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A B S T R A C T

A three-dimensional Fourier series method (3D-FSM) is applied to study the acoustic characteristics of annular
segment acoustic cavity with various impedance boundary conditions. The formulation is constructed to describe
the cavity system based on the energy principle. Under the framework of this paper, the admissible sound
pressure function is generally set, regardless of boundary conditions, to a 3D Fourier cosine series and six
supplementary functions. These supplementary functions can eliminate the discontinuous or jumping phe-
nomenon in the boundaries. All the series expansion coefficients can be obtained through the Rayleigh-Ritz
technique. The results obtained by the present method in this paper show good convergence. The accuracy of the
present method is verified by being compared with the exact solution and the finite element method (FEM). The
natural frequencies and modal shapes of the annular segment cavity are studied. The sound pressure response is
investigated under the excitation of a monopole source inside the cavity. In this paper, some results of the
acoustic characteristics of the cavity with various geometric parameters and boundary conditions are obtained,
such as angle, radius ratio, impedance value and the number of impedance wall. These results provide a
benchmark for the future researches.

Introduction

As the basic structure, the annular segment cavity is widely used in
engineering application, such as aerospace, marine engineering, civil
construction, rockets and rail transportation. Therefore, there is im-
portant applicative value for the study on annular segment cavity
system and cylindrical cavity system which is of great significance in
the acoustic design and noise control of complex acoustic space. So far,
the study on acoustic properties of enclosed space has been well-
rounded. These results provide an important theoretical basis for the
further research. But, there are some limitations in the study on the
varying impedance boundary conditions. Therefore, this paper aims to
study the acoustic characteristics of annular segment cavity with var-
ious impedance boundary conditions.

The rectangular cavities, as the simplified model of room acoustics,
have been extensively investigated. There have been many research
results on acoustic characteristics of the two-dimensional (2D) rectan-
gular cavities with rigid-wall and impedance-wall boundary conditions,
which have built a good fundament for the future research. Koch [1]
computed numerically in 2D rectangular deep and shallow open cavity.

Huang and Jiang [2] discussed the circular line sound source model for
2D thin acoustic cavity by using the transfer matrix method. This model
avoided the singularity of source and obtained the uniform pressure
responses on the circular line. Dhandole and Modak [3] extended the
sequential quadratic programming algorithm to solve the constrained
optimization problem, which is used to update the acoustic finite ele-
ment model. The sound pressure responses of a 2D rectangular cavity
and a car cavity were verified based on this method. González et al. [4]
used spectral element spatial discretization to analyze the acoustic re-
sonances of a 2D open cavity with absorbing boundary conditions by
solving a multi-dimensional Helmholtz equation. Aktas et al. [5] con-
sidered the Navier-Stokes equations to simulate a 2D rectangular en-
closure filled by compressible gas. The frequencies were considered
along the enclosure in which the oscillatory flow field is created
through the vibration of the left wall of the enclosure.

With the gradual deepening of the research, the study on the
acoustic characteristics of the 3D rectangular cavity or rectangular-like
cavity model has attracted wide attention. Huang and Jiang [6] ex-
tended Ewald's summation technique to calculate acoustic Green's
function for closed rectangular cavity. This transformed Green's
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function showed fast convergence. Larbi et al. [7] applied a new finite
element formulation to study the internal acoustic problems with ab-
sorbing walls by introducing the normal fluid displacement field on the
damped walls. Pàmies et al. [8] investigated the sound radiation from
an aperture in a rectangular enclosure under low modal conditions by
using the Rayleigh radiation equation. Li and Cheng [9,10] investigated
acoustic modes of a rectangular-like cavity with a slight geometrical
distortion introduced by a leaning wall. Petyt et al. [11] developed an
isoparametric acoustic finite element model with twenty nodes, which
was first used to study the rectangular enclosure. Petyt et al. [12] ob-
tained some results of the rectangular cavity containing a rigid and
incomplete partition by using FEM. Pan et al. [13] introduced the
modal expansion approach to study the sound pressure response of
rectangular enclosures which had suitable modification of the damping
and frequency shift on the rigid-wall. The Helmholtz resonance effects
of the cockpit in a helicopter were also considered in the model. Nabavi
et al. [14] reported an experimental analysis of the non-linear phe-
nomena of regular and irregular acoustic streaming patterns which
were in a square air-filled channel with rigid-wall based on the syn-
chronized particle image velocimetry technique. Guha et al. [15] pre-
sented a partly flexible laminated composite enclosure based on finite
element free vibration analysis and boundary element solver. Du et al.
[16] studied the acoustic characteristics of the rectangular cavity with
general impedance boundary conditions. A variety of boundary condi-
tions of rectangular cavity are studied, including rigid wall, impedance
wall and fully absorbing wall. A lot of existing researches are made on
the rectangular and rectangular-like cavity, but the studies on other
shape cavities are rare. Shi et al. [17] proposed an analytical to study
the vibro-acoustic behaviors of a double-plate structure with an
acoustic cavity. In this model, two dimensional (2D) and three di-
mensional (3D) modified Fourier series were used to represent the
displacement of the panels and the sound pressure inside the cavity.
Applying the modified variational method, Xie et al. [18,19] studied the
acoustic properties and vibro-acoustic responses of irregular enclosures.
The Chebyshev polynomial exhibits high performance at entire field
approximations. Bouillard et al. [20] developed an improved element-
free Galerkin method for the acoustic problem of three-dimensional
complex geometries. Bouzouane et al. [21] investigated the ultra-thin
films effects on vibro-acoustic behavior of a laminated glass plate
composed of two elastic skins, a viscoelastic core and two ultra-thin
adhesive films based on the classical plate’s theories. Following the
energy method, Zhang et al. established a composite thin plate-cavity
coupling system [22] based on CPT and the moderately thick laminated
rectangular plate-cavity coupling system [23] based on FSDT. Shi et al.
[24] presented a general solution method to predict the dynamic be-
haviors of the three-dimensional (3D) acoustic coupled system of a
partially opened cavity coupled with a flexible plate and an exterior
field of semi-infinite size. Later, Shi et al. [25] extended this solution to
further study the modeling and acoustic eigenanalysis of coupled spaces
with a coupling aperture of variable size.

In real-world applications, there are many cylindrical acoustic
cavities, such as rocket, submarine, aircraft cabin and so on. The ex-
isting literature researches for rotary-shaped annular segment cavities
and cylindrical cavities have obvious limitations. Laulagnet et al. [26]
used modal analysis to study acoustic radiation of finite cylindrical shell
which was immersed in heavy fluid. In this paper, the related concepts
of radiation and damped modes were introduced. In addition, this study
also gave an important discovery that the behavior of a shell in water is
very different from that of one in air. Gardonio et al. [27] investigated
the plane wave transmission characteristic of a circular cylindrical
sandwich-shell based on the modal interaction analysis. The model
established in this paper can be used to study the high order acoustic
modes and investigate the sensitivity to damp and cavity absorption.
Yang et al. [28] used an integro-modal approach to deal with sound
radiation from a finite cylindrical shell with an irregular-shaped
acoustic enclosure. The cylindrical shell contains a machinery

equipment modelled as a rectangular object attached to shell with a
spring-mass system. In addition, effects of the object size on the cou-
pling between acoustic modes and structural modes were investigated.
Shi et al. [29] proposed the acoustic radiation force function on a solid
elastic spherical particle placed in an infinite rigid cylindrical cavity
filled with an ideal fluid. It is not difficult to find that there are few
studies on the annular segment cavity or cylindrical cavity with various
impedance boundary conditions.

Considering the restrictions of the rotary-shaped cavity with various
impedance walls in the current researches, the acoustic characteristic
analyses of the annular segment cavity with rigid-wall and various
impedance-wall boundary conditions are developed. Based on the
Rayleigh-Ritz energy technique, a 3D Fourier series solution is extended
to study the sound properties of annular segment cavity with various
impedance boundary conditions. This method is previously proposed by
Du et al. [16] to study the rectangular cavity with general impedance
boundary conditions. The sound pressure functions can be written as a
feasible superposition of the 3D trigonometric series expansion, ig-
noring the effect of boundary conditions, in spectral form, as a 3D
Fourier cosine series and six supplementary functions. On the basis of
traditional Fourier series, these supplementary functions are added to
eliminate the discontinuous or jumping phenomenon in the boundaries
which are regarded as a periodic function and defined within the entire
coordinates of the cavity. All these unknown coefficients are defined in
the generalized coordinates which can be solved by Rayleigh-Ritz
procedure. In our previous work [30–41], this kind of Fourier series
method has been used to investigate the vibration characteristics of 2D
solid structures. The results obtained by the present method are com-
pared with those results obtained by literatures and FEM, which shows
good agreement. The current work mainly deals with the natural fre-
quencies, mode shapes, and sound pressure responses with significant
constraints such as arbitrary sector angle, geometric dimension and
various values of impedance parameters. These parametric studies have
guiding significance for the acoustic noise control of annular segment
cavity.

Theoretical formulations

Description of the model

As shown in Fig. 1, an annular segment cavity model is established
to analyze characteristics of the three-dimensional sound field. For the
annular segment cavity, the dimensions of the cavity with general wall
impedance are listed here: outer radius, inner radius, height and sector
angle dimensions are R1, R2, h and ϕ, respectively. An integral cylind-
rical coordinate system (O-r θ z) and a local-coordinate system (O’-s θ z)
in the cavity model are established. In local-coordinate system, s re-
presents the difference between the outer radius and the inner radius
which is expressed as R1-R2. Besides, θ and z represent the angle and
height directions of the studied model. A monopole source Q is located
at a corner of the annular segment cavity.

Admissible sound pressure functions

The modal characteristics of annular segment closed space under
various impedance boundaries can be obtained by solving 3D homo-
geneous Helmholtz acoustic equation and the boundary value problem
of the impedance acoustic boundary constraint equation. It is assumed
that the distribution of impedance on the wall is same and the at-
tenuation effect of medium viscosity is ignored in sound propagation
process. Under this condition, the boundary value problem can be de-
scribed as:

∂
∂

= −
p
n

j
ρc
Z

kp
i

0

(1)

where p, c0 and ρ are the acoustic pressure, the speed of sound
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propagation and the mass density of the acoustic medium, respectively.
Moreover, n is the outer normal direction of the enclosure surface, j is
the pure imaginary (j2=−1), k represents the wavenumber with ω
being angular frequency which is expressed as: k=ω/c0, and Zi denotes
the acoustic impedance on the i’th surface.

It is generally known that the sound pressure function under the
condition of the rigid-wall annular segment cavity can be simply ex-
pressed as a product of triple dimensional cosine functions in three
directions based on the modal superposition method. It can be written
as:

∑ ∑ ∑=
=

+∞

=

+∞

=

+∞

p s θ z A λ s λ θ λ z( , , ) cos( )cos( )cos( )
m n l

mnl m n l
0 0 0

1

(2)

in which λm=mπ/R, =λ n ϕπ/n , λl = lπ/h When the sound pressure
expression is used to deal with the impedance boundary conditions, the
first derivative of this sound pressure function is not continuous on the
surface of cavity. For example, take partial derivative of p with respect
to s on the surface of s=0:

∑ ∑ ∑∂
∂

= =
= =

+∞

=

+∞

=

+∞p
s

A λ λ λ λ λ θ λ zsin( 0)cos( )cos( ) 0
s m n l

mnl m n l m n l
0 0 0 0 (3)

However, it does not satisfy the boundary value problem of im-
pedance wall which is given in Eq. (1). In order to satisfy various im-
pedance boundary conditions of the annular segment cavity, a 3D-IFSM
for the pressure expression is presented to eliminate the discontinuous
or jumping phenomenon in the boundaries. The pressure function can
be written as follow:

∑= ⎛

⎝
⎜ + ⎞

⎠
⎟

−

=

p s θ z t e s θ z s θ zP P H( , , , ) ( , , ) ( , , )jωt

i
i p

Ω

1

6
S

(4)

where PΩ represents the internal pressure distribution function, and Pi
S

expresses the supplementary polynomial of the sound pressure on the
i’th surface of the cavity. Their specific expressions are:

= ⎧
⎨⎩

… …
…

⎫
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in which λRm=mπ/R, =λ n ϕπ/ϕn , λhl = lπ/h The 3D Fourier coeffi-
cient can be expressed as Amnl. The 2D unknown coefficients of six
auxiliary functions are anl

1 , anl
2 , bml

1 , bml
2 , cmn

1 and cmn
2 . Six auxiliary

functions ξ s( )1 , ξ s( )2 , χ θ( )1 , χ θ( )2 , ζ z( )1 and ζ z( )2 are introduced to
eliminate the differential discontinuity of sound pressure function at
each impedance wall. They can be given as:
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It is easy to verify that
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We can easily find that the addition of polynomial can satisfy the
impedance boundary value problem. For example, take partial

Fig. 1. The annular segment cavity with acoustical impedance boundary.
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derivative of p with respect to s on the surface of s=0:

∑ ∑∂
∂

=
=

p
s

a λ θ λ zcos cos
s

nl ϕn hl
0

1

(9)

This kind of 3D-FSM sound pressure distribution function can en-
sure the first derivative of sound pressure is continuous at any point of
the whole solution domain. It is different from the product of three one-
dimensional modified forms [42,43], which can be further extended to
deal with the non-uniform impedance wall.

Energy expressions

The main work of this paper is to investigate the acoustic modes and
responses of the annular segment cavity with various impedance
boundary conditions. Thus, we study the 3D sound field characteristics
of the cavity on the basis of Rayleigh–Ritz energy method to obtain
more accurate results. This energy technology is more preferred to
obtain than the technology based on solving the Helmholtz equation
and general boundary conditions directly as long as it is constructed
sufficiently smooth over the entire solution domain.

The Lagrangian function (L) for the acoustic cavity with the various
impedance boundary constraints can be written as:

= − − −L U T W Wwall S (10)

where U represents the total acoustic potential energy, T denotes the
total kinetic energy, Wwall expresses the dissipated acoustic energy on
impedance surfaces, and WS shows the work done by the sound source
which is placed in the internal cavity. In the following part, we will give
the concrete expressions all of them [44,45].

The total acoustic potential energy (U) which is stored in the an-
nular segment cavity can be given as:
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where ρ is the mass density of the acoustic in the annular segment
cavity, c0 is the speed of sound propagation in the medium, p expresses
the acoustic pressure, and V represents the volume of the cavity.

The total kinetic energy (T) of the annular segment cavity can be
written as:
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in which ω represents the angular frequency of the cavity, R2 is the
inner radius of this considered cavity model, and gradp expresses the
sound pressure gradient.

According to the boundary value problem which is shown in the Eq.
(1), the dissipated acoustic energy of the impedance wall (Wwall) can be
expressed as:
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in which j is the pure imaginary (j2=−1), i is the number of the im-
pedance wall, and Zi (i=1, 2, 3, 4, 5, 6) shows the complex acoustic
impedance which is set on the i’th wall surface. Besides, Si (i=1, 2, 3,
4, 5, 6) donates the area of i’th wall surface.

The work done by the monopole source (WS) is given as:

∫ ∫ ∫= −
+ ∑

+=W
s θ z s θ z Q

jω
s R dsdθdz

P P H( ( , , ) ( , , )) ( )S
R ϕ h i i p

0 0 0

Ω
1

6 S

2

(14)

where Q expresses the distribution function of the source intensity.
As an acoustic point source corresponds to a pulsating sphere, the

incident pressure can be written as:

=
−

p A e
R

jkR
0

0

0

(15)

where A is the amplitude of the source (in kg/s2), R0 is the distance
from the source and k is the wave number. Alternatively, the monopole
can also be characterized by its volume velocity Q0 (in m3/s). The re-
lation between the source amplitude A and volume velocity Q0 is:

=Q πA
jρc k
4

0
0 (16)

where ρc0 is characteristic impedance of the cavity. As a point sound
source which is located at (s θ z) inside the annular enclosure, Q can be
written as:

= − − −Q πA
jρc k

δ s s δ θ θ δ z z4 ( ) ( ) ( )
0

0 0 0
(17)

in which δ is 3-D Dirac function.
Partial derivation of Lagrange equation (L) against the unknown 3D

Fourier coefficient is zero, which can be expressed as follows:

∂
∂

− ∂
∂

− ∂
∂

= ∂
∂

U T W W
H H H Hp p

wall

p

S

p (18)

Substitute Eqs. (4)–(8), (11)–(17) into Eq. (18) and a matrix form
can be obtained based on the Rayleigh-Ritz technology.

+ + =ω ωK Z M H F( ) p
2 (19)

where K, M, Z and F are the stiffness matrix, mass matrix, impedance
matrix and force vector which can be written separately as follows:
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=F F F F F F F F[ ]T
1 2 3 4 5 6 7 (23)

The detailed expressions for these matrices are given in Appendix.
When the modal characteristics of closed space are studied, we only
need to set the right side of the Eq. (19) to zero. However, it is a
nonlinear eigenvalue problem because the equation contains both the
first and quadratic term of the angular frequency. So we should do the
further transform, Y=ωHp, to get a linear equation which can be ex-
pressed as follows [16,46]:

− =ωR S G 0( ) (24)

where:
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By solving the Eq. (24), we can easily obtain the natural frequencies
and coefficients (Hp) which are the eigenvalues and eigenvectors of the
standard matrix. Then we can obtain the corresponding mode shapes
from Eq. (24). Besides, substituting Hp into the Eq. (4), the sound
pressure for the annular segment cavity model can be immediately
obtained.

Numerical results and discussion

In the first section of the numerical analysis, the modal character-
istics of the annular segment cavity are given which contain natural
frequencies and mode shapes. In the second section, the present method
is used to predict the acoustic response under the excitation of a
monopole sound source.

Convergence study and modal analysis

This section mainly discusses the natural characteristics of the
cavity with rigid walls. In the numerical calculation process, the

simulation of rigid wall will be realized when the wall impedance is
assumed to be an infinite pure imaginary (1010j). It is the first time to
study the annular segment cavity using the present method, so it is
necessary to study its convergence and accuracy firstly. As previously
mentioned in the Eq. (4), the series expansions of the sound pressure
function can be obtained by truncating numbers of term M and N in
numerical calculations. The size of the values of M and N is the direct
representation of the convergence of the present method. The accuracy
of present method is verified by comparing with the results obtained by
FEM and analytic method. The natural frequency expression of analytic
solutions for annular segment cavity with rigid wall is given as [47]:

⎜ ⎟= ⎛
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+ ⎞
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f c
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λ
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i π
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2

2 2

2
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(26)

where index i is (0, 1, 2…), and index k is (0, 1, 2…). The index q can be
chosen as:

= ° ⎧
⎨⎩

< ⩽ °
= …

q n
φ

φ
n

180 ; 0 360
0, 1, 2, (27)

in which φ is measured in degree. It should be pointed out that q will be
integer only if φ is a submultiple of 180°n. For non-integer q, λqk is
obtained by interpolation which can refer to the Reference [47]. When
R2/R1 > 0.5, the index λqk can be written as:
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(28)

Table 1 shows the convergence of first eight natural frequencies f of
the annular segment cavity with the rigid wall. The geometrical di-
mensions are R2/R1= 0.5, = °ϕ 90 , and h=2, separately. The mass
density and the speed of sound propagation in the air cavity are
ρ=1.21 kg/m3 and c0= 340m/s. As shown in Table 1, the present
method shows the fast convergence. The biggest difference for the
worst case which is made the contrast of 3× 3×3 and 8×8×8 is
less than 0.0007%. Then the biggest difference for the worst case which
is made the contrast of 4×4×4 and 8× 8×8 is zero. In addition, the
exact solutions and simulation results of the FEM are also given here to
make contrast. It can be seen that the solution obtained by the present
method is closer to the exact solution than that obtained by FEM be-
cause the FEM has a high requirement of the mesh quality and the
solver is an approximate numerical algorithm.

It is generally known that the changes of the geometric parameters
will directly affect the natural characteristics of the cavity. It is of great
significance for vibration and noise reduction to study the effects of
geometric parameters on the natural frequencies of annular segment
cavities. As shown in Table 2, the natural frequencies f from the second
to the ninth order of annular segment cavities on the rigid walls are
given. The cavities have various sector angles ϕ and radius ratios R2/R1.
Since the first order natural frequency value is zero, it is not considered
in this table. The geometrical dimensions are R2/R1= 0.6 and 0.3,

= °ϕ 90 , 240° and 360°, and h=2, separately. The mass density and the
speed of sound propagation in the medium of the acoustic are the same

Table 1
Convergence and accuracy of natural frequencies f for annular segment cavity with the rigid wall.

M×N× L Mode number

1 2 3 4 5 6 7 8

3×3×3 0.000 85.000 145.089 168.153 170.000 223.497 255.000 280.046
4×4×4 0.000 85.000 145.088 168.152 170.000 223.497 255.000 280.045
5×5×5 0.000 85.000 145.088 168.152 170.000 223.497 255.000 280.045
6×6×6 0.000 85.000 145.088 168.152 170.000 223.497 255.000 280.045
7×7×7 0.000 85.000 145.088 168.152 170.000 223.497 255.000 280.045
8×8×8 0.000 85.000 145.088 168.152 170.000 223.497 255.000 280.045
Exact [47] 0.000 85.000 145.087 168.152 170.000 223.495 255.000 280.044
FEM 0.000 85.022 145.138 168.207 170.175 223.661 255.590 280.318
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as Table 1. As we can see from Table 2, the natural frequencies of the
present method show good agreement with other two methods. Besides,
the natural frequencies of the studied model are affected a lot by the
change of various sector angles ϕ and radius ratios R2/R1. We also find
that the natural frequencies of the annular segment cavity increase with
the decrease of the radius ratios R2/R1. The number of frequencies in-
creases significantly within the fixed interval when ϕ increases. Thus, it
is conducive to vibration reduction when the annular segment cavity
with smaller radius ratio and smaller sector angle is adopted.

For a closed cavity, it can effectively avoid the resonance frequency

when the medium inside of cavity changes. Table 3 gives the second to
the eight order of natural frequencies f of the cavity with different
mediums and various cavity depths h. Two types of mediums, air and
water, are considered. The mass density and the speed of sound pro-
pagation in the air cavity are the same as Table 1. The mass density and
the speed of sound propagation in the water cavity are
ρwater=1000 kg/m3 and cwater=1480m/s. In addition, five kinds of
cavity depths h are considered, including 2m, 1.5m, 1m, 0.5m and
0.1 m. The other geometrical dimensions are: R2/R1= 0.5 and = °ϕ 90 .
Some results are found in this table. First, the results obtained by this

Table 2
The natural frequencies f for annular segment cavity with various sector angle ϕ and radius ratio R2/R1.

R2/R1 ϕ Method Mode number

2 3 4 5 6 7 8 9

0.6 90° Present 85.000 136.146 160.498 170.000 217.795 255.000 268.925 282.036
Exact [47] 85.000 135.282 159.769 170.000 217.258 255.000 270.563 283.601
Error (%) 0.000 0.635 0.454 0.000 0.247 0.000 0.609 0.555
FEM 85.039 136.233 160.596 170.311 218.094 256.050 269.424 282.526
Error (%) 0.046 0.064 0.061 0.183 0.137 0.412 0.186 0.174

240° Present 51.243 85.000 99.252 102.300 133.005 152.987 170.000 175.013
Exact [47] 50.731 85.000 98.988 101.461 132.361 152.192 170.000 174.320
Error (%) 0.999 0.000 0.266 0.820 0.484 0.520 0.000 0.396
FEM 51.350 85.039 99.340 102.639 133.291 153.809 170.311 175.752
Error (%) 0.209 0.046 0.089 0.331 0.215 0.537 0.183 0.422

360° Present 68.295 85.000 109.035 136.146 160.501 170.000 183.203 203.134
Exact [47] 67.641 85.000 108.629 135.282 159.769 170.000 182.963 202.923
Error (%) 0.958 0.000 0.372 0.635 0.456 0.000 0.131 0.104
FEM 68.371 85.039 109.082 136.233 160.596 170.311 183.502 203.372
Error (%) 0.112 0.046 0.041 0.065 0.060 0.183 0.162 0.116

0.3 90° Present 85.000 160.636 170.000 181.738 233.889 254.641 255.000 268.453
FEM 85.010 160.684 170.078 181.786 233.978 254.755 255.262 268.564
Error (%) 0.012 0.030 0.046 0.026 0.038 0.045 0.103 0.041

240° Present 64.963 85.000 106.985 124.634 150.856 170.000 177.683 181.992
FEM 65.035 85.022 107.043 124.823 151.028 170.175 178.093 182.179
Error (%) 0.111 0.026 0.054 0.152 0.114 0.103 0.231 0.103

360° Present 85.000 85.613 120.642 160.633 170.000 181.736 190.341 226.199
Exact [47] 85.000 85.612 120.641 160.634 170.000 181.736 190.340 226.196
Error (%) 0.000 0.001 0.001 0.001 0.000 0.000 0.001 0.001
FEM 85.039 85.637 120.687 160.723 170.311 181.834 190.629 226.412
Error (%) 0.046 0.028 0.037 0.056 0.183 0.054 0.151 0.094

Table 3
The natural frequencies f for annular segment cavity with various cavity depths h and medium.

Medium h Method Mode number

2 3 4 5 6 7 8

Air 2 Present 85.000 145.088 168.152 170.000 223.497 255.000 280.045
FEM 84.998 145.122 168.236 169.977 223.677 254.904 279.875

1.5 Present 113.333 145.087 184.105 226.667 269.125 280.046 302.110
FEM 113.327 145.121 184.224 226.594 269.369 279.883 302.244

1 Present 145.087 170.000 223.496 280.046 327.606 340.000 345.951
FEM 145.115 169.979 223.642 279.856 327.991 339.695 344.799

0.5 Present 145.087 280.046 340.000 345.951 369.662 382.175 403.798
FEM 145.109 279.915 339.547 345.178 369.723 382.023 403.666

0.1 Present 145.087 280.046 345.951 382.175 403.798 478.165 521.550
FEM 145.090 280.049 345.957 382.182 403.804 478.209 521.567

Water 2 Present 370.000 631.557 731.959 740.000 972.864 1110.000 1219.024
FEM 369.991 631.708 732.320 739.899 973.654 1109.582 1218.280

1.5 Present 493.333 631.557 801.400 986.667 1171.484 1219.024 1315.066
FEM 493.306 631.703 801.906 986.350 1172.549 1218.313 1315.649

1 Present 631.557 740.000 972.864 1219.024 1426.050 1480.000 1505.905
FEM 631.678 739.908 973.502 1218.198 1427.724 1478.672 1500.888

0.5 Present 631.557 1219.024 1480.000 1505.905 1609.119 1663.586 1757.709
FEM 631.653 1218.454 1478.027 1502.539 1609.384 1662.923 1757.135

0.1 Present 631.557 1219.024 1505.905 1663.586 1757.709 2081.426 2270.278
FEM 631.569 1219.035 1505.930 1663.616 1757.736 2081.616 2270.351
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Fig. 2. The mode shapes of the rigid annular segment
cavity with different sector angle ϕ.
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method are in good agreement with the results obtained by FEM.
Second, the medium has a great effect on the natural frequency of
cavity. The specific performance is that the frequency of the water
cavity is generally higher than the frequency of the air cavity. Third, the
values of the frequency increase with the decrease of the cavity depths
h. It indicates that the low-frequency resonance can be effectively
avoided in the acoustic design by reducing the cavity depth or changing
media properties appropriately.

According to the above results, some of the 3D view mode shapes of
the rigid annular segment cavity are given in Fig. 2. Sometimes they can
more intuitively represent the natural characteristics of cavities. The
geometric dimensions of the cavity in these figures are R2/R1= 0.3,

= °ϕ 90 , 240° and 360°, and h=2, separately. The air properties are
consistent with the above studied model. These 3D views of mode
shapes are conducive to enhancing our understanding of the acoustic
characteristics of the annular segment cavity with rigid walls.

The acoustic response study

Acoustic pressure response is an expression form of acoustic char-
acteristics. The study on acoustic response of the annular segment
cavity is a fundamental problem and an important content in acoustic
research. In this section, the acoustic response of the annular segment
cavity is predicted under the excitation of a monopole sound source.
First of all, the physical parameters of the air cavity are same in the
following cases. Specifically, the mass density and the speed of sound
propagation in the air cavity are ρair=1.21 kg/m3 and cair=340m/s.
And the mass density and the speed of sound propagation in the water
cavity are ρwater=1000 kg/m3 and cwater=1480m/s. A monopole
source is located at one corner of the annular segment cavity. In the
following case analysis, the unit sound amplitude of the point source is
given directly (A=1 kg/s2) and no special explanation will be given.

In order to overcome the numerical instability caused by the
acoustic resonance of the modal frequency, the modal damping coef-
ficient in this paper is employed which can be represented as ξ. As
presented by Johnson et al. [48], the damping coefficient can be in-
troduced by using complex wavenumber for the smaller acoustic modal
damping ratio which can be expressed as

∼ = −k k jξ(1 ). In this paper,
damp can be applied by the complex sound velocity whose expression is
∼ = −c c jη(1 )0 . By using the equivalence relation between complex wa-
venumber and complex sound velocity, we can get a formula:

= −
−

η
ξ
jξ1 (29)

There is no dissipation of sound pressure at the rigid wall which is
an ideal acoustic boundary condition. So it is necessary to study the
acoustic response of the annular segment cavity with the rigid wall. In
Fig. 3, a monopole source is located at one corner of the annular seg-
ment air cavity (0.165, 64.54°, 0.2). The positions of the two observa-
tion points are at (0.435, 67.62°, 1) and (0.157, 23.2°, 1.5) which are
inside the cavity with rigid walls. The geometrical dimensions of the
annular segment cavity are R2/R1= 0.3, = °ϕ 90 , and h=2, sepa-
rately. The modal damping coefficient ξ is 0.001. Two results of the
cavity in the frequency range of 0–350 Hz are given in Fig. 3, which
come from the FEM and the present method. These results show that the
present method can predict the same sound pressure responses as FEM
with the direct introduction of the acoustic modal damping coefficient
whether in the resonance or non-resonance. It shows that the modeling
method proposed in this paper can accurately forecast the pressure
response of rigid walls, and it is entirely feasible to replace damp by
introducing the complex velocity. Although the sound pressure re-
sponses at different observation points are different, there are certain
attenuations at the resonance peaks with the increase of frequencies.
This may be caused by the influence of the medium inside the cavity. In
order to compare the effect of medium of cavity on the sound pressure
response, Fig. 4 shows the sound pressure response of the water cavity
in the frequency range of 0–1500 Hz. The cavity model and observation
points are unchanged. The results obtained by the present method are
compared with the results of FEM, which shows good agreement. It is
not difficult to find that the natural frequencies of the water cavity are
much larger than those of the air cavity. When the value of the abscissa
is ignored, the shapes of the response curves of the water cavity and the
air cavity are identical at the same observation position. What’s more,
the attenuation of wave crest is more obvious for the water cavity than
the air cavity. And then the effect of medium on attenuation of acoustic
pressure is proved.

As a dissipative wall, the impedance wall can absorb a part of the
sound pressure. It is conducive to the design of acoustic noise reduction.
First of all, it is necessary to verify the accuracy of the annular segment
cavity model with the impedance wall established in this paper. Fig. 5
focuses on the effect of the impedance-wall on the acoustic pressure
responses at different observation points. The location of the sound
source is (R/10, ϕ/10, h/10). The geometrical dimensions of the air

Fig. 3. Sound pressure responses inside the rigid annular segment air cavity at: (a) (0.435, 67.62°, 1) and (b) (0.157, 23.2°, 1.5).
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cavity are the same as those in Fig. 3. In this studied model, the complex
impedance value Z= ρc0(100-j) is specified on the wall of z= h, and
other five walls remain rigid boundary conditions. In this case, four
results in the frequency range of 0–300 Hz are given based on the two
observation points at (0.35, 45.48°, 1) and (0.47, 45.19°, 1.9) inside the
cavity. To check the correctness of this method, the simulation results
of the FEM are also given as a comparison and the results show good
agreement of them. We can see from these curves that the sound
pressure level decreases continuously with the increase of frequency.
Besides, it is not difficult to find that the sound pressure response
continues to decay.

In order to understand the effect of the impedance value on the
pressure response, the sound pressure response with the different im-
pedance boundary constraints at the same observation point is given in
Fig. 6. To make the contrast even more remarkable, the sound pressure
response curves with the six rigid walls are also given in the figures. The
geometrical dimensions of the annular segment cavity are R2/R1= 0.5,

= °ϕ 90 , and h=2, separately. The point source is placed at (R/10,

ϕ/10, h/10). The positions of the two observation points are at (3R/10,
ϕ4 /10, 5h/10) and (8R/10, ϕ8 /10, 8h/10). The modal damping coeffi-
cient ξ is 0.001. The two values of impedance walls are Z1= ρc0(100-j)
and Z2= ρc0(10-j) on z=0 and z= h. The other four walls still remain
rigid boundary conditions. Three results of the air cavity in the fre-
quency range of 0–300 Hz are given to make comparison in (a) and (b)
of Fig. 6. And the sound pressure responses of the water cavity in the
frequency range of 0–1500 Hz are given in (c) and (d) of Fig. 6. The
results show that the addition of impedance wall can effectively reduce
the peak value of resonance region. Besides, there is an interesting
finding in these figures that he change of these two kinds of impedance
values only affects the peak value of the pressure response curve at the
same observation point, and the curve is smoother while the real part of
the impedance decreases. It shows that the pursuit of a new material
with less impedance value is of great significance for shock absorption
and noise reduction.

Increasing the number of impedance walls can effectively suppress
resonances, so its effectiveness should be further studied. Fig. 7 shows

Fig. 4. Sound pressure responses inside the rigid annular segment water cavity at: (a) (0.435, 67.62°, 1) and (b) (0.157, 23.2°, 1.5).

Fig. 5. Sound pressure responses inside air cavity with complex impedance Z= ρc0(100-j) specified on the surface z= h at: (a), (c) (0.35, 45.48°, 1) and (b), (d)
(0.47, 45.19°, 1.9).
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the effect of the various number of impedance walls on the pressure
response of the cavity. The geometrical dimensions of the cavity are R2/
R1= 0.5, = °ϕ 90 , and h=2, separately. The modal damping coeffi-
cient ξ is 0.001 and the wall impedance value is Z= ρc0(100-j). The
point source is located at (R/8, ϕ/8, h/8). The positions of the two
observation points are at (R/2, ϕ/2, h/2) and (7R/8, ϕ7 /8, 7h/8). The
sound pressure responses of the air cavity in the frequency range of
0–400 Hz are given in (a) and (b) of Fig. 7. Three different cases contain
one impedance wall (z=0), two impedance walls (z=0 and z= h),
and six impedance walls. Besides, the response of the water cavity in
the frequency range of 0–1500 Hz is also given in (c) and (d) of Fig. 7.
For sake of comparison, the sound pressure response of six surfaces with
rigid boundary conditions is also investigated. From Fig. 7, we can find
that it can effectively control the internal noise level under the re-
sonance frequency by changing the acoustic impedance characteristics.
The inhibitory effect is enhanced obviously when the number of im-
pedance wall increases. The peak value of the pressure response is
gradually obtuse. However, there is no change in the sound pressure
response at the non-resonance frequency. Therefore, the use of im-
pedance wall surfaces should be added as much as possible in en-
gineering applications.

Conclusions

In this paper, a 3D Fourier series solution is extended to solve the
acoustic characteristics for the annular segment cavity with various

impedance boundary conditions. The sound pressure function can be
expressed as a 3D Fourier cosine series and six supplementary poly-
nomials which can ignore the influence of boundary conditions.
Through the introduction of auxiliary polynomials, the discontinuous or
jumping phenomenon of the displacement function on the boundaries
can be overcome effectively. The formulations are based on energy
approach and Rayleigh-Ritz technique to construct the dynamic system
of the acoustic cavity.

Some important conclusions about acoustic characteristics of cavity
are obtained, which are listed as follows:

(1) The annular segment cavity model established in this paper shows
fast convergence and good accuracy.

(2) The effects of various geometric parameters and various medium
inside the cavity on the natural frequencies of annular segment
cavity are significant. It is helpful for the acoustic design of cavity
by choosing suitable size and medium.

(3) The reduction of the impedance value or the increase of the number
of the impedance wall can increase the dissipation of energy and
effectively reduce the value of resonance peaks.

The above results suggest that it should be considered of the geometric
parameters, medium and impedance wall synthetically in the process of
design and noise reduction. At the same time, this study also establishes
the foundation for the further research of rotary type cavity, such as
conical cavity, spherical cavity, double curvature cavity and so on.

Fig. 6. Sound pressure responses with two impedance wall of z=0 and z= h inside the air cavity at: (a) (3R/10, ϕ4 /10, 5h/10), (b) (8R/10, ϕ8 /10, 8h/10), and the
water cavity at: (c) (3R/10, ϕ4 /10, 5h/10), (d) (8R/10, ϕ8 /10, 8h/10).
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Appendix: Detailed expressions of matrices K, M, Z and F

The specific expressions of mass matrix M and stiffness matrix K, impedance matrix Z and force vector F can be written as follows:
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Fig. 7. Sound pressure responses with various impedance walls inside the air cavity at: (a) (R/2, ϕ/2, h/2), (b) (7R/8, ϕ7 /8, 7h/8), and the water cavity at: (c) (R/2,
ϕ/2, h/2), (d) (7R/8, ϕ7 /8, 7h/8).
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where e= f=2, 3, 4, 5, 6, 7.
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