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A B S T R A C T

In this article, an analytical solution of the boundary layer fluid flow and heat transfer of a quiescent viscous
fluid over a non-linearly stretching surface is presented. The thermal radiation effects are included in the energy
governing equation. Surface velocity and temperature conditions are assumed to be of the power-law form with
an exponent of 1/3 for velocity and arbitrary exponent m for surface temperature or heat flux conditions. The
system of nonlinear differential equations is solved by Homotopy Analysis Method (HAM) for two cases of
Prescribed Surface Temperature (PST) and Prescribed Heat Flux (PHF). The results of this method appear in the
form of series expansions, the convergence of which is analyzed carefully. Graphical results are finally presented
in order to investigate the influence of Prandtl number (Pr) and thermal radiation on heat transfer phenomena.

Introduction

A large number of engineering and scientific problems can be ap-
propriately formulated in the form of a system of non-linear partial
differential equations subject to specific boundary and initial condi-
tions. However, a general methodology in order to analytically tackle
with such systems of equations still lacks. The most common choice for
complicated problems seems to be numerical computations, in which
values of dependent variables are accounted for at only a set of discrete
points (commonly referred to as computational nodes). Nevertheless,
the analytical solutions are highly favored over numerical results
especially because of their ability to continuously describe the variable
fields and the lack of a number of errors that are typically associated
with the numerical solutions.

There are many approximate analytical methods, which have been
developed and extensively used for the case of ordinary non-linear
differential equations. In the case of partial differential equations if a
similarity variable exists, the system of differential equations is possible
to be transformed to a system of ordinary differential equations. Then
the analytical methods that are applicable to ODEs can be utilized in
order to resolve the resulting system of ODEs.

There are many well-known method to solve equations such as DQ,
GDQ, DTM and etc [1–4]. One of the most recently applied approximate
analytical methods, for solving non-linear ordinary differential

equations, is Homotopy Analysis Method (HAM), which was developed
by Liao in 1992 [5]. It is the general form of HPM [6], ADM [7] and δ-
expansion methods, which overcomes the restriction of requiring a
small parameter in the foregoing methods [8]. In order to make sure
about its validity and accuracy it was widely applied by many re-
searchers for a variety of problems such as viscous boundary layer flow
due to a moving sheet[9], viscos flow on flat plate [10], Blasius viscos
flow [11], non-Newtonian fluids over a sheet [12], hydro magnetic
nano-fluids [13], vibration of beams [14], boundary layer flows and
heat transfer subject to non-linear boundary conditions [15–17].

Ajam et al. [18] applied Buongiorno’s Model to study a surface
stretching with convective conditions in a magnetohydrodynamic
(MHD) nano-fluid. They showed by increasing Lewis number, the spe-
cies boundary layer thins and the concentration profiles become
steeper. Abbasbandy used Homotopy Analysis Method in many heat
transfer problems such as heat radiation equations [19]. Marinca and
Herişanu [20] investigated nonlinear equations arising in heat transfer
bu OHAM. Sheikholeslami et al. [21] studied nanofluid flow over a
stretching plate in existence of magnetic field by using Buongiorno
Model. They showed by increasing porosity and melting parameters the
Nusselt number reduced.

There are many industrial and chemical processes where a surface
that is being stretched or drawn needs to be cooled before taking any
further packaging or processing action. The cooling effect is typically

https://doi.org/10.1016/j.rinp.2018.05.036
Received 2 February 2018; Received in revised form 2 May 2018; Accepted 24 May 2018

⁎ Corresponding author.
E-mail address: m.a.kazemi@basu.ac.ir (M.A. Kazemi).

Results in Physics 10 (2018) 164–172

Available online 30 May 2018
2211-3797/ © 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/BY/4.0/).

T

http://www.sciencedirect.com/science/journal/22113797
https://www.elsevier.com/locate/rinp
https://doi.org/10.1016/j.rinp.2018.05.036
https://doi.org/10.1016/j.rinp.2018.05.036
mailto:m.a.kazemi@basu.ac.ir
https://doi.org/10.1016/j.rinp.2018.05.036
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rinp.2018.05.036&domain=pdf


achieved by means of a fluid surrounding the surface, e.g. paper pro-
duction, manufacturing electronic chips, iron forming, and many
others. As of yet several engineering problems concerning stretching
surfaces have been mathematically modeled under various conditions
and using both Newtonian and non-Newtonian working fluids [22–27].

To name a few, heat transfer from a moving hot surface and non-
linear stretching effects on fluid flow were studied by Chen [28], and
Vajravelu [29], respectively. Power law and exponentially stretching
surface have been investigated by Ali [30] and Elbashbeshy [31], re-
spectively. Cortell [32]conducted a numerical solution of the flow and
heat transfer over a nonlinearly stretching sheet, using Runge-Kutta
integration method.

In the present study, the system of non-linear equations of the fluid
flow and heat transfer of a viscous quiescent fluid over a non-linearly
stretching surface are analytically solved by HAM. The thermal radia-
tion is also taken into account and the problem is solved subject to two
sets of thermal boundary conditions, i.e., Prescribed Surface
Temperature (PST) and Prescribed Heat Flux (PHF). The results showed
that by increasing surface temperature parameter, dimensionless tem-
perature in both PST and PHF cases decrease. Also dimensionless
stream function, velocity and dimensionless temperature in both cases
of PST and PHF are represented graphically.

Flow and energy analysis and mathematical formulation

Governing equations of fluid flow

As shown in Fig. 1, let us consider a Newtonian incompressible flow
over a flat stretching surface which corresponds to y= 0 in the Carte-
sian coordinates system depicted. The surface is being stretched non-
uniformly in x direction. The 2-dimensional constant-property
boundary layer equations are expressed as Eqs. (1) and (2), which are
the statements of conservation of mass and linear momentum in x di-
rection, respectively. These governing equations are subject to the as-
sumption of slender boundary layer which holds true for the case of
high Re numbers =Re u L ν( / )w . The main consequences of slenderness
assumption are ≪v u and ∂ ∂ ≪ ∂ ∂u x u y/ /2 2 2 2.
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Boundary conditions for the present problem as set forth by Cortell
[32], are

= = =u x ν
L

x v at y( ) , 0 0,w 4/3
1/3

(3)

→ → ∞u as y0 . (4)

In which L is the characteristic length of the surface taken as the stream-
wise surface extent. As noticed the wall stretching velocity appears as a
nonlinear boundary condition, Eq. (3). Similarity variables are defined
as follows [32]:
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Eq. (2) is reduced to the following nonlinear differential equation [32]

‴ + ″− ′ =f ff f3 2 ( ) 0,2 (6)

where f is the dimensionless stream function and the primes denote
differentiation with respect to the similarity variable, η. The Eq. (6) is
subject to boundary conditions given below:

= ′ = =f f at η0, 1 0, (7)

→ → ∞f as η0 . (8)

Governing equation of heat transfer

The boundary layer including thermal radiation is given by Eq. (9)
as
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In which T is temperature, α the thermal diffusivity, ρ the fluid density,
Cp is the fluid specific heat at constant pressure, and qr is the radiative
heat flux. Using Rosseland approximation [33] the radiative heat flux is
simply expressed as follows:
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(10)

where σ is the Stefan-Boltzmann constant and k∗ is the mean absorption
coefficient. By expanding T4 using a Taylor series about T∞ and ne-
glecting higher-order terms Eq. (10) is simplified and then substituted
in Eq. (9). Thus, the energy equation takes the following form of [32]:

⎜ ⎟
∂
∂

+ ∂
∂

= ⎛
⎝

+ ⎞
⎠

∂
∂

∞
∗u T

x
v T

y
α

PrT
ρC k

T
y

16
3

.
p

3 2

2 (11)

Prescribed surface temperature (PST) case

The nonlinear boundary condition for surface temperature is con-
sidered as follows, with ≠m 0 and ≠m 1:

= + ⎛
⎝
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L
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m

(12)

where A is a constant, and ∞T is the free stream fluid temperature. For
convenience the dimensionless temperature θ is defines as

= −
−

∞

∞
θ η T T

T T
( ) .

w (13)

Using similarity variable the Eqs. (11) and (12) are reduced to [32]:

″ + ′− ′ =θ k Prfθ Prk mf θ2
3

0,0
0 (14)

= = → → ∞θ at η θ as η1 0; 0 . (15)

In which =Pr ν α( / ) is the fluid Prandtl number, = ∗N k k σ/4R the ra-
diation parameter [32], and we also have = +k N N3 /(3 4)R R0 .

Prescribed heat flux (PHF) case

In this case, dimensionless temperature is defined as [32]
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x L
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D
k

m m1/3 2/3
(16)

and the corresponding boundary conditions areFig. 1. The stretching surface, with surface velocity uw.
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where D is a constant and provided that ≠m 0 and ≠m 1 the wall heat
flux turns out to be a nonlinear boundary condition. By using similarity
transformations and Eqs. (16), (11) and (17) are reduced to [32]:
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HAM solution

To solve Eqs. (7), (14) and (18) analytically by using HAM, we
choose the initial solutions as

= − −f η e( ) 1 ,η
0 (20)

= −θ η e( ) ,η
0 (21)

= −g η e( ) ,η
0 (22)

where Eqs. (20)–(22) satisfy the boundary conditions in (8), (15) and
(19), respectively. Auxiliary linear operators are defined as
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where Ci, (i=1–7) are integration constants. From Eqs. (7), (14) and
(18) the nonlinear operators are defined as

Fig. 2. The h-curves of ″f (0) and ′θ (0) for several values of Prandtl number as obtained using the twentieth-order approximation of the HAM, for k0=1 and m=1.

Fig. 3. The h-curves of ″f (0) and g (0) for several values of Prandtl number as obtained using the twentieth-order approximation of the HAM, when k0=1 and m=1.
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where ∈q [0, 1] is an embedding parameter and ̂ ̂f θ, and ̂g are map-
ping functions for f θ, and g, respectively. So, the zeroth-order de-
formation equations are defined as

̂ ̂− − =q L f η q f η qhH N f η q(1 ) [ ( ; ) ( )] [ ( ; )],f1 0 1 (30)
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̂ ̂ ̂− − =q L g η q g η qhH N f η q g η q(1 ) [ ( ; ) ( )] [ ( ; ), ( ; )],g3 0 3 (32)

where h is the auxiliary nonzero parameter and Hf, Hθ and Hg are
auxiliary functions. The deformation equations are subject to the follow
g0 ing boundary conditions:
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When q increases from 0 to 1, ̂f , ̂θ and ̂g vary from initial approx-
imations f0, θ0 and to f θ, and g, respectively. Therefore, using Taylor’s
series expansions, one obtain
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s
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Fig. 4. The residual error for f η( ), θ η( ) and g η( ) (Eqs. (7), (14) and (18)), for k0=1 and m=1.

Fig. 5. The Dimensionless stream function f η( ), temperature θ η( ) for PST case and g η( ) for PHF case in comparison with numerical solution, for NR=2 and m=1.
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Convergence of the series (17)–(19) depends firsthand on the auxiliary
parameter h[34]. If h is selected such that series (17)–(19) are con-
vergent at q=1, we have
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For sth-order deformation equations, we differentiate zeroth-order de-
formation equations, and divide each by s! and then set q=0. So the
sth-order deformation equations are obtained as follows:

− =−L f η χ f η hH R η[ ( ) ( )] ( ),s s s f s1 1 1, (43)

− =−L θ η χ θ η hH R η[ ( ) ( )] ( ),s s s θ s2 1 2, (44)

− =−L g η χ g η hH R η[ ( ) ( )] ( ),s s s g s3 1 3, (45)

where

Fig. 6. Dimensionless stream function f η( ) dimensionless velocity profile ′f η( ) and dimensionless shear stress ″f η( ).

Fig. 7. Dimensionless temperature θ η( ) in PST case, for various values of Prandtl number, when NR = 2 and m=1.
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with the homogenized boundary conditions
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′ = ∞ =g g(0) 0, ( ) 0,s s (52)

and the auxiliary functions are
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The system of linear Eqs. (43)–(45) with the boundary conditions
(50)–(52) can be solved by means of symbolic software such as MAT-
HEMATICA or Maple. Then, fs, θs and gs are obtained for s= 1, 2,… as
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Fig. 8. Dimensionless temperature θ η( ) in PST case, for various values of radiation parameter NR, when Pr=3 and m=1.

Fig. 9. Dimensionless temperature θ η( ) in PST case, for various values of wall temperature parameter m, when Pr=3 and NR=1.
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and so on.

Convergence of HAM solutions

The convergence of the series given in the Eqs. (40)–(42) depends
on the value of auxiliary parameter h [34]. In order to find the ap-
propriate range of the auxiliary parameter the h-curves of ″ ′f θ(0), (0)
and g (0) are considered, as plotted in Figs. 2 and 3 using twentieth-
order of the HAM solution. Upon choosing the appropriate h-value the
result is used in the Eqs. (6), (14) and (18) and the solution residual is
obtained, that is plotted in Fig. 4. In order to verify the accuracy of the
HAM solution, some of the results are compared against the available
numerical results. As noted in Fig. 5 an excellent agreement exists be-
tween numerical and analytical solutions.

It should be noted that the appropriate range of h values corre-
sponds to the line segments parallel to the h axis in the h plots. This
region in h-curves depends on Prandtl number in energy equation, so
that increasing the Prandtl number results in a narrower margin for
appropriate h values (Figs. 2 and 3). This behavior is due to Prandtl
number appearing in the nonlinear terms (Eqs. (14) and (18)). It is also
noted in Figs. 2 and 3 that h= -1 is out of the permissible range of the
auxiliary parameter, so the HPM cannot be used for flow equation, and
can be used for energy equation in Pr= 0 case only.

Result and discussion

Fig. 6 shows the dimensionless stream function f η( ), dimensionless
velocity profile ′f η( ) and dimensionless shear stress ″f η( ) versus η. It is
evident that when the η increases, the dimensionless stream function
and dimensionless shear stress increases while dimensionless velocity
profile decreases. For the PST case, dimensionless temperature θ η( ) is
sketched for various values of Prandtl number (Pr), radiation parameter

Fig. 10. Dimensionless temperature g η( ) in PHF case, for various values of Prandtl number, when NR=2 and m=1.

Fig. 11. Dimensionless temperature g η( ) in PHF case, for various values of radiation parameter NR, when Pr=3 and m=1.
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N( )R and surface temperature parameter m( ) has shown in Figs. 7–9,
respectively.

Figs. 7 and 8 show that, as Prandtl number and radiation parameter
increases, the dimensionless temperature θ η( ) decrease in PST case.
According to Fig. 7 ( =m 1 and =N 2R ) by increasing the Prandtl
number (when m and NR are constant), the effects of Prandtl number on
θ η( ) is decreases. Also, based on Fig. 8 ( =m 1 and =Pr 3) the effect of
NR on θ η( ) decrease, when NR is increase (by considering constant value
for m and Pr). This result qualitatively, agrees with the theory that
increase Prandtl number, decrease the heat diffusion and effect of ra-
diation parameter is to decrease of heat transfer to ambient fluid [32].
In fact decreasing the temperature of the fluid due to decrease of the
rate of energy transport to the fluid.

Effects of Prandtl number and radiation parameter on dimensionless
temperature in PHF case has been shown in Figs. 10 and 11, respec-
tively. According to Fig. 10 ( =m 1 and =N 2R ), the effects of Prandtl
number on g η( ) is decreases when Prandtl number increases (by con-
sidering constant value for m and NR). Fig. 11 shows that if m and Pr is
constant (in this figure =m 1 and =Pr 3) the effect of NR on g η( ) de-
crease. On the other hand, increase surface temperature parameter m,

decrease dimensionless temperature in both PST (Fig. 9) and PHF
(Fig. 12) cases.

Effect of Prandtl number on surface heat flux ′θ (0) in PST case and
surface temperature g (0) in PHF case for various values of m and
constant value for NR ( =N 2R ) is shown in Figs. 13 and 14, respectively.
Negative values of ′θ (0) implies that, heat flows from the surface to
fluid. Figs. 13 and 14 also shows that, by increasing Prandtl number,
value of heat flux ′θ| (0)| (in PST case) increases and surface temperature
g (0) (in PHF case) decreases in any surface temperature parameter.

Conclusion

In this paper, flow and heat transfer of quiescent fluid over a non-
linearly stretching surface is solved analytically by means of Homotopy
Analysis Method (HAM). Convergence of obtained solutions is analyzed
and verified by the numerical results. It is shown that HPM method
cannot be used for this problem in nonzero values of Prandtl number.
Considerable parameters such as dimensionless stream function, velo-
city and dimensionless temperature in both cases of PST and PHF are
represented graphically. The HAM provides a simple solution for both

Fig. 12. Dimensionless temperature g η( ) in PHF case, for various values of wall temperature parameter m, when Pr=3 and NR=1.

Fig. 13. Effect of Prandtl number on surface heat flux ′θ (0) in PST case for various values of m, when NR=2.
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weakly and strongly nonlinear problem in various values of Prandtl and
other parameters and presents a good way to control convergence of
solutions by means of auxiliary parameter h.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the
online version, at http://dx.doi.org/10.1016/j.rinp.2018.05.036.
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