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A B S T R A C T

In current article theoretical analysis is executed to examine flow features of Carreau fluid by conferring scin-
tillating aspects of thermal stratification. Flow field equations are attained by incorporating infinite shear rate
viscosity and magnetic field effects. Afterwards, the partial differential obtained from the fundamental laws of
continuity, momentum and energy containing stratification aspects are attained. These consequent partial dif-
ferential expressions are so intricate that it seems difficult to solve analytically. Therefore Prandtl layer ap-
proximation is capitalized to retain efficient parts of flow narrating differential equations. Then next step is to
eradicate the in active parts of partial equations by implementing transformations. The solution structured of
reduced system is acquired by self-coded shooting algorithm. The variation in physical profiles with respect to
involved parameters is exhibited with the aid of graphs and tables. It is inferred that Carreau fluid behaves in
opposite pattern for n > 1 (shear thickening) and n < 1 (shear thinning) liquid. It is also depicted that thermal
stratification delineates the thermal distribution of fluid flow.

Introduction

Technology driven world compels the researchers to work out in the
investigation of non-Newtonian liquids. Thus the highly motivated re-
searchers are taking keen interest in the study of non-Newtonian fluid
rheology due to practical applicability in various industrial procedures
and daily routine processes. As the non-Newtonian fluid material ex-
presses the complex mathematical and physical relation between shear
stress and shear rate so they are categorized into shear thinning, shear
thickening and dilatant materials. Although various fluid models are
introduced in this regards to scrutinize the intrinsic features of above
materials but no single model is found in this regard. At last the en-
deavor made by P.J. Carreau (1972) [1] came into action and proposed
the model of Carreau fluid. He described that Carreau fluid model or
generalized Newtonian fluid is the combination of power law model
and Newtonian fluid model which is capable of expressing shear thin-
ning features at low shear rate and shear thickening properties at higher
shear rate. Various notable investigation of Carreau fluid model in
different physical frameworks and associated flow restrictions are
conducted by following recommendable researcher. Few of them are as
follows. Olajuwan [2] remarked that constitutive expression of Carreau

fluid reduced to Newtonian fluid by increasing deformation rate. Pan-
tokratoras [3] explained Carreau model by using controlling parameter
n. He described that Carreau fluid depicts the properties of shear
thinning material for 0 < n < 1 and as shear thickening for n > 1.
Shadid and Eckert [4] examined dissipative effect on Carreau fluid
caused by a stretched cylinder. Thermophysical features of Carreau
fluid in an annular space between two concentric cylinders were pre-
sented by Khellaf and Lauriat [5]. The interrogation on the impact of
non-linear radiation in the flow of Carreau fluid was conducted by Raju
and Sandeep [6]. Magnetohydrodynamic boundary layer flow of Car-
reau fluid due to a stretchable surface was depicted by Khan and Ha-
shim [7]. Akbar et al. [8] computed dual solution of MHD stagnant flow
of Carreau fluid due to a stretching sheet. The past and future devel-
opments in this direction is accessed through [9–12].

Stratification is a convective thermal transport phenomenon arises
due to deposition of particles having variant densities and temperature
among the layers. In recent fast technologically growing years the ex-
amination of stratified flow with various field conditions has received
overwhelming attention in research community. These applications
involve thermal stratification of hydral reservoirs and oceans, hetero-
geneous mixtures in atmosphere, industrial food and manufacturing
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processes and salinity stratification phenomenon in estuaries, rivers,
and ground water reservoirs. Aspects of stratification in various non-
Newtonian fluids were investigated in recent years by a lot of re-
searchers. For sake of conciseness few of them are mentioned as fol-
lows. Srinivasacharya and Surender [13] interpreted the aspects of
thermal and solutal stratification in boundary layer mixed convection
flow towards a stretching sheet saturated with porous medium. Mishra
et al. [14] reported the features of heat generation/absorption in
double stratified flow of micropolar fluid in the attendance of Lorentz
field. Reddy et al. [15] studied thermally stratified nanofluid flow over
a stretching sheet saturated with non-Darcy porous medium. Variation
in properties of nanomaterial liquid with the inclusion of stratification
phenomenon was disclosed by Ibrahim and Makinde [16]. Abbasi et al.
[17] executed the nature of doubly stratified Maxwell nanoliquid flow
through series solutions. Hayat et al. [18] examined the nature of
stratification effects for Maxwell liquid flow. Influences of double
stratification and melting heat in stretched flow of Carreau and viscous
nanoliquid are addressed by Farooq et al. [19,20].

The analysis of fluid flows with the interaction of magnetic field has
engrossed substantive focus of investigators. Such considerations is due
to its utilization in various mechanical, industrial and technological
processes i.e. enhanced oil recovery, magnetohydrodynamic gen-
erators, electronic packages, pumps, thermal insulators, flow meters,
power generation, etc. Furthermore, the appliance of magnetic field
molds the orientation of interacting fluid molecules and also controls
the intensity of flow phenomenon. Due to above mentioned importance
researchers are considering fluid flows in various orientations under the
effect of applied magnetic field. Few recent works in this direction is
described as follows. Vajravelu et. al. [21] constituted a systematic
study on axisymmetric flow of MHD viscous fluid through non iso-
thermal stretching cylinder. They inspected that magnetic field para-
meter declines velocity and boundary layer thickness. Mukhopadhyay
et al. [22] deliberated slip flow of MHD viscous fluid flow over a
stretching cylinder. They predicted that magnetic field parameter and
slip parameter decelerates velocity. Ibrahim [23] studied the magne-
tohydrodynamic flow through stretching sheet with convective
boundary conditions.

The main objective of present investigation is twofold. First, is to
construct mathematical modelling of Carreau fluid by considering in-
finite shear rate viscosity. Because Carreau fluid behave as shear thin-
ning material for low shear rate viscosity and as shear thickening fluid
for infinite shear rate viscosity. On the other hand second purpose is to
evaluate the thermal features of Carreau fluid in the presence of stra-
tification. From the accessed literature it is found that no such concept
is available. So our purpose is to fill the gap.

Mathematical formulation

Two dimensional, steady, incompressible flow of Carreau fluid yield

by stretching cylinder is considered. Fluid flow is along axial direction
which is perpendicular to radial axis of cylinder as given in Fig. 1.
Classical energy equation is incorporated which admits the role of
thermal stratification. The Carreau fluid flow regime has interaction
with perpendicularly applied magnetic field.

The flow model is controlled through trust worthy differential
equations with the source of boundary layer approximation. The re-
sultant boundary layer equations are:
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To report numerical solution first we have to step down the partial

Nomenclature

u, v Velocity components
ρ Fluid density
μ Dynamic viscosity
K Curvature parameter
T x( )w Prescribed surface temperature
T0 Reference temperature

∗L Reference length
′f η( ) Velocity of fluid

α Thermal diffusivity
τ Extra stress tensor
d
dt

material time derivative
a, b Positive constants

k Thermal conductivity
∗ν Kinematic viscosity

cp Specific heat at constant pressure
A1 First Rivlin-Erickson tensor.

Cauchy stress tensor
∞T x( ) Variable ambient temperature

U0 Free stream velocity
f η( ) Dimensionless variable
S Thermal stratification parameter
Pr Prandtl number

>Γ 0 time constant
R Radius of cylinder
We Weissenberg number
Rex Reynolds number

Fig. 1. Physical Configuration of Problem.
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differential equations given in Eqs. (2) and (3) into ordinary differential
equations by using the set of transformation [22,24,25].
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By utilizing Eq. (5) into Eqs. (2) and (3), one can obtain the reduced
form
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while the reduced boundary conditions are
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Here, K M We S, , ,Pr and denotes curvature parameter, magnetic field
parameter, Weissenberg number, Prandtl number and thermal stratifi-
cation parameter. The detail of rest of involved quantities can be as-
sessed in nomenclature.

The skin friction coefficient can be achieved by simple practice
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the relevant dimensionless form is
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The local Nusselt number is defined as:
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Numerical procedure

The mathematical formulation of two dimensional Carreau fluid
flows over a stretching cylinder comprises of intricate ordinary differ-
ential equations expressed in Eqs. (6) and (7) with end point condition
given in Eq. (8). As the constructed system of equation is boundary
value problem so for better depiction of solution we approach towards
numerical simulation by implementing shooting technique chartered
with Rk-Fehlberg (5th order) method. To accomplish this method we
have to reduce the order of differential equation into initial value
problem (IVP) by applying dummy substation.
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Fig. 2a. Effect of We on velocity profile for =n 0.2.

Fig. 2b. Effect of We on velocity profile for =n 1.2.
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the associated boundary conditions becomes
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Whereas, the far field conditions are transformed as

∞ = ∞ =ξ ξ( ) 0, ( ) 0.2 4 (21)

Now to solve Eqs. (15)–(19) along with boundary conditions Eq.
(20) by shooting method we need the values of = =ξ ξ(0) 1, (0) 13 5 (i.e.

initial approximation). Then the system of first order ODE’s are solved
with the help of Runge Kutta fifth order integration scheme.

Results and discussion

The purpose of this subsection is to interpret the influences of in-
volved parameters on velocity field, temperature field, skin friction
coefficient (C Ref x

1/2) and Nusselt number ( −N Reu x
1/2). To achieve the

desired output computational analysis is performed by implementing
Matlab programmed Rk-Fehlberg code in combination with shooting
scheme. It is worth mentioning to express that velocity profiles are
elucidated for power law index i.e. <n 1 (Shear thinning fluid) and

Fig. 3a. Effect of M on Velocity profile for =n 0.2.

Fig. 3b. Effect of M on Velocity profile for =n 1.2.

Fig. 4a. Effect of K on Velocity profile for =n 0.2.

Fig. 4b. Effect of K on Velocity profile for =n 1.2.
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>n 1 (Shear thickening fluid). Whereas, thermal profile is displayed for
=S 0 (non-stratified medium) and (stratified medium). Here, we as-

signed realistic numerical values to other controlling parameters with a
particular true objective to get knowledge about momentum and
thermal fields.

This section is dedicated to describe the fluctuations in velocity,
temperature, local skin friction coefficient, local Nusselt number
through graphs and tables under different parametric conditions.
Variation in velocity field with respect to inciting values of controlling
parameters is revealed in Figs. 2–4.

Figs. 2a-b are elucidated to interpret the response of Weissenberg
number We( ) on fluid velocity for shear thinning <n( 1) and shear
thickening >n( 1) cases. It is observed form the graphical sketch that

intensifying values of Weissenberg number We( ) bring accelerating at-
tribute in velocity profile for shear thinning fluid <n( 1) whereas op-
posite pattern is depicted in case of shear thickening fluid >n( 1). The
down surging behavior in Carreau fluid velocity for incrementing va-
lues of We( ) is justified by the fact that by increasing We( ) it yields
enhancement in relaxation time of stressed fluid particles and hence
more resistance is faced by these molecules which as an outcome dis-
seizes the velocity. The impact of magnetic field parameter M( ) on
velocity profile for shear thickening and shear thinning cases is de-
liberated by way of Figs. 3a-b. From both frame works it is concluded
that in both cases fluid velocity is decrementing function of magnetic
field parameter M( ). This pattern is due to higher magnitude of Lorentz

Fig. 5a. Effect of Pr on temperature profile for =S 0.0.

Fig. 5b. Effect of Pr on temperature profile for =S 0.2.

Fig. 6a. Effect of M on temperature profile for =S 0.0.

Fig. 6b. Effect of M on temperature profile for =S 0.2.
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force resistive force come into action which causes fluid particle to flow
in negative aptitude and as a consequence Carreau fluid particle di-
minishes. The attitude of velocity of Carreau fluid molecules for shear
thinning and shearing thickening cases against increasing values of
Curvature parameter K( ) is disclosed in Figs. 4a-b. We choose

=K 0.1,0.2,0.3 for better understanding and description of velocity
pattern. In both sketches it is originated that velocity curves show po-
sitive pattern for inciting values of (K ). As K α R

1 , so by increasing
curvature parameter radius of cylindrical surface reduces as a result
fluid contact with surface reduces and less resistance is encountered
thus fluid particles accelerates in boundary layer. The variation in
Carreau fluid molecules temperature with respect to involved

parameter in the presence of stratification =S( 0.2) and in the absence
of =S( 0.0) are elucidated with the help of Figs. 5–7. Figs. 5a-b. wit-
nesses the reducing behavior of thermal distribution in response to
progressive magnitude of Prandtl number (Pr) for stratification and
non-stratification cases. This behavior is justified by the existence of
inverse relation between the Prandtl number and Diffusion of thermal
energy (i.e. transport of molecules in flow field due to temperature).
Therefore rise in the magnitude of Prandtl number results signification
declination in thermal field of Carreau fluid. Importance of magnetic
field parameter on temperature profile for stratification and non-stra-
tification cases is presented in Figs. 6a-b. Significantly improvement in
θ η( ) is observed for M( ). As the magnetic field force contains resistive
nature so it to decline the velocity of fluid particles. This decrease in
velocity of fluid molecules enhances the resistive force among them and

Fig. 7a. Effect of K on temperature profile for =S 0.0.

Fig. 7b. Effect of K on temperature profile for =S 0.2.

Fig. 8a. Fluctuation in Skin friction due to We and K .

Fig. 8b. Fluctuation in Skin friction due to M and We.
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as an outcome temperature of Carreau fluid molecules inclines. Figs. 7a-
b illustrate the characteristics of curvature parameter K( ) on thermal
field. Here θ η( ) shows positive response for K( ). As the curvature
parameter induces positive pattern in velocity of fluid molecules so this
behavior yields the increment in average kinetic energy of molecules
which is the measure of temperature. Thus fluid temperature increases
for curvature parameter K( ). The fluctuation in skin friction coefficient
C Re( )f x

1/2 is for inciting values of magnetic field parameter M( ), Weis-
senberg number We( ) and curvature parameter K( ) is depicted in
Figs. 8a-b. It can be explicitly observed from the portray that curvature
parameter K( ) and magnetic field M( ) parameter enhances the amount
of drag force whereas reverse pattern in found in case of variation in
Weissenberg number We( ). From the vertical axis of both sketches it is
seen that we are describing the progressive attitude of skin friction
coefficient in absolute sense. As the measure of Nusselt number is
measure of heat transfer so the role of Nusselt in the characterization of
problem is compulsory. Figs. 9a-b are sketched to study the influences
of effecting parameter on convective heat transfer coefficient. From the
graphical display it can be seen that (Pr) and K( ) causes enhancement in
Nusselt number whereas declined attitude is observed for magnetic
field parameter M( ). The reason for enhancement in magnitude of heat
transfer rate for mounting values of (Pr) is justified by the ratio between
momentum to thermal diffusivity express by Prandtl number (Pr). So by
increasing (Pr) momentum diffusivity enriches and average kinetic
motion of fluid particles fastens which as an outcome increases the heat
transfer rate. More over the variation exhibited by various parameters
on skin friction coefficient and Nusselt number are also justified by
tabular data which is expressed in Tables 1–2. Table 1 describes nu-
merical variation in drag force coefficient with respect to Weissenberg
number We( ) and magnetic field parameter M( ) for cylindrical surface

=K( 0.5) and Flat surface =K( 0.0). From the numerical data it can be
analyzed that wall shear stress in case of flat surface is more apparent
than cylinder. Table 3 shows the trifling change in Nusselt number

⎛

⎝
⎜

⎞

⎠
⎟

Nu

Rex
1
2

for sheet and cylinder. It can be explicitly observed that coeffi-

cient of convective heat transfer is more in case of cylinder than sheet.

Fig. 9a. Fluctuation of Nusselt number due to and KPr .

Fig. 9b. Fluctuation of Nusselt number due to and MPr .

Table 1
Variation of Skin friction for different values of We K and M, .

We M C Ref x
1/2 =K 0.0 C Ref x

1/2 =K 0.5

0.1 0.2 2.1789 1.9402
0.5 2.1909 1.9671
0.8 2.2875 1.9708

0.2 2.2627 1.7831
0.1 0.4 2.4692 1.8240

0.6 2.5748 1.9561

Table 2
Variation of Nusselt number for different values of K and MPr, .

Pr K M −NuRex
1/2

1.2 0.2 0.2 1.1744
1.5 1.3319
1.8 1.4770
1.2 0.5 1.5630

0.7 1.8516
0.9 2.1591
0.2 0.2 1.1744

0.4 1.0196
0.6 0.9069

Table 3
Variation of Nusselt number for different values of and SPr .

Pr S Nu

xRe
1
2

=K 0.0 Nu

xRe
1
2

=K 0.5

0.5 0.2 1.2581 1.1744
0.8 1.3436 1.3319
1.0 1.5942 1.4770

0.5 1.6327 1.5630
0.5 0.8 1.4321 1.3894

1.0 1.2259 1.1863

S. Bilal et al. Results in Physics 10 (2018) 118–125

124



Conclusion

Current analysis is dedicated to analyze two-dimensional steady
flow of MHD Carreau fluid over a stretching cylinder with stratification
aspects. The governing non-linear boundary value problem is solved by
using shooting method. The main outcomes are listed below:

1) The velocity profile enhances for shear thinning fluids while it
shows opposite behavior for shear thickening fluids in case of large
value of Weissenberg number.

2) Curvature parameter tends to decline the temperature of fluid flow
both in attendance and absence of thermal stratification.

3) Magnitude of Skin friction coefficient in absolute sense is com-
paratively higher in case of stretching sheet =K( 0.0) and for cy-
linder =K( 0.5).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the
online version, at http://dx.doi.org/10.1016/j.rinp.2018.05.005.

References:

[1] Carreau PJ. An analysis of the viscous behavior of polymer solutions. Can J Chem
Eng 1979;57:135140.

[2] Olajuwon BI. Convection heat and mass transfer in a hydromagnetic Carreau fluid
past a vertical porous plate in presence of thermal radiation and thermal diffusion.
Therm Sci 2011;15:241–52.

[3] Pantokratoras A. Non-similar Blasius and Sakiadis flow of a non-Newtonian Carreau
fluid. J Taiwan Inst Chem Eng 2015;56:1–5.

[4] Shadid JN, Eckert ERG. Viscous heating of a cylinder with finite length by a high
viscosity fluid in steady longitudinal flow, Non-Newtonian Carreau model fluids. Int
J Heat Mass Transf 1992;35:39–49.

[5] Khellaf K, Lauriat G. Numerical study of heat transfer in a non-Newtonian Carreau-
fluid between rotating concentric vertical cylinders. J Non-Newton Fluid Mech
2000;89:45–61.

[6] Raju CSK, Sandeep N. Falkner-Skan flow of a magnetic-Carreau fluid past a wedge
in the presence of cross diffusion effects. Eur Phys J Plus 2016;131:267.

[7] Khan M, Hashim. Boundary layer flow and heat transfer to Carreau fluid over a
nonlinear stretching sheet. AIP Adv 2015;5:10723.

[8] Akbar NS, Nadeem S, Haq RU, Ye S. MHD stagnation point flow of Carreau fluid
toward a permeable shrinking sheet: dual solutions. Ain Sha Eng J 2014;5:1233–9.

[9] Hashim M Khan. On Cattaneo–Christov heat flux model for Carreau fluid flow over a
slendering sheet. Results Phys 2017;7:310–7.

[10] Khan M, Hashim M, Hussain M. Azam, Magnetohydrodynamic flow of Carreau fluid
over a convectively heated surface in the presence of non-linear radiation. J Magnet
Magnet Mater 2016;412:63–9.

[11] Kumar KG, Gireesha BJ, Rudraswamy NG, Manjunatha S. Radiative heat transfers of
Carreau fluid flow over a stretching sheet with fluid particle suspension and tem-
perature jump. Result Phys 2017;7:3976–83.

[12] G.R. Mchireddy, S. Naramgari, Heat and mass transfer in radiative MHD Carreau
fluid with cross diffusion, Ain Shams Eng J, doi.org/10.1016/j.asej.2016.06012.

[13] Srinivasacharya D, Upendar M. Effect of double stratification on MHD free con-
vection in a micropolar fluid. J Egypt Math Soc 2013;3:370–8.

[14] Mishra SR, Pattnaik PK, Dash GC. Effect of heat source and double stratification on
MHD free convection in a micropolar fluid. Alexandria Eng. J. 2015;54:681–9.

[15] Reddy CR, Murthy PVSN, Rashad AM, Chamkha AJ. Numerical study of thermally
stratified nanofluid flow in a saturated non-Darcy porous medium. Eur Phys J Plus
2014;129:25–34.

[16] Ibrahim W, Makinde OD. The effect of double stratification on boundary-layer flow
and heat transfer of nanofluid over a vertical plate. Comput Fluids 2013;86:433–41.

[17] Abbasi FM, Shehzad SA, Hayat T, Alhuthali MS. Mixed convection flow of Jeffrey
nanofluid with thermal radiation and double stratification. J Hydrodynamics
2016;5:840–9.

[18] Hayat T, Shehzad SA, Al-Sulami HH, Asghar S. Influence of thermal stratification on
the radiative flow of Maxwell fluid. J Braz Soc Mech Sci Eng 2013;35:381–9.

[19] Farooq M, Javed M, Khan MI, Anjum A, Hayat T. Melting heat transfer and double
stratification in stagnation flow of viscous nanofluid. Result in Physics
2017;7:2296–301.

[20] Farooq M, Anzar QA, Hayat T, Khan MI, Anjum A. Local similar solution of MHD
stagnation point flow in Carreau fluid over a non-linear stretched surface with
double stratified medium. Result in Physics 2017;7:3078–89.

[21] Vajravelu K, Prasad KV, Santhi SR. Axisymmetric magneto-hydrodynamic (MHD)
flow and heat transfer at a non-isothermal stretching cylinder. Appl Math Comput
2012;219:3993–4005.

[22] Mukhopadhyay S. MHD boundary layer slip flow along a stretching cylinder. Ain
Shams Eng J 2013;4:317–24.

[23] Ibrahim Wubshet. Nonlinear radiative heat transfer in magnetohydrodynamic
(MHD) stagnation point flow of nano fluid past a stretching sheet with convective
boundary condition. Propul Power Res 2015;4:230–9.

[24] Sohut NFHM, Aziz AS, Ali ZM. Double stratification effects on boundary layer over a
stretching cylinder with chemical reaction and heat generation. J Phys
2017;890:012019.

[25] Salahuddin T, Hussain A, Malik MY, Awais M, Khan M. Carreau nanofluid im-
pinging over a stretching cylinder with generalized slip effects: Using finite dif-
ference scheme. Result in Physics 2017;7:3090–9.

S. Bilal et al. Results in Physics 10 (2018) 118–125

125

http://dx.doi.org/10.1016/j.rinp.2018.05.005
http://refhub.elsevier.com/S2211-3797(18)30222-5/h0005
http://refhub.elsevier.com/S2211-3797(18)30222-5/h0005
http://refhub.elsevier.com/S2211-3797(18)30222-5/h0010
http://refhub.elsevier.com/S2211-3797(18)30222-5/h0010
http://refhub.elsevier.com/S2211-3797(18)30222-5/h0010
http://refhub.elsevier.com/S2211-3797(18)30222-5/h0015
http://refhub.elsevier.com/S2211-3797(18)30222-5/h0015
http://refhub.elsevier.com/S2211-3797(18)30222-5/h0020
http://refhub.elsevier.com/S2211-3797(18)30222-5/h0020
http://refhub.elsevier.com/S2211-3797(18)30222-5/h0020
http://refhub.elsevier.com/S2211-3797(18)30222-5/h0025
http://refhub.elsevier.com/S2211-3797(18)30222-5/h0025
http://refhub.elsevier.com/S2211-3797(18)30222-5/h0025
http://refhub.elsevier.com/S2211-3797(18)30222-5/h0030
http://refhub.elsevier.com/S2211-3797(18)30222-5/h0030
http://refhub.elsevier.com/S2211-3797(18)30222-5/h0035
http://refhub.elsevier.com/S2211-3797(18)30222-5/h0035
http://refhub.elsevier.com/S2211-3797(18)30222-5/h0040
http://refhub.elsevier.com/S2211-3797(18)30222-5/h0040
http://refhub.elsevier.com/S2211-3797(18)30222-5/h0045
http://refhub.elsevier.com/S2211-3797(18)30222-5/h0045
http://refhub.elsevier.com/S2211-3797(18)30222-5/h0050
http://refhub.elsevier.com/S2211-3797(18)30222-5/h0050
http://refhub.elsevier.com/S2211-3797(18)30222-5/h0050
http://refhub.elsevier.com/S2211-3797(18)30222-5/h0055
http://refhub.elsevier.com/S2211-3797(18)30222-5/h0055
http://refhub.elsevier.com/S2211-3797(18)30222-5/h0055
http://refhub.elsevier.com/S2211-3797(18)30222-5/h0065
http://refhub.elsevier.com/S2211-3797(18)30222-5/h0065
http://refhub.elsevier.com/S2211-3797(18)30222-5/h0070
http://refhub.elsevier.com/S2211-3797(18)30222-5/h0070
http://refhub.elsevier.com/S2211-3797(18)30222-5/h0075
http://refhub.elsevier.com/S2211-3797(18)30222-5/h0075
http://refhub.elsevier.com/S2211-3797(18)30222-5/h0075
http://refhub.elsevier.com/S2211-3797(18)30222-5/h0080
http://refhub.elsevier.com/S2211-3797(18)30222-5/h0080
http://refhub.elsevier.com/S2211-3797(18)30222-5/h0085
http://refhub.elsevier.com/S2211-3797(18)30222-5/h0085
http://refhub.elsevier.com/S2211-3797(18)30222-5/h0085
http://refhub.elsevier.com/S2211-3797(18)30222-5/h0090
http://refhub.elsevier.com/S2211-3797(18)30222-5/h0090
http://refhub.elsevier.com/S2211-3797(18)30222-5/h9000
http://refhub.elsevier.com/S2211-3797(18)30222-5/h9000
http://refhub.elsevier.com/S2211-3797(18)30222-5/h9000
http://refhub.elsevier.com/S2211-3797(18)30222-5/h9005
http://refhub.elsevier.com/S2211-3797(18)30222-5/h9005
http://refhub.elsevier.com/S2211-3797(18)30222-5/h9005
http://refhub.elsevier.com/S2211-3797(18)30222-5/h0105
http://refhub.elsevier.com/S2211-3797(18)30222-5/h0105
http://refhub.elsevier.com/S2211-3797(18)30222-5/h0105
http://refhub.elsevier.com/S2211-3797(18)30222-5/h0110
http://refhub.elsevier.com/S2211-3797(18)30222-5/h0110
http://refhub.elsevier.com/S2211-3797(18)30222-5/h0115
http://refhub.elsevier.com/S2211-3797(18)30222-5/h0115
http://refhub.elsevier.com/S2211-3797(18)30222-5/h0115
http://refhub.elsevier.com/S2211-3797(18)30222-5/h0120
http://refhub.elsevier.com/S2211-3797(18)30222-5/h0120
http://refhub.elsevier.com/S2211-3797(18)30222-5/h0120
http://refhub.elsevier.com/S2211-3797(18)30222-5/h9010
http://refhub.elsevier.com/S2211-3797(18)30222-5/h9010
http://refhub.elsevier.com/S2211-3797(18)30222-5/h9010

	Analysis of Carreau fluid in the presence of thermal stratification and magnetic field effect
	Introduction
	Mathematical formulation
	Numerical procedure
	Results and discussion
	Conclusion
	Supplementary data
	References:




