88 0.88 0.90 0.91 0.30 0.30 0.09 0.08 
2 12/16/2013 0.84 0.85 0.77 0.78 0.42 0.39 0.13 0.12 
3 3/2/2014 0.97 0.97 0.81 0.84 0.93 0.91 0.01 0.01 
4 3/8/2014 0.96 0.96 0.72 0.73 0.72 0.77 0.03 0.03 
5 1/13/2015 0.86 0.87 0.83 0.84 0.29 0.26 0.13 0.11 
6 2/7/2015 0.79 0.80 0.88 0.91 0.06 0.04 0.42 0.41 
7 2/16/2015 0.74 0.78 0.76 0.83 0.20 0.16 0.27 0.24 
8 2/20/2015 0.77 0.79 0.76 0.78 0.33 0.29 0.21 0.19 
9 3/21/2015 0.96 0.96 0.95 0.94 0.67 0.68 0.01 0.01 

10 3/24/2015 0.96 0.96 0.94 0.93 0.74 0.73 0.01 0.01 

 

As seen from Table 4-10 the overall map accuracy measured by the PCC, AUC, 

commission error and omission error has improved for runs 5, 6, 7 and 8. For the other runs, the 

accuracy appears to be equal and in some cases (for example commission error for run 4) the use 

of reports and tracks leads to a decrease in the map accuracy. Figure 4-15 compares the 

distribution of the PCC for each validation date, using the cloudy dates from Table 4-7 and the 

validation dates from Table 4-8. The PCC distribution in Figure 4-15 suggests that the greatest 

improvement in PCC value was for 16th February 2015 and 20th February 2015 (runs 7 and 8). 

At the same time, there was an overall decrease in PCC for the trial runs on 2nd March 2014, 8th 

March 2014, and 21st March 2015 (runs 3, 4 and 9). 
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Figure 4-15 Change of PCC when Using Reports and Tracks for Snow Cover Map 
Creation 

 

To evaluate if using crowdsourcing data (reports and tracks) results in a statistically 

significant improvement of map accuracy, I run a paired T-test for all 100 combinations of 

cloud-free and cloudy date that were used in the validation procedure from Table 4-7. The one-

sided t-test tests the null hypothesis: “the PCC value of the snow extent map created using 

MODIS and stations is greater or equal to the PCC value of the snow extent map created using 

MODIS, stations, reports and tracks”. I also run a similar paired T-test for the AUC, commission 

error, and omission error indicators. Each t-test has 99 degrees of freedom and also provides a 

95% confidence interval for the difference in mean accuracy indicator value for the two groups. 

The outcome of the tests is shown in Table 4-11. According to the t-test, there is a statistically 

significant difference in the mean values of PCC, AUC, commission error, and omission error 

when using the reports and tracks. The PCC and AUC indicators have increased by 0.9% and 
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1.8%, respectively. The commission error has been reduced by 1.3%, and the omission error has 

been reduced by 0.9%. At the same time, the accuracy improvement is very small. The AUC 

indicator, which shows the greatest improvement, is only increased by 1.8% (95% confidence 

interval between 1.3 and 2.3%). This may be due to the trial runs 3, 4 and 9 that showed a 

deterioration of many of the accuracy indicators. 

Table 4-11 Results of the T-Test to Test the Change in Map Accuracy when Using 
Crowdsourcing Data 

Accuracy indicator t statistic p-value Mean of the 
differences 

95% Confidence 
interval 

PCC 7.026 1.367e-10 0.0090 0.0064 – 0.0116 
AUC 7.989 1.263e-12 0.0183 0.0137 – 0.0228 
Commission error -3.6877 0.0002 -0.0129 -0.0198 – -0.0059 
Omission error -3.6877 1.213e-12 -0.0095 -0.0118 – -0.0071 

 

3.2.3 Software Results 

The software for snow probability map generation can be used in several ways: (1) directly 

using the SnowDataFusion R package, (2) getting the result data files from HydroShare, (3) 

using the WMS web map service, (4) using the interactive web map viewer. Figure 4-16 shows 

an example of the snow map for 7th February 2015 in the web map viewer using a pre-defined 

style and color scheme. The snow-free areas are marked as transparent, allowing the user to view 

the snow map together with an OpenStreetMap background map. The user can also modify the 

color scheme in the map. Each resource in HydroShare is addressed using a unique resource 

identifier.  Figure 4-17 shows the resource metadata page on HydroShare. The resource page 

contains information about the data source, projection, geographic coverage and time coverage, 

and allows the user to download the raster file in GeoTiff format for use in custom GIS software. 
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Figure 4-16 Showing Snow Probability Map for 7th Feb 2015 in HydroShare Raster Viewer 

 

 

Figure 4-17 HydroShare Resource Metadata Page Showing Spatial Coverage 
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 Discussion and Conclusions 

Like other weather data crowdsourcing applications, this application explores how to use 

the big data provided by citizen-as-sensor networks for improving the spatial coverage of 

environmental datasets. In the case described here the raw input is the MODIS snow dataset with 

gaps in the data, and the value-added output is a continuous, gap-free snow probability map.  

Our product is similar to the IMS snow map (Helfrich et al. 2007) in the use of multiple 

input data sources. As with the IMS, I use the MODIS MOD10A1 satellite dataset as a primary 

data source. However, the other data sources are significantly different and potentially more 

informative. IMS primarily uses microwave satellite data to fill gaps in the optical satellite data. 

According to my knowledge the IMS does not make use of crowdsourcing data. My approach 

relies on ground observations from meteorological stations, volunteer reports, and cross-country 

ski track reporting. The IMS products are currently only available in the form of raster data files 

or overview images. The resulting snow map provides more access options to the data including 

a WMS web service interface. The WMS interface encourages developing third-party interactive 

web and mobile map applications. One example application could be overlaying the snow 

probability map with ski paths from the OpenSnowMap project to show the current navigability 

of cross-country ski routes. Another potential application is using the snow probability map to 

constraint a snow depth map interpolated from meteorological stations and volunteer snow depth 

measurements. 

Currently the snow probability map presented here has several limitations. The study area 

is limited to Czechia. However, the map could be relatively easily expanded to other regions 

(Germany, Scandinavia) that have good availability of cross-country ski track and volunteer 

snow reports. The interpolation algorithm currently used relies on inverse distance to assign 
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weights to each snow data source. In complex mountainous terrain, other factors such as 

elevation difference or slope aspect change may be more important than distance in influencing 

the spatial variability of snow cover. Typically, cross-country skiers are interested in presence of 

“skiable snow”. Depending on terrain and land cover, the depth of skiable snow is around 20 cm 

(8 in). For new snow on arable land, higher depth is needed, while a shallower snow depth (< 10 

cm) may already be skiable on grass or on maintained roads. Provided that land cover data about 

ski path surface are available, the cross-country skiing track reports could be used to estimate not 

only the presence or absence of snow, but also snow depth.   

Finally, some limitations in the crowdsourcing data need to be acknowledged. Most of the 

cross-country skiers are motivated to report when snow is present, but not when snow is absent. 

This may lead to an overestimation of snow-covered area (commission error) in the map. 

Typically, the maintained cross-country ski trails are used as bicycle trails in the snow-free 

season. Therefore, I could also use reports from bicycle trips as “absence of snow” data. 

Experience with using GPS-recorded cross-country skiing tracks also showed some errors where 

the users assigned an incorrect category to the track, for example a part of the cross-country trip 

was in fact a car trip. I reduced the number of these errors by filtering the tracks by speed. More 

advanced data quality control methods could be developed.  

Our study demonstrates that station ground observations together with crowdsourcing data 

from volunteer snow depth reports and cross-country skiing tracks can be successfully used to 

fill cloud gaps in MODIS snow cover maps. Validation has shown that the method can 

reconstruct the presence or absence of snow under cloud with accuracy between 78% and 97%. 

The method presented here is extensible. Additional types of crowdsourced data can be easily 

added to the snow map production script, further increasing the map accuracy, map detail, and 
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spatial coverage. Furthermore, all of the output datasets are available using a standard WMS web 

service interface, encouraging a re-use of the data in third-party environmental software 

applications. 
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4 CONCLUSIONS 

The aim of this dissertation was to contribute to the scientific understanding of snow cover 

spatial distribution by combining ground station, remote sensing and crowdsourcing observations 

from multiple sources. The proposed hypothesis was that the integration of volunteer geographic 

information and/or social-network derived snow data together with other open access data 

sources results in more accurate and higher resolution – and hence more useful snow cover maps 

than government agency produced data by itself. 

The first step of this research was designing and developing algorithms and software tools 

to automate the search, retrieval and analysis of three main types of direct and indirect snow 

observation datasets. The WaterML R package described in Chapter 2 is aimed at automated 

retrieval of time series data in the WaterML format from the Consortium of Universities for 

Advancement of Hydrologic Sciences (CUAHSI) Water Data Center (WDC). The 

SnowInspector tool described in Chapter 3 collects time series from multi-temporal web map tile 

services including the daily MODIS Terra snow cover dataset. Finally the SnowDataFusion R 

package and web processing service described in Chapter 4 allows accessing large volumes of 

volunteer geographic information (VGI) from Garmin Connect and Strava ski route recordings 

and from the in-pocasi.cz volunteer meteorology social network.  

The second step of this research was the design of a validation methodology to assess the 

effect of using data sources from different origins for updating snow cover maps. The validation 
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procedure checked the ability of this method to reconstruct MODIS snow cover under cloud by 

simulating cloud cover datasets and comparing estimated snow cover to actual MODIS snow 

cover. Unlike other methods that rely on leave-one-out cross validation or on point validation 

sites, this method uses the remote sensing dataset as a “ground truth”, allowing the user to 

evaluate the map’s accuracy in different sub-regions of the study area. 

Based on the validation results, the increase of overall snow cover extent map accuracy by 

using crowdsourcing data was statistically significant. Including volunteer snow reports and 

cross-country ski tracks improved the overall accuracy of snow cover extent maps in the study 

area. The percent correctly classified (PCC) indicator was increased by 0.9 % (0.6 % - 1.2 %), 

the omission error was reduced by 1.0 % (0.7 % - 1.2 %), and the commission error was reduced 

by 1.3 % (0.5 % - 2.0 %). While these results are statistically significant, the map accuracy 

improvement is smaller than expected. The best effect of using crowdsourcing data was found on 

days with a large number snow reports and recorded ski tracks (> 100 volunteer observations). 

On some days with a small number of available crowdsourcing observations (< 20 data points), 

the crowdsourcing data was found to reduce the resulting snow extent map accuracy. This may 

suggest an existence of a minimum number (“critical mass”) of required crowdsourcing reports 

that are required to be able to improve the map accuracy. Examining this threshold in more detail 

could be an interesting topic for future research.  

The snow probability map presented in this dissertation has several limitations. The study 

area is limited to the Czech Republic. However, the map could be relatively easily expanded to 

other regions (Germany, Scandinavia) that have high density of cross-country ski track and 

volunteer snow reports. As an example, expanding the map to Finland would require changing 
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the volunteer snow report retrieval function to retrieve data from the latutilanne.fi (ski track 

status) crowdsourcing website.  

A major limitation of the snow probability map is the interpolation algorithm, which 

currently used relies on inverse distance to assign weights to each snow observation. In complex 

mountainous terrain, other factors such as elevation difference or slope aspect change may be 

more important than distance in influencing the spatial variability of snow cover. Using an 

elevation weighted least-cost distance partially takes the topography into account, but other 

geostatistical methods (indicator kriging, co-kriging) could be tested. 

The volume of crowdsourcing data that exists about snow is much greater than the three 

data sources used in this study. For example, the website kamzasnehem.cz gathers numerous 

skier reports about snow conditions. These reports are in form of text message and do not contain 

explicit geographic coordinates. A geocoding function for searching the text and linking the 

message with a spatial polygon, line or point would need to be developed to use the text reports 

for snow map generation. Other types of potentially highly informative snow crowdsourcing data 

are photographs taken by social network users or by automatic web cameras. Typically these 

photographs contain geocoding information embedded in the image file, and there is a potential 

of using automated feature recognition techniques to detect snow in the images. 

The remote sensing data used in this study was limited to the MODIS Terra satellite sensor 

because of its long period of record and high temporal coverage. Other remote sensing platforms 

and especially the recently launched Globsnow data service should be compared with MODIS 

and included as inputs for the snow cover map. 

Finally, this study has not examined the use of physically based meteorological and 

hydrological models. Physically based models of the snowpack rely on high quality 
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meteorological data inputs (precipitation, temperature, wind, solar radiation). With increased 

availability spatial resolution of numerical weather forecasting models, assimilating the 

physically-based models with ground observations (including the types of crowdsourcing data 

analyzed in this study) presents the next step towards developing an accurate, high resolution, 

and open access global datasets of snow cover extent, snow depth, and snow water equivalent. 

All of the methods, algorithms and software procedures presented in this work have been 

published as free and open source software. Using the R environment as a primary development 

platform enables users of all major operating systems (Windows, Linux, Mac OS) to explore, test 

and modify the presented methods. Appendix A: software availability lists the addresses of the 

software repositories on the Internet. All the geographical and time series datasets used in this 

work are also available to the public as resources on the HydroShare (hydroshare.org) repository 

or through the CUAHSI HydroServer WaterOneFlow web services. Ensuring the online 

availability of used software and datasets is an important step to facilitate reproducible research, 

to expand the snow probability map to other regions, and to integrate new snow observation data 

sources that will become available in future.  
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APPENDIX A: SOFTWARE AVAILABILITY 

The following table shows a listing of the software products that were developed or 

extended as part of this research. All of the developed software tools are free and open source. 

Their source code is published under the Massachusetts Institute of Technology (MIT) license.  

The WaterML R Package is available on the Comprehensive R Archive Network (CRAN) 

official R package repository. The website of the package with the installation file and 

documentation is: https://cran.r-project.org/web/packages/WaterML/. The recommended method 

of installing the package is directly from inside the R statistical software (http://www.r-

project.org). R is a free and open source computational environment, and it runs on all major 

operating systems including Windows, Mac and Linux. The RStudio (https://www.rstudio.com/) 

is a free user interface and integrated development environment for efficient work with R. The 

complete source code of the WaterML is available on the Github repository at: 

https://github.com/jirikadlec2/waterml.  

The HydroServer Lite is a web based software application. Users can set up new instances 

of HydroServer Lite on the free worldwater.byu.edu data hosting website. Alternatively, 

HydroServer Lite can be installed on any web server that supports PHP (5.4 or higher), MySQL, 

and write access to a user-specified folder. Examples of low cost webhosting services with PHP 

and MySQL support are one.com, webfaction.com and openshift.com. The source code and 
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installation file of HydroServer Lite is available on the Github repository at: 

http://hydroserverlite.codeplex.com. 

The Snow Inspector is a web based application that can be accessed using all major web 

browsers on PC and mobile devices. The public website of the application is: 

https://apps.hydroshare.org/apps/snow-inspector. The application can also be installed on a third-

party server by downloading the source code from the GitHub repository 

(https://github.com/jirikadlec2/snow-inspector). This deployment first requires installing the 

Tethys platform (http://tethys-platform.readthedocs.org/) on the server. The Snow Inspector also 

requires installing the pypng https://pypi.python.org/pypi/pypng Python software module. The 

Tethys platform together with the snow inspector web application have been successfully 

deployed on an Ubuntu Linux (14.04) and CentOS virtual server. For hosting a custom version 

of the Tethys platform online, I would recommend a cloud based hosting service such as 

openshift.com with support for the Docker (docker.com) application container system, large disk 

space (> 10 GB), and sufficient memory (> 1 GB). 

The SnowDataFusion R software package is available in the source code form on the 

GitHub repository (https://github.com/jirikadlec2/snow-data-fusion). It requires R version 3.2.2 

or higher, and RStudio with the devtools R package. The SnowDataFusion package can be 

installed using the command install_github(‘jirikadlec2/snow-data-fusion’). To run the 

development version of the package, several R package dependencies must be installed using the 

R Studio’s Tools – Install Packages… command. These dependencies are: devtools, sp, 

rgdal, raster, httr, XML, PresenceAbsence, RColorBrewer, and 

gdistance.  
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The output snow probability maps are archived on the HydroShare website 

(https://hydroshare.org) as a collection of geographic raster resources. The user can search for 

the list of available maps by typing the keywords “snow probability Czechia”. A summary of the 

software products developed and extended as part of this dissertation is shown in Table A-1. 

 
Table A-1 Open Source Software Products Developed or Modified in this Dissertation 

Software name System 
Requirements 

Software Website Source Code Repository 

WaterML R 
Package 

R (3.0 or higher), 
RStudio 
(recommended) 

cran.r-
project.org/web/packages/WaterML/ 

https://github.com/jirikadlec2/
waterml 

HydroServer Lite PHP (5.3 or higher), 
MySQL, Linux or 
Windows server 

http://worldwater.byu.edu/app/index.php/
rushvalley 

http://hydroserverlite.codeplex
.com 

Snow Inspector Tethys platform, 
Linux server with 
Docker support 

http://apps.hydroshare.org/apps/snow-
inspector 

https://github.com/jirikadlec2/
snow-inspector 

SnowDataFusion 
R Package 

R (3.2.2 or higher), 
RStudio 
(recommended), R 
package dependencies: 

devtools, sp, rgdal, 
raster, httr, XML, 
PresenceAbsence, 
RColorBrewer, 
gdistance 

https://github.com/jirikadlec2/snow-data-
fusion 

https://github.com/jirikadlec2/
snow-data-fusion 

Snow Probability 
Map 

Web browser https://appsdev.hydroshare.org/apps/snow
-probability/ 

https://github.com/jirikadlec2/
snow-data-fusion 
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