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A B S T R A C T

In this article, we study the revised model of boundary-layer flow past a permeable stretching/shrinking sheet
over the heated surface in a nanofluid with stability and regression analyses. The revised model refers to a
physically more realistic approach, where the nanoparticle fraction can be controlled on the boundary in a
similar way as for temperature on the boundary. The system of nonlinear similarity ordinary differential
equations is solved numerically and dual solutions are found for both stretching and shrinking sheets up to a
certain range of the stretching/shrinking parameter. Effect of pertinent parameters on the skin friction coeffi-
cient, the local Nusselt number, the velocity, temperature and concentration profiles are deliberated. Stability
analysis is executed to know about the stability of dual solutions when sheet is being stretched or shrunk under
the suction effect. The local Nusselt number is estimated through regressions for both stretching and shrinking
sheets. It is observed through regressions and graphical results that the Brownian motion has no more effect on
the heat transfer rate. The Schmidt number gives a very minimal effect on the heat transfer rate, while with an
increase in Biot number, the heat transfer rate increases but at a higher value of Biot number accomplishes a
constant wall temperature condition. The Brownian and thermophoresis parameters should be kept small as
mainly the transfer of heat is due to fluid motion. From the stability analysis, it is found through numeric values
and graphical results that the first solution is stable and thus physically realizable. Finally, the flow pattern is
analyzed, and it is observed that streamline contracts with the increase of the suction parameter.

Introduction

The convective heat transfer in nanofluid has a contemporary at-
tention, and various researchers tried to make large improvement in
convective heat transfer coefficient [1–7]. Buongiorno [8] evaluated
different theories explaining the enhanced heat transfer characteristics
of nanofluids and developed analytical model for convective transport
in nanofluids which taken into account the Brownian diffusion and
thermophoresis. On the other hand, boundary layer flows driven by
stretching/shrinking sheet have numerous applications such as in
cooling of continuous strips, wire drawing, producing glassware and
crystal, drawing of paper film, capillary effect on very small pores, and
others. As shrinking sheet flow is quite distinct from the stretching
sheet, so suction effect has also been considered on stretching/
shrinking sheet as it delays the boundary layer separation and makes
the flow more stable. In view of that, various studies of the flow and
heat transfer on stretching/shrinking sheet with different physical
parameters have been investigated due to increasing engineering

applications.
Khan and Pop [8] examined the boundary layer flow of nanofluid

past a stretching sheet with constant surface temperature, then Makinde
and Aziz [9] considered it with general form as convective boundary
condition. Recently, Turkyilmazoglu [10] found the exact solution for
some nanoliquid flow past a porous shrinking/stretching surfaces. It
was reported that rate of heat transfer is highly dependent on the
density of considered nanofluid and heat capacitance. Most recently
Khan et al. [11] analytically examined the time dependent mixed
convection effect in a couple stress nanofluid using an oscillatory
stretching sheet and reported an enhancement in temperature dis-
tribution for Brownian and Hartman number. Furthermore, details on
the convective heat transfer in nanofluid and relevant references on
nanofluids can be found in the books by Das et al. [12], Vafai [13],
Michaelides [14], Nield and Bejan [15], and Shenoy et al. [16], and in
the review papers by Buongiorno et al. [17], Kakaç and Pramuanjar-
oenkij [18], Wong and Leon [19], Manca et al. [20], Mahian et al. [21],
Sheikholeslami and Ganji [22], etc. These reviews discuss in detail the
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preparation of nanofluids, theoretical and experimental investigations
of thermal conductivity and viscosity of nanofluids, and the work done
on convective transport in nanofluids. Recently, Ganvir et al. [23] made
a review to analyze the characteristics of heat transfer in nanofluid and
reported that enhancement in heat transfer is higher for metallic na-
noparticles while thermal conductivity mechanism in term of en-
hancement is still not very clear. Most recently, Bahiraei et al. [24] gave
a detail review about the recent publications dealing with heat transfer
in nanofluids. It was mentioned, among other important issues that the
accurate correlations, for the estimation/prediction of the pressure drop
and heat transfer coefficient of nanofluids in heat exchangers, is very
important. In addition, it is to be noted that nanofluids find significant
importance in areas such as electronic cooling, vehicle cooling trans-
former, coolant cooling of electronic equipments, geophysical flows,
aqueous solution-based crystal growth processes, etc. (see Rao and
Srivastava [25]). Thus the accurate knowledge of thermal performance
of nanofluids is of utmost importance.

Several researchers tried to enhance the heat transfer in a nanofluid
with various physical aspects while using Buongiorno model [26]. But
they always tried to control the nanoparticle concentration on the
surface actively. This deficiency was first time removed by Kuznetsov
and Nield [27] properly by passive control of nanoparticle fraction on
the boundary and replaced the boundary conditions by a new physically
more realistic set and thus termed it as “revised model”. Then they
revised their different models using the same approach for different
physical aspects [28–30]. In their studies, they controlled the nano-
particle fraction on the surface passively rather than actively and found
that the heat transfer rate was independent of the Brownian motion
parameter due to zero nanoparticle flux on the boundary. It means the
contribution of Brownian motion to thermal energy equation tends to
zero.

In other studies, researchers used this technique to control their
nanoparticle fraction passively. Yadav et al. [31] reinvestigated the
model for thermal instability in rotating nanofluid layer and reported
that zero-flux boundary condition has a more destabilizing effect than
constant boundary condition for alumina-water nanofluid, whereas
reverse result seen for copper-water nanofluid. Again Yadav et al. [32]
revised the model by considering zero nanoparticle flux on the surface
for the onset of double diffusive nanofluid convection in a rotating
porous medium, while Rana and Chand [33] reinvestigated the double
diffusive convection of Rivlin-Ericksen nanofluid model and reported
that oscillatory did not exist as Rn remains positive. Recently Jahan
et al. [34] revised the nanofluid model over the moving surface in a
flowing fluid by considering the zero flux on the boundaries. Most re-
cently Uddin et al. [35] used a zero flux condition while studying the
buoyancy effect on nanoliquid stagnation point flow over a con-
vectively heated stretching sheet in the presence of magnetohy-
drodynamic (MHD).

Regarding the findings of multiple solutions, many researchers tried
to find dual solutions, for example [36,37] but the majority of them did
not explain about the stability of the outcoming solutions. It seems that
Merkin [38] first time found the smallest eigenvalues for dual solutions
and reported that positive eigenvalues were more stable as compared to
negative eigenvalues. Later on, Weidman et al. [39] established a sta-
bility analysis by following Merkin [40] and found positive smallest
eigenvalues for the first solutions and smallest negative eigenvalues for
the second solutions and concluded that the first solution was stable,
whereas the second solution was unstable. Few researchers have at-
tempted the stability analysis successfully by following Weidman et al.
[39] and Merkin [38]. For example, Merrill et al. [40] performed sta-
bility analysis for stagnation point flow, while Harris et al. [41] found
that the first solution was stable through stability analysis. Rosca and
Pop [42] performed the analysis for a vertical permeable stretching
shrinking sheet. Ishak [43], Nazar et al. [44] and Hamid et al. [45]
tested the stability of their solutions through stability analysis. Most
recently, Awaludin et al. [46] and Rosca and Pop [47] implemented the

stability analysis for the stagnation point flow and axisymmetric rota-
tional stagnation point flow, respectively.

Based on the above studies, our aim is to reinvestigate the
boundary-layer flow of a nanofluid past a stretching sheet over a heated
surface by extending it to a permeable stretching/shrinking sheet with
passive control of nanoparticle fraction on the boundary (see Makinde
and Aziz [9]). Hence, nanoparticle fraction on the surface is adjusted
accordingly. A major limitation of the paper by Makinde and Aziz [9] is
to control fraction actively on the surface. Basically, to fix the nano-
particle concentration at the boundary is an arbitrary condition [48]
and controlling the particle fraction on the wall will be difficult in
practice. So it is required to use the more realistic condition, so that it
can be controlled at the boundary in a similar direction as the tem-
perature can be regulated. So we followed the studies mentioned above
and used a more realistic approach to get better understanding about
the heat transfer in nanofluids. Further, we found dual solutions and
established the stability analysis for both solutions using bvp4c func-
tion. Regression analysis is carried out for the reduced Nusselt number.
The effects of numerous flow parameters are examined for the skin
friction coefficient, the local Nusselt number and some sample graphs of
velocity, temperature and concentration profiles, respectively. Lastly,
the flow pattern is observed by drawing streamlines for both solutions,
and in all graphs, dotted lines represent the second solution, whereas
solid line is the first solution.

Problem formulation

Consider a two-dimensional steady flow of a nanofluid past a
permeable stretching/shrinking sheet. We assume that velocity of
stretching/shrinking sheet is =u bxw , b is constant, and it varies line-
arly from origin when =y 0 as shown in Fig. 1.

We consider the nanofluid in the region >y 0 and assume that
surface sheet is heated due to convection from a hot fluid with tem-
perature Tf and heat transfer coefficient h. Cw and ∞C are the nano-
particle volume fractions on the wall and away from the wall when y
has large values. Following Buongiorno’s [26] model, we have the
following equations:
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Here u and v are velocity components in the respective directions, v the
kinematic viscosity, α the thermal diffusivity, =ξ ρc ρc( ) /( )p f , DB and DT

belong to the Brownian diffusion and thermophoretic diffusion coeffi-
cient, respectively. Following [27], the boundary conditions are as
follows:
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where λ is the stretching/shrinking velocity with >λ 0 for stretching
and <λ 0 for the shrinking case. v0 belongs to the mass flux velocity
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and when >v 00 for injection and <v 00 is for suction. It is worth
mentioning that in the previous model [9], they engaged the condition
on the surface as =C Cw. A major limitation of this condition is to
control the nanoparticle fraction actively. Here we have imposed zero
flux condition. Further, we introduce the following transformations:
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The continuity equation is identically satisfied. The scale analysis of
momentum equation in a direction normal to the sheet with the help of
boundary layer approximation gives us
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Using Eq. (8) into Eqs. (2)–(7), we get the following nonlinear differ-
ential equations with boundary conditions:
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where primes indicate differentiation with respect to η. Pr is the Prandtl
number, Sc the Schmidt number, S the suction/injection parameter, Nb
the Brownian motion parameter and Nt the thermophoresis parameter
that are defined as:
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The quantities of physical interests are the skin friction coefficient, and
the local Nusselt number which are defined as
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where τw is the surface shear stress and qw is the heat flux at the surface
and both are defined as
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Substituting (8) into (15) and using (14) we get as follow:
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Here =Rex
u x

ν
w represents the local Reynolds number. It is worth

mentioning that now the mass flux is zero due to the new approach as
mentioned in [27,30]. Following [49], an exact solution for Eq. (9) is
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It shows that we can get the second solution for >S 2 and it can be
confirmed from the Fig. 4 that has been drawn for ″f (0) against S in this
paper.

Hence, nanofluid momentum Eqs. (2) and (3) are identical to the
momentum equation for pure fluid but here we are dealing with na-
nofluid, so viscosity μ( ) strongly depends on the volume fraction of the
nanoparticles. Turkyilmazoglu [50] has shown a link created between
deforming surfaces phenomena considered in various geometries. Since
we are dealing with linear sheet so when n=1 and magnetic field,

=γ 0, Eq. (4) in Turkyilmazoglu [50] becomes similar with Eq. (9) of
our problem. Further, since all conservation Eqs. (2)–(5) are strongly
coupled so following Turkyilmazoglu [50], we may conclude that the
interchangeable role of mechanisms between stretching and shrinking
sheets is present.

Stability analysis

Since there exist more than one solution of physical problem against
single parameter, so it is important to find out the physical reliability of
multiple solutions. The outcoming results from stability analysis could
be engaged in engineering applications. In this respect, the stability of
the dual solutions is investigated here. We introduce the new variable

=τ bt that is associated with the initial value problem and is consistent
with the question of which solution will be obtained in practice (stable
and physically realizable). So we rewrite the Eqs. (2)–(5) and (8) as the
following (see Merkin [38] and Weidman et al. [39]):
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Fig. 1. Physical model and coordinate system.
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Using (18) into (19)–(22), we get the following equations:
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subject to the boundary conditions
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To check the stability of the steady flow solutions
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basic model by introducing the following terms (Merrill et al. [40],
Weidman and Sprague [51]):

= + = +
= +

− −

−

f η τ f η e F η θ η τ θ η e H η
ϕ η τ ϕ η e M η

( , ) ( ) ( ), ( , ) ( ) ( ),
( , ) ( ) ( )

γτ γτ

γτ
0 0

0 (27)

where F η( ), H η( ) and M η( ) are small relative to f η θ η ϕ η( ), ( ), ( )0 0 0 and
γ is small eigenvalue that will be calculated.

Substituting Eq. (27) into Eqs. (23)–(26), we get the following:
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Following Weidman et al. [39], let =τ 0 and get the final equations in
the following form
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To find the possible eigenvalues, we relax ′ → → ∞F η η( ) 0 as0 (see
Harris et al. [41]).

Results and discussion

We have solved the system of nonlinear ordinary differential
equations numerically using an efficient-bvp4c function. This method
has been used successfully by many researchers [42–46]. For this
method; suitable initial guess needs to be chosen. These guesses should
satisfy the boundary conditions and keep the solution behavior. The
appropriate value of similarity variable η( ) is picked and the con-
vergence criteria is kept to be 10−10. We found dual solutions for a
particular range of suction and stretching/shrinking parameter. The
impact of following parameters such as the Prandtl number (Pr),
Brownian motion parameter (Nb), thermophoresis parameter (Nt),
stretching/shrinking parameter (λ), suction/injection parameter (S),
Biot number (Bi) and Schmidt number (Sc) on the skin friction coeffi-
cient, the reduced Nusselt number, the velocity, temperature and con-
centration profiles will be discussed. Multiple regressions are carried
out for the reduced Nusselt number. According to Turkyilmazoglu [52],
if we are dealing with series solution (particularly Adomian Decom-
position Method), then solution can be approximated without pre-en-
tered values of governing parameters in an analytical manner. Thus,
their accurate ranges can be determined by achieving the threshold up
to the required accuracy, whereas when solving numerically, solution
can only be obtained with pre-entered values of governing parameters.
So here we have considered the following ranges of numerous para-
meters: Pr= [2,25], Sc=[2, 2500], Nb=[0.00000035, 0.5],
Nt=[0.0000011, 0.5], and = ∞Bi [0.1, ).

The effects of Nb and Nt on the reduced Nusselt number − ′θ( (0)) are
observed with active and passive control of nanoparticles in Table 1 by
keeping the value of Biot number large. It is seen that an increase of Nb
does not give any effect on the heat transfer rate for passive control of
nanoparticles because of the nanofluid revised model while in active
control, the value decreases for both Nb and Nt. It means frequent
collisions will occur because of rise in Nb and the nanoparticles will be
more condensed. On the other hand, for passive control, a decreasing
behavior is also seen for the reduced Nusselt number with Nt. It means
that thermophoresis exhilarates the diffusion of nanoparticles and

Table 1
Numerical results of reduced Nusselt number when Sc=10, λ=01, Pr= 10,
Bi=∞ and S=0.

Nb Nt − ′θ (0)
Active control of
nanoparticles

=C C( )w

− ′θ (0)
Passive control of
nanoparticles

+ =∂
∂ ∞

∂
∂( )D 0B

C
y

DT
T

T
y

3.5E−07 1.1E−06 2.307992 2.308001
3.8E−06 1.1E−06 2.307952 2.308001
3.2E−06 1.1E−06 2.307959 2.308001
0.0001 1.1E−06 2.306842 2.308001
0.001 1.1E−06 2.296475 2.308001
3.2E−06 0.0001 2.307211 2.30777
3.2E−06 0.001 2.300415 2.305665
0.1 0.1 0.952377 2.076154
0.2 0.1 0.505581 2.076154
0.3 0.1 0.252156 2.076154
0.4 0.1 0.119406 2.076154
0.1 0.2 0.693174 1.851727
0.1 0.3 0.520079 1.639971
0.1 0.4 0.402581 1.445847

S. Jahan et al. Results in Physics 10 (2018) 395–405

398



subsequently increases the thermal boundary layer thickness. That’s
why, the heat transfer rate is reducing. Further, to make a comparison
of variation of the reduced Nusselt number, the numeric values of the
reduced Nusselt number are calculated when a constant concentration
of the nanoparticles and passive control of nanoparticles on the wall are
adopted. Table 2 shows the comparison with published results when we
replace convective boundary condition ′ = − −θ Bi θ(0) [1 (0)] with
normal one =θ (0) 1 as for ⪢ =Bi θ1, (0) 1. A decent agreement is es-
tablished between the new and published results. It is also observed
that with the increase of Prandtl number, the reduced Nusselt number
increases. In Table 3, again we have seen the variation of the reduced
Nusselt number (with active and passive control of nanoparticles) for
numerous values of the Brownian motion and thermophoresis para-
meters by keeping the other parameters values fixed. In the first section
of Table 3, we compared the present numeric values with Makinde and
Aziz [9]. It is seen that Brownian motion contributes in heat transfer
rate for active control of nanoparticles but show negligible impact for
passive control of nanoparticles. In the second section of Table 3, we
calculated the numeric values of reduced Nusselt number by using more
appropriate values of governing parameters particularly Pr, Sc, Nb and
Nt. The thermophoresis part in the rate of heat transfer is minimal and it
is towards the declining trend. By observing numeric values of Tables 1
and 3, one can easily compute numerically to validate these results.

Figs. 2-10 represent the impact of different parameters on the skin-
friction coefficient and the local Nusselt number. Fig. 2 shows the
monotonic increase in the skin friction coefficient with an increase in
suction parameter while having dual solutions up to certain ranges of
stretching/shrinking parameter that are given as = − −λ 1.1026, 1.3226c

and −1.5625 for S=2.2, 2.3 and 2.5, respectively. It is important to
mention that we can get dual solutions only for >λ λc but the single
solution and no solution for =λ λc and <λ λc, respectively. In this

Table 2
Comparison of − ′θ (0) values when Nb=Nt= S=0, λ=1 and Bi=1000.

Pr − ′θ (0) − ′θ (0) − ′θ (0)
Present values Wang [54] Makinde and Aziz [9]

0.07 0.06562 0.0656 0.0656
0.2 0.16906 0.1691 0.1691
0.7 0.45371 0.4539 0.4539
2 0.91053 0.9114 0.9114
7 1.89182 1.8954 1.8954
20 3.35269 3.3539 3.3539

Table 3
The variation of reduced Nusselt number − ′θ (0).

Pr= 10, Sc=10, λ=01, S=0, and Bi=0.1

Active control of nanoparticles
(Makinde and Aziz [9])

Passive control of nanoparticles
(Present)

Nb Nt=0.1 Nt=0.2 Nt=0.3 Nt=0.1 Nt=0.2 Nt=0.3

0.1 0.0929 0.0927 0.0925 0.095830 0.095813 0.095796
0.2 0.0873 0.0868 0.0861 0.095830 0.095813 0.095796
0.3 0.0769 0.0751 0.0729 0.095830 0.095813 0.095796

Pr= 7.2, Sc=2500, λ=−1, S=2.5, and Bi=0.5.
Passive control of nanoparticles

Nb Nt=1.1E−06 Nt=0.0001 Nt=0.001 Nt=0.01 Nt= 0.1 Nt= 0.2

3.5E−07 0.486209 0.486208 0.486207 0.486195 0.486074 0.485936
3.8E−06 0.486209 0.486208 0.486207 0.486195 0.486074 0.485936
3.2E−06 0.486209 0.486208 0.486207 0.486195 0.486074 0.485936
0.0001 0.486209 0.486208 0.486207 0.486195 0.486074 0.485936
0.01 0.486209 0.486208 0.486207 0.486195 0.486074 0.485936
0.1 0.486209 0.486208 0.486207 0.486195 0.486074 0.485936
0.2 0.486209 0.486208 0.486207 0.486195 0.486074 0.485936

Fig. 2. Variation of the skin friction coefficient for various values of mass flux
parameter.

Fig. 3. Variation of the reduced Nusselt number for various values of mass flux
parameter.
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situation, we have to solve the full Navier-Stokes equation and energy
equation. Here λc is the critical value. In the Figs. 2 and 3, we can
observe that dual solution exists for all positive values of λ (stretching)
and range of critical value also increases with increase in suction
parameters. It means suction increases the range of similarity solution
of Eqs. (9)–(12), namely it delays the boundary layer separation. Phy-
sically, an increase in the skin friction coefficient leads to the increase
in the velocity gradient at the boundary due to increase in the shear
stress at the surface. Similarly, suction parameter increases the heat
transfer rate on the surface for dual solutions with an increase in the
suction parameter that can be seen in Fig. 3. This is due to an increase
in the surface shear stress as suction boost the penetration of the fluid.

Variations in the skin friction coefficient and the local Nusselt
number against the suction parameter for the shrinking sheet are seen
in Figs. 4 and 5. The critical value of the suction parameter is

=S 1.9998c . Here the upper branch solution is higher for
″ − ′f θ(0) and (0) as compared to the lower branch solution. Figs. 6 and

7 depict the impact of Nt and Nb. It is seen that a decrease occurs in
heat transfer rate for Nt and remains same for Nb. Influence of the
Brownian motion on the local Nusselt number becomes negligible due
to zero nanoparticle flux on the surface. It means the contribution of
Brownian motion to thermal energy equation tends to zero. This be-
havior is different when author actively controlled the nanoparticle
fraction on the boundary. Effect of Schmidt number on the local Nusselt

Fig. 4. Variation of the skin friction coefficient against S when = −λ 1.

Fig. 5. Variation of the reduced Nusselt number against S when = −λ 1.

Fig. 6. Variation of the reduced Nusselt number for various values of Nt when
S=2.5.

Fig. 7. Variation of the reduced Nusselt number for various values of Nb when
S=2.5.

Fig. 8. Variation of the reduced Nusselt number for various values of Sc when
S=2.5.
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number is seen in Fig. 8. It is seen that Schmidt number does not leave a
prominent effect on the heat transfer rate although it starts decreasing
with the increase of Schmidt number and the first solution has higher
values as compared to the second solution. Since for higher values of Sc,
the change in the reduced Nusselt number is very minimal. Thus the
momentum diffusivity will be playing a major role in temperature and
heat transfer rate (the reduced Nusselt number). It means that the
minor role is played by Brownian diffusion as energy changes primarily
due to the fluid motion. Fig. 9 depicts the impact of Pr on the heat
transfer rate. Being proportional to the initial slope, it starts increasing
for higher values of Prandtl number. Further, for higher values of the
Prandtl number, thermal boundary layer becomes thinner. Subse-
quently, temperature gradient increases. Since Pr is the ratio of mo-
mentum diffusivity to thermal diffusion, so higher values of Prandtl
number means, change in the heat transfer mainly coming from mo-
mentum diffusion. Whereas Fig. 10 illustrates the influence of Biot
number on the local Nusselt number. Because of the heated surface, a
strong convection occurs, and it increases the heat transfer rate deeper
with an increase of Biot number/convective parameter. It is worth
mentioning that one should not get confused with the Biot number and
the Nusselt number as both belong to the same group of physical
parameters. Basically, the Nusselt number is used to describe the heat

flux from a solid surface to a fluid while the Biot number is used to
illustrate the heat transfer resistance inside a solid body.

Table 4 is presented for the results of stability analysis. We calcu-
lated the smallest eigenvalues for both stretching and shrinking sheet.
For the second solution (lower branch), we got negative eigenvalues
and for the first solution (upper branch), got positive eigenvalues, so it
confirms that the first solution is stable and physically realizable,
whereas the second solution is unstable. Note that if the smallest ei-
genvalue is negative, then it means there is an initial growth of dis-
turbances, and if the smallest eigenvalue is positive, then there is an
initial decay. Thus the first solution is stable to self-similar disturbances
as compared to the second solution. The turning behavior of eigenvalue
from positive to negative can be observed graphically. For this purpose,
we draw a graph of the skin friction coefficient against suction para-
meter. In this graph, a transition from upper branch to lower branch
occurs at S= Sc=1.9998 as shown in Fig. 4. Further, to validate our
argument on stability analysis, we developed a graph of smallest ei-
genvalues against stretching/shrinking sheet with suction effect as de-
picted in Fig. 11. Clearly it can be observed that smallest eigenvalue
approaches to zero and make a transition from positive to negative at

= = −λ λ 1.5625c for S=2.5. The positive eigenvalues that came out
for the first solution (upper branch) are displayed as stable solution and
the negative eigenvalues that we got for the second solution (lower
branch) are considered as unstable solution (see Fig. 11).

The reduced Nusselt number estimation

The linear and quadratic regressions are carried out (see Nield and
Kuznetsov [53]), to estimate the value of the reduced Nusselt number,
which incorporates the impact of Nb and Nt. The following are the
correlations for linear and quadratic regressions:

= + +Nu Nu C Nb C Ntest r b t (36)

Fig. 9. Variation of the reduced Nusselt number for various values of Pr when
S=2.5.

Fig. 10. Variation of the reduced Nusselt number for various values of Bi when
S=2.5.

Table 4
Smallest eigenvalues γ at numerous values of λ.

S λ First solution Second solution

0 0.5 0.2005 −0.1233
0 0.3 0.1564 −0.1021

0.1 0.1085 −0.0771
2.1 −1 0.4 −0.3359
2.3 −1 0.7417 −0.5382
2.5 −1 1.0254 −0.6547

Fig. 11. The graph of smallest eigenvalues γ as a function of λ when =S 2.5.
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= + + + + +Nu Nu C Nb C Nt C Nb C Nt C NbNtest r b t bb tt bt
2 2 (37)

where Cb, Ct , Cbb, Ctt , and Cbt represent the coefficients of linear and
quadratic regressions, respectively. For different values of the Prandtl
number and the Schmidt number, the value of the reduced Nusselt
number is estimated for 30 sets of values of Nb and Nt in the range of
[0.1, 0.5]. The yielded regression equations are valid for Nb and Nt in
the range of [0, 0.5]. Table 5 represents the linear regression coeffi-
cients at dissimilar values of the Prandtl number, and Schmidt number,
whereas Table 6 is made for quadratic regression coefficients. Adjusted
R2 and maximum relative absolute error are also calculated for both
regressions as shown in Tables 5 and 6. The yielded correlation of
multiple linear and quadratic regressions is given below when Pr and

=Sc 10.

= + −Nu Nb Nt0.961843 0.000000 0.00379est (38)

= + − + −

+

Nu Nb Nt Nb Nt

NbNt

0.961799 0.00000 0.00347 0.00000 0.00054

0.00000
est

2 2

(39)

From the above expression, it can be noticed that the impact of the
Brownian motion parameter on the reduced Nusselt number is negli-
gible. This is due to the nanofluid revised model. These results coincide
with the graphical results in Fig. 7 and numerical results in Tables 1 and
3. Similarly, the heat transfer rate decreases for thermophoresis para-
meter. This behavior coincides with the graphical result presented in
Fig. 6 and numerical results in Tables 1 and 3. Above correlation is
made for stretching sheet. Further, to explore the impact of Brownian
motion and thermophoresis on heat transfer rate, linear regressions are
carried out for shrinking sheet. This time Prandtl number is selected
according to the base fluid as depicted in Tables 7 and 8. Since Schmidt
number should be selected higher for nanofluid, we tried to estimate
the correlation for maximum value of Sc that is 1000. Since for most
practical purpose, linear regression is adequate (see Nield and Kuz-
netsov [53]), so here for shrinking sheet, we limit our regression to only
linear regression. From Tables 7 and 8, estimated values of the reduced
Nusselt number for various values of Prandtl and Schmidt numbers can
be observed. Further, it is observed that for various base fluids, rate of
heat transfer is different and it increases accordingly as Prandtl number
is increased. The role of the Brownian motion in heat transfer also
become zero for shrinking sheet due to passive control of nanoparticles.
According to Table 8 results, the role of Schmidt number becomes
minimal with rise in its values in heat transfer rate accordingly. As
higher value of Schmidt number we consider, in the same way its im-
pact decreases because of a very minor role of Brownian diffusion. The
contribution of thermophoresis, Brownian motion, Schmidt number and

Prandtl number in heat transfer rate tally with graphical results de-
picted in Figs. 6–9. Since from Tables 1, 3 and 5–8 and Figs. 6–8, it is
evident that the heat transfer rate remains stagnant for the Brownian
motion and Nt contribute at minimum level, for Sc > 1, Brownian
diffusion role is also minimum. Further, nanofluid flow is being dis-
turbed with deformation of sheet, so overall, the role of Nb and Nt is
small. Hence, in our point of view, the values of Nb and Nt should be
chosen to be small as majority of heat transfer is driven by fluid motion.

This section containing Figs. 12 to 18 discoursed the impact of
numerous parameters on convective boundary layer and nanoparticle
volume fraction, and all graphical results asymptotically satisfy far field
boundary conditions. The impact of the Brownian motion on thermal
boundary layer and nanoparticle volume fraction is shown in Figs. 12
and 13. Zero effect is seen for temperature distribution against the
stretching/shrinking sheet that is consistent with Fig. 7 drawn for the
local Nusselt number, whereas a decreasing behavior is seen for na-
noparticle distribution in Fig. 13 either sheet is stretching or shrinking.
Interestingly nanoparticle volume fraction first overshoots and then
gradually decreases as the wall is approached because of the passive
control of nanoparticles on the wall. The same behavior is observed for
volume fraction at numerous values of Sc but we do not include here
due to space limitation. The thermophoresis parameter has a minimal
increasing effect on temperature profile for both stretching/shrinking
sheet as depicted in Fig. 14. Basically it increases the thermal boundary
layer thickness so subsequently heat transfer rate should decrease, and
it is evident in Fig. 6. Moreover, nanoparticle volume fraction increases
with significant effect as we increase Nt for both cases of the sheet but
did not include figures due to space limitation. Fig. 15 reveals that the
temperature distribution increases with the increase of Sc but its effects
are only perceptible near to the sheet. So it means, an increase in
temperature profile is to decrease the heat transfer rate that is obvious
in Fig. 8. Figs. 16 and 17 demonstrate the influence of Bi on the tem-
perature and concentration profiles. Biot number increases the tem-
perature and nanoparticle concentration distributions in consort with

Table 5
Linear regression coefficients with Adjusted R2 and maximum relative error
when = =S λ2.5, 0.5 and =Bi 1.

Pr Sc Nur Cb Ct Adjusted R2 ε

1 10 0.721984 0.000000 −0.02683 0.999889 9.84E−05
10 10 0.961843 0.000000 −0.00379 0.99978 1.45E−05
25 10 0.984306 0.000000 −0.00091 0.999904 2.25E−06
10 20 0.961873 0.000000 −0.00518 0.999642 2.56E−05
10 100 0.961935 0.000000 −0.00734 0.999362 4.88E−05

Table 6
Quadratic regression coefficients with Adjusted R2 and maximum relative error when = =S λ2.5, 0.5 and =Bi 1.

Pr Sc Nur Cb Ct Cbb Ctt Cbt Adjusted R2 ε

1 10 0.721765 0.00000 −0.02521 0.00000 −0.00269 0.00000 1 9.23E−07
10 10 0.961799 0.00000 −0.00347 0.00000 −0.00054 0.00000 1 3.28E−07
25 10 0.984299 0.00000 −0.00086 0.00000 −8.6E−05 0.00000 1 2.64E−08
10 20 0.961797 0.00000 −0.00462 0.00000 −0.00094 0.00000 1 5.60E−07
10 100 0.961791 0.00000 −0.00628 0.00000 −0.00177 0.00000 1 1.43E−06

Table 7
Linear regression coefficients with Adjusted R2 and maximum relative error
when = = −S λ2.5, 1 and =Bi 1.

Pr Sc Nur Cb Ct Adjusted R2 ε

1 10 0.693555 0.000000 −0.03211 0.99988 1.27E−04
3.97 10 0.905607 0.000000 −0.01301 0.999667 6.60E−05
6.8 10 0.943363 0.000000 −0.00689 0.999704 3.15E−05
14.2 10 0.972334 0.000000 −0.00239 0.999818 8.26E−06
21 10 0.981181 0.000000 −0.00127 0.999877 3.56E−06

Table 8
Linear regression coefficients with Adjusted R2 and maximum relative error
when = = −S λ2.5, 1 and =Bi 1.

Sc Pr Nur Cb Ct Adjusted R2 ε

10 6.8 0.943363 0.000000 −0.00689 0.999704 3.15E−05
50 6.8 0.943457 0.000000 −0.01045 0.999422 6.74E−05
100 6.8 0.943481 0.000000 −0.01118 0.999349 7.67E−05
1000 6.8 0.943508 0.000000 −0.01193 0.999265 8.71E−05
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Fig. 12. Variation of temperature profile for Nb when = −λ 0.5/ 1.

Fig. 13. Variation of nanoparticle distribution for Nb when = −λ 0.5/ 1.

Fig. 14. Variation of temperature profile for Nt when = −λ 0.5/ 1.

Fig. 15. Variation of temperature profile for Sc when = −λ 1.

Fig. 16. Variation of temperature profile for Bi when = −λ 1.

Fig. 17. Variation of nanoparticle distribution for Bi when = −λ 1.
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boundary layer thickness. In reality, the increase in Biot number in-
creases the penetration depth. Further, Fig. 17 depicts the flipping be-
havior as the nanoparticle flux at the surface is suppressed. The increase
in Prandtl number decreases the thermal boundary layer thickness as
revealed in Fig. 18. This result is consistent with Fig. 9 where heat
transfer rate increases with increase in Pr.

Lastly, the flow pattern is analyzed in Fig. 19(a)–(h). In these figures
we draw the streamlines to observe the flow pattern. For the im-
permeable case (S=0), flow behaves the same as for the stagnation
point flow but for the second solution, it is divided into two regions, the
first region behaves the same as for the first solution but the second
region shows that the flow rotates in reverse direction. It is observed
that the streamline contracts with the increase of the suction parameter.
As a result, density increases that causes an increase in fluid velocity.

Conclusions

We studied the boundary layer flow of nanofluid for a permeable
stretching/shrinking sheet with convective boundary condition by
controlling the nanoparticle fraction passively rather than actively on
the boundaries. This is a more realistic approach. The nonlinear system
of ordinary differential Eqs. (9)–(11) with a set of new boundary con-
ditions (12) is solved with the help of bvp4c function. The validity of
our calculation is shown through comparison. The stability of the out-
coming solutions for stretching/shrinking sheet under the impermeable
and suction effect is shown by finding the smallest eigenvalues for both
solutions, and it is observed that first solution is stable and realizable.
The turning point from positive to negative eigenvalues for dual solu-
tions is explained graphically. The reduced Nusselt number is estimated
for 30 sets of values of Nb and Nt using regression for both stretching
and shrinking sheets and the impact of Nb and Nt is observed for heat
transfer rate. The Brownian motion parameter does not bring any
change in the heat transfer rate and for the temperature profile. Thus
the reduced Nusselt number is almost independent of Nb when we
imposed zero flux on the boundary using realistic approach. The values
of Nb and Nt should be chosen small since in a moving liquid, energy
transfer would be primarily owing to the fluid motion. The increase in
the suction parameter widened the range of the stretching/shrinking
parameter. Heat transfer rate is higher for higher values of the suction
parameter. Temperature distribution increased with an increase in Nt
that is consistent with the result when heat transfer rate decreased with
Nt. Schmidt number depicted minimal decrease in the reduced Nusselt
number. On the other hand, temperature distribution showed a minimal
increase with Sc that depicted consistency with heat transfer rate. The
increase in the Prandtl number showed a decrease in temperature

profile, while increase occured in the heat transfer rate with Pr. The
higher values of Pr indicates the change in heat transfer via fluid mo-
tion instead of thermal diffusion. The temperature distribution and heat
transfer rate are higher for large values of the Biot number. The
streamline contracted due to increase in the suction parameter, whereas
for the impermeable case, oncoming flow behaved as a stagnation point
flow.

Fig. 18. Variation of temperature profile for Pr when = −λ 1.

(a)Streamlines for stretching sheet (b) Streamlines for stretching sheet 

at S = 0 (for first sol.). at S = 0 (for 2ndsol.)

(c) Streamlines for stretching sheet (d) Streamlines for stretching sheet 

at S = 2.5 (for first sol.) at S = 2.5 (for 2nd sol.)

Fig. 19. Sketch of streamlines.
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