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ABSTRACT 

Groundwater Level Mapping Tool: Development of a Web Application to Effectively 
Characterize Groundwater Resources 

 
Steven William Evans 

Department of Civil and Environmental Engineering, BYU 
Master of Science 

 
Groundwater is used worldwide as a major source for agricultural irrigation, industrial 

processes, mining, and drinking water. An accurate understanding of groundwater levels and 
trends is essential for decision makers to effectively manage groundwater resources throughout 
an aquifer, ensuring its sustainable development and usage. Unfortunately, groundwater is one of 
the most challenging and expensive water resources to characterize, quantify, and monitor on a 
regional basis. Data, though present, are often limited or sporadic, and are generally not used to 
their full potential to aid decision makers in their groundwater management. 

 
This thesis presents a solution to this under-utilization of available data through the 

creation of an open-source, Python-based web application used to characterize, visualize, and 
quantify groundwater resources on a regional basis. This application includes tools to extrapolate 
and interpolate time series observations of groundwater levels in monitoring wells through multi-
linear regression, using correlated data from other wells. It is also possible to extrapolate time 
series observations using machine learning techniques with Earth observations as inputs. The app 
also performs spatial interpolation using GSLIB Kriging code. Combining the results of spatial 
and temporal interpolation, the app enables the user to calculate changes in aquifer storage, and 
to produce and view aquifer-wide maps and animations of groundwater levels over time. This 
tool will provide decision makers with an easy to use and easy to understand method for tracking 
groundwater resources. Thus far, this tool has been used to map groundwater in Texas, Utah, 
South Africa, Colombia, and the Dominican Republic. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
Keywords: groundwater, aquifers, earth observations, machine learning, water resources 
management  
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1 INTRODUCTION 

Groundwater is depended on worldwide as a major source for agricultural irrigation, 

industrial processes, mining, and drinking water. The USGS reports that 30.1% of the Earth’s 

fresh water consists of groundwater, while 1.2% consists of surface water in lakes, rivers, and 

streams (Gleick, 1993). Although fresh groundwater is so abundant, its responsible and 

sustainable use poses a significant challenge. Due in part to the difficulties associated with 

quantifying groundwater, many areas worldwide have severely and irreversibly depleted vast 

amounts of their groundwater resources, sometimes in complete ignorance. Worldwide examples 

of this depletion include the San Joaquin Valley in California, USA, where excessive 

groundwater pumping has resulted in land subsidence up to 28 feet since 1920 (Galloway & 

Riley, 1999), Mexico City, Mexico (Ortega‐Guerrero, Rudolph, & Cherry, 1999), and Jakarta, 

Indonesia (Abidin, Andreas, Djaja, Darmawan, & Gamal, 2008). These and other areas have 

permanently reduced potential aquifer storage volume as excessive groundwater withdrawal 

results in lower pore pressures and increased effective stress, which leads to the compaction of 

the aquifer system. 

The case of California’s San Joaquin Valley demonstrates the role of human activity in 

aquifer sustainability. Between the early 1900s and the late 1960s, the area relied almost 

exclusively on groundwater for agricultural irrigation. As of 1960, water levels in the deep 

aquifer system were declining at a rate of about 10 feet per year. During this time period, the 
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USGS began an intensive investigation into groundwater and land subsidence in the area. Later, 

as surface water from the Delta-Mendota Canal, the Friant-Kern Canal, and the California 

Aqueduct largely supplanted groundwater for irrigation of the valley in the late 1960s, water 

levels in the aquifer system made a dramatic recovery and land subsidence began to abate 

(Galloway & Riley, 1999). This case demonstrates that policies and practices can be 

implemented to improve the sustainable use of groundwater when decision makers are informed 

and aware of the past and present conditions of their aquifer. 

 Past Research and Background 

One of the great challenges of groundwater sustainability is the ability to accurately 

characterize the state of an aquifer, so as to implement practices, procedures, and regulations to 

promote its sustainable use. Although fresh groundwater is often abundant, and prevalently used 

in some areas, it is difficult and expensive to accurately quantify groundwater compared to 

surface water resources. The state of surface water resources is readily visible to the naked eye, 

can be measured easily, and is straightforward to quantify. This is not the case for groundwater, 

which generally requires drilling a monitoring well in order to measure the location of the 

phreatic surface. While surface storage in a waterbody reaches approximately the same elevation 

throughout the body, groundwater surface elevations may vary significantly, by hundreds of feet 

in some cases, throughout an aquifer, depending on the overlying land use, pumping of irrigation 

wells, aquifer recharge, and other factors. Groundwater levels are heavily influenced by climatic, 

geographic, lithological, and human factors. For these reasons, it is difficult to quantify and map 

aquifer water levels and storage volumes. 
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Even when data on water surface elevations are available from monitoring wells drilled into 

an aquifer, these data are generally not harnessed to their full potential to aid in decision-making. 

These data are available at point locations scattered in time and space throughout an aquifer, and 

it is difficult to piece these segments of data together into a complete picture of aquifer-wide 

behavior. Point data from monitoring wells are typically sparse and give only a limited sampling 

of the spatial distribution of water levels in the aquifer, and the data observations from these 

monitoring wells are often temporally sporadic, including large gaps in the time series data, as 

demonstrated in Figure 1-1. 

 

Figure 1-1: Depth to Water Table at Well 374134113085901 near Cedar City, UT 

 

1.1.1 Spatial Interpolation of Groundwater Data 

 To solve these problems with data management and visualization of groundwater data, 

researchers have developed methods for interpolating, extrapolating, and visualizing existing 

data. One of the most widely used computer programs used for spatial interpolation in this and 

other fields is the Geostatistical Software Library (GSLIB), developed at Stanford University 

(Deutsch & Journel, 1992). This program performs spatial interpolation using the Kriging 
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technique pioneered by the South African statistician and mining engineer, Danie G. Krige. This 

Kriging interpolation technique is used by many researchers in groundwater when attempting to 

interpolate spatial data. Ahmadi and Sedghamiz (2007) used Kriging interpolation to estimate 

unknown depths to water table in an aquifer in Iran to a high level of accuracy. Other researchers 

demonstrated that the accuracy of groundwater surface elevation maps could be improved in 

some cases by introducing topography to the interpolation using Kriging with an external drift 

(Boezio, Costa, & Koppe, 2006). 

1.1.2 Extension of Groundwater Data Through Earth Observations 

Efforts have also been made to extend groundwater data through the use of satellite Earth 

observations. In March, 2002, NASA launched the GRACE (Gravity Recovery and Climate 

Experiment) mission, which includes two identical satellites that map variations in the 

gravitational pull of the Earth. The data collected by these satellites are used to calculate changes 

in the terrestrial water storage of the Earth, which accounts for a large portion of these 

gravitational anomalies (Tapley, Bettadpur, Ries, Thompson, & Watkins, 2004). Data from the 

GRACE mission have been used to estimate monthly changes in water storage over large 

regions, and researchers indicate that GRACE will provide a useful, direct measure of seasonal 

water storage for river-basin water balance analysis (Swenson, Wahr, & Milly, 2003). GRACE 

data have also been used to improve the accuracy of interpolated groundwater surface elevation 

maps in the Indo-Gangetic Basin by using cokriging with GRACE anomaly and TRMM 

(Tropical Rainfall Measuring Mission) precipitation data (M. Sahoo, Dhar, Kasot, & Kar, 2018). 

Other models pertinent to groundwater estimation have also been developed using earth 

observations, such as the Palmer Drought Severity Index, which uses temperature and 

precipitation observations to estimate relative dryness, and the Soil Moisture liquid water 
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equivalent thickness, which is obtained using a one-layer hydrological model using precipitation 

and temperature measurements as inputs (J. Huang, van den Dool, & Georgarakos, 1996).  

1.1.3 Temporal Interpolation of Groundwater Data 

 Several techniques have been developed and used in an effort to improve the temporal 

interpolation and estimation of well time series observations. Rouhani and Wackernagel (1990)  

used Kriging to perform temporal interpolation of depth to water table time series measurements 

in a basin south of Paris, France. Bidwell (2005) forecasted groundwater levels one month ahead 

in Canterbury, New Zealand using an ARMAX model based on the eigenstructure of aquifer 

dynamics. Others have used classical time series models including auto-regressive (AR), 

moving-average (MA), auto-regressive moving-average (ARMA), auto-regressive integrated 

moving-average (ARIMA), and seasonal auto-regressive integrated moving-average (SARIMA), 

and multiple linear regression to predict groundwater levels (Khorasani, Ehteshami, Ghadimi, & 

Salari, 2016; Mirzavand & Ghazavi, 2015; S. Sahoo & Jha, 2013) 

Researchers have also used GRACE satellite observations (Sun, 2013) and data from 

nearby wells (Sethi, Kumar, Sharma, & Verma, 2010) to predict groundwater levels using an 

artificial neural network approach. These neural networks vary in size, complexity, and training 

and computation time requirements. One neural network that has demonstrated extremely fast 

training time is the Extreme Learning Machine, (Zhu, Miao, & Qing, 2014) which could 

potentially be applied to groundwater. 
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 Research Objectives 

 The purpose of this research is to develop an open-source web application that will 

synthesize and interpolate in-situ groundwater data, together with Earth observations, creating 

and displaying aquifer-wide maps and animations of groundwater levels, allowing decision 

makers easy, informative, and accurate access to important groundwater data. This web 

application, the Groundwater Level Mapping Tool, is built on Tethys Platform, an open source 

platform for lowering the barrier for environmental web app development (Swain et al., 2016). 

This application is generalized to allow its use world-wide, and allows decision makers to 

accomplish the following: 

1) View time series and other data for each well within an aquifer. 

2) View maps of aquifer-wide groundwater levels at different time periods. 

3) Calculate and view estimates of changes in total aquifer storage. 

These maps and time series can be created using several different techniques, including 

Kriging for spatial interpolation, and multi-linear regression, simple PCHIP interpolation, or 

neural networks using earth observations for temporal interpolation.  

This thesis will detail the methods and mathematics used in developing these different 

techniques and will demonstrate their application and use in aquifers located in Utah, Texas, 

South Africa, Colombia, and the Dominican Republic. This application can be used to help 

decision makers sustainably manage groundwater resources in any area throughout the world. 
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2 METHODS 

The Groundwater Level Mapping Tool enables users to view groundwater levels and 

quantify changes in groundwater storage aquifer-wide. To enhance this application, I developed 

and implemented several techniques for temporally and spatially interpolating groundwater data. 

Temporal interpolation methods include basic PCHIP interpolation, prediction using multi-linear 

regression with correlated wells, and prediction using Extreme Learning Machine harnessing 

Earth observations. Spatial interpolation methods include Inverse Distance Weighted 

interpolation and Kriging interpolation using GSLIB. The Groundwater Level Mapping Tool 

uses these spatial and temporal interpolation methods to estimate changes in total aquifer storage 

volume over time. 

 The Groundwater Level Mapping Tool 

The Groundwater Level Mapping Tool is written mainly in the Python programming 

language, with supporting JavaScript and html, and is built using the Tethys Platform, a 

development and hosting environment for environmental web apps aimed at lowering the barrier 

to water resource web app development (Swain et al., 2016). The app is an extremely visual tool, 

and can be used to display data for any number of regions with a number of aquifers. Figure 2-1 

shows a view of the Groundwater Level Mapping Tool in a web browser, where the user can 

view all the aquifers of a specified region.  
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Figure 2-1: View of Utah Aquifers in Groundwater Level Mapping Tool 

 

 The app enables the user to view data for any of each region’s aquifers. The user simply 

selects an aquifer and is then able to interactively view well time series data for any well in that 

aquifer, see Figure 2-2. The user may toggle between viewing depth to groundwater, 

groundwater surface elevation, and drawdown in the well over a specified time period. This 

method of time series visualization improves upon existing applications by allowing the user to 

easily associate the time series data with a geographic location, and to quickly and easily 

navigate from one well to another without needing to refresh, reload, or open another browser 

window. 
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Figure 2-2: Time Series View in Groundwater Level Mapping Tool 

 

 The Groundwater Level Mapping Tool also allows the user to create and view maps of 

aquifer-wide groundwater levels, and to easily view changes in groundwater levels over time. 

Figure 2-3 shows the Groundwater Level Mapping Tool visualization of depth to groundwater 

(ft) throughout the Beryl-Enterprise aquifer in southern Utah in December, 1949. Figure 2-4 

shows the same aquifer 65 years later in December, 2014, demonstrating significant groundwater 

drawdown, which can also be visualized in Figure 2-5, which shows drawdown between 

December of 1944 and 2014, in the same aquifer. 
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Figure 2-3: Depth to Water Table in Beryl-Enterprise Aquifer in December, 1949 

 

Figure 2-4: Depth to Water Table in Beryl-Enterprise Aquifer in December, 2014 



11 

 

Figure 2-5: Drawdown from December, 1944 to 2014 in Beryl-Enterprise Aquifer 

 

 The groundwater level maps are stored in NetCDF format on a THREDDS server and 

displayed using the Leaflet JavaScript library for interactive maps. In addition to the water level 

maps, the web app also allows the user to calculate and view changes in total aquifer storage 

based on an aquifer storage coefficient, as shown in Figure 2-6, and detailed in Section 2.4. The 

methods for creating these maps and storage curves are detailed in the ensuing sections. 

 

Figure 2-6: Aquifer Storage Curve for Beryl-Enterprise Aquifer 
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 Temporal Interpolation Techniques 

Depth to groundwater measurements from wells throughout an aquifer are generally 

sampled inconsistently over time. These samples may be recorded monthly, semi-annually, 

annually, bi-annually, or at other irregular intervals. I found the data collected from South Africa, 

Utah, Texas, Colombia, South Africa, and the Dominican Republic that I analyzed during this 

research were quite irregular and inconsistent in sampling rates. Sampling rates varied over time 

in most wells, and sampling rates were quite inconsistent between wells in the same aquifer. 

Figure 2-7 demonstrates the inconsistent sampling rate common for many wells: there are long 

periods of time with no samples, a brief period of semi-annual sampling, and another longer 

period of annual sampling.     

 

Figure 2-7: Inconsistent Sampling Rate at Well 374248113075201 near Cedar City, UT 

 

 In order to map groundwater levels throughout an aquifer at a specific time, it is 

necessary to first perform temporal interpolation on individual wells to the selected time. For 

wells with significant gaps as described above, this process has the potential to introduce 

significant error or uncertainty in the process. In this research, I developed three different 

methods to perform temporal interpolation: PCHIP Interpolation, Multi-Linear Regression 

Harnessing Correlated Wells, and Extreme Learning Machine Harnessing Earth Observations. I 
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used these methods to resample the data from each well to a specific time interval, in order to 

map aquifer-wide groundwater levels over time. 

2.2.1 PCHIP Interpolation 

The simplest interpolation method I used for temporal interpolation is the PCHIP 

(Piecewise Cubic Hermite Interpolating Polynomial) method. I accomplished this interpolation 

for each well using the PCHIP interpolation functionality in the Pandas Python library 

(McKinney, 2010). The PCHIP method interpolates data using a piecewise cubic polynomial 

P(x) with continuous first derivatives P’(x). The PCHIP method preserves the shape of the data 

and respects monotonicity. On intervals where the data are monotonic (neither increasing or 

decreasing), so is P(x), and at points where the data have local minima or maxima, so does P(x). 

Thus, the second derivative P’’(x) is likely not continuous (Fritsch & Carlson, 1980).  Figure 2-8 

shows an example of PCHIP interpolation, Figure 2-9 shows in black the resampled data at 5-

year intervals obtained through the PCHIP method. 

 

Figure 2-8: Example PCHIP Interpolation 
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Figure 2-9: Resampled Values Obtained from PCHIP Interpolation 

 

 For consistently sampled wells, PCHIP interpolation is a simple, accurate, effective 

method of resampling data to a specified time interval. This technique is less accurate when there 

are large gaps in the data (such as the gap from 1984 to 1998 shown in Figure 2-8), or when the 

target time is outside the range of the sampled data (e.g. we wish to obtain the depth to 

groundwater in 2005 when recorded data ends in 2001). When the target time is outside the 

range of sampled data, the PCHIP method assumes the value is the same as the nearest sampled 

data point. 

2.2.2 Multi-Linear Regression Harnessing Correlated Wells 

To overcome the challenges of data gaps and to accurately extend data beyond its 

sampled range, I developed a new method of temporal interpolation, Multi-Linear Regression 

Harnessing Correlated Wells.  This method was developed based on the assumption that wells 

within the same aquifer will likely exhibit similar characteristics in depth to water table 

fluctuations and trends. This similarity between wells located in the same aquifer is demonstrated 

in Figure 2-10. The three wells shown are all located in the Cedar Valley Aquifer in southern 
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Utah. Well 37342113100801 (green) is located near the southern end of the aquifer, while the 

two other wells are located near the center. There is a clear correlation between these wells; the 

water levels rise and fall following the same general pattern throughout the aquifer. The 

correlation demonstrated in the Cedar Valley aquifer was typical of other aquifers studied in this 

research. Figure 2-11 shows correlation between two wells separated by 81 km both located in 

the Inkomati Water Management Unit of South Africa. The correlation is not as strong in this 

case due to the greater distance between wells, but the wells exhibit similar behavior due to the 

similar conditions in the region. 

 

Figure 2-10: Correlation between Wells in the Cedar Valley Aquifer 
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Figure 2-11: Correlation between Wells in the Inkomati Water Management Unit 
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Figure 2-12: Example of Well Time Series that does not Cover Period of Interest 

 

 The first step in this method is to construct a single data frame, using the Pandas Python 

library (McKinney, 2010), containing the time series information for every well in the aquifer. 

This data frame includes an index of regular 3-month intervals with the time series observations 

of each well resampled to these regular 3-month intervals by means of a PCHIP interpolation. If 

a well does not have data within a 3-month interval, then the data frame contains a null value for 

that well at that time step. Next, those wells which contain data spanning the time period of 

interest are identified as “reference wells.” After these reference wells, which contain full time 

series data for the period of interest, are identified, the Pearson Correlation Coefficient is 

calculated between the well with missing time series data and each of the reference wells. This 

correlation coefficient 𝑟𝑟𝑋𝑋𝑋𝑋 between the target well 𝑋𝑋 and each reference well 𝑌𝑌 for 𝑛𝑛 data points 

is calculated by Equation (2-1). 

𝑟𝑟𝑋𝑋𝑋𝑋 =
∑ (𝑋𝑋𝑖𝑖 − 𝑋𝑋�)(𝑌𝑌𝑖𝑖 − 𝑌𝑌�)𝑛𝑛
𝑖𝑖=1

�∑ (𝑋𝑋𝑖𝑖 − 𝑋𝑋�)2𝑛𝑛
𝑖𝑖=1 �∑ (𝑌𝑌𝑖𝑖 − 𝑌𝑌�)2𝑛𝑛

𝑖𝑖=1

 
 (2-1) 

Data from the reference wells 𝑌𝑌 with the five highest correlation values 𝑟𝑟𝑋𝑋𝑋𝑋 are used as 

inputs for the process of multi-linear regression. Figure 2-13 shows the time series data for the 
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target well with missing time series data along with the 5 most correlated wells in the aquifer. 

The area within the red rectangle shows the data that will be used to train the multi-linear 

regression model to predict the target well’s missing time series values. 

 

Figure 2-13: Well with Missing Data Plotted with Correlated Reference Wells 
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target well, and Rtrain1, Rtrain2, …, Rtrain5 for the five reference wells. The values of each well 𝑖𝑖 are 

normalized as shown in Equation (2-2). 

𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =
𝑅𝑅𝑖𝑖 − min (𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)

max(𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) − min (𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)
 

 (2-2) 

 These normalized data sets are plotted in Figure 2-14, with the normalized training set 

again bounded in red. The reference wells are normalized using the minimum and maximum 

values of the training subset, rather than the entire data set, because this provides a more skilled 

prediction, especially when predicting time series values outside the scope of the training data. 

 

Figure 2-14: Normalized Target Well with Normalized Correlated Reference Wells 
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value of depth to groundwater at the target well (Yt) is approximated as a linear combination of 

the normalized depth to water table at time (t) of the reference wells (Rt). The equation for Yt is 

shown in Equation (2-3), where 𝑒𝑒 is an error residual term. 

𝑌𝑌𝑡𝑡 = 𝑅𝑅𝑡𝑡1𝛽𝛽1 + 𝑅𝑅𝑡𝑡2𝛽𝛽2 + 𝑅𝑅𝑡𝑡3𝛽𝛽3 + 𝑅𝑅𝑡𝑡4𝛽𝛽4 + 𝑅𝑅𝑡𝑡5𝛽𝛽5 + 𝑒𝑒  (2-3) 

Equation (2-3) can be rewritten in matrix form as Equation (2-4). 

 𝑌𝑌𝑡𝑡���⃑ = 𝑹𝑹𝑡𝑡𝛽𝛽 + 𝒆𝒆  (2-4) 

The 𝛽𝛽 term represents weights determined by regularized least-squares fit using the 

training data subset, such that the sum of the squared residuals 𝑒𝑒 is minimized. These weights 𝛽𝛽 

are obtained by solving Equation (2-5), where 𝜆𝜆 is a regularization term, and 𝑰𝑰 is the identity 

matrix. This process is carried out in the app by using the regularized least squares solver in the 

Statsmodels Python library. 

𝑹𝑹𝑡𝑡𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑇𝑇Y��⃑ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = [𝑹𝑹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑇𝑇𝑹𝑹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝜆𝜆𝑰𝑰] 𝛽𝛽  (2-5) 

When using a high complexity estimator, such as multi-linear regression, the bias error is 

generally small, and the variance very large. Bias error is an error that causes the estimator 

algorithm to miss relevant relations between features and target outputs, thereby under fitting the 

data. Variance is an error from sensitivity to small fluctuations in the training set, which can 

cause the model to train to random noise in the training data, rather than actual correlations, 

thereby overfitting the data. The introduction of 𝜆𝜆 increases the bias of the estimate, but 

significantly decreases the variance, preventing overfitting and generally yielding a more 

accurate estimate. The method of regularization used here is Tikhonov or Ridge regularization 

(Tikhonov & Arsenin, 1977).  
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Once 𝛽𝛽 has been obtained by means of the regularized least squares model using the 

training data subset, the unknown Y terms may be estimated for each time step t by solving 

Equation  (2-3). Once the Y terms have been obtained, they must be unscaled to their original 

extent, yielding Yestimate. This is accomplished by applying Equation (2-6). 

𝑌𝑌�⃑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑌𝑌�⃑ ∗ �max�𝑌𝑌�⃑ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡� − min�𝑌𝑌�⃑ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�� + min (𝑌𝑌�⃑ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)  (2-6) 

  The process is now complete for estimating missing time series values for the target well. 

The estimated time series 𝑌𝑌�⃑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 modelled using Multi-Linear Regression Harnessing 

Correlated Wells  is shown in Figure 2-15, together with the original recorded data. 

 

Figure 2-15: Well Time Series Modelled by Multi-Linear Regression 
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which can be measured using hydrological models with satellite Earth observations and land 

based observations as inputs. Figure 2-16 through Figure 2-19 show this correlation. All three 

wells see an increase in groundwater levels in early 2005, which corresponds to a period of 

increased soil moisture simulated by GLDAS from late 2004 to early 2005. This period of 

interest is highlighted in yellow on each of the figures. 

 

Figure 2-16: Depth to Groundwater at Well 373644113411501 near Beryl, Utah 

 

Figure 2-17: Depth to Groundwater at Well 37349113434201 near Beryl, Utah 

 

Figure 2-18: Depth to Groundwater at Well 37349113434201 near Beryl, Utah 

 

Figure 2-19: Soil Moisture Simulated by GLDAS near Beryl, Utah 
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 There exists a correlation between soil moisture and groundwater levels, but this 

correlation is highly non-linear. In order to fill gaps in groundwater data using satellite 

observations, I employed a neural network using the Palmer Drought Severity Index (PDSI) and 

Soil Moisture liquid water equivalent thickness simulated from two different models as inputs. 

 The PDSI uses readily available temperature and precipitation data to estimate relative 

dryness. It is a standardized index that spans from -10 (dry) to +10 (wet) (Dai, 2019). The PDSI 

is available in NetCDF format on a THREDDS server hosted by NOAA. This global dataset is 

available at 0.5-degree resolution from 1850-2015 at monthly frequency. 

 The Soil Moisture liquid water equivalent thickness is estimated using a one-layer 

hydrological model which uses precipitation and temperature Earth observations as inputs (J. 

Huang et al., 1996). These data are available globally at 0.5-degree resolution from 1948 

onwards at monthly frequency from NOAA’s Climate Prediction Center (CPC) in NetCDF 

format on a THREDDS server hosted by NOAA. This soil moisture model uses monthly data 

from the CPC PRECipitation REConstruction over Land (Chen, Xie, Janowiak, & Arkin, 2002) 

and the CPC Global Land Surface Air Temperature Analysis (Fan & Van den Dool, 2008) 

datasets as inputs. Both of these datasets are derived from station observations collected from the 

Global Historical Climatology Network version 2 and the Climate Anomaly Monitoring System 

 The second soil moisture dataset used is simulated by the Global Land Data Assimilation 

System (GLDAS) model. GLDAS “is a global, high-resolution, offline (uncoupled to the 

atmosphere) terrestrial modeling system that incorporates satellite- and ground-based 

observations in order to produce optimal fields of land surface states and fluxes in near-real 

time” (Rodell et al., 2004). GLDAS incorporates hundreds of observations, including vegetation, 

land cover, soil, elevation, precipitation, and temperature information derived from or measured 
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by various satellites (AVHRR aboard NOAA-15 satellite, MODIS aboard NASA’s Terra 

satellite, EOS aboard NASA’s Aqua satellite). Using this vast array of inputs, GLDAS simulates 

soil moisture, which is used as an input for the Groundwater Level Mapping Tool. 

 These datasets were used as inputs because they displayed the best correlation with 

observed groundwater levels when compared against other air temperature, earth temperature, 

and precipitation datasets. The best correlation between Earth observations and observed 

groundwater levels was obtained using Total Water Storage data from the GRACE mission. 

Although these data displayed the best correlation, they were not used in this research because 

the GRACE data are only available from 2002 onwards, which severely limited the amount of 

data available for testing and training datasets. 

 I developed a Python script to estimate missing groundwater level measurements for a 

well, using the PDSI and two Soil Moisture datasets. The monthly data for these three datasets at 

the location of the target well are extracted directly from the NOAA THREDDS server where the 

data are hosted. The data are then resampled using a PCHIP interpolation so that all 

measurements are at the same monthly resolution. The 1, 3, 5, and 10 year rolling averages for 

the PDSI and both of the Soil Moisture datasets are then calculated. These rolling average terms 

improve the accuracy of this estimation method because the varying window lengths help to 

capture the effects of both long- and short-term climatic events which contribute to changes in 

groundwater levels. Often, groundwater levels increase fairly quickly following an extremely 

wet month or year. These changes are captured in the model by incorporating the 1-year average 

and the original monthly data. When moisture levels are slightly below normal for extended 

periods of time, this generally causes a period of slow decline in groundwater levels. This 

phenomenon is captured well by the 5 and 10-year rolling averages. In addition to these rolling 
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average datasets, two dummy linear datasets are incorporated into the model. Together, these two 

linear datasets allow the model to capture any constant underlying linear trends in groundwater 

levels not modelled by the Earth observations. These two datasets are especially important in 

cases where the groundwater is being constantly over pumped because it allows the model to 

capture this near linear decrease in the water table cause by continuous over pumping.  Thus, a 

total of 16 data sets, the two monthly sets, the two linear dummy sets, plus twelve additional 

rolling average datasets, are used in the model. 

 To accurately estimate missing groundwater measurements using a neural network, it is 

necessary to first normalize the data, scaling it to a range between 0 and 1. This normalization is 

achieved for each input dataset and for the available target well data following the pattern laid 

out in Section 2.2.2, using Equation (2-2).  

 The normalized depth measurements of the target well Y, and the normalized input data 

X for the time period where measurements are available for Y are used as the training dataset. 

The training data are then used to train a feedforward neural network with one hidden layer 

known as an extreme learning machine (ELM). ELMs have been shown to train up to thousands 

of times faster than networks trained using backpropogation, and have also outperformed 

Support Vector Machines (SVMs) in some instances (G.-B. Huang, 2015). Because of its high 

performance and fast training time, an ELM was selected for use in this research. 

 The basic assumption upon which ELMs are built is shown in Equation (2-7), where 𝑾𝑾𝟏𝟏 

is the matrix of input-to-hidden-layer weights, 𝜎𝜎 is an activation function, 𝑏𝑏�⃑  is a bias vector, and 

𝑾𝑾𝟐𝟐 is the matrix of hidden-to-output layer weights. The rectifier activation function is used for 
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𝜎𝜎, the rectifier function is shown in Equation (2-8). This process is summarized in Figure 2-20, 

where 𝑎𝑎1 . . .𝑎𝑎𝑁𝑁 represent the rows of the matrix 𝑾𝑾𝟏𝟏. 

𝑌𝑌�⃑ = 𝑾𝑾𝟐𝟐 ∗ 𝜎𝜎(𝑾𝑾𝟏𝟏𝑿𝑿 + 𝑏𝑏�⃑ )  (2-7) 

𝜎𝜎(𝑥𝑥) = max (0, 𝑥𝑥)  (2-8) 

 

Figure 2-20: Schematic of Extreme Learning Machine 

 

This method of using an ELM to estimate unknown groundwater levels using correlated 

Earth observations was developed because the ELM enables the non-linear relationship between 

drought index, soil moisture, and groundwater levels to be used to infer missing data. The ELM 

maps non-linear relationships by means of the random weight matrix 𝑾𝑾1 and the rectifier 

activation function 𝜎𝜎. The algorithm for the ELM proceeds as follows: 

1. Fill 𝑾𝑾𝟏𝟏 and 𝑏𝑏�⃑  with random values 

2. Use the rectifier activation function for 𝜎𝜎, shown in Equation (2-8) 

3. Estimate 𝑾𝑾𝟐𝟐 by least-squares fit to a vector of response variables 𝑌𝑌�⃑  



27 

Using these basic steps, the use of an ELM to infer missing groundwater data Yestimate, 

using training data Ytrain and Xtrain is accomplished as follows.  

Let: 

Mtrain= the number of sampled time-steps belonging to the training data set 

Mtest= the number of time-steps for which the ELM will estimate groundwater depth 

N= the number of input variables used to infer groundwater measurements. In our case, 

N=17 (monthly, yearly, 3, 5, and 10-year averages of the PDSI and the two soil moisture 

datasets, plus two linear dummy variables). 

𝑌𝑌�⃑ train= a vector of length Mtrain, containing observed monthly groundwater levels at a well 

Xtrain= an Mtrain x N matrix of data used to infer groundwater depth (𝑌𝑌�⃑ train) 

𝑌𝑌�⃑ estimate= a vector of length Mtest, that will contain estimated groundwater levels for a well 

Xtest= an Mtest x N matrix of data used to infer groundwater depth (𝑌𝑌�⃑ test) 

 h= the number of nodes in the hidden layer of the extreme learning machine 

 𝑏𝑏�⃑ = a random vector of length h used as a bias variable in the ELM 

 𝑾𝑾𝟏𝟏= an N x H matrix of random values to be used in the ELM 

 𝜎𝜎 = the rectifier function as shown in Equation (2-8) 

The matrix 𝑾𝑾𝟏𝟏 is populated with random values using the random function available 

from the Numpy Python library. With 𝑾𝑾𝟏𝟏 populated, the next step is to solve for 𝑾𝑾𝟐𝟐. 

Let Atrain be defined as shown in Equation (2-9). 
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𝑨𝑨𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 = 𝜎𝜎(𝑾𝑾𝟏𝟏𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 + 𝑏𝑏�⃑ )  (2-9) 

After solving for Atrain, Equation (2-10) is used to determine 𝑾𝑾𝟐𝟐 which minimizes the error 𝑒𝑒. 

𝑌𝑌�⃑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑾𝑾𝟐𝟐𝑨𝑨𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 + 𝑒𝑒  (2-10) 

The unknown matrix of hidden-to-output weights 𝑾𝑾𝟐𝟐 is estimated using regularized least 

squares as shown in Equation (2-11), where 𝜆𝜆 is a regularization parameter. 𝑾𝑾2 is obtained by 

solving Equation (2-11) using the least squares function in the Numpy Python library.  

𝑨𝑨𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝑇𝑇𝑌𝑌�⃑𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 = [𝑨𝑨𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝑇𝑇𝑨𝑨𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 + 𝜆𝜆𝑰𝑰]𝑾𝑾2  (2-11) 

Now that 𝑾𝑾2 has been computed, it is straightforward to use the ELM to solve for 𝑌𝑌�⃑ test as 

shown in Equation (2-12). 

𝑌𝑌�⃑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑾𝑾𝟐𝟐𝜎𝜎(𝑾𝑾𝟏𝟏𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 + 𝑏𝑏�⃑ )  (2-12) 

 Now, 𝑌𝑌�⃑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 must be rescaled to its original extent, yielding the depth to groundwater 

estimates 𝑌𝑌�⃑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 by implementing Equation (2-13). 

𝑌𝑌�⃑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑌𝑌�⃑𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 ∗ �max�𝑌𝑌�⃑𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕� − min�𝑌𝑌�⃑𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕�� + min (𝑌𝑌�⃑𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕)  (2-13) 

 Spatial Interpolation Techniques 

Once the depth to groundwater data measurements have been resampled, interpolated, 

and/or extended using the techniques in Section 2.2, the Groundwater Level Mapping Tool now 

maps these water levels throughout the aquifer by implementing spatial interpolation. Upon 

completion of temporal interpolation, depth to water table measurements are available as point 

data at each observation well for each desired time step. These data can be represented as shown 

in Figure 2-21, where point representations of depth to groundwater in December, 2014 are 

shown for the Sevier Desert in western Utah. After completing spatial interpolation, these same 
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data are represented as shown in Figure 2-22. This spatial interpolation provides a much better 

visual representation of the state of groundwater in the aquifer, and it allows quantification of 

groundwater storage volume throughout the aquifer. 

 

Figure 2-21: Point Measurements of Depth to Groundwater near Delta, UT 

      

Figure 2-22: Kriging Spatial Interpolation of Depth to Groundwater near Delta, UT 
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The app employs two different methods of spatial interpolation. In both methods, the app 

determines weights and then estimates the value at a point using those weights. The procedure is 

continued on a regular grid at a user specified resolution for each point within the aquifer. 

2.3.1 Inverse Distance Weighted Interpolation 

The simplest method of spatial interpolation employed by the Groundwater Level 

Mapping Tool is inverse distance weighted interpolation. The equation of this interpolating 

function is shown in Equation (2-14), where 𝑛𝑛 is the number of points used to interpolate, 𝑓𝑓𝑖𝑖 are 

the dataset values at those points, and 𝑤𝑤𝑖𝑖 are the weight values assigned to each point. 

𝐹𝐹(𝑥𝑥, 𝑦𝑦) = �𝑤𝑤𝑖𝑖𝑓𝑓𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 
 (2-14) 

The weight values 𝑤𝑤𝑖𝑖 are assigned for each point by means of the weight function shown 

in Equation (2-15), where 𝑅𝑅 is the distance from the interpolation location to the most distant 

point, and 𝑛𝑛 is the number of points.  ℎ𝑖𝑖 is the Euclidean distance from the interpolation location 

to the point 𝑖𝑖 as defined by Equation (2-16), where (𝑥𝑥,𝑦𝑦) are the coordinates of the interpolation 

location and (𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖) are the coordinates of each point. Equation (2-15) is used as the weight 

function because it was found to give superior results to the classical weight function typically 

used in Shepard’s Method (Franke & Nielson, 1980). 

𝑤𝑤𝑖𝑖 =
�𝑅𝑅 − ℎ𝑖𝑖
𝑅𝑅ℎ𝑖𝑖

�
2

∑ �𝑅𝑅 − ℎ𝑖𝑖
𝑅𝑅ℎ𝑖𝑖

�
2

𝑛𝑛
𝑗𝑗=1

 

 (2-15) 

 

ℎ𝑖𝑖 = �(𝑥𝑥 − 𝑥𝑥𝑖𝑖)2 + (𝑦𝑦 − 𝑦𝑦𝑖𝑖)2  (2-16) 
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 The weight functions are normalized so that the weights sum to a value of one. Each 

weight 𝑤𝑤𝑖𝑖 varies from a value of one at the interpolation point to a value approaching zero as the 

distance from the interpolation point increases. 

 This method of interpolation is used in the Groundwater Level Mapping Tool for its 

simplicity and ease of implementation. Interpolated values can be computed using this IDW 

method quicker than using the Kriging method, and the IDW interpolation can always be 

computed. In cases where the Kriging interpolation method fails, then the Groundwater Level 

Mapping Tool reverts to using the IDW interpolation for those areas of failure. In this way, the 

Groundwater Level Mapping Tool still supplies the user with a map or animation of groundwater 

levels throughout the aquifer. 

2.3.2 Kriging Interpolation 

The Groundwater Level Mapping Tool utilizes the Kriging interpolation method in order 

to achieve the app’s most accurate spatial interpolation. Similar to the IDW interpolation, the 

Kriging method assumes that the value 𝑍𝑍∗ at location (𝑥𝑥∗,𝑦𝑦∗), can be estimated using Equation 

(2-17), where 𝑛𝑛 is the number of points used to interpolate, 𝑍𝑍𝑖𝑖 are the dataset values at those 

points, and 𝜆𝜆𝑖𝑖 are the weight values assigned to each point. 

𝑍𝑍∗(𝑥𝑥∗,𝑦𝑦∗) = �𝜆𝜆𝑖𝑖𝑍𝑍𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 
 (2-17) 

 The weights 𝜆𝜆𝑖𝑖 for each point are determined by the development and use of a model 

variogram function. A model variogram is developed by first creating and plotting the 

experimental variogram from the available point data. The experimental variogram is a function 

of the Euclidean distance 𝑑𝑑(𝑖𝑖, 𝑗𝑗), and the semivariance 𝑉𝑉(𝑖𝑖, 𝑗𝑗) between each pair of points (𝑖𝑖, 𝑗𝑗) 
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in the dataset. The Euclidean distance 𝑑𝑑(𝑖𝑖, 𝑗𝑗) between a pair of points (𝑖𝑖, 𝑗𝑗) with coordinates 

(𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖) and (𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗) is calculated for each pair of points in the dataset using Equation (2-18). 

𝑑𝑑(𝑖𝑖, 𝑗𝑗) = ��𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗�
2 + �𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗�

2
 

 (2-18) 

 The semivariance 𝑉𝑉(𝑖𝑖, 𝑗𝑗) between a pair of points (𝑖𝑖, 𝑗𝑗) with data values 𝑍𝑍𝑖𝑖 and 𝑍𝑍𝑗𝑗 is 

calculated for each pair of points in the dataset using Equation (2-19). 

𝑉𝑉(𝑖𝑖, 𝑗𝑗) =
�𝑧𝑧𝑖𝑖 − 𝑧𝑧𝑗𝑗�

2

2
 

 (2-19) 

 An ordered pair (𝑑𝑑(𝑖𝑖, 𝑗𝑗),𝑉𝑉(𝑖𝑖, 𝑗𝑗)) of distance and semivariance is created for each pair of 

points in the dataset. These ordered pairs are sorted plotted as shown in Figure 2-23. This set of 

ordered pairs are used to compose the experimental variogram for the data. 

 

Figure 2-23: Example of Experimental Variogram 
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 The next step is to fit a variogram model to the experimental variogram. This is an 

important step in Kriging interpolation. The selection and fitting of a proper variogram model 

greatly influences the accuracy of estimation. To interpolate groundwater levels, I used a 

spherical variogram model, which was found to produce the best results by several researchers, 

as well as from initial inspection of preliminary test case results (Gundogdu & Guney, 2007; 

Nikroo, Kompani-Zare, Sepaskhah, & Shamsi, 2010). The spherical variogram model 𝑉𝑉(𝑑𝑑) is a 

function of the distance 𝑑𝑑 of an observation point from the interpolation point and is given by 

Equation (2-20), defined by the Nugget (𝑛𝑛), Range (𝑟𝑟), and Sill (𝑠𝑠), where the Partial Sill (𝑝𝑝) is 

the difference between the sill and the nugget.. 

 𝑉𝑉(𝑑𝑑) =�𝑛𝑛 + 𝑝𝑝 �1.5 𝑑𝑑
𝑟𝑟
− .5 �𝑑𝑑

𝑟𝑟
�
3
�      𝑑𝑑≤𝑟𝑟

𝑝𝑝 + 𝑛𝑛                                      𝑑𝑑>𝑟𝑟
 

 (2-20) 

 Equation (2-20) is known as the semivariance function. I developed a method to 

automatically fit a semivariance function with the appropriate Nugget, Range, and Sill 

parameters to the experimental variogram. In this method, the ordered pairs of distance and semi-

variance (𝑑𝑑(𝑖𝑖, 𝑗𝑗),𝑉𝑉(𝑖𝑖, 𝑗𝑗)) are sorted into ten bins of equal intervals based on distance 𝑑𝑑(𝑖𝑖, 𝑗𝑗). The 

range of these bins extends from the minimum distance between two observation points in the 

aquifer to the sum of the minimum distance and the half the maximum distance between 

observation points in the aquifer. This approach of eliminating extremely distant points from the 

bins produces a more accurate estimation because the smallest distances are the most important 

for developing a proper variogram for accurate estimation (Kitanidis, 1997). The use of the 

distant observations skews the automatic variogram fitting routine towards the large variances of 

the distant observations, which negatively impacts the estimation. 
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 Once the ordered pairs are sorted into the ten bins spanning equal intervals, the mean 

distance 𝑑𝑑 and semivariance 𝑉𝑉 are computed within each bin. These ten pairs of (𝑑𝑑,𝑉𝑉) are then 

used to fit a spherical variogram model. The model is fit using a least squares optimization, by 

minimizing the residuals of the spherical variogram model compared to the ten ordered pairs. In 

this optimization, the residuals are weighted using a logistic function so that weights vary from a 

value approaching one at distance zero to a value approaching zero as the distance increases. 

This weighting allows the least squares optimization to fit the data better at closer distances, 

producing a better variogram for estimation (Kitanidis, 1997). The Nugget, Range, and Sill are 

determined using the least squares optimization. Figure 2-24 shows an example of the 

semivariance function automatically generated using this least squares technique, plotted with 

the original ordered pair data and the experimental variogram (red Xs).  

 

Figure 2-24: Example of Semivariance Function fitted to Experimental Variogram 

 

 With the semivariance function defined, the next step is to solve the Kriging system at each 

interpolation point. The matrix Equation (2-21) shows the format of this Kriging System. 
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�

𝑉𝑉(1,1) ⋯ 𝑉𝑉(1,𝑛𝑛) 1
⋮ ⋱ ⋮ 1

𝑉𝑉(𝑛𝑛, 1)
1

⋯
1

𝑉𝑉(𝑛𝑛,𝑛𝑛)
1

1
0

� ∗ �
𝜆𝜆1
⋮

𝜆𝜆𝑛𝑛+1
� = �

𝑉𝑉(∗ ,1)
⋮

𝑉𝑉(∗,𝑛𝑛)
1

�  

 (2-21) 

Equation (2-21) is solved for each of the 𝑛𝑛 + 1 weights 𝜆𝜆𝑖𝑖. With the weights determined, it 

is now straightforward to estimate 𝑍𝑍∗ at each location (𝑥𝑥∗,𝑦𝑦∗) using Equation (2-17). This 

Kriging interpolation is carried out at a user specified spatial resolution throughout the aquifer 

using the GSLIB FORTRAN code developed at Stanford University (Deutsch & Journel, 1992). 

This code provides a very well optimized, accurate, and complete version of Kriging estimation, 

which can be quickly performed throughout the entire aquifer. In some cases, the data may yield 

a singular matrix in Equation (2-21), so the GSLIB code cannot provide a solution. In these 

cases, the Groundwater Level Mapping Tool reverts to an IDW interpolation for the singular 

points, as detailed in Section 2.3.1. 

 Calculation of Aquifer Storage 

With the results of the temporal and then spatial interpolation, it is possible to calculate 

changes in total aquifer storage volume based on an estimate of aquifer porosity. This is 

accomplished by performing mathematic operations on 𝑛𝑛 series of raster datasets 𝑅𝑅 of 

groundwater levels at specific times produced during the spatial interpolation phase. The first 

dataset (corresponding to the earliest time step in the series) is known as 𝑅𝑅0 and serves as the 

baseline from which changes in aquifer storage are measured. 

 These changes are calculated by first calculating the drawdown 𝐷𝐷𝑖𝑖 from the bases case for 

each time step in the raster series. The drawdown 𝐷𝐷𝑖𝑖 is calculated on a cell-by-cell basis by 
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applying Equation (2-22) for each of the 𝑛𝑛 timesteps, resulting in a new set of 𝑛𝑛 − 1 raster 

datasets of drawdown. 

∀𝑖𝑖 ∈ {1, … ,𝑛𝑛}  𝐷𝐷𝑖𝑖 = 𝑅𝑅𝑖𝑖 − 𝑅𝑅0  (2-22) 

 Aquifer-wide storage changes 𝐶𝐶𝑖𝑖 are then calculated  fore each time step by multiplying 

the drawdown 𝐷𝐷𝑖𝑖
𝑗𝑗 at each grid cell 𝑗𝑗 by the average aquifer storage coefficient 𝑝𝑝 and the grid cell 

area 𝐴𝐴𝑗𝑗, and summing over all grid cells in the aquifer, as shown in Equation (2-23). The aquifer 

storage coefficient 𝑝𝑝 will be either the specific storage (for a confined aquifer) or the specific 

yield (for an unconfined aquifer), which is close to, but typically a little smaller than the 

porosity. These values may vary throughout an aquifer, and an aquifer may even be partially 

confined, partially unconfined. This tool is meant to produce a rough estimate of storage volume 

and so employs a rough average of the storage coefficient over the aquifer. To determine a more 

accurate estimate where storage coefficients are known in detail, the aquifer could be split into 

several sections based on storage coefficients, and the storage volume calculated separately and 

then summed together over the sections. 

∀𝑖𝑖 ∈ {1, … ,𝑛𝑛}  𝐶𝐶𝑖𝑖 = � 𝐷𝐷𝑖𝑖
𝑗𝑗𝑝𝑝𝐴𝐴𝑗𝑗

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

𝑗𝑗=1

 
 (2-23) 

 The area 𝐴𝐴𝑗𝑗 is not constant for each grid cell over the dataset, since the grids are defined 

at a specified latitude and longitude resolution. Each cell has constant height, but the cell width is 

dependent on the cell latitude. Cells closer to the equator will have larger widths than those 

nearer the poles. The area of each grid cell 𝐴𝐴𝑗𝑗 in the aquifer is calculated based on the resolution 

of the grid 𝑔𝑔, the mean radius of the Earth 𝑅𝑅, and the latitude 𝑙𝑙𝑗𝑗 of the center of each grid cell 𝑗𝑗 as 

shown in Equation (2-24). 
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∀𝑗𝑗 ∈ {𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴} 𝐴𝐴𝑗𝑗 = 𝑅𝑅2 sin𝑔𝑔 ∗ �sin(𝑙𝑙𝑗𝑗 +
𝑔𝑔
2

) − sin(𝑙𝑙𝑗𝑗 −
𝑔𝑔
2

)�  (2-24) 

 When the Groundwater Level Mapping Tool is in metric mode, the mean radius of the 

Earth 𝑅𝑅 is 6,371,000 meters (Moritz, 1980). The aquifer storage is calculated in cubic meters, 

since the depth to groundwater measurements and therefore drawdown 𝐷𝐷𝑖𝑖 is also in meters. In 

imperial units, the Groundwater Level Mapping Tool reports changes in aquifer storage volume 

in Acre-ft. The app uses a mean Radius of the Earth 𝑅𝑅 of 3,959 miles. In this case, the result of 

Equation (2-23) is in square mile-ft, which is converted to acre-ft by multiplying by 640. An 

example of the output of this storage volume calculation procedure for the Cedar Valley, UT 

Aquifer is shown in Figure 2-25. 

 

Figure 2-25: Example Output of Aquifer Storage Volume 
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3 RESULTS 

The Groundwater Level Mapping Tool has been implemented in Utah, Texas, The 

Dominican Republic, South Africa, and Colombia. This wide range of application demonstrates 

the versatility of this new tool, which will enable water managers world-wide to take better 

stewardship over groundwater resources. 

 Utah 

I used the Groundwater Level Mapping Tool to analyze 18 aquifer systems throughout the 

State of Utah, using data hosted on the USGS NWIS site. The Utah aquifers were useful in 

validating the results of the application because the USGS published a report on the groundwater 

conditions in Utah in the spring of 2015. In this report, aquifer groundwater levels in 2015 were 

compared to those 30 years earlier in 1985 (Burden, 2015). To validate the interpolation 

techniques described in the previous chapter, I compared maps of aquifer drawdown from 1985 

to 2015 produced by the Groundwater Level Mapping Tool to those produced by the USGS. 

Figure 3-1 shows a side-by-side comparison of this 30-yr drawdown mapped by the app (on the 

left) and by the USGS (on the right) for the Tooele Valley near Tooele, UT. Figure 3-2 shows a 

similar comparison for the Escalante Valley near Milford, UT, Figure 3-3 for the Escalante 

Valley near Beryl, UT, and Figure 3-4 for the Juab Valley near Nephi, UT. 
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Figure 3-1: Comparison for Tooele Valley, near Tooele, UT 

 

 

Figure 3-2: Comparison for Escalante Valley near Milford, UT 
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Figure 3-3: Comparison for Escalante Valley near Beryl, UT 

 

 

Figure 3-4: Comparison for Juab Valley near Nephi, UT 
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 The contours generated by the app are reasonably similar to those mapped by the USGS. 

This shows the utility of the app for mapping groundwater throughout aquifers.  

3.1.1 Testing of Multi-Linear Regression Harnessing Correlated Wells in Utah 

The method of time series extension by Multi-Linear Regression Harnessing Correlated 

Wells detailed in Section 2.2.2 was tested using a set of ten wells from the Cedar Valley Aquifer 

each containing data from 1980 – 2015. The locations of these 10 wells are shown in Figure 3-5. 

The Cedar Valley Aquifer was chosen as a test case because it contains several wells with a 

sufficiently long and detailed period of groundwater measurements and because the wells in this 

aquifer exhibit trends and patterns that pose significant difficulties to time series analysis. The 

time series in this aquifer are non-stationary, and neither increase or decrease at constant rates. 

The measurements taken from 1980-1995 were used to train the dataset, then the model 

predictions were compared to the actual data for measurements taken after 1995, thus testing the 

model. Both the training and testing datasets include significant peaks and valleys in the data, 

and cannot be predicted easily using classical time series analysis methods. The testing dataset 

also includes values well outside the scope of the training dataset. The newly developed MLR 

method of time series extension was used to make predictions at each well, and then compared 

against a naïve prediction, where the groundwater was assumed to remain constant after 1995, 

and a linear least squares prediction. The results of these model predictions are shown in Figure 

3-6 through Figure 3-15, with the training data (green), the measured data (solid red), the MLR 

prediction (dashed red), the naïve prediction (dashed blue), and the least squares prediction 

(dashed yellow) for each of the ten wells.  
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Figure 3-5: Location of 10 Testing Wells for MLR in Cedar Valley Aquifer 
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Figure 3-6: Time Series Model for Well 373509113101101 

 

Figure 3-7: Time Series Model for Well 373236113111401 
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Figure 3-8: Time Series Model for Well 373542113122401 

 

Figure 3-9: Time Series Model for Well 374105113085001 
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Figure 3-10: Time Series Model for Well 374132113063601 

 

Figure 3-11: Time Series Model for Well 374304113052901 
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Figure 3-12: Time Series Model for Well 374423113053401 

 

Figure 3-13: Time Series Model for Well 374423113053301 
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Figure 3-14: Time Series Model for Well 374744113055001 

 

Figure 3-15: Time Series Model for Well 3745113022901 
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 As demonstrated by Figure 3-6 through Figure 3-15, the MLR method outperformed the 

naïve and least squares estimation methods for each well (with the exception of Well 

374744113055001). Table 3-1 shows the RMSE value for each of the ten wells in the Cedar 

Valley study area for the MLR, naïve, and least squares prediction methods. The MLR method 

decreased the RMSE value by an average of 57% from the naïve method, and 68% from the least 

squares method. 

Table 3-1: RMSE Values for Time Series Prediction 
for Ten Wells in Cedar Valley Aquifer 

    RMSE Value for Various Methods 
Map ID Well ID MLR Naïve Least Squares 

W-1 Well 373236113111401 5.67 9.63 9.89 
W-2 Well 373509113101101 2.33 36.64 41.00 
W-3 Well 373542113122401 5.29 34.58 23.45 
W-4 Well 374105113085001 24.57 26.29 37.09 
W-5 Well 374132113063601 10.33 21.16 32.59 
W-6 Well 374304113052901 10.06 19.37 29.38 
W-7 Well 374423113053301 11.33 17.43 45.88 
W-8 Well 374423113053401 4.98 15.79 29.46 
W-9 Well 374744113055001 4.14 2.73 9.20 

W-10 Well 374745113022901 11.97 27.06 22.15 
 

 The method of time series extension using Multi-Linear Regression Harnessing 

Correlated Wells was also tested for accuracy against Kriging spatial interpolation, using a 

jackknife approach. This testing was carried out for ten wells in the Cedar Valley Aquifer. The 

depth to groundwater on December 31, 2014 was estimated at each testing well by implementing 

the PCHIP and then Kriging interpolation, omitting the measured depth at the testing well from 

the interpolation. The depth to groundwater on December 31, 2014 was then estimated at each 

testing well by implementing the MLR technique, using data from 1985-1995 as the training set, 

and then estimating twenty years of groundwater depths from 1995-2015. The results of both of 
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these estimates, the actual measurement, and the % error for each estimate are displayed in Table 

3-2 for each of the ten tested wells.  

Table 3-2: Error Values for MLR Estimate Compared to Kriging Estimate 
for Ten Wells in Cedar Valley Aquifer 

 
 

Measured 
Value MLR Estimate Kriging Estimate 

Map 
ID Well ID Depth to GW 

(ft) 
Depth to GW 

(ft) (% error) Depth to GW 
(ft) (% error) 

W-1 Well 373236113111401 -47.6 -49.9 -(4.8%) -66.8 -(40.3%) 
W-2 Well 373509113101101 -90.6 -92.1 -(1.7%) -89.3 (1.4%) 
W-3 Well 373542113122401 -103.7 -101.4 (2.2%) -88.6 (14.6%) 
W-4 Well 374105113085001 -74 -79.1 -(6.9%) -88.6 -(19.7%) 
W-5 Well 374132113063601 -93.5 -96.2 -(2.9%) -100.8 -(7.8%) 
W-6 Well 374304113052901 -109.7 -113.8 -(3.7%) -77.4 (29.4%) 
W-7 Well 374423113053301 -75.6 -60 (20.6%) -80.8 -(6.9%) 
W-8 Well 374423113053401 -67 -67.2 -(0.3%) -61.8 (7.8%) 
W-9 Well 374744113055001 -18.6 -20.2 -(8.6%) -30.3 -(62.9%) 

W-10 Well 374745113022901 -68.9 -69.4 -(0.7%) -58.3 (15.4%) 
 

 The MLR produced relatively accurate results, with seven of the ten tested wells 

exhibiting less than 5% error, and nine of the wells exhibiting less than 10% error. Errors are 

significantly smaller for the MLR estimate than the Kriging estimate with the exception of W-2, 

where the error is practically the same, and W-7, where the MLR error is greater than Kriging. 

Kriging produces a better estimate at this well for two reasons: W-7 is quite close to W-6 and W-

8 (see Figure 3-5), which decreases the variance of the Kriging interpolation; and the time series 

for W-7 contains only four points in its training dataset from 1985-1995 as shown in Figure 3-16, 

which decreases the accuracy of the MLR method. With these factors, it is unsurprising that 

Kriging outperformed MLR in this instance. These results demonstrate that in most cases where 

data are available from a different time period than desired, it is more accurate to interpolate 

temporally using MLR referencing other wells than to interpolate spatially from other wells. This 
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is significant, since researchers using different temporal interpolation methods have previously 

concluded that “spatial structure was a little bit stronger than temporal structure”(Ahmadi & 

Sedghamiz, 2007).  

 

Figure 3-16: Time Series for W-7 in Cedar Valley Aquifer 

 

3.1.2 Testing of ELM Harnessing Earth Observations in Cedar Valley, Utah 

I tested the ELM method in Utah’s Cedar Valley Aquifer. Data from 1958-199 were used 

as training data for the model, and data from 2000-2015 were used as the testing data set. This 

test was performed on five wells within the aquifer. These wells are shown in Figure 3-17. The 

Map ID for each corresponding Well ID is shown in Table 3-3. 

Table 3-3: Map IDs for 5 Wells 
 in Cedar Valley Aquifer 

Map ID Well ID 
E-1 Well 373236113111401 
E-2 Well 374132113063601 
E-3 Well 374304113052901 
E-4 Well 374423113053301 
E-5 Well 374927113033401 
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Figure 3-17: Location of 5 Testing Wells for ELM in Cedar Valley Aquifer 

 

Figure 3-18 shows the modelled (blue) and the measured (orange) depth to groundwater 

(ft) with the testing period denoted by the red bounding box for Well 37236113111401 (E-1), 

which is located just west of Kanarraville, Utah in the Cedar Valley. The depth to groundwater 

over the observation period at this well varies between 25 and 60 ft. The modelled depth to 

groundwater values match the measured data very well for the testing period. 
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Figure 3-18: ELM Results for Well 373236113111401 (E-1) 

 

Figure 3-19 shows the results for Well 37430113052901 (E-3), which is located just North 

of the Cedar City Regional Airport in Utah’s Cedar Valley. Again, the results are quite good, 

with modelled depth to groundwater matching the shape and approximating the magnitude of the 

measured depth to groundwater. This well is deeper than the first well, with depths varying 

between 60 and 130 ft. 

 

Figure 3-19: ELM Results for Well 374113052901 (E-3) 
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Figure 3-20 shows the results from Well 374423113053301 (E-4), which is located North 

of the previous well. The results of this model are good, but this model shows a trend of 

overestimating the groundwater levels, a trend also present in the first two wells, but to a smaller 

extent. This consistent overestimation possibly occurs because of human pumping activity, 

which is not explicitly represented in the model. The PDSI variables attempt to represent 

pumping, since pumping will likely increase during times of relative dryness, but this is not 

sufficient to adequately represent all pumping activity. 

 

Figure 3-20: ELM Results for Well 374423113053301 (E-4) 

 

Figure 3-21 shows the results for Well 374132113063601 (E-2), which is located just West 

of the Cedar City Regional Airport. The ELM model results are quite good here as well. The 

model captures the general trends of the groundwater, following a course matching the general 

average depth to groundwater. However, this model fails to properly capture the magnitude of 

the seasonal variation of the water table throughout the year. This most likely occurred because 

of the inconsistent sampling rate of the well. In some cases throughout the training period, it was 
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sampled at monthly frequency, but not for the duration. This mixture of higher and lower 

sampling rates negatively impacted the model.  

 

Figure 3-21: ELM Results for Well 374132113063601 (E-2) 

 

The worst results obtained were for Well 374927113033401 (E-5), located at the northern 

end of the aquifer. The model failed to accurately capture the general shape of the time series, as 

shown in Figure 3-22. It is possible that this failure occurred because of the low resolution of the 

Earth observation data, which does not accurately reflect conditions in this area at the northern 

end of the aquifer. 

 

Figure 3-22: ELM Results for Well 374927113033401 (E-5) 
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 Results obtained from the ELM method were compared against the naïve and least 

squares predictions using the RMSE and NRMSE error metrics. The NRMSE is akin to the 

RMSE method, but normalized by the range of the data. This helps make better comparisons 

between results for different wells. For example, Well 374927113033401 has a very small range 

of data compared to Well 374304113052901, so the RMSE for the first well is lower than that of 

the second, even though the model fits better for the second well. The NRMSE is much lower for 

the second well than the first, since this error metric takes the range of the data into account. The 

RMSE measurements for each well are given in Table 3-4, while the NRMSE values are given in 

Table 3-5. 

Table 3-4: RMSE Values for ELM Time Series Prediction 
for Five Wells in Cedar Valley Aquifer 

   RMSE Value for Various Methods 
Map ID Well ID ELM Naïve Least Squares 

E-1 Well 373236113111401 2.96 12.69 14.93 
E-2 Well 374132113063601 12.96 69.45 71.99 
E-3 Well 374304113052901 10.44 70.94 73.49 
E-4 Well 374423113053301 10.98 36.57 39.09 
E-5 Well 374927113033401 4.81 4.29 2.38 

 

Table 3-5: NRMSE Values for ELM Time Series Prediction 
for Five Wells in Cedar Valley Aquifer 

   NRMSE Value for Various Methods 
Map ID Well ID ELM Naïve Least Squares 

E-1 Well 373236113111401 0.22 0.66 0.78 
E-2 Well 374132113063601 0.31 1.99 2.07 
E-3 Well 374304113052901 0.27 1.84 1.91 
E-4 Well 374423113053301 0.29 1.31 1.40 
E-5 Well 374927113033401 0.60 0.57 0.32 
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 The ELM method produced a better prediction than both the naïve and least squares 

methods for four of the five wells. This method is not as accurate as the MLR prediction method 

and should only be used when no data from other wells is available. In some cases, the ELM fails 

to produce a good model.  

3.1.3 Testing of ELM Harnessing Earth Observations in Beryl Enterprise, Utah 

I tested this method again in the Beryl Enterprise area of southern Utah, which has 

experienced significant drawdown over the last century, especially in the southern portion of the 

aquifer. I chose ten wells in this aquifer for testing, as shown in Figure 3-23. 

 

Figure 3-23: Location of 10 Testing Wells for ELM in Beryl Enterprise Aquifer 
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 Well 373338113431502 (W-1), Well 373419113434201 (W-2), and Well 

373527113415101 (W-3) displayed the best results, as shown in Figure 3-24, Figure 3-25, and 

Figure 3-26 with the testing period from 2000 onwards shown in the red bounding box. 

 

Figure 3-24: ELM Results for Well 373338113431502 (E-1) 

 

Figure 3-25: ELM Results for Well 373419113434201 (E-2) 
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Figure 3-26: ELM Results for Well 37327113415101 (E-3) 

 

 Results for the other seven wells in the aquifer were not as good. In each case, the ELM 

model correctly identified periods of increase and decrease in water levels for each of the wells, 

but failed to properly estimate the magnitude of these changes, the result was an underestimation 

of drawdown for each of the tested wells. Figure 3-27 shows results typical for wells E-4 – E-10. 

 

Figure 3-27: ELM Results for Well 374228113420101 (E-4), 
Typical of Wells E-4 to E-10 
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 Based on these results from the Cedar Valley and the Beryl Enterprise Aquifer, I 

concluded that the ELM method is less accurate for aquifers heavily influenced by human 

activity. The area around wells E-4 through E-10 is pumped excessively for irrigation purposes, 

which is not captured by the ELM model. The accuracy of this method would be significantly 

increased if the input parameters included a term accounting for pumped withdrawals. The 

method performs best in areas that are not subject to excessive pumping (wells E-1 – E-3). Table 

3-6 shows the NRMSE values for each of the ten wells for the testing period from 2000-2015. 

Table 3-6: NRMSE Values for ELM Time Series Prediction 
for Ten Wells in Beryl Enterprise Aquifer 

    NRMSE Error for Prediction 
Map ID Well ID ELM Least Squares Naïve 

W-1 373338113431502 0.21 0.75 0.29 
W-2 373419113434201 0.28 0.64 0.31 
W-3 373527113415101 0.22 0.89 0.34 
W-4 373644113411501 0.42 0.60 0.54 
W-5 373735113393801 0.28 0.40 0.48 
W-6 373854113411501 0.37 0.52 0.52 
W-7 374020113343101 0.38 0.34 0.58 
W-8 374041113373501 0.31 0.44 0.54 
W-9 374053113415101 0.50 0.54 0.55 

W-10 374319113415201 0.38 0.36 0.51 
  Average NRMSE Error 0.33 0.55 0.47 

 

 The ELM method produced the best results for the first 3 wells and outperformed the 

Naïve and Least Squares predictions in most cases. 

3.1.4 Testing of Aquifer Storage Volume Estimation in Cedar Valley, Utah 

The method of aquifer storage calculation described in Section 2.4 was tested and 

compared to various study results for the Cedar Valley Aquifer in Southern Utah. This aquifer 



60 

has recently experienced land subsidence, the opening of fissures, and some damage to 

infrastructure because of over pumping of the aquifer (Inkenbrandt, Lund, Lowe, Knudsen, & 

Bowman, 2014). The aquifer has been the subject of several studies. One difficulty of these 

studies is the development of an accurate water budget to estimate the storage change of the 

aquifer. For example, in the USGS conceptual water budget for the year 2000, aquifer recharge 

was estimated as 42,000 acre-ft/yr, while discharge was estimated at 38,000 acre-ft/yr, a 4,000 

acre-ft/yr surplus. This estimated surplus is in direct conflict with observed drawdown of wells in 

the aquifer, as noted in the USGS report (Brooks & Mason, 2005). The USGS also estimated 

storage change in the aquifer using a groundwater model, which estimated annual recharge at 

27,100 acre-ft/yr and discharge at 34,800 acre-ft/yr, a 7,700 acre-ft/yr deficit. This estimate 

seems more logical, as it matches the observed trends in lowering groundwater levels in the area. 

The USGS also estimated recharge in the aquifer using a Chloride mass-balance estimate, which 

yielded an estimated recharge of 20,800 acre-ft/yr. Last of all, the USGS employed a Basin 

Characterization Model (BCM) to estimate precipitation recharge throughout the basin. This 

model estimated recharge at 20,900 acre-ft/yr. The results of these studies, all carried out by the 

USGS, demonstrate the difficult nature of aquifer storage quantification (Heilweil & Brooks, 

2010; Inkenbrandt et al., 2014; Thomas & Taylor, 1946). Based upon these reports and other 

studies, the Utah Division of Water Rights concluded that “the average annual groundwater 

deficit is probably about 7,600 acre-feet” over the last fifteen years for the Cedar Valley aquifer 

(D. P. E. Jones, 2016). Inkenbrandt et al. (2014) concluded that the deficit in 2000 was 10,700 

acre-ft. 

I used the Groundwater Level Mapping Tool to calculate aquifer storage change for the 

period from 2000 to 2015, corresponding to the same 15 year period studied by D. P. E. Jones 
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(2016). In this calculation, I used a specific yield value of 0.1, which was used by Bjorklund, 

Sunsion, and Sandberg (1978) and by Inkenbrandt et al. (2014). Following the procedures 

outlined in Section 2.2.2 (MLR) for temporal interpolation, Section 2.3.2 (Kriging) for spatial 

interpolation, and Section 2.4 for the final calculation, I calculated the change in aquifer storage 

volume in the Cedar Valley aquifer between March, 2000 and March, 2015. A time series plot 

showing this aquifer depletion as calculated by the Groundwater Level Mapping Tool is 

displayed in Figure 3-28. 

 

Figure 3-28: Storage Change since March, 2000 in Cedar Valley Aquifer 

 

 Over the 15-year period, the aquifer was depleted by 125,000 acre-feet, an average of 

8,300 acre-feet per year. This value calculated using the Groundwater Level Mapping Tool is 

comparable to the USGS/Utah Division of Water Rights calculated value of 7,600 acre-feet per 

year. The Groundwater Level Mapping Tool also estimated a water budget deficit of 11,500 

acre-feet per year for the year 2000, comparable to the Inkenbrandt et al. (2014) estimate of 

10,700 acre-feet per year. 

-140000

-120000

-100000

-80000

-60000

-40000

-20000

0
7/24/1998 9/1/2002 10/10/2006 11/18/2010 12/27/2014 2/4/2019

Ch
an

ge
 in

 A
qu

ife
r S

to
ra

ge
 (A

cr
e-

ft
)

Date



62 

3.1.5 Testing of Aquifer Storage Volume Estimation in Beryl Enterprise Area, Utah 

The Groundwater Level Mapping Tool was also used to calculate changes in water storage 

in the Beryl Enterprise Aquifer in southern Utah, shown in Figure 3-29.  

 

Figure 3-29: Beryl Enterprise Aquifer in Southern Utah 

 

The results were compared against a study prepared by the United States Geological 

Survey in cooperation with the Utah Department of Natural Resources, Division of Water 

Rights, which concluded that between 1937 and 1978, the aquifer lost between 1.3 and 1.5 

million acre-feet of storage (Mower & Sandberg, 1982). Using the USGS estimate of 0.2 as the 

storage coefficient, the Groundwater Level Mapping Tool calculated a storage loss of 1.45 

million acre-feet between 1937 and 1978. The aquifer storage change is shown in Figure 3-30. 
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Figure 3-30: Storage Change since March, 1937 in Beryl Enterprise Aquifer 

 

 The Utah Division of Water Rights estimated that the annual depletion rate of this aquifer 

around the year 2012 was approximately 65,000 acre-feet per year (K. L. Jones, 2012). The 

Groundwater Level Mapping Tool estimates this rate as 66,000 acre-feet per year, using a 

storage coefficient of 0.2, as shown in Figure 3-31. 

 

Figure 3-31: Storage Loss since March, 2000 in Beryl Enterprise Aquifer 

 

 Texas 

I used the Groundwater Level Mapping Tool to analyze 31 aquifers throughout the state of 

Texas. This was useful for calibrating and validating the tool since the state contains thousands 

of wells, some with hundreds of depth to groundwater measurements.  
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3.2.1 Testing of Multi-Linear Regression Harnessing Correlated Wells in Texas 

The method of time series extension by Multi-Linear Regression Harnessing Correlated 

Wells (MLR) detailed in Section 2.2.2 was tested using 467 wells located in the Ogallala Aquifer 

in the Texas Panhandle, each containing data from 1960 – 2010. The area is shown in Figure 

3-32. The time series observations from each of these wells were divided into a training set from 

1960-1995, and a testing set from 1995-2010. The method of MLR was used to predict the 

values of depth to water table at each well from 1995-2010 and then compared against the actual 

values of the testing dataset. Some results of this prediction are shown in Figure 3-33, Figure 

3-34, Figure 3-35, Figure 3-36, Figure 3-37, and Figure 3-38 with the training data (green), the 

measured data (solid red), the MLR prediction (dashed red), the naïve prediction (dashed blue), 

and the least squares prediction (dashed yellow) for each well. 

 

Figure 3-32: Wells in the Ogallala Aquifer in the Texas Panhandle 
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Figure 3-33: Time Series Model for Well 2421301 

 

Figure 3-34: Time Series Model for Well 2421401 
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Figure 3-35: Time Series Model for Well 2447202 

 

Figure 3-36: Time Series Model for Well 1134701 
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Figure 3-37: Time Series Model for Well 759801 

 

Figure 3-38: Time Series Model for Well 349601 
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 As shown in the preceding figures, the MLR method generally outperformed the naïve 

and least squares methods. As shown in Figure 3-33, Figure 3-34, and Figure 3-35, this MLR 

method was able to capture a period of decrease in water table elevation following a period of 

increase, which could not be accomplished with the naïve or least squares method. As shown in 

Figure 3-36, the MLR model was able to correctly predict a variation from a basically constant 

decrease in water levels from 1950-1990, while the least-squares method simply continued along 

the same linear trend line. Figure 3-37 and Figure 3-38 also demonstrate the MLR method’s 

ability to correctly model changes in aquifer depletion rate. 

The results of the time series models were compared using the Range Normalized RMSE 

(NRMSE) method. Table 3-7 shows the mean and median normalized NRMSE values for the 

467 tested wells.  

Table 3-7: NRMSE Values for Time Series Models 
in the Ogallala Aquifer 

  
MLR 

Model 
Naïve 

Prediction 
Least Squares 

Prediction 
Mean 0.108 0.181 0.250 
Median 0.076 0.145 0.211 

  

A box and whisker plot of the NRMSE values for the 467 wells is shown in Figure 3-39, 

with the MLR Model in blue, the Naïve Prediction in orange, and the Least Squares Prediction 

shown in grey. Overall, the MLR Model exhibited the best results. 
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Figure 3-39: Box and Whisker Plot of NRMSE Values in the Ogallala Aquifer 

 

The MLR method outperformed both the naïve and least squares method in 314 of the 467 

tested wells (67%). In those cases where the naïve prediction outperformed the MLR method, it 

was generally by a small margin, as shown in Figure 3-40. In this case, the NRMSE value of the 

MLR model was 0.033, while that of the Naïve prediction was 0.026, both of which are 

acceptably small errors. The Least Squares method performed the best in those cases where the 

time series for the well was completely linear, as shown in Figure 3-41. In this case, the MLR 

method performs well, but with a higher error than the least squares prediction. 
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Figure 3-40: Time Series Model for Well 1003903 

 

Figure 3-41: Time Series Model for Well 1037601 

 

The method of time series extension using Multi-Linear Regression Harnessing Correlated 

Wells was also tested for accuracy against Kriging spatial interpolation, using a jackknife 

approach. This testing was carried out for 407 wells in the Ogallala Aquifer in the Texas 

panhandle. These wells were selected because they each contained time series data from 1960 to 
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2010, which enabled comparison of the estimates to actual measured values. The depth to 

groundwater on December 31, 2009 was estimated at each testing well by implementing the 

PCHIP and then Kriging interpolation, omitting the measured depth at the testing well from the 

interpolation. The depth to groundwater on December 31, 2009 was then estimated at each 

testing well by implementing the MLR technique, using data from 1960-1995 as the training set, 

and then estimating fifteen years of groundwater depths from 1995-2010. The estimated depth to 

water table obtained from both of these methods were then compared to the measured value for 

the testing well, and the percent absolute error was measured. Figure 3-42 shows a box and 

whisker plot of the percent absolute error for both the MLR (blue) and Kriging (orange) methods 

for these 407 testing wells. 

 

Figure 3-42: Box and Whisker Plot of Percent Estimation Error in Ogallala Aquifer 

 

Table 3-8 shows the mean and median absolute percent error, and Table 3-9 shows the 

mean and median absolute error (ft) for the Kriging and MLR estimates for the 407 wells in the 

Ogallala Aquifer. The MLR method outperformed the Kriging method significantly. Out of the 
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407 tested wells, 340 estimates (80%) yielded lower error using the MLR method, while 67 

(20%) yielded lower error using Kriging. Over 80% of the MLR estimated depths were within 

ten feet of the actual measurements, which is quite accurate, considering the average depth to 

groundwater in this area is approximately 200 feet. 

Table 3-8: Mean and Median Absolute Percent 
Error for 417 Wells in the Ogallala Aquifer 

Test Statistic 
MLR 

Method 
Kriging 

Method 
Mean Absolute  Percent Error 4.35% 29.35% 

Median Absolute Percent Error 2.11% 12.82% 
 

Table 3-9: Mean and Median Absolute Error  
for 417 Wells in the Ogallala Aquifer 

Test Statistic 
MLR 

Method 
Kriging 

Method 
Mean Absolute Error 6.2 ft 26.4 ft 

Median Absolute Error 3.5 ft 19.1 ft 
 

3.2.2 Testing of Aquifer Storage Volume Estimation in Hueco Bolson, Texas 

The method of aquifer storage calculation described in Section 2.4 was tested and 

compared to a USGS report for the Texas portion of the Hueco Bolson near El Paso, Texas. The 

Texas portion of the aquifer is shown in Figure 3-43. 
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Figure 3-43: Hueco Bolson near El Paso, Texas 

 

 Based on a USGS model, Bredehoeft, Ford, Harden, Mace, and Rumbaugh III (2004) 

estimated the aquifer depletion rate of this Texas portion of the Hueco Bolson as between 

18,000-33,000 acre-feet per year. The wide range implies the uncertainty of the estimate. The 

USGS determined that the specific yield of the aquifer was between 0.1 and 0.2, and calibrated 

their groundwater model with a specific yield of 0.178 for the unconfined portions, and a specific 

storage value of 7.6 ∗ 10−5 per meter for the confined portions of the aquifer (Heywood & 

Yager, 2003). In my calculations using the Groundwater Level Mapping Tool, I used a storage 

coefficient of 0.15 to represent the aquifer. Using this value, I estimated the average aquifer 

depletion rate of the Hueco Bolson as 28,000 acre-feet per year. This depletion of the Hueco 
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Bolson determined using this storage coefficient is shown in Figure 3-44. This calculation is 

similar to the USGS estimate, indicating the utility of the Groundwater Level Mapping Tool for 

quickly estimating aquifer depletion. If the storage coefficient were adjusted to 0.1 or 0.2, then 

the aquifer depletion rate estimated using the Groundwater Level Mapping Tool becomes 18,000 

acre-feet per year or 37,000 acre-feet per year, respectively (again, similar to the USGS 

estimate). 

 

Figure 3-44: Storage Change since December, 1994 in Hueco Bolson 

  

-300000

-250000

-200000

-150000

-100000

-50000

0

50000

10/28/1995 7/24/1998 4/19/2001 1/14/2004 10/10/2006



75 

4 CONCLUSIONS 

The Groundwater Level Mapping Tool developed during this research has the potential for 

world-wide use, allowing water managers and other decision makers to quickly and easily view 

trends in aquifer storage levels. I developed the application to generate maps and animations of 

groundwater levels and drawdown which can be used to inform decision makers, enabling them 

to identify areas of concern and develop groundwater management plans to ensure the long term 

sustainability of aquifers.  

In addition to these animations, I developed a quick, simple, automated method within the 

Groundwater Level Mapping Tool to estimate changes in total aquifer storage, which is typically 

a painstaking, laborious task. This automated method yielded results comparable to several 

detailed USGS studies in Utah’s Cedar Valley, Utah’s Beryl-Enterprise area, and Texas’ Hueco 

Bolson. These aquifer storage estimates can be used to develop a water budget and identify the 

safe yield of water withdrawal at which aquifers can continue sustainably. 

 I improved the accuracy of these aquifer storage estimates by developing a new method of 

temporal interpolation, Multi-Linear Regression Harnessing Correlated Wells (MLR). This 

method of temporally extrapolating recorded data to unsampled time periods using data from 

other wells outperformed the typical Kriging spatial interpolation method. This is significant, 

since researchers using different temporal interpolation methods have previously concluded that 
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“spatial structure was a little bit stronger than temporal structure,” and that it was more accurate 

to interpolate spatially than temporally (Ahmadi & Sedghamiz, 2007).   

I also developed an experimental method for expanding time series data using PDSI and Soil 

Moisture models, driven by satellite Earth observations as well as land based observations. This 

method uses an extreme learning machine (ELM) to infer groundwater levels from these 

observations. Results from this method were not as good as from the MLR method, but I 

demonstrated that groundwater levels are correlated to, and can be inferred from Earth 

observations. This method was most accurate in areas not subject to excessive groundwater 

pumping. As the GRACE mission continues to make improvements and gather more data, this 

method will become more and more accurate and useful. This method could also be improved by 

incorporating a term to capture the aquifer pumping rate. 

 In conclusion, the Groundwater Level Mapping Tool developed during this research 

enables water managers to make informed decisions and implement wise management plans and 

regulations regarding the sustainable use of aquifers world-wide. 
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